
3 9080 02993 0499
0
c,

,4.

F-

h

- - --i-



This translation may be distributed within the United States

and its Territories. Any forwarding of the translation outside

this area is done on the responsibility of the forwarder and is

neither approved nor disapproved by the David Taylor Model Basin.

CL.

___ __ ___ ;



SPHERICAL SHELL WEAKENED BY TWO

UNEQUAL CIRCULAR HOLES

by

G. N. Savin, G. A. Van Fo Fy,
and V. N. Buivol

Teoria Plastin i Obolochek, Tr. II, Vsesoiuzn
Conf. Izdatelstvo Akademii Nauk USSR, (1.962) p. 89.

Translation 320March 1.965





ABSTRACT

The method of successive approximations is used to obtain
a solution of the problem of the distribution of stresses
around two unequal circular holes in a spherical shell loaded
by a constant internal pressure and constant shear forces
along the contours of the holes.

Finding the successive approximations is reduced to a
solution of Equation [1] under appropriate boundary con-
ditions. Two approximations are found, a numerical example
is discussed, and the boundaries of the applicability of the
solution are indicated

The problem of stress concentration around openings of arbitrary

shape was formulated and, in principle, solved in References 1 and 2.

These references contain basic differential equations of the problem as

well as the general integrals of the basic equations. In this investi-

gation, by using the results of References 1 and 2, we offer a solution of

the problem of the stress distribution around two unequal circular openings

in spherical shell. We assume that the shell of radius R and thickness h

is subjected to constant internal pressure, q = const, and that the openings

are closed by hatches of such construction that only the shear forces are

transmitted to the shell,

If the "reduced" polar coordinates x, 0 connected with the center

of one of the openings are utilized, then, as was shown in Reference 2, the

state of stress and deformation in the vicinity of one opening is obtained

from the solution of the basic differential equation of the form:

2 ~  + iv 2  0 [1]

References are listed on page 8.

Translator's Note: This solution is limited to small holes. See
Reference 2, Equation [3.5] for size limitations.



Here

S= W + ig(p

where w and cp are, respectively, the deflection and the stress functions,

i = /-

V12 (1 - V2)
2Eh2

E and D are, respectively, Young's modulus and Poissonts ratio, and

V2 is the Laplacian operator in polar coordinates x, 0 where the

"reduced" polar radius x is connected with the polar radius p

by the relations x = xP andx2 112 (1 - 2)

Rh

If the shell is weakened by two holes sufficiently far apart that

the zones of perturbations introduced into the basic state of stress by

such openings do not overlap at the edge of each opening, then the state

of stress around the openings can be represented by the function

0 = i g  +  ( ) + 0 (2) [2]

Here cp is the stress function for the shell without openings, and the

functions 0 (1 ) and *(2) have the form

*(k) = iC(k) in xk + (A(k) + iB(k)) H (1) (xki) (k = 1,2) [3]

where A(k), B(k), C(k) are arbitrary constants that can be determined from

the boundary conditions on the contours of the openings, and Ho() (xk
are the Hankel's functions of first kind and zero order.

Translator's Note: The radius p is referred to the center of the
opening.
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If the shear forces on the contours of the openings are constant,

then Equation [3] takes the following form: (We omit index for variable

x.)

q(B + ia) (1)

2x D [B hei (x0 ) - a her (x0 )]

Here D is the cylindrical stiffness,

her and hei are the derivatives of the real and the imaginary parts
of the Hankel functions of zero order, and

a and B are the boundary values of the functions

a = hei(x) + 1 - her (x) and = her(x) 1 - hei (x)
x x

evaluated at x = xO where x 0 is the "reduced" radius of the opening.

In the case of the closely spaced openings, Equation [2] can be

regarded only as the zero-order approximation of the solution since it does

not permit the full satisfaction of the boundary conditions. To decrease

the "mismatch" on the contours of the openings in the first-order approx-

imation, it is necessary in Equation [2] to add the "correcting" functions

012(1) and .21(1) for the first and the second openings, respectively.

These functions should be the solutions of the basic Equation [1]. If one

takes into account the conditions at infinity and the symmetry of the

solution with respect to the line connecting the centers of the openings,

then such solutions will have the form:

= igC n x + (A + iB ) x - n cos nO + (C + iD )H(1) (x '1) cos no [4]

n=l n=O

Arbitrary constants that appear in Equation [4] are determined as

the result of the solution of the system of algebraic equations that is

obtained from the boundary conditions. We note that in the case of n = 1



it is necessary to consider displacements since the number of equations

turns out to be less than the number of unknowns."

In Equation 4 by separating the real and the imaginary components

and utilizing the relations between the stress resultants and the stress

and deflection functions, we obtain the "corrections" of the first-order

approximations:

T (1) _
x gx nO 2 ncos ne

T(1) - . n CP cos no
g n=0

= - n - sin no
ngx
n=O

G (1) =2 Dx

G (1) 26

n x n x n
n=O

2
n

x
Sn+ )U j cos no

- (2 - v)Wn cos no
n

Translator's Note: From this consideration it can be shown that
A = 0. See "Stress Concentration around Two Openings in Spherical

Shell," G. N. Savin, G. A. Van Fo Fy, and V. N. Buivol. Dopovidi
A. N. URSR No. 11, 1961. Figure 1 is taken from the same source.

(1) (1) (1.-) (1.) (1.)Translatorts Note: T ) To S, Gx, G, and Qx correspond

to unit normal forces, unit shear in the middle surface of the shell,
unit bending moments, and unit shear normal to the middle surface of
the shell, respectively.

S(1) [5]
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Here the following designations were used:

W = CO. her(x) + DO hei(x);

Y0 = gC In x + DO her(x) - CO hei(x);

= A x-n + C her (x) + D hei (x); [6]n .n n n n n

= B x - n + D her (x) - C hei (x).
n n n n n n

If in Equations [6] we utilize the constants A , B , C , D , and C

which were found from the boundary conditions at the first opening, then

Equations [5] determine the correction of the first-order approximation

associated with the correcting function , which accounts for the in-

fluence of the second opening on the state of stress around the first

opening. If, on the other hand, these constants are found from the

boundary conditions at the second opening, then Equations [5] yield the

corrections of the first-order approximation associated with the correcting

function ~ (1)function ( 21 on the state of stress around the second opening.

In this manner the solution of the given problem including the

first-order approximation, will be given by the following function:

S= igi + (l) + 4(2) + () +(
12 21

We recall that *(1) and *(2) are given by-Equation [3] and (l) and (l)21
12 21

by Equation [4].

Similarly, one should construct the successive approximations *(k)

and 4, 21 (k = 2, 3 . . .). It is not possible, however, to accomplish

this by means of the indicated method since in the construction of such

functions it is necessary to use formulas which relate the two coordinate

systems referred to the centers of the openings. This complicates the

arguments of the Besselts functions. The theory 3 of addition for such

functions permit the separation of variables only for the functions of the

zero order. Construction of the subsequent approximations involves

functions of higher orders.

Since we have limited ourselves to the construction of the zero-

and the first-order approximations, it is necessary to establish the bounds

__ I ~



of applicability of the obtained solution. The results of the numerical

calculations have shown that the obtained solution gives good accuracy

provided the distance between the contours of the openings is not less than

the radius of the smaller opening. Analysis of these results shows that

the perturbation zones caused by the openings do not extend beyond the

distance from the contour equal to their diameters.

Figure 1

Furthermore, by considering all stress components it is seen that

the stress resultant Te plays the dominant role. It is interesting to note

that there exists some proportionality between the opening size and the

maximum values of TO, Gx, and Qx, but that the components Tx and Ge are not

appreciably influenced by the size of the opening. Also, in spite of the

large difference (several hundredfold) between the maximum values of the

stress resultants and the moments, the corresponding stresses differ by

much smaller factors (tenfold).

In conclusion, we note that these conclusions are valid if the

openings are closed by hatches of the. indicated construction and if the

distances between the openings are not too small.

Figures 2 through 6 show curves of the variation of stress

resultants and moments along the section between the openings for the case

of R = 200 cm, h = 0.2 cm, opening radii 10 and 20 cm, distance between

the centers of the openings 50 cm, E = 7.2 x 105 kg/cm,2 and v = 0.3. The

solid lines are drawn for the case of a single opening. The case of two

openings is represented by the dash-point lines for the zero-order approx-

imation and by the dash lines for the first-order approximation.

Translator's Note: This is the distance ro shown in Figure 1.o
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Figure 2
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Figure 3



Figure 4

Figure 5
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Figure 6
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