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ABSTRACT

This report supplements earlier documentation on the

generation of multidimensional Hermite polynomials and

Gram-Charlier coefficients. The report contains a new concise

proof of the inequality employed in an efficient algorithm

to choose suitable suborders in the calculation of a

polynomial or coefficient of a given order.

ADMINISTRATIVE INFORMATION

This work was carried out in the Computation and Mathematics

Department under Task Area SF 14532107, Task 15329, Speech Recognition

Project.

INTRODUCTION

Hermite polynomials and Gram-Charlier coefficients can serve to

expand a near-Gaussian probability density distribution used in problems

of communications, pattern classification, and turbulence. Recursive

methods for calculating the polynomials and coefficients have been derived

and documented by the author. An extension of this effort which provided

an efficient algorithm that minimized the number of polynomials and/or

coefficients required by the recurrence relations of Reference 1 for the

calculation of a polynomial or coeffitient of a given order was subsequently

2
published. The report at hand provides a more concise proof of part of the

algorithm given in Reference 2.

1 References are listed on page 6.



RECURRENCE RELATIONS FOR MULTIDIMENSIONAL
HERMITE POLYNOMIALS AND GRAM-CHARLIER COEFFICIENTS

Reference 1 established the following recurrence relations for

Hermite polynomials.

n
H (x) = C q x ) H (x) - E q H a(x) -- j=l kj ) Hm-e j k kjj m-ek-e kk ( mk - 1 ) H m- 22 k ( x )  (1)

G (x) xk Gm (x) - rkj m Gmej (x) - (mk-l)rkk Gm-2 (x) (2)
- -2k j4k k ;--k

where k = i,.,., n

x, m are n-dimensional vectors, with components xj,mj, respectively

e. is an n-dimensional vector whose i t h- ccmponent is 6..-:li it)

r ij] = [qij ] - is a positive definite matrix, namely, the

covariance matrix of x.

If p (x) is the Gaussian density distribution of mean ' = (l."..."' un)

and covariance matrix [rij], then one can expand any probability density p(x)

in a Gram-Charlier series

p(x) = Po (x) E A Hm(Y) (3)
m=0 -

or

p(x) = p (x) Z Bm Gm () (4 )

m=O

n
where m= E m.

j=l J

i = (xi - Pi)/i and ao is the standard deviation of x .

The coefficients Am, Bm, as shown in Reference l,are generated

by the following recurrence relations.

, i, , I ll llI ll III k 11 1, 1 l1 l l.li l IalIlm1 I ,

r III I II I I IIII IIII _ a
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A = 1[b y G ( )]- r -1
m M m i=l k -- j r kj k  A - -e(5)

- 1=1 -- j=1 - J -J

1 M n (i) H (i) B (6)
Bm M [bm . qkj Y H kj mk m-e -e.

SM m l j=l -~k j=1 -

where k = 1,..., n
n

b = H (m.-1
m 1

i=l

(i (i) ( i) th
=(1 i)," y ) is the i normalized sample vector of a

set of M such vectors

A CONCISE PROOF OF THE GENERATION ALGORITHM

In Reference 1, we established by a somewhat lengthy proof that a

polynomial, or a coefficient with order vector m could be computed by a

recurrence relation using only those coefficients or polynomials of sub-

order v = vl,...b Vn if, and only if,

1. A permutation a(j) is defined in such a way that 1 < 3 iff md() mj)

2. The suborder vectors are generated as vectors (v (1)2""0 V,(n) in

the ascending sequence of integers va(1)' Va(2 )o*", va(n)in a base

equal to the greatest m j;

3. A suborder vector v of the form

V = (V (1).." V (p), 0, ..., 0) (7)
implies that the corresponding coefficient or polynomial may be computed

(if needed) only by the pth recurrence relation (p is called the

pivot );

,w-u-~~c



4. For a pivot p,
p-1 n
E (m - v ) (m - v (p)) + m (8)

j=1 j=p+l a(j)1
n

5. For computing coefficients only, E (m.-vo) must be even.
j=l

A concise proof of Equation (8) is now given.

PROOF:

There are three kinds of index decrements involved in Equations (3),

(4), (5), (6), namely:

(i) m-e.-e

(ii) m-e
-- p

(iii) m-2e
- -p

Suppose that a decrements of type (i) from m are considered so that

0 () - v() = a (9)
cr(p) a (p) (9

Then a decrements are also distributed among the p-i components to the

left of m so that

p-1

E (m (j)- vj) a + K (10)
j=1

where K is the number of decrements distributed among the p-1 components

to the left of mG(p) by decrementing from the n-p+l pivot components to

the right of m,(p). Clearly,

n
E m (j) = max K (11ii)

j=p+l

where the maximum is taken over the possible decrements from m to

G(1)2.. v o(p-1), m(p) 0, ... , 0), and

p-1

j (v - v ) ==
j=1

II II I I I I I"
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From Equations (9), (10), (11), one sees that (8) is satisfied.

Similarly, for decrement type (ii), Equations (9) and (11) still

hold, but Equation (10) becomes

p-1
S(m(j- v (j) = K (12)

j=l

so that

p-1 n
E (m (j) - v (j) m ((13)
j=1 j=p+l

But this inequality is included in the inequality of Equation (8).

Again, for decrement (iii), Equation (13) holds and is implied by

Equation (8).

Thus, for any pivot, and regardless of decrement type, the suborder

vectors which are reachable from m will be specified by Equation (8).

END OF PROOF
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