MIT Libraries logoDome

MIT
View Item 
  • Dome Home
  • Project Whirlwind
  • Project Whirlwind Reports
  • View Item
  • Dome Home
  • Project Whirlwind
  • Project Whirlwind Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The influence of chemistry on B-H loop shape, coercivity, and flux-reversal time in ferrites

Goodenough, John B.
Thumbnail
DownloadMC665_r16_M-4328.pdf (7.414Mb)
URI
http://hdl.handle.net/1721.3/40666
Date
1956-05-16
Abstract
The factors which influence the shape of the B-H loop, the coercivity, the permeability, and the flux reversal time in ferrimagnetic spinels are considered on two levels: a macroscopic and an atomic level. To minimize consideration of shape-dependent properties, the ferrite components are assumed to be toroids. With the assumption that domain walls are present in the material, the influence of grain-boundary magnetic poles on B-H loop shape, coercivity, permeability and flux reversal is determined in terms of measurable physical parameters of the material. From these relationships it is possible for the designing engineer to determine the optimum parameter values for a given application. The spinel-like magnetic oxides may, in first approximation, be considered ionic lattices. In order to obtain some insight into the control of the macroscopically measurable physical parameters by chemical composition and preparation procedures, as a second approximation the directional character of the ionic orbitals is emphasized to describe the influence of covalent effects on magnetic moment, magnetic exchange, and crystalline anisotropy. These effects are applied theoretically to the cations of particular interest in ferrites. Finally, some properties of several ferrites are displayed graphically to illustrate the importance of processing and chemistry on the magnetic character of ferrospinels.
Description
Note: This paper was presented at the Convention on Ferrites, London, England, October, 1956.
 
Includes bibliographical references and figures.
 
Metadata
Show full item record

Collections
  • Project Whirlwind Reports

Browse

All of DomeCommunities & CollectionsBy Issue DateCreatorsTitlesSubjectsThis CollectionBy Issue DateCreatorsTitlesSubjects

My Account

Login
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.