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SUMMARY

A system of first-order differential equations is developed for the
heat transfer (convection and shock layer radiation) and pressure drag of
an axisymmetric or two-dimensional body in hypersonic flow. The Pontryagin
maximum principle is applied to this system through the gradient method,
and a series of optimum hypersonic nose and two-dimensional shapes of given
fineness ratio is found. The optimum shapes are determined for minimum
drag, minimum heat transfer (convection), minimum heat transfer (radiation),
and minimum energy. The axisymmetric minimum drag shape is found similar
to the 3/4 power law profile already established as the minimum drag hyper-
sonic nose shape, and the two-dimensional result is a wedge shape. The
minimum heat transfer (convection) profile, both two-dimensional and
axisymmetric, is flat faced with a larger expanse of flatness in the
axisymmetric case. The minimum heat transfer (radiation) is conical with a
cusped tip in the axisymmetric case. Minimum energy shapes are found which
minimize the sum of convection plus drag work, convection plus radiation
plus drag work, and convection plus radiation. The axisymmetric results
show reasonable accommodation for the various energy forms considered in
each of the minimum energy nose shapes. The two-dimensional minimum energy
shapes are dominated by the drag work and for all practical purposes, the
results are wedge shaped.
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NOTATION

Specific heat at constant pressure (BTU/1b deg R)
also pressure -coefficient

Specific heat at constant volume (BTU/1b deg R)
Pressure drag (Equation [7]) (1b)

also base diameter (ft) page 6

Hamiltonian function (Equation [54])

Enthalpy (BTU/1b)
also coordinate parameter (Equations [13-16])

Characteristic length

Mach number

Convection parameter-dimensionless (Equation [40])
Radiation parameter-dimensionless (Equation [41])
Prandtl number

Adjoint variables (Equation [52])

Pressure (lb/ftz)

Total convective heating rate (BTU/hr)

Total radiative heating rate (BTU/hr)

Local convective heating rate (BTU/hr ftz)

Local radiative heating rate (BTU/hr ftz)

Radius of curvature, Figure 3, (- 1/d6/ds)
3as constant (BTU/1b deg R)

Body coordinate, Figure 2, dimensionless, (i/ib)
Body coordinate (ft)

Base radius (ft)

Entropy (BTU/deg R)

Body coordinate (Figure 2) dimensionless (i/ib)

.Body coordinate

Temperature, degree absolute (R)

Local average temperature ratio, (Equation [39])
Independent variable in maximum principle formulation
Freestream velocity (ft/sec)

Local velocity parallel to body surface (ft/sec)
Control variable in maximum principle formulation
Local average velocity ratio, (Equation [39])

Local velocity normal to body surface (ft/sec)
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Axial body coordinate (Figure 2) dimensionless (i/ib)
State variable in maximum principle formulation
Axial body coordinate (ft)

Coordinate normal to body surface, Figure 2 (y/ib)
Coordinate normal to body surface (ft)

Control variable (page 5)

State variable representing convective heating level (dimensionless)
Planck absorption coefficient

Absorption coefficient in empirical representation of Planck
coefficient (ftz/lb deg Rs)

State variable representing pressure drag (dimensionless)

Velocity gradient at stagnation point (du/ds)s=o

State variable representing radiation heating (dimensionless)
Specific heat ratio

Shock layer thickness

State variable (Equation [3])

Angle between shock slope and axis

Angle between surface slope and axis (Figure 2)

Curvature (1/R)

State variable (Equation [38])

Viscosity coefficient (1b sec/ftz)

Constant related to transversality condition (Equation [53])
Constant related to step size in control variation (Equation [55])
Density 1b./ft3 or 1b.-sec2/ft4 S
Stefan-Boltzmann constant (BTU/hr ft2 deg R4)

Optical depth

Stream function and coordinate, (Equation [17] and Figure 3)

End constraints on state variables (pagel9)
= d/ds

Subscripts
Conditions at surface of body
Edge of boundary layer

Conditions at stagnation point
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Reference conditions-
Conditions just inside shock
Total conditions

Upstream of normal shock
Downstream of normal shock

Freestream conditions

Superscripts

Initial conditions in maximum principle formulation
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ABSTRACT

A system of first-order differential equations governing
the heat transfer (convection and shock layer radiation) and
pressure drag of an axisymmetric or two-dimensional body in
hypersonic flow is developed. The Pontryagin Maximum Prin-
ciple is applied to this system, through the gradient method,
and a series of optimum hypersonic nose and two-dimensional
shapes of given fineness ratio is found. The axisymmetric
minimum drag shape is similar to the familiar 3/4 power law
profile while the two-dimensional result is wedge shaped.

The minimum heat transfer profiles are found to be flat faced
when considering convection alone and conical, with a cusped
tip, when considering radiation alone. Minimum energy shapes
are found wherein the various energy terms being minimized
include the sum of convection plus drag work, convection plus
radiation plus drag work and convection plus radiation. The
axisymmetric results show reasonable accommodation for the
various energy forms considered in each of the minimum energy
nose shapes. The two-dimensional minimum energy shapes are
found to be dominated by the drag work with the results being,
for all practical purposes, wedge shaped.
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prepared under the direction of Dr. S.W. Chi, Assistant Professor of Fluid
Mechanics and Heat Transfer and was approved by Dr. Y.C. Whang and Dr. T.W.

Kao as reviewers.
INTRODUCTION

Like those of the lower speed regimes, hypersonic vehicles are
designed with a particular mission in mind. The blunt shape considered
optimum for reentry vehicles at near-earth orbital velocities could not be
considered as optimum for a short-range hypersonic missile. The minimum
drag shape that is well suited for short-range application may prove un-
desirable for a cruise-type vehicle which must sustain large heat loads
for relatively long flight times. Under such conditions, the optimum shape
would be one that accounts for both drag and heat transfer.
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The use of variational methods to determine optimum aerodynamic
shapes has a long and fruitful history. The minimum drag body of Newton
(Figure 1) still stands as the minimum drag body of given fineness ratio at
hypersonic speeds (although originally not meant specifically for this
speed range). Extensive studies involving the calculus of variations have
been and continue to be directed toward this problem. Minimum drag bodies
of revolution with a given base diameter and internal volume, given base
and surface area, and other similar geometric restrictions have been ob-
tained through these methods.l’2 Nose shapes that result in minimum heat
transfer at supersonic and hypersonic speeds have likewise received due
consideration. Much of the effort in this area has been by other than

3,4 but several studies using these methods

strictly variational methods,
have been undertakens’6 and have shown that the flat-faced body is the
optimum shape for keeping convective heat transfer to a minimum.

The minimum drag and minimum heat transfer shapes of Figures 1 and
2 may be best suited for specific missions in the hypersonic speed range,
but it is apparent that the cruise-type hypersonic vehicle, wherein both
minimum drag and minimum heat transfer are desired, requires a compromise
between the blunt heat transfer shape and the slender minimum drag profile.
Such considerations lead to the concept of a minimum energy nose shape which
minimizes the sum of the heat added to a given body and the work being done
on that body by drag forces. Like minimum drag and minimum heat transfer,
the minimum energy nose shape is also well suited to variational methods.
Some effort has been expended on this particular problem; in a previous
paper,5 the author used numerical optimization methods to determine the
minimum energy shape for a hypersonic body with a given base diameter and
meridian arc length.

The present study will attempt to determine the minimum energy nose
and leading edge shapes that have the more practical geometric restriction
of a given fineness ratio and, additionally, that include in the analysis

the effects of radiative heating from the shock layer to the body. Since

1References are listed on page 40.



the maximum Mach number for a hypersonic cruise vehicle would be on the
order of 20 to 25, radiation heating would be a small part of the overall
heating to the cruise vehicle; however inclusion of its effect in an
optimization scheme may well contribute to a less blunt minimum energy
shape and thereby provide an additional bonus in performance.

Minimum energy nose shapes might also be considered for superorbital
reentry vehicles wherein the velocity is such that radiation heating is
comparable to and eventually exceeds that of convection. Since the conical
shape has been suggested as desirable to keep radiation at a minimum (by
avoiding the high shock layer temperatures associated with the blunt body),
a compromise is again required between the blunt shape for convection and
the slender shape for radiation.

It is seen, then, that a variety of optimum shapes may exist for the
hypersonic vehicle. The particular mission is the governing factor as to
whether a minimum drag, a minimum heat transfer, or a minimum energy shape
is most desirable. The present study is an attempt to determine such
minimum energy shapes.

The problem is approached by setting up a system of first-order
ordinary differential equations governing the variables of interest in the
form of a Mayer problem in the calculus of variations. The formulation so
established will be found rather complex for straightforward application
of the calculus of variations. A numerical application of the Pontryagin
maximum principle is employed and the optimum shapes determined. A
geometrical restriction of a given fineness ratio is imposed on the nose
and leading edge shapes. The optimum shapes include minimum drag (pressure
drag), minimum heat transfer (convection), minimum heat transfer (radiation),
minimum energy (convection + drag), minimum energy (convection + radiation
+ drag), and minimum energy (convection + radiation), all under steady-
state conditions.

The flow-field analysis is made under the assumptions of an optically
thin gas and a physically thin shock layer. The modified Newtonian theory
provides surface pressure distribution, and centrifugal effects account
for pressure variation through the shock layer. A first approximation of
the flow field is obtained on the basis of an isoenergetic condition in the

shock layer. The effect of radiation cooling on the temperature distribution



is calculated and radiative heating to the body determined. Convective
heating is obtained with the condition that the wall temperature is much
less than that at the edge of the boundary layer, thus allowing a simi-
larity solution to the boundary layer equations. The low wall temperature

is consistent with a black body assumption concerning the radiative heating.
FORMULATION OF PROBLEM

The model used employs the assumption of an inviscid shock layer.
The Reynolds number is then sufficiently high so that the interaction
parameter is much less than unity (i.e., Mi/}ﬁig << 1). The basic hyper-
sonic condition M_ >> 1 is employed to justify the assumption that the
shock layer is physically thin with the shock wave closely conforming to the
body contour. The system of first-order differential equations governing

the variables of interest is obtained as indicated below.

1. Aerodynamic Heating. The coordinate system is shown in Figure 2 with s,
the distance measured along the body surface from the stagnation point, as
the independent variable. The local laminar convective heat transfer rate
is given7 by:

2 1/2 1/2 1

q, = 0.5 (Pr) ° [(peue)o] U, h T 2 E(s)

where

S - 1/2 [1]

The coordinates are considered as dimensionless through division by the base
radius, and j = 1, 0 refers to the axisymmetric or two-dimensional case,

respectively.



The total heat transferred to a given body is determined by:

[
Q = (2m)? fbfbj .f r’ q, ds

)

Assuming Wo z W, » we then have:
o)
_ - (p/ )(u/U J
o4 & )
- 1/2 172 . 1/2
- j+1/2
‘/E— (peue)o U, ht T n

where

S
p u 2j

o

The body surface pressure will be determined through the modified
Newtonian relation:

C =¢C sin2 G
P )
or
(p -p.) = (p, - P 2% uhere Z = g§ = sin 6
for P
M, > 1 °°/P << p/P and Pw/ << 1
® 0 o] po
Then

(p/p ): 72 [4]
o



The convective heating equations (Equations [2] and [3]) can then

be expressed as:

. (U/Um)zz r2 jn1/2 [5]

" = (“/uw)z2 r?] [6]

It remains to determine the local velocity ratio in a convenient
form. This will be delayed until consideration of the shock layer radiation

terms.
2. Aerodynamic Drag. In the body-oriented coordinate system of Figure 2,
the pressure drag of an arbitrary body can be expressed as:

S
D = (2m)’ T, ibJ f (p - p) rJ sin o ds
(o]

or

S

|
B = - - =
(27r)J rb er po o

i j
(P/Po Py )r Z ds (7]
o}

P,
On the assumption that /po <« P/

in the nose region and substitutin
Py g g

Equation [4], the drag relation becomes:

B =121 [8]
3. Shock Layer. The radiation term in the energy equation for an
optically thin ga38 is:

> 4
V-qr—4ocpoT [9]

Unlike the equations related to convective heating (Equations [5] and [6])

and pressure drag (Equation [8]) wherein the history of the variables is



needed on the body surface only, the temperature distribution of Equation
[9] is needed throughout the shock layer. There are several numerical
solutions for a blunt body shock layer flow, but they are unsatisfactory
for the problem at hand either because they are indirect or inordinately
time consuming. The numerical optimization procedure to be used necessitates
recalculating the shock layer properties (in those problems where radiation
is being considered) after each iteration, with each resultan§‘new shape
closer to the optimum. Since there are many such intermediate shapes be-
tween the initial assumed optimum and the final optimum shape, a direct and
rapid calculation of the shock layer properties is a must in order to keep
machine time within reason. The shock layer model to be used will be
similar to that of Freeman9 but modified to avoid the possibility of a free
layer (negative pressure on the body surface) inherent in his treatment on
some types of bodies.

The continuity of mass, momentum, and energy across an oblique shock

provides:

Usin © =p, Vv

° 2

2

Py '+ Py v? sin? o = P, + Py V [10]

hy + 1/2 u? sin? o = h, + 1/2 v2

Ucos ©=u

For M_ >> 1, the dynamic terms on the upstream side are much larger than
the static terms; thus:

P1 U sin 0 = Py V

2 .. 2 2
0y U® sin® 0 = Py * Py V [11]
v 1/2 v2

1/2 U% sin® o = h,

Ucos ©=u

from which it can be determined:



Y =1y s 1
v T U sin 0 + 0[ 5

M
= X+ 1 1 4
Py plY_1+0[ 2] [12]
M
2 U2 sin2 e

P2y +1%
Consider now the specific heat ratio; from the kinetic theory of

gases, this can be expressed as:

_ &+ 2
Y=

where £ represents the degrees of freedom within the gas. At the higher
shock layer temperatures associated with hypersonic speeds, the degrees of
freedom increase as the real gas effects of vibration, dissociation, etc.
come into play. As M_ - «, then, it follows that y > 1. Although the
specific heat ratio does, in fact, never reach unity, the assumption of
such a limit provides for considerable simplification in the shock layer
equations. Then, through Equations [12], the shock relations lead to the
conclusion that the normal component of velocity approaches zero while the
shock layer density becomes infinite.

Freeman13 proceeded on the assumption that the shock layer variables
were everywhere of the same order of magnitude as the values just behind
the shock. He developed what amounted to a series approximation for the
desired variables in terms of ¢ = pl/pzi (y - 1)/(y + 1). This leads to
the Newton-Busemann pressure relation for the surface pressure distribution.
For bodies of sufficient curvature, this relation results in the previously
noted free layer, an unacceptable drawback when it is not known a priori
(as in the present case) exactly what shape or shapes must be dealt with.
The modified Newtonian pressure relation is known to correlate very well
with experiment over a wide range of supersonic through hypersonic Mach
numbers and body shapes and does not have the free-layer difficulty. For
this reason and in order to be consistent with the development of the con-
vective heating and drag equations, the modified Newtonian relation will be
used in determining the surface pressure while the other features of the

Freeman model will be maintained in developing the shock layer solution.

8



The treatment of the radiation terms will be similar to that of
Wanglo who used the following assumptions:

1. Gas in local thermodynamic equilibrium.

2. Optically thin gas or the grey gas approximation.

3. Transparent shock and black wall.

4. Perfect gas.

The conservation equations in boundary layer-type coordinates con-

sistent with Figure 2 are:11
mass %;—(rj pu) + %;-(h rj pv) =0 [13]
s-momentum %g%+ V%ﬁ—+uv K = -’l—p%% [14]
y-momentum %%ls,. + Vv -g—;—’; cul k.- %%— [15]
energy p T(%%+ v -g—f;)= -V ar [16]

Through the introduction of a stream function ¥, the continuity equation is

satisfied directly,

Y _ ¥, _ I
so=-htlov sy =T eu [17]

Transforming to a Von Mises coordinate system, i.e., (s,y) - (s,¥), (Figure
3) through

3 _ 3. _ 4] 3_
55 = 33 hr' pv 7 [18a]
and
8 _ 4 3
P T [18b]
Equations [14] through [16] reduce to:
bu , ,u__13p
Uaet V== > 55 [19]
i . _Llav
T 3Y u K Fas [20]
u 39S _ i
PTEss=-V "4, [21]



where, from Equatjon [9], V - . 4 % g T4 and Equatjon [21] becomes:

4

40 ofT
LS. ___p [22]
h 9s puT

An estimate of the effects of radiation on the shock layer properties and

fad23~L.

Near the stagnation point, where radiation will be greatest, the shock re-

structure can be obtained as follows.

By definition the optical thickness is t

lations provide Py Ul =P, U2. And as M_ > =, v > 1=$>Cp < CV; also
h=1+ y/R = 1,

substituting into Equation [22], we obtain

o T4
3 (S . T 2
a_s'('c—) 4(?)(—————‘) U C. T ) 23]
v © " "p "2
The first expression in parentheses on the right-hand side of Equation [23]
is referred to as the optical depth and the second is the inverse of the

Boltzman number. For optically thin gases and moderate hypersonic Mach

numbers:

o
T
(TT)<< 1 and 5 U

._a__<_s_)~0 [24]
*"3s\C J~
v

or the entropy is constant along streamlines. The implication here is that
the shock layer properties can be determined through the momentum Equations
([19] and [20]) and the equation of state, and, having the temperature dis-
tribution, the radiation heating can be determined without ever considering
radiation in the conservation equations. The effect here would be to over-
estimate the radiative contribution (however slightly) by neglecting the
radiative cooling within the shock layer and the resultant temperature

decrease. A more reasonable approach is that of superposition, i.e., first

10



determining the pressure and velocity distributions and then using these
values to determine temperature distributions while including radiation.
The validity of such an approach is borne out by the results of Refer-
ence 10; Wang applied the thin shock layer series approximation of Freeman
and showed that, to a first approximation, the velocity and pressure dis-
tribution within the shock layer are not affected by radiation. This
approach is further justified on the basis of other results that concerned
considerably higher radiation levels than in the present problem. It has been
observed12 that the radiation serves to lower the local temperature while
increasing the density but that it has little effect on the velocity and
pressure distribution.

The approach used here, then, is to deal with Equation [19] and
[20] on the basis of the isoenergetic implications of Equation [24]. Once
the necessary distribution of shock layer variables is determined,
Equation [22] is solved to obtain the desired temperature distribution
while including the effects of radiative cooling.

Proceeding on the basis of the thin shock layer approximation and
the related implications of Equations [12], the flow within the shock
layer is predominately parallel to the surface, or v << u. Based on this

assumption, Equations [19] and [20] reduce respectively to:

u _ 13

U3s = "0 s [25]
jop .

T’ sy = UK [26]

Through Equation [24], Equation [25] can be expressed as:

1
P

- 1 u
P2 Y Y0 du
(—7) f P A ’Ss_ds = - J‘ Uas ds [27]

°2 P, st

where the reference pressure and density are those values existing in the
stagnation region. The integration here then is dealing with the body-
wetting streamline. The lower limit of integration for the velocity term

B.s is based on the fact that in the stagnation region, the velocity varies

2

11



linearly with distance. The value of 8,, i.e., 8,/U_ = (1.268 VGI7E;)/D
(Reference 11), is found to hold: for a variety of shapes from spherical to
flat faced--both axisymmetric and two-dimensional. Since the pressure p,
is pretty much constant in the stagnation region, the corresponding lower
limits are not inconsistent.

Consider now the momentum relation across a normal shock at the
stagnation point (Equation [11]). The dynamic pressure on the upstream
side and the static pressure on the downstream side can be said to be
dominant at extreme Mach numbers. Two conclusions can be drawn from this
condition, i.e.,

- Py
- p, and —=5 < o,/p,

2 p 2Uoo

Py

where

~Y -1
01/02 YT for M_>>1

Utilizing these conditions and the surface pressure from Equation [4],

Equation [23] can be integrated and reduced to:

5 o2 2¢y -1\ /2
u/umx(éw)+Y2111-z Y [28]

Equation [28] provides the velocity variation along the body wetting stream-

line and, together with Equations [5] and [6], provides the necessary forms
for dealing with the convective heating in the Mayer problem formulation.
(The form of Equation [28] shows the effect of the chosen integration
limits, i.e., the introduction of st avoids the o velocity on a flat-faced
body usually associated with the Newtonian pressure approximation. The
independent variable s in this equation is not varied throughout its range
but only for the duration of the initial curvature existing at the stag-
nation point).

It remains to determine the flow properties through the shock layer
so as to deal with the radiative heating.

Maslen13 used Equation [26] to determine the shock layer properties

by treating the problem through the inverse method. On assuming a shock

12



shape, he used the shock felations to provide the variables just insidz the
shock wave. The pressure gradient through the shock layer (as provided by
Equation [26] using values from the shock relations) is assumed constant.
Integration proceeds from the shock to the body with ¥ = 0 determining the
body shape for the assumed shock. A similar procedure will be used in the
present application except t*rat the iﬂtegration will proceed from body to
shock. Equations [4] and [28] provide the values of the necessary variables
and boundary conditions at the body surface. As with the Maslen method,
the pressure gradient will be considered constant across the shock layer.

.'. Equation [26]

P ! u Po Uco
dp = — d¥ = u J Z ds [29]
rIR R
o

where the thin shock layer conditions have been used to chahge the inte-

gration variable, i.e., by definition

where

T =1 +Yy Cos 6 = Ty

C.d¥ =p U 1 Zds

J
b

Utilizing Equation [28] in the form

(“/uw)= £ (s, 2)

Equation [29] can be integrated to provide

S
PG, s 2, £, zyf Z ds [30]
— B a—

where the modified Newtonian relation (Equation [4]) has been used to pro-
vide the pressure on the body surface. The Y dependence of the pressure is

13



accounted for by the subscripted S¢ which refers to the entry point of a
particular streamline into the shock layer. The entropy level for a

particular streamline can be determined from the shock relations in the

form:14
2.2 2.2
s zn[zv Nz +-l(v—l)] . [(Y + LMz ] (31]
v (v - DM™Z2" + 2
Then _l
p=f (¥) p'

vhich, together with Equation [30], will provide the density distribution
through the shock layer.
The velocity at the shock wave is provided by the constancy of the

tangential velocity component across the shock (Equation [11]), i.e.,

2 1/2
s/U =cos 06 = (1 -2Z%) [32]

0o

From Equation [17] or, what amounts to the same thing, a mass balance at

u

each station s

8
¥y = f—l—r p_ U PRT .[ ) pu dy [33]
+Joooo
o
In difference form
_ 1 14j 1+j 3
A\Pi-1+jpmum<rb. -rb. )-r p u Ay
i i-1
where SAY.

1
u = ub + ws (us - ub) @ s = constant

will provide the corresponding variation of y and the shock layer thickness.
The effects of radiation cooling on the shock layer temperature distribution
can now be determined through the energy equation including the radiation

term.
5 S 4 0 o T4
5?(?‘) ST ou c, T [22]

14



The entropy variation can be expressed as:

Y v\, 55 ~ S-S,
p/e’ = (pr/or)e c for vy > 1=>T = T.e c

and Equation [22] becomes:

T 4 0 oT
=P [34]
s pu Cv

The absorption coefficient can be expressed as:

o =a_ p2 P
P P

where a and b are determined from opacity data (a = 1, b = 5, accurate for
T < 15,000 deg K; see Reference 10). The energy equation becomes then:

Separating the variables and integrating results in

- 24+b s - .._.1_.
o C 3+b
=|1+4 (3+0b) —L—[T(ss)] f i—s [35]
C

v S
S

T(s, ss)
T(ss)

where the subscripted variable Sg again refers to the entry point of a
particular streamline into the shock layer. From the form of Equation [35],
the temperature reduction (radiative cooling effect) along a particular
streamline is seen to be greatest along those streamlines closest to the
body surface. This is so because these streamlines enter the shock layer
in the stagnation region where the temperature T(ss) is greatest and the
velocity is lowest.

15



4. Radiative Heating. With the temperature distribution throughout the
shock layer available, it is now possible to determine the radiation heat-
ing level to the body.

From:

aq
—L = 20 © T4
ay P

applying the transformation (Equation [18Db])

aqr
r’ pu—=2g¢9 ofT
oY
or
b ap c T4
q,. = J. 2 : dy
(6] v’ pu
utilizing o_ = a 02 Tb and d¥ =p U £ 7 ds
results in:
_ _ S 7 T4+b
qr = 2 O.p g poo Uoo I'b f ——Il—— ds [36]
(0]

As with convection heating, we are interested in determining the total
radiative heating to the body. Therefore:

S

- j o214 J
Qr = (ZTT) rb J‘ T qr dS
o
s S 4+b
-2 2mda o u THP ) Larty ds | ds
b P @ "o Tt u
o o

Finally
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¢ d j
' s — n T =71 A [37]
ds [ 22m3 5.0 o iﬁ*J 74P
® t
where . 2 T4+b
A= — [38]
u
and we have introduced:
§ §
= 1 T - 1
T = —6— J. (‘T—t) dy and u = -6— I (u/Uoo) dy [39]
o (o)

Treating the radiation terms in this manner, that is, taking mean values of
temperature and velocity at a given station, amounts to treating the
radiation as a distribution of sources along the shock layer.

The introduction of the total temperature Tt into Equation [37], to-
gether with the previously mentioned dimensionless coordinates, produces a
dimensionless energy term just as in Equations [2] and [7]. (Equation [7])
is seen to be in terms of energy by multiplying the numerator and denominator
of the left-hand side by the freestream velocity U_. It remains to relate

the various energy terms through a common denominator.
PARAMETERS RELATING ENERGY FORMS

The energy levels of convective heating, radiative heating, and the
work done by pressure drag will, of course, vary with Mach number and

altitude. This will be accounted for by introducing the parameters
1/2 >
Bp v) ] U,
R [40]
51/2 US
b Po Yo

and
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N, =L [41]

into the right-hand sides of Equations [2] (and/or Equation [5]) and
Equation [38], thus relating the energy forms to the common freestream
energy. The Mach number and altitude variance of the parameters Na and NF’
representative of the flight corridor as shown in Figure 4, are provided in
Table 1. From here it is seen that the level of convection and radiation
is considerably less than the work related to pressure drag (which is
directly proportional to the freestream energy p Ui) for much of the flight
corridor, becoming significant in a relative sense at the higher Mach
numbers and altitudes (in the Mach number range beyond that of Table 1, the
radiative heating would become dominant).

The necessary first-order differential equations for the Mayer

problem formulation of the minimum energy body shapes can now be summarized

as:
o = N (u/U) 7% 23 q1/2 [42]
n= U 22 % [43]
=z’ o [44]
P=xd [45]
A T4+b [46]
i
x = -29Y? [47]
r=2 [48]

where (u/U_) is provided by Equation [28] ‘and x and y have been added to
account for the body shape itself. T and u are obtained from Equation [39]
after Equations [28], [30] through [33], and [35] have been solved to pro-

vide the shock layer properties.

18



A numerical application of the maximum principle to the above
equations will produce the desired optimum shapes. A brief discussion of

this principle is in order.
THE PONTRYAGIN MAXIMUM PRINCIPLE

The maximum principle serves to minimize some quantity:

f

J=0¢ f, th [49]

subject to the differential constraints

ii =f (x,u i=1,n [50]
the boundary conditions
x=x" @ t = t° [51]
and end constraints
¥ (xf , tf) =0 j=1,m m<n

The variables x, are referred to as state variables, u is the con-
trol variable (or variables), and t is the independent variable. - In this
context, the superscripts o and f refer to initial and final values,
respectively (i.e., initial and final in the range t° <t< tf).

To apply the principle, it is necessary to introduce the adjoint
variables obtained by

lav )

i=1,n [52]

oY,
P, +pu. b 3d 4+ -9
i 9X.
8xi i £
i=1],n(t=1) [53]
oY, 3¢ ’
P. f. = yu. —_—d e 22
i P ot

where u; are constants associated with the various end constraints,
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and the Hamiltonian

H = Pi fi =H (P, x, u)

(repeated subscripts imply summation).
A minimum of J is obtained when the optimum control u(t) is found

which satisfies the condition

H (P, x, ) >H (P, x, u) [54]
at every point on the trajectory. The numerical means of attaining this
condition will be the method of steepest descent or the gradient method.
Reference 15 provides the details of both the maximum principle and the
gradient method.

Basically the procedure involves the assumption of an optimum con-
dition or, equivalently, an assumed control function u(t). Through the
assumed control, the state variables Xs (t) may be obtained by numerlcally
integrating Equation [50] from the 1n1t1a1 conditions x° through (x(t ))
while satisfying the constraints Wj(x , t ). The adjoint variables are
then obtained by integrating Equation [52] backwards, from tf to to; the
values of the adjoint variables at tf are supplied by the transversality
conditions (Equation [53]). The Hamiltonian can then be formed and through
changes in the control variable by

. 1 afj

u; =55 P T, [55]

a new control can be determined such that H (P, X, u) > H (P, x, u)
where u = u + du.
On obtaining the closer to the optimum control u(t),, a new family of state
xi(t) and adjoint Pi(t) variables is obtained. This procedure is repeated,
adjusting the constants p, in Equation [53] to satisfy the end constraints
until the condition of Equation [54] is satisfied throughout the range
t° <t < tf or, equivalently, the gradient of Equation [55] goes to zero,
at which point the minimum values of [49] will be reached.

In the present problem, the independent variable is the arc length
s and the state variables are a(s), n(s), B(s), I'(s), A(s), x(s), and r(s).

The control variable is the local body slope Z(s). The differential
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constraints are accordingly Equations [42] through [48]. The nose shapes
being considered must maintain a given fineness ratio. By stopping the
numerical integration at a predetermined x value, it is necessary to impose

only a single end constraint to maintain the desired fineness ratio, i.e.,

¥ [?(sf)] =T - 1=0 [56]

Applying Equation [52], the differential adjoint equations are:

P, =0 [57]
. 3
B, = P, (wu) 2% £/’ [58]
b= 0 [59]
ﬁ4 =0 [60]
b.=-P, o [61]
5 4
B = 0 [62]
. . 2 1/2 . 2 .. .3 .
B, = -P N 25 (@/U)z% r/n'/? b, 2ju/u)z? v-j Py 20 -5 Py A [63)

The quantities to be minimized, either alone or summed with another,

g Blsg), and T(sg).
either -1.0 or 0.0, in accordance with Equation [53] and the condition for

are a(s Accordingly, Pl(sf)’ PS(Sf)’ and P4(sf) are
which the body shape is being optimized. Table 2 lists the appropriate
values for the various optimum bodies being considered.

We obtain further from Equation [53]

P,(sg) = Pc(sg) = P =0 [64]

Here p7(sf) = -1 where My is an undetermined constant that must be
determined to satisfy the end constraint (Equation [56]).

The initial assumed optimum shape is that of a blunted cone; see
Figure 5. The associated control variable Z(s), the initial conditions
a(s ) = B(s)) =T(s)) = A(s) = x(s)) = 1(s)) =0, n(s ) =n,  #0 (n, ob-
tained by applying the L'Hospital rule to the integral of Equation [42]
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under the condition s + o), and Equations [42] through [48] will then pro-
vide the family of state variables through the range o < s < See Choosing
the appropriate values of Pl(sf), PS(Sf)’ and P4(sf) from Table 2, together
with conditions of Equation [64], Equations [57] through [63] are inte-
grated backwards, from s = sgtos =0, to obtain the family of adjoint
variables Pi(s). Variations in the control variable are then obtained
through Equation [55] together with Equations [42] through [48] to provide:

3y-2
8Z = %kr (Pl/nl/2 + Pz) (% (u/Um)ZrZJ/nl/z-Z (%i%) (u/Uw)-lerZ Y )

4+b

+ P, 32% 23 4 p

3 5 + P7 [65]

e l-—]|

(where v is an arbitrary constant which helps to determine the control
variation). Observing that the new control variable Z =7 + 6Z satisfies
the condition of Equation [54] at every point in the range o $s <sg the
control Z is replaced with Z and a new family of state and control variables
is generated. This procedure is repeated until further changes in the con-
trol fail to satisfy the maximum principle condition (Equation [54]).

When the optimum body shape being considered includes radiation
effects, it is necessary to recalculate the shock layer properties (through
Equations [28], [30] through [33], [35], and [39]) each time the body shape
is changed through the adoption of a new control variable.

This sequence was programmed for the IBM 7090 and the minimum drag,
minimum heat, and minimum energy nose shapes with a given fineness ratio

were determined.
RESULTS AND DISCUSSION

SHOCK LAYER SOLUTION

The numerical procedure used to provide the shock layer temperature
distribution was formulated to provide a solution that is both direct and
rapid. These criteria are essential when it is realized that the shock
layer properties must be recalculated after each iteration which determines

a new shape closer to the optimum. Despite its simplicity, the method

22



shows reasonably good agreement with some of the more detailed numerical
shock layer solutions. Figure 6 compares present results with those ob-
tained by Zlotnick and Neumann as published in Reference 11. The numerical
scheme in their solution was indirect; the shock shape was assumed and
integration proceeded from shock to body. The greatest discrepancy between
the methods is seen to be in the surface pressure distribution. The sur-
face pressure obtained by the Zlotnick and Neumann method falls below that
predicted by the Newtonian plus centrifugal, or Newton-Busemann pressure
relation, which, in turn, is known to underestimate the pressure on a
spherical body and leads to a fictitious free layer (negative pressure
coefficient) beyond approximately the 60-degree position on the sphere.
The modified Newtonian pressure relation used in the present method is known
to correlate very well with experiment on bodies of this sort. This being
so, the surface pressure distribution as shown by the Zlotnick-Newmann
method should be somewhat higher with a resulting even closer correlation
between the surface velocity and shock layer profiles.

The radiation cooling effect on the shock layer temperature distri-
bution is shown in Figure 7. The rapid temperature drop just inside the
shock is seen to emulate the cooling effect shown by the more detailed

numerical solution of Cheng and Vincenti.16

OPTIMUM SHAPES

The numerical results of the optimization procedure were in agree-
ment with previous experience in dealing with the axisymmetric minimum drag
and minimum convective heat transfer bodies (Figures 8a and 8b). (From
Figure 8 on, figures in this report were plotted directly by a General
Dynamics SC 4020 using the computer output). The given fineness ratio
minimum drag body is found to closely coincide with the 3/4 power law body
predicted by direct application of the calculus of variations. The nose
shape producing a minimum in convective heating is found to be flat faced,
as in References 5 and 6, but with a less sharp corner than that obtained
by Aihara (Reference 6) using the calculus of variations. (Although the
flow field analysis of the present study was not detailed enough to account

for such factors as separation and secondary shocks resulting from
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overexpansion, it does appear that the rounded corner is more desirable
since it is less likely to produce such flow conditions and the associated
local hot spots.)

The optimum nose shape producing a minimum in radiative heating
(Figure 8c) is found to be conical in shape as predicted by a number of
authors (e.g., Reference 12). There is, however, a significant difference
in that the conical tip is found to be cusp shaped. Such a tip may be im-
practical from a materials viewpoint, but it is a justifiable result from
a gas dynamics point of view. The reasoning leading to the conical shape
follows from the fact that a cone will avoid the high shock layer temper-
atures and entropy layer associated with the normal or near-normal shock
of the blunt body. The cusped tip carries this reasoning a step further
since such a shape would result in a slightly more oblique shock than the
pure cone, thereby giving lower shock layer temperatures and less radiative
heating to the body.

Table 3 shows the numerical values of the different variables for
the various optimum shapes. (Because of the considerable increase in
computing time when determining the radiation effect, through Tes this
variable was not determined in those cases where it was not being con-
sidered in the optimization process). The value of the parameters N, and
N, is of little consequence in the resulting configuration when a single

r
variable is being minimized. Thus, the values of o, and ', are not

representative of a particular flight condition butfsimplyfprovide a
reference in the first three cases of Table 3 to show the effect on one
variable while minimizing another. It is apparent that the drag level is
considerably more sensitive to shape changes than is convective heating.

As stated earlier, the minimum energy nose shapes must be considered
in a different light from the optimum shapes wherein a single quantity is
being minimized. Specific freestream conditions must be considered here.
However, before we proceed to specific conditions, it may be of interest to
observe the effect of the various energy forms on the minimum energy shapes
by assuming them to be of equal significance. This can be accomplished by
letting Na = NP = 1,0 in the optimization procedure. Figure 9a shows the

‘resulting minimum energy shape when considering the sum of convection
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heating and drag. The compromise is obvious in that the extent of the

bluntness is reduced, as opposed to the minimum convective heating profile,
falling between it and the minimum drag shape. Table 3 shows the increase
in both o, and T

f f
9b and 9c together with Table 3, show the diminishing influence of con-

over those of their respective optimum shapes. Figures

vection on the minimum energy shape as Na decreases to the levels associated
with the actual flight corridor of Figure 4 (see Table 1). It is apparent
that the minimum energy shape is fast approaching that of the minimum drag
profile.

The effect of radiation on the minimum energy shape is shown in
Figure 10. Figure 10a, obtained while giving the various energy terms
equal weight by allowing Na =N, = 1.0, shows the tendency toward the
conical shape as discussed with regard to the minimum radiative heat
transfer body. When more realistic values of Na and NF are considered,
the profile (Figure 10b) approaches that of the minimum energy shapes, with
an equivalent Na’ wherein radiation was not considered (Figure 9b). The
profiles are found to be identical except at the tip, where the flat portion
of the minimum energy shape, without considering radiation, has been re-
placed with a conical tip. Table 3 shows a slight reduction in drag, with
a negligible penalty in convection, when including the effects of radiation
(Cases 5 and 8).

The minimum energy concept considered to this point (i.e., what
might be considered for the nose shape of a hypersonic cruise vehicle)
would appear to lose significance below a Mach number of about 20. Below
this range, the drag levels are such as to prevail in determining the
minimum energy shape. A more suitable approach in the lower Mach number
range would be to specify the heat load one could tolerate and then by
maintaining ag at some given value determined from the specified heat load,
to minimize the drag variable Bf. It seems certain that the resulting
configurations would fall between the minimum energy nose shape of Figure
9c and the optimum shape considering convection alone (Figure 8b);
radiation would of course not be considered in this Mach number range.

That is, the extent of the flat-faced portion would depend on the expected

heat load, with the contour following a power law variation from there to

the base.
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The minimum energy nose shape considering convection and radiation
simultaneously would be pertinent to a reentry body wherein these heating
forms would be of near equal magnitude. Such conditions would exist in the
vicinity of Mach 30, i.e., in the slightly superorbital speed range. 1In
this case, the parameters Na and N, would be nearly equal and may be taken
as unity. The freestream conditions and Mach number are those at 250,000
feet and M_ = 30.

Figure 11 shows the resulting nose shape and Case 10 of Table 3 the
related numerical results. The now familiar conical tip is again in
evidence; the considerable heftiness of the nose shape is undoubtedly a
result of attempting to maintain some bluntness as relief for the convective
heating. A comparison of Figures 11 and 10a (where convection, radiation,
and drag were considered) shows a similarity between the two and emphasizes
the slenderizing effect of including the drag. In all cases where it is
considered, the concession to the radiation effect is concentrated near the
tip and is simply to create as slender a cone as the given case will allow,
ranging from the rather blunt cone of Case 10 (Figure 11) to the cusp
tipped cone of Case 3 (Figure 8c).

The two-dimensional optimum nose shapes are shown beginning with
Figure 12 with the related numerical values of the essential variables in
Table 4. The minimum drag shape, Figure 12a, is that of a wedge and, as
in the axisymmetric case, is in agreement with what has been shown by
direct application of the calculus of variations.17 The minimum heat
transfer shape (convection) for the two-dimensional case, Figure 12b, is
found to be flat faced, as in the axisymmetric case, but with a less ex-
tensive expanse of flatness (Figure 8b). This is significant when con-
sidered with the numerical values of Table 4. In going from the minimum
drag shape of Case 11 to the minimum heat transfer shape of Case 12, the
reduction in e is seen to be on the order of 10 percent while the drag
level has increased by better than 50 percent. It is evident then that
the drag variation is even more sensitive to shape changes than was the
case with the axisymmetric bodies. This being so, the minimum energy
shapes are dominated by the drag terms and, as can be seen in Cases 13 and
14 of Table 4, the convective and radiative heating have little effect on

the numerical values. For all practical purposes, the two-dimensional
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minimum energy shapes considering (1) convection and drag or (2) convection,
radiation and drag were wedge shaped as already shown in Figure 12a. How-
ever Figure 13 is included to show the minimum energy shape for all three
energy forms; with care, it is possible to detect a slight convex curvature

in this figure,
CONCLUSIONS

The optimum hypersonic nose and leading edge shapes with a given
fineness or thickness ratio were determined for a variety of optimizing
criteria. The axisymmetric cases produced a near 3/4 power law profile
for the minimum drag shape and a flat-faced nose for the minimum heat
transfer considering convection alone. When both convection and drag were
considered, the minimum energy nose shapes were flat faced but with a less
extensive expanse of flatness than the minimum heat transfer noses. The
influence of drag on the minimum energy shape was dominant at moderate
hypersonic Mach numbers, suggesting an alternative approach at the lower
Mach numbers, namely, specifying a given heat load and minimizing the/drag.
The results of this study indicate that such an approach would lead to
similar flat-faced shapes with the expanse of flatness depending on the
specified heat load.

When only radiation was considered, the optimum nose shape was
conical with a cusped tip, the cusped tip being an apparent attempt to
produce a more oblique shock than the pure cone and therefore lower shock
layer temperatures.

When convection, radiation, and drag were considered the minimum
energy nose shape was conical near the tip; the influence of radiation on
the minimum energy shape was negligible except at the extreme Mach numbers
that could be considered for a cruise vehicle (i.e., 20 < M < 25).

When only convection and radiation were considered the minimum energy
nose shape had a large angle conical tip. The conical tip provides relief
from the severity of radiation and the blunting is retained to contend with
convection,

The overall results clearly illustrate the geometric means of

alleviating the various energy forms. Drag reduction is produced by a
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slight degree of blunting near the tip, thereby reducing the body slope

and therefore the pressure farther back on the body where the projected
area (projected in the direction of the flight path) is‘greater. The effect
of radiation is concentrated near the tip where the tendency is toward a
cone so as to relieve the shock layer temperatures. Convection tends to-
ward the blunt body with its lower surface velocities and therefore lower
shear.

The two-dimensional cases produced a wedge shape for the minimum
drag profile and a flat face for the minimum heat transfer (convection).
The extent of flatness on the minimum heat transfer shape is considerably
less than in the corresponding axisymmetric case. The drag is most
susceptible to shape changes and is found to dominate when considered with
the other energy forms. The result is that the two-dimensional minimum

energy profiles are nearly wedge shaped in all cases considered.
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Figure 9 - Minimum Energy Nose Shapes Considering Convection and Drag
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Variation of Convective and Radiative Parameters

TABLE 1

with Mach Number and Altitude (Y = 1.1)

M oAt x103 [N x30] N x10
[ al 1"
5 50 0.013 1072
]
100 0.040 10
10 100 0.016
150 0.054
5 120 0.023 | 0.571 x 10~3
180 0.096 | 0.692 x 102
20 150 0.061 | 0.181
200 0.132 | 0.316
25 200 0.139 | 7.85
250 0.288 | 0.728
20 200 109.6
250 10.0
TABLE 2

Value of Adjoint Variables at s = S¢ for Various Optimum Shapes

Variable ¢ Pi(sg) [ P3lse) | Pulse)
Min. Drag B(Sf) 0.0 -1.0 0.0
Min. Heat (Conv.) a(sf) -1.0 0.0 0.0
Min. Heat (Rad.) r(sf) 0.0 0.0 -1.0
Min. Energy (Conv. + Drag) a(sf)+e(sf) -1.0 -1.0 0.0 |
Min. Energy (Conv. + Rad.) u(sf)+r(sf) -1.0 0.0 -1.0
Min. Energy (Conv. + Rad. + Drag) a(sf)+r(sf)+6(sf) -1.0 -1.0 -1.0
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TABLE 3

Convective, Radiative, and Drag Variables Related to

Axially Symmetric Nose Shapes of Fineness Ratio 1.5

Case Vagé?zée(s) N, | N of B Te
Minimized
1 Bf 1.0 - 0.4310 | 0.0407 -
2 ag 1.0 - 0.3880.| 0.0980 -
3 re 1.0 |1.0 | 0.4720 | 0.0531 | 0.3 x 107>
4 af+8f 1.0 - 0.4200 | 0.0508 -
5 af+6f 0.1 - 0.1159 | 0.0420 -
6 af+6f 0.01 - 0.0836 | 0.0410 -
7 af+8f+Ff 1.0 |1.0 0.4260 | 0.0505 | 0.0166
8 agtBHTe | 0.1 0,01 | 0.1160 | 0.0410 | 0.3 x 1073
9 af+Ff 1.0 | 1.0 0.4168 | 0.0651 0.0538
TABLE 4
Convective, Radiative, and Drag Variables Related to
Two-Dimensional Leading Edge Shapes of Thickness
Ratio 1.5
Variable(s)
1 Bf 1.0 - 0.8040 | 0.1002 -
12 ap 1.0 - 0.7182 | 0.2160 -
13 af+8f+1.0» 1.0 ] 1.0 | 0.8066 | 0.1027 - _4~
14 af+8f+I‘f 1.0 | 1.0 | 0.7952 | 0.0993 | 0.4 x 10
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