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From: Commanding Officer and Director, David Taylor Model Basin
To: Chief, Bureau of Ships (442) (in duplicate)

Subj: Elastic shell buckling of ring-stiffened cylinders;
forwarding of report on

Encl: (1) DTMB Report 1614 entitled, "Elastic Lobar Buckling of
Ring-Supported Cylindrical Shells under Hydrostatic
Pressure" (2 copies)

1. One of the problems relating to the strength of stiffened
cylindrical shells under hydrostatic pressure is the local
elastic buckling of the shell between stiffeners. Although this
problem has received considerable study, the results of analyti-
cal and experimental work for shells with closely-spaced stif-
feners have not been entirely satisfactory. Theoretical studies
have failed to account adequately for the influence of the stif-
feners on buckling strength, while elastic buckling failures
have seldom been observed experimentally because of fabrication
imperfections and inadequate yield strengths of the material
used in structural models. As part of a program at the David
Taylor Model Basin to investigate the fundamental behavior of
shell structures, efforts have been directed toward eliminating
these deficiencies. Enclosure (1) presents the results of
recent theoretical and experimental studies.

2. In enclosure (1) a small-deflection analysis is developed
for elastic interframe buckling which takes into account the
influence of the frames on deflections before and during buckling,
Tests of a machined, ring-stiffened cylinder are described in
which collapse by elastic buckling was observed. The buckling
pressures for this and three other cylinders, previously reported
are in good agreement with the new solution, but exceed those
given by the solution of Von Mises.
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ABSTRACT

A small-deflection analysis is developed for the elastic interbay

buckling of ring-stiffened cylindrical shells in which the influence of the

rings on deformations before and during buckling is considered.

Tests were carried out with a machined, ring-stiffened cylinder

(BR-4B) subjected to external hydrostatic pressure. Collapse was initi-

ated by elastic asymmetric buckling of the shell. Strain measurements

taken during the test demonstrated that the Southwell method of determin-

ing buckling strength nondestructively is applicable in the case of inter-

bay buckling.

The results of this and three other tests of machined cylinders are

in good.agreement with the theory. While the Von Mises theory is inac-

curate for closely spaced rings, its continued application for estimating

elastic buckling strength is probably justified since it is always conser-

vative and can be represented in a simple form.

INTRODUCTION

One problem in the field of pressure-vessel design that has been of

particular interest for many years is the elastic instability of thin cylin-

drical shells under hydrostatic pressure. In practice, it is the buckling

which occurs between closely spaced ring stiffeners as shown in Figure 1.

Despite the considerable study which this problem has received, some

additional investigation appeared needed in at least two areas. One of

these concerned experimental work with short shells since a thorough

evaluation of theory was still lacking. The other involved the analytical

study of the influence of the rings on the buckling strength. Several in-

vestigators have considered this effect, but in each case it seemed that

the treatment has been either approximate or incomplete.

As part of a continuing program at the Model Basin to study the

phenomenon of shell instability, effort has been directed toward eliminat-

ing some of these deficiencies. The present report, which gives the re-

sults of this effort, is divided into three sections.



The first deals with the devel-

opment of a small deflection analysis

which accounts for the restraint pro-

vided by the rings. This is done by

expressing the deflection both before

and during buckling in trigonometric

series form and obtaining a solution

through the use of energy methods.

The special cases of simple and

clamped support are also treated.

In addition, the significance of in-

cluding the energy associated with

bending stresses developed prior to

buckling is examined. Much of the

work is based on relations derived

in appendixes.

The second section describes

tests of a machined cylinder desig-

nated Model BR-4B. This includes

a discussion of strain data, buckling

strength, and mode of collapse. The

applicability of the Southwell method
Figure 1 - Shell Instability for determining shell buckling strength

is also examined.

In the third section, the present analysis and others are evaluated

on the basis of the test results of Model BR-4B and of recent tests of

three other machined cylinders.

BACKGROUND

In view of all the effort that has been devoted to the study of the

elastic instability of cylindrical shells, it is rather curious that there has

yet to be a thorough confirmation of theory by experiment, at least where

closely spaced stiffeners are concerned. Surprisingly enough, this has



not been the case with the problem

of general instability wherein both

rings and shell undergo extensive

deformations (Figure 2). It is due

largely to the theoretical work of

'Kendrick ' ,' among others, and

a rather extensive experimental

program conducted at the Model

Basin 4, 5,6 that the elastic general

instability problem has for all prac-

tical purposes been solved. This

progress is even more striking when

it is realized that no rigorous ana-

lytical solution was undertaken

prior to the work of Salerno and

Levine7 in 1951.

What then, accounts for the

slower progress on a problem which

would appear the simpler of the two

and which has been studied over a

much longer period? Basically it

is the disparity which has persisted Figure 2 - General Instability

in varying degree between the phys-

ical conditions prevailing in the ex-

periments and those which have received theoretical consideration.

First, let it be said that theoretical development has lacked neither
variety nor distinction. The case of a simply supported shell of finite
length under radial pressure was first treated by Southwell in 1913.8

The next year Von Mises presented a more exact analysis, 9 which he ex-
tended in 1929 to include end pressure. 10 In that same year, Tokugawa1 1

published almost identical results to those of Von Mises. While rightly
regarded as classics today, these analyses are not completely rigorous

1 References are listed on page 101.
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in that they do not account for the influence of the boundary conditions on

deflections prior to buckling. This influence is unimportant for relatively

long shells, but it may not be for short shells such as are embodied in

submarine hulls. Recognizing this, Von Sanden and T61ke' 2 in 1932 pub-

lished a comprehensive paper on the buckling of shells wherein the effect

was considered. Their results included not only the case of simple sup-

port but that for finite stiffening rings as well. In this latter case, how-

ever, they assumed that during buckling, the rings merely provide simple

support. Using a different mathematical approach, Kendrick z also ob-

tained a solution to this problem. While neither analysis included the

rotational restraint which the rings presumably would provide during

buckling, the results showed that buckling pressures for short ring spac-

ings can be significantly higher than those given by either Von Mises or

Tokugawa.

Salerno and Levine 13', 14 were apparently the first to include the in-

fluence of stiffeners on the buckling deformations. Unfortunately, in

computing the buckling pressure, they neglected the prebuckling defor-

mations altogether. Because of this shortcoming and because of certain

errors in their energy expressions, the analysis is not considered cor-

rect. Others, notably Sturm15 and Nash,16 investigated the consequences

of having stiffeners which provide full fixity. The resulting buckling pres-

sures were much higher for closely spaced stiffeners than for the case of

simple support, even though the effect of the boundary conditions on the

prebuckling deformations was neglected.

Still others have studied the possibility of "snap-through" buckling

at pressures much lower than the small deflection analyses just mentioned

might predict. Notable contributions to this development of large deflec-

tion theory include the work of Donnell, 1' 7 18 Langhaar and Boresi, 19 and

Kempner and Crouzet-Pascal. 20 These studies have shown generally that

the phenomenon of "snap-through" in cylindrical shells under hydrostatic

pressure is possible and that the associated buckling pressure is some-

what influenced by geometrical imperfections. Experimental studies by

Kirstein and Wenk 2 1 have borne out these conclusions. So far, however,

it has been difficult to assess quantitatively the imperfections present in

test structures. It has also been recognized that such imperfections can

al Ib IIII I I I I I I



have an important influence on the stresses existing in the shell prior to

buckling. Sturm,' 5 Bodner and Berks, z and Galletly and Bart,2 3 for ex-

ample, have shown that as a result of irregularities in circularity, the

stresses can be so greatly increased that inelastic collapse can occur at

a pressure well below that which elastic buckling theory would predict.

Inelastic buckling, which is frequently the mode of collapse for effi-

ciently designed shells, has also received some attention in recent years.

For example, the work of Gerard,2 4 ' z5 Lunchick,2 6 Nott,27 and Reynolds 28

have shown that inelastic buckling strength can often be predicted with

reasonable accuracy even though the complexity of the problem virtually

precludes a rigorous analysis. These investigators, it should be noted,

have had the benefit of much more experimental data than has been avail-

able for the study of elastic buckling.

It is because of this lack of data that a thorough evaluation of elas-

tic buckling theory has not been possible. Most of the elastic data from

Windenburg's studies, 29 for example, have been in the long-shell range,

whereas data for short shells, i.e., those with closely spaced stiffeners,

are extremely limited. This results fr6m the fact that the source of much

of the available data for short shells has been proof tests of pressure ves-

sels designed for structural efficiency rather than for the study of elastic

buckling. Such structures are so designed that collapse rarely occurs

before stresses have exceeded the elastic limit of the material. Conse-

quently, tests of this nature seldom provide pertinent data for the evalua-

tion of elastic buckling theory, although they have sometimes been used

for that purpose. On the other hand, some cylinders specifically designed

to buckle elastically have apparently suffered premature failure by reason

of geometric imperfections, residual fabrication stresses, and other un-

controllable factors. Tests of Models BR-130 and BR-5 31 conducted at the

Model Basin are examples in which this problem was encountered. How-

ever, even if all these experimental difficulties had not existed, the vari-

ous theories then available still have not considered realistically the

actual conditions existing at the shell boundaries.

Nearly all the available data have come from tests of ring-stiffened

cylinders, yet most analytical solutions are based on arbitrary assump-

tions regarding the boundary conditions which the stiffeners impose on

, lI wiul 11.
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the shell. One remedy would be to attempt to duplicate in the laboratory

a set of idealized conditions as assumed for the theory. However, the

best one could do with such a procedure would be to establish the applica-

bility of a certain formula in the special case, for instance, of simple

support. The question of what formula is reliable for the case actually

encountered in practice would still be unanswered.

The recent successes in the studies of general instability using

machined cylinders of high-strength steel ' ' 6 strongly indicate that the

problems associated with imperfections, insufficient yield strength, etc.,

could be overcome and that elastic instability in short, ring-stiffened

shells would be experimentally possible. It seemed reasonable, there-

fore, to undertake an experimental study using a machined, ring-stiffened

cylinder designed to collapse by elastic instability. At the same time, it

appeared worthwhile to explore the possibilities of an analytical approach

whereby the boundary conditions imposed by the rings could be treated

more realistically.

PART I - THEORY

GENERAL ANALYSIS

The structure under consideration is a circular cylindrical shell of

infinite length reinforced by regularly spaced uniform ring frames, as

shown in Figure 3. The shell is assumed to be isotropic, and its thick-

ness is small compared to its radius so that the problem is restricted to

two dimensions.

There is ample experimental evidence (e. g., Figure 1) that under

hydrostatic pressure, asymmetric (lobar) buckling occurs in the mode

shown schematically in Figure 4. Such a pattern, it will be seen, repeats

itself at every other frame. Consequently, in computing the total poten-

tial of the cylinder in its buckled state, it is convenient to carry out the

calculation over any two adjacent frame spaces.

The total potential UT of the system is defined by

UT = Us + Uf- W [1]

r~ ~_ I I I I I 'I
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Figure 3 - Stiffened Cylinder and
Coordinate System

where Us

Uf

Figure 4 - Asymmetric Shell
Buckling Mode

is the strain energy of the sh'ell,

is the strain energy of the frames, and

W is the work done by the external pressure.

Referring to Appendixes A, B, and C, where these three quantities are

derived, we have for the total potential

12Lf0  r u2+ ux
0 

0UT - EhR

2(1-v2

2
2 2 2+ M\

(vx +wx)+M +MR + N2) + 2 v [uxM

22

+ 2  +N2

+ 2 vx + (w

N -u2v

,N - ux'x

+ ('?) [(vx

e M) dx d

[2]
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2 Lf 27T 2 [Z w )]
R wxx + ux Nx- wxx (Nxx +xxWx+ ux WxxEh 3

24R(1-v)

+ N + Mw 2

0 X0 - 2N (u66

+ 2v[Rwxx NO + u O

2
wx0

2

w X

R
M 0 N + MN 0 -

w x

R
Rwxx (u 0

- RN o (Nv x x + u wx + u wxx) + R 2 N 2
xx x x xxx

2Wx
2

+ MO N + MN0

M]

(RN + wxO) 2 - 2 (v x
+ R) (R2 Wxx Nx

+ wx0 N0 )

2 (RN x + wxO)(2uxO w x + u 0 w x x + ux w x o + RMx N + RMNx

+ Rvx x x + N Vx +
N

Nvx0 + Rux N x + u 0R + Wx0 M)

2
ER Af

2(R+e) i=
i=0

:2 [M2
0

e WxO
R+e u0 R

eN
o

R+e

2
(UO

R
2

2

+ MR (uO
R+e R 2

- MN0 - M0 N +

+ N2) + IxG
Af R 2

+ N2)

2
wx

2

e2

T2

e
-2 R M

N 2

2

2 N
2

6

wx

- Uo R

(R-e]
R+e

R M(w 2

R+ e x0

wx

R

e wxO

R+e uO R
+ M 0 N + MN o

N2

+2 (-) dO
2 R+e=iLf

-x= iLf

2
w

X

[2]
continued

2
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1
EIzG 2 u6 + e 2 2u

+ w Z - wx -2 w -
2(R+e) 0  R+e R+e x R+e

i=0

R+e X XR+ ewx6 VxN + R+e(Vx6 N + 2Vx6 N6 +xN6) d= iLf

+ EK 3 Z f2T (Rwx + uO) 2 - 2R (Rwx + uO) (v x N
4( 1+ v)( R+ e) 0

i=

+ v x No) dO
x=iLf [2]

continued

pR2  Lf + ux + ux M + + (w 2 + v2)] dxd
2 0 f 0 R R T 2

where

M -= 
+ w
R

wo - v
N =

R

and all terms beyond the third order in the displacements have been dis-

carded. The quantities appearing in Equation [2] are defined as follows:

E is Young's Modulus,

h is the shell thickness,

R is the radius to the shell middle surface,

Lf is the frame spacing,

v is Poisson's ratio,

Af is the area of the frame cross section,

IxG is the moment of inertia of a frame about the centroid in

its plane of curvature (Figure 3),

d 10 11iii ININNYI



IzG is the moment of inertia of a frame about the centroid out

of its plane of curvature (Figure 3),

e is the distance from the frame centroid to the neutral axis

of shell (Figure 3),

K is the torsion constant of the frame (Appendix B),

p is the hydrostatic pressure (positive outward),

6 and x are the angular and axial coordinates (x positive to the

right), and

u, v and w are the axial, tangential and radial displacements, respec-

tively (u positive to the right, w positive outward).

The subscripts indicate differentiation.

During buckling, the system passes from an initial or prebuckling

equilibrium state, in which all deformations are axisymmetric, to the

buckled or asymmetric state. The change in total potential accompanying

this process may be called AUT . The final buckled state will be described

by the deflections uF, vF and wF which are the total of the displacements

developed from the initial application of pressure and are given by

uF= i(x) + u(x, O)

vF= v(x, ) [3]

wF = W(x) + w(x, O)

where u, v, w are the buckling displacements and u, w are the initial or

prebuckling displacements, being axisymmetric in form for the case of

hydrostatic pressure, and satisfying the conditions

(Ux)x= 0 = ( u x ) x = Lf

( )x=0 x( )  [4]x= x= Lf

(WX)x = 0 Wx)x=Lf 0
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To find the change in total potential, we replace u, v, w in Equation [ 2]

by uF' VF, wF and subtract the total potential for the initial equilibrium

state. With only linear and quadratic terms retained, the result is

AUT = EhR

2(1-v2)
M 2 + 2v ux Mf:LffYu2 +

fo fo ( x

2  2+(w +v 2 )-(l
x x

u)- v)
R

vx

v +

2

+ w x 2v w x M

2

+ v- + N2)

+ (I - v)N(v x

(1 - v) vx ( + )

Eh3  2L 27
24R(Eh -v 2+ -----

24R(1-v2) 0 0

-[+ w w2
R x-

22 2
Rw + N + 2vRw N+xx 0 xx

2N + 2v R2
0H,( R

+ 2w x [ wx N - u

- RN Uxx) -(-v

+ Nvxx + uxWx wx +

+ (Vvx + U()2 R

2
N

2
-Rwxx N)

No R 2 u w + v (F
)O R xx xx

)(RNx+ wxO)(2ux 0 + N)]

v (U 0 0

wx

R + M N +

2 v (RN + Wx 0 )2

- ( - v)(RNx +
w -

wx0 )2]

wx xx Wxx UO

- 2R xx [2uxwxx

2
w

MN0 - +
2

N O ux)

(2RN x + wxO)

S(w -

- xx [Rv

RN w) + (-vRNx + wx2]

x w x x + vN o w x
dx dO

+ 2ux wx x + w2x x

dx dO

2 x[ R 2 w2
(xx

N2

2

,[5]

0111 -

2+ [u
S

R UR2
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ER 2A 1 2 7 2f 2  2e w uO2 2e
+ f  

2 -e MN 0 + + N + 2MN0
2(R+e) R R+e (R2 R 2

i=0

2
+ owx e wx + wx N2 R-e

S + M + A-f + N dOR R+e R x= iLf

E(IXG+Afe2) 1 0w R w2 -2N)
+ 2(R+e) J{N2 R 22e (Wx + N 2 ) -2N dO

i=0 x = iLf

EI A 1 1r 2
+U0 - ewxo0)J dO

2(R+ e) wx e (u ewx
i= 0x = iLf

1 27r
EK °

2
+ 2 7 (Rwx + u ) dO

4(1+v)(R+e) 3  0 0 x = Li=0 x= iLf

continued
2 ,2Lf 27 2

pR 2w + x + w 2 +v 2 + ux dxd
+ u2 + f + + u dx dO

2 0 R R R 2

where M and N now involve only the buckling displacements v and w.

As explained in Appendix D, u and w can be expressed by the closed

form solution of Von Sanden and Giinther 32 for the linear case, or by the

more exact nonlinear solution of Pulos and Salerno.3 3 However, as can

be seen from Appendix D, manipulation of either of these solutions could

be extremely cumbersome. Kendrick z provides convincing evidence of

this in an analysis of the same buckling problem.

A simpler approach is to express u and w in terms of infinite trig-

onometric series, as indicated by Von Sanden and Tolke. 12 This has

been carried out in Appendix D with the following results:

pR 2  [ n 2Xmx)]

w = 2 (2 - v) 1 - am cosX [6]

m= -co
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x Eh - 2v + v(- ) am cos continued

m= -co

where, for the equivalent of the Salerno and Pulos solution,

mrR
Lf

am -

am -

Lfh e o
Af (1+) + E am

f m= -co

1

mr4mir
1+4( ) +

p
pR X22 m
Eh m

4
[1 + 4( ) ] (1- P

P Pm

[7]
R2h23

If the pressure term in the denominator of am is neglected, we have the

equivalent of the Von Sanden and Giinther solution: *

am = 4mr
1+ 4 (-)

[8]

This approximate form is found to be sufficiently accurate for the range

of geometry to be considered, particularly since this analysis is not con-

cerned with an examination of stresses and deflections at discrete points.
Co

Appendix D also gives an alternative means of computing Z am for

the approximate form: m= -C

Zam-co
m= -CO

S sinh + sin
2 cosh P-cosp [9]

*A small discrepancy between the series and closed form solutions re-
sults from neglecting the faying width of the frame, as explained in
Appendix D.



Except for very large values of P, however, the convergence is so rapid

that the series form is often the more convenient.

Having the necessary Equations [5] and [6], it is possible at this

point to apply the principle of stationary potential and, through the meth-

ods of variational calculus, proceed to a solution of the problem. The

most rigorous procedure would be to formulate the partial differential

equations of equilibrium and then attempt to solve them. This approach

is rejected here primarily because of the lengthy task which would be in-

volved in obtaining the differential equations. The work of Von Sanden

and Tolkel z indicates that an exact solution to the differential equations

may be entirely possible, provided the initial deflections are expressed

in their trigonometric series form. A simpler procedure which will be

followed here is to apply the Ritz method whereby displacement functions

having arbitrary coefficients are assumed and the problem of satisfying

the condition for stationary potential is reduced to the solution of a system

of algebraic equations.

Since the success of this method depends upon the degree to which

the assumed functions approximate the exact buckling shape, it is impor-

tant to choose a set of functions which permit a wide variation in shape.

Accordingly, the displacements are assumed as follows:

CO

u = cosnO um cos(X )

m=l

v = sin nO vm sin( X )

m= 1

00 [10]

w = cos nO wm sin (10
m=l

where m and n are positive integers and um, v m , wm are the arbitrary

coefficients.

It can be seen from Figure 5 that with appropriate adjustment of

the coefficients, buckling configurations satisfying simple support, r

tial fixity, or full fixity can be generated. It should be recognizP

~rr I I 1 1111



although v and w vanish at each

frame for any set of coefficients, no

generality is lost, since this is one

of the conditions which define the

present buckling problem. Buckling

Simple Support configurations involving radial and

tangential deflections of the rings

properly belong to the category of

overall buckling or general instabil-

ity which is outside the scope of this

analysis.
Patil Fixity While the procedure for solving

the problem in this general form is

straightforward, considerable effort

_r __ would be involved, and the results

would probably be unmanageable.

It is desirable, therefore, to intro-
Full Fixity

duce simplifying approximations

where possible before proceeding
Figure 5 - Buckling Configurations

for Three Degrees of Fixity further. The sections that follow
for Three Degrees of Fixity

consider separately three cases of

interest: partial fixity (finite rings),

simple support and complete fixity (infinite rings). Certain approxima-

tions and methods peculiar to each case are developed which lead to sim-

plified results.

RINGS OF FINITE RIGIDITY

In this case, rings of practical size are considered. The basic

assumption is that the various ring properties are of the same order of

magnitude as comparable quantities for the shell. The basic approxima-

tion is to eliminate the unknown deflections u and v through the use of a

stress function, as explained in Appendix E. The complexity of the buck-

ling equations is thereby reduced by a factor of 3. Since this procedure

constrains u and v, it leads inherently to a higher buckling pressure than



would result if complete generality were preserved. However, other in-

vestigators have found that the error thus introduced is extremely small

for the case of a simply supported shell under hydrostatic loading. The

assumption in this analysis is that the error will also be small in the case

of ring support where the rings are of practical size. In the case of a fully

clamped shell (corresponding to a ring of infinite rigidity), the assump-

tion is not valid for the assumed buckling configuration, Equation [10],

as will be discussed in a later section.

From Appendix E, the equations defining the stress function F(x, 0)

and the deflections are

Ewxx
V 4 F Ewxx- 0

RVF-F

1 Ie
ux = 1 V Fxx

vO = -(Fxx- v -ywRR2R / [11]

uO -2 (l+ v)
x R ER Fx

4 84  284  84
where the operator - + +

8x 4  R 82 8x R 4 80 4

The remaining unknown deflection w is still assumed to have the trigono-

metric series form (Equation [ 10]). If this series is now substituted in

Equations [ 11], the result is

u = cos nO Umwm cos (Xx

m= 1

O[12]

v = sin nO Vmwm sin Xm )

m=l

~... III I I I r I



w = cos nO

F = cos nO

m=l

m=1

Wm sin ( )

fm sin( R

ER 2
m 2 mm

m

Um m- m
Xm

[1 - (1+ V) m] [12]
continued

n tm
Vm 2 [1

m

+ v) m I

2

m
m 22When these quantities are introduced in Equation [5], certain simplifica-m

When these quantities are introduced in Equation [5], certain simplifica-

tions arise. It can be seen that

EhR 2L 2r 2
2 I ~x

2(1-v ) J J

hR f:LfTY{vZ F

M2+ 2v ux +( )
x2

+ 2(1+ v)
[( R)

uE2
v +- 
x R

dx dO

Fxx F0011 dxdOR 2 J

when substitutions are made from Equation [ 11]. Furthermore,

2Lf 20 0
[F20 - Fx x FO] dx dO

[ xO - F = FxFxo 0
00 = 0

,2z7r [F x- 2 Lf

0 x= 0

[14]

dO= 0

[13]

dx

in M1 11119111MIMMI
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because of the periodicity of F in both the x and 0 directions, as indicated

by Equation [12]. Hence Equation [13] becomes

EhR
2( 1-v 2 )
2(1-v )

2Lf Z1. - 2 21 I uo 2
u + M 2 + 2vux M + ( v) + R dx dO

0 j x x 2 x RJ00

hR 2 Lf f 2 Tr

2E 0

[15]

(72 F) 2 dxdO

Equations [12] also provide a useful approximation which is valid for

short shells. The quantity N, which appears repeatedly in Equation [5],

can be written:

= -v
N R

R
- n sin ne

m=

M=l

w m  1 j 1+(l+ v) 4 m ]sin

m

[16]

2m < 1 and, for short shells, X m >> 1, little accuracy will be lost

makes the approximation*

N= w 0
R

-n sin ne

m=l 1

wm sin Xmx)

In addition, it will be seen that several terms in the frame energy inte-

grals vanish at the frames according to Equations [10] and [12].

Accordingly, the simplified form of Equation [5] is

AU = Lf 0Ir
T~ 0Z 0

(V 2 F)2 dxd + Eh 3  2 Lf 2R2 w2
24R (1-v2 ) 10 0 xx

wee 2+2 + ZvWx + 2(1-v)w e dx d

[18]

*The accuracy of this approximation depends not on the size of n but
only on the size of Xm. Its range of validity, therefore, includes the case
of axisymmetric buckling of a short shell (n= 0, 4 m = 1) but not that of
asymmetric buckling of a long shell where Xm may not be large.

Since

if one

[17]
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EIzG
2 (R+ e)

i=0

1

i=0

+ EK

4( 1+v)(R+e) 3

1
R+e (u e

0

27r

10

2
- ewxe)1 dO

x= iLf

(Rwx 0 + u0 )2 dO
x= iLf

P2Lf PIZ7r-ru z+ w 2
+hR tw J r +
211- v2) f-f R- +

0

+ w
w x 2 vw x

S +

v)-- vx +

wo(
R 'x

~+ u + w'

pR

pR 2Lf f27T[

+ w2 + v2 - (1

u x (2w + v O) +

-v)vvx + R)U}

2+ v2 dx dO
R

E(IxG+ Afe 2)

2 (R+e) 2 i= f 27r
,0

w wxO dO
x= iLf

[18]
continued

2 2 u 2e u "_xR R(R+e) - R
i=o 0o

eu 0 wxO
R(R+e)

2
w}d + AUb

x= iLf

where AUb is the portion of the bending strain energy which involves the

initial deflections. * It is given by

*AUb can be simplified further sincef [w~oe R / R )] d

will vanish on integration.

UR )]

dx dO

ER 2 Af

2 (R+e)

ii Y il l I III III, ' A 1111 Ill M INI I L

v(w2 + v2)(1-X X

2u x w x + ( 1 - v)



3 2Lf 27 - 2w2Eh w 2 w6 ]hAUb- - Z (3 - 5v) w2  2 + 2vwxx0w+]
24R(1-v2 J0  R

w wx R 'uxx wxx + v uxxw -( w x  R R + 2vRw x x

+ (1 -v)wx8e( x + w + Rwxx 2R 2ux wxx+ wR xx + uxx wx

u8 u u wx wx wo +w
+ 3(lv)wx vx + + Zv 2 - - + u

0 R) R 2 R R

+ (- W)R + u x - 2R + (3 - 5v) w2e + 2v w wxx
R xx

[19]

+2Rxx Rwx wxx + Wdx d

After the series expressions, Equations [6] and [12], are intro-

duced, Equation [18 ] can be integrated. In so doing, it should be noted

that because the functions of Equation [ 12] are orthogonal in the interval

0 5 x 5 2Lf, coupling of different buckling modes (i, j) will arise only

from the frame energy and from shell energy terms involving products

of the buckling modes with the initial deflections. The resulting inte-

grated form of Equation [ 18] is

7rELf h 2 h2 X4

AUT 2R z m m 2 2
m= 1 m

rEIG z wi j[ i n 2 R e, U i  [ j +2 (Uj
+ (2ddw 3 n2 (U _j I )

2R(R+e)i=l j=1l

Co cO

EK 3wj6ijn2(U i + i)(Uj + Xj)
4 (1+v)(R+e) 3

i=1 j=1

[20]
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n2 RU i
R+e 1

2e (n RU
R R+e

2( 2 - )4 I G + A , e
R2 Af

W n z +
m (

j=1

2 2.- - + -

n R
w w i 6i j R + e xi j

rm)

w i w j ia (i-j [n2

L

- a1(ij) [n2 + 2X (Xi

[20]
continued

- 2X j(i -Xj )ij + qij]

x )lij - qij]} + AUb3+ i - 3'

r = 1 + +  z2m m m

+ (m m [1+ (1

m

+v) 4m]2

1ij = i ( - i) + j(1 - j)

i [1 - ( l-v)(i - j) - €i j ( I - 3v)]

1

1+ 4 4) 1

1

+4[ +]4)[1 - i+jZ% LI j)I

7rLf

4
(2 - v) 71

o
w i wj 6ij [

i=1 j=1

rpLf
+ 4

m

2 pLf C
m= 1

7ipLf
-- (2 - v)rl

4
i= 1

where:

6ij = + (-I)i+j

[ ( 1( - m)(l+ )2 - (1+ 2v)]

a(i-j)

a( i+j)V(i+j)
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AUb has not been given explicitly at this point since it will be necessary to

examine only a few of its characteristic terms. For example, we find

Eh 3  ZLf 2 7T

24R (l-v 2 ) 0 0

aPLf (2-v) Rh212 ]

2w22w w
dx de

R
3

-n2wm-
m=l

This can be compared with other terms, designated by Z, appearing in

AUT :

2n 2wm -(2 - v) n2wi
i=l j=l1

wj [al(ij) - al(i+j)] [22]

22
It is immediately seen that if h n<< 1, which is a reasonable

6R 2

mation for thin shells, I 1 is negligible compared with Z.

Another characteristic term appearing in AUb is

Eh  I
12 = - 4R(1- f

24R(l-v 2 ) 0 0

x Wxe we
2 ( 1 - v) dx dO

R

h2 (l-v)
6R-( I - V?)

Iz nzwiwj i
i=l j=l1 [a (i+j) i j)

2

Comparing 12 with Z, we find that 12 is negligible if 2
,2 6R
h-and -2 (Xi -X j)Xi
6R 2

(Xi + Xj) Xi

are negligible compared with unity. This will hold

for short thin shells except when i or j are large. In such cases, however,

it will be seen from Equation [20] that a (i+j) or a i.j) will be extremely
-Z~j -j)

[21]

-ai(i+j)]]n2wij [aij)
i= j= 1

rpLf
Z 4

approxi-

7rpLf

4

[23]
+ al (j) ( - j)]

I I I _ II I I I , III -



small so that all terms in which either appears as a multiple will be

negligible.

A third term is

Eh 3  2Lf 27r
13 2 vRw wx 2 dxd6

24R(l-v )  Jx

v 7pLf h2  ] V''w 24 (2- v)q2i w. w X.. [al (. -
4 12R(-v2 = ,j j=l ji-j) i

i=1 j=1

2[24]

+ ai(i+j)i + j2

A comparison with Z reveals that 13 will also be negligible so long as

h 2 X. . h 2 X. .(X i - Xj) and h2  (Xi+ Xj) 2 are negligible compared

12R 2 (1-v 2 ) 12R 2 ( l-v 2)

with n 2 . As in the case of 12, when this does not hold, the question no

longer has importance.

It can be shown further that each term appearing in AUb will be one

of these three general types. Hence, the entire integral AUb is negligi-

ble. In other words, the bending stresses associated with the prebuckling

deformations can be neglected.

Inspection of Equation [20] reveals some additional approximations

which can be made. It will be seen from Equation [12] that Um is negli-

gible compared with Xm since pm is always less than unity and Xm is

much greater than unity. Hence,

wm (Um + m) = wm Xm  [25]

It also follows that

2n2+mm 2 2 m(n+  + -rm )  w (n + [26]
m 2 2 m 2

I'lM 11111 illl 611111
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If n 2 >> 1 ,* we can also neglect qij so that

+ qij] i+j) [n 2 + 2 (i + j) lij -qij]

- ai+j) [n 2 +2X j (Xi +X j ) i jiVi+j) 3 i 13

[27]

When i >> j , this approximation will not hold. However, as explained

for 12 and 13. the entire expression (Equation [27]) in such cases is

negligible.

We have then for the approximate form of Equation [20]:

lrELf h co
AUT 2R

Tm 2R
m=1

h2 x4  1
m

12R 2 (-v2) 2
m

nEIZ
+ 7rEIzG

2(R+e)
2R (R+e) ZZw

i= 1 j= 1

w.6ij i + R U.
3 1 3 1 R+ e

eX

R in.
n 2 R
R+e

(U e)]

+ rEKK

4(l+v)(R+e) 3

7rpLf
+ (2

4

7rpLf

4

7rpLf

2
m=

i= Z wi w j 6ij Xi Xj n 2

U i U 
O wij 6ijnR

i=l1 j=l1

(- Iv)xG Af 2

I i=l
j=1j=l1

ZeX.
1R - R U

n2 R
wi w j

1 R+e i 3

n 2(o 2

*This is generally a valid assumption for asymmetric buckling of short
shells; for axisymmetric buckling, qij is identically zero.

24

[28]

a (ij) [ n 2 - 2Xj (k i - j) ij

Sal(ij ) [ n 2 - 2 j ( X
i - X j i j ]

2 2
m 1 m



7rpLf
(2-v)rn

4 wi=i al(ij)[n2 - 2 (Xi i=- j ij
i= i=1

- a(i+j) I n2 + 2j (Xi +j ) Iij

[28]
continued

The buckling condition is now obtained using the principle of station-

ary potential. Minimizing AUT with respect to the wj and multiplying the

R
resulting equations by , one obtains the simultaneous equations:

7rE Lf h

8 (AU T )

aw 0 = w3w.

S h2
J 12R 2 (1-v 2 ) j

IzG

R(R+e) Lf h [xj

KRn 2 Xj
+ )R+e) L
2(l+v)(R+e)3 Lfh

(2-v)1+ 2
2

n2R(U e ] j) o+ w. 6
R+e J R ij

i=l

+ 2 eX 1
i + U RIR+e

co

w i 6ji i
i=l

n2R
wi 6j .R+e Ui Uj

i=1

Xi Un + j)
R R+e 2

Xi

+j(n2R+e

2(2-v) IxG+ A f e2

2 R 2 Af R+eJ

+ w z +

+ w n2 + 2

(2-v) T
2

n2xn wi 5ji Xi
i=l

[29]

[n 2 +ji(Xi - Xj 2iWi al(i-j)i=l

- ai j) [n2 + i( i
,(ij) En1



pRwhere LP is pR
Eh

It is an interesting consequence of Equations [29] that all modes

corresponding to odd values of i and j are coupled and the same is true of

all even modes, but that no coupling exists between odd and even modes.

This arises from the two consistent definitions

6. 1 + (-1)i + j  = 0

J 1unless i,j odd or i,j even [30]
al. = al = 0

-(i-j) y(i+j)

The problem thus can be grouped into two sets of equations corresponding

to the odd and the even modes, respectively. It is clear that only the odd

modes need be considered here since the even modes lead to buckling con-

figurations of the type (shown in Figure 6) which repeats itself at each

frame and is of no practical significance. When the problem is restricted

to the odd modes, Equations [29] become:

+ 2 2 z n
0 = wj + 2 )+ .(n + -2 + RR)+ + 2e (U

j 12R2(1-v2 2 2 R (R+e) Lfh 1+

eX 2 eX Kn 2 X

wi + R Ui R] + wi
R 1+ (1+ v)R2(1+ e 3 L h= + R RLfh i=l

S(2n2 UiUj e 2j (2 Ui Xi)+ e -R (i l+R + -'2 + X + -
2R e 2 2

1+ 1+ 1+

i1R RAf e2 2 CO 2+JJ

+ x 2 ew i i- wi a(i j)(n2i - 2

f R i=l i=l

-a(i+j) n2+ j(Xi + j) 2 i,j = 1, 3, 5..... [31]
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Figure 6 - Even Mode Buckling

If j is given an upper limit J, Equations [31] can be written in the form

J

Bwj + Zbji w i
+ [cj wj

J

+ Jcjiwi = 0

i=l

where:
h2 x 4

2 jBj = j + 2
12R2(1-v2 )

2IzG

R (1+ ) Lf h
+

Ij

2

+
1+

R

Kn Xj Xi

(1 + )R'(1+ e )3 L h
R f

C n + -
3 2

n2 Ui Uj
c.. = (2 - v)T

31 e
R+-
R

IxG + Af e 2  n 2 j i

RZ2 Af 1 +n e
R

+ a(i+j)
z 2(i+j)

[n + i ( Xi + X) 2 ] - a i-j) [n2 +

i,j = 1, 3, 5 ...... J *

[32]

(Uj
3 xi + (Ui

n2

e1+-
R

n2 U+j 
.

e 2
R

4.2

n 2 U i

R
R

ji (xi
X) 2)]

e j]j 

R

eXi

R



A requirement for the existence of a nontrivial solution to these

equations is that the determinant formed from the coefficients of the wj

must vanish. This condition can be written in matrix notation as follows:

{[B] + [C] }) [X] = 0

B1+bl 

[33]

b 13' b15 ........ b J

b31' B3 + b 33'

b 5 1 ' B5 +b55'

Bj + bjj

c 13' c 1 5 . . . . . . . . clJ

c31 , C3+ c33'

C5+ c55'

w 11

w 3W3

w
5

wJ
-- J

28
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[B]

[C]

[x] =
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C1+c11

c51,

Cj + cjJCJ1l



J+ 1
Both [B] and [C] are symmetrical matrixes. The equation has real

roots, all of which are negative, since pressure was defined positive when

external. Of these roots, the one ( n) whose absolute value is least defines

pn, the buckling pressure for n circumferential lobes. 
Since n is an arbi-

trary integer, it is necessary to obtain pn for several values of n until the

minimum, or critical pressure, pc is determined. The degree of accuracy

depends, of course, on the magnitude of J. As J increases, pc should con-

verge toward a limiting value.

While the solution of Equation [33] appears reasonably adaptable to

a high-speed digital computer, it becomes unmanageable for desk calcula-

tion if J is much greater than 5. To overcome this difficulty, an approxi-

mate form has been found whereby the computational task is considerably

reduced. With suitable rearrangement, Equation [32] can be put in the

form:
J J J

(B + C )w + G wixi + H wi Ui + wi dji = 0 [34]

i=l i=l i=l

where B. and Cj are as before defined for Equation [32] and

G 21 zG 1 e (n2 - ) 1 (n2 - 1)]+ n2Uj

Rj 2(1+ e)3 L h R R
RG

+ Kne3 X+ (2 - V) j xG+ Af n 2

(l+v)R2(1+L) Lfh 1+e R Af

e 2e(1 +e)] - n R Uj}

2IzGn2 e (2v) () eX

H = 2l +e3 1 R (n - 1) +n U + n2U R

R (1+) Lfh 1+
R f R

d = (2 -v) aij [n2 ii i + )2 - ai-j) [n 2 ii j)2
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To simplify the equations, we neglect all the dji for which j and i are

unequal, so that Equation [34] becomes

J J

Dw + G wiXi + Hj 'wiUi = 0 j,i = 1, 3, 5 ... J [35]

i=l i=l

where:

D = B. + (C + djj)

(2 -) [a (n 2 2+ - 2 ]
djj = 2 [ a (n + 41 ) - n

It can be seen from Equation [8] that the approximation is not unreason-

able. Because a m decreases rapidly with increasing m, most of the a m

will be negligible. In many cases, it would, in fact, be necessary to re-

tain a o only. A more conclusive test of the approximation, however, is a

comparison of numerical results. Since am approaches zero more slow-

ly as P is increased, a demonstration that the approximation is valid for

a large value of f should be sufficient proof of its validity for smaller

values. This point is discussed in a later section dealing with a numeri-

cal example.

With Ijj expressed by Equation [20] and n 2 replaced by X 2
a more concise expression for Dj is obtained:

D = B + X+ n 2 2 - (2-v)l1 [i- a (l+ 8)]] [36]

The advantage of the form of Equations [35] over that of Equations [32]

can now be demonstrated. With the stipulation that 4 is such that all Dj

are different from zero, one can multiply Equation [34] by X./D. and

carry out a summation on j from 1 to J:

Si XiZ G i X i  H i X i

wi i 1 + + w i U i = 0 [ 37 ]

i=l i=l i=l i=l
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A second equation is obtained by multiplying Equation [35] by Uj/Dj and

performing the same summation:

w i U i 1 + + 1 i wi = 0 [38]

i=l i=l i=l i=l

The unknown coefficients w i are eliminated by combining Equations [ 37]

and [38], and the result is a single equation,

S+ Di 1 + Di - [39]
i=l i=l i=l i=l

which can be solved by plotting the left-hand side versus 4. Such a plot
J+ 1

will have zero-intercepts, one for each root of the equation, and an
2

equal number of asymptotes corresponding to the vanishing of each of the

D i . The root whose absolute value is a minimum will lie between the first

two asymptotes (i = 1, 3). As in the case of Equation [ 33], it is necessary

to try several values of n until the critical pressure pc is determined.

The accuracy of the result will, of course, improve as J is increased.

In the case where an initial value of J has been found to be insufficient,

one can proceed to the next succeeding J (i. e., increase the order of the

equations by one) with far less labor than would be involved when working

with the matrix, Equation [ 33].

SIMPLE SUPPORT CONDITIONS

The special case of a shell having regularly spaced simple supports

instead of finite rings can be obtained quite easily from the general equa-

tions. For this case, the conditions are

IzG = IxG = K = 0

Af = 00

w = w = 0 at x = 0, Lf , [40]
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S =  = 0
1  [40]

Sam cont i nued
m= -ao

2= (cosh - cos p) if pressure term in am can
p - sinh P + sin be neglected

Substitution of these relations directly into Equation [32] will not lead to

the correct result since some of the terms in that equation have been mul-

tiplied by Af, and this would be equivalent to dividing by zero. Instead

we return to Equation [18] and note that because of the relations in Equa-

tion [40], all frame integrals in which w appears as a multiplier as well

as those multiplied by IzG, K and IxG will now be zero. It is then evi-

dent that Equation [34] for this case will reduce to

Bjwj + rC jwj+ + djiwi]= 0 [41]

i=l

where the Bj, C j, and dji are defined in Equations [32] and [34]. This

equation can, of course, be solved in exactly the same manner as Equation

[32]. However, by making the same approximation as was done to obtain

Equation [ 35], one arrives at a simple linear equation for this case. That

is, if all dji are neglected where j and i are unequal, the resulting equa-

tion has the uncoupled form:

24 

B R j 12-(1-v2 +Eh j ) = R(lv) 42]
P 3.n R Cj + djj 2[4

+n2 1- - )n[1 l - aj(l+ 8 ) ]

This solution* gives a minimum buckling pressure for j = 1, which is the

*It may be of some interest to compare Equation [42] with the equiva-
lent solution of Von Mises (Equation [8] of Reference 29), which in the
terminology of this report is:

-~I~-~.. .~~.~- I I I I



first asymptote of Equation [39] with 1 set equal to r~ .

It is now possible to find the value of n for which pn will be a mini-

mum. If n 2 is replaced by X(12- ) in Equation [42], pn will be effec-

tively minimized by setting 8 pn /8 1 equal to zero. The resulting equa-

tion is

*(Footnote continued from preceding page)

24

Eh 2 h 1I
R 2 2 2

12R2(1 - v2)

Pn =  
2,
1l 2--+n

2

This formula is based on the assumption that the boundary conditions do

not affect the prebuckling deformations. The Von Mises pressures will,

in general, be less than those given by Equation [42 ], except where

a l (l+ 812) > 1. The two solutions are identical for P >> 1, where t, ap-

proaches zero, but are not accurate in this range. For such a case, the

Von Mises formula [6] of Reference 29 should be used.

A comparable solution is that of Von Sanden and Tlkez which, for

the case of simple support, can be written

Eh h X4

R lZR 2(1 -V 2
12R (1 - v ) 1

Pn 2
1 23(2 - v) ( l v
2-+ 1- +
2 4 2

cosh Cos
, 4 2 2

sinh + sm
2 2

In deriving this formula, Von Sanden and T6lke took into account the ef-

fect of the boundary conditions on the prebuckling deformations. However,

because they did not use the exact Fourier coefficients for w, their equa-

tion is not identical with Equation [42] of the present analysis.

YIIYIIYIIY II Y IIIIYYi mmmiimmmmY IIIIIYY l , ,,III I 11 1iiiiilwY i I iY i rWY ll I IIIIYY U III III j 1, j



4 7r4

1 4= 4

f - ,](3 -2 + 4ya (30 + 1
2 1

2 (1 -a,) -j 2 + 4yal + 1

[43]

24h 2 X 4
where y is (2-v) c and 2 has been replaced by 7r. Equa-

12R2(1 -v) 4P

tions [42] and [43] can be combined in such a way that the following re-

sult is obtained:

P(R 2 2 1 [44]
E h2 2 3(v2) 1 (1-al )  13 -2 + 4yal + 1

1 2 R

where pc is the critical buckling pressure. The quantity E ()2 is

thus represented as a function of P only, as 1 assumes its critical value

defined in terms of P by Equation [43]. Since this equation cannot be

solved explicitly for 1 , a system of plotting was used to obtain 41 as a
nLf

graphical function of I, shown in Figure 7. A plot of rR versus p,

2.50

0 ,- 225

- 200 -

7 1.75- -Windenburg

Equation(24) /
0.6 1.50 Refernce (29)

4 Equation (43)

_ 0.5 _ 1.25

DA 4t - - -. 00 - Asymmetric/

Figure 7 - 41 as a Function of P

for Simple Support (v = 0.3)

Figure 8 - n as a Function of

for Simple Support (v = 0.3)

14 ------------ I I I 'I I I -- -----.
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obtained directly from Figure 7, is shown in Figure 8 together with a com-

parable curve obtained from Windenburg's Equation [24]* of Reference

29, based on the Von Mises solution. It should be noted that according to

Equation [43], the condition for axisymmetric buckling ( = 1, or n = 0)

occurs where the value of p is approximately 1.807. In cases where f is

less than 1.807, Equation [43] has no physical significance, n being zero

for all such cases. The plot of Equation [43] in Figure 8 shows that as

is reduced, n does not increase indefinitely. Evidently, it attains some

limiting value after which it decreases until the axisymmetric condition

is reached.

With appropriate values of 1l determined from Figure 7, a plot of

Equation [44] was obtained and is shown as the solid curve of Figure 9

LE

$ 1.807 " 1 315

i Coincidence
of Anisymmetric and I .- Axisymmetric

Asymmetric Buckhng Buckling,Equation (45)

12 _ _

I i - Equation (44)

1.0 Wnden(4urg Asymmetric Buckkng

0.quoton 
(46)

0.7

Figure 9 - Buckling Pressure as a Function of P for

Simple Support (v = 0.3)

* nLfnLf= 0.770 NI
7rR



where - - is plotted as a function of P. Also shown is a curve forE 4hI
axisymmetric buckling representing the well-known equation

PC (R) 2 2P2 +  [45]

43(1- v2) 2P

for p < 7. This equation is readily obtained from Equation [42] if n is

set equal to zero and is the same as that for the buckling of a cylinder

under end thrust 3 4 where the length of a full longitudinal wave is equal to

2Lf. It will be seen that the two curves intersect at the point P = 1.807,

S( = - 1.315. Since Equation [45] is not applicable for P >1.807, the

curve is shown dashed in that region. Similarly, the curve of Equation

[44] is shown dashed where ~ <1.807. Figure 9 also includes a plot of

the familiar equation of Windenburgz 9 (shown dotted), often referred to as

"EMB Formula [10]." This is an approximate representation of the Von

Mises solution (see earlier footnote) in minimized form which, in the ter-

minology of this report, can be expressed by*

E ( p - 0.8175 [46]

This equation and all three curves of Figure 9 are based on a value of v of

0. 3. Equation [46] is more conservative than Equation [44] in the low-p

end of the asymmetric-buckling range because, as was pointed out in a

previous footnote, the Von Mises analysis neglects the effect of boundary

conditions on the initial (prebuckling) deformations.

.It should be mentioned that the "beam-column" effect represented by

the factor p/pm appearing in am was found to have a negligible influence

*The formula is better known in its original form:

2.60 (h 5/2

PC = -

2-R - 0.45
2R 2R

I M. -. . . . . . . . . . . . . . . .. . ..



on the curves of Figures 7, 8, and 9. The approximate form of Equation

[40] is, therefore, sufficiently accurate, and was used in the construction

of the curves.

RINGS OF INFINITE RIGIDITY (CLAMPED SUPPORT CONDITIONS)

Another special case of some interest is that of a shell having infi-

nitely rigid rings. As indicated previously, a solution for this case cannot

be obtained from the equations for finite rings by letting the frame rigidi-

ties become infinite. This is because the use of the stress function approx-

imation has imposed certain constraints upon u and v which can give rise

to serious errors when the frame parameters become very large. It is

preferable instead to proceed from the more general Equation [5], allow-

ing full variability of u and v (consistent with the boundary conditions) as

well as of w. Since the shell is now fully clamped at regular intervals

against any deformations, the boundary conditions are*

w = w = v = wx = ue = 0 at x = 0, Lf [47]

As in the case of simple support, the condition on w requires that

1

Sam
m= -o

2 (cosh - cosin , if pressure term in am can be
p= sinh P + sin neglected

The effect of imposing the conditions of Equation [47] is to cause all

frame integrals in Equation [5] to vanish. If it is assumed as before that

the bending energy AUb involving the initial deflections can be neglected,

Equation [5] becomes

*These conditions permit axisymmetric translation at the boundaries.



AUT (EhR
T2(1 -v 2 )

2L 27r[ w+v 2

0 0 u2 + R
w+v ) 2

+ 2 v u x x + R dx dO

Eh 3

24R(l-v 2 ) 0 0

[RZ w2 +
(w R Vo )

+ 2vw (wee 0 Ve )

EhR

2(1-v 2 )

+ (2 ) (2wxo#vx)2] dxdO

f 2Lf 2 2
w+ -

0 0 R _R2 R
+ v (w 2 + v 2 ) -x x

+ (1 - 2v) ( Vx) ( + 2uxw x]

2

+ u x [V?+w-+v ()

•2Lf 2Z

0 0.

2w
R

2w + ve
Ux( 

R )

+ (W) tv) 2

[48]
+2 + v 2

+ +
R 2

dx dO

It will be assumed that the buckling displacements can be represented by

Equation [ 10]:

u = cos nO

m=l

v = sin nO

w = cos nO
m=
m= 1

um cos ( X

Vm sin ( X)

Wm sin (

(1 -v) - Vx+ -

+ w x 2 vw x

w + v o

R

pR2

2

[10]
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Before proceeding with the integration, a few assumptions can be made

which simplify the results considerably. These are as follows:

w e  >> v

5 2 dO >> f u deO, R uE vxde

0 0 0
[49]

f w d >> v xdO , 7r u dx

0 0 0

2 w 2 d >> v 2 dO

o 0

The basis for these conditions is the assumption that the relative orders

of magnitude of um , vm , and wm can be .estimated from the results of

the stress function approximation (Equations [12]). The assumptions in

Equation [49] are consistent with those made in Equations [17] and [25]

through [27], and are based on the fact that unity is negligible compared

with n2 and Xm for short shells. If the' small quantities in Equation [49]

are neglected, Equation [48] is reduced to

2Lf f 2  _2 w+v \ uexI
AU ER= 1- 2) u + + 2vu x  x + v + dx dO

2(1-v ) 0 0 R x x 7

3 2L2 2
Eh 2 R 2 w + , + 2(1- v)w2 dx d

24R(1-v 2 ) f0 xx R2 O Wx0

2 2
Eh 02 w2 + w 2

[ w+v) o u.-

2  2L 2 2w+ 2

2 -0 0 R+ R + dxd [0]
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When the series expressions, Equations [6] and [10], are substituted

into Equation [ 50] and the integrations are performed, the result is

R( 1-v ) AU T
Eh7rLf

u X -
m m (v m Xm2 v um X (w m + nvm ) +

1

m=l

+ (nv m + wm)2

+ 4(21v)
2

m=l

m n

+ ( c

i=1 j=1
w i

+ [(X i+ X)ai+j )

X2

m

2
1) + Xmum (2wm+nvm)]

wj n2 a i+j) - ai-j ) (1 -v 2 )

+( i - Xj)ayi-j)] [2Xj wj (nv i + w i )

- 2wj ui Xi j - n(1 -v)w i (Xj vj -nuj)]l [51]

Eh7rLf

where, for convenience, the equation has been divided by
(1-v 2 )R

The boundary conditions (Equation [47]) on w and v are automatically

satisfied by Equations [10]; the conditions on w x and uo require

Zum
m= 1

Co,

m=l
m=l

z wm Xm
m=l

m=

m=l

(um)( - 1)m

w m ( -1 '}

40

- num

+ 2

24R
m=l

24
wm 4m

2
m

= 0

[52]

= 0
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Z U2m

m=l

2m 2m

m=l

= U2 m- 1X
m=l

=W2m-l X2m-1
m=l

Thus summations of the odd and the even terms must vanish separately.

The problem now is to arrive at a stationary value of the change in

total potential, Equation [51 ], while at the same time satisfying the four

conditions of constraint, Equation [53 ]. This can be done through the

use of the Lagrange multiplier method which requires that the expression

U= R(-v AUT + alEhlrLf

cm=

M=l

+ a 3 C

m=l

U2 m- 1 + a2  w2m- l 2m-1
m= 1

Ioo

u2m.+ a4  2m X2m
m=l

be stationary, where the a's are the unknown multipliers.

ment gives rise to the equations

au' aU'
8u 8vavj

[ 54]

The require-

SU'

aw.J
[55]

which can be written explicitly as follows:

A. u + Bjvj + C wj + Y cji

i=l

a 1  a 3 [
w i + [1 -(-1)J+ [ +

2 2

The quantities designated by Aj, Bj, Cj, etc., should not be confused

with other quantities appearing earlier in this report which bear the same

notation.

= 0

= 0
[53]

=0

[56]



Bjuj + Djvj + Ejwj +

Cjuj + Ej vj + Fjwj + cij i +

i=l

+ j 1 1 - (

[56]
continued

eij i +

i=l

-4
ylj] [1 + (-) j ]

2 n
A = + -(1 - v)

nX
Bj = - [1+ v - (1 - v2 )]

Cj - Xj [v - qJ(1 - V2)]

D = 2 + n 2

Dj=(l-2 1

= n

= 1+ h 2  (n 2

12R 2

- (2 - v)
cji 4

S- (2 -v)
ej i 4

1 al(

+

+ a (ij) (i

o (a (ij) ( i

-a(i-j)( i

+ 4 (1 - v2 ) [n 2 +

i+j) (i + i j) [n (1

- Xj) [n 2 (1

2

2

- ) - 2 Xi j

-v) + 2Xi j ]

+ j) [2vnXi - n(1-v)Xj]

- ) [2vnXi - n(1- v) j]

i 4(2-v)
fij 2 VlCO n (I -v 2 )

+ v[a(i+j)(Xi + X 2 - a (1X -j) 2
(i~j) 1 3 '(i-j) ( i

where

fij wi
i=l

= 0

II I I' I - -.1.

Zejiw i =
i=l

[a (i+j) - a D(i-j)



It will be seen that once again the coupling conditions on the odd and the

even modes are in effect because of the coefficients multiplying the a's

and the definition of am. Thus Equation [56] represents two systems of

equations corresponding to all odd and all even values of j and i. As be-

fore, only the odd-valued system is of practical interest. If j and i are

given an upper limit J, the complete set of equations for this system is

Ajuj + B + Cw + Ycjiwi + a = 0

i=l

Bjuj + D vj + Ewj + eji wi = 0

i=l 1

C.u. + E.v. + F.w. + (c ui+ eijv + f. ij w. ) + a 2 j =0

i=l1

ui = [57]
i=l

k i w i = 0
i=l i,j = 1, 3, 5 ..... J

the last two equations representing the two constraints. There are thus

2+ 3(J+1) equations and, including al and a2, 2+ 3(J+1) unknowns.
2 2

The system can be solved in the same manner as Equation [32]. How-

ever, it is highly complicated; moreover, because cji and eji are not

generally invariant when i and j are interchanged, the matrix of the co-

efficients is not symmetric.

This situation can be greatly simplified if, as in the case of Equa-

tion [34], we neglect all cji, eji, and fji for which j and i are unequal.

Further simplifications can also be made by neglecting the small quantity

(1 - v 2 ) appearing in the coefficients Bj and Cj, and -1 in the second

term of Fj. Equations [57] then reduce to
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Ajuj + Bjvj + Cjwj +

Bjuj + Djvj + Ej wj

= 0

= 0

uj + Ej vj + Fj wj + a2 j
= 0

J I

uj = 0

j=l

J

Zxj w j = 0

j = 1, 3, 5 ..... J

where

[58]

A. X2  -v n2
33 2

nX.
j

B. - (1+ v)
3 2

C = - vX + SajXj [n2(l - v) - 2 X]

= ) a j X n (1 - 3v)

h2= 1+

12R2
(nz + X2 + (1-v 2 )

3

2
n 2 +>

+ 2

The equations can be solved in a manner similar to that followed

in the solution of Equations [35].

is eliminated and the expressions

From the first three equations, vj

44
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-2 -
al (Ej-FjDj)

uj =

a 1 (jDj - BjE
wj =

Gj3j

Sa2 Xj (CjDj - BjEj)

Gj

) a 2 Xj(B2 -AjD)

Gj

Gj = Cj(BjEj - CjDj )+ E(BjCj - AjEj) + Fj(AjDj

[59]

-B) 
i)

are obtained. When these are substituted into the last two of Equations

[ 58] and a 1 and a 2 are eliminated, the resulting buckling equation is

j jD -B ji 2

j=l G

j- Ej - DjFj

j=l j=l

j= 1,3,5 ..... J [60]

By neglecting the small terms involving LP2, the complexity of the expres-

sions is greatly reduced, and after some rearrangement, the equation

takes the form

2-1
OFRj= 1 j 1 jQj Q J~lj=1 j=l 1

= 0

j = 1, 3, 5 ..... J

h2 4 (1 + k.)4
Q 3

12R 2 ( -v 2 )

Rj= kj --v

S . (1 + k )2
3 3 3

+ 1 x + 2 kj [2 - y(1-aj)]+1 + 4ykjaj + 1

in which

[61]
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hZ  2kj1 h 2 2T I + 2 (1+kj )2 1+
j 12R 2  -v

+ [kj(2 -y) +1] ( +k) (I+v) + yaj[kj( + k (1+v) +2v1

2

The solution of Equation [ 61] can be accomplished graphically with the

same procedure described for Equation [39]. Once again the lowest root

should occur between the first two asymptotes where Ql and Q3 vanish.

The accuracy of the result will depend, as before, on the size of J.

NUMERICAL EXAMPLE

The example to be used for numerical study is the test of the ma-

chined cylinder BR-4B having external rectangular stiffeners and which

is considered in the section on experimental work. Its dimensions in

inches are as follows:

R = 8.048

h = 0.081

Lf = 4.266

d (frame depth) = 0.570

b (frame width) = 0. 138

p = 6.80

The value of P (6. 80) is considerably larger than that usually encountered

in pressure-vessel design.

Rings of Finite Rigidity

As a preliminary to the calculations, Table 1 shows the first 11 co-

efficients (am) of the initial deflections (w and ii) as calculated by Equa-

tion [8]; m is written with the absolute value sign since both positive and

negative values are permitted. Despite the relatively large value of P,

46
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Table 1

Coefficients of the Initial Deflections
for Cylinder BR-4B

Table 2

Comparison of Approximate and
Matrix Solutions for Cylinder

BR-4B with Finite Rings

Buckling Pressure, psi
J

Matrix Approximate
Equation [33] Equation [39]

1 693. 1* 693**

3 657.1 668

5 646.3 654

7 641.4 648

9 638.7 645

11 .636.9 642

13 635.7 *Calculations

15 634.8 performed on
IBM-7090

17 634. I1 computer

19 633.5 *Slide rule

21 633. 1 calculations

Pressures for n= 11,
E= 28.9 x 106 psi

the convergence of E am is quite rapid. For purposes of calcula-
m= -co

tion, only the first four or five values are significant. As previously indi-

cated, the convergence will'be more rapid for smaller values of 3.

It is of some interest to compare results of the matrix solution,

Equation [33], and the simplified solution, Equation [39]. The critical

buckling mode for both equations was found to be 11.* Table 2 shows

the buckling pressures according to these two solutions for successive

values of J. Since Equation [33] was solved using an IBM-7090 com-

puter, results were readily obtainable for large values of J (an arbi-

trary limit of 21 was imposed). Solutions of Equation [39] were obtained

*Before the calculations were begun, a preliminary estimate of the criti-

cal value of n was obtained from Figure 8 for the case of simple support.

*'"""~~
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by slide rule up to J = 11; it did I
not appear worthwhile to continue -oo

beyond this. c, 1 124'1

The information in Table 2 is

also shown graphically in Figure 10.

It is evident that the convergence of IA0 0- o ot

both solutions is fairly rapid so that I o

little accuracy is gained in proceed- M --*-I Eqtion(33)

ing beyond, say, J= 7. Such a con-

clusion, however, cannot be stated -

generally. If the frames had been

larger, the solutions would probably 0013 1 3 Is 17 1 21

have converged more slowly. For

Figure 10 - Variation in Approximatethis example it also appears that and Matrix Solutions with Jand Matrix Solutions with J
Equation [39] is a reasonably ac- for Cylinder BR-4B

curate approximation to Equation

[33].* Furthermore, since the accuracy of the approximation depends

only on the rapidity of convergence of 1:am, one should expect closer
m= -co

agreement for smaller values of p.

Equation [ 33] also permits the determination of the relative ampli-

tudes wj of the buckling modes. Table 3 lists the ratios wj/w 1 for n= 11

and J = 21. It will be noted that the components are of successively de-

creasing magnitude and the first is much larger and of opposite sign from

all the rest. The rotation of a frame wlX1/R produced by the first com-

ponent is thus partially reduced by the sum of the succeeding components.

Simple Support Conditions

Results of calculations for Cylinder BR-4B (p= 6. 80) with simple

supports replacing the rings are given in Table 4. The pressure and mode

obtained from the minimized curves of'Figures 8 and 9, representing Equa-

tions [43] and [44], compare well with the results for the unminimized

*Since Equation [39] does not contain the approximation in the linear
case, the results of both equations should be identical for J = 1.
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Equation [42]. Corresponding results for the Von Mises solution, also

obtained from Figures 8 and 9, show a slightly higher pressure and dif-

ferent mode. This difference reflects the influence of the boundary con-

ditions on the initial deformations. Although for this case, the inclusion

of this effect gives rise to a lower pressure, Figure 9 shows that the

pressures will be higher for 3 < 4.35.

Rings of Infinite Rigidity

Using Equation [61], it should be possible to approach as closely

as desired the exact solution to the problem of fixed support, consistent

with the approximations made in the derivation of the equation. It may

be surprising, then, to consider the results of calculations for Cylinder

BR-4B given in Table 5. Equation [61], carried out to the eleventh degree

Table 3

Relative Amplitudes of Buckling
Modes for Cylinder BR-4B

with Finite Rings

wj /w 1

j Equation [33]
n= 11 J=21

1 1.00000

3 - 0.06654

5 - 0. 01962

7 - 0. 00773

9 - 0.00378

11 - 0. 00211

13 - 0.00129

15 - 0.00085

17 - 0.00058

19 - 0.00042

21 - 0.00031

Table 4

Buckling Pressures for Cylinder
BR-4B with Simple Supports

Solution Pc n

Equation [42] 550 11

Minimized Form
(Figures 8 and 9)

Minimized Von Mises
Solution12 9  580 12
(Figures 8 and 9)

Shell length assumed to be
center-to-center frame spacing
(Lf= 4 . 2 6 6 in.)
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Table 5

Buckling Pressures for Cylinder BR-4B
with Infinitely Rigid Rings

Effect of Boundary
Conditions on I  Theory Pc n

Initial Deflections psi

Included

am = 4 Equation [61] 811 11
1+4 (m,,) 4  (J = 21)

Neglected Equation [61] 810 11
(J = 21)

(a m = 0) Nash35 804 12

In all cases, shell length was taken to be the center-
to-center frame spacing (Lf = 4.266 in.)

(J= 21), gave a buckling pressure of 811 psi for n= 11, while the far sim-

pler equation* of Nash3 5 gave 804 psi for n= 12. This latter equation is

almost identical with that obtained by Galletly and Bartz3 and is in good

agreement with other more complicated solutions also obtained by Nash.' 6

The fundamental characteristic of all of these solutions is that they are

based on the assumed buckling configuration

w = w 1 - cos R )]

P =

[62]

Eh 8X 4E 12R2(1-v2) 2 (4 1 + 4Xn2 2

3 (n2 - 1) + X2
2 1

In all calculations, the distance between supports was taken to be the
center-to-center frame spacing (Lf = 4.266 in.). Frequently, when for-
mulas of this type are applied to ring-stiffened cylinders, the inner or
unsupported distance between frames is used.

50
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This function will not, in general, satisfy the differential equations of

equilibrium. Rather it has been chosen somewhat arbitrarily because it

satisfies the boundary conditions and is conveniently used with the energy

method. When applied to ring-stiffened cylinders, the solutions based on

this function have often predicted pressures much higher than those ob-

served experimentally. Consequently, one natural conclusion is that the

use of a different function could lead to lower pressures. While the re-

sults in Table 5 are too limited to warrant a general conclusion, they in-

dicate that the configuration of Equation [62] may in fact be nearly correct

and that the difficulty actually lies in the assumption that full fixity can be

provided by rings of practical size.

It is also worth noting that the convergence of Equation [ 61] was

much slower than for the other two cases previously discussed. This was
J S.

caused by the slow convergence of 1 which necessitated carrying
j=l Qj

the calculations out to J = 21. From this it may be concluded that the sine

series (Equation [10]) is not well suited to the boundary conditions for

fixed supports and that the use of some other set of functions, similar,

for example, to Equation [62], would probably result in more rapid con-

vergence.

Table 5 also shows that for the geometry in question, the influence

of the boundary conditions on the initial deflections had a negligible effect

on the collapse pressure. When this influence is neglected -(am = 0), the

initial deflections are those for an infinitely long cylinder, the condition

assumed by Nash, and the buckling pressure is 810 psi. That the pres-

sure (804 psi) given by the Nash equation is lower than this can probably

be explained by the fact that the buckling configuration assumed by Nash

does not completely satisfy the boundary conditions of Equation [47]. Be-

cause of certain approximations arising from the use of a stress function

of the Donnell type, the circumferential buckling strain e0 does not van-

ish at the boundaries.*

*Following the procedure indicated in Appendix E, Nash eliminates u
and v through the use of a stress function. Because w for this case is
of the form of Equation [62], the resulting stress function is
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In view of these results, it might be of interest to compare the buck-

ling configuration employed in the present analysis with that represented

by Equation [62] for this example on a quantitative basis. By suitable re-

arrangement of Equations [58] through [61], an equation expressing the

relative magnitude of the corresponding buckling coefficients wj is ob-

tained:

w .Wi j [63]

where

J J

rk = - j,k= 1, 3, 5 ..... J

k j=1 k j=1

*(Footnote continued from preceding page)

ERX2  X2 x
F = - 2 w o cos nO cos

2

in the notation of this report, and the circumferential strain,

1 82 F v1 2 Fe =E 8x 2  R280 2

does not vanish at x = 0 and x = Lf. However, if Equations [122] of
Appendix E are modified so that

82 F
2 F + f()

o  2 + g(e)
ax 2

82 F

R 8x aO

it is then possible to satisfy the condition on e e by proper adjustment of
the functions f(O) and g(O). The resulting buckling pressure is slightly
higher than that given by Nash.
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and all quantities retain the definitions of Equation [61]. An equivalent

of Equation [ 63] can be obtained for the buckling configuration of Nash

by expanding the function*

w= w o I -cosR 0 :5 x -<Lf

R

in a Fourier series. The result is

w = wj sin

j= 1
[65]

16w
o

w - j = 1, 3, 5... J
7rj(j 2 -4)

In order to compare these results, calculations were carried out

with the aid of Equation [63] for the numerical example where a m = 0,

J = 21, and pc = 810 psi. The results appear in Table 6 in the form of

wj/wl, together with the corresponding values from Equation [65]. Ratios

beyond j = 11 were not calculated. It will be seen that there is consider-

able difference in the individual coefficients. Apparently their total effect

is such that the difference in buckling pressures is insignificant.

SUMMARY AND CONCLUSIONS

1. An analysis for the elastic buckling of ring-supported cylindrical

shells has been developed which considers the influence of the rings on

deformations before and during buckling.

2. The bending stresses associated with the prebuckling deforma-

tions have a negligible effect on the theoretical buckling strength.

*The function in Equation [64] is periodic in the interval 0 5 x 5 2Lf
while Equation [62] repeats itself in each bay. However, their corres-
ponding buckling pressures are identical.
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Table 6

Comparison of Buckling Configurations for Cylinder
BR-4B with Infinitely Rigid Rings

wj/w 1

Equation [ 63]* Equation [ 65]

(Nash3 5)

1 1.0000 1.0000

3 -0.1492 -0.2000

5 -0.0387 -0.0286

7 -0.0173 -0.0095

9 -0.0085 -0.0045
11 -0.0047 -0.0023

*a m =0; J = 21; n = 11; pc = 810 psi.

3. The buckling equations for a shell with finite rings represented by
the stability determinant, Equation [33], can be approximated with good
accuracy by the single Equation [39].

4. A special result of the general analysis is the buckling equation
for a shell with simple supports. This differs from the buckling equation
of Von Mises since it accounts for the effect of the boundary conditions on
the prebuckling deformations.

5. Another special case is that for a shell with fully fixed edges. It
appears possible from numerical results that the use of the simplified

2rxform 1 - cos -- to represent the longitudinal buckling profile may be a
Lf

reasonable approximation for this case.

6. The energy approach has been used to obtain the trigonometric

series equivalent of the solution of Pulos and Salerno for the initial axi-
symmetric deformations of a ring-stiffened cylinder. This form has cer-
tain mathematical advantages, particularly when employed in the solution
of buckling problems.
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PART II - EXPERIMENT

EARLIER TESTS

Following the early work of Windenburg, 9 later experimental studies

at the Model Basin were directed toward the evaluation of classical buck-

ling theory for short shells. Tests of ring-stiffened cylinders, designated

BR-130 and BR-531, which were fabricated from steel plate by welding and

not stress relieving, resulted in collapse pressures well below theoretii-

cal expectations. It was suspected that these discrepancies could be at-

tributed to weakening effects of imperfect circularity and residual rolling

and welding stresses. To investigate this suspicion further, two additional

cylinders, BR-4 36 and BR-4A3 7 , were tested. These were identical in

geometry and in material properties, but BR-4 was rolled and welded

while BR-4A was machined from a stress-relieved thick cylinder. The

results of the tests were striking. Both failures were inelastic with lobes

appearing between stiffeners. However, BR-4 collapsed at 390 psi where-

as BR-4A collapsed at 550 psi.

With the weakening effects of imperfections so clearly demonstrated,

it was evident that further attempts to obtain elastic buckling data with im-

perfect, fabricated cylinders would be fruitless. A better alternative ap-

peared to be the study of machined and initially stress-free cylinders.

This approach had already proven successful in experimental studies of

general instability. 4' 5 ' 6 Accordingly, a third test cylinder, designated

BR-4B, was manufactured. Geometrically, this was a smaller scale ver-

sion of BR-4 and BR-4A, but it was machined from tubing of higher yield

strength. With this combination of properties, it was expected that col-

lapse would be initiated by elastic buckling.

DESCRIPTION OF TEST CYLINDER

BR-4B, whose dimensions were given as a numerical example ear-

lier in this report, was a 6/10-scale model of BR-4A. As shown in Fig-

ure 11, it consisted of four central full-length bays and a short bay iat

each end terminated by a heavy bulkhead ring. One ring had evenly spaced

holes to accept bolts for a flat closure head. The four-bay arrangement
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was intended to provide a central

oy 2 pial 3 n Ba4 test section free of end effects. The

cylinder was machined from a thick,

forged-steel tube which had been part

of a gun barrel liner. Compression

V tests of specimens taken from the

tube prior to machining indicated a

Fr I F3 Fr4 Fryield strength of 82,500 psi (based

on an offset strain of 0.002) com-

pared with 50,000 psi for BR-4 and

I oBR-4A. The elastic limit was found

o,3- - to be 74,400 psi. Since the elastic

Typical Frome buckling strength of the cylinder

Bulkhead Ring would be directly proportional to the

Figure 11 - Test Cylinder BR-4B modulus of elasticity of the material,

All dimensions in inches it was important that this quantity be

determined accurately. For this pur-

pose, a ring specimen was taken from one of the bulkhead rings at the con-

clusion of the tests. Measurements of the deflections of the ring under

diametral point loading were used to establish a modulus of 28.9 x 106 psi.

This procedure is described in Appendix F.

PRELIMINARY TEST

One of the objectives of the investigation was to determine whether

any region in the area of failure had been stressed beyond the elastic limit

prior to collapse. Ideally this would indicate extensive strain-gage instru-

mentation of this critical area, but to locate such an area prior to testing

is an impossibility. On the other hand, it was not practical to.provide each

bay with such extensive strain-gage instrumentation that adequate coverage

of any area would be insured. Consequently, it was decided that a prelim-

inary test should be carried out in an effort to determine in which bay buck-

ling would initiate. If this could be accomplished, the critical bay would

then be liberally instrumented and a second test carried out in which the

cylinder would be taken to collapse. An additional possibility was that

-- - I I ly I



nonlinear elastic strains would appear during the preliminary tests, and

would be of such a magnitude that the buckling pressure could be predeter-

mined by means of the Southwell method. This procedure had been used

with considerable success in tests of cylinders collapsing by general in-

stability,3 8 but as yet had not been tried in the case of shell instability.

Since nonlinear strains were not observed in the test of BR-4A, it was not

expected that they would appear at pressures below 540 psi, the highest

pressure at which strains were measured during that test.

The exterior of the cylinder was instrumented with electrical resis-

tance strain gages located circumferentially at intervals of 10 deg in the

middle of each of the four typical bays and extending completely around

the circumference. Temperature compensation was provided by "dummy"

gages. The test chamber was a 2500-psi pressure tank, 20 in. in diame-

ter, and oil was used as the pressurizing fluid. Prior to the actual test,

the cylinder was immersed in the tank in a free-flooding condition. The

pressure was then raised in increments to 500 psi and strains measured

to detect gages that were undesirably "pressure-sensitive." Those which

exhibited a sensitivity of 5 pin. /in. or more for 100 psi were considered

unsatisfactory. These gages were then checked by observing the strain

induced when local pressure was applied to the gage. It was found that

this procedure was an adequate substitute for the pressurizing method,

and it was used subsequently as gages were successively replaced and

checked until all were satisfactory.

The cylinder was then placed in the tank with one end closed by a

flat, circular plate and the other sealed against the tank top, which had

an opening to permit access to the interior of the cylinder. While strains

were read with automatic strain recorders, the pressure was applied in

small increments up to 570 psi. All strains were still linear at this pres-

sure, and it appeared that proceeding to a higher pressure would only in-

crease the risk that the cylinder would collapse before more extensive in-

strumentation could be installed. The pressure was, therefore, reduced

in increments back to zero.

It was apparent from the strain plots that no yielding had taken place.

The largest apparent permanent set for all operating gages was 45 4in. /in.

which was considered insignificant in a total strain of 1500 to 1800 pin. /in.,
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Table 7

Circumferential Strain Sensitivities (Exterior)
at Midbay, Preliminary Test

Compressive Strain Sensitivity in

Bay micro-inches per inch per psi

Average
Maximum Minimum of All

Gages

1 2.91 2.52 2.74

2 2.96 2.40 2.83

3 3.15 2.72 2.97

4 3.12 2.79 2.92

Theory of Reference 33: Sensitivity = 3. 03

and probably due to the overall effect of pressure sensitivity and drift in

the measuring system. The strain sensitivities in micro-inches per inch

per pound per square inch observed during the tests are summarized in

Table 7. The average sensitivity was highest (2. 97) in Bay 3 and next

highest (2.92) in Bay 4. The maximum individual sensitivity was observed

at 90 deg in Bay 3. On the basis of these measurements, it appeared that

Bay 3 would be critical, but that Bay 4 would also deserve close attention.

Final instrumentation of the cylinder, carried out on the basis of these

observations, is described in the next section.

FINAL TEST

Instrumentation and Test Procedure

Gage locations for the final test are shown in Figure 12. This time,

interior as well as exterior gages were installed, the total number being

limited to the capacity of the available automatic recorders. Most of the

gages were concentrated in Bays 3 and 4 with major emphasis on Bay 3.

The pairs of circumferential and longitudinal gages were so arranged that

stresses could be measured at the two locations (outside at midbay and
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Table 8 inside at a frame) where they are

Loading Schedule for Final Test normally highest. The midbay ar-

Pressures (psi) at which rays of circumferential gages were

Strains Were Measured located in the four typical bays for

First Run Second Run the purpose of detecting lobe pat-

0 570 0 610 terns should they appear prior to

50 580 100 620 collapse. These measurements

100 590 200 630 would be utilized in determining

200 600 300 Failure the elastic buckling pressure by

300 610 400 (633) means of the Southwell method. 38

400 570 500 377 The exterior circumferential gages

500 500 540 (Residual) located in Bay 3 along the 90-deg

520 300 560 generator were intended to give an

540 100 580 0 indication of the longitudinal pro-

560 0 600 file of a lobe in the event one ap-

peared. Since the highest strain

in the preliminary test was meas-

ured at 90 deg in Bay 3, this appeared to be a likely location for the devel-

opment of a lobe trough. Gages were also mounted on the sides of Frame

4 to provide a measure of any twisting and bending that might take place

prior to collapse. All exterior gages were examined for pressure sensi-

tivity and replaced in accordance with the procedure followed for the pre-

liminary test.

Two pressure runs were made during the final test, as indicated in

Table 8. On the first run, a maximum pressure of 610 psi was attained.

During the second run, collapse occurred suddenly at 633 psi, the last

strain readings having been made at 630 psi, and the pressure immediate-

ly dropped to a residual value of 377 psi.

Results and Discussion

Visible damage to the cylinder, as shown in Figure 13, was con-

fined to Bays 3 and 4 where a typical lobar pattern developed in the area of

heaviest instrumentation. While the lobes did not completely encircle

the circumference, a close examination indicated that a complete pattern

would have contained 11 lobes.
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Figure 13a - Exterior View Figure 13b - Interior View

Figure 13 - Views of Collapsed Cylinder BR-4B

During the first run, the strains were generally linear with pressure

up to about 590 psi. Small deviations from linearity appeared at 600 psi,

and became more noticeable when 610 psi was reached. On the unloading

portion of the run, the strain-pressure plots obtained during loading were

in most cases retraced. At the conclusion of the run, the maximum zero

shift was approximately 50 pin. /in. There appeared to be no correlation

in general between zero shifts and departures from linearity observed

during the pressure run. As in the preliminary run, the shifts can be

attributed to error in the measuring system rather than to a significant

yielding of the material.

On the second run, the deviations from linearity again appeared at

600 psi and grew with pressure until, at 630 psi, a pronounced lobar pat-

tern was evident. Such patterns have often been observed in stiffened cyl-

inders prior to collapse by general instability.38 They are produced by

initial imperfections which, even though minute in machined cylinders,

have a decided effect near the point of buckling. Figure 14 shows some

examples of the strain-pressure plots for both runs. The circumferential
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Figure 14 - Typical Plots of Circumferential Strains
at Midbay versus Pressure (Final Test)

lobar strain patterns in Bays 3 and 4 at 630 psi are shown in Figure 15.

For contrast, the strains at 500 psi are also shown. It will be seen that

the patterns in the two bays are staggered, just as are the final deforma-

tions in Figure 13. Although the strain patterns are not complete because

of a few gage failures, close inspection of both patterns indicates the ex-

istence of 11 lobes. It can also be seen that, as anticipated, a lobe trough

developed at or near the 90-deg generator of Bay 3.

From strain data of the type shown in Figure 14, it was possible to

obtain Southwell plots of fairly good quality. Plots for the gages of Figure

14 appear in Figure 16. With this method, the nonlinear component (E*)
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Figure 15 - Circumferential Strain Patterns
(Run 2, Final Test)

of the total strain is determined and plotted against the ratio - . t The
P

elastic buckling pressure is then obtained from the slope of the resulting

straight line plot. This was done for a number of midbay circumferential

gages located externally in Bays 3 and 4. The gages were selected on the

basis of data quality from those showing the largest deviations from line-

arity. Table 9 gives a summary of these results. It can be seen that the

pressures are all in good agreement. Furthermore, the average buckling

pressure of 637 psi is very close to the experimental collapse pressure

tSince E* is positive or negative depending on the gage orientation,

E* and II were used in Figure 16 so that all points would lie in the

first quadrant.

0 520 psi

* 630 psi

Bay 3

0 40 80 120 160 200 240 280 320 36(

Angular Orientation in degrees

o 520 psi
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0
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Figure 16 - Typical Southwell Plots
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Strains at Midbay
(Run 2, Final Test)

Table 9

Southwell Results from
Circumferential Strains

at Midbay
(Run 2, Final Test)

Bay Angular Pc
Location psi

3 1100 639

1300 636

1600 634

1800 643

4 400 638

600 636

900 638

1100 634

1600 639

1800 636

Average pc = 637

Gages selected on basis
of data quality from those
showing largest nonlinear
strains.

of 633 psi.* However, it should be noted that accurate data could be ob-

tained only at pressures within 95 percent of collapse.

These results are of some interest as they relate to the problem of

"snap-through" in thin cylindrical shells. The Southwell method is based

*In practice the Southwell method, when applicable, predicts a buckling
load slightly higher than that actually attained. This is to be expected
since the method gives the elastic buckling load for a geometrically per-
fect structure.
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Table 10

Maximum Stresses Measured during Final Run
(Bay 4 at 110 deg, 630 psi)

Stress in psi

Stress Pulos-
x/L Measured SalernoOrientationTheory

Theory

1.000 Long. Interior - 72,900

0.943* Long. Interior 52, 100 47,500

0.500 Circ. Exterior 74, 100 64,800

Elastic Limit = 74, 400 psi

*Longitudinal gage located as close to frame as possible.

on small deflection theory and predicts the buckling load for the geomet-

rically perfect structure. Hence, it should not give accurate results for

imperfect structures where the buckling strength can only be explained on

the basis of large deflection theory. In such cases, "snap-through" occurs

at some load less than the load predicted by small deflection theory. The

Southwell results, therefore, indicate that if "snap-through" took place, it

did not significantly affect the buckling strength.

It is also apparent that the failure, if not initially elastic, was so

nearly so that the collapse pressure was not seriously affected by inelas-

tic behavior. Had this not been the case, the Southwell plots would have

been nonlinear and the elastic buckling pressure, though possibly obtain-

able from strains in the elastic region, would not have agreed well with

the experimental collapse pressure.

In this regard, it is useful to examine the stresses determined from

strains measured in critical areas. The maximum stresses were observed

in Bay 4 at 110 deg and are listed in Table 10 along with the corresponding

values from the theory of Pulos and Salerno. 33 All stresses are for a pres-

sure of 630 psi. The differences between the measurements and the calcu-

lations can be attributed to additional bending stresses which accompanied

the lobar deformations. It will be seen that none of the measured stresses
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reached the elastic limit. However, it should be pointed out that the in-

terior longitudinal stress exactly at the juncture of frame and shell could

not be measured because the longitudinal gages were necessarily displaced

slightly (0.057L) from the juncture to allow for the length of a gage ele-

ment. The maximum stress measured at this neighboring point and the

theoretical values for this region (Table 10) indicate that the elastic limit

may have been exceeded by the interior longitudinal stress in Bay 4 at 110

deg immediately adjacent to Frame 5. Because of the high stress gradi-

ent in this region, a precise estimate of this stress was not possible. In

any event, it appears that whatever yielding may have occurred was very
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slight and highly localized.

The circumferential gages in Bay 3, located along the 90-deg gener-

ator, provide some information regarding the longitudinal profile of a lobe.

Figure 17 shows a nondimensional plot e*/IIEl versus x/Lf for a pres-

sure of 630 psi. As explained previously, e* is the nonlinear or lobar

component of the total strain, e* is the value of E* at midbay, and x is

the distance measured from the center of Frame 3. Also shown is a sine-

wave distribution such as would exist in the case of simple support. The

departure of the experimental points from this sine wave indicates to some

extent the influence of the rotational restraint on the buckling configura-

tion. Undoubtedly, experimental error is responsible for some of the

deviations. Strains measured on Frame 4 in this region showed some

evidence of asymmetric deformations, but the strain variations were not

large enough for the determination of a well-defined pattern.

Strains measured in Bay 3 also provided an opportunity for further

evaluation of the axisymmetric stress analysis of Pulos ana Salerno33 in

the linear range. Figure 18 compares the theoretical distribution with

the distribution of circumferential and longitudinal strain sensitivities

measured across Bay 3 at 90 deg. Agreement between theory and exper-

iment, it will be seen, was generally good.

COMPARISON WITH PREVIOUS TESTS

Table 11 summarizes the test results of Cylinder BR-4B and the

earlier results for Cylinders BR-4 and BR-4A. The cylinders were geo-

metrically similar but differed in their yield strengths. The table in-

cludes pressures given by Formula [92A] of Von Sanden and Giinther,32

at which the exterior circumferential stress at midbay reaches the yield

value. Since this pressure for BR-4 and BR-4A was less than the elastic

buckling pressure given by Equation [33], it is clear that both of these

failures were initially inelastic. Use of much higher strength steel in the

case of BR-4B resulted in a yield pressure well above the elastic buck-

ling pressure and in a mode of collapse which appears to have been ini-

tially elastic.

.1. ------- _- .
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Table 11

Experimental Results Compared with Previous Tests

SUMMARY AND CONCLUSIONS

1. The test Cylinder BR-4B collapsed at 633 psi in an asymmetric

shell buckling mode characterized by 11 circumferential lobes. On the

basis of strain, measurements, it is concluded that the collapse was"

initiated by elastic buckling.

2. The Southwell method can be an effective means of determining

nondestructively the elastic buckling strength of short shells. It is likely

to be accurate only where imperfections and residual stresses are small,

as in the case of machined cylinders, and only where it is possible to ap-

proach very closely the elastic buckling pressure. Hence, its practical-

ity as a nondestructive technique may be rather limited for this mode of

buckling.

Cylinder Number BR-4 BR-4A BR-4B

Fabrication Welded Machined Machined

a y, psi* 50,000 50,000 82,500

Von Sanden
a; and Giinther 494 494 815

Sa ~Formula [92A]3 2

0'4 Equation [33] 633(11)**

Experiment 390(10) 550(10-11) 633(11)

*Based on an offset strain of 0.002 .

**Number of lobes in parantheses.

Dimensions and Young's Modulus (28.9 x 106 psi)
assumed identical for the three cylinders.

__ _____-__~ 111111 1

III 1 II II II I ill nransw



PART III - EVALUATION OF BUCKLING THEORY

COMPARISON OF THEORY WITH EXPERIMENT

According to the theory developed in this report (Equation [33]),

buckling for Cylinder BR-4B occurs at 633 psi in a configuration of 11

circumferential lobes, which is in exact agreement with the test results.

Such agreement is, of course, better than one has any right to expect,

even for the most rigorous theory imaginable. The present theory makes

use of several approximations; moreover, its accuracy depends on the uni-

formity of the test cylinder and the accuracy with which its properties can

be determined. The shell thickness, for example, must necessarily be

represented by an average of many measurements, all subject to error.

The determination of Young's modulus required a separate test which uti-

lized the response of a ring to diametral loading. While this method is

believed reliable, it is still subject to experimental error,' and no claim

is made that it is the best that could have been used. Other techniques,

for example, the use of optical strain gages to measure the response of

a specimen under direct stress, are highly regarded. Because perfect

isotropy is never achieved, methods which employ different conditions of

stress cannot be expected to yield identical results.

In view of these uncertainties, the degree of correlation of theory

with experiment can be regarded with some suspicion, but the results are,

nevertheless, substantial evidence of the validity of the theory.

The test of BR-4B is considered successful as a demonstration of

the phenomenon of elastic buckling, but it is not an ideal example of the

influence of stiffening rings on shell buckling strength. The buckling pres-

sure was only slightly greater than that (600 psi*) given by the theory of

Von Mises (Equation [46]) for the case of simple supports. This is a

*This figure is obtained on the basis that buckling is confined to the
unsupported length (L) of shell plating. If the full frame spacing (Lf)
is used, the resulting pressure is 580 psi, as indicated in Table 4.
Still less is the pressure (550 psi) given by Equation [42], which in-
cludes the effect of the boundary conditions on the initial deflections.



natural consequence of the large value of P (6. 80) used in an effort to

obtain an elastic failure. Nevertheless, the test did demonstrate that

the Von Mises pressure can be exceeded.

Fortunately, since the test of BR-4B, other results have become

available that provide better data regarding the influence of stiffening

rings. These have been selected from tests of a number of machined

steel cylinders, 8 in. in diameter, most of which were recently reported. 39

The cylinders in many cases had more typical bays than did BR-4B, but

there is no indication that the extra length had any influence on collapse

other than to isolate the central bays from end effects. In all cases,

failures were of the interframe variety, but in only a few was there evi-

dence of elastic buckling. Since none of them was instrumented for the

specific purpose of detecting an elastic failure, the cases cited here were

selected by comparing p c, the critical buckling pressure according to

Equation [33], with an estimated yield pressure py, given by Von Sanden

and Giinther Formula [92A].3? The pressure py is that at which the ex-

terior circumferential stress at midbay reaches the yield value defined

at an offset strain of 0.002. When py exceeds pc', the possibility of elas-

tic buckling exists. If pc exceeds py, the failure must be inelastic. On

this basis, three of the cylinders were in the elastic category. .Their prop-

erties and those of BR-4B are listed in Table 12. Since modulus meas-

urements for the small cylinders were not available, a nominal value of

30 x 106 psi was assumed. The collapse pressures, both experimental

and theoretical, for the four cylinders appear in Table 13.

The influence of the frames is clearly seen by comparing the Von

Mises pressures in the table with the experimental results. The additional

strength provided by the frames (as much as 22 percent) results prima-

rily from the fact that for each of the small cylinders, P was considerably

less than for BR-4B. Evidently the present theory adequate'ly accounts

for this effect. In each case, the pressure given by Equation [33] agrees

well with the experimental pressure. These results are also presented

graphically in Figure 19. The abscissa is pc/Py and the ordinate is the

ratio of pf, the experimental failure pressure, to py. The 45-deg line

drawn on the figure represents perfect agreement between theory and

experiment. If p c/py is less than unity (indicated by the dotted line),
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Table 12

Properties of Steel Test Cylinders

Cylinder BR-4B U-73 U-56 U-23(1)
Number

p 6.800 .5.264 4.744 4.124

h/R 1.007 x 10-2 0.6728 x 10-2 0.8268 x 10 - 2 0.7608 x 10 - 2

Lf/R 0.5301 0. 3359 0.3356 0.2798

b/R 1.714 x 10- 2  1.915 x 10 - 2 1.546 x 10- 2  1.497 x 10 - 2

d/R 7. 083 x 10 - 2 7. 661 x 10 - 2 6. 158 x 10 - 2 5. 939 x 10- 2

E in psi 28.9 x 106  30.0 x 106  30.0 x 10 30.0 x 106

ay in psi** 82,500 103,200 103,700 108,600

Number of 6 10
Typical Bays

All cylinders machined with external rectangular frames.

Poisson's Ratio assumed to be 0. 3 for all cases.
1

p = [3(1 - v2 )]4 Lf/ - ; b = Frame Width; d = Frame Height.

*Measured value for other cylinders assumed.

**Compressive yield stress based on offset strain of 0.002.



Table 13

Comparison of Theory and Experiment

Theoretical Collapse Pressure, psi
Experimental Elastic Instability Yield

Cylinder Collapse
Number Pressure Von Mises Von Sanden Nash 35  Von Sanden

psi EquationFig. 8 & 9) and T61ke i2 (Fixed Ends) and Giinther

Formula [92A] 32

BR-4B 633(11) 633(11) 600(10) 599(11) 845(11) 815

U-73 475(14) 460(14) 387(14) 386(16) 560(15) 644

U-56 725(13) 744(13) 654(14) 665(14) 965(15) 820

U-23(1) 803(14) 811(14) 665(15) 693(16) 1031(17) 815

"'Numbers in parentheses indicate number of circumferential lobes.

In applying the formulas of Von Mises and Nash, the effective length of the shell

is taken to be the unsupported distance (L) between frames. In Equation [33] and

in the Von Sanden and T6lke equation, the full frame spacing (Lf) is used.



elastic buckling is expected. It will

, Yieid Pressre,Formia(92A)U be seen that the four cases of Table
IS pc a Crltical Buckling Pressure, Equatlon(33)

p4 t Experimental Foilur Pressur 13 all fall within this region and the

- -plotted points all lie close to the 45-

1.2 deg line. Some of the other tests

Sreported in Reference 39 are also
S-4 U-62

0B4A U plotted in the figure along with the
U-232 U 2)U test of BR-4A. In all of these cases,

DU-SE

0._ Pc/Py exceeds unity, so that the

0 R8 -48- i points are outside the elastic region
Elaostic Inelastic

06 Bucling Buckling and, as expected, all lie below the
0.6 07 08 0.9 10 II 12 13 14 15 16

,c,, 45-deg line.

These results indicate that the

Figure 19 - Experimental andThFigure 19 - Experimental and performances of the four cylinders
Theoretical Results

have been satisfactorily explained

using small-deflection theory, and are consistent with earlier remarks

regarding the application of the Southwell method for the case of BR-4B.

This does not necessarily indicate that the observed failures were not, in

fact, precipitated by a "snap-through" mode of instability. That this phe-

nomenon can occur in cylindrical shells under hydrostatic pressure has

been demonstrated experimentally by Kirstein and Wenk,2 l and theoretical-

ly by the large deflection analyses of Donnell,17,s Langhaar and Boresi,19

and Kempner and Crouzet-Pascal,zO among others. However, these studies

have also shown that the pressure at which "snap-through" takes place is

not much less than the pressure given by small-deflection theory even in

the presence of imperfections.* For machined shells, this pressure dif-

ference might be too small to be detectable.

Table 13 also shows that according to the solution of Von Sanden and

Tolke, z the pressures reflect some strengthening due to the presence of

the frames, but still fall short of experiment. This is to be expected since

*This is in marked contrast to the behavior of cylindrical shells under
axial compression or torsion where the pressure difference can be very
large.
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the analysis considers the effect of the frames on the prebuckling defor-

mations but fails to account for the restraint which they provide during

buckling. On the other hand, the Nash solution for a shell with full fixity3 5

greatly overestimates the strength actually realized in each case, as the

table indicates. This should be interpreted not as a refutation of the solu-

tion, but rather as evidence of its inapplicability for the cases considered.

It is possible, as has already been indicated, that the analysis may be

quite accurate in cases where complete fixity is actually attained.

Finally, it should be said that the experimental results reported

here, though meager, are all of which the author is aware. Unfortunately,

there are no data for internally framed cylinders, and none are apt to be

forthcoming because of the machining problems presented by internal

frames.

While no future studies in the area of elastic shell instability are

contemplated, should additional experimental data become available, they

will be examined with interest.

C ONC LU SIONS

1. The small deflection theory of this report predicts with accuracy

the elastic buckling of cylindrical shells supported by closely spaced ring

stiffeners, at least where stiffeners are external and p is greater than

4.0. Because of the restraint provided by the rings, the buckling strength

can be considerably greater than that expected for a shell with simple

support.

2. The solution of Von Sanden and T61ke is conservative in all cases

because it accounts only partially for the strengthening influence of the

stiffeners.

3. The fact that the Nash analysis for a shell with clamped edges

greatly overestimates the buckling strength of ring-supported shells does

not necessarily indicate the use of an unrealistic buckling shape in the

analysis. It is more likely that the disparity exists chiefly because frames

of practical size do not provide restraint comparable to complete fixity.

4. Since the Von Mises analysis is based on the assumptions that the
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shell is unsupported prior to buckling and simply supported during buck-

ling, it can be highly inaccurate in predicting buckling pressures for ring-

stiffened shells. Nevertheless, it is probably the most practical means

for estimating elastic buckling strength because it is always conservative

and can be represented in a very simple form.
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APPENDIX A

STRAIN ENERGY OF THE SHELL

In the development which follows, basic strain-displacement rela-

tions are obtained with accuracy preserved through quadratic terms in

the displacements. The strain energy integral of the shell is then formu-

lated with displacement terms maintained through the third order.

We consider an element situated within the thickness of the shell

at a radius r and having axial and angular coordinates x and 0. The

element undergoes displacements u', v', and w' in the axial, tangential,

and radial directions, respectively, with w' taken as positive outward.

We will assume that the strain in the radial direction is negligible so

that only deformations within the plane of the element need be considered.

Novozhilov 4 0 describes these deformations in terms of strain components

which will be designated Exx , Eo , and Ex0 for cylindrical coordinates.

They are related to the displacements as follows:

Exx = u + (u2 x+ 2 +wx2)

v + w' 1 1u 2  +w 2 w-v 266]

0r 2 r r i \ r

u 1 ) v + w-

E = V' + + u ' + V' w
S x r x r x r x r

where the subscripts on u', v', and w' indicate differentiation. In order

to calculate strain energy, it is necessary to consider strains of line ele-

ments that lie along mutually perpendicular axes - in this case the x and

0 coordinate lines. These strains, according to Novozhilov, 40 can be ex-

pressed in terms of the strain components by

ex = 1 + 2 exx - 1
x xx

[67]

e = / + 2 E0 0 - 1
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sin Ex8 [ 67 ]
ex0 = N(1 + ZE xx)( I + 2E08) continued

where e x and e0 are unit strains in the x and e directions and exo is

the shear strain expressing the change in the angle between the coordinate

lines. By combining Equations [66] and [67] and discarding all displace-

ment terms of order higher than quadratic, one obtains

1 2 2
x x2 x x

v + w' u 2 - v2
e = r k+ r + ( [68]

u w v+w w u +w
ex0 v x r wx r - u x v x  r r

It may be surprising to note that retention of only linear terms in the

strain components, as was apparently done by Langhaar and Boresi,1 9

leads to a slightly more complicated result.*

To relate the displacements u', v', w' at any point to the displace-

ments u, v, w at the middle surface of the shell, it is useful to employ

relations developed by Langhaar and Boresi.

U' = u+ Zg

v' = v + zw [69]

w' = w+ zY

*In that case, the strains are identical with the corresponding strain
components. However, the difference between Equations [66] and [68]
is probably of little practical significance.
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where

-= +v -e +u w

We - + +W W - V

R R R R

w 2  we V 2
x R )

where R is the radius to the middle surface of the shell and z is the

thickness coordinate measured positive outward from the middle surface

of the shell. Equations [69] are based on the assumption of Kirchoff that

normals to the undeformed middle surface remain normal, straight, and

unextended after deformation. By combining Equations [68] and [69]

after suitable differentiation, the resulting equations are

z2 N 2

ex =u 2 +X ) + (Nxx + UxxWx + UxWxx) 2

W2 2 2

- + 2)+ ZR2 (wO + N2 [70

ue ue M z /
ex = Vx+ - (RN x + wx6) + w x N - u x v x -R 2uxW xR R R R

+ ue w x x + Uxwx + RMxN+ RMN x + N v x +Nvx +w x N

uNe -N z 2
+ Ru x N x  + w M R2 (R xx N + wxe No)

R )x R 2 W
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where

M =
R

N-
R

In obtaining Equations [70], it was assumed that r could be replaced by

R with negligible loss of accuracy. A further simplification can be made

in exe by neglecting z/R in comparison to unity. Then

ue z u e M
ex x  R R (R N x + Wx) + w x N - ux v R [71]R R R [71]

S(2 Uxe wx + u w xx + uxwxo + R MN + RMNx + N vx

u e N e  ) z2 2

+ Nvx0 + Ru x N x + R +wxM R2 (R wxx Nx+ wx N)

In formulating the expression for the strain energy of the shell, it

will be assumed that the stress in the radial direction is zero. According

to Langhaar and Boresi, 19 the shell energy U s can then be expressed by

X2 2 ? h

Us E 2 fx + ez + 2 v e e + ) e j R dxde dz

S2 -[72]

where E is Young's modulus and h is the shell thickness. After combin-

ing Equations [70] and [71] with Equation [72], performing the integra-

tion on z and discarding terms higher than the third order, one obtains:

2EhR 2 2 2 2 2
EhR u x + ux (v x + wx) +M + M( +N)

2 (l-v 2 ) x 0 R

+ 2v xM+- + N2) + ( +w
x 2 +2 v x  xN - u [73]

+(k) Vx+ + 2(vx+R)(wxN -uxvx - M dxde

(l~w x -) [( v x
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Eh 3 2
Eh3 R2wxx + ux N2 - 2 wxx (N vxx + u xxwx

24R (1-v2 ) fx I

+ uxwxx)] + N 2 + Mw 2

2 1

+ 2v R wxx N +
u w2

2
U8Wx

- 2 N ( u 0 R w x

R u08 Wx
RX W x R

+ M N + MN -

2

+ M N + MN X)

- R N(Nv x x + uxx x +

- 2 (v x +

R 2 N2
u x Wxx)+ 2 + (R

2 -2 Nx + wx8)2

8R )(R2 wxx Nx + Wx NE) - 2 (RN x + wx 0 )I(2 U Wx

+ UW x + U xWx +RMxN + RMN x6 x x 8 x x + R v xWx + N o Vx

+ N vx + Ru Nx x x
U0 N0+ +w M

R x0

[73]
dx dO continued
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APPENDIX B

STRAIN ENERGY OF RINGS

The strain energy of a ring will be considered as the sum of three

quantities: U p, the energy due to deformations in the plane of curva-

ture; UOP, the energy of deformations perpendicular to the plane of

curvature; and UTOR , the energy due to torsion about an axis parallel

to the 0-coordinate line. Thus, the strain energy of a ring is

Uf = UIP + UOP + UTOR [74]

In this equation, the energy associated with restricted warping as well as

that due to extensions of the ring in the z and x directions has been neg-

lected.

U IP is simply the energy associated with the circumferential strain,

or

UIP - 0 (e )2 (R+e)dAf dO [75]

A f x=iLf

where Af is the cross-sectional area of a ring situated at a distance iLf

from the origin. From Appendix A, Equation [68] is

v, + wu 2, 2

e - + 1 R+) + R ) [76]
R+e Z R+e R+e

when the approximation is made that r can be replaced by R+ e. Refer-

ring to Figure 3, e is the distance between the middle surface of the shell

and the center of gravity of the ring cross section. When substitutions

from Equation [69] of Appendix A are made, Equation [76] becomes

e =M N+ + N +
ee R+e R 2 (R+e) R\ 2  R R R R+

w2 2 2 77]x N R-e ] R (z 2 2 [77]
+MWN+MN -- + N + -  (W x+N)

0 2 2 R+e) R+e X
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After this expression is substituted in Equation [75] and terms higher

than the third order are discarded, one obtains

ER2
U =

IP =2 (R+e)

z

R (

27r

Af 0
SM +

2RM (u0

R+e R2

u60 wxN +
R

N
2

2
R-e
R+e

- ZN 0 [ u0 R x

RN

R+e

e
R (R+ e) x0

2

+ N2))
R 2

+ e

R (R+ e) u O Wx0 + Mo N

Me N+ MN8

RM 2
R+e 

X0 + N )

2

+MN x
+ MN 2

[78]
+ N2dAf dO

Z R+e

Before integrating over the area Af, it is helpful to make use of the fol-

lowing definitions:

zdAf = eAf

[79]
z2 dAf = IxG + Afe 2

IxG is the moment of inertia about an axis normal to the area Af at its

center of gravity. UIP can then be written:

ERZAf
U =

IP -2 (R+e)
0

e+
R (R+e) uO WX

e2

R2

M2 +,M u R
e ( R2
R

+MoN+MN
o

2N06I( x G

AfR 2

N2) +
/

w2
x

2

+RM (2 + N 2 )
R+e x0

N2

+
2

e{- 2M
R {

RN 0

R+e

u66 wx
N0 +

R

2uo

R
2

- 2N [OOR x

N2))

[80]

R+ )uO w + M O N +R (R+e) x

2w xN N 2

+ 2 R-e )]R+eJ

2w x

2

LAf

SAf

dO

x= iLf

r I I I I LI 111 1 _I I
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z2 2
+ N2 + N

R2 0
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According to fundamental beam theory, the out-of-plane bending energy

is

OP 2UOP = EIzG X2 (R+ e)dO [81]

where IzG is the moment of inertia of the ring about an axis parallel to

the z-coordinate through its center of gravity and, according to Reference

34,

1 ( G0 1]
X = e ()i +- [82]

R + e x= iLf R + e

uG is the axial displacement of the centroid of the ring; is the rotation

of the ring in the x-z plane as defined in Equation [69] of Appendix A.

Because each ring is assumed to undergo no strain in the axial direction,

)x= iLf - wx + vx R x = iLf [83]

With z replaced by e in Equation [69] of Appendix A, it follows that

uGee = [us0 + e(- + Vxe N + Z vx0 + vx N ) x=iLf

X = - w-x+ xN + Re [u0 0 + e(-w w 0  x6 N

+ 2 vx N + vx N x=iLf 84]

Combining Equations [81] and [84] and discarding terms higher than the

third order, one obtains

SEIzG 27 ) e u00
OP - 2(R+e) f x  R+e -R+e R+e

[85]

SR+e wx[ VN + R+e (v x  N + 2 vxO N + v x N O) dO
x= iLf
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According to Reference 34, the torsional energy is expressed by

EK 2
UTOR 4(+v) (R+ e) d [86]

where ( is the angle of twist per unit of circumference and K is the tor-

sion constant. For example, in the case of a rectangular ring where the

depth d is much greater than the width b, K is given by db3  When an

open section is comprised of several narrow rectangles, K for the section

is given approximately by the sum of the values K for each part.4 1 Refer-

ence 42 gives values of K for rectangles where d does not greatly exceed

b. Reference 34 defines the angle of twist as

= [(we) UG [87]R+e x= iLf R+e

After appropriate substitution this becomes

= 1 2 [R(- wx +x N+ vx NO) - uo] [88]
(R+e) iL

and the torsional energy is

27
UTOR = (Rwxo + u 0 )

4(l+v)(R+e) x

[89]

- 2R (Rwx0 + u)(vx0 N + vxN0 )] dO
x= iLf

with terms above third order discarded.
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APPENDIX C

POTENTIAL OF THE EXTERNAL LOADS

The work done by the external loads is defined as the product of the

pressure and the change in volume undergone by the cylinder during defor-

mation, or

W = p(V' - V) [90]

where V and V' are the volumes before and after deformation, respec-

tively. The volume bounded by an element of the deformed shell is defined

dV' = dA'd1' [91]

where A' is the area enclosed by the median surface of the shell in the

R - 0 plane, and d1' is the length of the element measured in the x-direction.

Referring to Figure 20,

v+vede
' (R 8,)

i
I
I'/
1 /
, /

\\ I ~/
\\ r

I

lj

v+vxdx

v w+wxdx

u u+uxdx
I xi X2 X2

Figure 20 - Deflected Element of Shell

(RI,8,)
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R' R'
dA' ('

2 2 - 1)

df' = x2 - xl

The coordinates can be expressed as follows:

= [(R + w) 2

[(R + w +

0 = 
+

2

d '

01 + dO +

1

+ v2

w dO) 2 + ( + v0 dO) 2 ] 2

v + v dO

(1 + ux) dx

When quantities above the second order are neglected,

dA' = [(R + w) 2 + v(R + w) + v(v+ w0 )]

and

W = X2 7 v + 2w + R ux + 2wux + voux

x 1 1 2 2

+- (w 2 w + v 2 + vw6) dxd6

Iv o +But, since 0O

therefore

W = pR fX2f27

1 0

I (v w + vw 0 )] dO vanishes because of continuity,

2w + Rux + 2wu + vou x + w 2RV dxdd [96]

[92]

[93]

[94]

[95]
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APPENDIX D

INFINITE SERIES FORMULATION OF THE INITIAL DEFLECTIONS

The axisymmetric elastic deformations of a ring-stiffened cylindri-

cal shell under external pressure were first analyzed by Von Sanden and

Giinther.32 This work was later extended by Pulos and Salerno 3 3 to include

the nonlinear or "beam-column" effect of the axial load. To express the

deflections in the form of a trigonometric series it would, therefore, be

possible to perform a straightforward Fourier expansion of either of these

closed form solutions. An alternative approach, however, is favored here

since it leads quite simply to the desired result directly from the equa-

tions of equilibrium with no dependence upon prior solutions.

The axisymmetric deformations of the cylinder are described as

follow s:

u = (x)

v= 0 [97]

w = w (x)

with the added condition that w x vanishes at a frame.

tion [2] then, we have for the initial total potential,

Referring to Equa-

EhR
UT = 2

2(1-v ) SL fS27'0 0

- -2
-2 - ww

-2 w w -2 x
ux + -+ 2vu x + uxwx + dxdO

R

Eh3

24R (l-v) Lf f27
0 0

I Lf 27r
0 0

2 -2 EAf
R w xxdx dO + (R+e)

2 (R+e)

-2
(w ) dO

x= 0

-2 [98]
(Zw+ Ru + 2uxw+ R dxdO

Products of h 3 with third-order terms in the displacements have been neg-

lected in this equation. Because deformations in each bay are identical,

it is only necessary to carry out the integration on x from 0 to Lf.

pR

2

111 _ _ _ _
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Integration with respect to 6 can, of course, be eliminated because of

axial symmetry.
w

If we consider the dependent variables to be u x and R , then one of
R

the equations which results from equating the first variation of UT to

zero is

pR(1-v z )

u x  E
x 2 Eh

w
R

pR(l-v 2 )
Eh

-2
V - wx

By making this substitution in Equation [98], retaining only linear and

quadratic terms in w and its derivatives, and neglecting products of p 2

with w, one obtains

EhR

2
Lf

0

-2
w

R
2

Eh3R
dx +

24(1-v 2 )
S Lf
0

-2
w dx +
xx

EAf

2 (R+e)

-2(w )
x= 0

pR 2 Lf w

2 R

-2
w(2- v) + (1
R

-2w
x

-2v) - -
2

p2 R 3

dx +
8Eh

w is now taken to be

wm cos ( ) =
m R

C

m
= 

-o

where Xm ism
mrrR

Lf

m=l

wm Cos X
m R

[101]

When this series is substituted into Equation [100]

and the integration is performed

UT EhLf m

2r 2R
m= -C

2  4]-2 h (2 xm

w m + 12R 2 ( l - v 2

EAf F 2

2 (R+e) wm
M[ -0]

[102]

(2-v)w o - pLf

m= -o

-2 1 2
wm -- Xm

P2 R 3

8Eh (1

UT

27r

[100]

(1-v 2 )

pRLf

2
v 2 ) Lf

*111 1 I I la*-
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The equations of equilibrium are obtained by minimizing with respect to

the wm s:

EAf

R+e m= -
m= -CO

pRLf
wm 2 (2-v) - pLf (l-2v) w = 0

[103]

+ 4P )4]
EAf
R++

- -2w m + pLfwj (2X 2 - 1 + 2v) = 0

j 0 [104]

where P4 is

yields

3 (1-v 2 ) L 4

R 2 h 2
Subtracting Equation [104] from Equation [103]

[ 
w °

pR
E (1

+ 41 + 4 (Jj 4

-2v)]
2

(2- v)
2Eh

pR 2+ (2x -1+ 2v)
Eh i

pR 2

w (2 - v)
o 2Eh

1+ 4 jr 4)
( P

pRwhen
Eh

2pR 2+ E
Eh J

is negligible compared with unity and 2X >> 1- 2 v.

the wj's we obtain:

Wm = wo
pR 2

(2 - ) -o
m= -CO

1

1+4 )

pR 2
+ (2 - v)

2Eh

8 UT

aw o

EhLffR

UT

8wj----

EhLf

R

j 0 [105]

m= -Co

Summing

2pR
Eh
Eh

2

m

[106]
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wo is then determined by combining Equations [103] and [106].

pR 2

w o - (2-v)( - )
2Eh

am =

[107]
Lfh (e)

f 1+- + am
A R m

f MI= -0

1

1 + 4 (m )4
P

2 pR 2
+ X

Eh m

am can be put in a more convenient form as follows: If anunstiffened cylin-

der were to buckle in the axisymmetric configuration w = am cos2 x

the corresponding buckling pressure pm would be given by

Pm 2

3( -v) 
4m2 

72

N1 I=Z

[108]+ m2 2

2
p3

This equation also applies in the case of a long cylinder under end thrust

where the length of a complete axial buckling wave is equal to Lf/m. If

Equations [107] and [108] are combined, we find that

am =

1 +
4 ( 4n ) (1

[ 109]
p
Pm)

From Equations [105] and [107], we have

pR 2

= - a. (2-v)
S2Eh

- pR 2

W -
2Eh

(2 - v) 1 - 9 - 2
[110]

am co (2X)]
m R

m=l
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pR 2

2Eh (2- v) 1 - am os R
m= -co

[110]
continued

since a o equals unity.

gives

The combination of Equations [110] and [99]

m=co

M= -00

ux = EhI- am cos 2 m x ]

m R
[111]2v + v(2-v),

if quadratic terms in p are neglected.

One consequence of Equation [110] is a

buckling. It can be seen that w will increase

approach zero. The governing condition then

Lf h

Af 1

condition for axisymmetric

without limit should 1/ir

is

=. O0 [112]

So long as Af > 0, this condition can be met only when p > pm for one or

more values of m. If Af = 0, Equation [112] is satisfied when p = pm.

This is to be expected since Equation [108] holds only for buckling of an

unstiffened cylinder.* In that case the expression in Equation [110] for

w becomes indeterminate.

For purposes of comparison, the closed-form solution of Pulos and

Salerno3 3 for w can be written as follows:

- pR 2

w = (2-v) -
2Eh

f(x)

f (o) 1 + 1 + + G
IAf R L

*It should be emphasized-that the buckling configurations mentioned
here are all of a single class characterized by symmetry about a frame
and need not correspond to the minimum buckling pressure. Configura-
tions of the nonsymmetric class, permitting frame rotation, can result
in lower pressures, depending on the geometry of the cylinder.

[113]

9 __ - -1

co

Z4 I PPm)
m= -o 1+ 4 1 Pm



where

f(x) = pl [coshK 1X sinK 2 (L-x) + coshK 1 (L- x) sinK 2 x]

+ F 2
[ sinh K x cos K Z (L - x) + sinh K 1 (L - x) cos K2 x ]

G 2 I1 2 Lf

PL

coshK 1 L - cos K 2 L

2 sinhK 1 L + FI sinK 2 L

Lf

12 P*
P

2E
* R -P-

3 (1 -v2)

where L is the inner, or unsupported, frame spacing and b is the faying

width of a frame. If b is neglected, L equals Lf and Equations [110]

and [ 113] should be equivalent.

we find that

m= -CO

Equating these two expressions at x = 0,

am

1 +

p I
2FL1 2

4( Pm

L2 sinh 1
++ sin F2

coshl - cos ~ 2 p

and

- _pRz

w Eh
2Eh

a Cos( )
{l

m= -0

Lfh e
Af RJ

94

1

G

[114]

I]

[115]

+ -
G
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Combining Equations [113] and [115] yields the additional result:

2 1 42
f (x) 2 2 (cosh J P - cos 42 )fp) 1__

am cos R
m= -o

The principal reason for introducing the Pulos and Salerno solution

was to provide the alternative means (Equation [114]) when needed for

computing E. am. Graphs of the function G can be found in Reference
m= -o

33 where it is designated F 1 for p < p* and F 5 for p > p*. In cases

where p << p*, it follows from Equation [108] that p << pm. Then Equa-

tion [114] reduces to

co
_ 1 P

m c4 2m= -o 1+ 4 ( )

sinhp+ sin 1
cosh p - cos p

For purposes of buckling calculations, this latter equation is usually suf-

ficient. Furthermore, it is often as simple to work with the series form

since, except for large values of 3, convergence is quite rapid.t Usually

only three or four terms will provide good accuracy.

tUsing a comparison test with the convergent series , one
m= 1 m 2

can easily show that the series (Equation [117]) converges for all finite
values of p.

[116]

a-M= -0
[117]
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APPENDIX E

STRESS FUNCTION

The energy expression in Equation [5] is extremely unwieldy as it

stands. It can be greatly simplified if u and v can be somehow eliminated.

To do this, use will be made of a stress function following the method of

Donnell.43

The strain-displacement relations with only linear terms retained

are

8u
e =-
x ax

[118]eE = (+
6 R

8v 1 au
exo = ax a+

8x R 86

It then follows that

82 e 6  a2 ex

8x 2 R 2 a862

a2 ex6 a2 w

R ax a8 ax 2

But, from the fundamental definitions of plane strain

ex = x -

e = E 8 - v x)

2(1+ v)
ex6 E x0

where ax' o0 and (x(O are, respectively,

and shear stresses. Combining Equations

F a 2  a 2 
e 9 +[ a2 2  a 2  

x

8x 2 R2 a 2 I R2 a2 x2

the axial, circumferential,

[119] and [120] we find

2(1+ v) a2 Ox E 82w - 0
R ax ao R ax 2

[121]

[119]

[120]
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The stress function F is defined as follows:

a2 F
ax 2 2R 8a

a2 F

0 8ax 2

axe
a 2 F

R ax aO

Equation [121] now becomes

4 E a2 w
V F

R 8x2
=0

V4
where V indicates the operator

84  284  a4

+ +
8x4 R2 8 2 8x2 R4 8 4

Once w has been specified, F is determined from Equation [123], and

u and v are obtained from

au
ax

E F a2 F
axz

1124]

av R (a 2 F
ao E 8x2

v 2 F) - w

R2 ae 2

98

[122]

[123]
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APPENDIX F

DETERMINATION OF THE MODULUS OF ELASTICITY
FOR CYLINDER BR-4B

Young's modulus for the test cylinder was determined by measuring

the deflections under concentrated loading of a ring taken from one end of

the cylinder. Although not in common practice, this method has certain

advantages. One is that relatively large elastic deflections can be pro-

duced which are easier to measure accurately than, for example, strains

in an axially stressed rod. Another advantage is that a larger, and there-

fore more representative, specimen of the cylinder can be used.

After the test of BR-4B had been completed, the bulkhead ring near-

est the damaged portion (Figure 13) was cut from the cylinder and ma-

chined to the following dimensions:

Mean radius (R) = 8. 196 in.

Depth (d) = 0. 3585 in.

Width (b) = 0. 7494 in.

The ring was placed vertically between the heads of a universal testing

machine and was set in position by an initial compressive load of 50 lb.

The load was then increased in 50-lb increments up to 350 lb while the

shortening of the vertical diameter of the ring was measured with a dial

indicator. The ring was unloaded in the same manner. Two such runs

were made and, in each case, measurements during loading and unload-

ing agreed within 0. 002 in. The results of the test are shown graphically

in Figure 21.

According to Reference 44, for a ring of rectangular cross section,

the change A in the diameter produced by the load P can be expressed

as follows:

PR2 {( c 7r 2 (1c )]+37(l+ V c

[125]

d2  1 + 1 d 2
12R 15 R
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E _ 2.88 104

Run I -E a 28.810' psi
Run 2-Ez 29010

i 
psi

(Points repeated during
unloading within 0.002 n)

504
0 100 200 300 400

Chonge in Dametear(A) n Inches x 10
"3

Figure 21 - Determination of Young's Modulus for BR-4B

(Response of Ring to Diametral Loading)

The equation is applicable to thick rings and accounts for direct and

shear stresses as well as bending effects. For the ring in question, the

result is

E = 2. 88 x 10 4 - [126]

From the slopes of the plots of Figure 21, the values for E in pounds per

square inch were 28.8 x 106 and 29.0 x 106. An average value of 28.9 x 106

psi was thereby determined.
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Page 38, Equation [48].

minus (-).

Change six signs marked with arrow from plus (+) to

EhR

T2(1-v )

2L 27 w+v

SI[ u2 +
w+ v  u 2+ 2 ,V,, Ux, x dx d

Eh 3

24R(1-v 2 ) f 2Lf 2r
0 0

R w2 +

iwovoVe 2
R)

+ Zvwxx(we+ V8)

+ -) (Zwxo + Vx) d dxdO

2L 27 2u

fIf R 20 0 R

+ EhR

2(1-v )

w +v
+ (- R\R

+ v (w 2 + 2 ) - (1x x

uo
- v)

R

+ (1- v) R x -
w+v

+ 2 uxX]

L 2
( 

R+v

[48]
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r/~ 5D
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2
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