ransfer
This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Commander, Naval Ship Systems Command (SHIPS 031), Washington, D.C. 20360.

DEPARTMENT OF MACHINERY TECHNOLOGY
RESEARCH AND DEVELOPMENT REPORT

The Naval Ship Research and Development Center is a U.S. Navy center for laboratory effort directed at achieving improved sea and air vehicles. It was formed in March 1967 by merging the David Taylor Model Basin at Carderock, Maryland and the Marine Engineering Laboratory (now Naval Ship R \& D Laboratory) at Annapolis, Maryland. The Mine Defense Laboratory (now Naval Ship R \& D Laboratory) Panama City, Florida became part of the Center in November 1967.

> Naval Ship Research and Development Center
> Washington, D.C. 20007

MAJOR NSRDC ORGANIZATIONAL COMPONENTS

THE CORRELATION BETWEEN HEAT AND MOMENTUM TRANSFER FOR SOLUTIONS OF DRAG-REDUCING AGENTS

By
R. G. Howard and D. M. McCrory

ABSTRACT

Experimental friction factor and heat transfer data from turbulent tube flow of Polyox WSR 301 are correlated through the use of a new method. The Nusselt number is derived for tube flow of drag-reducing solutions in general. The Nusselt number is shown to be a function of Reynolds number, friction factor, and solution properties. This analytical expression for the Nusselt number is compared for accuracy with experimental results.

Studies of relaxation time and refractive index of Polyox are reported.

This investigation was carried out as part of the Independent Exploratory Development Program under Task Area ZFXX 41200 , Work Unit 1-722-162. This work was carried out under the guidance of L. F. Marcous, Head, Piping Systems Branch.

TABLE OF CONTENTS

```
Page
ABSTRACT iii
ADMINISTRATIVE INFORMATION • iv
NOMENCLATURE vii
INTRODUCTION l
TEMPERATURE PROFILE 2
    Viscous Sublayer Temperature Profile 3
    The Quantity (\partialT)/(\partialy) 4
    Viscous Sublayer Thickness 4
    Turbulent Core Temperature Profile 5
DERIVATION OF THE BULK TEMPERATURE 7
CORRELATION BETWEEN HEAT TRANSFER COEFFICIENT AND
    FRICTION FACTOR8
```

DISCUSSION: AGREEMENT WITH EXPERIMENT 9
CONCLUSIONS 12
RECOMMENDATIONS 12
TECHNICAL REFERENCES 12
LIST OF FIGURES

```Figure 1 - Curve, Heat Transfer in Tap Water
    Figure 2 - Curve, Heat Transfer in 5 PPM PolyoxSolution
Figure 3 - Curve, Heat Transfer in 12.5 PPM Polyox Solution
Figure 4 - Curve, Heat Transfer in 50 PPM Polyox Solution
Figure 5 - Curve, Heat Transfer in 100 PPM Polyox Solution
Figure 6 - Curve, Heat Transfer in 200 PPM Polyox Solution
APPENDIXES
Appendix A - Relaxation Time for Polyox (5 pages)
Appendix \(B\) - Integration of \(I_{1}, I_{2}, I_{3}\), and \(I_{4}\) ( 3 pages)
Appendix C - Evaluating the Nusselt Number by Numerical Integration (6 pages)
Appendix D - Refractive Index Study (3 pages)
DISTRIBUTION LIST
```


NOMENCLATURE

```
A = 2.5 = 1/Prandtl's mixing constant
B = 5.5 = u+ intercept of }\mp@subsup{\textrm{u}}{}{+}=\textrm{A}\operatorname{ln}\mp@subsup{y}{}{+}+\textrm{B
B
C= qw D/k Re \sqrt{}{f/2},\mp@subsup{}{}{\circ}F
C
C
C
D = Inside tube diameter, feet
f}=\frac{\mp@subsup{2}{}{\tau}\textrm{W}}{\rho\mp@subsup{V}{}{2}}\mathrm{ , Friction factor
h = Convection heat transfer coefficient, Btu/hr \circ F ft }\mp@subsup{}{}{2
i = Friction factor constant in table l
I
I
I
I}4=\mathrm{ See equation
\(I_{5}=\) See equation (B-3)
```

```
I
I
I
I
I
I
K = Boltzmann constant, l/0 F
k = Fluid thermal conductivity, Btu/hr ft \circ F
\ell* = Length parameter dependent on Polymer species
M = Polymer molecular weight, per mole
m = Number of rectangles being summed by numerical integration
N = Avogadro number, molecules/slug-mole
n = Index of summation
Nu = hD/k, Nussult number
P = Polymer species
Pr = \rho\nu Cp/k, Prandtl number
```

```
q
q}\mp@subsup{y}{}{\prime}=\mathrm{ Heat transfer at a distance y from the tube wall, Btu/hr ftt 
r = Tube radius, feet
Re = DV/\nu, Reynolds number
St = Nu/RePr, Stanton number
T = Temperature at a point, ` F
Tb
T
Tw
t = Polymer relaxation time, sec
u = Fluid velocity at a point, fps
u}\mp@subsup{}{}{+}=u/\mp@subsup{u}{*}{
u*}=\sqrt{}{\tauw/\rho,}\mathrm{ shear velocity, fps
u}\mp@subsup{L}{L}{+}=\mp@subsup{u}{}{+}\mathrm{ at }\mp@subsup{y}{\mp@subsup{L}{}{\prime}}{+}\mathrm{ , fps
V = Average fluid velocity, fps
X
```

$$
\begin{align*}
& X_{T}^{\prime}=\left[\left(T_{L}-T\right) k \operatorname{Re} \sqrt{f / 2}\right] / q_{W} D \text { when } Y_{L}^{+} \leq y^{+} \leq Y_{C}^{+} \\
& X_{T}=\left[\left(T_{W}-T\right) k \operatorname{Re} \sqrt{f / 2}\right] / q_{w} D \text { when } y_{L}^{+} \leq Y^{+} \leq Y_{C}^{+} \\
& y=\text { Distance from tube wall, feet } \\
& y_{L}=\text { Distance, } y \text { to the edge of the viscous sublayer, feet } \\
& y^{+}=y u_{*} / \nu \\
& y_{L}^{+}=y_{L} u_{*} / \nu \\
& y_{c}^{+}=r u_{*} / \nu \\
& \alpha=k / \rho C_{p} \text {, thermal diffusivity, } f t^{2} / \mathrm{sec} \\
& \beta=\text { See equation } \tag{13}\\
& \varepsilon_{h}=\text { Eddy diffusivity for heat, } f t^{2} / \text { sec } \\
& \varepsilon_{m}=\text { Eddy diffusivity for momentum, } f t^{2} / \mathrm{sec} \\
& \theta_{1}=\text { See equation (B-4) } \\
& \theta_{2}=\text { See equation (B-5) } \\
& \theta_{3}=\text { See equation (} B-6 \text {) } \\
& { }^{\theta}{ }_{4}=\text { See equation (C-19) } \\
& \lambda=\varepsilon_{h} / \varepsilon_{m}=1.0
\end{align*}
$$

$\nu=$ Solution kinematic viscosity, $f t^{2} / \mathrm{sec}$
$\nu_{0}=$ Solvent kinematic viscosity, $\mathrm{ft}^{2} / \mathrm{sec}$
$\rho=$ Fluid density, slug/ft ${ }^{3}$
$\tau_{w}=$ Shear stress at tube wall, $1 \mathrm{~b} / \mathrm{ft} \mathrm{t}^{2}$
$\tau_{y}=$ Shear stress at a distance y from wall, $1 b / f t^{2}$
-

NAVAL SHIP RESEARCH AND DEVELOPMENT LABORATORY

THE CORRELATION BETWEEN HEAT AND MOMENTUM TRANSFER FOR SOLUTIONS OF DRAG-REDUCING AGENTS

By

R. G. Howard and D. M. McCrory

INTRODUCTION

The phenomenon of turbulent drag reduction ${ }^{1}$ through the use of polymer additives promises some useful applications. Polyethylene oxide WSR 301 (Polyox), for example, reduces the coefficient of friction for the turbulent flow of water in the boundary layer of a moving flat plate. ${ }^{2}$ The friction factor in turbulent pipe flow is also reduced by Polyox. 3 Van Driest ${ }^{4}$ explains the use of drag reduction in obtaining high speeds of ships. Application of the drag-reducing additives to practical situations, however, involves reducing the coefficient of convective heat transfer also. It is necessary to know as well as possible what the heat transfer reduction will be in a given case to avoid any problems that may arise. Heat transfer experiments are expensive and difficult to perform with sufficient accuracy to suit most engineers. With this in mind, many investigators $5,6,7,8$ have correlated heat transfer reduction with friction reduction so that pipe friction experiments can be substituted for heat transfer experiments. Howard and Marcous ${ }^{9}$ explained the mechanism of the analogy between the two phenomena. This report is an extension of that work. It results in an explicit correlation between reductions in friction factor and in heat transfer coefficient for turbulent tube flow of Polyox solutions.

The correlation is formulated in terms of the Nusselt number, Nu, and the definitions of conduction and convection. Convection in the turbulent core is defined by

[^0]\[

$$
\begin{equation*}
q_{w}=h\left(T_{w}-T_{b}\right) \text { for } y \geq Y_{L} \tag{1}
\end{equation*}
$$

\]

Heat conduction across the viscous sublayer is described by

$$
\begin{equation*}
q_{w}=k\left(\frac{\partial T}{\partial y}\right) \text { for } 0 \leq y \leq y_{L} \text {. } \tag{2}
\end{equation*}
$$

In tube flow, it is obvious that heat conducted across the viscous sublayer equals heat convected by the turbulent core. Eliminating q_{w} from equations (1) and (2) and introducing $D:$

$$
\begin{equation*}
N u=\frac{h D}{k}=\frac{-D}{T_{w}-T_{b}} \frac{\partial T}{\partial y} \tag{3}
\end{equation*}
$$

The problem of determining Nu is now reduced to finding T_{b} and $(\partial T) /(\partial y)$ analytically since D and T_{W} can be measured. ($\left.\partial T\right) /(\partial y)$ is determined from the temperature variation across the viscous sublayer. T_{b} is found by integrating the temperature across the tube.

TEMPERATURE PROFILE

To obtain the bulk temperature, T_{b}, first the temperature profile across the inside radius of the tube must be derived. A basic description of heat transfer is,

$$
\begin{equation*}
\frac{q_{y}}{\rho C_{p}}=-\left(\alpha+\varepsilon_{h}\right) \frac{d T}{d y} \tag{4}
\end{equation*}
$$

A basic description of momentum transport is given as,

$$
\begin{equation*}
\frac{\tau}{\rho}=\left(\nu+\varepsilon_{m}\right) \frac{d u}{d y} \tag{5}
\end{equation*}
$$

In terms of the wall shear stress,

$$
\begin{equation*}
\tau_{y}=\tau_{w}\left(1-\frac{y}{r}\right) \tag{6}
\end{equation*}
$$

Martinelli ${ }^{10}$ obtained,

$$
\begin{equation*}
q_{y}=q_{w}\left(1-\frac{y}{r}\right) \tag{7}
\end{equation*}
$$

as a first approximation in the turbulent core. In the viscous sublayer, however, Martinelli used the more accurate,

$$
\begin{equation*}
q_{y}=q_{w} \tag{8}
\end{equation*}
$$

The temperature profile can be obtained by using equations (4) through (8) and the following conditions:
$\alpha \gg \varepsilon_{h}$ and $\nu \gg \varepsilon_{m}$ when $0 \leq Y^{+} \leq Y_{L}^{+}$(condition 1)
$\alpha \gg \varepsilon_{h}$ and $v>\varepsilon_{m}$ when $y_{L}^{+} \leq y^{+} \leq y_{C}^{+}($condition 2).
VISCOUS SUBLAYER TEIMPERATURE PROFILE
Equations (4) and (8) may be written as,

$$
\int_{T_{W}}^{T} d T=-\int_{0}^{y^{+}} \frac{q_{w}}{u_{*^{k}}} d y^{+}
$$

by using condition 1 .

Integrating this:

$$
T_{w}-T=\frac{q_{w}^{\nu}}{u_{\star} k} y^{+}
$$

Let the dimensionless temperature difference be:

$$
\begin{equation*}
X_{L}=\frac{\left[\left(T_{W}-T\right) k \operatorname{Re} \sqrt{f / 2]}\right.}{q_{w} D} \tag{9}
\end{equation*}
$$

Since $w=\left(f \rho v^{2}\right) /(2)$, we obtain a relationship

$$
\operatorname{Re} \sqrt{\frac{\mathrm{f}}{2}}=\frac{D u_{*}}{\nu} \text { or } \mathrm{y}_{\mathrm{C}}^{+}=\frac{\operatorname{Re}}{2} \sqrt{\frac{\mathrm{f}}{2}}
$$

so

$$
\begin{equation*}
x_{L}=y^{+} \text {for } 0 \leq y^{+} \leq y_{L}^{+} . \tag{10}
\end{equation*}
$$

THE QUANTITY ($\partial \mathrm{T}) /(\partial \mathrm{y})$
From equations (9) and (10) we can derive

$$
\begin{equation*}
\frac{\partial T}{\partial y}=\frac{T_{L}-T_{W}}{y_{L}}=\frac{-q_{w}}{k} \tag{ll}
\end{equation*}
$$

for use in equation (3).
VISCOUS SUBLAYER THICKNESS

$$
\begin{align*}
& \text { Elata }{ }^{11} \text { used } \\
& \qquad y_{L}^{+}=\frac{y_{L} u_{*}}{v}=11.6+\frac{\beta}{\ln 10}\left[\ln \left(\frac{u_{*}^{2} t}{v}\right)\right] \tag{12}
\end{align*}
$$

Elata used an equation equivalent to

$$
\begin{equation*}
\beta=\left[\sqrt{\frac{2}{f}}-A \ln \left(\frac{\operatorname{Re} \sqrt{f}}{2 \sqrt{2}}\right)+\frac{3 A}{2}-B\right] \frac{\ln 10}{\ln \left(\frac{u_{* t}^{2}}{v}\right)} \tag{13}
\end{equation*}
$$

substituting this into equation (12)

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{L}}^{+}=11.6+\left[\sqrt{\frac{2}{f}}-\mathrm{Aln}\left(\frac{\operatorname{Re} \sqrt{f}}{2 \sqrt{2}}\right)+\frac{3 A}{2}-B\right] . \tag{14}
\end{equation*}
$$

Note that t, the relaxation time, is eliminated from equation (14) Though t is not explicitly used, it was investigated experimentall as reported in appendix A.

TURBULENT CORE TEMPERATURE PROFILE
Elata suggests

$$
u^{+}=A \ln \left(y^{+}\right)+B+\frac{\beta}{\ln 10} \ln \left(\frac{u_{*}^{2} t}{v}\right)
$$

as a description of the velocity profile in the turbulent core of a viscoelastic fluid. Substituting equation (13) for β, we get

$$
\begin{equation*}
\mathrm{u}^{+}=A \ln \mathrm{y}^{+}+\sqrt{\frac{2}{\mathrm{f}}}+\frac{3 \mathrm{~A}}{2}-\mathrm{Aln} \mathrm{C}_{\mathrm{C}}^{+} . \tag{15}
\end{equation*}
$$

Granville ${ }^{12}$ has suggested formulating the experimental determination of the thickening of the viscous sublayer in terms of a function $B_{1}=B_{1}\left(\ell^{*}, C_{O^{\prime}}, P\right) . B_{1}$ is the u^{+}intercept of equation (15) when $\mathrm{y}^{\ddagger}=1$. ℓ^{*} is an experimental dummy parameter with a value dependent on polymer species, P, and flow conditions. We suggest using

$$
B_{1}=\sqrt{2 / f}+3 A / 2-A \ln y_{C}^{+}
$$

B_{1} could be determined from pipe flow friction data for various concentrations of a given polymer such as Polyox WSR 301.

We shall use equations (4) and (7) to get

$$
\begin{equation*}
\int_{T_{L}}^{T} d T=\frac{-q_{w}{ }^{T}}{r \rho C_{p} u_{*}^{2}} \int_{Y_{L}^{+}}^{y^{+}} \frac{\left(r u_{*}-y^{+} v\right) d y^{+}}{\varepsilon_{h}+\alpha} \tag{16}
\end{equation*}
$$

Now condition 2 allows us both to neglect α and to convert equations (5) and (6) to:

$$
\varepsilon_{h}=\lambda \varepsilon_{m}=\lambda \nu\left[\frac{r u_{*}-y^{+} v}{r u_{*} \frac{d u^{+}}{d y^{+}}}\right]
$$

Where we have assumed analogous mechanisms for heat and momentum transfer as indicated by $\varepsilon_{h}=\lambda \varepsilon_{m}$. Substituting for ε_{h} into equation (16) then, we have:

$$
\begin{equation*}
\int_{T_{L}}^{T} d T=\frac{-q_{w}}{\rho C_{p} u_{\star} \lambda} \int_{Y_{L}^{+}}^{T^{Y}} \frac{d u^{+}}{d y^{+}} d y^{+} \tag{17}
\end{equation*}
$$

From equation (15)

$$
\frac{\mathrm{du}^{+}}{\mathrm{dy}}{ }^{+}=\frac{\mathrm{A}}{\mathrm{y}^{+}}
$$

Using this in equation (17), and integrating

$$
\begin{gather*}
X_{T}^{\prime}=\frac{A}{\operatorname{Pr} \lambda} \ln \left(\frac{y^{+}}{\mathrm{y}_{\mathrm{L}}^{+}}\right) \quad \text { and finally, } \\
X_{\mathrm{T}}=\frac{\mathrm{A}}{\operatorname{Pr} \lambda} \ln \left(\frac{\mathrm{y}^{+}}{\mathrm{y}_{\mathrm{L}}^{+}}\right)+\mathrm{y}_{\mathrm{L}}^{+} \tag{18}
\end{gather*}
$$

for

$$
\mathrm{y}_{\mathrm{L}}^{+} \leq \mathrm{y}^{+} \leq \mathrm{y}_{\mathrm{c}}^{+}
$$

from equation (18):

$$
\begin{equation*}
T=T_{w}-\frac{q_{w} D}{k \operatorname{Re} \sqrt{\frac{f}{2}}}\left[\frac{A}{\operatorname{Pr} \lambda} \ln \left(\frac{y^{+}}{y_{L}^{+}}\right)+y_{L}^{+}\right] \tag{19}
\end{equation*}
$$

for $\mathrm{Y}_{\mathrm{L}}^{+} \leq \mathrm{Y}^{+} \leq \mathrm{Y}_{\mathrm{C}}^{+}$.

DERIVATION OF THE BULK TEMPERATURE

T_{b} is defined as

$$
\begin{equation*}
T_{b} \equiv \frac{\int_{0}^{y_{c}^{+}}\left[\left(T \rho C_{p} u^{+} y^{+} \nu^{2}\right) / u_{*}\right] d y^{+}}{\int_{0}^{Y_{c}^{+}}\left[\left(\rho C_{p} u^{+} y^{+} v^{2}\right) / u_{*}\right] d y^{+}} . \tag{20}
\end{equation*}
$$

Integrate T_{b} in two intervals between the limits $0 \leq \mathrm{y}^{+} \leq \mathrm{y}_{\mathrm{L}}^{+}$ and $y_{L}^{+} \leq Y^{+{ }^{+}} \leq y_{C}^{+}$. If we let

$$
\begin{align*}
& I_{1}=\int^{Y_{L}^{+}} T u^{+} y^{+} d y^{+} \tag{21}\\
& \text {O } \\
& I_{2}=\int_{y_{L}^{+}}^{y_{c}^{+}} T u^{+} y^{+} d y^{+} \tag{22}\\
& I_{3}=\int^{y_{L}^{+}} u^{+} y^{+} d y^{+} \tag{23}\\
& \text {○ } \\
& I_{4}=\int_{y_{L}^{+}}^{y_{c}^{+}} u^{+} y^{+} d y^{+} . \tag{24}\\
& T_{b}=\frac{I_{1}+I_{2}}{I_{3}+I_{4}} . \tag{25}
\end{align*}
$$

Substitution into equation (20) yields:

The integration of equations (21) to (24) is given in appendix B. CORRELATION BETWEEN HEAT TRANSFER COEFFICIENT AND FRICTION FACTOR

The Nusselt number in equation (3) can now be evaluated using equation (25) for T_{b} and equation (ll) for $(\partial T) /(\partial y)$:

$$
N u=\left[\frac{D}{T_{w}-\left(\frac{I_{1}+I_{2}}{I_{3}+I_{4}}\right)}\right] \frac{q_{w}}{k}
$$

Substituting for I, I_{2}, I_{3} and I_{4} yields

$$
N u=\frac{h D}{k}=\operatorname{Re} \sqrt{\frac{f}{2}}\left[\frac{I_{3}+\theta_{1}}{\frac{3 y_{L}^{+} I_{3}}{4}+y_{L}^{+} \theta_{1}+\frac{B_{1} A \theta_{2}}{\operatorname{Pr} \lambda}+\frac{A^{2} \theta_{3}}{\operatorname{Pr} \lambda}}\right] \cdot \ldots .(26)
$$

The algebra necessary to derive equation (26) was considerable. Therefore, the Nusselt number, Nu, was derived by numerical integration of the elementary integrals as a check against algebraic errors. This work is reported in appendix C.

DISCUSSION: AGREEMENT WITH EXPERIMENT
It was important to know how well equation (26) agreed with the experiment. The experimental data on flow of polyox solutions used to test this agreement was reported earlier. 13 To test the agreement with the experiment, the Nusselt number was converted to the Stanton number, $S t=(N u) /(R e P r)$. The similarity laws of friction-reduced flow data were considered next.

It must be remembered that the Reynolds number is not a sufficient similarity parameter for modeling drag reduction in tube flow. It has often been observed that for tubes of different diameters $D_{1}<D_{2}$, for equal Polyox concentration, C_{b}, flowing in these tubes, and for equal Re that the friction factors are not equal

$$
f_{1}<f_{2}
$$

Thus, the constants in

$$
f=C_{a} R e^{i}
$$

determined elsewhere ${ }^{13}$ and recorded in table 1 are useful only for tube diameters of about $1 / 2$ inch. They are used here to evaluate $S t$ in a test of the assumptions of the theory behind equation (26).

Table 1
Polyox Solution Friction
Factor Constants
in $f=C_{a} \operatorname{Re}^{i}$ for $D=0.5$ Inch

Concentration of Polyox ppm*	Ca	i
0	0.0775	-0.245
5	0.600	-0.480
12.5	4.80	-0.739
50	5.55	-0.762
100	6.65	-0.787
200	11.3	-0.857

The St versus Re correlations showing the agreement between experiment and theory are given in figures 1 through 6. The following values were used in the computer evaluation (26) for a range of Re .

$$
\begin{aligned}
& A=2.5 \\
& \operatorname{Pr}=7 \\
& \lambda=1 \\
& y_{c}^{+}=\frac{\operatorname{Re}}{2} \sqrt{\frac{f}{2}} .
\end{aligned}
$$

[^1]From equation (15) and the fact that

$$
\mathrm{u}^{+}=\mathrm{y}^{+} \text {for } \mathrm{y}^{+} \leq \mathrm{y}_{\mathrm{L}}^{+}
$$

we know that

$$
\begin{equation*}
\mathrm{u}_{\mathrm{L}}^{+}=\mathrm{y}_{\mathrm{L}}^{+}=\mathrm{Aln} \mathrm{y}_{\mathrm{L}}^{+}+\mathrm{B}_{\mathrm{l}} \text { when } \mathrm{y}^{+}=\mathrm{y}_{\mathrm{L}}^{+} \tag{27}
\end{equation*}
$$

Equation (27) was solved for Y_{L}^{+}by reiteration. Some of the Y_{L}^{+}computed were listed in table 2. Note that y_{L}^{+}grows with Polyox concentration. $\theta_{1}, \theta_{2}, \theta_{3}$ and I_{3} were computed by substitution of the previously determined values into the appropriate equations. Finally, St was computed.

Certain research was carried out incidentally to the task at hand. We were always receptive to new ideas for on-line, continuous, Polyox concentration determination. This receptivity led to the study of refractive index versus Polyox concentration detailed in appendix D.

Table 2
The Thickening of the Viscous Sublayer Due to Polyox Additive

Concentration of Polyox ppm		Y_{L}
0	Re	
5	$10,000-100,000$	About 11.6
	10,000	12.5
12.5	100,000	21.8
	10,000	16.3
50	100,000	41.0
	10,000	17.2
100	100,000	44.1
	10,000	17.8
200	100,000	47.1
	10,000	19.4
	100,000	55.4

The limitation on internal heat transfer is conduction through the viscous sublayer. Thickening of the sublayer due to Polyox causes a reduction in heat transfer. Using friction factor and associated Reynolds number data for drag-reducing solutions in turbulent tube flow, equation (26) may be used to estimate heat transfer under the same conditions. The specific data provided herein on Polyox can be used to estimate heat transfer in Polyox solutions up to 200 ppm in concentration but only in tubes of about $1 / 2$ inch diameter.

There is insufficient variation of the index of refraction of Polyox solutions to correlate this property to solution concentration.

RECOMMENDATIONS

Turbulent tube flow friction experiments should be substituted for tube flow.heat transfer experiments whenever practical. The results from the friction experiments should be used with equation (26) to estimate heat transfer in solutions with reduced drag.

The relationship between the observed phenomena of turbulence suppression and thickening of the viscous sublayer by drag-reducing additives should be investigated.

TECHNICAL REFERENCES

l - Virk, P. S., "The Toms Phenomenon-Turbulent Pipe Flow of Dilute Polymer Solutions," Sc.D. Thesis, Massachusetts Institute of Technology, 1966
2 - Granville, P. S., "Drag Reduction of Flat Plates with Slot Ejection of Polymer Solution," J. Ship Research, June 1970, pp. 79-83
3 - Goren, Y., and J. F. Norbury, "Turbulent Flow of Dilute Aqueous Polymer Solutions," ASME Trans., Dec 1967, pp. 814-822
4 - van Driest, E. R., "Problems of High Speed Hydrodynamics," ASME Trans., Journal of Engineering for Industry, Feb 1969, pp. 1-12
5 - Savkar, S. D., and J. C. Corman, "A Theoretical Study of Heat Transfer to the Turbulent Flow of Viscoelastic Solutions," General Electric Rept 68-C-244, Schenectady, New York, July 1968
6 - Pruitt, G. T., N. F. Whitsitt, and H. R. Crawford, "Turbulent Heat Transfer to Viscoelastic Fluids," Western Co. Rept, Richardson, Texas, Sep 1966

7 - Wells, C. S., "Turbulent Heat Transfer in Drag-Reducing Fluids," AICHE Journal, Vol. 14, No. 3, May 1968, pp. 406-410
8 - Poreh, M., and U. Paz, "Turbulent Heat Transfer to Dilute Polymer Solutions," Int. J. Heat Mass Transfer, Vol. 11, 1968, pp. 805-818
9 - Hóward, R. G., and L. F. Marcous, "Analogy Between Heat and Momentum Transport in Viscoelastic Solutions," Proc. Fluid Dynamics Symposium, McMaster Univ., Hamilton, Ontario, 1970
10 - Martinelli, R. C., "Heat Transfer to Molten Metals," ASME Trans., Vol. 61, 1939, p. 705
11 - Elata, C., J. Lehrer, and A. Kahanovitz, "Turbulent Shear Flow of Polymer Solutions," Israel J. of Tech., Vol. 4, No. 1, 1966, pp. 87-95
12 - Granville, P. S., "Frictional-Resistance and Velocity Similarity Laws of Drag-Reducing Dilute Polymer Solutions," J. Ship Research, Vol. 12, 1968, p. 201

13 - Howard, R. G., "Heat and Momentum Transfer to Drag-Reducing Solutions," NAVSHIPRANDLAB Annapolis R\&D Rept 3226, Oct 1970

Figure 1
Heat Transfer in Tap Water

Figure 2
Heat Transfer in 5 PPM Polyox Solution

NAVAL SHIP RESEARCH AND DEVELOPMENT LABORATORY

Figure 3
Heat Transfer in 12.5 PPM Polyox Solution

Figure 4
Heat Transfer in 50 PPM Polyox Solution

NAVAL SHIP RESEARCH AND DEVELOPMENT LABORATORY

Figure 5
Heat Transfer in 100 PPM Polyox Solution

Figure 6
Heat Transfer in 200 PPM Polyox Solution

Appendix A
Relaxation Time for Polyox

Report 7-472

REFERENCES

(a) Howard, R. C., and L. F. Marcous, "Analogy Between Heat and Momentun Transport in Viscoelastic Solutions," Proc. Fluid Dynamics Symposium, McMaster Univ., Hamilton, Ontario, 1970
(b) Elata, C., J. Lehrer, and A. Kahanovitz, "Turbulent Shear Flow of Polymer Solutions," Israel J. of Tech., Vol. 4, No. 1. 1966, pp.87-95

The relaxation time for Polyox was studied because it was a parameter of interest in an earlier investigation (reference (a)) and in the β term of this investigation. Elata (reference (b)) suggested using this formula for relaxation time:

$$
\begin{equation*}
t=\frac{6 \rho M}{\pi k T N}\left(\frac{\nu-v_{0}}{c_{0}}\right) \tag{A-1}
\end{equation*}
$$

These values were used for the constants

$$
\begin{aligned}
& \rho=1.927 \text { slug/ft } \\
& \nu_{0}=0.739 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{sec} \\
& M=3.8 \times 10^{6} \text { per mole } \\
& \pi=3.142 \\
& T=310.7 \circ \mathrm{~K} \\
& \mathrm{k}=13.1 \times 10^{-27} \text { Btu/ }{ }^{\circ} \mathrm{K} \\
& \mathrm{~N}=8.79 \times 10^{27} \mathrm{molecules} / \mathrm{slug}-m o l e
\end{aligned}
$$

The units of concentration C_{o} were, for example, 1.939×10^{-4} slug/ft ${ }^{3}$ for 100 ppm Polyox. The following tabulation gives the Polyox concentrations, viscosities, and relaxation times. Figure l-A provides a graphic demonstration of Polyox concentratio: versus relaxation time, t. Notice that t appears to increase with decrease in Polyox concentration below 200 ppm. This is due to the small change on viscosity in this region and to the subtraction of two nearly equal values in equation (A-1). As C_{o} decreases and $v-\nu_{0}$ changes little, then t increases.

Polyox Properties

Concentration of Polyox ppm	$\nu \mathrm{x} 10^{6} \mathrm{ft}^{2} / \mathrm{sec}$	t, sec
12.5	0.760	1.079
50	0.794	0.706
100	0.828	0.568
200	9.14	0.504
500	12.4	0.574
1000	21.2	0.793
1500	32.6	0.966
2000	47.5	1.152

Appendix B
 Integration of I_{1}, I_{2}, I_{3} and I_{4}

We need functions $T=T\left(y^{+}\right)$and $u^{+}=u\left(y^{+}\right)$for equations 21 through 24. We use $\mathrm{u}^{+}=\mathrm{y}^{+}$when $0 \leq \mathrm{y}^{+} \leq \mathrm{Y}_{\mathrm{L}}^{+}$and from equations (9) and (10)

$$
\begin{equation*}
T=T_{w}-\frac{q_{w} y^{+} \nu}{k u_{*}} \text { when } 0 \leq Y^{+} \leq y_{L}^{+} \text {. } \tag{B-1}
\end{equation*}
$$

Between $Y_{\mathrm{L}}^{+} \leq \mathrm{Y}^{+} \leq \mathrm{Y}_{\mathrm{C}}^{+}, \mathrm{u}^{+}$is given in equation (15) and T is given in equation (19). Perform the integration and cancel (ν^{2})/(u_{*}), then using equation ($B-1$)

$$
\begin{aligned}
& I_{1}=\frac{Y_{L}^{+}}{3}\left(T_{w}^{3}-\frac{3 q_{W} Y_{L}^{+}}{4 k u_{*}}\right) \\
& I_{3}=\frac{Y_{L}^{++^{3}}}{3} \\
& I_{4}=\frac{Y_{C}^{+{ }^{+}}}{2}\left(\text { Alny }_{C}^{+}-\frac{A}{2}+B_{1}\right)-\frac{Y_{L}^{+{ }_{2}^{2}}}{2}\left(A \ln Y_{L}^{+}-\frac{A}{2}+B_{1}\right)
\end{aligned}
$$

Define: $\quad C \equiv \frac{q_{w} D}{k \operatorname{Re} \sqrt{f / 2}}$
then

$$
\begin{align*}
& I_{2}=\left(T_{W}-C y_{L}^{+}\right)\left[\frac{B_{1}}{2}\left({y_{C}^{+}}^{2}-y_{L}^{+}{ }^{2}\right)+A\left(y_{C}^{+{ }^{2}} \ln y_{C}^{+}-\frac{y_{C}^{+{ }^{2}}}{4}\right.\right. \\
& \left.\left.-\frac{y_{L}^{+{ }^{2}}}{2} \ln Y_{L}^{+}+\frac{y_{L}^{+}}{4}\right)\right]-\frac{C_{1} A}{\operatorname{Pr} \lambda}\left(\frac{y_{C}^{+}}{2} \ln \frac{Y_{C}^{+}}{y_{L}^{+}}-\frac{y_{C}^{+{ }^{2}}}{4}+\frac{y_{L}^{+{ }^{2}}}{4}\right)-I_{5} \tag{B-2}
\end{align*}
$$

where

$$
\begin{align*}
I_{5}= & \frac{q_{w} D A^{2}}{\operatorname{Pr} \lambda k \operatorname{Re} \sqrt{f / 2}}\left[\frac{\left(y_{C}^{+} \ln y_{C}^{+}\right)^{2}}{2}-\left(\frac{y_{C}^{+{ }^{2}}}{2} \ln y_{C}^{+}-\frac{\mathrm{y}_{\mathrm{C}}^{+}}{4}\right)\left(1+\ln \mathrm{y}_{\mathrm{L}}^{+}\right)\right. \\
& \left.-\frac{\left(\mathrm{y}_{\mathrm{L}}^{+} \ln \mathrm{y}_{\mathrm{L}}^{+}\right)^{2}}{2}+\left(\frac{\mathrm{y}_{\mathrm{L}}^{+}}{2} \ln \mathrm{y}_{\mathrm{L}}^{+}-\frac{\mathrm{y}_{\mathrm{L}}^{+}}{4}\right)\left(1+\ln \mathrm{y}_{\mathrm{L}}^{+}\right)\right] . \tag{B-3}
\end{align*}
$$

To simplify equation $B-2$, define these constants

$$
\begin{align*}
& \theta_{1} \equiv \frac{B_{1}\left(\mathrm{y}_{\mathrm{C}}^{+{ }^{2}}-\mathrm{y}_{\mathrm{L}}^{+{ }^{2}}\right)}{2}+\mathrm{A}\left(\frac{\mathrm{y}_{\mathrm{C}}^{+{ }^{2}} \ln \mathrm{y}_{\mathrm{C}}^{+}}{2}-\frac{\mathrm{y}_{\mathrm{C}}^{+{ }^{2}}}{4}-\frac{\mathrm{y}_{\mathrm{L}}^{+{ }^{2}} \ln \mathrm{y}_{\mathrm{L}}^{+}}{2}+\frac{\mathrm{y}_{\mathrm{L}}^{+{ }^{2}}}{4}\right) \\
& \text {.....(B-4) } \\
& \theta_{2} \equiv \frac{y_{c}^{+{ }^{2}}}{2} \ln \left(\frac{y_{c}^{+}}{y_{L}^{+}}\right)-\frac{{y_{c}^{+}}^{2}}{4}+\frac{y_{L}^{+{ }^{2}}}{4} \tag{B-5}\\
& \theta_{3} \equiv \frac{\left(y_{c}^{+} \ln y_{C}^{+}\right)^{2}}{2}-\left(\frac{y_{c}^{+}{ }^{2} \ln y_{C}^{+}}{2}-\frac{y_{c}^{+}}{4}\right)\left(1+\ln y_{L}^{+}\right)-\frac{\left(y_{L}^{+} \ln y_{L}^{+}\right)^{2}}{2} \\
& +\left(\frac{\mathrm{y}_{\mathrm{L}}^{+{ }^{2}} \ln \mathrm{y}_{\mathrm{L}}^{+}}{2}-\frac{\mathrm{y}_{\mathrm{L}}^{+}}{4}\right)\left(1+\ln \mathrm{y}_{\mathrm{L}}^{+}\right) .
\end{align*}
$$

Substitute equations ($B-3$) through ($B-6$) back into I_{2} of equation ($B-2$). Then

$$
I_{2}=T_{w}-\left(\frac{q_{w} D y_{L}^{+}}{k \operatorname{Re} \sqrt{f / 2}}\right) \theta_{1}-\frac{q_{w} D B_{1} A \theta_{2}}{k \operatorname{Re} \sqrt{f / 2} \operatorname{Pr} \lambda}-\frac{q_{w} D A^{2} \theta_{3}}{k \operatorname{Re} \sqrt{f / 2} \operatorname{Pr} \lambda} .
$$

$$
\ldots(B-7)
$$

Since $y_{L}^{+} \ll y_{c}^{+}$, then appropriate simplifications may be made in $\theta_{1}, \theta_{2},{ }^{L}$ and θ_{3}^{C} when evaluating $N u$ in equation (26).

Appendix C

Evaluating the Nusselt Number by Numerical Integration

The Nusselt number was computed by numerical integration as a check on our algebra. This method involved summing several integrals over a given area by the rectangular method.

$$
N u=\frac{h D}{k}=\frac{-D}{T_{w}-T_{b}} \frac{\partial T}{\partial y}
$$

where

$$
\frac{\partial T}{\partial y}=-\frac{q_{w}}{k}
$$

The bulk temperature consisted of four numeric integrations: I_{1}, I_{2}, I_{3}, and I_{4}, as explained earlier in the text. Note that I_{1}, I_{2}, I_{3}, and I_{4} were strict integrations earlier where now they are numeric integrals. Note that I_{1} is equal to:

$$
I_{1}=\sum_{n=1}^{m} T u_{n}^{+} y_{n}^{+} \Delta_{n} y^{+} \quad \ldots \ldots(C-1)
$$

over the interval $0 \leq \mathrm{y}^{+} \leq \mathrm{y}_{\mathrm{L}}^{+}$.
In subsequent notation, the subscript n and the limits will be understood but not written. With

$$
u^{+}=y^{+}
$$

and

$$
T=T_{w}-\frac{q_{w} y^{+} v}{k u_{*}}
$$

substituted into equation ($C-1$), we have

$$
\mathrm{I}_{1}=\mathrm{T}_{\mathrm{w}} \sum \mathrm{y}^{+^{2}} \Delta \mathrm{y}^{+}-\frac{\mathrm{q}_{\mathrm{w}}^{\nu}}{k u_{*}} \sum \mathrm{y}^{+^{3}} \Delta \mathrm{y}^{+} . \quad \ldots \ldots(\mathrm{c}-2)
$$

Now

$$
I_{2}=\sum_{n=1}^{m} T_{n} u_{n}^{+} y_{n}^{+} \Delta_{n} y^{+}
$$

over the interval

$$
\mathrm{y}_{\mathrm{L}}^{+} \leq \mathrm{y}^{+} \leq \mathrm{y}_{\mathrm{C}}^{+}
$$

with

$$
\mathrm{u}^{+}=\mathrm{Aln}^{+}+\mathrm{B}_{1}
$$

and

$$
T=T_{w}-\frac{q_{w} D}{k \operatorname{Re} \sqrt{\frac{f}{2}}}\left[\frac{A}{\operatorname{Pr\lambda }} \ln \left(\frac{y^{+}}{y_{L}^{+}}\right)+Y_{L}^{+}\right] .
$$

In subsequent notation the subscript n and the limits will be left out. Substitute for u^{+}and T in equation ($\mathrm{C}-3$).

$$
\begin{align*}
& I_{2}=\left[T_{W} A-\frac{A q_{w} \nu y_{L}^{+}}{k u_{*}}\right] \sum y^{+} \ln y^{+} \Delta y^{+} \\
& +\left[T_{w} B-\frac{B q_{w}^{\nu} y_{L}^{+}}{k u_{*}}\right] \sum y^{+} \Delta y^{+}-\frac{A^{2} q_{w}^{\nu}}{k u_{*} \operatorname{Pr} \lambda} \sum y^{+} \ln y^{+} \ln \frac{y^{+}}{y_{L}^{+}} \Delta y^{+} \\
& -\frac{\mathrm{Bq}_{\mathrm{w}} \nu \mathrm{~A}}{\mathrm{ku} \mathrm{a}_{*} \operatorname{Pr} \lambda} \sum \mathrm{y}^{+} \ln \frac{\mathrm{y}^{+}}{\mathrm{y}_{\mathrm{L}}^{+}} \Delta \mathrm{y}^{+} . \tag{c-4}
\end{align*}
$$

Now

$$
I_{3}=\sum_{n=1}^{m} u_{n}^{+} y_{n}^{+} \Delta_{n} y^{+}
$$

over the interval

$$
0 \leq \mathrm{y}^{+} \leq \mathrm{y}_{\mathrm{L}}^{+}
$$

The subscript n and the limits will not be written hereafter. We use

$$
u^{+}=y^{+}
$$

and substitute u^{+}in equation (C-5)

$$
\begin{equation*}
I_{3}=\sum \mathrm{y}^{+^{2}} \Delta \mathrm{y}^{+} \tag{c-6}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{I}_{4}=\sum \mathrm{u}^{+} \mathrm{y}^{+} \Delta \mathrm{y}^{+} \tag{c-7}
\end{equation*}
$$

over the interval

$$
\mathrm{Y}_{\mathrm{L}}^{+} \leq \mathrm{Y}^{+} \leq \mathrm{Y}_{\mathrm{C}}^{+} .
$$

The subscript n and the limits are understood. In this interval, $\mathrm{u}^{+}=\mathrm{Aln} \mathrm{y}^{+}+\mathrm{B}_{1}$. Substitute u^{+}in equation ($\mathrm{C}-7$). Then

$$
\mathrm{I}_{4}=\mathrm{A} \sum \mathrm{Y}^{+} \ln \mathrm{y}^{+} \Delta \mathrm{y}^{+}+\mathrm{B}_{\mathrm{l}} \cdot \sum \mathrm{y}^{+} \Delta \mathrm{y}^{+} .
$$

$I_{1}, I_{2}, I_{3}, I_{4}$, can be simplified by using

$$
\begin{equation*}
I_{6}=y^{+^{2}} \Delta y^{+} \tag{C-9}
\end{equation*}
$$

$I_{7}=y^{+{ }^{3}} \Delta y^{+}$
..... (C-10)
$\mathrm{I}_{8}=\mathrm{y}^{+} \ln \mathrm{y}^{+} \Delta \mathrm{y}^{+}$

$$
\begin{equation*}
I_{g}=y^{+} \Delta y^{+} \tag{C-12}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{I}_{10}=\mathrm{y}^{+} \ln \mathrm{y}^{+} \ln \frac{\mathrm{y}^{+}}{\mathrm{y}_{\mathrm{L}}^{+}} \Delta \mathrm{y}^{+} \tag{C-13}\\
& \mathrm{I}_{11}=\mathrm{y}^{+} \ln \frac{\mathrm{y}^{+}}{\mathrm{y}_{\mathrm{L}}^{+}} \Delta \mathrm{y}^{+} .
\end{align*}
$$

..... (C-14)

Substitute equations (C-9) to (C-14) into equations (C-2), (C-4), ($\mathrm{C}-6$) and ($\mathrm{C}-8$). Then,

$$
\begin{align*}
& I_{1}=T_{w} \sum I_{6}-\frac{q_{w}{ }^{\nu}}{k u_{*}} \sum I_{7} \tag{C-15}\\
& I_{2}=\left[T_{w}^{A}-\frac{A q_{w}^{\nu} y_{L}^{+}}{k u_{*}}\right] \sum I_{8}+\left[T_{w} B-\frac{B q_{w}^{\nu} y_{L}^{+}}{k u_{*}}\right] \sum I_{9} \\
& -\frac{A^{2} q_{w}{ }^{\nu}}{k u_{*} \operatorname{Pr} \lambda} \sum I_{10}-\frac{B q_{w} \nu A}{k u_{*} \operatorname{Pr} \lambda} \sum I_{11} \tag{c-16}\\
& I_{3}=\sum I_{6} \\
& I_{4}=A \sum I_{8}+B_{1} \sum I_{9} . \\
& \text {..... (C-17) } \\
& \text {..... (C-18) }
\end{align*}
$$

Let

$$
\begin{equation*}
{ }_{4}=\sum I_{6}+A \sum I_{8}+B_{1} \sum I_{9} . \tag{C-19}
\end{equation*}
$$

$$
C-5
$$

Remember that T_{b} is defined as

$$
T_{b} \equiv \frac{I_{1}+I_{2}}{I_{3}+I_{4}}
$$

and that Nu is defined as

$$
N u=\frac{D}{T_{w}-T_{b}} \frac{q_{w}}{k}
$$

Substituting for T_{b} we get

$$
\mathrm{Nu}=\frac{\mathrm{D}}{T_{w}-\left(\frac{I_{1}+I_{2}}{I_{3}+I_{4}}\right)} \frac{q_{w}}{k}
$$

Substitute for I_{1}, I_{2}, I_{3}, and I_{4} from equations ($C-15$) to (C-18)
and use equation $(C-19)$. Then

$$
N u=\operatorname{Re} \frac{f}{2}\left[\frac{{ }^{\theta} 4}{\sum I_{7}+\frac{A^{2}}{P r} \sum I_{I 0}+\frac{B_{1}{ }^{A}}{P r} \sum I_{I 1}+A y_{L}^{+} \sum I_{8}+B y_{I}+\sum I_{9}}\right]
$$

Equation (C-20) agreed with equation (26) to four significant figures when $n=20$ and to six significant figures when $n=200$.

Appendix D
Refractive Index Study
(a) Weissberger, A., Technique of Organic Chemistry, Physical Methods of Organic Chemistry, Vol. l, Part II, Interscience Publishers, Inc., New York, 1949
(b) Tilton, L. W., "Testing and Accurate Use of Abbe-Type Refractometers," J. Opt Soc Amer, Vol.32, July 1942, pp.371-38
(c) Tilton, L. W., "Standard Conditions for Precise Prism Refactometry," J. Res. Nat. Bu. Stds. Vol. I4, Apr 1935, pp. 393-418
(d) Tilton, L. W., and J. K. Taylor, "Refractive Index and Dispersion of Distilled Water for Visible Radiation at Temperature of 0° to $60^{\circ} \mathrm{C}, " \mathrm{~J} . \operatorname{Res.~Nat.~Bu.~Stds.,~Vol.~20,~}$ Apr 1938, pp. 419-477
(e) Waxler, R. M., and C. E. Weir, "Effect of Pressure and Temperature on the Refractive Indices of Benzene, Carbon Tetrachloride, and Water," J. Res. Nat. Bu. Stds. Vol. 67A, Mar-Apr 1963, pp. 163-171
(f) Rosen, J. S., "The Refractive Indices of Alcohol, Water, and Their Mixtures at High Pressures," J. Opt Soc Amer, Vol. 37, No. 11, Nov 1947, pp. 932-938
(g) "Refractive Index of Viscous Materials," Amer. Soc. Testing Mat., ASTM Designation D 1747-62, Part 18, 1962
(h) "Refractive Index and Refractive Dispersion of Hydrocarbon Liquids," Amer. Soc. Testing Mat., ASTM Designation D 1218-61 Part 18, 1961

Tests were performed to determine whether the refractive index of Polyox could be used as an indication of concentration. An Abbe-type refractometer (references (a), (b), and (c)) was used to compare the refractive indices of Polyox solutions with that of water.

METHOD
Our technique was developed by taking the refractive index of several organic solvents and water and checking our results with standard references (references (d) through (h)).

The Polyox solutions were prepared by adding a $\mathrm{CCl}_{3} \mathrm{~F}$ slurry of Polyox to distilled water revolving at 100 rpm . The dispersions were then allowed to solvate motionlessly overnight. Next, the solutions were brought to volume in a volumetric flask. The refractometer was calibrated with distilled water and with isopropanol. Finally, the refractive index of Polyox solutions of 500 and 2000 ppm were measured.

APPARATUS

Refractometer - Bausch \& Lomb precision Abbe-type, having a range in refractive index of 1.30 to 1.63.

Mixer - Corning Glass Works, Model PC 351.
Light Source - The light was a sodium arc lamp furnished with the instrument.

Transformer - George W. Gates \& Co.

DATA AND DISCUSSION
The data collected were recorded in the following tabulation. Though the refractive index was measured to six significant figures, notice that the fourth significant figure was not reproducible. This was because no temperature control was used while this cursory experiment was performed. Had the index of 2000 ppm Polyox solution varied by at least 0.01 , we would have used temperature control to gain exact data.

Refractive Indices

Date	Substance	Index of Refraction
$4 / 23 / 70$	500 ppm Polyox Distilled Water	1.33497
500 ppm Polyox	1.33484	
Isopropanol (Calibration)	1.37760	
2000 ppm Polyox	1.33278	
Isopropanol (Calibration)	1.37542	
Isopropanol (Calibration)	2000 ppm Polyox Distilled (Calibration)	1.333635

CONCLUSIONS

Refractive index is not a useful method of measuring Polyox concentration because the change in refractive index lacks sufficient magnitude.

NAVSHIPS (SHIPS 03L)
(Dr. J. H. Huth) (3).
NAVSHIPS (SHIPS 034)
NAVSHIPS (SHIPS 03412)
NAVSHIPS (SHIPS 037)
NAVSHIPS (SHIPS 037C) (2)
NAVSHIPS (PMS 381)
NAVSHIPS (SHIPS 425)
NAVSHIPS (SHIPS 2052) (2)
NAVSHIPS (PMS 393)
NAVSHIPS (SHIPS 0371)
NAVSHIPS (SHIPS 031)
NAVSEC (SEC 6103)
NAVSEC (SEC 6110)
NAVSEC (SEC 6114D)
NAVSEC (SEC 6111)
NAVSEC (SEC 6136)
NAVSECPHILADIV
NSRDC (Code 513)
NSRDC (Code 508)
NSRDC (Code 581)
NSRDC (Code L42) (10)
DDC (20)
Chief of Naval Research (Code 438)
(Mr. Ralph D. Cooper)
ONR, Branch Office (Dr. A. Wood)
NRL (Dr. R. C. Little)
NURDC (Codes 2501, 254, 2543)(3)
3202 E. Foothill Boulevard
Pasadena, Calif. 91107
NURDC
(H. V. L. Patrick)

San Diego, Calif. 92132
NUWRES (2)
(J. F. Brady and R. Nadolink)

NAVORD (Codes 035 and 054131) (2)
Dept of Naval Architecture
College of Engrg.
Univ. of Calif.
Berkeley, Calif. 94720
(Prof. J. V. Wehausen)
Calif. Inst. Of Tech. (2)
1201 E. California Boulevard
Pasadena, Calif. 91109
(Dr. A. J. Acosta)
(Dr. T. Y. Wu)
Univ. of Conn.
Box U-37
Hydraulic Research Lab.
Storrs, Conn. 06268
(Prof. V. Scottron)

Harvard Univ.
Pierce Hall
Cambridge, Mass. 02138
(Prof. G. J. Carrier)
Univ. of Ill.
College of Engrg.
Theoretical \& Applied
Mechanics Dept.
Urbana, Ill. 61801
(Dr. J. M. Robertson)
Brown Univ.
Providence, R. I. 02912
(Prof. R. I. Tanner)
Univ. of Iowa
Iowa City, Iowa 52240
(Dr. Hunter Rouse)
Univ. of Iowa (2)
Iowa Inst. of Hydraulic Research
Iowa City, Iowa 52240
(Dr. L. Landweber)
(Dr. J. Kennedy)
Mass. Inst. of Tech.
Dept. of Naval Architecture and Marine Engrg.
Cambridge, Mass. 02139
(Dr. A. H. Keil)
Univ. of Mich.
Dept of Naval Architecture and Marine Engrg.
Ann Arbor, Mich. 48104
(Dr. T. J. Ogilvie)
St. Anthony Falls Hydraulic
Lab. (5)
Univ. of Minn. Mississippi River at 3rd Ave., S. E. Minneapolis, Minn. 55414
(Director)
(Mr. J. M. Killen)
(Mr. F. Schiebe)
(MR. J. M. Wetzel) (Mr. J. Ripkin)
U. S. Naval Academy (3)

Annapolis, Md. 21402
(Library)
(Dr. Bruce Johnson)
(Dr. A. Adams)
U. S. Naval Postgraduate School

Dept. of Mechanical Engrg.
Monterey, Calif. 93940
(Dr. T. Sarpkaya, Code 59)

Pennsylvania State Univ. (3)
Ordnance Research Lab.
University Park, Pa. 16801
(Director)
(Prof. John Lumley)
(Dr. Sevir)
Colorado State Univ. Dept. of Civil Engrg. Ft. Collins, Colorado 80521
(Dr. J. P. Tullis)'
Stanford Univ.
Stanford, Calif. 94305
(Prof. R. L. Street)
Stevens Inst. of Tech.
Davidson Lab.
711 Hudson St.
Hoboken, New Jersey 07030
(Dr. J. Breslin)
Hydronautics, Inc. (3)
Pindell School Rd.
Laurel, Md. 20810
(Mr. P. Eisenberg)
(Mr. M. Tulin)
(Mr. J. Wu)
National Science Foundation
Engrg. Div.
1800 G. Street, N. W.
Washington, D. C. 20550
(Director)
Univ. of Calif. at San Diego
Dept. of Applied Mechanics
P.O. Box 109

La Jolla, Calif. 92038
(Dr. Albert T. Ellis)
Naval Scientific and Technical
Intelligence Center
4301 Suitland Rd.
Washington, D. C. 20390 (Code 234)
The Western Co.
2201 N. Waterview Parkway
Richardson, Texas 75080
(N. F. Whitsitt)

Union Carbide Co.
P.O. Box 65

Tarrytown, N. Y. 10591
(Dr. F. W. Stone)
Esso Research and Engineering
Co., Government Research Lab.
P.O. Box 8 , Bldg. 8

Linden, New Jersey 07036
(Mr. Lieberman)
Report 7-472, January 1971

Maritime Administration (2)
Office of R\&D
441 G. Street, N. W.
Washington, D. C. 20235
(R. Falls)
(Director)
Lone Star Gas
Dallas, Texas 75240
(Dr. Horace Crawford)
General Electric Co. (4)
R\&D Center
Schenectady, N. Y. 12301
(W. B. Giles)
(F. W. Staub)
(J. C. Corman)
(S. D. Savkar)

Univ. of Delaware
Dept. of Chemical Engrg.
Newark, Deleware 19711
(Prof. A. B. Metzner)
Univ. of Mo.
Dept. of Chemical Engrg.
Rolla, Mo. 65401
(Prof. G. K. Patterson
Mobil Field Research Lab.
P.O. Box 900

Dallas, Texas 75221
(J. G. Savins)

LTV Research Center (2)
P.O. Box 6144

Dallas, Texas 75222
(C. S. Wells)
(W. A. Meyer)
U. S. Army Mobility Equipment

R\&D Center
Fort Belvior, Va. 22060
(Kenneth L. Trieber)
Columbia Research Corp. (2)
P.O. Box 485

Gaithersburg, Md. 20760
(Patrick A. Crowley)
(Norman C. Witbeck)
Mochson Ocean Research and Engrg.
875 Brooktree Rd.
Pacific Palisades, Calif. 90272
(Dr. M.Mochson)

(Authors)

[^0]: $\overline{l_{\text {Superscripts }}}$ refer to similarly numbered entries in the Technical References at the end of the text.

[^1]: *Abbreviations used in this text are from the GPO Style Manual, 1967, unless otherwise noted.

