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PREFACE

This paper is the only known published work on the nonlinear theory
of stability of prolate spheroids under external pressure. An extensive
search by the translator revealed that the particular issue of the journal
(Kazanskii Filial Akademii Nauk SSSR, Seriya Fiziko- Matematicheskikh i
Tekhnicheskikh Nauk, No. 7, 1955) in which this paper appeared was not
available in this country. A copy of the article as it appeared in the
journal was obtained after direct correspondence with the author; and this
translation serves to make this work available on a wide scale.

The translator wishes to acknowledge his indebtedness to Mrs. P.
Hale of Virginia Polytechnic Institute and to Dr. B. Nakonechny of the
David Taylor Model Basin for their valuable assistance in the translation

of this paper.

NOTATION

Et3
D Bending rigidity, ————
12(1-v2)

E Young's modulus

K Tensile rigidity,-fﬁ%g
1-v

p Critical pressure of the shell according to the linear theory

P Pressure at which the stable and unstable states of equi-
librium coincide, i.e., at which the first and second vari-

ations of the energy functional ® are equal to zero

Critical pressure of the shell according to the nonlinear

theory, i.e., the lower limit of all values of the pressure p
for which the energy of the ™nonlinear" state is smaller than
the energy of the Mzero' state

T Additional stresses in the middle surface (after snapping)

T01, T02 Stresses in the middle surface of the shell for the mem-
brane state (prior to snapping)

t Thickness of shell
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u, v Projections of the displacement of a point of the middle
surface along the lines o« and B

Specific work of the external load

Projection of the displacement on the inward normal to the
middle surface

du v oV w ow . . . .
= =5 = =a— . e o Corresponding partial derivatives
ux X’ y ay3 X ax? P gP

of the displacements

Xy X,> Xi, Curvature parameters

o and B Gaussian coordinates of the middle surface of a shell of
revolution along the meridians and parallels; R, and R, are
X . . 1 2
their radii of curvature

§ R
RZ
€15 62 Relative elongations in the directions of the coordinate
lines o and B
v Poisson's ratio
L
V12 Rl

@ Angle of displacement between the coordinate lines o and B.
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ABSTRACT

The Rayleigh-Ritz method is used to solve the problem of
stability of prolate spheroidal shells under uniform external
pressure. Nonlinear terms are retained in the analysis. The
"equal energy" load and the minimum post-buckling load are
determined for several cases that demonstrate the effect of
varying the eccentricity of the generating ellipse.

INTRODUCTION

This paper deals with -the possibility of the local loss of stability
of a prolate spheroid, under the influence of uniform. external normal
pressure distributed over the entire shell. Large displacement theory,
which allows for snap-through buckling, is used.

The present work represents a generalization of the well-known
theory of snapping of shells1 for the case of prolate spheroids.

Here the critical pressures Pm and p, are determined by the energy
method, as was done for the spherical shell. This means that the pressure
p, corresponds to equal levels of total energy of the shell in the "zero"
and "nonlinear" states; the pressure Py corresponds to the case where the
stable and unstable states of equilibrium coincide, at which point the
energy function ¢ has a parabolic point, i.e., the first and second
variations of @ are equal to zero.

The problem under discussion is solved in a general form, and in

addition, certain numerical examples are investigated.
1. DETERMINATION OF pm

The solution of the problem is carried out for the assumption that
the center of the snap lies on the equator of the shell and in a plan view
the region of the snap resembles the form of an ellipse. This assumption
is reasonable, since in the investigation of the local loss of stability of
a geometrically perfect spheroid shell the weakest part is in the region of
the equator. In the regions remote from the equator the curvature of the
shell is greater; consequently, the stiffness of the shell will also be

greater.

1References are listed on page 16.



If, in addition to the fundamental '"zero" state of equilibrium of
the shell, it is possible that for the same loading there is a stable
position of equilibrium after snapping, then the total energy of the shell
must also be at a minimum in this final state. Thus, the problem is reduced

to a minimization of the functional:

== i .10 8]’ 3,0 Cz’ Clo e Gzo €3 (l—_l)o)
® fmf{?[( ol (0 ) 20 o) 0+ e)+ S =]+[1.1]
+ 2 [t 57+ 2veama +2(1 — ) ] — W) dixdy,

where Rida=dx, R.dp= dy,
w,
and W= T TR

are the strains in the middle surface of the shell before snapping for the
assumption that prior to the local loss of stability the shell is in a
membrane state; LA is the original deflection in the membrane state; [1.1]
is integrated over the entire middle surface of the shell; and the normal
to the shell is considered to be directed inward.

The relative displacements and curvature parameters can be written
in the form:

1 1
=ttt wl =R, =0y 5 0 — /Ry,
G=TUy+ Uy + WMy, %15= Wy, Ya==Wyj, 2120 Wy, 1.21

Taking into account the condition for equilibrium of an element of
the shell in the direction normal to the middle surface in the presence of

external uniform pressure on the shell

Tot Ta __ [1.3]
Tl + _R% =—p
where Tor = K(es®ves0), Toz2= K(e20 - ve,°), (1.41]

we present the work per unit area of the external forces in the form:

W=p(@+wo) =— (2 + - ) -+ wo) =
Lo [1.5]

= -—K[e,°(—-e1°+—%+v%)+ eg°(— e + vR;':--{-—%;)—L’vcloc;"],



here we include in the energy functional only the work of the normal
pressure on the shell since, by virtue of the boundary conditions for all
the cases which are considered further, the work of the reaction of the
remaining part of the shell on the boundary of the snap region is equal
to zero.

Considering expressions [1.2] - [1.5], we can reduce the functional
[1.1] to the form:

o= ff{ 2K(l —(Ta+ 7%9)"‘2'7‘017'02]“"axTol+‘0yTo3}dde’+
i [-'=+»'+2~mwfu+«¢%+e;—*>.,]+ e

+ 5 Pttt + 2o+ 2 (1 —v) <] | dxdy.
At the same time, it is assumed that one can neglect the change in

Ry and R2 in the region of the snap, since the size ©of the snap region is
small in comparison to the size of the shell.

Obviously, the total energy in the first form of equilibrium (be-
fore snapping) is equal to

f 21((1 [—(Tm +T%) + 29T o1 Tos} dxdy,
where the integral 1s taken over the entire shell. Then, the problem is

reduced to the minimization of the functional

Ym0,
On the assumption that, in the snap region,T01 and T02 are constant, the
expression 9= f f (sTor + 9, Tus) dxdy,

which enters into [1.6], is equal to zero in virtue of the boundary

conditions, since we put

u=0, 080, ‘w;=0, 'w_y=o for a==dady an.d 6=900
Thus, we have

v Jlrter s A=) ot R o+ 302+

-+ 2wy +2(1—-‘-»)x,2]+wx: To, +w, 370 }dxdy [1.71

Here the integration is carried out only over the region of buckling S',

since the quantities characterizing the snap may be different from zero

#* 2 2 . . 2 2.
The terms W and w& were incorrectly printed as e13 and e23 in the

original.



only in the region 0<a<a, and 0<B<po.

We introduce the new variables

2 e P 0LiL 1,
W ThLaT oS0, [1.8]
and the notation
ey — o =R_'
Xo Rlao, Yo R-Son R, ’ [:1.9]

where x, and y, are the linear dimensions of the snap region in the
directions of the meridian and equator of the shell. In the following, we
will assume that the contour of the snap region is determined by the

ellipse =1
We choose the displacements in the general form:
u=pra®Rik ¢, ), v="p2hae*BoRy/ , ), [1.10]
w = hao’Ry g€, ),
where

k@, =), jE m) and g, )
are some functions of §, T, characterizing the displacements and which
should satisfy the boundary conditions, i.e.,
hE 7)=jE n)=0 forf=n=0and =1,
gE¢ n)=1for E=n=0and g 7)=0 for §{4n=1,

(1.11]

where s pz, and A are unknown parameters. The magnitude of the angles
o, and Bo » which determine the extent of the buckled region, are also
unknown. However, a simple relation exists between these angles.

In fact, according to our assumption, the contour of the buckled
region projected onto a plane tangent to the spheroid at the equator is

the ellipse (see Figure 1)

x3 y’ _
zz.-{-;;;-_l. [1.12]

The equation of the ellipsoid formed by rotating an ellipse with
semiaxes a and b about the axis lel has the form

x,2 Y2422
-b';+—1——a’—-’—==l [1.13]
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If the contour of the snap region lies in the m-plane parallel to the

plane x10y1, and is separated from it by a distance z, = a-d, then

1
= a? —2ad 4 d¢, (1.14]

where the distance d << a,

Substituting [1.14] into [1.13], we obtain the equation of an

ellipse lying in the n-plane:

x13 y‘ﬂ —
B0 (D)
a 2a ( 2a)

i\

< \

/ \o'
R ‘\“‘ j
. | 27

5 ‘ Y

8

Figure 1



Comparing this equation with [1.12], we find:
Xo?:Yo?=0:a=m Ry : Ry =3,
On the other hand

Xo = Rldo, Yo= R)ﬁo » where @ and 90 are

small angles. Therefore
Ri%ag® : Ry*Bo? =38, ao? :Bode==1:3. [1.15]

Thus, in place of the quantities a and Bo’ we may introduce a single

unknown parameter, namely

r = agfy . [1.16]
We take into account that
Ta=Tu(2-7) [1.17]
and introduce the new symbols
eo=—"Tor: K=|002|(1 —¥*): E, [1.18]

A._;[ +“—"a.4u] A:=A,,+L:‘-A,,,

A3= 1+V6 Aa , A 1+2V3+8’ffv— g’dEd'q,

3!

1 . 21 )
+f f [2vhej,+ (L =) b, jildidn, Ae= —2F2 A,
0

Bi= i Bu+Bis+(1 =3Byl , By=2(Bu+ B+ Br),
%fof[(l-l—va) V%gg§+(6+v)al/§gg§ ]d&dn,
1

j[v V—g”rye g+ angegz]dem,,

M

_ 11 3 2
C—Jof[—{ﬁ(%gﬁ"'gt)"*']—/ﬁ (g, +&,)+

A=is [ STamV SV T

v o0




an= | Tl/%hgdédn, App= f f]/ghid&dn,
00 00
11 1 1 .
A = of of #?ghadEdn, By = :,j o ] = higidid,

11 11
Bn=ffV‘r‘ hegidfdn, Bi; =J fV"—I/l.,‘gg g,‘dEd?l, [1.19]
0 u 00

where A21, A22, A32, B21, B22, B23 are obtained respectively from
All’ Alz’ A31, Bll’ Blz’ 813 by replacing h by j and € by 1.

Using the symbols just introduced, after lengthy but in reality
simple calculations, we can represent the functional [1.7] in the following
rorms o= % =P\ pi2 A1+ p2? A2+ p1 As + Ad+ pip2 As +pa As +

1
+ Moy By + 2p2 Ba+ A Ba + M3Di| + wA2r C— €, M*rA,

and r are unknown parameters characterizing the snap region

(1.20]

Here A, Pl, pz,
and e . To minimize the functional [1.20] by the Ritz-Timoshenko method
for the determination of P, which is the lowest limit of all values of p
for which the energy of the "monlinear'" state is less than the energy of
the "zero state, it is necessary to fulfill the following conditions:

¢*=0, &, =0, ¢}, =0, ¥, =0, ¥,=0, [1.21]
Hence, we obtain equations for the determination of P15 Pys A, r, and
Com’ 2p1 A1+ p2 As + A By + Ay = 0,
p1As+ 2p2 A2+ ABa+ As =0, [1.22]

- pt Bi+paBa+ 20 Dy + B; =0,

r[Ac—p,? A1+ pi? Ay — piA By + 1 Ag— W D] = C2 [1.23]
, [1.24]

where

As is evident for the numerical solution of a particular problem, it is
necessary to determine the values of the functionals Al, Az, eee Bl’ oo
and A. The lattér (according to [1.19]) depend only on the form of the

functions for the displacements h, j, and g. Proper selection of the

7



displacement functions satisfying the boundary conditions [1.11] obviously
guarantees a more dependable solution to the problem.

From our investigation of six alternate forms for the displace-
ments, we retained the one that, in the final analysis, gave the minimum

value for the pressure P, at the values 6 =1, 2, 3, 4:

hE n=e "1 —kE+n) — k& E+ ),
JGE ny=enCH[l —k G+ n)— k(2 ),

g6 my=e [l — k(G + ) [1.25]
» and n are quantities to be determined, where we

Here k, k., k., k_, k

J

will assume tiat 3 wiil be chosen a number such that on the boundary of the
buckled region (€ + M = 1), the deflection becomes negligible.

Further, using formulas [1.19], we compute the coefficients A
Ay coos Bl’ eeey, and A of the energy functional [1.20]. In addition, in
formulas [1.19], the limits of integration are taken from O to ~ since, for
the assumed form of the displacements [1.25], the displacements and stresses
are negligible on the boundary of the snap region (¢ + T =1).

Omitting the detailed calculations, we can write the coefficients

of the energy functional in their final form:

17 kk 185 &
R (et o R i o))

A13=l.-£-(1___+_'53.___’5!_+21 KRy +225k;">’

n n? 4 n? 8 nd

9 k| 9 ke
b (a2 g B bt

A= L2+ = (2 -2 ki_F

1682
—ﬂﬁﬂ<*_*_ gﬂﬁgﬁﬁgm 21 kky | 20 kk,
163n 2 +2 n? 4 nm 4n1+8 n +8 na>
Tk k_ Rk, 5 k) 1 Rk 2 R
3"-5“<n n 3 m +]8 nd 9 )‘

=_*[g_9gk ke k"! ﬁ’,____ k/l:
Bl,_g.m[g 9 pok +3 g k&'
_5(3hk k,k. | bty )]

2 n?

T kk ._kl kkg 3 k' kaka 5 kz’ka
Bu=—n (9+6 30— 2 K04 4 (R — 0 S0
k3 (1+2va+a=) k3 kg
B'—162 (2 n? )'



Dy = (304284 3)(324-32 21+ 48 72 8L 51,

81 91&’

C==§'f(36’+28+3)(1+7-+;}).
A=z 3 (a4 2, [1.26]

The coefficients A21’ A 9? A 32° B21, B 297 and B23 are obtained from All’
Alz’ A31, Bll’ Blz’ and B13 by replacing k and k3 respectively by k. and

1
k4.
These coefficients are functions of § and of the unknown parameters
k k1 k2 k3 k4
—s—y 2,2, and = , The latter in our case are determined by means of
nn n n? n2

successive selection and, for & =1, proved to be equal to

k — i a— ‘_‘_=ﬁ=——4
E_k_o .150; = 0.545; " 0.055. [1.27]

n n

To simplify the computations we also used [1.27] for § ¢+ 1. The
numerical determination of p Was carried out in the following manner:

(a) For a given 6 (6 =1, 2, 3, 4) and the values of the parameters

k

-;* ——> eees from [1.27], the coefficients of the energy functional Al’AQ’ cee
n

Bl’ eee » A are calculated according to [1.19] and [1.26].

(b) The values Pys Py and A are determined from Equations [1.22].
In this case, p and p, are not dependent on the order of the decay n in the
displacement functions; however, A does depend on n.

(c) The obtained values of Py? Py and A are substituted in Equation
[1.23], and we calculate the parameter r = a B o’ which depends on n and_t

R,
2

Knowing r and taking into account [1.15], we determine without difficulty
the values of the small solid angles of the buckle

¢°=I/-VL-;—’ Bo == V’V—s [1.28]

(d) For a known r, we compute e om according to formula [1.24].

Then © mbl’ Ombz, and p  are determined. Considering [1.3], [1.17], and
[1.18] and assuming r = r¥r (where r* is a numerical coefficient), we write

these in the general form



1 c E ¢
TVI@—1) A 1—v R’ [1.29]
.1 c £ ¢
V3 rAl—v R’

P el c £ o (1.30]
mTY3@B—1) A 1—v Ry

m
001 E

m
Gog =

. (e) The maximum deflection in the center of the buckled region is
determined from [1.10] and [1.25] for § =T = 0z

Wmax = Aaoz Rl .
Since aoz==—r--and‘r=r*n-————_t A=}\*L
Ve 12R,’ n’

(where r* and A%* are numerical coefficients), we obtain

.U ol (1.31]

Thus the maximum relative displacement in the center of the buckled region
does not depend on the relative thickness of the shell t:/R2 but on the
order o'f the decay n.

In Table 1 the values of the critical pressure pm and the dimensions
of the buckled region for different values of & are given for

ko k_0,150,% ——0.545, %2 =% — 0,055 and y = 0.3.
n n n n? n?

Table 1 shows that the solid angles of the buckled region a  and B o
depend on n and t . Supposing that £ __1 and assuming that for n=5 (or

R2 R2 900
also for n=4) the buckle is very small on the boundary of the snap region,

we calculate the values of the small angles a and Bo; see Table 2.

2. DETERMINATION OF Py

For the pressure equal to Py we have a parabolic \point for ®%* on

the energy-deflection graph, i.e., the first and second variations of @73
[1.20] are equal to zero.

10



TABLE 1

R, :
6 =— 1 2 3 4
R
2
o 1.2225 | 1.2243 | 1.2257 | 1.2267
0, 1.2225 | 1.2216 | 1.2207 | 1.2208
An 4.2619 | 4.2581 | 4.2563 | 4.2558
r % 5.9933 | 7.7872 |10.086 |11.640
X
0 1 /2 /3 2
y0
a
o 1 /2 /3 1
B —_— — ——
o 2 3 2
R
% [M2  |1.3153 | 1.2970 | 1.2960 | 1.2610
n
B, R, 1.3153 | 1.7830 | 2.2457 | 2.5220
nt
e, R2 |0.2205 | 0.2135 | 0.1878 | 0.1816
t
om |R, |0.2423 | 0.1564 | 0.1238 | 0.1140
o'
|95, 1%2 | 0.2423 | 0.2346 | 0.2064 | 0.1996
Et
Pn R22 0.4446 0.3128 0.2476 0.2280
Et?
Yinax | 7.37 7.25 7.15 7.14
t
TABLE 2
6 1 2 3 4
a n = 5°02t | 4°58' | 4°57' | 4°48!
© | n=s5]540"| 6°511 | 8°35'| 9°55¢
s | m=4|502"| s5°33" | 5°30" | 5°23"
° | n=5]5°0"| 7°55! | 9°36" | 11°04"

11




Therefore, P) is determined from the equations
@, =0, ¢, =0, ®;, =0, ®; =0,
o, 0, @, o, |
@, @, 0, O |
Do Broy Do, Do [2.1]
o, @, 907, O,

where @{. (p;" ., @, 4’:» .., ¥, are the corresponding partial derivatives

with respect to the parameters )\, pl, pz, and r. After certain trans-

formations in the first four equations [2.1], we obtains

2p1A1 4 p2As + 2B+ Ay =0

91A5+2'2A2+)\83+Ao=0 [2.2]
p1B1 -+ paB;z + 2\ D, +B.+§ @C_r—;;_ozﬁ,,o.
r2[piA1+ 242 + p1As + As -+ p1pads + p2ds — NDy| = iC. [2.3]

The calculation of the fourth order determinant in [2.1] does not present

. c o . .
particular difficulty since @ and 87 are equal to zero. Calculation

Dlr 02r
of the fourth order determinant in [2.1] gives us:
[(202C — eoarA)? 4 (212C — €ouPA) (*C — eoarA)] (A2 — 4A1A;) —
‘ [2.4]

“— 12\ (<3C — eyrA) [B1B:As — A1B} — A:B} — Dy (A2 — 4A4,A:)| = 0.
Equations [2.2], [2.3], and [2.4] are completely sufficient for determining
the five unknowns A, P15 P, r, and e , . For the solution of the problem
we will make certain transformations.

In the third equation of [2.2] we introduce the notation

2 (203C — errA) L
P [2.5]

12



Then Py> pz, and A are determined from Equations [2.2] and are linear
functions of e¢. Further, for known p;, f,, and A, from Equation [2.3] we

determine IEQ, which will be a quadratic function of e¢. Using the notation
2

r
[2.5], we transform Equation [2.4]:
1 <C
Aez—? rk e+
+ 2 C _ipe][BlBaAs —- A,B}— A;B, — Dy (45 — 44:4)] =0. [2.6]
9 3 AZ—4A4,

2
After we substitute the values A and I_%_obtained for the particular values

r
of § =1, 2, 3, 4,Equation [2.6] becomes a cubic equation involving €. A

cubic equation is solvable by well-known methods, and all three of its
roots can be determined. Computations showed that for a given §, only the
smallest root of Equation [2.6] was applicable to the determination of P
For known €, we easily calculate € Kk from Equation [2.5]. Knowing
e i e obtain P, from formulas [1.18], [1.17], and [1.3]. We have
calculated the value of pj for spheroids with different elongations, i.e.,
for the particular cases 6 =1, 2, 3, 4. The results of the computations
are given in Table 3.
Here we do not show the computations for the values a,, o, ]d&[,[c&]
and !%ES, which are easily determined for the known quantities of Py> Pz,
A, T, and e k* Further, we compare the values of the critical pressures P and
which we derived for different 6, with results provided by the linear theory

Pk:
p R, 2

by constructing the graph of the dependence of the value

on §; see
Et2
Figure 2. The formula for the determination of the value of the critical

external pressure on the shell according to linear theory for § > 1 is
easily obtained from Reference 2, It has the form

- 2E 1.8 [2.7]
pe V3ia—+) (w6—1) Rg

13
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TABLE 3

1 2 3 4
o) 1.2225 - 2.6834e | 1.2243 - 4.7537¢ | 1.2257 - 5.8618¢ | 1.2267 - 6.5650¢
Py 1.2225 - 2.6834¢ | 1.2216 - 4.3668¢ | 1.2203 - 5.1142¢ | 1.2208 - 5.5090¢
An 4.2590 - 21165¢ 4.2581 - 35559¢ 4.2558 - 42089¢ 4.2562 - 45.572¢
ng L 0.0215 + 4.259¢ 0.0129 + 4.259¢ 0.0111 + 4.257¢ 0.0102 + 4.256¢
r m - 10.583¢2 - 17.685¢% - 21.04Se2 - 22.78862
e 0.0040 0.0039 0.0042 0.0038
hns
R
e . 2 0.2002 0.1942 0.1758 0.1673
ok t
2
p. —2_ 0.4138 0.2840 0.2220 0.2069
k 2




Figure 2

The graph shows that, for the chosen form of displacements, the
solution of the problem of local loss of stability of prolate spheroids

. R
under external uniform pressure on the shell for 6 —_L1 > 3 cannot be con-

2
sidered as satisfactory since, beginning with 6 > 3, the magnitude of the

critical pressure for which the shell loses its stability, as found from
the nonlinear theory, Py becomes greater than the value of the upper limit
of the critical pressure p, as obtained from formula [2.7].

This discrepancy between Py and P, is explained primarily by the
fact that in the choice of the displacement functions we limited ourselves,
because of the complexity of the problem, to satisfying only the geometric
boundary conditions.

Also, the solution of the problem is influenced by the proper

k k2 k, k

. . 3 4 . .
determination of the unknown parameters —s —» — 2>’ which in our case
n

n n n n

15



were determined by successive selection only for the case of a sphere and
were used for the other particular cases (6§ =2, 3, 4). Finally, we found
that the restriction we imposed on the region of buckling, assuming it to
be elliptical, apparently had an effect on the solution.

It is necessary to point out that, in the particular case when
§ =1, we obtain a fully satisfactory solution to the problem of the local
loss of stability of a spherical shell. We refrain from investigating
this case, which was satisfactorily discussed at length in Reference 1.

Submitted to the editorial staff Physico=-Technical Institute of
December 20, 1954 Kazan.Afflllate of the USSR Academy
of Science
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