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I INTRODUCTION

In the latest shipbuilding developments there is a substantial increase in ship

propeller loading. In particular, this applies to two types of ships: the first, fast

container carriers and general cargo ships of 30 knots speed and shaft horsepower

exceeding 50,000 per propeller, the second, large tankers and bulk carriers character-

ized by large propulsive power and low speeds. The latter ships, have in addition,

very full hull forms, further aggravating the propeller operating conditions due to

the increased nonuniformity of flow behind the ship. Thus, analysis of the cavitation

inception on the propeller blade and determination of the induced alternating loads

by the propeller on the ship hull are of particular importance in the design of the

ship propeller. In most current propeller designs, these problems are at least as,

if not more important than, the steady state propeller performance. There are signifi-

cant problems in the use of experimental methods to design a propeller to perform in

a strong nonuniform velocity field and to satisfy specified demands in the area of

cavitation and the level of induced vibration. Such experimental efforts require com-

plicated and expensive equipment, several propeller models (until one finds a config-

uration of desirable characteristics), establishment of a suitable velocity field in

the propeller tunnel, testing, and data analysis. Model experiments of this type are

so costly and time consuming that their repeated use for each propeller design is

highly inadvisable. Therefore, it is essential to develop an analytical method to

replace these experimental methods or to limit them to the final verification. The

fundamental element of an analytical method to describe cavitation phenomena and un-

steady loads induced in a ship propeller is an algorithm from which the pressure dis-

tribution on the surface of the propeller blade operating in a nonuniform ideal fluid

flow can be determined.

A method is presented in this paper to determine the pressure distribution on a

propeller blade of known geometry, performing in a known nonuniform velocity field.

The method is based on a theoretical lifting surface model, taking into account, to a

high degree, the phenomena of unsteady flow about the propeller. The accountability

for flow unsteadiness is not limited to the phenomena on the propeller blade but also

includes the structure of the flow behind the propeller. After completion of this

computerized method, including subroutines that take into account viscosity and cavi-

tation on the pressure distribution induced on the propeller blade, one has a profi-

cient computer program that will permit:

a) evaluation of a complete design of a propeller performing in a nonuniform velocity

I^ __ _I



field in the area of cavitation and amplitude of vibrations transmitted through

the propeller shaft.

b) improvements of a propeller, designed by any method, directed toward minimizing

the vibrations transmitted through the propeller shaft and the reduction of the

cavitation area of the blade or area susceptible to errosion. Improvements will

be based on several propeller calculations with small, systematic geometrical

changes from the initial design and the selection of the most suitable variant.

This type of process should be considered a second phase in theoretical ship

propeller design, indispensable in the case of propellers operating in a highly

nonuniform velocity field.

c) development of design programs to determine the general principles of formulating

the geometry of ship propellers intended to operate in a nonuniform velocity

field. Because currently designed ships contain increasingly larger power plants

and move at increasingly higher speeds, and because it is unlikely that we will

be able to eliminate the nonuniformity of the velocity field upstream of the

propeller flow, investigation of the principles that formulate the geometry of

optimum propellers (with respect to cavitation and induced vibrations) operating

in a nonuniform velocity field is imperative.

d) partial substitution of time- and money-consuming experimental methods.

In subsequent parts of this report, the theoretical basis of this analytical

model, its numerical implementation, and preliminary validation are presented.

iillll llmli Y 1~---- ----- ~- --- - ~~- 111%III1 YIC 1M 'II--N-



II EXAMPLES OF RELATED THEORETICAL METHODS

In the last two decades several different methods based on a theoretical lifting

surface model were developed to design the geometry of a propeller blade for a given

pressure distribution and to calculate the pressure distribution on a propeller blade

from known propeller geometry. The many theoretical models used in those methods can

be divided into two basic groups. One group simulates the propeller blade with a

vortex surface of a continuous and varying distribution of circulation; the other

group models the propeller blade by a layer of pressure dipoles. In the first case

the distribution of induced velocities and the resulting pressures are obtained ac-

cording to the law of Biot-Savart; in the second case the equation of the potential

of a layer of pressure dipoles is used. Full equivalence between the two methods can

be proven, at least in calculations of the steady type performance (i.e., propellers

operating in a uniform or in an axially symmetric velocity field). All the theoreti-

cal methods differ significantly in numerous details concerning fidelity to physical

phenomena affecting the performance of marine propellers and in their numerical solu-

tions. Two examples of the most recent and, relatively, the most complex methods of

calculating the hydrodynamic characteristics of marine propellers follow. Some of

their elements have provided guidance in the course of the development of the method

presented here.

The method based on the model of surface vortices was developed by a team headed

by Professor J. Kerwin at the Massachusetts Institute of Technology. This method has

been systematically improved during the past two decades [2, 9, 10] and it permits

calculating the distribution of circulation on a propeller blade of any geometry (in-

cluding propellers with skewed and raked blades), operating in an axially symmetric

velocity field without cavitation. As seen previously, this method assumes a circum-

ferentially uniform velocity field, implying that it does not include phenomena of an

unsteady nature. Since a method based on a vortex model has not yet been published

and applied to describe the unsteady processes, the following example was specifi-

cally chosen to illustrate the characteristic properties of the vortex model. In the

method described in [2], the propeller blade is shown in a coordinate system as illus-

trated in Figure 1. This figure also indicates all the principal geometrical charac-

teristics used to formulate the mathematical equations. The surface of the propeller

blade is defined by: propeller pitch, maximum camber, maximum thickness, and the

leading and trailing edges. All the characteristics are treated as functions of the

propeller radius. To define the distribution of camber, as well as blade thickness

I~___ _ _ I__~ _
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Figure 1 - Coordinate System Used in the American Method



along the chord, standard NACA methods are used (NACA a = 0.8 camber; NACA 66 distri-

bution of the blade thickness). It is possible to implement other geometrical

profiles.

The circulation of bound vorticity is defined as a sum of a six-term series.
3

where: F - is a radial coordinate of the propeller defined as:

-R 2r
r = arc cos

r - radial distance from propeller axis

rh - radius of the hub

R - maximum radius of propeller blade

s - nondimensional coordinate along the blade profile

fl (s) - distribution of circulation along the chord of an infinitely thin NACA a = 0.8

blade profile in two-dimensional flow

f2 (s) - distribution of circulation along the chord of an infinitely thin flat plate

operating at an angle of attack in two-dimensional flow

Functions fl(s) and f2 (s) are normalized such that:

(S)ds = 10
0

The blade thickness is simulated by a distribution of sources of strength proportional

to local change in profile thickness and velocity of inflow:

dt
C(P,s) = V() ds (2)

where: &(T, s) - source strength per unit of radial length

V(-r) - local inflow velocity as a function of radius

dt/ds - local change in the thickness of the blade along the chord length

The propeller blade is described by a surface defined by the mean lines of particular

profiles located at appropriate angles of pitch (employing given values of the pro-

peller rake and skew) and limited by the blade outline. On this surface the boundary



conditions must be satisfied as follows: at each point of the blade surface the full

resultant flow velocity defined in a coordinate system of the blade must be tangent

to that surface. The induced velocities at any point on the blade surface in each

term of Equation (1), together with the associated trailing vortex, are calculated

using the technique of a discrete network of vortex lines, presented in detail in

[10]. The authors of this method assumed certain simplifications in defining the geom-

etry of the surface formed by the trailing vortices behind the propeller blade. The

hypothesis that the vortex sheet behind the propeller blade has a pitch angle equal

to the hydrodynamic pitch angle of undisturbed flow -- r) has not been used. The

Kutta condition, stating that this surface has a pitch equal to the geometrical pitch

angle of the blade -f(F), has also been dismissed. It was assumed, indirectly, that:

tan/, (F) = (4- ) tan f(F) + d -tan/(F) (3)

where d is a constant ranging between 0 and 1. To arrive at a more exact solution it

is helpful to go through an iterative process to establish a more accurate value of

d. To save computational time, the authors have made systematic calculations to es-

tablish values of d that do not require further iterations for specific characteris-

tics of real propellers. Their values are not included in the referenced publications.

Velocities induced by the set of sources modeling the blade thickness are estab-

lished by a technique of discrete distribution of sources on the surface of the pro-

peller blade introduced in [10]. Figure 2 illustrates the distribution of line vor-

tices, sources, and control points used in this example. After all the induced

velocities and undisturbed flow velocities have been accounted for, the boundary

condition takes the form:

LAn[, [u.(mn) - UlrnVI) dxS + d rtan ut(mn)tonan)]-

- [tsn(n) - tan3r&)]or(n) +usln) + urs(f) f ' + 8 - -Han4+ (4)

+ uts(n).tanL(n) =0



Figure 2 - Schematic of a Discrete Network of Singularities in the American Method
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where: A3 - local pitch angle (accounting for the shape of camber)

ua - axial

Ur - radial velocity induced by bound and

ut - tangentiall trailing vorticis

uas - axial

urs - radial velocity induced by sources

Uts - tangential

/ - angle of pitch

A - inflow angle

Satisfying the boundary conditions at N points on the blade surface gives us a

set of N linear equations with six unknown Am values. This set of equations is solved

by the least-square method. Normally 32 control points are used, four on each of the

chosen eight radii. After these equations have been solved, the distribution of loads

on the propeller blade can be established.

The method previously discussed is not used to establish the pressure distribu-

tion on the propeller blade; however, adapting it for that purpose would be very easy.

This method could be used to calculate a full set of propeller characteristics, that

is, the thrust, torque, and efficiency as a function of the advance coefficient. In

this case the thrust and torque are calculated based on the Kutta-Joukowsky theorem

corrected for viscous effects. Published results comparing analytical and experimental

data indicate good agreement between calculated and measured hydrodynamic character-

istics for propellers of varied geometries, from controllable pitch propellers to pro-

pellers with large skew (720).

A method based on a model of a layer of dipoles was developed by the Wageningen

Model Basin (Netherlands). Efforts based on the use of lifting-surface theory for

marine propeller calculations were begun by Sparenberg [25] in 1959 and continued by

Kuiper [12] and van Gent[4]. The development and improvements of two decades brought

this analytical model, among others, to the point where it could be used to calculate

marine propeller characteristics operating in a nonuniform velocity field, that is,

to solve unsteady problems. The following assumptions were made in the development

of the computational method.

a) The thickness of the propeller blade and the hub are not included. The only

element of the propeller responsible for the hydrodynamic performance is the

finite number of angularly, equally spaced lifting surfaces. The effect of blade

thickness may be defined separately and introduced in the calculations in the form

of additional flow disturbances.
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b) The geometry of each lifting surface is defined by the projected outline of the

propeller blade on a surface of constant pitch and without rake.

c) The bulk of the flow is homogeneous and parallel to the propeller axis. It is

assumed that the deviation from this flow is small, allowing the use of a linear

type of hydrodynamic formulation. This simplification permits the formulation of

integral equations describing the distribution of pressure dipole strength on the

lifting surface.

In Figure 3 the coordinate system used and the principal geometrical and kinematic

quantities are illustrated. The set of equidistant lifting surfaces is defined as:

F e + a + t = 0 k , ,2.... (-) (5)

where t = time

a =0/V

V = propeller effective advance velocity (but not the undisturbed flow)

o= angular velocity of the propeller.

Deviations from the main homogenous flow are described by the vector U, defined by

components

U + u,+up ) o + Vp ) Wo+ Wp

where the subscript o indicates disturbances present in the flow caused, for example,

by the hull of the ship, and the subscript p indicates the induced velocities due to

the propeller.

The inclusion of the blade camber form causes the lifting surface to be slightly

offset from the propeller surface Fk and it is defined by:

F - - ax + cot -f(x,r)-- (6)

where: f(x,r) - function defining the offset.

On the surface F* satisfies the boundary condition as follows:

The vector component of U defined in the coordinate system of the propeller and

normal to the surface F* should be equal to zero on that surface. In mathematical

terms this can be expressed as:

OF* - F- U.gradPj7= 0



k=O

U

DIRECTION
OF FLOW

SPACE COORDINATE SYSTEM x r
BLADE COORDINATE SYSTEM f E
VELOCITY COMPONENTS U+u V W

r, f

Figure 3 - Coordinate System in the Dutch Method
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From the previous equation one can derive (assuming that disturbance velocities of

the main flow are small) the following:

r - ) + r a - (a.r up-wp) (8)

Velocities induced by the propeller were derived by linearization of equations of

motion and have the form:

Up (x ,r, fuj(

Do
X

where: "Y - water density

NV(x, r, 6, t) - function describing the distribution of the pressure over the

propeller blades

x, , r - derived functions depending on particular coordinates.

The velocity up is omitted because it is not present in the equation describing the

boundary conditions (Equation (8)). Assuming that the field of pressures is caused

by a single pressure dipole distributed at identically the same points of all the

blades, the following expression results:

2 Z-f

Y(XT [a.(x'-6) Z n(P-)-r& k )] p(Spi') cig. df
k:O Rk

where: R,= [(x-)+r 2 +2-2-r-..COS(-e+k.K) (10)

27
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Next we substitute the above function in Equation (9) and integrate s with respect

to and f within the boundaries of the blade. The resulting distribution of induced

velocities may then be substituted into Equation (8), describing the boundary condi-

tion. Direct substitution causes difficulties in integration because Rk is equal to

zero for some of the coordinate values on the surface F*. Because of this, another

transformation of the boundary condition is necessary:

boundary condition is evaluated on the propeller surface defined by the following

equation:

0-a.x +ct= e

that is separated by a small angle 6 from the lifting surface F*. Then, we calculate

the boundary of the right side of Equation (8) with 6 approaching zero. The following

equation results:

U dh U-

--f+to . f*T fCOS(avePYc+ k ) {A.

where: X-4

A = . ry + cos (a. ZV 6 k. K)

8 -3fdL.r.V-g6en(a-+ e .tk- 1)1 -fa.f T- r. sin (a. E -6 K
e ir2+ r +2.f + -2-2ry.cos(a.+ e C+ kK)I

This equation relates the geometry of the lifting surface, the kinematic disturb-

ances of the fluid motion, and the distribution of the pressure p on the lifting

surface. It is used to solve the problem of pressure distribution on a propeller

blade of known geometry operating in a known velocity field. Because this equation

is linear with respect to velocity and pressure, it can be used to study the behavior

of the same propeller in different velocity fields utilizing the superposition

theory.



The left side of Equation (11) describes the kinematic disturbances present in

the flow (for example, the structure of the wake behind the ship hull). In actual

calculations, it can be replaced with a function:

S(Y,r, 0, t) -r-cos (,u-cC - c) -cos& 4-,) (12)

where the amplitude- , as well as the phase angles oc and/3 can be functions of x and

r. The integer /A defines the harmonic terms of a periodically varying wake, the in-

teger ' defines the ratio of propeller vibration frequency to the rpm. Thus one

function S one can describe three different cases:

a) a propeller operating in a uniform (steady) velocity flow (/= 9 = o)

b) a propeller operating in a nonuniform velocity flow (A4S o, 9 = o)

c) a propeller with vibrating blades (9.* o, / = o)

In the next analytical step we reduce the integral equations to a form of a set

of linear equations. To avoid mathematical singularities, the kernels of the integial

equations are split into singular, analytically integrable and nonsingular numerically

integrable parts. The set of linear equations is solved with classical methods of

numerical analysis. Certain assumptions about the character of the pressure distribu-

tion on the propeller blade are essential. That distribution is sought in the follow-

ing form:

P

P( s E) -E cP(o9).14PW (13)

where: 1 and 0 are coordinates defined as:

coJs e a - a-

and where: b () - chord length as a function of radius

xL () - coordinate of the trailing edge of the blade as a function of

radius

ri - propeller hub radius

ro - propeller maximum radius

_s _ _____
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The function Hp (P), describing the fundamental distribution of pressure along the

chord, is assumed by the series:

2 COS p. + cos (p) 14)

Note that all the terms of this series have a singularity on the leading edge ( =

0) and are equal to zero at the trailing edge (0 = T). The coefficients Cp (E) de-

scribe the radial distribution of pressure, and it is their values we obtain by solv-

ing the integral, Equation (11), transformed into a set of linear equations.

The described method has not yet been used, for instance, to analyze cavitation

problems or for the inverse calculation of the distribution of pressure on a propeller

blade. The method was used to calculate propeller characteristics KT, KQ,? b = f (J

in a nonuniform velocity field. The calculations were directly comparable to the

measured propeller tunnel results. The measured and calculated values were the fluctu-

ations (that is, the oscillatory components) of certain propeller characteristics.

Comparisons have shown that the method gives adequate agreement for propellers operat-

ing near their design point as well as propellers of relatively large expanded area

ratio. For values of the advance coefficient less than the design point, agreement

with experimental values deteriorates. Similarly, fluctuating side forces and blade

bending moments calculated by this method indicated significantly less agreement than

thrust and torque coefficients, even at the design point.

Both of the methods described above are not, unfortunately, completely comparable,

because the first pertains only to known phenomena (a propeller operating in a uni-

form or axially symmetric flow). However, an analysis and comparison of certain

characteristics of both methods can be made.

a) Definition of propeller geometry

Regarding the fidelity of the actual propeller geometry, the American Method has

an easily recognized advantage over the Dutch method; it accommodates for the

actual form of the blade outline with propeller skew, propeller rake, and the

actual radial distribution of pitch as well as the actual shape of the blade

profile. The Dutch model assumes that the propeller blade has a constant pitch

along the radius and no rake. Neither method takes into account the presence of

the propeller hub (at least if one considers satisfying the boundary condition).



Simplifications assumed in the Dutch method can be the cause of erroneous results

when calculations are made for propellers of complicated geometry.

b) Preliminary assumptions about the character of the propeller blade load

distribution

Both methods assume a certain defined character of the load distribution on a

propeller blade. In both methods the distribution of load (circulation or pres-

sure) along the radius of the propeller blade is calculated by solving the proper

set of equations, and the form of this distribution results without any geometri-

cal and kinematic restrictions. The load distribution along the section chord in

the American method is defined in the form of a sum of two fundamental distribu-

tions dependent on the angle of attack and the curvature in the meanline, while

the Dutch method requires this distribution in the form of a trigonometric series.

The Dutch method allows a less restricted shape of the resultant load distribu-

tion along the chord, which is preferred in the analysis of unsteady flow. This

method also does not require information on the type of sectional profile for the

propeller for which the calculations are made. The American solution seems suffi-

cient to define all characteristics of propellers operating in a uniform velocity

field.

c) Boundary conditions

In both methods boundary conditions are satisfied based on the same assumptions,

stating that the resultant velocity vector of the flow, experienced in the co-

ordinate system for the propeller blade, must be tangent to the blade surface.

The essential difference is the form of the control surface, where the condition

is tested, which in the American model is the actual surface of the blade (with

the exception of its thickness). The Dutch employ the projection of the actual

surface of the propeller blade. In addition, the American method takes into ac-

count the radial component of the induced velocities on the propeller blade,

which are omitted in the Dutch method. The formulation of the boundary condition

indicates certain advantages of the American method. It should be added that both

analytical models omit the effect of the contraction of the stream behind the

propeller.

d) Accuracy of the analytical method

Accuracy of the method means there is good agreement between the analytical pre-

diction and pertinent experimental validations. Figure 4 shows a comparison be-

tween analytical and experimental data in the American method. The results were
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Figure 4 - Comparison of Cumming's Method with Experimental Results
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obtained for a five-bladed propeller with a very large blade skew (720) and a

large rake. Figure 5 illustrates a similar comparison for the Dutch method. In

this comparison the purpose of the calculations and experiments was not so much

the steady-state magnitudes of thrust and torque as the fluctuation on a three-

bladed propeller operating in a uniform velocity field together with a three-

cycle variation in the circumference. Both figures are from the original publica-

tions by the authors of each method.

Evaluating the results, the American method compares very well with experimental

data for the full range of advance coefficients, while the Dutch method compares well

only close to the design point of the propeller. We could then conclude that the

American method is a better one, this, however, should be offset by the fact that the

Dutch method had a more difficult problem to solve.



III PRELIMINARY ASSUMPTIONS OF THE PRESENT THEORETICAL METHOD

Before we begin to construct a method to calculate the distribution of pressure

on a propeller blade operating in a nonuniform velocity field, the following assump-

tions are made:

a) The geometry of the propeller for which the calculations are made is fully and

accurately defined. The following characteristics are known: propeller diameter,

hub diameter, number of blades, radial distribution of the chord lengths, angle

of pitch, maximum thickness and camber of blade, and skew and rake. One also has

available the section profile of the blade, that is the distribution of thickness

and camber along the chord. No restriction is placed on the propeller geometry.

b) The actual velocity field of the fluid in the plane of the propeller is known.

The velocity field is defined by three orthogonal velocity vectors for a series

of chosen points in the propeller disk. The axial variation of velocity is ne-

glected, primarily because it is small within the space occupied by the propeller

and because it is not very likely that such information could be available. It is

assumed that the given velocity field does not require any modification for scale

effects or the change in flow about the ship due to propeller operation.

c) The propeller under evaluation operates in an ideal fluid, that is, inviscid,

incompressible, and isothermal, performing in a homogeneous field of mass forces

of unit strength. The flow is potential in the overall field, with the exception

of the vortex sheets. The undisturbed velocity of the flow in the axial direction

is known. This velocity can also be identified with the velocity of the ship. The

propeller rpm is known.

d) In this analytical method use is made of lifting-surface theory, in which the

propeller is represented by a discrete network of singularities, composed of

vortex lines simulating the load distribution on the propeller blade and sources

simulating the thickness of the blade.

e) Because this analytical method will form the basis for a computer calculation its

structure should ensure the most efficient computational process. Therefore,

certain simplifications are made with the assurance that they do not impair the

results but do improve the effectiveness of numerical processes.
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IV THE STRUCTURE OF THE PROPELLER BLADE VORTEX MODEL

Two right-handed coordinate systems describing the propeller are introduced in

Figure 6. The first, a rectangular coordinate system OXYZ, with the OX axis pointing

in the direction of flow and the OY axis along the axis of one of the propeller

blades. The second is a polar coordinate system OXRH. The simultaneous introduction

of two coordinate systems is dictated by the fact that some of the vector operations

performed later are simpler in one system and some are simpler in the other. In some

instances a local orthogonal coordinate system OXRT is used, with the origin located

on the blade surface at some selected point.

On each blade a discrete set of points W is defined, establishing the structure

of the network of singularities. Points W are defined by the following coordinates

in the orthogonal coordinate system:

WX(k,t) = A2 sin P(k) - M(k) m(l) cosP(k) + E(k)

NY (k,l) = R(k) coS A3  k = 4, 2, 3 .... n,
(15)

A'Z(k,) - R(k). sin A3  = 1,2,3.... nf

where:

A2- 5(k) - -F(k) +x (). F(k)

A, = A2 -cos.P(k) + M (k) -m(L) sin P(k)

A3 - Al/R(k)

The terms in the above equations are defined as follows:

P(k) - radial distribution of propeller blade pitch angle

M(k) - radial distribution of the maximum camber

E(k) - values of rake at given radii

S(k) - values of blade skew

F(k) - chord length at given radii

R(k) - radii of selected blade profiles

x(L) - coordinates defining location of points along the chord of a blade profile

m(L) - meanline offsets at points x(t)

As can be seen from the above, the location of n1 , n 2 points is defined on the

surface formed by the meanline composing the propeller blade. Using this set of

points, one specifies, in turn, the orthogonal coordinates of two sets of vectors B

and T, defining appropriate segments of the vortex lines associated with the blade
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Figure 6 - Coordinate System Used in the Method Presented



Figure 7 - Schematic of a Discrete Network of Vortices on a Propeller Blade
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and the trailing vortex lines. Coordinates of these

following equations:

vectors are defined by the

ax (k, ) = WX (k + 1,)- WX(k,)

BY (k, I) - wY{k~ , ) -WY(k, )

8z (kt) - vZ(k4 ,I ) -wzlk,i)

TX (k,) = NX (k,t) - WX(k, 1f)

TY (k,t) -WY(k,l) -W-NY(L, 1 1)

7Z (k, 1) = Wz i,) -#z(k, ,)

are the coordinates of the midpoints

relationships:

sX (*11) 42 WX ,L) +WX (k,1+1

rsY (k,t) Y (k WY (k

TVs (k, t) [ Z (k,t) + WZ ( k, 1+)1

k= 4,2... n,-

I= 1,2.... z

(16)

k- 4,2. .. nI

of all the vectors in both sets

k1,.... r

(17)

All of the above calculations are made for the first propeller blade, later called

the analyzed blade. Equivalent geometrical characteristics for the remaining blades

may be obtained by a simple transformation of the location of the coordinate system

OXYZ where the OY axis will coincide with a given blade. However, only on the surface

of the analyzed blade is the set of points C defined, which will be used to satisfy

the boundary condition. Points C are chosen in such a way that they are always located

in the middle of the rectangles formed by vectors B and T. Because it is not necessary

for each rectangle to have a control point C, the radii RC(m) (m=l, 2,...n 3) and the

coordinate along the chord xc(n) (n=l,2,...n4 ) defines the location of those points.

One may define coordinates of the control points as follows:

Also defined

using simple

k= 4 2... n,

-1,,? .. 0 -f



CX(m,n)= [ T[rX(k 1L-1) + TX(X-, 1-1)]

CY (m,n) = - [rSY(k,t-1) +.TSY(k-, -4)]

CZ (,,n)- 1 [TSZ (k,1-1) + 75Z(k-, 1-1)]

C9mnn)= arc [ CZ (m,n)
CY (m, n)

(18)
/ .4,2... n

In the previous equations k has a value such that R(k) > RC(m) A R(k-l) < RC(m)*, and

1 has a value such that x(t) > xc(n) A x(t-l) < xc(n).

In addition, at all points C, unit vectors normal to the surface described with

a set of points W are calculated. The coordinates of these vectors are calculated by

taking the vector product of two vectors tangential to this surface. To accomplish

this we use the adjacent vectors forming the sides of the rectangle that contains the

control point and is composed of two vectors B and two vectors T. They are defined

in the following form:

AY 82Z- AZ-8 Y
NX(mn) = AY. az - AZ-

AZ.8X - AX 8Z

NzY (mn,) ARXY

N.Zm,n)5 AA

m = , 2... . n

np= f,2... n4
(19)

where, appropriately:

and similarly for the remaining coordinates

=rSX- f,)-*gSXI-, -f) and similarly for the remaining coordinates

ABL [(,AYZBAZ.Y)' (AZ) BX-AX SZ)2 +(AX 8Y-Ay.BZ)2]1

*Translators note: Symbol A - intersection, both, and.

AA B - intersection of A and B, both A and B.



where k and L are selected such that: R(k) > RC(m) A R(k-l) < RC(m), x(L) > xc(n) A

x(L-1) < xc(n).

As one may observe from the above equations, the choice of the values of R(k),

x(t), RC(m), and xc(n) define the geometry of a discrete network of vortex lines and

control points on the propeller blade. To get the correct calculated results,

these quantities should not be arbitrarily chosen. The following rules should be

observed:

a) Control points should be separated from the propeller blade edges with at least

three vortex lines in order to eliminate the so-called edge effect. This effect

contributes to a totally incorrect value of the induced velocities at locations

too close to the edge of a discrete vortex network.

b) The vortex network should be more closely spaced in areas in which one may expect

rapid changes in the bound circulation distribution.

The justification and correctness of these rules are confirmed by the author's

calculations and many publications outside Poland. This problem is discussed in

Section XVI. In the practical case of a distribution of a collection of elements C,

B, and T on an analyzed propeller blade, to satisfy rules "a" and "b" requires a

fairly closely spaced network of vortex elements. Because of this, a less densely

spaced network of vortices was used on the remaining blades where there are fewer

control points. The coordinates of the elements in that network are defined in a

manner similar to those previously defined with the exception that they have differ-

ent values of R(k) and x(L). Thus, one can save time computing the induced

velocities.

In addition to the vortex lines, a field of sinks is distributed on all the pro-

peller blades to simulate finite blade thickness. These sinks are straight lines

segments of continuous and uniform distribution of strength. The segments coincide

with the segments of vortex lines characterizing the blade bound circulation; they

have the same geometrical characteristics as vectors B but are not vectors themselves.



V THE STRUCTURE OF THE FREE VORTEX SHEET MODEL IN THE PROPELLER WAKE

The geometry of singularities extending behind the ship propeller is now the

most controversial element of the propulsor vortex model. There are many different

concepts for formulating this region, from a line vortex forming correct helical sur-

faces to concentrate vortices shed from the propeller blade tips and the propeller

hub. Between the two extremes there are concepts to approximate the surface vortex

with a series of "vortex disks" (the so-called staircase approximation) or to par-

tially account for the correct deformation of propeller surface vortices (for example,

by considering the contraction of the stream behind the propeller). It is obvious

that the theory that assumes the existence of regular helical surfaces behind the

propeller formed by shedding vortices, taken from the field of aerodynamic lifting-

wing theory, does not account for the actual physical phenomena associated with the

ship propulsor. Because of this, in the most recent investigations, the hypothesis

assuming deformation of the free vortex sheets relatively close to the training edge

of the propulsor and then making use of the converging forms of vortices gains credi-

bility. Unfortunately, this model, although simulating the actual physics, has not

been sufficiently developed to employ in the method presented here. It was possible

to structure the computer program only, such that any future planned application of

newly developed theoretical model of the propeller wake would require minimal changes.

It was decided to use a model of the propeller wake with some traditional elements of

lifting-surface theory and some new ones that consider the operation of a propeller

in a circumferentially nonuniform velocity field. The existence of vortex sheets ex-

tending to infinity behind each propeller blade is assumed. In general, these surfaces

are not regular helical surfaces. It is also assumed that the stream behind the pro-

peller does not contract, which means that the vortex line trailing from the propeller

blade at a radius R(k) remains on the surface of a cylinder of that radius. The whole

trailing stream behind the propeller is divided into two parts: the unsteady region

extending from E)= 0O to EO= 2nN that is, having N turns of the propeller surface,

and the steady-state region where O > 27N. The steady-state region in a practical

case is limited to six full turns of the propeller surface, because the induced velo-

cities on the propeller blade beyond that are negligibly small. The unsteady region

is an area in which the influence of an onset nonuniform velocity field on the-geom-

etry and intensity of circulation of the vortex lines forming a free surface is ap-

parent. The steady-state region is formed as though the propeller operated in 
a cir-

cumferentially averaged velocity field. Limiting the unsteady region to N turns 
of
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the helical propeller generated surface (in practice, frequently one turn) is justi-

fied by the substantial reduction of the induced velocities resulting from the in-

creased distance of the line vortex elements from the control point. For example, the

vortex segment located at E = 2 wiinduces in the region of the propeller blade, for

normal values of pitch angle of the helical vortex, only 2% to 5% of the induced

velocity for a similar segment located near the control point.

Figure 8 illustrates schematically an expanded vortex surface extending behind

one of the propeller blades. As shown in the figure, the unsteady region of the

stream behind the propeller is further divided into sectors. The number of sectors

may vary, depending upon the number of angular positions of the propeller analyzed

in one revolution. The intensity of the circulation of the vortex lines in respective

sectors and the angle of pitch depend upon the phenomena taking place on the pro-

peller blade. Thus, for a propeller operating in a circumferentially nonuniform

velocity field, parameters describing the free vortex surface will be different for

each segment. To simulate this phenomenon in the vortex model of the ship propeller,

it is helpful to divide the unsteady region of the stream behind the propeller into

separate sectors. It is assumed that in a given sector each vortex line has constant

circulation intensity and constant angle of pitch independent of coordinate O . How-

ever, these parameters may be different in the neighboring sectors even for the vor-

tex lines lying on the same radius R(k). At a given angular position of the propeller

), the strength of the vortex lines in the first sector and their angle of pitch

depend directly on the distribution of circulation and induced velocities on the pro-

peller blade at that location. After the propeller turns an angle of d equal to an

angular displacement of a sector, parameters that have been described sector 1 are

"transferred" to sector 2, while characteristics of sector 1 are made dependent upon

the new conditions on the propeller blade, equivalent to location 0 2 = 1 + de. After

analysis of a full revolution of the propeller, one obtains a complete description of

one revolution of the unsteady free vortex sheet behind the propeller blades. The

geometry and intensity of the vortex lines in the steady region, however, are based

on calculations for a circumferentially averaged velocity field. The theoretical

model of the stream behind the propeller is characterized by a combination of inter-

dependencies between free vortex sheets and the propeller blades. Parameters describ-

ing the unsteady region contain, in essence, the "history" of the propeller operating

in a nonuniform velocity field, influencing the induced velocities on the propeller

blade, in turn determining the actual distribution of circulation found on the blades
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as well as the strength and angles of pitch of the line vortex in the first sector.

Allowing varying circulation strength of the same vortex line necessitates the use

of radially oriented line vortices on the free surfaces in the neighboring sectors.

This follows from the Helmholtz theory of circulation. In this way, each sector of

the unsteady region is composed of a radial vortex defining the leading edge of the

sector, several regular helices at the radii R(k) and pitch angles P (k), and a

radial vortex defining the trailing edge of the sector. The only exception here is

the first sector, which begins at the trailing edge of the propeller blade. A de-

tailed schematic of a single sector is given in Figure 9. In the figure the radial

vortex at the leading edge of the sector is rectilinear, which is the case only where

the propeller blade does not have rake or skew. When it does, the vortex has rake and

skew formed by the propeller blade. From this vortex, subsequent segments of the

helical vortices follow. If these segments have different values of pitch, then, after

rotating an angle de, establishing the size of a sector, each one will attain a dif-

ferent distance along the x axis. From a mathematical average of these distances, one

may establish a distance dx, which defines the location of the next radial vortex,

establishing the end of one sector and the beginning of the next sector. The helical

vortices so constructed are not continuous and at points between two sectors there

are several interruptions, which become smaller as dE is decreased. These discontinu-

ities do not present difficulties in the calculations of velocities induced by the

free vortex sheets. The basic advantage of such a construction of a propeller wake

flow model is the elimination of a characteristic deformation of a free vortex sheet

that would be unavoidable if one tried to build them from infinite, continuous

helices of different values of pitch.

The most frequently used method to determine the angle of pitch of the lines

forming the free vortex sheets is the process of iteration, where the controlling

parameter ascertaining that proper values of these angles are attained may be, for

example, the propeller thrust loading coefficient. Such a process is very time con-

suming, and one frequently encounters serious difficulties in reaching adequate con-

vergence, particularly for propellers operating significantly far from the design

point. On the other hand, my own analytical explorations as well as the results of

foreign authors confirm that, from the point of view of calculating the induced

velocities, it is far more important to know the correct strength of the vortex lines

rather than their angle of pitch. In other words, even a few percent error in the

estimation of the pitch angle of the vortex line causes relatively negligible error
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in the calculation of the velocities induced by the distribution of singularities

modeling the whole propeller. Thus it was decided to use a simpler method of deter-

mining the pitch angle of the vortex line in the stream behind the propeller, de-

fined as:

,/3(k) = d- P(k) --d) k) kL2... nf (20)

where: O (k) - angle of pitch of the vortex line directly behind the propeller blade

at a radius R(k)

P(k) - angle of pitch of the propeller blade at R(k)

6(k) - angle of inflow, determined for the propeller axis from known local

inflow velocities for a given blade position

d - correlation coefficient, determined on the basis of analysis of pro-

peller performance calculated by the vortex theory

The use of this formulation permits us to separate the problem of specifying the

geometry of both regions of the propeller wake from the calculations of circulation

strength of the different vortex lines in those regions. The geometry of the flow

behind the propeller can be defined only on the basis of the propeller configuration

and the character of the outside velocity field. The definition of the vortex

strength in particular sectors of the unsteady region will require the use of

fairly complex steps, described in detail in the subsequent sections of this report.



VI FUNCTION DESCRIBING THE DISTRIBUTION OF CIRCULATION OF BOUND VORTICES

The unknown distribution of circulation of the bound vortices on the propeller

blade is sought in the form of a continuous function defined on the blade surface.

There are different formulations describing the distribution of circulation in dif-

ferent applications of lifting-surface models. Trigonometric series have been used in

this method, primarily because of the simplicity of performing different mathematical

operations on it and also because it has inherent flexibility and adaptability to the

changes in flow about the'propeller blade. Two new coordinates, related to x(l) and

R(k) are introduced on the blade in the following way:

(l) = arccos [ 4-2 x- (L)] 1= ,2.. n2
r1 (4 +RP) - Roe) (21)

W (k) = rc cos k=1,2.. n (21)

where: Rp - radius of the propeller hub

It should be indicated, that of the new coordinates, the propeller blade occupies a

form of a square region because both coordinates vary in the range of (0, 7). This

substantially simplifies all the operations connected with the trigonometric func-

tions. It is assumed that the distribution of circulation bound to the blade in the

direction of the coordinate, &, that is, along the selected blade profile chord, can

be expressed with a function:

n6

G () = A "c9 g T.A + A" n (L-) (22)
L32

The first expression of the series has a singularity (approaching infinity) at the

leading edge of the profile (9= 0) and is equal to zero at the trailing edge. All

other expressions of the series are equal to zero on both the leading and the trail-

ing edge of the profile. The form of this function is not arbitrary but is derived

from a theoretical solution of the two dimensional flow around an infinitesimally

thin profile solved by Glauert.

In principle, this function is the sum of an infinite series, however, because

all practical calculations are made for a specific number of terms, n6 is indicated

as a limit. To establish the change in the distribution of circulation along the

radius, all coefficients of the series (22) are made dependent upon p:



L (23)

Substituting (23) into (22), one obtains the final form of the function describing

the distribution of bound circulation in the propeller blade:

G(9~)l L1(Js fC GL(L~j) S,~~a ~fj)lj ~.Sir?(i -). (24)
j=1 '=2

This function fulfills all the requirements imposed on the distribution of bound cir-

culation, that is, it is equal to zero at the trailing edge, the tip of the blade,

and the hub of the propeller. The presence of the singularity on the leading edge of

the blade is necessary for correct simulation of blade loading under large, nonideal

angles of attack. On the other hand, this singularity precludes the correct estab-

lishment of the magnitude of circulation and pressure in close proximity to the

leading edge. However, another advantage of function (24) is in the ability to per-

form simple analytical integration to any desirable limits. The use of the distribu-

tion functions permits the simple determination of the strength of the free vortex

line contributing to a discrete network of singularities, this applies equally well

to vortex lines in the region of the propeller blade and in the stream behind the

propeller. The strength of each vortex line has a form of a polynomial with unknown

n5 . n6 factors a(i,j). The determination of these factors is synonymous with the

definition of the distribution of blade loading and permits the calculation of the

distribution of pressure on the propeller blade. The number of terms in function (24)

should be chosen based on a compromise between the size of the computer used to make

such calculations and the desire of how faithfully we wish to model the actual load-

ing on the propeller blade.
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VII THE BOUNDARY CONDITION AND ITS IMPLICATIONS

The boundary condition used in the method described in this report is the same as

it is in other analytical lifting surface models. It states: at every point on the

propeller blade surface, the vector component of the velocity flow normal to that

surface should be equal to zero. This theorem appears totally self-evident, since

there cannot be a flow of fluid across a solid boundary such as the propeller blade.

However, the application of this theorem in the case of a propeller operating in a

strongly nonuniform velocity field may have a serious deviation from reality. In such

a case one may expect local momentary separations and turbulence on the propeller

blade and, as a result of these, the actual flow about the propeller may not follow

the propeller surface but some surface that includes such separations. Unfortunately,

theoretical models of marine propellers do not allow inclusion at present of these

phenomena in the boundary condition, and it was decided to retain the traditional

definition. Mathematically we define the boundary condition as:

Z Z N z

VE + L VW(L) +E I VZ(c,j) + VC + z VQ 0 (25)

where: VE - normal vector component of the inflow velocity

VW - normal vector component of the induced velocity due to singularities

defining the propeller blade

VZ - normal vector component of the induced velocity due to a specific sector

of the propeller wake unsteady region

VC - normal vector component of the induced velocity due to a steady state

region of the propeller wake

VQ - normal vector component of the induced velocity due to a source distri-

bution simulating the finite thickness of the propeller blade

Z - number of propeller blades

N - number of sectors of the unsteady region of the propeller wake

In Equation (25) some of the components are given and some are unknown or more pre-

cisely, dependent on unknown factors a(i,j) in the equation defining the distribution

of circulation. In the method defining the distribution of pressure on the propeller

blade, this equation will be used in two different forms. The first pertains to the

calculations of the average of the inflow (onset) velocity field.
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z Z N Z

Svw() + E vZ(i,j) + vc -- VE- L VQ(Wi)
ji i4 j=4 i€ (26)

The left side of Equation (26) contains the terms with the unknown factors a(i,j)

and the right side contains factors that are known and defined on the basis of cogni-

zance of the outside flow field or the known intensity of sources simulating finite

thickness of the propeller blade. The basic aim of the calculations for the circum-

ferentially averaged inflow (onset) velocity field is to establish the strength of

vortex lines in the steady state region of the propeller wake. In subsequent calcula-

tions performed for particular positions of the propeller in a nonhomogeneous velocity

field, the boundary condition assumes the form:

Z Z N z N
VNW) +VZ (1,4) VE .VQ(i) -E VW(i) - E vz(4,j) - vz(j) (27)

iSl j-:: jw2 1*=2 j42

As implied in Equation (27), only in this case are the induced velocities on the

first propeller blade analyzed and the first sector located just behind that blade

in the unsteady region of the propeller blade dependent upon the unknown a(i,j). The

remaining velocities are known and are derived from the uniform inflow (onset) veloc-

ity field or induced by the singularity network of known intensities.

The boundary condition expressed by Equations (25), (26), and (27) should be ful-

filled everywhere on the propeller blade. In practice, however, it is checked in a

number of chosen control points C. For each of these points we can write equations

of the form of Equation (25), obtaining, finally, a matrix n3 * n4 of equations with

factors a(i,j) unknown. The calculation of the normal components of the particular

velocity vectors is simplified by the earlier introduction of unit vectors normal to

the blade surface at points C.



VIII ONSET VELOCITY FIELD

The characteristics of the onset velocity field that may, for example, be a re-

sult of ship wake (backwash or wake current) should be given in the standard form

shown in Figure 10. In the propeller disk area, a set of points is defined located

on n circles with radii R(k) and, at the same time, on radially oriented straight

line segments. The angular spacing between the radial segments in the propeller disk

is constant. In each of the selected points the three normal components of the veloc-

ity are given: the axial component VEX, the radial component VER, and the tangential

component VET in the form of nondimensional quantities normalized on the basis of

ship speed. The vector components are positive; VER is directed toward the tip of the

propeller blade and VET opposite to the direction of the propeller rotation. The

given values are then substituted in the Fourier series in accordance with the method

of Reference [22]. The terms of the series are calculated separately for each cir-

cumference of radius R(k) and each velocity component. The number of terms defined by

this process is equal to the number of given points on each circumference; that is,

the maximum amount of information is used. Applying the Fourier series is a very

simple way of establishing the three components of the external velocity for a point

on any of the coordinates within the propeller disk. For points situated on any one

circumference R(k), all that is necessary is to sum up the proper set of terms in the

Fourier series for angles defining the location of those points. For example, for the

points located on different radii RC(m) it is necessary, after the summations have

been made for the adjacent radii R(k) and the appropriate angles, to interpolate the

data along the radius. This interpolation is done with second-order curvature over

the three closest points given. Thus, we can determine the local magnitudes of the

external velocity vector components for each control point on the analyzed propeller

blade at some angular propeller position. The magnitude of the angular coordinate for

which the summation of the Fourier series is made is equal to:

C (mn)+(28)

where: C(m,n) - angular coordinate of the control point

N - total number of analyzed angular propeller positions

i - number of propeller position under analysis



Figure 10 - Distribution of Points where the Onset Velocity Vectors

are Defined
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The approaching (inflow) velocity vector components to this control point may be

expressed as follows:

VEX - dx VS

SVEY = 6' VS -co5C (m,n) - [ GT VS + 27r RC(m) Rps] sin C( (m,n) (29)

VEZ - VS. sinCe(m.n) + [', VS + 2- RC(m) -Rps] cos Ce(m,n)

where: Rps - propeller revolutions per second

VS - ship speed

OX, OR, oT - the sums of appropriate Fourier series terms after interpolations

have been made per the following equations:

[ RC(m) - R(k)]-[RC(m)-R(k+i)] [RC(m)-R(k-i) [R(C(m-R(k+f)]

[RC(m) - R(k-1)]. [RC(m)- R(k)]
<RC(m) AR(k)[R <RC(m) -Calculations of the(k- projection of t[R(khe vector normal to the

ZFCX (k-1i)0 CaS + >1' F5X (k-1,i'sin

jai

and similarly for the remaining components. The indices are selected so that R(k+l)

<RC(m) AR(k) < RC(m). Calculations of the projection of the vector normal to the

surface of the propeller blade does not present difficulties:

VE= VEX -NX(m,n) + VEY. NY(rn,n) + VEZ-NZ(m,rn) (30)
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Equations (29) and (30) are also used in the course of calculations for the circum-

ferentially averaged velocity field; however, quantities ox, UR, and o T represent,

in this case, average values obtained by summing appropriate terms of the Fourier

series for all the selected points on the circumference of R(k) and dividing the

sums by the number of points M.



IX VELOCITIES INDUCED BY SINGULARITIES MODELING THE PROPELLER BLADES

In the region of the propeller blades one finds two kinds of singularities in-

ducing velocities in the surrounding area, these are: line vortex segments and

sources (sources need not be prejudged, that is, they can be either sources or sinks).

To determine velocities induced by the vortex lines, we use the law of Biot-Savart

in the form:

V £ xL (31)
47 L3

where: V - induced velocity vector

7 - strength of induced vortex line

B - vector of the vortex line segment

L - position vector from the vortex line to the control point

The method of applying Equation (31) for calculating the induced velocities on the

propeller blade is shown in Figure 11. Two types of vortex lines are apparent here:

vortices bound to the blade B and trailing vortices T. For each type of vortex line,

different methods of calculating the strengths are used. The strength of any bound

vortex line segment can be calculated in the following way:

(R, -p). F(m) (32)

SM- f (%%f) d d

where; RT - propeller tip radius

G(Q, f)- function defining distribution of circulation by Equation (24)

The term in front of the double integral in Equation (32) is a result of integration

in coordinatesi9f. Equation (32) can be interpreted in the following way: To each

bound vortex line segment there is some assigned elementary area bound by coordinates

~l, 2 and9~1,i92. The circulation distributed over this area continuously by the

function G9,? ) is replaced with a concentrated vortex B of intensityy B. Integra-

tion of the function G(9, ) is relatively straightforward and as a result we obtain

a polynomial with unknown values of a(i,j):

r; f dW P
=  (33)J ) j)

J 19 J=4
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Figure 11 - Definition of Velocities Induced by Singularities

Modeling the Propeller Blades



where: J (i,j) - integrals of the appropriate trigonometric functions.

Equation (31) may be expressed in terms of coordinates of appropriate vectors in the

following way:

VX =[8Y(m,n)LZ-BZ(m,n)LY] -,
[R(m +)- R(m)J 47 [LX2+Ly2+L2 3/2

n5 nOf

VY -IBZ(m,n)L - - BX(m,.n).LZ] .(Rr-p)Fm) ij (34)

fR(m+1)-R(m)] 47[Lx'*LYr +LZJS/a
)5 n"

where: LX = CX (k,l) - BSX (m,n)

and so forth for the remaining coordinates.

Equations (34) define vector components of the velocity induced by the bound vortex

B(m,n) at the control point C(k,1). It is possible to obtain a simple projection of

this velocity normal to the surface of the blade at the point C(k,1) according to the

equation:

VN = VX NX(k,L) + VY-vY{(k,)+ VZ-NZ(k,L) (35)

and projections of this vector along the radial and tangential directions:

VR = VZ .sn Ce (k, ) Y. ro (k C ,( ()
(36)

VrT= vz. casC9( k,) -VY st C9(l,1)
Determination of components of velocities induced by the trailing vortices is accom-

plished with similar equations. The only difference is that another method is used for

calculating the intensity of the trailing vortex segment T:

TT .VNy = 1o k)- N ,L (37)
an poeciosofthsveto logth rdalan anenil ircios
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The previous equation can be interpreted as follows: The strength of the vortex seg-

ment T is equal to the difference of the circulation intensities of two adjacent

bound segments located between the coordinates 03 02 and 02, 01 in the region from

the leading edge t% = 0 to a coordinate defining the segment position T - & =42. Such

a formulation ensures that the vortex network satisfies the Hemholz circulation

theorem.

Note that the above method of applying the law of Biot-Savart gives accurate re-

sults only when the control point is located sufficiently far from the elemental line

of the line vortex. Analytical examination proved that the following relation is

necessary:

L 0. B (38)

In practice for the case in which Equation (38) is not satisfied, the vector B is

divided into a sufficient number of segments of equal circulation intensity ?B. For

each segment the component of induced velocity is established separately according

to Equation (34). A method for calculating a control point lying in proximity to the

vortex line is shown in Figure 12. Similar principles are applied to establish ve-

locities induced by the vortex lines T.

The equations discussed so far apply to the case in which the control points and

the singularities are located on the same propeller blade, that is, on the analyzed

blade. To calculate velocities induced by singularities located on the remaining

blades, we use transformation equations based on a rectangular coordinate system

rotated at an angle equal to the difference between the analyzed blade and the blade

on which the singularities are located. These equations have the form:

yo = YZ COs - (39)

Zn = Y5 sin 1) +Zs Z. CS (i-1)

where: Yn,Zn = coordinates in the new coordinate system (coordinate x remains

unchanged)

Y,,Zs - coordinates in the original coordinate system

i - number of the blade on which the singularities are located

Quantities BY, BZ, TY, TZ, BSY, BSZ, TSY, and TSZ are subject to transformation ac-

cording to Equation (39). After these quantities are transformed, they can be

inserted directly into Equation (24).
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Figure 12 - A Method of Calculating Induced Velocities

when the Singularities and the Control

Point are Near Each Other



A table of induction coefficients is calculated in accordance with the above

equations separately for each of the propeller blades and separately for each com-

ponent VX, VR, VT, and VN of the induced velocity. For the whole propeller then, we

have 4 ' Z separate tables of induction coefficients. A table of induction coeffi-

cients is a matrix of n3 . n4 lines and n5 . n6 columns; that is, the number of lines

is equal to the number of control points distributed on the analyzed blade, and the

number of columns is equal to the number of terms in the function defining the distri-

bution of circulation. If we designate the table of induction coefficients by I(p,q),

and if the indices defining the element in the table are interrelated with the in-

dices defining the control point C(k,l) as well as an unknown coefficient of circula-

tion distribution a(m,n), then they are related by the following relationships:

p= (k-4)-n4+L when C(k,L) k--,2...n3  1= f,2...r4
(40)

S=(m-1)- n+n when a(m,n) m=4,2.... n = 4,2...0

Each element in the table I(p,q) was derived through a summation of factors a(m,n)

obtained by Equation (34) performed for all segments of the vortex lines distributed

on a given propeller blade at a specified control point C(k,l) and a defined component

of induced velocity. As an example, we give a complete definition for one term I(p,q)

in the table of induction coefficients for the axial component of induced velocity:

8B6Yjm,n) [cz(k,t) -BSZ(m,n) - Z(m,n) CY(k, L) -8SY( mT, n)

m;4 n7r 4R(m+) - R(rn)]

(RT Rp) F(m)18 (I, j)

CX(k,)-85X(mn) + CY(k,)-SY(mon)1 + 1CzkL)8(mo)41) (41)

:TY (rnn)-[{CZ(k,I) -TSZ(mn)-T (mn)[Cy(k,) -TSY(,n)
m:1 nc. 47 R(m1 f)-R(m)j

(RT -Rp) F(m) -3T (ij)
[CX (k,) -TSX (m,n)]'+ [CY(kt) -TSY(rn,n)j 2+ [Cz(k-,) -TSZ(mn)]3I
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where: JB(i,j) - integral of a trigonometric function multiplied by a(i,j) used to

calculate velocity induced by a bound vortex

JT(i,j) - integral of a trigonometric function multiplied by a(i,j) used in

the calculation of velocities induced by the trailing vortex

Obviously: p = (k-l) * n4 + L; q = (i-l) * n6 + j

Consequently, if the values a(i,j) are known (thus determining the distribution of

bound vorticity on any propeller blade), a simple determination of an assumed com-

ponent of an induced velocity at an assumed control point on the analyzed blade is

possible. All that is necessary is to multiply a(i,j) by I(p,q) taken from an appro-

priate line of the table of induction coefficients and to sum the calculated products.

The second kind of singularity present on a propeller blade is the source simulat-

ing the finite thickness of the blade. The process of establishing the strength of

each source and the related induced velocities is done separately from the calcula-

tions of circulation distribution. Therefore, in Equations (26) and (27) describing

the boundary condition, velocities induced by the sources are always presented as

given. From the equation for the potential of the point source located in a three-

dimensional space, we introduce a function for the induced velocity

4 a (42)

where: Q - source strength

L - vector length connecting the source with the control point

VQ - source induced velocity in the direction consistent with L

To use Equation (42) one must know the strength of all the sources that form a dis-

crete source network as described in Section IV. Figure 13 illustrates the method.

Each source line Q(m,n) represents a certain portion of the propeller blade volume

included by radii R(m+1) and R(m) and chordwise coordinates x(n+l) and x(n). As a

consequence of the assumption of the boundary condition that there be no flow across

the propeller blade surface (in this case we mean the low and high pressure surfaces

of the blade), the sources Q(m,n) should have an intensity sufficient to compensate

for the fluid inflow to the assigned volume. Mathematically, one can express this as

follows:

dVol dV
q(nn) -d dx V (43)
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Figure 13 - Method for Establishing Velocities Induced by Sources

Simulating the Finite Blade Thickness



where: V - velocity of the fluid inflow to the elemental volume assigned to the

source

Vol - volume of the blade element

The first term of Equation (43) represents the source output equivalent to the in-

crease in volume of a given element of the blade between x(n) and x(n+l), and the

second term -xpresses the source output as a result of the velocity change in fluid

motion in that segment. Because the calculations of the second term, particularly for

a propeller operating in a nonuniform velocity field, turned out to be very difficult

and did not affect the final results significantly, it was decided to assume a fixed

velocity of inflow at each propeller blade radius. Furthermore, it was decided to

use, in the calculations of the strength of a particular source, a circumferentially

averaged velocity of a nonuniform velocity field:

V =  VEX+ [2 R(k)'Rps-VEr] '2  (44)

where: VEX, VET indicate averaged values at radius R(k)

With such simplifying assumptions it is possible to establish velocities induced by

the sources at all control points before the distribution of circulation is estab-

lished, and it is possible to include these velocities as given in the boundary con-

dition, Velocity components induced by the source Q(m,n,) at a control point C(k,l)

can be defined by the following equations:

O(m,n) LX
4VQY 4 (LX 2 + L y 2 t LZ) 3/

Y (m,n) LYVQY = 4 (LX y 2 .) (45)
47r (LX2+LY LZ )31,2

VQZ -
S)(LX2+ LY 2 + LZ2 ) 3/

where: LX = CX(k,l) - BSX(m,n) and similarly for the other components.

It should also be clarified why sources in the form of straight line segments of con-

tinuous and uniform intensity are considered, since Equation (42), valid for a point

source, was used to establish induced velocities. Similar to the case of vortex lines,
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this equation is used only when the length of the vector L is at least ten times

greater than the length of vector B (equal to the length of segment Q). In the re-

maining cases we divide segment Q into an appropriate number of parts and integrate

numerically, as was done with the vortex lines. When Equation (45) is used for the

remaining propeller blades, the transformation equations should be used to calculate

components of the vector i.



X VELOCITIES INDUCED BY FREE VORTEX SHEETS

To calculate the velocities induced by free vortex sheets located in the propeller

wake, we use the Biot-Savart law. On the basis of that law, equations are derived for

a particular velocity component induced, respectively, by a segment of a helical vor-

tex and a segment of a radial line vortex. The geometrical basis for these relation-

ships is shown in Figure 14. Velocity components induced by the segment of helical

vortex T at the control point C on the analyzed blade are expressed by the equation:

r'T R2- R. Rc cosoC
VX- /2

7 [Xp, +RC + RR C-cs/C2

VR, R. xp. cosoC - t93. sinoC

4 [X+RC2 + k 2-2 R-RC- Cos] }2

(46)

v= t Rxp. snoc- R. g/3 +R- cosoc
EXp * RC + R - 2 R- RC*cosc ZJ/

VY = VR. cos C9 - VT -sin Ce

VZ - VR- sn CO + VT cos C6

VN = VX NX + VY ./yy + Z:NZ

where: OC -- +
- 2- + z ,t J -d

i - blade number behind which the free vortex sheet is placed

j - consecutive number designating an elementary segment of the helical

vortex within a given sector

Ost - initial angular coordinate of the sector

de- angle describing the size of the elementary helical vortex segment

Xp = Xst + j " de* tg0

Xst - distance from the radial vortex at the leading edge of a sector to the

control point (along the x axis)

The intensity of the vortex line7 T is defined by Equation (37) by integration with

respect to 9 in the interval from 0 to 1 and it has the form of a polynomial with

unknown factors a(i,j). To calculate the velocities induced by the helical vortex
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SCHEMATIC OF SECTOR BOUNDARIES

Figure 14 - Designation of the Velocities Induced by the Singularities Forming

the Free Vortex Sheet



segment contained within one sector, numerical integrations by Simpson's rule are

performed by dividing the helix into an appropriate number of elementary segments

dH. A large number of elementary segments is chosen for the sectors near the propeller

blade and a smaller number for sectors located farther away from the propeller blade,

so that an optimum compromise is reached between accuracy of integration and length

of calculations.

Equations have also been derived for the vector components induced at the control

point C by the segment of the radial vortex line P:

VY tP R sinoC

4 [Xp2 + RC2 + R2-2. R RC. cosoC]2

VR =- Xp si noC
4Y [Xp2 + RC2+ -2-2 R-RC- Cos5oC] (47)

V = Xp CO-50oC
l [X 24 RC2+ R -2 R-RC- co Y2

VY, VZ, VN - as in Equations (46)

ap - indicates the same quantities as in Equation (46) but calculated for

Xp I the vortex line segment

As mentioned before, because the presence of radial vortex lines stems from the

Helmholtz theorem describing circulation conservation, the strength of these vortex

lines will be different from zero only when segments of the same helical vortices in

adjacent sectors have different circulation strengths. In such a case the strength of

each radial segment is dependent on the adjacent segments of the helix (compare with

Figure 14):

and so forth
t P2 + 1 + t T2 t2

Similarly, as in the case of the propeller blades when Equations (46) and (47)

are used, one calculates tables of induction coefficients I(p,q). These tables are

calculated separately for each sector of the unsteady region of the propeller wake,

for the steady region, and for the axial, radial, tangential, and normal components

of the induced velocities. To describe fully the velocity in the wake of the



propeller defined by N sectors behind propeller with Z number of blades, it is nec-

essary to calculate 4Z(N+1) tables. The dimensions of the tables, the method of cal-

culation, and the interpretation of the induction coefficients calculated for the

stream in the wake of the propeller are identical to similar tables calculated be-

fore for the propeller blades. The use of the induction coefficients permits calcula-

tions at any control point on the analyzed blade for any component of velocity in-

duced by the selected sector of the propeller wake only if coefficients a(i,j)

describing circulation distribution in that sector are known. Furthermore, note that

the induction coefficient tables I(p,q,) for the same component of induced velocity

are additive, that is, if, in a large part of the propeller wake or in the whole

system composed of the propeller and the free surface vortices, the distribution of

circulation is the same, one can add appropriate tables I(p,q) before they are mul-

tiplied by coefficients a(i,j).



XI CALCULATIONS OF THE PRESSURE DISTRIBUTIONS ON A PROPELLER BLADE IN AN AVERAGED

APPROACHING (ONSET) VELOCITY FIELD

Calculations of the pressure field acting on a propeller blade while it is oper-

ating in a circumferentially averaged velocity field are performed the same way

whether this is an ultimate goal of the calculations or the aim of the calculations

is to establish the description of the pressure field for nonuniform flow. In the

second case, the solution obtained for the averaged condition provides a first ap-

proximation of the performance of the propeller in a nonuniform field. The important

aspect of such calculations is the establishment of the distribution of the strength

of the free vortices in the stream of the propeller wake. Furthermore, calculated

magnitudes of the pressure distribution can also be used to establish overall average

performance characteristics of a given propeller in the form of thrust and torque co-

efficients and efficiency. It should be stressed that the method discussed in this

section, in a strict sense, has been derived for a circumferentially averaged velocity

field only when the given field of external velocities is actually axially symmetric.

Otherwise, the free surface vortices in the nonsteady region of the propeller wake,

as defined in Section V, have nonuniform pitch distributions dependent on variable

blade loading in the course of propeller rotation. This will cause some discrepancy

with respect to the exact solution obtained for the averaged conditions, but this is

justified because, in the course of these calculations, we obtain a distribution of

the free vortex strengths, significant in itself, that will be used in the calculation

for the nonuniform velocity field.

The first step in determining the pressure field on the propeller blade is to

establish the magnitudes of coefficients a(i,j) used in multiplying the terms of a

series describing the distribution of bound circulation to the propeller blades (24).

The boundary condition used here has the form of Equation (26). The use of this

boundary condition for all n3 * n4 control points c(m,n), that have been chosen on

the analyzed blade, leads to the establishment of a set of linear equations that can

be schematically defined as follows:

K(p,~)" L() =H(p) (48)

where: K(p,q) - matrix of coefficients multiplying the set of unknowns



U(q) - matrix-vector of unknowns, resulting from a transposition of rec-

tangular matrix a(i,j); vector: U(q)- a(i,j) when q = (i-)

n6+ j

H(p) - matrix-vector of independent terms

We can obtain the matrix of coefficients that form products with unknowns K(p,q) very

simply. Because the propeller is operating in a circumferentially averaged velocity

field, that is, in a given environment, all the elements that form the vortex model,

both those located on the propeller blades and in the stream of the propeller wake,

would have the circulation distribution defined with the same coefficient U(q) (or

a(i,j)). All that is necessary is to sum all the induction coefficients for the normal

component of the induced velocity using the tables already calculated. Tables for this

summation are prepared for all the propeller blades and all the sectors of the un-

steady and steady regions of the propeller wake. To determine vector H(p) it is nec-

essary, consistent with Equation (26), to sum for each control point normal components

of velocities derived from the external field (Equation (30)) as well as normal com-

ponents of velocities induced by a discrete source distribution (Equation (45)).

The set of linear equations defined by Equation (48) can be a fully determined

set (only when p=q) or overdetermined set (when p>q). In the first case, the number

of control points C(m,n) selected on the analyzed propeller blade is equal to the

number of unknown coefficients U(q) defining the distribution of circulation. The

solution obtained by Equation (48) is then exact and unique, and any indications of

errors are a result of limitations in the numerical methods used. In the second case,

in which the number of control points is larger than the number of unknown coefficient

U(q), we obtain the so-called pseudosolution of an overdetermined set of equations.

The pseudosolution arises as a result of imposing specified conditions on the vector

difference, which is the difference between the left and the right side of Equation

(48) after the calculated results have been substituted into that equation. Most fre-

quently, the vector is required to satisfy the minimum average least square deviation.

The conclusion that calculations should be performed in such a way that the full

set of equations is made available to obtain the exact solution is not correct in

every situation. The full set of linear equations is very sensitive to the accuracy

of calculating the elements of matrices K(p,q) and H(p). Frequently, minimal errors

in the designation of one factor causes a diametrically opposite change in the derived

solution. This may have particular significance in the case of calculations for a

propeller operating in a strongly nonuniform velocity field, where a change in any



one component of the boundary condition may affect, in an inadmissable way, and

inconsistent with the contributing physical phenomena, the distribution of circula-

tion on the whole propeller blade. The experience gained in the course of this effort,

solving several hundred sets of equations defining the distribution of circulation

in two-dimensional and three-dimensional flow, indicates that it is far safer to use

an overly determinate set of equations.

In order that neither possibility is eliminated a priori, an algorithm to solve

Equation (48) is used that permits calculations of the vector U(q) in both cases.

This (Equation (22)) is based on the multiplication of matrices K(p,q) and H(p) in

succession by q specifically defined orthogonal matrices. In this way the initial

matrix is transformed into a top triangular matrix, and one can readily calculate

the vector U(q) by the so-called reverse process. The algorithm is somewhat less ef-

ficient (in terms of computational time) than the Gauss-Jordan method of solving a

fully determined system, but it is the fastest and best way of solving an overdeter-

mined system.

When the set of Equations (48) is solved, one can determine the strength of the

bound vortices at each point of the analyzed blade, especially at each control point

C(m,n). To accomplish this, it is sufficient to sum a series of terms defined by

Equation (26) for the coordinate (f, ), specifying the location of the control

points, establishing, in that way, the values G(f, 9). The establishment of the

values U(q) also permits us to define any component of the induced velocity at all

control points (when appropriate tables of induction coefficients are used). At this

point one can determine the pressure distribution.

To establish the magnitudes of pressure at all control points of the analyzed

blade we use Bernoulli's theorem defined in the propeller coordinate system [1]:

Po + o P v (2. RC.Rps) (50)
P 2 2 2

where: Vo - flow velocity far ahead of the propeller

Po - pressure far ahead of the propeller

V - velocity on the propeller blade (including induced velocity)

p - pressure on the propeller blade

5 - fluid density
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If we assume that the speed V from Equation (50) has the following components:

VS+VX - in the direction of the X axis

2n7RC-RPS+VT - in the direction of the T axis

VR - in the direction of the R axis

then, Equation (50) can be transformed into the following nondimensional coefficient:

_P V 2_ 1 2  (V5 VX +2 RCRps.VT) (51)
V 4 2(2.RCT-R PS) Vs 2 + (27r. c Rp) 2

where: VI - fully induced velocity: VI = (VX2 + VR2 + VT 2) / 2

Naturally, the induced velocities will be different on the pressure side of the pro-

peller blade than on the suction side. The difference in velocities between the pres-

sure and the suction sides of the blade at any point is equal to the magnitude of

circulation G(L, f) at that point. So, to establish the distribution of pressure on

both sides of the propeller blade, it is necessary to know at all control points the

three components of the total induced velocity as well as the three components of

velocity difference between both sides of the propeller blade. To calculate compon-

ents of the total velocity induced by the network of singularities, we use the tables

of induction coefficients. Because the function of the circulation distribution is

the same for all parts of the network of singularities, it is necessary to sum the

tables of coefficient I(p,q) separately for each component of the induced velocity

and then to multiply the tables by vector U(q). After the products are summed for

each control point separately, we obtain the values of VX, VR, VT at those points.

In the case of the velocity difference across the blade surfaces, we assume that:

- the circulation of the bound vortices does not produce a radial component

of velocity.

- one-half of that circulation value is the increase of velocity on the

suction side of the blade and one-half is the decrease in velocity on the

pressure side.

We establish the values of particular components of the velocity difference for the

control point C(k,l) on the basis of the following equations:
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VGTr vr.G(I,f ) NIVX(k,) A 2 NX(k, )2 (52)A (52)

VGX - - VG A 
NX(kl)

where: A = NZk,L) COS Ce(k,l) - NY(k,) .sn Ce(k,) ;
At this point we can write the complete equation for the pressure coefficient for

both sides of the propeller blade:

C (VX VGY) (Vr vGT) 2+ VR2+2 FVS.(VX VGX) + 2r.C Rps(V+ VGT)] (3)
VS + (2r -RC- Rp) 2
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XII CALCULATIONS OF THE PRESSURE DISTRIBUTION ON A PROPELLER BLADE IN A NONUNIFORM

ONSET VELOCITY FIELD

The process of calculating the pressure field on a propeller blade in a nonuniform

velocity field was constructed in such a way that the unsteady phenomena associated

with an operating propeller are simulated with the greatest possible accuracy. In

none of the mathematical equations considered does the time parameter appear explic-

itly. Instead, an instantaneous position of the propeller is used in a geometrical

sense, while assuming uniform rotation of the propeller which is synonymous with

making the phenomena dependent on time. The exact explanation of the method used can

best be illustrated with a detailed example. A four-bladed propeller operating in a

nonuniform velocity field has been chosen. It is assumed that the unsteady region of

the propeller wake includes one full revolution of the helical vortex surfaces and

that this region is divided into eight sectors. This implies that eight angular posi-

tions of the propeller during a full revolution are analyzed. Note that for such as-

sumptions the calculations have been made and the results discussed in Section XV.

Calculations are made first for the circumferentially averaged velocity field.

Two sets of calculations are made, one for each of the two full revolutions of the

propeller. In both sets of calculations we use the boundary condition in the form

defined by Equation (27); that is, all velocities except the ones induced by the

singularities of the analyzed blade and the first sector following it are assumed

known. We write a set of linear equations resulting from the boundary condition:

(p) V4l0m11ip) (54)

where: Ui(q) - solution for the i position of the blade

Hi(p) - matrix of free terms for the i position of the blade

Matrix K(p,q) is, in all calculations for the nonuniform velocity field, constructed

from a summation of the tables of induction coefficients of the normal component of

the velocity induced for the analyzed blade and the first sector of the vortex trail

behind that blade. As mentioned previously, velocities induced by the network of

sources were calculated for the averaged flow and are treated as fixed. Normal com-

ponents of the external velocities are calculated each time for the actual position

of the control points on the analyzed blade relative to the external velocity field.

Eventually, velocities induced by the remaining propeller blades and the singulari-

ties of the propeller wake are calculated again for each position using appropriate
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tables of induction coefficients for a known distribution of circulation intensity in

the particular regions. For the steady-state region of the propeller wake, a circu-

lation distribution obtained from calculations of the averaged case is always used.

Thus the unsteady phenomena are accounted for in the calculations based on computa-

tion of the matrix of the free terms H(p) at each propeller position on the basis of

actual values of both the inflow velocity and the velocities induced by the singu-

larities of the unsteady region of the propeller wake and adjacent blades.

The first series of calculations in the unsteady velocity field is not used di-

rectly to establish the distribution of pressure on the propeller blade. It is used,

however, to compute the distribution of circulation intensity in the particular sec-

tors of the unsteady region of the propeller wake. The sequence of steps is illus-

trated in Figure 15. In the first series of calculations, it is assumed that the re-

maining propeller blades (with the exception of the analyzed blade) and the free vor-

tex sheets extending from those blades possess the same distribution of circulation

defined by values U(q) calculated for the averaged velocity field. The effects of a

propeller operating in a nonuniform velocity field become apparent only in the un-

steady region behind the analyzed propeller blade. At first, this part of the un-

steady region has the circulation distribution defined in full by U(q). Figure 15

shows how to use successively computed solutions of Ui(q) to establish velocities

induced by the respective sectors within the area of the propeller wake. After all

eight propeller positions corresponding to one revolution have been analyzed, one

proceeds to the next series of calculations.

In the second series of calculations, the effects of the propeller operating in

the nonuniform velocity field on all free vortex sheets in the unsteady region of the

propeller wave become apparent. To calculate velocities induced by the respective

sectors of the free vortex sheets behind blades numbers 2, 3, and 4, one uses the cir-

culation distributions computed in the previous series of calculations, arranged in

appropriate sequence. The unsteady region behind the analyzed blade is at first de-

fined with these distributions, and then, sequentially supplemented by the results

Ui(q) obtained in this series.

The sequence of steps is shown schematically in Figure 16. At this time, in addi-

tion to establishing successive distributions of circulation Ui(q), one also calcu-

lates the distribution of pressure on both sides of the analyzed blade for each

propeller position in the course of one revolution. To perform that, Equation (53)

is used, substituting into it each time a component of the induced velocity and the
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velocity difference established for the actual position of the blade. The completion

of the second series of calculations concludes the method.
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XIII COMPUTER PROGRAM AND CALCULATIONS

On the basis of the descriptions of the method used to calculate the pressure

distribution on a propeller blade, presented in Sections II through XII, a digital

computer program was developed. The flow chart of the program is shown in Figure 17.

The program was written in FORTRAN IV suitable for the digital computer ICL-4-70. At

present, this computer is the fastest and best equipped in peripherals in northern

Poland.

As can be seen from the block diagram the overall program is composed of a main

program and six subroutines. The elements of the program accomplish the following

functions:

a) Main Program

- input of the preliminary set of data

- establishment of memory areas for dynamic assignment in the course of

calculations

- coordination of the employment of subroutines

b) Subroutine SUB 1

- calculation of the Fourier series terms from the given components of the onset

velocity field

- calculation of the vector components of the singularities located on analyzed

blade and the coordinates of the vector centers

- designation of the control point coordinates

- designation of the vector components normal to the surface of the propeller

blade at the control points

- calculation of the values of the integral of the trigonometric functions within

the limits established by the actual distribution of the singularity network on

the propeller blade

c) Subroutine SUB 2

- calculation and storing on a memory disk of tables of induction coefficients

for all propeller blades

- calculations of velocity components at the control points induced by the net-

work of sources and sinks

d) Subroutine SUB 3

- calculation and storing on a memory disk of tables of induction coefficients

for all steady regions and all sectors of the unsteady region of the propeller

wake
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e) Subroutine SUB 4 (performs all the steps connected with the calculations of the

pressure distribution for the circumferentially averaged velocity field)

- calculations of components of the circumferentially averaged onset velocity

field at the control points

- calculation of the independent terms of the matrix in the set of linear

equations

- calculations of the coefficients that multiply the unknown in the set of

equations

- solving the set of equations

- calculation of the magnitude of bound vortex circulation at the control points

- calculation of the induced velocity components at the control points

- calculation of the pressure distribution on both sides of the analyzed blade

- printout of results

f) Subroutine SUB 5 (performs all the steps connected with solving the first series

of calculations in the nonuniform velocity field)

- calculation of the velocity components induced by propeller blades 2, 3, ... Z

and the unsteady region of the free vortex sheets located behind these blades

as well as the steady region of the propeller wake

- calculation of the matrix of coefficients that multiply the unknowns in the set

of equations

- calculation of the velocity components induced by sectors 2, 3, ... N of the

unsteady region behind the analyzed blade

- calculation of the onset velocity field components for the actual position of

the analyzed blade

- calculation of the independent terms of the matrix in the set of equations

- solving the set of equations

(steps 3 through 6 are repeated in sequence for all analyzed positions of the

blade during one propeller revolution)

g) Subroutine SUB 6 (performs all the steps connected with solving the second series

of calculations in the nonuniform velocity field)

- calculations of the matrix of coefficients multiplying the unknowns in the set

of linear equations

- calculation of velocities induced by the steady region of the propeller wake

- calculation of the velocities induced by the unsteady region of the propeller

wake and blades 2, 3, ... Z
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- calculation of the independent terms of the set of equations

- solving the set of equations

- calculation of the magnitude of bound vortex circulations at the control points

- calculation of the induced velocities at the control points

- calculation of the pressure distribution on both sides of the analyzed blade

(steps 3 through 8 are repeated in sequence for all analyzed positions of the

blade during one propeller revolution)

For the most expedient use of the computer memory, a subblock structure in the

program was used. Only the main program and one subroutine that is actually used are

stored in the computer memory at the same time. The remaining subroutines are stored

in the memory disk. Such an approach does not cause a measurable increase in computer

time because each subroutine is used only once in a given set of calculations. The

program uses a total of 140 kB (kilobytes) of operational memory. The total memory

of the ICL-4-70 computer is 514 kB. In addition to the computer memory, the program

also uses disk memory for the pool of numerical data, which contains the tables of

induction coefficients. The size of the disk memory used depends on the density of

the discrete network, that is, the number of propeller blades, control points, and

sectors of the unsteady region of the propeller wake. If we take the typical case:

Number of blades 4

Number of vortex segments on the analyzed blade 585

Number of vortex segments on the remaining blades per blade 204

Number of control points 48

Number of sectors in the unsteady region 8

Number of analyzed blade positions 8

Number of terms in the function of the circulation distribution 16

the size of the disk memory would be 465 kB which is relatively small. The time it

takes to perform these calculations is also dependent upon the density of the dis-

crete network. For the example given, it takes 9 minutes to obtain the results for an

averaged onset velocity field (that is, through the calculations of subroutine SUB

4). To complete the whole program (that is,to calculate the pressure distribution for

the 8 propeller blade positions), it takes 33 minutes. It can be assumed that the

requirement to analyze each additional propeller position would increase that time

by 3 minutes. Considering the degree of complexity of such calculations, this is a

rather short time. The use of the induction coefficient concept contributed the most

to shortening the calculations, and it proved to be effective and efficient. It is



equally important to eliminate from the program any iteration processes so that there

is no risk of inability to get sufficient convergence. The whole computer program

was developed in a way that ensures the greatest amount of flexibility, that is,

permits the easy addition of new subroutines as well as an exchange of the present

ones for modernized versions. For example, such a major modification of the theoreti-

cal method as insertion of a completely different type of distribution of circulation

function would require a minimal change in only one of the subroutines.
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XIV AN EXAMPLE OF CALCULATIONS MADE FOR A UNIFORM VELOCITY FIELD

Before each theoretical method may be practically applied, it must pass a verifi-

cation period for results. The best verification method is a comparison of results

obtained by theoretical means and appropriately conducted experiments. The verifica-

tion stage is particularly important for theoretical methods pertaining to the hydro-

mechanics of ship propulsors because these theoretical models are in continual need

of improvement. During verification certain empirical correction coefficients that

significantly increase the practical value of these methods are introduced. The situ-

ation is relatively straightforward when one considers methods of ship propeller de-

sign or calculations of their overall hydrodynamic performance characteristics. In

this field an enormous number of experimental efforts have been completed dealing

with ship propellers of different geometrical configurations; furthermore, testing a

propeller of any geometry does not present a problem. It is far more difficult to

measure the distribution of pressure on a blade of an operating ship propeller model.

At this time such measurements are not possible in Poland. The principal difficulty

is having a sufficiently large cavitation tunnel (propeller tunnel) and a model basin

that could accommodate a propeller model on the order of 0.5 m and a propeller dyna-

mometer of sufficient size to power such a propeller. Additional problems are having

a sufficiently small measuring probe that could be placed inside the propeller blade

model (it should be remembered that the blade section at the radius of 0.9 for a

0,5 m propeller model has a maximum thickness of barely 0.005 m) and having a pres-

sure transmitting and an electrical signal processing system. We will be able to

make such measurements in Poland after a large propeller tunnel is built and acti-

vated at the Center of Ship Technology. For now, the only available means of verify-

ing the described theoretical method is with results obtained outside Poland. Such

measurements are scarce because very few research establishments outside of Poland

publicize such experiments, and it is even rarer to see such results published.

As the first stage in the verification of this theoretical method with respect to

a propeller operating in a uniform velocity flow, measurements of the pressure dis-

tribution on a model propeller blade, conducted by N.S.F.I. at Trondheim (Norway)

and published in Reference [7], were used. The model in these experiments was a

three-bladed propeller of diameter 0.5653 m, hub diameter 0.16 m, and expanded area

ratio coefficient of 0.512. Table 1 gives the geometrical particulars of this

propeller.



TABLE 1

The propeller blades are constructed based on a composite profile having a NACA 16

section thickness distribution and a NACA a = 0.8 camber line. To measure the pres-

sure distribution, 27 pressure taps were built into the blade along three chords at

radii of 0.4, 0.7, and 0.9 as well as along a radius of the propeller at a distance

of 25% of the chord from the leading edge of the propeller blade. It was possible to

position sensors in a region of the blade tip (above 0.9 radius) despite the fact

that miniature probes of 0.8 mm thickness were available. The electrical signals

from the transducers were transmitted from the propeller shaft through slip rings

and then amplified and recorded on a multichannel oscillograph. The measurements

were made in the N.S.F.I. model basin. Experiments were conducted at five different

advance coefficients: 0.1068, 0.251, 0.375, 0.437, and 0.593. The middle value coef-

ficient was at the design point of the tested propeller model. The experimental re-

sults were reported in the form of nondimensional pressure coefficients:

Maximum
Nondimensional Chord Propeller Maximum

Radius Length Pitch Section Camber
Thickness

[m] [m] [m] [m]

0.30 0.1955 0.3840 0.02639 0.003589

0.40 0.2115 0.3691 0.02213 0.004150

0.50 0.2245 0.3608 0.01976 0.004288

0.60 0.2330 0.3565 0.01654 0.003949

0.70 0.2350 0.3520 0.01270 0.003900

0.80 0.2270 0.3520 0.01022 0.003614

0.90 0.1890 0.3507 0.00600 0.002730

0.95 0.1490 0.3483 0.00447 0.001982



[ W 2 (55)
i ICV + (2r C- RC Rps)2] (55)

where: p - total pressure at the point of measurement

Ps - static pressure at that point

V - propeller advance velocity

RC - radius defining the point of measurement

Rps - propeller rpm

The measuring instrumentation was calibrated before and after the experiments. In

the course of the calibration the standard deviations of the measured quantities,

that is, rotational and propeller advance speed, sensor output, and height of the

wave caused by the operating propeller in the basin, were made. These measurements

established standard deviations in the distribution of pressures that were shown

graphically in the form of vertical segments in the final presentation of results.

Theoretical computer calculations as described in the preceding section were

made using the known geometry of the propeller. Calculations were made for all five

advance coefficients. On the propeller blade 48 control points were selected and dis-

tributed at six radii 0,4, 0.5, 0.6, 0.7, 0,8, and 0.9. At each radius, the control

points were positioned at 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, and 0.85 of the

chord, measured from the leading edge. On the analyzed blade of the propeller there

were 19 bands with 15 segments of bound vortices, supplemented with 20 bands with 15

segments of shedding vortices (together, 585 singularities of the line vortex type

and 285 singularities of the source sink type). The remaining blades had a signifi-

cantly less dense network of singularities (204 segments of line vortices and 96 of

source sink each). A 16 term function was used to define the distribution of circula-

tion (four to define the change in circulation in the radial direction and four in

the chordwise direction). The calculated results are shown in Figures 18 through 22

with experimental data from Reference [7] included. Analyzing the results we conclude

that good agreement was achieved between the calculated and the experimental data for

all advance coefficients. Note that in almost all cases, the calculated results give

a slightly greater difference in pressure between both sides of the propeller blade

than the appropriate experiments. One would expect the lifting forces at the respec-

tive blade sections to be somewhat greater than the measured ones. This can be ex-

plained by the fact that the theoretical method does not include the effects of fluid
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viscosity on the pressure distribution over the propeller blade. From the literature

[31], it appears that the effect of fluid viscosity is minimal on the pressure side

of the blade; on the suction side, however, the effects of viscosity can reduce the

calculated pressure distribution for an ideal fluid by about 12-15%. The character

of the differences, as can be observed in Figures 18 through 22, seems to be of the

same nature and could be caused by the viscous problems. From the analysis of the re-

sults one may also observe that certain differences between calculated and measured

data exist (even after the effects of viscosity have been included) for the region

of the leading and the trailing edges of some of the section profiles. This is par-

ticularly noticeable for the advance coefficients farthest from the design point,

that is, when the propeller blades are operating at a large angle of attack. Most

probably the reason for this occurrence is the use of circulation distribution func-

tions with a singularity on the leading edge of the blade and the impossibility of

positioning control points sufficiently close to the edges of the section profiles.

This causes inaccurate calculation of the values of terms in the function containing

singularities (Equation (24)). The prospects of using this method for analyzing cavi-

tation characteristics necessitates a detailed examination of the reasons for this

difference in theoretical calculations in the region where a cavity initiates. It

appears that an improvement could be obtained by a geometrical arrangement of the

singularity network on the analyzed blade such that the border control points would

be located closer to the leading edge, for example 0.05, of the chord. The accuracy

of the measured results in that region of the blade should also be confirmed. This

would be possible after further experimental measurements were acquired.

In the course of theoretical calculations, the effect of propeller blade thick-

ness has also been determined. To obtain these results, calculations were repeated

at the design point advance coefficient, introducing at this time a zero thickness

of the blades. The results of these calculations are shown in Figure 20. Comparing

the results of both sets of calculations, it can be seen that the finite thickness

of the blade has little influence on the difference in pressure between both sides of

the propeller blade; however, it does "shift" substantially the calculated pressure

distribution in the direction of negative values. As expected, the influence of

thickness is more pronounced where the blade is thicker. It clearly appears that the

calculations of pressure distribution according to methods that do not take into ac-

count the finite propeller blade thickness cannot be used for the purpose of cavita-

tion analysis because they give substantially reduced values of negative pressure on



suction side. Such results can, however, be used to adequately appraise the overall

forces acting on the propeller blade.

It took 7 minutes to make the calculations presented in this section for each

value of advance coefficient. At 1977 prices, this is equivalent to 750 zl or

$23.00 (at 33 zl per $) to make the calculations for one advance coefficient. Note

that such calculations are several times cheaper than equivalent experiments, not to

mention the time to prepare and conduct the experiments, which would be about one

month (including building a propeller). The agreement of the calculated results with

the experimental data is sufficient and it is possible to fully replace the experi-

ments with a computer calculation when the propeller is operating in a uniform veloc-

ity field. Satisfactory results were obtained for a wide variation of advance coef-

ficients. In summary, we conclude that the method meets expectations in the area of

calculations performed for the uniform external velocity field. This conclusion does

not exclude the need to conduct further verification, particularly for propellers of

a nontypical geometry. This will be accomplished as appropriate new experimental

data are acquired.



XV AN EXAMPLE OF CALCULATIONS MADE FOR A NONUNIFORM VELOCITY FIELD

The principal utility of the method described herein is the ability to calculate

the pressure distribution on a propeller blade operating in a nonuniform velocity

field. The results of such calculations should be subject to careful verification.

Unfortunately, this is not a simple matter, because until now a set of measurements

of the pressure distribution on a propeller blade operating in a nonuniform velocity

field has not been published anywhere in the world. Experimental investigations of

this type have another problem in addition to the problems mentioned in the previous

section: The values of pressure at the different points of measurement on the pro-

peller blade undergo very rapid time changes. A model of about 0.5 m diameter uses a

rotational speed of about 800 revolutions per minute. Considering that, for a typical

velocity distribution field in a nonuniform stream in the course of one revolution,

the propeller blade passes twice through the region of lower and twice through the

region of higher velocity flow, then about 50 significant changes in pressure may be

expected in the course of one second. The correct way to measure such a pressure re-

quires the use of a low inertia transducer. Typical induction transducers are not

adequate for this purpose. In measuring rapid changes in pressure, there may also be

some hydrodynamic problems, for example, in the narrow tubes carrying the pressure

signal to the transducers within the blade.

Consequently, the only available means of verification is the use of a relatively

large body of information obtained visually, studying cavitation on propellers oper-

ating in a nonuniform velocity field. The leading research centers outside Poland

have, as a rule, several hundred propeller models thoroughly tested in a nonuniform

velocity field. A significant part of these tests have been published. In Poland

such experiments are at the stage of practical verification of the methodology of

research (this pertains particularly to the selection of the optimum method of simu-

lating the velocity field in the test section of the cavitation tunnel (propeller

tunnel)). The use of visual cavitation data to check the calculations of the pres-

sure distribution on the propeller blade has two weak points: first, inadequate

knowledge of the relationship between the observed pattern of cavitation and the

pressure distribution that produced that pattern, and second, even the best inter-

preted data contributes only to the qualitative basis and not to the quantitative

evaluations of the calculated pressure distribution.

As an example for these calculations the left side propeller of a fast cargo ship

was chosen with the results published in Reference [16]. This four-bladed propeller



has a diameter of 4.2 m, a hub diameter of 1.26 m, and an expanded area ratio equal

to 0.64. The propeller was designed to transmit power of 14750 hp at 209 revolutions

per minute and a ship speed of 28 knots. Detailed geometrical characteristics of the

propeller are listed in Table 2. In the design of the propeller, composite profiles

used the Walchner 3 type thickness distribution and a camber line NACA a - 1.0. The

cavitation experiments were conducted on this propeller at Wageningen using a 1/16

scale model. The velocity field was simulated in the propeller tunnel with a large

section of the ship hull model. The components of the velocity field measured in the

propeller tunnel in the area of the operating propeller are shown in Tables 3, 4,

and 5. These values are presented in terms of nondimensional coefficients propor-

tional to ship speed.

The configuration of the control points and singularities for this propeller cal-

culation is the same as the one in the previous section. It was assumed that the un-

steady region of the propeller wake includes only one full revolution of the

TABLE 2

Maximum
Nondimensional Chord Propeller Maximum

Section
Radius Length Pitch Camber

Thickness

[m] [m] [m] [m]

0.30 0.975 5.250 0.198 0.0

0.40 1.362 5.254 0.132 0.024

0.50 1.706 5.246 0.099 0.029

0.60 1.920 5.204 0.074 0.029

0.70 1.963 5.111 0.055 0.028

0.80 1.804 4.960 0.040 0.024

0.90 1.383 4.750 0.026 0.018

0.95 1.011 4.628 0.019 0.014

1.00 0.0 4.490 0.012 0.0



propeller vortex sheets, which seems to be sufficient due to the large angles of

pitch of these surfaces. The unsteady region was divided into eight sectors, and

calculations of the pressure distribution were made at the same number of positions

of the analyzed blade (every 45*). It took 33 minutes for these calculations, at a

cost of 3564 zl or $108 (at 33 zl per $). The results of these calculations are

shown graphically in the form of a nondimensional pressure coefficient Cp on both

sides of the blade for sections at radii: 0.5, 0.7, and 0.9 in Figures 23 through

27. In the first figure, the results of the calculations for the circumferentially

averaged velocity field are shown. In the subsequent figures the results for the

AXIAL COMPONENT

TABLE 3

OF THE NONUNIFORM VELOCITY

NOTE: k = 0 is equivalent to a position vertically down. The increase in the

coordinate 0 corresponds to a left rotation.

FIELD

R = 0.30 R = 0.50 R = 0.70 R = 0.90

0 0.970 0.991 0.997 1.021
20 0.996 0.997 1.008 1.002
40 0.995 1.000 1.000 1.002
60 0.979 0.983 0.987 0.983
80 0.969 0.969 0.986 0.981

100 0.966 0.966 0.918 0.982
120 0.959 0.962 0.984 0.955
140 0.956 0.960 0.962 0.940
160 0.992 0.979 0.967 0.874
180 0.895 0.961 0.953 0.869
200 0.778 0.887 0.849 0.735
220 0.893 0.948 0.898 0.849
240 0.906 0.989 1.003 0.947
260 0.963 1.009 1.028 1.008
280 0.961 0.992 1.014 0.998
300 0.970 0.986 0.999 0.976
320 0.970 0.985 0.939 0.986

340 0.969 0.987 0.964 0.997



TABLE 4

TANGENTIAL COMPONENT OF THE NONUNIFORM

VELOCITY FIELD

R = 0.30 R = 0.50 R = 0.70 R = 0.90

0 -0.073 -0.062 -0.055 -0.069

20 -0.031 -0.029 -0.020 -0.116

40 0.007 0.010 0.012 0.010

60 0.051 0.043 0.046 0.042

80 0.081 0.067 0.067 0.066

100 0.094 0.079 0.080 0.079

120 0.103 0.076 0.078 0.074

140 0.115 0.053 0.060 0.065

160 0.032 -0.051 0.081 0.045

180 0.024 -0.005 0.008 0.005

200 -0.029 -0.051 -0.065 -0.064

220 -0.123 -0.087 -0.114 -0.164

240 -0.187 -0.157 -0.152 -0.157

260 -0.183 -0.170 -0.163 -0.162

280 -0.187 -0.172 -0.161 -0.156

300 -0.175 -0.156 -0.147 -0.138

320 -0.150 -0.133 -0.121 -0.110

340 -0.096 -0.101 -0.089 -0.082



TABLE 5

RADIAL COMPONENT OF THE NONUNIFORM

VELOCITY FIELD

R = 0.30 R = 0.50 R = 0.70 R = 0.90

-0.203

-0.200

-0.193

-0.179

-0.158

-0.139

-0.124

-0.138

-0.120

-0.089

-0.089

-0.104

-0.096

-0.084

-0.119

-0.152

-0.177

-0.188

-0.156

-0.152

-0.142

-0.125

-0.101

-0.075

-0.046

-0.019

0.043

0.024

0.005

0.026

0.042

-0.007

-0.060

-0.099

-0.128

-0.135

-0.130

-0.128

-0.118

-0.100

-0.074

-0.044

-0.006

0.026

0.050

0.064

0.045

0.079

0.069

0.016

-0.032

-0.070

-0.102

-0.113
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four principal positions of the analyzed blade are shown: 00 (vertically down),

900, 1800, and 2700.

In all the graphs, segments AB of constant pressure are included. These pressures

were established on the basis of the cavitation number that prevailed during the

observation (that is, they indicate the critical value of pressure below which the

water vaporizes). Their length corresponds to the part of the blade section profile

at a given radius that was covered by a cavity at the indicated propeller position.

Segments AB indicate the total scope of information contributed by cavitation experi-

ments on the propeller model. There is no doubt that the presence of cavitation sig-

nificantly changes the pressure distribution over a propeller blade in comparison to

the pressures that would have occurred at those places in a flow without cavitation.

To evaluate this phenomenon, we use a simplified hypothesis that says, if cavitation

does not yet cause a decrease in the propeller thrust, then part of the pressure dis-

tribution "cut" because of the cavity presence in the region of the leading edge has

to be equalized by an identical increase in pressure in the region located somewhat

in the direction of the trailing edge (that is, in the location where the pressure

was previously higher than the critical value). Despite its seeming simplicity, this

hypothesis has shown very good agreement with reality, both in theoretical predic-

tions of the area of the propeller blade affected by the cavitation and in comparison

with an experimental study of profile sections in a two-dimensional flow [16]. In

Figures 24 through 27 regions S1 are shown indicating the "cut" areas and, equal to

them, areas S2 having equivalent and compensating pressures. The length over which

the improvised constructed distribution of pressure attains a critical value should

correspond to the part of the profile covered by the cavity (that is, segment AB).

An analysis of all the figures shows that adequate agreement has been achieved

between the observed length of cavity and the values theoretically calculated for all

propeller positions. Noted differences, as small as they are, indicate a certain

regularity. In the propeller positions where the cavity occupies a relatively narrow

strip situated near the leading edge, the theoretically predicted lengths of the

cavity are larger than the observed ones. Inversely, in cases where the cavity im-

mediately occupies a large blade area (for example, at radius 0.9 and position 2700),

the theoretical calculations give shorter lengths. The cause of this occurrence may

be a deficiency in the calculations of the pressure distribution indicated in the

previous section in the region of the leading edge, or the simplistic theoretical

method of designating the cavity length. Recall that the theoretically calculated



pressure distribution does not include the effects of viscosity. From the analysis

of the results presented, it also appears that the theoretically calculated pressure

distribution does not reach a critical value anywhere outside the observed cavita-

tion. All the above evaluations are at best a qualitative, not quantitative nature.

More precisely, no error was ascertained in the computer program for the case of a

propeller operating in the nonuniform velocity field, but no assurance has been

achieved that the results are completely accurate. There are potentially significant

differences in the results in the region not affected by cavitation. Since the basic

goal of the theoretical method described is to supply data to define the area of the

propeller affected by cavitation, in that task the method fulfills the expectations.

Further improvements should be directed first to the transformation of the calculated

pressure distribution for an ideal fluid into a cavity on the propeller blade. Be-

sides, it appears justifiable to state that calculations for several dozen different

propellers operating in a nonuniform velocity field and comparison of these results

with observations of cavitation tests and measurements of the overall oscillatory

forces in the propeller shaft (thrust and torque), would present very extensive and

comprehensive verification of this theoretical method even without the necessity to

pursue direct measurements of pressure.

From the structural composition of the theoretical model discussed in the pre-

vious chapter, it appears that denser division of the unsteady region of the pro-

peller wake into more sectors may influence the accuracy of the calculated results.

A larger number of sectors increases the fidelity of the theoretical model of the

propeller wake as compared to the actual one where the free vortex lines have a

continuously changing character. In order to check the significance of the propeller

wake structure, calculations were repeated for the same propeller, dividing the un-

steady region into 16 sectors. It took 56 minutes to complete the calculations, at a

cost of 6048 zl or $183, at 33 zl per $. These results indicated minimal differences

from the calculated results using 8 sectors. The differences are so small that they

could not be seen graphically in the scale of Figures 23 through 27. This is in

agreement with earlier expectations because, first, velocities induced by singulari-

ties of the propeller wake are only a part of the total velocities induced, and

second, in the example given, the variation in the external velocity field was rela-

tively small. One should, however, consider making such calculations using a larger

number of sectors, because otherwise one might miss a propeller position particularly



susceptible to cavitation. Even when a large number of sectors is used, the cost of

calculations is many times smaller than the cost of an equivalent experimental test

where the same amount of information is available.
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XVI THE PROBLEM OF CONVERGENCE OF THE CALCULATED RESULTS

Theoretical methods that employ a discrete network of singularities to calculate

induced velocities have a distinct advantage compared to methods that employ special

integral equations. The principal advantage is a very simple method of calculating

the induced velocities without any problem with mathematical singularities. There is,

however, another serious problem that could be identified as a convergence of the

solution defined, in this case as follows: If, for a propeller of unknown geometry,

one obtains by the analytical method the same results independent of the assumed

form of the discrete network of singularities, then one may say that the method gives

converged solutions to the problem. The literature outside Poland gives numerous ex-

amples that indicate an amazingly strong dependence of the solution on the parameters

of the discrete network of singularities used ([10] and [28]). One gets the impres-

sion that some authors have not recognized in depth the causes of this undesirable

phenomenon, even though it is crucial to the usefulness of this theoretical method.

The user of this method must be convinced of its effectiveness solving differently

matched (within defined limits) parameters of a discrete network of singularities.

Otherwise, correctly calculated solutions could be a matter of lucky coincidence.

Appreciating the significance of this issue, the convergence problem of the solution

was studied in detail before all the efforts on the lifting surface method were

completed.

There are three groups of parameters that could be within the concept of the

"framework of a discrete network of singularities": the number and distribution of

control points, the number and distribution of vortex lines, and the number of terms

of the function describing the distribution of the bound vortex circulation. To

analyze the impact of these three groups of parameters on the pressure distribution,

a special computer program was developed that could calculate the pressure distribu-

tion on a blade section operating in a two-dimensional flow. The theoretical model

used was a simplified version of the model developed in this report for a two-

dimensional flow based on the same main features such as the discrete vortices model-

ing the bound circulation, the method of induced velocity calculations, equations

describing the distribution of circulation, etc. In the two-dimensional flow, the

network of free vortices was not used. The choice of section profile in the two-

dimensional flow employed in the numerical experiments was dictated by several prem-

ises. One of them was the simplicity of the computation program that permitted accu-

rate control and analysis of the causes contributing to any deviation in results.



The second one was the ability to make direct beyond-question comparisons with a

wealth of experimental data or data theoretically calculated by other methods recog-

nized as accurate [16]. Over one hundred sets of calculations were made, analyzing

carefully selected NACA profiles: NACA 65, NACA a = 0, NACA a = 0.5, NACA a = 0.8,

and NACA a = 1.0. Most of the calculations were made for infinitely thin profiles;

some were made for section profiles with thicknesses corresponding to NACA 16 and

NACA 66. Each profile was studied under different positive and negative angles of

attack. For some of the section profiles, nonuniform inflow was simulated introduc-

ing a variable flow vector along the chord. For each profile, calculations were made

for a wide range of discrete singularity network parameters. The number of discrete

bound vortices was varied from 13 to 40, with different combinations of local distri-

bution. The number of control points varied from 6 to 18. Finally, the number of

terms in the function defining the distribution of circulation was varied from 4 to

18, never exceeding, however, the actual number of control points. All these results

were compared with the NACA data obtained on the basis of conformal mapping by

Theodorsena. In the course of the calculations a number of numerical methods were

tested pertaining to the method of interpolation, solving sets of linear equations,

calculations of Fourier coefficient, etc., selecting the most effective ones for use

in the lifting surface method presented. The results can be synthesized as follows:

a) The density of the discrete vortex network used, in itself, does not influence

the results. This seemingly surprising theorem was proved in the following way:

The induced velocities calculated at a given point of the profile with a known

distribution of circulation, independent of the number of discrete vortices used,

are identically in agreement with the velocity calculated solving appropriate

integral equations. This theorem is satisfied for circulation distributions that

can be defined with linear functions and functions of the second order. For func-

tions of higher order, small errors appear. In practice, however, such functions,

are generally not used. In Figure 28 the pressure distribution calculated by the

program mentioned is shown for an infinitely thin NACA a = 0.8 profile and three

different densities of the vortex network. One can readily see the minimal ef-

fects of the network density on the calculated results.

b) To obtain correct values of induced velocities by the discrete vortex network

technique, the control point must always be in the middle between neighboring

vortex lines.

c) To obtain the correct circulation distribution, which also implies correct
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pressure distribution, the control points located near the edges of the section

profile should be separated by at least three discrete vortex lines from the

profile's edge. Comments b) and c) indicate a mutual dependence of the network

of the vortex singularities and distribution of control points. Frequently, the

desire to distribute the control points appropriately and the necessity to sat-

isfy conditions b) and c) force a specific configuration of the discrete vortex

lines on the section profile or the blade. Thus it is not possible to reduce the

number of discrete vortex lines below certain limits (for a section profile in

two-dimensional flow this is normally 13 vortices). Because of this the computer

program includes the flexibility that one may use a denser vortex network near

the control points (analyzed blade) and a less dense network on the remaining

blades. This allows optimal use of the full flexibility of the theoretical

model.

d) The essential significance for the calculated results depends upon the best pos-

sible definition of the mean camber line geometry. When the data are taken from

an atlas of section profiles, it is necessary to interpolate for the established

vortex coordinates and control points. It was found that the best results were

obtained with interpolation done with an incomplete Fourier series containing

only the sine functions. Despite the fact that differences with respect to other

methods of interpolation would appear sometimes in the third significant figure,

the "so-defined" section profile was almost insensitive to whatever changes in

the discrete structure were used in the calculations.

e) The number of control points employed has an influence on the calculated results.

The correctness of this statement is limited by a saturation ceiling, that is,

increasing the number of control points above a certain number does not improve

the results, The significance of the cortrol points stems from the fact that at

these very points the mutual interaction is seen between the geometry of the sec-

tion profile and the field of the velocity flow. Figure 29 shows the calculated

pressure distribution for the same section profile as used previously using 6, 8,

and 18 control points. As is apparent from the figure, as well as from other cal-

culations, 8 to 9 control points are sufficient to adequately calculate the pres-

sure distribution, and increasing that number unreasonably prolongs the calculat-

ing time.

f) Besides the number of control points it is important to appropriately define the

directions of the normals to the mean camber line of the section profile at those

100



-1.0

Cp

-0.5

0.0

0.5 ...
0.0 0.2 0.4 0.6 0.8 S 1.0

DATA PROVIDED BY NACA

- -- - - -- 18 CONTROL POINT (PRACTICALLY THE SAME AS NACA)

-. - .- 8 CONTROL POINTS

- - 6 CONTROL POINTS

Figure 29 - Pressure Distribution for an Infinitely Thin Profile NACA a = 0.8

in a Two-Dimensional Flow Calculated for a Different Number of

Control Points

101



points. Different methods to determine the local normal were tried. The best

results were obtained by the method based on the calculations derived from the

functions interpolating the geometry of the mean camber line. For this reason

the described method of interpolation was very useful.

g) For a uniform flow one can obtain correct results when the number of terms in

the function defining the pressure distribution is equal to the number of control

points as well as when it is smaller. One should not, however, limit the number

of terms in the function below a certain limit (4 to 5 terms) because one may

experience difficulty defining more complicated pressure distributions (for ex-

ample, NACA a = 0.5). For some profiles (for example, NACA 65) only a two term

function gives accurate results. The use of a number of terms smaller than the

number of control points protects the effort, rather well, from the effects of

changes in the configuration of the control points. Figure 30 illustrates the

results of pressure distribution calculations for the NACA a = 0.8 profile using

4 and 8 terms in the circulation distribution function. Both calculations were

made using eight control points. One can clearly see the effect of overly re-

stricting the number of terms in the function.

h) A small number of calculations made for the two-dimensional nonuniform velocity

flow field have proven that it is proper to use a smaller number of terms in the

function than the number of control points. Occasionally, totally improbable re-

sults were obtained using an equal number of both parameters. The cause of this

is a characteristic peculiarity of the set of linear equations. The use of a

small number of terms leads to results that were easily justified by the charac-

ter of the velocity field (sinusoidal changes were made in the inflow angle with

a different number of cycles along the chord length). During these calculations

it was concluded that the NACA method of establishing the pressure was not usable

for a nonuniform velocity field.

All experiences obtained in the course of the experiments, with the program cal-

culating the pressure distribution over a section profile in a two-dimensional flow,

were employed in the construction of the computational method based on the lifting

surface model. However, this, did not guarantee that the method describing the com-

bined effects of the three-dimensional flow would ensure the convergence of the solu-

tion. It was necessary, using the program described in Section XIII, to perform cal-

culations that would ascertain the correctness of the method. It was not possible,

in a short time, to perform an equally extensive analysis as was done for the

102



-1.0

0.0

2 5 .0 02 0.4 0.6 0.8 S 1.0

DATA PROVIDED BY NACA

- 8 TERM SOLUTION

- -- -- 4 TERM SOLUTION

Figure 30 - Pressure Distribution Calculated for an Infinitely Thin NACA a 
= 0.8

Profile in a Two-Dimensional Flow for a Different Number of Terms in

the Circulation Distribution Function

103

__ ~_^__~~ __ _____1_1_ ___ ~-1_1 11 --- ~~--1~111^-_1_.. 1_



two-dimensional flow, partly because of the costs of performing such calculations

and partly because of the difficulty of controlling, in detail, such a complicated

program (at the beginning of the program each complete set of calculations produced

over 4000 numerical values for checking). Furthermore, it was considered justifiable

that a detailed analysis of the properties of the theoretical model in a two-

dimensional flow would make it less important to check the model equally extensively

in a three-dimensional flow. Three additional calculations were then made only for a

propeller operation in a uniform velocity field at the design conditions (compare

Section XIV), using a set of 36, 42, and 48 control points, while the remaining par-

ameters of the discrete network were unchanged. The control points were always appro-

priately distributed on the same six profiles at radii 0.4, 0.5, 0.6, 0.7, 0.8, and

0.9, with 6, 7, and 8 points. In the first case the points were located at 0.15,

0.25, 0.45, 0.55, 0,75, and 0.85 of the chord length from the leading edge; in the

second case, at 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8; and in the third, at 0.15,

0.25, 0.35, 0.45, 0.55, 0.65, 0.75, and 0.85. All calculated results of the pressure

distribution on the propeller blade were found to be in mutual agreement, so that to

indicate differences in the scale of Figures 18 through 22 was impossible to discern.

A comparison of these results with the convergence of solutions of computational

methods published by authors outside Poland [10], and [28] leads to the conclusion

that the method presented is, in this area, clearly superior. In the Japanese method,

transition from 77 to 49 control points distorts the calculated pressure in a way

that impairs the possibility of the practical use of that method. The American

method, on the other hand, indicates an overly significant dependence upon the den-

sity of the vortex network, that is, most likely a convergence problem of the vortex

network in the region of the propeller blade tip (which uses a configuration that is

not necessarily the best). In summary, the calculated solution of the present compu-

tational method converges adequately.
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XVII SUMMARY AND CONCLUSIONS

In the previous sections of this report a theoretical method for calculating the

pressure distribution on a propeller blade operating in a nonuniform velocity field

was presented. A detailed discussion of the formulation of the theoretical model, the

structure of the computer model, and a comparison of the calculated results with

available experimental data were included. Finally, in this summary, two groups of

questions are introduced: one, what new and useful method has this brought to the

field, and two, how can this method best be used to provide direction for future

efforts.

The most important innovation in the domain of the structure of a ship propeller

vortex model is the use of a free vortex in the propeller wake. As previously men-

tioned the particular application cannot be considered final. However, it simulates

relatively well the physical realities of the dependence of free vortices upon the

unsteady phenomena taking place on the propeller blade. It also includes, on the

basis of back pressure, the influence of the "history" of the previous performance

of the propeller on the phenomena that do take place on the propeller at this time.

For the first time in the free vortex sheets vortex lines are directed radically. As

a consequence of the assumed structure of the free vortex sheets, it also contributes

to the concept of induction factor tables to calculate the induced velocities. Al-

though the induction coefficients can be considered more as part of the numerical

process than of the theoretical model, their use contributes to a relatively fast

and effective execution of calculations. The next concept, also original, is the em-

ployment of a three-step approximation cycle in the description of the propeller

performance in a nonuniform velocity field. The first step is the analysis of propel-

ler performance in a circumferentially averaged velocity field, the second, partially

accounting for the unsteady phenomena about one propeller blade only, and finally in

the third step, a complete analysis of propeller performance in a nonuniform velocity

field. A new element of less significant value is the allowance for local values of

the external velocities at all control points for every propeller blade position.

The form of the discrete network of singularities modeling the propeller blade is

also different from the ones presently used. It appears that it is more useful to

simulate continuous realistic blade load distribution. Furthermore, a number of

small improvements of a numerical nature have been introduced in the computer pro-

gram, making it more effective compared to similar theoretical methods available

outside Poland. The method has proven accurate with respect to the analytical
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results for a uniform velocity field as well as for a nonuniform velocity field.

Convergence (stability) of the solutions proved to be better than equivalent methods

published outside Poland. The principal objective of the first order of importance

was the use of the method for calculating the pressure distribution on a propeller

blade to predict the onset of cavitation on a propeller operating in a nonuniform

velocity field. Therefore, it was essential to supplement the existing method in

elements linking the pressure distribution calculated in an ideal fluid flow with

the area and character of cavitation as it occurs in a real flow. We find two pos-

sible avenues of approach. One of them, using, to a large extent, theoretical means,

would be based on the inclusion of viscous phenomena, specifying the character of

the boundary layer parameters and relating it to the range and kind of cavitation in

a way similar to the one described in Reference [16]. The second method of approach,

of a more empirical nature, would assume that a relationship can be obtained between

the pressure distribution in an ideal flow and the cavitation phenomena by a statis-

tical analysis of calculations and experimental observations of a large series of

propeller models. It is difficult to say which method will prove to be more effec-

tive. Work should continue in both areas, with a closely related and ever important

broad verification of calculated results in a nonuniform velocity field.

The next important application of the developed method will be its use to define

oscillating loads on the propeller operating in a nonuniform velocity field and then

transmitted through the propeller shaft to other parts of the ship. Because the cavi-

tation phenomena have such a direct effect on the magnitude of the oscillating forces

induced on a propeller blade, it is essential to develop an analytical method that

defines a pressure distribution sensitive to changes in the cavity volume. Then, with

simple methods of integration of the pressure distribution, one may establish all the

necessary components of the oscillating forces on the propeller. It will also be

possible to use this method to calculate average total propeller characteristics in

terms of thrust, torque, and efficiency as a function of advance coefficient.

A further application of the method is its adaptation to predict blade spindle

torque in controllable pitch propellers. Here the method will be applied to calculate

the values of moments of the hydrodynamic forces about the controllable pitch pro-

peller blade axis for a wide range of advance coefficients and the adjustable pitch

angle. In this case, again, the cavitation phenomena play an essential role, impos-

sible to consider in previous theoretical methods based on a lifting line model. The

question of predicting correct control forces is one of the basic problems in the
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design of controllable pitch propellers, and solving it will permit a substantial

increase in the available power that can be transmitted by a propeller of this type.

It is also planned to use this theoretical method to calculate a new set of cor-

rections for the lifting surface effect. Properly established corrections would per-

mit a very effective propeller design with simple theoretical models based on a

lifting line. It is anticipated that a complete set of corrections for the purpose

of propeller design will be calculated. Such a set of corrections would be compared

with those presently used, calculated in the United States about ten years ago; if

better results are obtained they could be used in the present methods of propeller

design. Furthermore, it is planned to use the new method to calculate other types of

corrections for the effect of lifting surface, particularly to calculate propeller

hydrodynamic characteristics away from the design point. If the results of these cal-

culations are successful, a simple and effective method to calculate these character-

istics using a simple theoretical lifting line model would be achieved.

After the method described here is verified and supplemented by the indicated

additions, it will become a very useful tool in the design of ship propellers. It

will be possible to realize all the objectives that were discussed at the beginning

of this report; to optimize propeller designs, particularly from the point of view

of adapting them to operate in a nonuniform velocity field; and to eliminate, par-

tially, costly and time-consuming cavitation tests. The diversity of problems for

which the method may find application indicates its importance in the contemporary

hydrodynamic problems of ship propellers. The actual state of advancement provides

hope for the realization of the goals discussed.
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XIX NOMENCLATURE

a(i,j) - coefficients of a function defining distribution of bound circulation

over the blade

- vector of a discrete bound vortex over the blade

BX

BY - coordinates of vector B

BZ

BSX

BSY - coordinates of midpoints of vector B

BSZ

CX

CY

CZ - coordinates of control point C

CQ

Cp - nondimensional pressure coefficient

Cps - nondimensional pressure coefficient on the suction (low pressure) side

of the blade

Cpc - nondimensional pressure coefficient on the (high) pressure side of the

blade

d - coefficient defining the angle of pitch of the free vortex surfaces

E(k) - propeller rake ordinates

FCX(k,i) - coefficients of the Fourier series for the cosine functions

FSX(k,i) - coefficients of the Fourier series for the sine functions

G(4,) - functions of the distribution of the bound circulation

H(p) - independent terms of the set of linear equations

K(p,q) - coefficient multiplying the unknowns in the set of linear equations

L - distance vector between the singularity and the control point

LX

LY - components of vector L

LZ

m(L) - offset of the meanline divided by the maximum camber

M(k) - maximum camber of the mean profile

nI  - number of points W in the direction of blade radius

n2  - number of points W in the direction of the section chord

n3 - number of control points in the direction of the blade radius
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n4 - number of control points in the direction of the section profile

n5  - number of coefficients a(i,j) in the direction of blade radius

n6  - number of coefficients a(i,j) in the direction of section profile

NX

NY - coordinates of vectors normal to the blade surface at the control points

NZ

N - number of sectors in the unsteady region of the propeller wake

P - radial segment of the vortex line in the propeller wake

P(k) - propeller pitch angle

Po - fluid pressure infinitely far from the propeller

P - fluid pressure on the propeller blade

Q - sink or source strength

Rp - propeller hub diameter

RT - propeller tip diameter

R(k) - actual radius of the propeller blade

RC(k) - radius defining location of the control point

Rps - propeller revolutions per second

S(k) - propeller skewback ordinates

T - vector of the vortex trailing segment (on the propeller blade in the

wake of the propeller)

TX

TY - coordinates of vector T

TZ

U(q) - solution of the set of linear equations, equivalent to coefficient

a(i,j) after change of index

Vo  - velocity of fluid infinitely far from the propeller

V - velocity of fluid on the propeller blade

VI - total induced velocity at a given point on the propeller blade

VX

VY

VZ

VR - coordinates of vector V

VT

VN

VE - normal component of the external velocity field at a given control point
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VW - normal component of velocity induced by the singularities forming

propeller blade model

VZ - normal component of velocity induced by the unsteady region of the

propeller wake

VC - normal component of velocity induced by the steady region of the pro-

peller wake

VQ - normal component of velocity induced by sources modeling finite blade

thickness

VS - ship speed

VGX components of velocity difference between the suction and pressure

VGT sides of the blade

W - points establishing the structure of discrete network of singularities

on the propeller blade

WX
WY - components of points W

WZ

Xp - component of the distance from the control point to the vortex line

element in the propeller wake

Z - number of propeller blades

0p - angular distance from the control point to the vortex line element in

the propeller wake

A(k) - pitch angle of the free vortex sheet

7 - strength of the vortex element circulation

yB - strength of the circulation of the bound vortex element

YT - strength of the circulation of the trailing vortex element

7p - strength of the circulation propeller wake radial vortex element

5(k) - angle of incoming flow

p - density of water

x( - angular coordinate along the section chord

O - angular coordinate along the blade radius

Note: The nomenclature does not include symbols used in Section II, in which the

same notation is used as in the original published work; such notation is defined

following the equations.
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APPENDIX I: ALGORITHM DEFINING FORCES AND MOMENTS ACTING ON A PROPELLER BLADE

One of the possible uses of the pressure distribution on a ship propeller blade

operating in a circumferentially nonuniform velocity field, calculated according to

the algorithm described in previous sections, is to establish the forces and moments

acting on a propeller blade. One should remember, however, that the algorithm used

in calculating the pressure distribution does not include changes in that pressure

as a result of viscous effects and does not include forces due to viscous drag. The

calculated forces and moments acting on a propeller blade may differ significantly

from the magnitudes measured experimentally or established by other methods that in-

clude viscous effects. When the method presented here is adapted to include the fluid

viscous effects, the following equations may be used without changes.

Figure 31 shows an orthogonal coordinate system OXYZ fixed to the propeller. A

propeller blade is shown schematically with an arbitrary distribution of pressure

along the blade section and radius. The figure also shows the three vector components

of the hydrodynamic forces Fx, Fy, Fz and the three vector components of the hydro-

dynamic moments Mx, My, Mz, which are the objects of these calculations. The calcula-

tion of any component of force or moment, as, for example, Fz, can be performed ac-

cording to the following equation:

R lr)

rF =
5rp p(r) (r,s).dr.ds

rarp S'O

(56)

where:; p(r,s) - pressure difference between the high and low pressure sides of the

propeller blade

nz - component of a unit vector normal to blade surface in the axial

direction

R - radius of the blade tip

L(r) - chord length of a blade profile at a radius

rp - propeller hub radius

r - variable along the blade radius

s - variable along the chord of a blade profile
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BLADE PROFILE,

PRESSURE DISTRIBUTION
ALONG BLADE RADIUS

PRESSURE DISTRIBUTION
ALONG BLADE CHORD

- Force and Moment Components of the Hydrodynamic Forces Acting

on a Propeller Blade
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Next, calculations of a component of the hydrodynamic moment can be performed ac-

cording to equation:

.fJAp (rs)[ n (r,s) ax(r.s) + n (r,s) .ayr,s)] drds (57)

rfrp .o0

where: ax , ay - appropriate moment arms of force components relative to the axis of

the coordinate system, defined according to the following equations:

x(rs) r. cos fL(r) -A )sj COS LP r)

. (rs) W.-sk +SJsin (r)+rk(r)

where: p (r) - blade pitch distribution

sk(r) - function defining blade skewback

rk(r) - function defining blade rake

Functions analogous to Equations (56) and (57) may be written for all the force and

moment components, substituting only appropriate components of the unit vectors

normal to the blade surface and moment arms.

In practical cases the pressure difference between both sides of the blade, LAp

is defined at a given set of points on the blade surface. Therefore, integration over

the blade surface is performed according to an appropriate numerical method, such

as, for example, the Simpson rule. This leads to the following expressions:
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rvl inj "t 1di . azhj blad chord.d ds n nxR- S - Srf Co apprpr inEquations (59) and (60) can be used directly in the computer program. In the calc(59)

tions for a propeller operating in a c ircumferentially nonuniform velocity field, the.3 3

and, appropriately,n to moment components:

dR in ds /7

P x dR  L e mCpii ny j a i - n t -

In the above equations the following notation used was:

dR - integration interval in the direction of the radius

dsseparately - integration interval in the direction of the blade chord

CRC S - Simpson rule coefficients for appropriate integration intervals.

Equations (59) and (60) can be used directly in the computer program. In the calcula-

tions for a propeller operating in a circumferentially nonuniform velocity field, the

pressure distribution, and, therefore, all components of forces and moments, are

functions of a momentary position of the blade and, therefore, functions of time.

Therefore, when one calculates appropriate components of a load on the whole pro-

peller, simple multiplication of the results obtained by Equations (59) and (60) is

not correct. One should add the magnitudes of forces calculated by these equations

separately for all the blades in a given position of the propeller.
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