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DIGEST

The atmospheric shock waves caused by blasting and the firing of guns are

strongly damped in comparison to the sound waves generally studied in acoustics. For

this reason the mass of information which has been experimentally obtained on the sub-

ject of undamped sound waves cannot be used to solve the problems encountered in the

study of atmospheric shock waves. Particular attention must therefore be paid to the

transient stage of the behavior of vibratory systems under the influence of atmospher-

ic shock waves, and the studies must be extended to analytical expressions which cor-

respond approximately to the course of the atmospheric shock waves.

Rapidly converging analytical formulas most suitably answer this purpose.

Studies of this particular type are not to be found in the literature. They are need-

ed, however, to clarify the behavior of atmospheric shock waves.

A study was made of the conditions necessary to obtain accurate pressure-

time records of air blast pressures by the use of diaphragm-type pressure gages. The

paper is divided into two parts, theoretical and practical.

In the first part the diaphragm considered is idealized to the extent that

it is assumed to be a rigid piston supported by a spring so that it can be treated as

a simple system having one degree of freedom. The basis of the theoretical part of

the paper is the well-known equation

m d + 26 - + cx = p(t)

In this equation x is the motion or deflection of the diaphragm, which is

the indication of output of the instrument, and p(t) is the blast force acting on the

diaphragm, which is the input to the instrument. In an ideal instrument the follow-

ing relationship would hold

cx = p(t)

and static calibration would suffice for correct interpretation of transient records.
d2X dz

The existence of the inertia force m and the damping force 26 spoil this ideal-

ly desired condition. This equation is put into a simpler form which uses a dimen-

sionless time -, by defining the following quantities

=-wot; (A) t 0

The general equation then becomes

d + 2a . + z = p(r)

In the absence of a definite, complete physical theory of blast pressure

waves p(-) is unknown. The general features of a blast wave are known to be: 1. the

pressure rises to a maximum value very rapidly, 2. the pressure dies down from the
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maximum more slowly, 3. there is at least one negative swing of pressure after the

positive phase is over.

From among the large number of functions which include the salient features

enumerated in the foregoing

p(r) - e - "" 1 ' Cos71 - e-"2'Y2'cos 7T

is chosen to represent the blast pressure.

Taking 107 = Y2

Al= 0.5

p, = 0.8
or = 0.2

and 72 = 0.1, 0.2, 0.3, ... 1.5

The solution of the equation

d e-7
2xwsyr - e- *'os y r2 + 2a - 4 -- e cosYIr - eos V7uT

a) Natural Frequency of the Diaphragm
1300 cycles per second

b) Natural Frequency of the Diaphragm
2400 cycles per second

c' Natural Frequency of the Diaphragm
8000 cycles per second

Figure 17 - Experimental Recordings of
Atmospheric Shock Waves

Diaphragms were at 10 m (32.80 feet) distance
from the point of detonation. Charge: 1 kg

(2.20 pounds) of trinitrotoluol.

is discussed. In this equation x is in

reality the ratio between the deflection

of the diaphragm and the static deflec-

tion of the diaphragm under the maximum

blast pressure.

The conclusion is reached that

a diaphragm which will give an undis-

torted report of a transient blast pres-

sure wave must have its natural period

T. so small that

To 
< 0.6 tm

where t. is the time taken for the pres-

sure to rise from zero, or atmospheric,

to its maximum value.

Based on this conclusion a

short table of diaphragm natural frequen-

cies necessary to achieve undistorted

records for various values of t. is

given.

I ,



Previous work in this field is briefly discussed and a description is given of the

author's instrumental developments for measuring blast waves, The diaphragm type of

instrument used is a condenser microphone which modulates a high-frequency current in

a slightly under-tuned resonant circuit. The modulated current, amplified, is fed

into an oscillograph. The natural frequency of the element is given as 12,000 cycles

per second. Diaphragms with natural frequencies varying from 1300 cycles per second

up to 10,000 cycles per second were used. According to the criterion developed in

the theoretical discussion the 10,000-CPS diaphragm is capable of recording faithfully

any blast pressure which has a time of rise to maximum pressure equal 
to or greater

than 170 x 10-6 seconds.

Records of explosion pres-

sures from 1 kg (2.2 pounds) of TNT

in air are shown in Figures 17 and

20. Figure 17 shows records taken

by various recording diaphragms

placed 10 meters (32.8 feet) away

from the charge. The natural fre-

quencies of the diaphragms used were

1300, 2400, and 8000 cycles per sec- A

ond respectively. The two lower-

frequency diaphragms give mainly a) Distance from the Point of Detonation

records of their own natural fre- 160 m (524.93 feet)

quency oscillations. The 8000-CPS

gage gave a record which evidently

is closer to the true picture of

pressure variation. It is concluded

from these records that the time of

rise to maximum pressure was certain-

ly less than 200 x 10-6 second. Fig-

ure 20 shows two records of explosion

pressures from 1 kg (2.2 pounds) of sec

TNT in air. These records were taken

with a 10,000-CPS condenser microphone b) Distance from the Point of Detonation
with a 10,00CPS condenser microphone 240 m (787.39 feet)

placed at 160 meters (525 feet) and

240 meters (787 feet) from the explod- Figure 20 - Atmospheric Shock Waves
Recorded with a Condenser Microphone

ing charge. These records are entire- Detonating Charge: 1 kg (220 pounds)

ly free of 10,000-cycle distortions. of trinitrotoluol

Lt. Comdr. J. Ormondroyd, USNR
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THE DETERMINATION OF PRESSURE IN ATMOSPHERIC SHOCK WAVES

DUE TO BLASTING AND THE FIRING OF GUNS

ABSTRACT

The time function of atmospheric shock waves has been approximated in the

simplest possible terms to ascertain the behavior of vibratory systems under the in-

fluence of these waves. Particular attention was given to the transient stages, and,

since it is difficult to get a perspective of this stage from the analytical formulas,

much study has been devoted to the calculation and presentation of specific cases.

The report presents a correlation between the natural frequency required to obtain a

diaphragm record without distortion, and the characteristic duration of the initial

pressure rise of atmospheric shock waves. It will henceforth permit an analysis of

the effect of waves of this kind on vibratory systems. It will also obviate the un-

certainties and errors of former methods based on the results of studies of undamped

sound waves.

A recording apparatus devised for use at greater distances from the point

of detonation is described; this also produces undistorted records of atmospheric

shock waves near the point of detonation. The apparatus represents a great improve-

ment over instruments in use up to this time. Important conclusions can, however, be

derived from distorted recordings of atmospheric shock waves with the aid of the pro-

cedure described.

These studies have not only improved the determination of pressure in atmos-

pheric shock waves, but they can be advantageously used wherever these waves affect

buildings or structures of any type, and where the effects must be analyzed before or

after occurrence.

I. THE SCIENTIFIC AND PRACTICAL IMPORTANCE OF ATMOSPHERIC SHOCK WAVES

The atmospheric shock waves caused by blasting and the firing of guns can be

considered as sound waves of a particular type. This concept is supported by the fact

that both ordinary sound waves and atmospheric shock waves are contained in the basic

equations of aerodynamics. Assuming that the density change and velocity of flow are

very small compared to the normal state, the integration of these basic equations

gives the equations of ordinary sound waves. Without these assumptions (1)* the in-

tegration shows violent and sudden density changes similar to those encountered in

atmospheric shodk waves produced by blasting and gun fire.

The propagation of atmospheric shock waves, the decrease of their intensity

with relation to the distance from point of origin, and the change of their time func-

tion during propagation obey definite laws, which differ from those pertaining to

ordinary sound waves. These special laws can, in part, be derived for plane waves

* Numbers in parentheses indicate references on page 32 of this translation.
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from the hypothesis that the mass per unit time, the accompanying impulse, and the

accompanying energy, which traverse two arbitrarily chosen planes which are perpen-

dicular to the direction of propagation, must always be of equal size.

The five characteristic quantities of an atmospheric shock wave are the

velocity of propagation of the wave, the velocity of flow, and the pressure, density,
and temperature within the wave. The velocity of propagation is relatively easy to

measure, while the measurement of the others presents difficulties. To calculate the

other quantities of an atmospheric shock wave from only one of these quantities, for

instance the easily determined velocity of propagation, it is necessary to make assump-

tions concerning the specific heat and the behavior of gases at the pressures and tem-

perature changes occurring in the atmospheric shock wave, in addition to the special

laws for their behavior previously mentioned. While the validity of these hypotheses

is not subject to any restriction because of their fundamental meaning in physics, the

correctness of the assumptions which have been made by various people engaged in this

research has not yet been proved for the total range of pressure and temperature. A

satisfactory proof would be possible if three of the quantities which characterize the

atmospheric shock wave could be determined. A check within a limited range is pos-

sible, however, if two quantities, for example the velocity of propagation and the

pressure, are measured. The determination of the pressure is therefore very important

for a deeper insight into the physical behavior of this type of wave.

Determination of pressure in atmospheric shock waves is important from a

practical as well as a scientific viewpoint. For instance, factors of safety must be

established for the construction of munitions buildings and explosives factories, the

effective range of aerial bombs must be determined for civilian protection, and claims

which arise from damage to buildings by firing heavy artillery must be judged, ap-

praised, and settled.

On account of the manifold importance of atmospheric shock waves it has long

been attempted to determine the magnitude and the time function of the pressure in

them. Up to this time no results which are universally satisfactory have been obtain-

ed. The reason for this lies in the peculiar nature of atmospheric shock waves, and

in the particular circumstances under which they must be measured. It is proposed

here to examine more closely the questions and difficulties which arise in measuring

the pressure in atmospheric shock waves and to review the techniques hitherto used to

measure them.

II. SOME DIFFERENCES BETWEEN ORDINARY SOUND WAVES
AND ATMOSPHERIC SHOCK WAVES

The detonations necessary to produce atmospheric shock waves can be under-
taken only in large open areas. For this reason certain special features are required
in the measuring devices. They must be easily portable and relatively insensitive to

the influences of moisture and temperature. The instruments must also be insensitive

, IYIIm ,ImummIleIalummellumumouseummunI mumIiu 110,



to concussion for use close to the point of detonation. Moreover, very costly instru-

ments should not be used near the point of detonation, because they may be destroyed

by concussion or by flying stones and clods of earth.

Considering these circumstances all methods hitherto used for recording at-

mospheric shock waves are basically similar; a vibratory system, i.e., a diaphragm, is

excited by the impact of the atmospheric shock waves. Therefore it will not detract

from the exhaustiveness of this investigation if the effect of atmospheric shock waves

on diaphragms is permitted to form the central theme of discussion.

The movement of a diaphragm resulting from the impact of an atmospheric

shock wave can be recorded by radically different methods. Depending upon the inertia

and the friction of the diaphragm, this record gives a more or less exact image of the

magnitude and time function of the pressure. The question soon arises as to what con-

ditions a diaphragm must fulfill so that its movement will most precisely correspond

to the pressure function which it is recording.

To answer this question it is assumed, as in the case of a "piston dia-

phragm," that all points on a diaphragm perform the same movements, or that the move-

ments at all points on a diaphragm can be determined with sufficient accuracy from the

movement of its midpoint. Hence these studies can be based upon an equation of move-

ment

d 2x do
md2 + 26 + cx = p(t) [1]
m dt dt

of a material point instead of the usual partial differential equation valid for the

movement of a diaphragm.

In similar investigations in acoustics, or in analogous ones concerned with

the precision of oscillographic recordings, the exciting function p(t) has often been

developed in a Fourier series. This procedure is suitable and justified in acoustics,

for in that field the waves, consisting of fundamentals and overtones, are damped

either but slightly or not at all. A Fourier series is the best means to express such

phenomena analytically, for it likewise divides the phenomena to be expressed into

fundamentals and overtones. If the period of the fundamental is correctly determined,

then the individual terms of the Fourier series have a clear physical significance.

They represent just those fundamentals and overtones of which the train of waves is

composed. The Fourier coefficients correspond to the amplitudes, and their size is a

measure of the intensity of the individual vibrations contained in the train of waves.

It is not difficult to determine the total behavior of such a train of waves, as, for

example, its propagation or its impact upon a sound recorder, from the behavior of the

component vibrations.

Atmospheric shock waves are strongly damped in contrast to the ordinary

sound waves regularly studied in acoustics. The questions arise whether physical pro-

cesses of short duration can also be developed in a Fourier series; whether the indi-

vidual terms still retain a physical significance; and particularly whether the

process as a whole can also be judged in this case from its individual components.

-- ~N11



A decaying phenomenon can ordinarily not be expressed in a Fourier series

without special assumptions. It must rather be considered as repeated after each

successive cessation, and the total duration of the diminishing process must be re-

garded as the period To of the fundamental. With these assumptions, its development

in a Fourier series is possible. By means of a Fourier series an analytical expres-

sion can be obtained for a damped wave which is only graphically given. This offers

advantages in many respects, as, for example, in mathematical calculations. This

representation, however, has meaning only in the interval from 0 and To, and the in-

dividual terms have, as a rule, no physical significance. The assumption that the

process is to be repeated after each successive cessation introduces periods which

in reality do not exist. Since the duration of a decaying phenomenon is not sharply

defined, there is further a certain arbitrariness in the choice of the period of the

fundamental which determines that of all the others; it appears either shorter or

longer, depending upon the sensitivity of the measuring instruments. A simple example

will illustrate this.

Let a damped sinusoidal vibration

f(t) = e sin

be developed in a Fourier series. The coefficients a. for the cosine terms and bA for

the sine terms are stated in the following equations*

1 [ 1 1ir n]

b,= rnk + + + X 1 - e kk+ 1 n + 1-

X signifies the series of all positive whole numbers. n is the ratio of the period

To of the fundamental assumed for the Fourier development to the period of the damped

vibrations T, hence n = (To/T). k is the ratio of the circular frequency of the

damped sine vibration 27r/T = w to the

0.3- damping factor E, therefore k = w/E.

S0.2 If the sine and cosine terms of the same
0.2 0

CA period are combined they can be reduced

"l .00 0 to C, = Va2 + bx2. Figure 1 shows the

0 5 I0 15 20 curve for CA. The values of n and k were

chosen as follows: n = 5; k = 3. Accord-

Figure 1 - The Fourier Coefficients ing to Figure 1, C, reaches a gradual peak
of a Damped Sinusoidal Vibration at X = 5. According to Fourier's series

Translator's Note: The first equation, in the original German text, appears to contain two errors
in sign which have been corrected.
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the amplitude which corresponds to the period of the damped sinusoidal vibration has

the greatest value; the amplitudes corresponding to the periods which are contiguous

on either side have considerable values also. A damped sinusoidal vibration which is

inherently simple is divided into a large number of individual vibrations by the Four-

ier development. Even if the individual vibrations, whose amplitudes are less than

10 per cent of the largest, are considered irrelevant for the total process and hence

disregarded, the Fourier development still gives 13 individual vibrations for a simple

damped wave. Such a representation serves no purpose. Beyond this, however, the in-

dividual vibrations have, with one exception, no physical significance, since they are

not contained in the original process at all. An attempt to judge the behavior of the

complete wave from the behavior of the individual component vibrations derived by

means of the Fourier series could lead to erroneous conclusions. The possibility of

the resonance resulting from the impact of an atmospheric shock wave upon a building

would, for example, be greatly overestimated.

Basic doubts exist whether a Fourier series offers a correct basis for in-

vestigation of the conditions which a diaphragm must fulfill to furnish undistorted

records of an atmospheric shock wave. For this reason the numerous investigations

which have been undertaken to establish the forcing function based upon a Fourier

series, cannot be used to solve the present problem. Other means must be sought.

From numerous direct and indirect observations it is known that atmospheric

shock waves consist essentially of a positive pressure impact which increases very

rapidly and is followed by a negative pressure of comparatively long duration but of

smaller magnitude. On account of this peculiar behavior of atmospheric shock waves,

particular attention must be paid to the initial stage of vibration of a diaphragm.

The investigations must be extended also to analytical expressions which correspond

approximately to the pattern of atmospheric shock waves. Rapidly diminishing analy-

tical expressions are most suited to this purpose.

In the literature on this subject investigations of this kind are rare.

H. Martin (2) has treated the subject of the initial stage of vibration of a vibra-

tory system under the influence of sinusoidal vibrations. He confined his study to

undamped forces and to the boundary line cases of an undamped or aperiodically damped

vibratory system. Only a short reference by Kalhne (3) concerning the behavior of

vibratory systems under the influence of decaying forces is to be found in the liter-

ature. It is therefore necessary to begin the investigation from the ground up. For

this purpose the simplest possible mathematical basis was devised for the study of

atmospheric shock waves, and the initial stage of these waves was particularly treated.

III. THE BEHAVIOR OF VIBRATORY SYSTEMS UNDER THE INFLUENCE
OF UNDAMPED SINUSOIDAL FORCES

In order to relate this study to familiar material, knowledge of the effect

of undamped sinusoidal forces on vibratory systems is used as a point of departure.



Then the effect of damped sinusoidal and cosinusoidal forces will be treated.* Final-

ly by the combination of two damped cosinusoidal functions an analytical expression

is derived, which closely approximates the character of the pressure curve in the at-

mospheric shock wave. The investigations respecting the behavior of a vibratory sys-

tem under the influence of such a pressure change then yield particularly valuable

information.

For these investigations the following non-dimensional mathematical quan-

tities are introduced into the general equation of motion."

T = Jo t; W = o= = 1 - =

For an undamped sinusoidal vibration as the exciting function the general equation of

motion then becomes

d2X + 2 dx

d 2 + 2 + x asin y7 [2]

where a is the static displacement.

The solution of this equation is

x = -- sin(yr- ) + Ae-arsin(flr+ p) [3]
p

p and 0 are defined by the following equations

p= (1 - 2)2 + 40 C [3a]

2= o 2c [3b]
1 - 2

From the initial conditions x z= 0, for r= 0, it follows
d7-

2at 13c]tan <p - 2 - 1 + 2 2 2

A- a sink_ a _y [3d]p sing p p

If the value for A is substituted in Equation [31, we get

x = P sin(yr - 4) + e rsin(r+ P) [4]

Because of the inertia and frictional forces the motion of a diaphragm can

never exactly correspond to the pressure change that excites it. Consideration of the

effect of inertia and friction leads to a combination of two analytical expressions

for the forced vibrations of a diaphragm,-Equation [4]. With the exception of a

* The cosinusoidal'or cosine curve is the same curve as the Sinusoidal, but with the y-axis through
the point r/2.

* Translator's Note: Several obvious typographical errors in the original German have been corrected
in this equation.
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phase-constant, the same analytical expression serves for the first member of this

summation as that which is valid for the exciting pressure change. The second mem-

ber corresponds in its form to the free vibration, i.e., to the natural vibration of

the diaphragm. This formal agreement is used to differentiate between the two com-

ponents of the forced vibrations of a diaphragm. Therefore in the following discus-

sion the individual terms representing the forced vibrations of a diaphragm will be

referred to simply as the forced vibration and the free vibration.

Equation [41 shows that after a certain time, which is termed the initial

stage of vibration, the free vibration becomes vanishingly small as compared to the

forced vibration. From this point on, the knowledge of the magnification factor 1/p

which stands in front of the bracket and the angle of phase 0 is sufficient to eval-

uate the motion of a diaphragm resulting from a sinusoidal pressure change. For the

steady condition the magnification factor indicates how many times greater the ampli-

tude of a forced sinusoidal vibration is than that of a vibration caused by a uniform

pressure equal to the maximum for the sinusoidal vibration. In Figure 2 the magnifi-

cation factor is plotted as a function of the frequency ratio y for various values of

the damping factor a. Figure 3 shows the curve of the angle of phase 0. From Figures

2 and 3 in conjunction with Equation [4] it is clearly evident that after the initial

5-

4- - oa =0.0
-- a = o. I -/

LL -- a = 0.2 ,

3- ---a= 0.3S3
----a = 0.5 ,
----a = 0.7 4 2 a = 0.1

2- , ----a = I. o //, ---- a 0.2
S/..... - .. a= 0.

- ' , '--- a=0.5
,/ - a =1.0

0 1 2 3 4 5 0 I 2 3 4 5
Frequency Ratio y Frequency Ratio y

Figure 2 - The Magnification Factor Figure 3 - The Phase Angle of the Forced
for Undamped Sinusoidal or Vibration for Undamped Sinusoidal or
Cosinusoidal Excitation Cosinusoidal Excitation

vibration period the distortion of the recordings made by a diaphragm is less the

smaller the ratio of the frequency of the pressure change to be recorded to the natu-

ral frequency of the diaphragm. With respect to the foregoing, the general equation

of motion has already been treated so often that a mere reference to literature on the

subject will suffice (4). Hence the phenomenon termed the transient stage of vibra-

tion will be immediately considered. For this purpose the free vibration must also

_ _ _ ~ _~I__X __ _ _I
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be studied. Its amplitude and the phase (o depend upon the frequency ratio y and the
damping factor a. The amplitude of the free vibration with respect to that of the
forced vibration, Equation [4] is

Y Y

Hence, if y increases, it can assume very large values. However, since it is a func-
tion of the magnification factor, its absolute value decreases as y increases. Be-
cause the amplitude depends upon P = 1V- a2, the free vibration requires a further
special treatment for the case where a = 1. Hence we write

Ye-sin(r + q)= f' [sinf cosos+ cos/rsinp]

For very small values of 3, i.e., for values of a which lie near 1, the following ex-
pression can be written

S -a2 ]2 -a[ 2a

+ y2- 1+2a2  2  1 + 2 2

Hence it is evident that the indeterminate nature of the expression for the free

vibration when a= 1, which is apparent at first glance in Equation [4], in reality
does not exist.

Figure 4 shows the curve of the angle of phase of the free vibration (P,
Equation [3c], as a function of y for varying values of a. The tangent of the angle
of phase p is only slightly changed for small values of y, and tends toward the value
tan (p = 2a/(2a 2 - 1) when y = 0. This limiting value is zero for a = 0 and a = 1,
and infinity for a= /0.5. The angles, which correspond to these limiting values, are
S= r when a = 0, (= 0 when a = 1 and (p= 7r/2 when a = Y.5.

The curve of the angle o as

a function of y is
7f

Si7r for a = 0; 7< 1

- a = 0.1 = 0 J > 1

0.2i (P = 0 for a= 1; 01y V ooS-- a = 0.5

-- a- = 1.0
For values of y which lie

near 1, tan (p changes radically and

= tends toward zero for larger values of

y and for all values of a which come
__._S _ into practical consideration.

0 1 2 3 4. 5 Little more information can
Frequency Ratio y be derived from the analytical expres-

Figure 4 - The Phase Angle of the Free sions as to the initial stage of the
Vibration for Undamped Sinusoidal Excitation movement of a diaphragm composed of



two vibrations of different

amplitude and phase. For this

reason Equation [41 was calcu-

lated for the initial stage and

for various values of y and

represented graphically in Fig-

ure 5. These calculations are

based on the value a = 0.5 for

the damping of the diaphragm.

This damping coefficient corre-

sponds approximately to the

ratio n = 5 between two consec-

utive amplitudes.

Curve a of Figure 5

represents the first two vibra-

tions of an undamped sinusoidal

pressure change, curves b to I

show the motion of a diaphragm

caused by this pressure during

the initial stage. The smaller

y, the ratio of the frequency

of the exciting force to the

natural frequency of the dia-

phragm, the closer will be the

agreement between the movement

of the diaphragm during the in-

itial stage and the pressure

change. For the case where

7 = 0.17, curve b, the movement

distortion. In this case, then,

amplitude of the vibration with

bY Y:0.173
c. 7:0.346
d. = 0.5 19
a y=:0.692
f. y = 0.865

0.

0.

0.

0.

0.

0.

a

0-

0.5 r 4

27r 74

g. Y=1.038
h. y=7:1.211
i. y=1.730
k. y= 3.50
I, y= 7.00

b5 b c I d [ e
+
0-

-
2I 47 7r 4. r 7r r. 2f47r

0.5
+ /
0

0.5

Pr n4 2r 4 6ff
h

5 / H"&4"H LH"
2r 47r 6n 8r 2r 4r 6r 8r

0.5
+ I fLKiKIIO - M I I

5

O
5

I LLLL=t1
I I 11 I

15w

l I 1 1 1 11 I I I
107r 157r

Figure 5 - Forced Vibrations of a Diaphragm
due to Undamped Sinusoidal Excitation

of the diaphragm records the pressure change without

the amount of pressure can be determined from the

the help of static calibration. The movement of the

diaphragm however has an angle of lag (p with respect to the pressure change. This

phase lag becomes smaller with further decrease in y (see Figure 3). When Y = 0.35 to

0.87 (curves c to f) the diaphragm records the magnitude of pressure with sufficient

exactness for many practical cases. However, the phase lag is already greater. Thus

the diaphragm shows a deceptive pressure rise, which takes place much more slowly

than in reality. With a further increase of y increasing differences appear in the

motion of the diaphragm with respect to the pressure change, as much in the amplitude

as in the phase. This is clearly evident from curves g to I of Figure 5.

The solution of the displacement equation in the case of undamped sinusoidal

vibrations which was reported by H. Martin, is more general than that stated herein in

20ir
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Equation [41. It is valid, in fact, for exciting sinusoidal vibrations which begin

with an arbitrary phase. The damping factors a = 0, and a = 1 form the basis for the

initial-stage curves published by Martin. Hence they form a valuable complement to

Figure 5. Since Martin wished to give particular emphasis to the origin of the forced

vibrations in his diagrams, he plotted the exciting vibrations in a direction opposite

to the forced vibrations. Martin's curves have correct physical significance only if

one of the two vibrations is reversed around the point 7r. The lack of agreement which

results from a comparison of Martin's curves with Figure 5 thus has no deeper reason

but is simply a question of the most suitable representation.

If it is desired to derive information from these results concerning the

natural frequency which a diaphragm must have to record without distortion an atmos-

pheric shock wave, the initial pressure rise in the atmospheric shock wave can be re-

garded as one-fourth of the wave length of an undamped sinusoidal vibration. Accord-

ing to this a diaphragm whose natural period is smaller than about three times the

time of the initial pressure rise in the atmospheric shock wave would be able to re-

cord an atmospheric shock wave without distortion. Too much weight cannot, however,
be attached to this conclusion, because the pressure curve used as a basis only ap-

proximately coincides for a small period of time with the pressure curve in the at-

mospheric shock wave. Therefore the movement of a diaphragm under the excitation of

a damped sinusoidal force will now be treated.

IV. THE BEHAVIOR OF VIBRATORY SYSTEMS UNDER THE INFLUENCE
OF DAMPED SINUSOIDAL FORCES

We write

+ 2a dr + x = be-"' sinr [5]

where b is the static displacement.

The solution of this equation is

x = b e -U'sin(yr- zP) + Ae-' sin(fr+ cp) [6]
p

p and 0 are determined by the following equations

p = - + /2Y2 - 2ao.y) 2 + 4y 2( - y)2 [6 a]

2tan = 2 (a - uy) [6b]tan I - 7 2 (1 - p2) - 2 py

Since the diaphragm should be at rest before being acted upon by the excit-

ing force, the initial conditions x = 0, = 0 are valid when -= 0. From this thedr
the following equations result for the fixed magnitudes A and p

Ab sin_ b _A Psin b [6c]p sin p p

tan p = 2a or(a - ) + 2 1+ p2) -1 [6d]
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By considering Equation [6c], Equation [6] may be written as follows

Z = e-" sin(y-r - ) + e- "sin(8r +<) [7]

Just as was the case in an undamped sinusoidal exciting force, the forced

motion of a diaphragm is here, too, the sum of the forced and free vibrations. Both

vibrations are damped. Hence, a condition in which the one vibration remains un-

changed after the other has faded out cannot develop. Therefore, the magnification

factor l/p, considered by itself, does not have the same significance as in the case

of an undamped sinusoidal excitation. The magnitudes p, k, and (p depend not only

upon y and a, but also upon p, which is the damping factor of the exciting force.

As in the case of an undamped sinusoidal excitation, the amplitude of the

free vibration is y/P. Limiting conditions when a = 1 have also a finite value.
For different values of a, i.e., the

damping factor of the diaphragm, Figure 6 shows

the curve of the magnification factor 1/p as a

functiofi of the frequency ratio y. The damping 5 i

factor of the exciting force p was based upon
o

the value 0.5. The curve of the magnification 4 -a =o.o
factor is similar to that in an undamped sinus- " i .. a o0.1

3 .-- cc : 0.2
3 --- a = 0.3 0.5oidal excitation. It approaches unity when y o --- a= 0.5

is very small, increases as y increases and at ---a = 0.7
.2 2- , -- ( = 1.0

a certain ratio between a and p when y has a 2 2
definite value it can even become infinite. A

Where y is very large, the magnification fac-

tor is inversely proportional to y2. The par- 00 I 2 3 4 5
ticular case where a = 0 is expressed Frequency Ratio y

1 _ 1 , = 0 Figure 6 - The Magnification Factor
P /(1 - y + y2 2 ) 2 + 4 p2 for Damped Sinusoidal

or Cosinusoidal Excitation
In this case then, as long as p is other than

zero, the magnification factor has a finite value for all values of y. It is striking

that in a damped sinusoidal excitation the magnification factor remains finite when

a = 0, but that it can become infinite when a # 0 and when there is a definite ratio

between a and p. This seems to mean, then, that the amplitude of a damped vibratory

system excited by a damped sinusoidal exciting force can become infinite, while that

of an undamped one cannot. If such a result should in fact follow from our mathemat-

ical investigations, it would contradict physical observations. In reality, however,

this paradox does not exist, as later investigations will prove.

A further particular value for the magnification factor results from

12 y2 - 2apy= 0. With this assumption the magnification factor becomes

1 1

p (1 ,2)2 + 4Y a

Ylli
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Figure 7 - The Phase Angle of the Figure 8 - The Phase Angle of the
Exciting Vibration for a Damped Free Vibration for a

Sinusoidal or Cosinusoidal Excitation Damped Sinusoidal Excitation

It then has the same value for this special case as it has for an undamped sinusoidal

excitation.

Figure 7 represents the curve of the phase angle 0 as a function of 7 for

different values of a. The value 0.5 was chosen for p. For very small values of

7, kb approaches 0; for larger values of y the value of 0 changes greatly, and at still

greater values of y it approaches a fixed value which is found by the formula

tan ) = j-- 1T . In a damped sinusoidal excitation the curve of 0 as a function of y

is fundamentally different from that in an undamped sinusoidal excitation. Thus the

angle t is not restricted to the first and second quadrants, but extends also into
the third and fourth. For values of ao< 1 y the curve of b is chiefly in the

third and fourth quadrants. When a.> - the curve of is continuous in the

first, second, and third quadrants. The curve of 0 as a function of y is constant

with one exception. This exception exists for the case where a = ~. It be-
1 . -

comes evident that for this value of a and for 7 = y --i + Equation [6] becomes in-

definite. Limiting conditions for this case given tan # = _ if the critical point-1
is approached from the direction of y and tan J = -± if the boundary transition is+1
completed from the direction of small values of y. The phase angle ? thus jumps from

a value in the first quadrant to one in the third. The numerical value of the tangent

is the same for both angles.



Figure 8 represents the curve of the phase angle p according to Equation

[6c] for different values of a. p is likewise based upon the value 0.5. In many

respects the curve of p shows similarity to that of ;P in Figure 7. Thus p appears

in all four quadrants. With one exception the curve of (p is continuous just as is

that of k. The upper and lower limits for p at this point of discontinuity are

stated in the formulas.

tan ( = and tan = +_+1 -1

In contrast to ip, (p does not tend toward 0 when y = 0, but toward an angle which is
20adetermined by the equation tan (p = 2a 2 _ i1

In order to get a clear picture of the motion of a diaphragm due to excita-

tion by a damped sinusoidal force, several displacement-time curves are calculated

and plotted. These are represented in Figure 9. These calculated curves are based

upon the values a = 0.2, and P = 0.5. Curve a of Figure 9 shows the assumed form of

the pressure acting upon a diaphragm; it is a damped sinusoidal vibration. Curves b

to i represent the movement of the diaphragm under the influence of this pressure, and

are based on various values for the natural frequency of the diaphragm. If the ratio

of the frequency of the exciting pressure to the natural frequency of the diaphragm is

small, the diaphragm gives an undistorted image of the pressure curve, as shown by

curve b of Figure 9, which corresponds to a frequency ratio of y = 0.1. A distortion

shows up in curve c where y = 0.2.

This distortion becomes more marked

in curves d and e, whose values of

y are 0.3 and 0.4 respectively. -

Curves c, d, and e still depict Zn 47

pressure forms which approximate 2 e

reality. Curves f, g, h, and i, in Ai 00.I \=. \,03 IzO0.4

contrast, scarcely show anything of 0

the true nature of the pressure

change affecting the diaphragm. 2w 4 2x 47 27 47 27 47

They are essentially the natural 2- f I h I
. 0.6 z y 0.8 y 1.0

vibrations of the diaphragm, which

are the more distinct and character-

istic, the greater y becomes. Be-

ginning at a certain frequency ratio, I -r 2 4 7 r 27r 47 67 8w

which is about 0.6 when a = 0.2 and I- I

p = 0.5, a diaphragm is chiefly ex- - •

cited to natural vibrations by 1

damped sinusoidal forces. This hy-

pothetically derived result fully Figure 9 - Forced Vibrations of a Diaphragm

agrees with experimental findings Caused by a Damped Sinusoidal Excitation

-- -- YYI



regarding the measurement of pressure in atmospheric shock waves. This will be re-

served for later discussion.

A comparison of Figure 9 with Figure 5 shows that the natural frequency of

a diaphragm must be substantially higher to record a damped sinusoidal pressure change

without distortion than is the case for an undamped sinusoidal pressure change. For

sufficiently practical exactness it was determined that a frequency ratio of y < 0.9

is requisite to record undamped sinusoidal forces without distortion. For a suffi-

ciently precise determination of damped sinusoidal forces, however, a frequency ratio

of y<0.1 is necessary.

At frequency ratios which are greater than 0.1 but less than unity, curves

c to g, the amplitude of the diaphragm is still noticeable. If the maximum pressure

were to be determined from these amplitudes alone with the help of the static cali-

bration, it would appear greater than it really is.

It has already been pointed out that the solution of the general equation

of motion seems to have no finite value in the case of a damped sinusoidal excitation,

Equation [7], for a certain definite ratio between a and p, although there is no clear

physical basis for this. Hence Equation [7] must be subjected to a special investiga-

tion for this case.

If y = c in Equation [6a] it becomes

p = 1 - (1- 2) - 2a 2  1 2 + /12

From this it follows that when a = P - y the magnification factor 1becomes infinite.

Since . = V 1 - , y = 8 and a = pg for this special case. The solution in the form

of Equation [7] fails then, if the period and damping of the exciting force coincide

with the period and damping of the natural frequency of the diaphragm. In order to

determine whether the solution of the general equation of motion really has a finite

value, as is to be expected from physical observations, Equation [7] will be examined

for a value of y which is only slightly different from 8; i.e., y = 1 + 6. Assuming
that b = 1, Equation [7] can then be stated

P 2  [ -(a +u)- )1
x = 6 4 4 + 2 + 46 3  e (sin[(0 + 6)7 - ] + e s n( Wr+ 8

The following proportions can easily be derived from Equations [6b] and [6d]

sin1 = 13 +6. cos' = - 208- 6 + 26
sin p ' cos p 28 - 6 + p 26

By developing Equation [8], substituting these proportions, and considering

that for sufficiently small 6 we can write cos 67 = 1, sin 67 = 6, and

e-C,) = e-ad (1 - pO)

it follows that
2 -a'r + '

S6V434 + 62 + 46 1 - l dr s(r- 6) +sin1rcos (+ 22 6 + p26 8a



In Equation [8a] the 6 in the denominator can be dropped. If 6 then approaches zero,

the following equation results

Z -e - cos(3Ir- V) + sinl [8b]

Equation [8b] shows that the solution of the general equation of motion leads to a

finite value for the particular case where

Y VT+ .2 and c = M.8

Therefore Equation [7] is not really indeterminate as it appears to be at first

glance. For a = 0, Equation [8b] becomes the familiar formula for resonance for

undamped sinusoidal excitation, i.e.,

S= I Tcos r- sinr]

According to Equation [8b] the amplitude can never become infinite, since e"' in-

creases more rapidly than 7. The ratio of the amplitudes for values of 7, for which

the second term of Equation [8b] can be neglected, is relatively obvious. In fact,

it becomes the.ratio of two consecutive amplitudes

e

I +

Therefore, E is not constant, but depends upon 7. Excluding those values

of a which correspond to an aperiodic or nearly aperiodic damping, and which are of

slight practical interest, i becomes less than unity for small values of 7, gradually
increases, reaches unity, and finally approaches the value of e" which is always

greater than unity. According to Equation [8b], the amplitude first increases, then,.

after a certain time, it in turn decreases. The smaller the damping factor a, the

longer the increase of the amplitudes lasts, and the later the fading out begins.

The smaller the damping, the greater become the maximum amplitudes.

In Figure 10 the dotted

curve represents the exciting force,

and the solid curve represents the

forced motion of the diaphragm ac-
1a:0.2 p -0.204

cording to Equation [8b]. The value 0.5

0.2 is assumed for a. From this it

follows that p = 0.204. This illus- 0 , ..

tration shows the rising and falling

of the amplitudes for a special case, 0.5-
/ - Exciting force

as previously described. Forced vibration

The gradual rising of the I n I10

amplitudes shown in Equation [8b] Figure 10 Resonance Phenomenon

appears only when the damping as in a Damped Sinusoidal Excitation

- -__-_ _._ W.



16

well as the period of the exciting force coincides with the corresponding values of

the vibratory system. The probability that this rising will appear in damped excita-

tions is therefore much less than in the case of undamped ones.

V. THE BEHAVIOR OF VIBRATORY SYSTEMS UNDER THE INFLUENCE
OF COSINUSOIDAL FORCES

Various criteria for the evaluation of pressure from the movement of a dia-

phragm have been obtained by the foregoing observations. The time of the pressure

rise is the same as that of the pressure drop in both of the cases observed. The

pressure rise upon impact occurs in a much shorter time than does the pressure drop

in atmospheric shock waves. Hence the general equation of motion still remains to be

examined to determine the existence of analytical expressions which satisfy the time

relation of atmospheric shock waves.

Pressure impacts whose initial pressure rise occurs in an infinitely short

time, i.e., which begin at maximum pressure, will first be studied. The cosine func-

tion is a suitable method of expressing these. A damped cosine vibration, besides,

shows many of the characteristics of atmospheric shock waves. For purposes of com-

pleteness the solution of the general equation of motion in an excitation by an un-

damped cosine vibration will be briefly stated, in order to permit a more searching

study of the solution to be made for a damped cosine vibration.

Under the assumption of an undamped cosinusoidal pressure change the gener-

al equation of motion is

d2 x 2 dxd + 2 d + x = bcosy7 [9]d r2 d7

By considering the initial conditions z = = 0, the solution when -= 0 is
dt

b [cos((y- ) - e cos(r+ ) [10]

The expressions for p and #i are the same as those used under the assumption of an
undamped sine vibration as the disturbing function. Their curve can therefore be

derived from Equations [3a] and [3b] and Figures 2 and 3.

The phase angle p of the free vibration of the diaphragm is determined by

the equation

tan V ,or [ _+ ] [10a]

Figure 11 shows the curve of p as a function of y for different values of a. It is

to be noted that the amplitude of the free vibration does not depend upon y and 8, as

it does under the influence of a sinusoidal vibration, but upon 8 alone. The appar-

ent indeterminate nature of the factor 1/6 for a = 1 does not really exist; this can

easily be proved by the limiting conditions.
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Figure 11 - The Angle of Phase of
the Free Vibration in an

Undamped Cosine Excitation

Assuming a damped cosine pressure

wave, the general equation of motion takes

the form

d x+ 2a d + x = be " 'r cosy~r
dr 2

2 d
[11]

By considering the initial condi-

tions x = dz = , when r = 0, the solution
dt

is

I. - =--
I:,

/'-',
Frequency Ratio y

-a = 0.0
---- a: O.I
--- a : 0.2
--- a = 0.3
- - a= 0.4

, -- a= 0.6
---- a= 0.6
'-, a

=
0.8

- = 0.5

Figure 12 - The Angle of Phase of
the Free Vibration in a Damped

Cosine Excitation

x =- cos(yr- 0) - Cpe cos('r + p) [12]

p and 0 depend upon y, a and y in the same way as they did in the studies of the ef-

fect of damped sinusoidal forces. Hence it will suffice to refer to [6a], [6b], and

to Figures 6 and 7.

The angle of phase qp of Equation [121 is expressed

tan = 1y - 1a [ + + / 2 -2 [12a]
1 - 72 + py2 - 2ay

Figure 12 shows the curve of p as a function of y for different values of a, and a

fixed value of p = 0.5. For very small values of y, q~ approaches an angle whose

tangent has the value tan = - . The quantity (p is only slightly variable in the
range of small or very large values of y. Within a range which includes y = 1

1
= -1 - p, (p varies sharply. Here also, as in Figure 8, there appears a cyclic

change in the angle of phase (p when y = 8.
If the critical point is approached from large values of y, tan = -- ;

if this approach is from small values of y, tan (p = _-.

Figure 13 gives a perspective of the movement of a diaphragm excited by a

damped cosine pressure change. Curve a represents the time curve of the exciting

pressure. The curves b to k show the time-displacement curves of the diaphragm

I I I
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corresponding to various frequency ratios.

The free vibrations of the diaphragm

stand out in all the time-distance curves.

2 4 In the case of very small values of y

b l I c I I I
y =0.05 yI 0.1 y 0.2

0 7. -- --- 7. -- - -- 7 *-- --

I I

2 47r 27r 47r 2r 47r

they distort only the first part of the

pressure curve, while the remainder is

faithfully reproduced; see curves b and

c. When y increases, curves d and e,

their influence is gradually extended to

the entire pressure curve. In the case

of still greater y, finally, the move-

ments of a diaphragm have almost nothing

more in common with the exciting pressure

wave. The time-displacement curves f to

k essentially represent free vibrations

of the diaphragm, to which they were ex-

+ cited by the pressure acting on the dia-

phragm. Therefore, pressures of the im-

I 2f 41 6r 27 47 6r pact type, which begin directly with

their maximum value, corresponding to a
+ k damped cosine vibration, cannot be record-

O -
ed without distortion even by diaphragms

I 2r 47 67r 87 whose natural frequencies are very high.

This can be readily recognized from Equa-

Figure 13 - The Forced Vibrations tion [12] in conjunction with Figures 6,
of a Diaphragm Produced by 7, and 12, for values of y still smaller

a Damped Cosine-Shaped Excitation
than those which the time-distance curves

in Figure 13 represent. However, in special cases the pressure curve can be deter-

mined from partially distorted recordings. It is to be understood from Equations [121

and [12a], that the amplitude of the free vibration assumes the value of unity, for

small values of y and a, while the angle of phase ( decreases. If y, then, is so

small that the initial vibrations of the diaphragm occur in a period of time in which

the cosine pressure wave, which begins at its highest value, has not yet appreciably

changed, the pressure curve can readily be determined from the vibrations of the dia-

phragm. It is only necessary, then, to divide the line drawn through two consecutive

peaks into components a and b having the ratiog = eo. If a number of vibrations are

thus divided, a series of points is obtained which when combined form the pressure

curve.

It is not to be assumed that the pressure rise in atmospheric shock waves

occurs with infinite speed, i.e., instantaneously, but rather within a finite period

of time. It might be inferred from this that the results derived herein have no

I'l RON- - - - --



practical value. However, the time consumed by the pressure rise near the point of

detonation is certainly so small that it may practically be regarded as infinitely

small considering the vibratory range of the diaphragms currently at our command.

Finally, Riemann proved that discontinuous pressure changes are contained in the

basic equations of aerodynamics. Hence the study of damped cosine excitations is

rightly a problem of practical interest.

VI. THE BEHAVIOR OF VIBRATORY SYSTEMS UNDER THE INFLUENCE OF
A PRESSURE CHANGE COMPOSED OF TWO COMBINED COSINE VIBRATIONS

The pressure curves studied up to this point were based upon analytical ex-

pressions, in which the time of the pressure rise either equalled that of the pressure

drop or the waves began at maximum pressure. Hence with respect to atmospheric shock

waves these expressions represent borderline cases which must be supplemented.

It was found imperative to seek a simple analytical expression for the pres-

sure change in atmospheric shock waves, which would be valid for the most widely vary-

ing investigations. This was first attempted by combining several sine and cosine

vibrations. These attempts failed because the expressions which they yielded were

too complicated and moreover, failed to furnish sufficiently close approximations to

the pressure change in atmospheric shock waves. A very close approximation can be at-

tained by functions of the following type:

p = 7ae cosyr

By assuming such a function as the exciting function the solution of the general equa-

tion of motion is to be found according to the principle of the variation of the con-

stants. Aside from an extensive calculation, this method presents no difficulties.

However, the solution is a combination of several expressions, which makes it diffi-

cult to survey conditions as a whole, and the calculation is too involved for purposes

of practical analysis. The sum of two damped cosine vibrations has proved to be the

most favorable method; the sum, moreover, of two such vibrations of equal amplitude

but of opposite phase, so that when r = 0, the pressure is zero. The one vibration

should have a small damping factor and a low frequency in ratio to the other, so that

it predominates in the theoretical pressure curve. For practical purposes the other

influences only the initial pressure rise.

d2 x dx - *Y y2_ 2
dr 2 + 2ad x+ e -  cosy71 r- e " 2 cos27 [13

The solution of this differential equation is**
-#1Y1 -272_

X - e cos(yr - 1) e cos(y 2 r- 02) + Ae cos(9r + p) [14]
Pl P 2

* Translator's Note: In Equation [13] z no longer has the significance of diaphragm displacement,

diaphragm displacement
but is now the dimensionless ratio diaphragm displacement This change of meaning is not mentioned

static deflection
in the text.

Translator's Note: Various typographical errors in Equations [14], [14a], and [14b] in the orig-

inal have been corrected in the translation.
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Figure 14 - The Amplitude of the Free 0 2
Vibration in an Excitation Produced by O 1 2 3
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Figure 15 - The Angle of Phase of the
Free Vibration in an Excitation

Equations [6a] and [6b] are valid for , Produced by the Sum of

p2 ti, and 02. When 7 = 0, there results Two Damped Cosine Vibrations

from the initial conditions z = = 0
A - 1 COS COS [14a]

cos(P L P2 Pi

y1sinl 1  p 1ycosi1 + /p2 y2 cos02 _ Y2sinh2

tan = Pi P1 P2 P2 [1b]

8(cos 02  COS /
P2 P1

So that the sum of the vibrations expressed in the right-hand term of [131

will sufficiently approximate the pressure change in atmospheric shock waves, y, must

be small with respect to y2. Then ny, = 72 for n > 0. In addition, the conditions

n Z 10 and Y2 , 3 are introduced. All the previous assumptions can be expressed by

ny, _ V2 < 3 [151

These assumptions permit considerable simplification of Equations [141, [14a], and

[14b], without limiting this investigation, since when n = 10, the ratio of the dura-

tion of the pressure rise to that of the pressure drop is about 1:8. This ratio is

attained in atmospheric shock waves only at great distances from the point of detona-

tion. At the distances used in practice this ratio is always smaller. Moreover, let

a = 0.2, P, = 0.5, P, = 0.8. Considering the assumptions which have been made,

p1 
= 1, Op 0. Hence, Equations [14a] and [14b] can be restated as

A = cos' 2 - P2 [16]
72cos (P

tan <p = n2Y2COs2- y2sin!p2n21lP2 cc [16a]
F (cosp 2 -p 2)

Figure 14 shows the curve of the amplitude of the free vibration as a function of Y2'

< I



corresponding to Equation [16] and Fig-

ure 15 shows the angle of phase q which O

is derived from Equation [16a]. Figure

16 shows the behavior of a diaphragm ex- a 2W 3W

cited by a pressure, which corresponds 2 b c d
to Equation [131. 0. -0.2 0.3

The calculations were based +

upon the values 1071 = 7s, a = 0.2, 0

P = 0.5, P, = 0.8.
It should be noted that the

amplitude of the free vibration tends e I f g

toward zero for small values of ys, in I .A'4  0.6 =0.8

contrast to the corresponding amplitude 0

expressed in [12], which approaches the

value -1 for small values of 7. , r 27r f 2W 7r 2n

Curve a of Figure 16 repre- 2 h i
sents the time curve of the exciting 72= 1.0 a Y =.1.5

pressure. Curves b to i are the time- +

deflection curves for various natural 0

frequencies of the diaphragm. For the

time-deflection curves b and c, y2 = 7 27 r 27

0.1 and 0.2 respectively. They repro- Figure 16 - The Forced Vibrations of a

duce the pressure curve without dis- Diaphragm in an Excitation Produced by
the Sum of Two Damped Cosine Vibrations

tortion. In curve d (T2 = 0.3) the

influence of the free vibration begins

to appear. It is so small, however, that at this frequency the diaphragm movement

practically corresponds to the pressure curve. In curve e (72 = 0.4) the influence

of the free vibration is somewhat more evident in the region of the first maximum

value. That portion of the curve which follows the peak is undistorted. In curves

f to i, Figure 16, the influence of the free vibration becomes more apparent. Con-

sequently these curves deviate more and more from the curve of the exciting pressure.

According to the chosen analytical expression for the pressure curve and

to the limitations of [15], the time necessary to reach the first maximum value t,

is somewhat less than half the period of the vibration corresponding to Y2. If the

latter is designated as 2, then
T2

tm 2 [171

According to Figure 16, the frequency ratio y2 must be less than 0.3 to

get an undistorted recording. If the period of the diaphragm is designated by To,

then

To < 0.3 [181
T2=

-- IIIII IIIII1II1I11 1IIIYI1 Y
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By substituting the value of T2 from [17] it is obvious that

T o <_ 0.6 tm [191

which is necessary for an undistorted recording. Strictly speaking, this result fol-

lows from the assumption that 10y, = 72, and therefore is valid only for a definite

ratio between the time consumed in the pressure rise and the pressure drop. This

ratio is about 1:8. However, Equation [191 remains valid for practical purposes when

ny,= y2, if n > 10. The following considerations should prove this.

The chosen pressure curve satisfies the function p.

p = e cosy 1r- eI2Y2' COSy 2

Assuming 10y 1 = 72, p 1 = 0.5 and #2 = 0.8, the second term, for practical

purposes, covers only the range in which the first term has not yet appreciably

changed. The influence of the second term here extends only from r = 0 to the time

point of the first maximum value r,. If the values of p remain constant and if it

is assumed ny, = y2, this is all the more valid, as long as n > 10. In Figure 16 the

curve of p, assuming that nyl= 72 (n > 10), changes practically only in the time in-

terval from 0 to r,, i.e., only the pressure rise changes. In this process the ordi-

nate values 7 are shifted toward r. Likewise, the time point r. corresponding to

the highest value moves toward 7r,. The change of p with respect to n is evident

practically only in the initial rise of p. The fall of the pressure curve remains

the same, so that with respect to n, the ratio of the time of pressure rise to the

time of pressure fall changes. As n increases, this ratio becomes smaller.

The variations in the time-displacement curves produced by such a variable

pressure are clearly evident also. The influence which y7 exerts on the angle of

phase p, Equation [16a], is already so small when 107y = 72 that no important change

occurs from the assumption that ny, = Y2, (when n >10). The same holds true for the

amplitude A according to Equation [16]. Therefore the change in the displacement-time

curves which are determined by the new assumption, when 72 : 0.3, is only evident when
the ordinate values are shifted from 7 to 7T. Here also, this shifting extends

practically to the time point mr. Hence, the displacement-time curves for 72 L 0.3

record the pressure change without distortion when ny = 72 (n > 10). Accordingly

Equation [191 is valid for every ratio of the duration of pressure rise to that of

fall which is smaller than 1:8. The following is a summary of the natural frequencies

of diaphragms at varying periods of pressure rise, which are, according to [191, nec-

essary for undistorted recordings of atmospheric shock waves.

tm (10' sec) 10 5 2 1 0.5 0.2

1/To (cycles/sec) 1660 2300* 8400 16500 33000 34000*

* Translator's Note: These figures are obviously erroneous. Recalculation at the Taylor Model
Basin shows that 2300 should be 3340, and 34000 should be 835000.



VII. RESULTS OF INVESTIGATION ON ATMOSPHERIC SHOCK WAVES

Investigation of the behavior of vibratory systems under the influence of

damped sinusoidal vibrations produced Equation [19]. This relationship between the

characteristic duration of the initial pressure rise in atmospheric shock waves and

the natural period of a diaphragm required for undistorted recordings is extremely

important. Formerly, lacking other means, the natural frequency of a diaphragm neces-

sary to make undistorted recordings of atmospheric shock waves was determined in the

same way as is customary in the case of undamped waves. It was shown at the outset

of this investigation that this method can lead to erroneous conclusions. In addi-

tion the method of determining the frequencies ascribed to an atmospheric shock wave

is somewhat arbitrary. These uncertainties are now obviated. By the derivation of

Equation [191 the attempt was made for the first time to use a method which conforms

to the characteristic curve of atmospheric shock waves.

The essential results of these studies will be briefly and definitively

summarized. Other similar studies will be included.

The behavior of vibratory systems during the transient stage of vibration

produced by undamped sinusoidal forces form the point of departure for these investi-

gations. H. Martin (2) made similar studies in the field of seismometry. The differ-

ence between Martin's curves and those of the present study is explained on pages 9

and 10. Although these studies are necessarily based chiefly on damped sinusoidal

forces which correspond to the pressure change in atmospheric shock waves, the behav-

ior of vibratory systems influenced by undamped sinusoidal excitations is treated for

two reasons. First, to contrast the different behavior of a diaphragm during the

transient stage of vibration with that of the subsequent period of steady vibration;

second, to facilitate a comparison with the behavior of vibratory systems excited by

damped sinusoidal forces. No studies of excitation by damped sinusoidal vibrations

have been undertaken up to the present, to judge by the literature. Kalhne (3)

gives the solution for the general equation of motion when the exciting force is a

damped sinusoidal vibration. He begins with the statement

d2x 26dz n2 - t
dx+ 26d+ x = Ae- sin kt
dt2 dt

Since the damping of the exciting force is independent of its frequency in his equa-

tion, Kalihne's solution is valid for those exciting forces whose amplitudes are lim-

ited by the function ± Ae't. Hence, the damping of the exciting force varies inverse-

ly as the frequency k. With respect to the phase displacement, Kalhne says that the

damping of the exciting force is therefore equal to that of the natural vibrations of

the excited system when e = 6. According to Kalhne's statement, this conclusion is

not generally valid, but only for the special case when the frequencies of both vibra-

tions are equal.

No further studies are known. Aside from a brief reference in "Handbuch

der Experimentalphysik," vol. 17, p. 59, there is nothing to be found in the latest
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handbooks of physics which report on the most recent state of research. The fore-

going reference states: "Conditions remain essentially the same for an excitation by

a damped sinusoidal vibration as for an undamped one, considering the first moments

of the initial and final vibration periods are kept in view. They become complicated

by the appearance of fluctuations since the transition between the exciting and the

excited vibrations becomes active." This opinion, which is very general, appears to

need supplementation to prevent the development of erroneous ideas. The present in-

vestigation gives a suitable basis for this purpose.

The behavior of vibratory systems under the influence of decaying sinusoidal

forces differs from that of undamped excitations in many respects. In an undamped ex-

citation a condition develops in which the vibrations remain steady, if a damping of

the vibratory system is present. When this condition is reached, the further vibra-

tions of the system coincide in period with those which are exciting it. The phase

and amplitude can still be different. Hence, by properly shifting the time axis and

by using a suitable scale on the ordinate axis of the recording of the forced vibra-

tions, the exciting Vibrations are obtained at the same time. The determination of

the phase and of the conversion factor offer no difficulties in these cases, since

all the values necessary for their calculation can be ascertained.

In contrast to this, no condition in which the vibrations remain steady

develops in the case of excitation by damped vibrations. Hence it is impossible to

measure the exciting forces by waiting for extinction of the free vibration. An un-

distorted recording of damped vibrations is only possible, if the free vibration is

negligible from the very outset. Hence, the natural frequency of a vibratory system,

which is to serve as a measure of damped sinusoidal vibrations, must be much higher

than is necessary for one measuring similar undamped vibrations.

The curve of the angles of phase 0 and p as a function of the frequency

ratio y likewise differs in undamped excitations from that of damped ones. These

angles are only continuous in two quadrants in undamped excitations, but are contin-

uous in all four in damped excitations. A gradual increase of the amplitudes, sim-

ilar to the resonance phenomenon of an undamped excitation, appears also in the

operation of damped sinusoidal forces or vibrations. However, in such case, the

amplitudes cannot increase indefinitely, but after a given time which depends on the

damping, they again decrease. The maximum amplitude is governed by the damping and

varies inversely as the damping. This phenomenon occurs in damped sinusoidal excita-

tions if the damping factor and the frequency of the exciting force are equal to the

damping factor and the damped natural frequency of the vibratory system.

The results of this investigation will be welcomed, perhaps, by some branch

of physics or other, and some things, which were not particularly stressed in the gen-

eral summary, will seem important, depending on practical needs. Conforming to the

stated object of this study, an evaluation with respect to atmospheric shock waves,

however, must follow this summary.



The demands made upon a diaphragm for the undistorted recording of atmos-

pheric shock waves are greater than could be deduced from the theory of the action of

undamped forces. For an undistorted recording of atmospheric shock waves, the period

of vibration of a diaphragm, To, must be smaller than the duration of the initial

pressure rise. This is expressed by

T o _ 0.6 tm

If this condition is not fulfilled, the recordings of a diaphragm give no true picture

of the atmospheric shock wave acting on it. Vibrations appear which are not contained

in the atmospheric shock wave but which represent natural vibrations of the diaphragm.

The smaller t, becomes with respect to To, the more marked the natural vibrations be-

come. Finally, only natural vibrations will be set up in a diaphragm acted upon by

an atmospheric shock wave, over which the shock wave itself will be superposed with

hardly noticeable effect.

For the special case in which the pressure in the atmospheric shock wave

rises very fast but subsequently changes very little within a given time, i.e., when

the time curve roughly corresponds to a damped cosine vibration, the pressure curve

can be ascertained rather simply, if the damping factor of the diaphragm is known.

The maximum pressure in an atmospheric shock wave can be satisfactorily

determined solely by means of static calibration only if the condition To < 0.6 t, is

satisfied. If it is not satisfied two cases arise, which are distinct from each

other. First, if To is only slightly larger than 0.6 ti, the maximum pressure derived

from the amplitude is greater than in reality. Second, if To is much greater than

0.6 t., then the maximum pressure derived by the same method is smaller than in

reality.

Still another result of this investigation deserves special emphasis. A

glance at Figure 13 shows that above a given frequency ratio, as shown by curves g

to k, the movement of a diaphragm excited by shock loads produces comparatively steady

vibrations. By means of only a small number of equidistant ordinates, such vibrations

can be expressed with good approximation by a Fourier series. The pressure curve can

then be derived by differentiation. This possibility has been widely used in practice,

and will be taken up later.

It scarcely needs to be mentioned that these studies can be effectively used

wherever atmospheric shock waves affect buildings or other structures, and where the

effects must be judged either before or afterward, for example, to predict the effect

of aerial bombs on buildings, or to judge and settle purported claims of damage to

buildings arising from artillery practice, when these buildings are far from the ar-

tillery range. As experience has shown in many damage suits arising from the firing

of large guns, the problem of the resonance phenomena in the action of atmospheric

shock waves was of great importance. This problem was closely studied on page 10,

section IV. Formerly, through lack of thorough studies of this problem, the wildest
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opinions were advanced. Pursuit of this question further would lead to too great

digression and it will therefore be reserved for special treatment.

VIII. QUALITATIVE PROOFS OF GOOD AGREEMENT BETWEEN THE CURVES
USED FOR CALCULATION AND THOSE IN ATMOSPHERIC SHOCK WAVES

These studies would find no extensive application without experimental

proofs of good approximation between the assumed pressure curve and the pressure var-

iation in atmospheric shock waves. No quantitative proof for this agreement in close

proximity to the detonating point can yet be given. Hence a qualitative proof will

have to suffice at this point.

Figure 17 shows the records of experiments in the measurement of pressure

at a distance of 10 m (32.80 feet) from the point of detonation.

a) Natural Frequency of the Diaphragm
1300 cycles per second

b) Natural Frequency of the Diaphragm
2400 cycles per second

c) Natural Frequency of the Diaphragm
8000 cycles per second

Figure 17 - Experimental Recordings of
Atmospheric Shock Waves

Diaphragms were at 10 m (32.80 feet) distance

from the point of detonation. Charge: 1 kg
(2.20 pounds) of trinitrotoluol.

The charge detonat-

ed was 1 kg (2.20 pounds) of trinitro-

toluol (TNT). The movement of the

diaphragm was optically recorded by a

mirror. Figure 17a shows the results

obtained by using a diaphragm with a

natural frequency of 1300 cycles per

second. Figures 17b and 17c refer to

diaphragms with natural frequencies of

2400 and 8000 cycles per second re-

spectively. The close similarity be-

tween the calculated curves and the

recorded ones indicates a qualitative

agreement of the assumed pressure

curve with that appearing in atmospher-

ic shock waves.

Moreover, it is evident from

Figures 17a and 17b that the atmospher-
ic shock wave has excited the diaphragm

to practically only natural vibrations,

superposed over which the atmospheric

shock wave is hardly noticeable. This

result is to be expected from the fore-

going theoretical observations on dia-

phragms of comparatively low natural

frequency. In Figure 17c the pressure

curve of the atmospheric shock wave is

correctly reproduced up to the initial

pressure impact, which agrees with the-

oretical studies of diaphragms with
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higher natural frequencies. The first pressure impact, however, is very sharply

distorted by natural frequencies of the diaphragm.

The knowledge that a diaphragm with a natural frequency of 8000 cycles still

does not record the pressure curve of an atmospheric shock wave without distortion can

be used, with the help of Equation [191, to determine an upper limit for the initial

pressure rise. Hence, at a distance of 10 m (32.80 feet) from the point of detona-

tion, with an explosive charge of 1 kg (2.20 pounds) of trinitrotoluol (TNT), the

time needed for the initial pressure rise in the atmospheric shock wave is certainly

less than 2 x 10- 4 second. It is evident, therefore, that with the help of the pres-

ent theoretical investigation very important information can be derived from the re-

corded curves of atmospheric shock waves, which are still quite defective near the

point of detonation.

The question now arises why diaphragms with even higher natural frequencies

have not been used to record atmospheric shock waves. The calculated curves, compared

to the actual records, Figure 17, obviously require the use of such diaphragms.

The use of diaphragms of higher natural frequency leads to other difficul-

ties. As the frequency increases the sensitivity decreases sharply. Basically, this

decrease of sensitivity can be removed by inserting a system of levers between the

diaphragm and the axis of the mirror. This method, however, is not feasible in the

immediate vicinity of the detonating point for recording atmospheric shock waves. The

magnification of the masses participating in the movement of the diaphragm, which oc-

curs when a system of levers is inserted, renders the apparatus sensitive to explosive

concussions transmitted through the ground or caused by the impact of the wave.

The low sensitivity of high frequency diaphragms can also be compensated by

using electronic tubes. However, previous experiments have shown that the tubes them-

selves are so violently shaken by the impact of atmospheric shock waves that obvious

field distortions appear. This is true even when the tubes are mounted in the best

shock-proof manner. In any event, it frequently happens that at the moment of impact

of the wave large displacements in one direction occur in the record, and then grad-

ually diminish. This phenomenon cannot be traced to overloading the tubes, for it is

not observable at a correspondingly high steady-state load.

The author has only recently overcome these difficulties. Experiments using

a condenser microphone with a solid dielectric have produced great progress in the

measurement of the pressure in atmospheric shock waves. This will now be treated in

detail.

IX. THE MEASUREMENT OF PRESSURE IN ATMOSPHERIC SHOCK WAVES
AT GREATER DISTANCES FROM THE POINT OF DETONATION

At greater distances from the point of detonation, where the atmospheric

shock wave has already lost much of its initial power and where conditions to record
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it are more favorable, the measurement of its pressure is more readily possible. The

first measurements of this type were performed by W. Wolff (5). The motion of the

midpoint of the rubber diaphragm which he used was transmitted to a scriber by a sys-

tem of levers and recorded on a drum upon which was stretched paper coated with lamp

black. The corrections for inertia and frictional forces of the diaphragm devised by

Wolff to correct his recordings later proved unreliable.

F. Bitter (6) (7) subsequently recorded atmospheric shock waves at distances

of from 500 to 2000 m (1640 to 6560 feet) from the point of detonation with improved

apparatus, and determined their pressure readily and correctly. In constructing his

apparatus he utilized the condition previously mentioned, that the time-displacement

curves are comparatively smooth at definite natural frequencies of diaphragms. The

apparatus which Ritter constructed is a diaphragm device equipped with lamp-black re-

cording. The instrument consists of an airtight case, made in the shape of a parallel-

epiped. A round, wood diaphragm is fitted into one side of the case. The actual re-

cording mechanism is housed inside the box. It consists of a drum, on which paper

coated with lamp black is stretched; the drum is turned by clockwork. By a system of

levers, the movement of the midpoint of the diaphragm is magnified about ten times

and transmitted to a scriber which rests on the drum. The system of levers is equip-

ped with a damper vane which is immersed in a vessel containing oil.

Even at great distances from the detonating point, which vary from a few

hundred to a few thousand meters depending on the size of the explosive charge, the

pressure rise of the first pressure impact of the atmospheric shock wave still occurs

so swiftly that records made with Ritter's apparatus give no true picture of the at-

mospheric shock wave. Therefore Ritter (7) constructed a special mechanism for 'dynam-

ic calibration, in order to evaluate correctly these distorted recordings. This de-

vice permits the maximum pressure in the atmospheric shock wave to be determined.

However, during the first pressure impact, at least, the time-pressure curve remains

out of phase. At the suggestion of F. Ritter, I then attempted to ascertain whether

the pressure curve of atmospheric shock waves could not be calculated from distorted

recordings by a method similar to that used for recoil measurements (8). The follow-

ing reflections form the basis for these studies.

In cyclic sound pressures the acceleration and velocity of the diaphragm

assume considerable proportions. Therefore, in addition to the third, the first two

terms of the general equation for motion, Equation [1], must be considered. To do

this, the recorded curve is developed in a Fourier series and the acceleration and

velocity are determined by differentiating the time-displacement curve. By this meth-

od the time curve of the atmospheric shock wave can be determined up to the very

swiftly rising initial pressure impact. The pressure in the initial impact is far

greater than in the subsequent portions of the atmospheric shock wave. Hence it

represents the maximum pressure, which is determined by a special method. First, the

maximum pressure is assumed to be that one which is obtained by extrapolation of the



pressure curve derived from the time-displacement curve by differentiation. The to-

tal pressure curve thus obtained is then developed in a Fourier series; the time-

displacement curve belonging to it is calculated and compared to the recorded one.

If the calculated and recorded time-displacement curves still do not agree, the maxi-

mum pressure obtained by extrapolation is successively changed until complete agree-

ment is achieved. This method of calculation is described in detail in the Zeit-

schrift fur Physik (9); hence, it will not be treated further here. By this method,
the pressure curve has been determined in numerous cases, resulting in a deeper know-

ledge of the phenomena in the propagation of atmospheric shock waves.

Endeavoring to cut down the labor of calculation required by the method men-

tioned, new experiments were undertaken whose object was to develop a new instrument

to record atmospheric shock waves at greater distances from the point of detonation.

By considering the aggregate advantages and disadvantages of the various methods under

consideration, the use of a condenser microphone seemed most advantageous. Its wide

use in the field of electro-acoustics, which proved favorable to research on condenser

microphones, is the reason for this. Moreover, the techniques for its dynamic cali-

bration have been worked out to high frequencies.

Tests with a standard measuring instrument, used in the field of electro-

acoustics, proved unsatisfactory. First the sensitivity was too great for our pur-

poses, and second, the recorded curves showed too great a variation with frequency.

Then, at our suggestion, the central laboratory of the firm of Siemens built condens-

er microphones to our specifications. These, too, did not at first record the cyclic

progress of atmospheric shock waves. Finally, after many tests and gradual improve-

ment, a measuring apparatus was developed, whose wiring diagram is shown in Figure 18.

The pressure wave recording apparatus contains the condenser microphone connected in

a high frequency circuit. This high frequency hook-up was chosen, in order to effect

static calibration to check on the instrument. The apparatus consists essentially of

an oscillating circuit, a tank circuit, and an amplifying circuit. A high frequency

alternating current which is transmitted to the tank circuit by a loose coupling is

induced in the oscillator. The microphone is connected in parallel to a suitable var-
iable condenser in the tank circuit.

The variable condenser is installed

in such a way that its capacity cor- Of il To

responds to a point on the resonance 
sc4 Vllo 6r604

curve, which is as steep as possible - E3+

and linear for a short distance.

Generally, this is the case at about ondenser
Microphone

two-thirds of the height of the max- 8 V

imum of resonance. When an atmos-
pheric shock wave impinges on the mi- Figure 18 - Measuring Apparatus for Pressure

Waves with Condenser Microphone in a
crophone, the change in capacity High Frequency Circuit
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mA results in a change in the current

Sg/cmin the resonance circuit. The

II ,, voltage change, which is propor-

50 --- tional to the current change, is

transmitted to the grid of a vac-
20

uum tube. The low frequency anode

o10 20 50 100 200 500oo 1000 loooo discharge of this tube is amplified

Cycles per second to such an extent that it can be

recorded by an oscillograph. The
Figure 19 - Calibration Curve for the Pressure

Wave Measuring Apparatus with a Condenser oscillograph element used had a
Microphone in a High Frequency Circuit frequency of 12000 cycles per

second.

The complete measuring instrument including the amplifying unit and the os-

cillograph element was dynamically calibrated by the firm of Siemens. Figure 19 shows

the calibration curve finally attained by gradual improvement of the original appara-

tus. It can be concluded from this curve that pressure fluctuations of frequencies

from zero to 4500 cycles per second are recorded with a margin of error of ± 10 per

cent. What an improvement this apparatus signifies can be best shown if it is com-

pared to that described by Zettel in the 29th annual volume of the Zeitschrift fur

das gesamte Schiesz- und Sprengstoffwesen. The calibration curve reproduced in that

article under the title of Figure 6 shows that Zettel's measuring device is one-third

as sensitive for frequencies of 100 to 1000 cycles and only one-fifth as sensitive

for a frequency of 2000 cycles, as it is for frequencies of about 5 to 40 cycles. It

is impossible to record without distortion the impact-like atmospheric shock waves

with a measuring apparatus whose response to frequency is so variable. For that rea-

son Zettel's recordings do not show the characteristic curve of atmospheric shock

waves. The very rapid rise of the initial pressure impact is suppressed, and the am-

plitudes of the subsequent slow pressure changes occurring in the atmospheric shock

wave are recorded greater than they really are.

Our first experiments with condenser microphones yielded very similar re-

sults. Recordings of atmospheric shock waves were successfully made with an apparatus

whose calibration curve is shown in Figure 19. Figure 20 shows two of these curves.

The distances from the point of detonation were 160 m (524.93 feet) and 240 m (787.39

feet) respectively; the detonating charge was 1 kg (2.20 pounds) of trinitrotoluol.

In contrast to Zettel's recordings, the characteristic pressure curve is clearly evi-

dent. A very rapid pressure rise is followed by a slower pressure drop. The latter

is followed by a negative pressure. The positive pressure is greater than the nega-

tive. However, the duration of the positive pressure is less than that of the

negative.

One kilogram (2.20 pounds) of trinitrotoluol was exploded and the maximum

pressure recorded. At 160 m (524.93 feet) from the point of detonation the pressure
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was 2.7 g/cm' (0.039 pound per
square inch); see Figure 20a; at

240 m (787.39 feet) it was 1.7 g/cm2" 1

(0.0258 pound per square inch); see

Figure 20b. The decrease of pres-

sure between these two distances is

quite closely proportional to the

distance.* Pressure changes of

1000 cycles per second are still

superposed on the atmospheric shock

wave at both distances. A satis- a) Distance from the Point of Detonation

factory explanation of the origin 160 m (524.93 feet)

of these vibrations is not yet pos-

sible. However, it can be reliably

assumed that they are inherent in

atmospheric shock waves and were not

the deceptive result of peculiar

properties of the measuring appara-

tus, for there are no parts of the

measuring apparatus subject to vi-

bration whose natural frequency is

approximately 1000 cycles per sec- b) Distance from the Point of Detonation
ond. The closest natural frequency 240 m (787.39 feet)

to 1000 cycles present in the mea-
Figure 20 - Atmospheric Shock Wavessuring apparatus is that of the Recorded with a Condenser Microphone

microphone; its frequency is about Detonating Charge: 1 kg (2.20 pounds)

10,000 cycles. of trinitrotoluol.

On account of the special

conditions under which the recordings have to be made it is difficult to use a higher

film speed than that here used. The rapidity of the initial pressure rise can no

longer be read with certainty at the film speed used. The initial pressure rise takes
place from 3 x. 10-4 second to 4 x 10-4 second. In this respect it must be considered

that in spite of the sensitive diaphragm and limited movement of about 1~ of the con-
denser microphone used, a certain phase lag will still persist. In the case of un-

damped sound vibrations, the phase lag could easily be calculated from the frequency

of the sound vibrations and the natural frequency of the diaphragm. There is still

no satisfactory method known of calculating the phase lag for atmospheric shock waves.

* Translator's Note: The maximum pressures in these two records satisfy the condition

S20.4

max L

where P is the maximum pressure in pounds per square inch and L is the distance from the charge
max

in feet.

--
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The present investigation permits a deeper insight into the behavior of at-

mospheric shock waves, which was previously difficult to survey. A number of problems

have been cleared up by theoretical study, and progress has been made in the technique

of measurement. That several questions remain unanswered is due to the peculiar char-

acter of atmospheric shock wdves and to the special difficulties which attend their

measurement.
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