MIT Libraries homeMIT Libraries logoDome

MIT
View Item 
  • Dome Home
  • Project Whirlwind
  • Project Whirlwind Reports
  • View Item
  • Dome Home
  • Project Whirlwind
  • Project Whirlwind Reports
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nucleation of Domains of Reverse Magnetization and Switching Characteristics of Magnetic Materials

Goodenough, John B.; Menyuk, Norman
Thumbnail
DownloadMC665_r04_E-532.pdf (6.029Mb)
URI
http://hdl.handle.net/1721.3/38944
Date
1953-03-09
Abstract
The critical requirements for a ferromagnetic memory core are reviewed. Domains of reverse magnetization must form and grow within a core if its induction is to be reversed. The nature of the nucleation centers for these reverse domains will affect the shape of the hysteresis loop and the switching time. Inclusions, grain boundaries, and crystalline surfaces are analyzed as lattice imperfections which could act as nucleating centers. It is concluded that the grain boundaries are the most probable nucleation centers in most polycrystalline materials. It is shown that the criterion for a square hysteresis loop is L(cosϴ[subscript 1] - cosϴ[subscript 2])[superscript 2] < Const. ϴ[subscript w]/I[subscript B][superscript 2] where L is the average grain dianeter, ϴ[subscript 1] and ϴ[subscript 2] are the respective angles made by the magnetization vector of two neighboring grains with the normal to their common surface, ϴ[subscript W] is the surface domain wall energy density, and I[subscript S] is the saturation magnetization of the sample. This explains why loops can be squared by the alignment of a direction of easy magnetization from grain to grain. It also reveals that materials which are not so aligned may have square loops if I[subscript S] is sufficiently small. The switching time T for cores which are driven at fields roughly twice the coercive force (optimum operating conditions for a memory core) is related to the coercivity through the relation H[subscript C] T = S[subscript W] where the switching coefficient S[subscript W] is a constant of the material. Experimental agreement with this model is found.
Metadata
Show full item record

Collections
  • Project Whirlwind Reports

Browse

All of DomeCommunities & CollectionsBy Issue DateCreatorsTitlesSubjectsThis CollectionBy Issue DateCreatorsTitlesSubjects

My Account

LoginRegister
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.