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ABSTRACT

After a review of the deficiencies of the usual equations of motion for an

oscillating ship, two new representations are given. One makes use of the impulse

response function and depends only upon the system being linear. The response is

given as a convolution integral over the past history of the exciting force with the

impulse response function appearing as the kernel. The second representation is

based upon a hydrodynamic study, and new forms for the equations of motion are

exhibited. The equations resemble the usual equations, with the addition of con-

volution integrals over the past history of the velocity. However, the coefficients

in these new equations are independent of frequency, as are the kernel functions

in the convolution integrals. Both representations are quite general and apply to

transient motions as well as periodic. The relations between the two representa-

tions are given. The treatment considers six degrees of freedom, with linear

coupling between the various modes.

UC~Y~6~ I I I I I III a II-~I~

, ' AIMM I r 0Im=YiumII l I



The Impulse Response Function and Ship Motions
W. E. Cummins

Introduction

Just over a decade ago, Weinblum and St. Denis') presented
a comprehensive review of the -state of knowledge at the end

of what we may call the "classical" period in research on sea-

keeping. Soon after, St. Denis and Pierson2) opened the
"modern" period (some would prefer to call it the "statistical"

period). The studies of the former period were primarily con-
cerned with sinusoidal responses to sinusoidal waves, but the
introduction of spectral techniques opened the door for the
discussion of responses to random waves, both long and short

crested. The construction of the spectral theory on regular

wave theory as a foundation delighted us all, as it presented
an apparent justification for the admittedly artificial studies
of the "classical" period.

The activity during this last decade has been spectacular,
with five major and many minor facilities for seakeeping re-

search being opened. Hundreds of models have been tested,
many full scale trials have been run, and there has even been

some real growth in our knowledge of the subject. In particu-
lar, the spectral tool has been sharpened and tempered by the

empiricists, and the analysts have made important advances
with the rather frightful boundary value problem. In fact, we
have all been forging ahead so rapidly that we appear to have

forgotten that we are wearing a shoe which doesn't quite fit.
The occasional pain from a misplaced toe is ignored in our

general enthusiasm for progress.

The "shoe" to which I refer is our mathematical model, the
forced representation of the ship response by a system of

second order differential equations. The shoe is squeezed on,

with no regard for the shape of the foot. The inadequacy of
the shoe is evident in the distortions it must take if it is to be
worn at all. I am referring, of course, to the frequency de-
pendent coefficients which permit the mathematical model to
fit the physical model (if the excitation is purely sinusoidal,
that is).

But what happens when we don't have a well defined
frequency? The mathematical model becomes almost meaning-
legs. True, a Fourier analysis of the exciting force (or encoun-
tered wave) permits the model to be retained, but physical
reality is almost lost in the infinity of equations required to
represent the motion.

Let us consider this mathematical model briefly, and restrict
ourselves to a single degree of freedom. To be completely fair,
let us consider a pure, sinusoidal oscillation. The forcing func-
tion (if the system is linear) will be sinusoidal, and can be
broken into two components, one in phase with the displace-
ment and one 900 out of phase. We further divide the in-phase
component into a restoring force, proportional to the displace-
ment, and a remainder. The latter we call the inertial force,
and treat it as if it were proportional to the instantaneous

1) References are listed at the end of the paper

acceleration. The out-of-phase component, which provides all
the damping, we treat as if it were proportional to the in-
stantaneous velocity.

We can now write an equation, which has the appearance of
a differential equation, relating these various quantities:

a (w) i + b (w) i + c (w) x = F0 sin (ot + E) .

But a differential equation is supposed to relate the instan-
taneous values of the functions involved. If the periodic
motion continues, this condition is satisfied. Of course, it could
just as well be satisfied by the equation

bt + (c - a ') x = f (t)
or more generally

(a + d) + bi + (c + do) x = f (t)
where d is arbitrary. These are all equally valid models. One
of them is to be preferred only if it truly relates the displace-
ment and its first and second derivatives to the excitation in
some more general way. But suppose f (t) were to be suddenly
doubled. Would the instantaneous acceleration be given by

2f(t)-b(o)i-c(co)x

a (w)

In general, no! Or suppose the amplitude of the oscillation to
be suddenly increased. Would the out of phase component of
f (t), immediately after the change, be equal to bi? Again, in
general, no. Thus, at best, b (w) must be considered as a sort
of "apparent" damping coefficient, a (w) as an "apparent"
apparent mass, and the physical significance of both is
obscure. When the oscillation consists of several coupled
modes, the so-called coupling coefficients are equally con-
fused and confusing.

If we restrict ourselves to a phenomenological investigation
of how a given ship behaves in a given wave system, these dif-
ficulties do not concern us. We simply measure responses to
known waves. Most of the work over the past decade has been
of this nature, and much of it has been excellent. However,
sooner or later, we are required to consider not "what" but
"why," and a more analytical technique is demanded. The
phenomenological study can tell us the effect of a change in
ship loading on seakeeping qualities only after we have mea-
sured it; there is no basis for quantitative prediction given
the results for one gyradius. And the effect of a change in form
is presented as an isolated result, unrelated and unrelatable
to the geometric parameters involved. We are driven to the
use of the model discussed above in an attempt to clarify the
relation of cause and effect. But such a poor mirror of reality
is of little value, and in fact can do much harm.

I am not the first to raise this issue. The difficulties are well
known and a number of writers have discussed them. In parti-
cular, Ticks) has vigorously argued against our usual practice
and has proposed a model which is very close to the one which
will be exhibited here. His case is based solely upon the gene-
ral characteristics of linear systems, while, we shall take ad-
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vantage of the principles of hydrodynamics to tie the model
to the phenomena. More recently, Davis') has proposed a ratio-
nal approach from the point of view of statistics. This is sug-
gestive, particularly since it was the spectral theory of stati-
stics which first gave weight to the investigation of responses
to periodic waves.

Briefly, the specific objectives of this paper are:
1. To exhibit a model which permits the representation of

the response of a ship (in six degree of freedom) to
an arbitrary forcing function (with excitation in all six
modes). The model will not involve frequency dependent
parameters.

2. To separate the various factors governing the response
into clearly identifiable units, the effect of each to be
separately determinable. Thus the effect of gyradius will
be separable from added mass. The added mass will be
related only to inertial forces and moments. The nature
of the damping force will be exhibited. The effect of
coupling will be derivable and the effect of "tuning"
upon coupling will be determinable.

In this paper we shall not consider the complementary pro-
blem of the relation of the exciting force to the incident wave
system. This problem is equally basic, and when it has been
adequately treated, we will begin to have a satisfactory frame-
work for the interpretation of our empirical studies.

The Impulse Response Function

The basic tool which will be used in this study is an elemen-
tary one, widely used in other fields and well known to all
engineers: the impulse response function. It is difficult to
understand its neglect in our field. Perhaps as Tick suggests,
it is because waves look sinusoidal.

For any stable linear system, if R (t), the response to a unit
impulse, is known, then the response of the system to an arbi-
trary force f (t) is

t

x (t) = JR (t -) f () d
-00

x (t) = R (r) f (t - ) dt .

The only assumption required (aside from convergence) is
linearity. In the present context this is, of course, a very strong
assumption, and the purists will argue that it implies a thin
ship or the equivalent. However all experimental data indicate
that the assumption is a good working approximation for small
to moderate oscillations of real ship forms. We shall hypo-
thesize that the assumption holds absolutely.

Let xi, (i = 1, ... , 6) be displacements in the six modes
of response:

x, = surge (positive forward)
x2 = sway (positive to port)
x3 = heave (positive upward)
x4 = roll (positive, deck to starboard)
x5 = pitch (positive, bow downward)
xg = yaw (positive, bow to port)

Let Rij (t) be the response in mode j to a unit impulse at t = 0
in mode i. Note that Rij (oo) does not necessarily equal zero,
though in a damped system which is not unstable, it will ordi-
narily be finite. In modes without a restoring force (sway,
surge, and yaw), the impulse response will asymptotically
approach some value. For other modes, Rij (oo) = 0.

If the (fi (t)) are an arbitrary set for forcing functions, the
corresponding responses are

6 oo

xj (t) = 1 f Rii (r)fi (t - r) dT. [2]
i=1 0

Thus, the matrix (Rij (t)) completely characterizes the response
of the ship to an arbitrary excitation.

Before we go on, let us consider the relation of these func-
tions to the usual coefficients. First consider the case where
the modes are uncoupled. Let

fi (t) = Fi cos (ot - Ei) [3]

where Ei is a phase angle whose value will be assigned later.

xi (t) = Fi J Rii (r) cos [w (t - T) + Ei] dr
o

= Fi [cos (wt + Ei) f Rii cos wrdT

+ sin (wot + Ei) f Rii sin ordr]

= Fi [Riic (w) cos (wt + Ei) + Riis (w) sin (wt + Ei)]

[4]
where

Riic (w) ; f Rii (r) cos ordr

Riis (w) = J Rii (T) sin wordT
0

[5a]

[5b]

are the Fourier cosine and sine transforms of Rii (t). We shall
call these transforms the frequency response functions. We
make the further reduction

xi (t) = Fi [(Riic cos Ei + Rii
s 
sin El) Cos wt

+ (Rii
s

cos Ei - Rii cos Ei) sin wt] .

Taking tan Ei = Rii 
/ 

Riic

we have x i (t) = F i [(Riis) + Riic) ]f
ls

cos ot .

Also
f (t) = F i (RiiC cos ot - Rii

s sin wt)

[(Riis)' + (Riic) l'/

[6]

[7] "

[8]

Now consider the usual representation
aiki + biii + cixi = fi (t).

Using the xi and fi from [7] and [8], it is easily seen that

ai = l/o" ci- Ri
(Rifc)* + (Riis)

Riis
bi =

o [(Riic)2 + (Riis)' ]

[10a]

[10b]

A more useful relationship is obtained by setting ei = 0
in [4]:

x i (t)-- = Riic 
(to) cos ot + Riis 

(w) sin ot.
Fi

[11]

Thus Riic and Rii are the amplitudes of the in-phase and out-
of-phase components of the response to a unit amplitude forc-
ing function of frequency w. The impulse response function
is related to these functions by

Rii (r) 2 $ Ric () cosor doa

[12]

00

- f Riis (w) sin wo do

using the Fourier inversion formulas. Note that Rii c and Rii
are uniquely related. If one is known, then by [12] and [5],
the other is determined.

Equation [11] can also be written

where

Xi (t) [(Rii) 2 
+ (Riis)]l a cos [ot -- Ei (w)]

Fi

Riis (O)
tan E =

Riic (O)

[13]

[14]

Thus, the response follows the excitation by the phase
tan-1 (Rii s/ Riic) and has the amplitude [(Rii's) + (Riic)21'/'.
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The response for a given frequency, as determined by the
pair of functions Rii, Ri c, or alternatively, the pair [(R,1i)2 +
(Riic) 2] /, tan- (Ris /R i), is a mapping in the frequency do-
main of the unit response function, which is defined in the
time domain. As equations [4] and [11] permit us to pass from
either domain to the other, the two representations are com-
pletely equivalent. Viewed in this way, the frequency response
function is a meaningful, useful concept. It is only when we
try to attribute a deeper meaning to it, by imbedding it in a
false time domain model, that we create confusion.

Now consider the more general, coupled system, with exci-
tations in a single mode of the same form as given in equation
[3]. Then

xj (t) = F, [Rijc cos (ot + Ei) + Rijs sin (tot + E,)]. [15]
If we consider the usual representation

6
X (ajk j + bjk j + Cjk Xj) = fk(t)

j=1

where fk (t) = 0 for k + i, we can develop a system of equa-
tions in the unknowns, aJk, bjk. (The cjk are assumed known
from static measurements.) All 72 of these unknowns are
present, in principle, except where modes are uncoupled. To
determine them, it is necessary to consider the responses to
excitations in each of the modes separately. We then have
enough equations, if we separate the in-phase and out-of-phase
components, to determine the coefficients. We have no need
for them here, so we defer further discussion until we face
a closely related problem. It is only significant to note that
they can, in principle, be determined from the set of impulse
response functions, and therefore they contain no information
which is not derivable from these functions.

Setting Ei = 0 in [15], we have the system

xj (t)
- Rije cos ot + RijS sin ot . [16]

Thus, Rije and Rijs are the amplitudes of the in-phase and
out-of-phase responses in the jth mode to unit amplitude ex-
citation in the ith 'mode. As before,

Rij (t) = 2 Rij cos ot dwo

0

- Rijs 
sin ot do)

0

and xj (t) _ [(Rij c) + (Rijs)],I cos (wot - Ej)
F:

where tan Ej = Rij / Rij.

[17a]

[17b]

[18]

[19]

We have passed over the question of convergence of the inte-
grals in equations [2] and [5]. Consistent with our hypothesis
of linearity, we shall assume Ifi (t) I is bounded. There will then

be no difficulty unless f JRij (T) I d does not exist. Unfortunate-
O

ly, in three modes there are no restoring forces (or else they are
negative), and evidently some care is needed in treating these
cases. A negative restoring force implies an unstable system,
which would be beyond the scope of this analysis. However,
the case in which Rij approaches some non-zero but finite limit
can be treated. The divergence of the integrals can be over-
come if we arbitrarily assign a value to xj (0). We formally
write

t 0

x i (t) = Rij (t-r) fi (r) drT Ri (--r) fi (r) d-r + xj (0)
- -

or
t

xi (t) = J Rij (r) fi (t - r) dr
0

+ [R(t+) - R( f (-) d+x(.)

0

[20]

The second integral converges, so this expression provides a
usable definition of xj (t). Now let fi (t) = cos ot. After an inte-
gration by parts, we have

t
xj (t) = 1 / Ri (r) sin o (t -r ) dr

o

+ J [Rij (t + r) - Rij (r)] cos or dr + xj (0).
0

Our only concern is with the oscillatory components of xi .
These are easily determined by considering the asymptotic form
of the above expression as t becomes large. Rij (t + )-*Rij (0),
and the second integral becomes constant. If we set

Xj (0) = lim [Rii (t + r) - Rij (r)] cos ot dr
t--* oo

o
then

1
xj (t) = (- Rij cos ot + Rije sin ot) [21]

where Rij and Rij c are the sine and cosine transforms of
Rij (t). We know that xj (t) is sinusoidal, with frequency o.
Therefore, this expression holds not only for large t but for
all t.

If we define
[22a]
[22b]

then [16] still holds. Note however, that Rije and Rijf are no
longer transforms of Rij because these do not exist. Neverthe-
less, an inversion is still possible. Consider

f [Rij (r) - Rij (oo)] cos or dr
0

00

S [Ri (r) - Rij (o00)] sin or - Rij(r) sin or dr
o o

o

_ Rij S /o = Rije

That is, Rij c is the cosine transform of [Rij (t) - Rij (oo)] and

Rij (t) = Rij (0o) +

Letting t equal zero,

- - Rij c cos ot do

0

50 20Rij (t) Ri (cos t- 1) d.

When Rij (00) = 0, this reduces to [17a].

Similarly,

3 [Rij (T) - Rij (oo)1 sin or dr

[23]

[241

- Rij (o0) / + Rij cos or d
o

- [ijc - Rii (00)] / o

and 00

Rij (t) = Rij (oo) + Ris - Rij 00)] sin o d

O
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= Rij (c) 1 2 1 sin 2 2
2 s d R ,j" sin w d e

o o22 Rij" sin wt dw

o

since

osin tt o
dw 2

Therefore, [17b] holds even when Rij (oc) #0.
If Rijc and Rij8 are known, it is not difficult to determine
whether or not Rij (oo) = 0. Equation [23] gives Rij (o) in
terms of Rij c .

Also
o0

2 C
Ri (0) = lim R" sin wt dw

o

= I 2 fC sinWt dot-l)m d0XW

= tijc (0) = lim oRijB
w-+o

[25]

using a well known theorem in Fourier transform theory (Refe-
rence 5, page 12).

When the matrix of impulse response functions is known,
our first objective of finding a representation of the ship re-
sponse which is free of frequency dependence is achieved. These
functions, which we shall collectively call the impulse response
matrix, can in principle be determined experimentally.

Equations of Motion

The transient response of a ship has been considered by
Haskind'), who attempted an explicit solution of the boundary
value problem. This, we shall not try, as we are concerned
only with finding an appropriate form for the equations of
motion to use as a basis for the interpretation qf experimental
results. We do not agree with certain of Haskind's hypotheses,
and our resulting equations differ from his in several important
respects.

Golovato7 ) carried out an experimental investigation of the
declining oscillation motion in pitch. However, Golovato
was not aware of the equivalence between the transient
and steady state responses which we have just discussed,
so he attempted only to match the coefficients derived from
the transient experiment, at the frequency of the declining
oscillation, with those from a forced oscillation experi-
ment at this frequency. He was handicapped because of the
anomalous behavior of the curve of declining amplitudes. For
a simple harmonic oscillator, this curve is a straight line when
plotted on semi-logarithmic paper. His curves departed radi-
cally from such a pattern. He recognized that this implied that
the mathematical model was faulty, and attempted, with some
success, to fit his results with forms based on Haskind's study.

More recently, Tasais) has performed declining oscillation
experiments in heave, using two dimensional forms. His results
are not significantly different from those of Golovato. He
matched his results at the measured frequency with Ursell's
theoretical results for forced oscillation. The agreement is
quite good.

Case I - No Forward Speed

Let the ship be floating at rest in still water. We use a
system of coordinates (tS, t , ts), fixed in space, with origin
in the free surface above the center of gravity of the ship.

At time t = 0, we suppose the ship to be given an impulsive
displacement Axj in the jth mode. The time history of this im-
pulse is not significant, but for purposes of visualization, it
may be considered to consist of a movement at a large, uni-
form, velocity vj for a small time At, with the motion termi-
nated abruptly at the end of this time interval. Then

Ax = vj At .
During the impulse, the flow will have a velocity potential

which is proportional to the instantaneous impulsive velocity
of the ship. It may, therefore, be written vjCj, where Vj is a
normalized potential for impulsive flow. V, will satisfy the con-
ditions:

i4 = 0 on tS = 0
- Vjj/ n = s, on S

where sj n * ij

=rXn - i s

S = surface of the ship

j= 1, 2, 3

i =4,5,6

[26]
[27]

[28]

n = outwardly directed unit normal

ii = unit vector in jth direction

r = position vector with respect to c. g. of ship.

It is well known') that the above problem is equivalent to that
obtained by reflecting S in ts = 0 and taking the surface con-
dition over the reflection to be the negative of that over S. The
solution to the Neumann problem for the flow outside this com-
posite surface is also the solution to the given problem in the
lower half-space. For non-pathological surfaces, the solution
exists, and in fact can be computed by means of modern, high-
speed equipment.")

During the impulse, the free surface will be elevated by an
amount

ATij = -vj At = -- x.
a T3

[29]

After the impulse, this elevation will dissipate in a radiating

disturbance of the free surface, until ultimately the fluid is
again at rest in the neighborhood of the ship. Let the velocity
potential of this decaying wave motion be qj (t) Axj. It must
satisfy the initial conditions

[30]cj (&t2, t3s, 0) = o

Axj , = gA'j g -Axj on t3 = 0
at axs

or a8l)j (t, ,0) a93(j t, 2 , 0)

at ats
Afterward, it satisfies the usual free surface condition

@ + g a = 0.
at2 at 3

and the boundary condition on S

-0.

[311

[32]

[33]

We may take this to hold on the original position of S, only
introducing errors of higher order in Axj. This is a classical
problem of the Cauchy-Poisson type, and there exists an exten-
sive literature on the subject. With condition [33], it is more
difficult, by an order of magnitude, than the Neumann pro-
blem. We assume that it has a solution.
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Now let the ship undergo an arbitrary small motion in the
jth mode, xj (t). To the first order, the velocity potential of the
resulting flow will be simply

S= i + (t- () d.
[341

It is evident that the boundary condition on S is satisfied on
the equilibrium position of S, as the first term provides the
proper normal velocity and aqj / an = 0 on this boundary. But
also, the value of ae / n on the actual position of S will only
differ from its value on S by terms of second and higher order
in xj and its derivatives, so we may consider that [341 holds
on the actual position of the hull.

To verify that -the free surface condition is satisfied, first
note that

a8 di. di aj (0)
W t + q ( ) + Xr.

at2  dt dt at

a (t-  
) J () drT.

By [26] and [30], on t3 = 0 this reduces to
t

a j a(0) - a j (t- ) (T) dT.

at' at t
.00

Also, Oa
aZ:J

+_ ' (t-r(3(t- t) d_ Ic avi " t i3 (T) dT.

Substituting these in the free surface condition

a~ + ae aP (0) + g

at" a 3 \ at rts

+ __
+ kat

+ g -/ i () dr = 0 [35]

by (31] and [32]. Thus, this condition is also satisfied, and 0
is the required potential.

The formula [34] is a hydrodynamic analog of [1]. It is quite
general, and can, for instance, be used to find the velocity
potential due to a sinusoidal oscillation with arbitrary fre-
quency. It is, of course, necessary to know the function cqj (t),
and this presents unpleasant difficulties. In this study we are
content that qp, (t) exists, and these difficulties do not concern
us.

Of more importance than the velocity potential is the force
acting on the body. The dynamic pressure in our linearized
model is simply

ae

t

or P = 
3E j + q)j (0)j aj (t )ti (r) d

Sat

+ jj s a(i (t--)t j ( ) dT
f ato

[36]

The net hydrodynamic force (or moment) acting on the hull
in the kth mode is then given by

-Fjk P Sk do

S

= J Q i isk do + sk do 5 j (t- )t (r) dT

= -j mjk + n j (T) d a (t- )k do
at skdo

-oo~~ i, ~j t-T

where

t

= ii mjk + Kik (t r ) *j (T) d

mjk Sk do

8

[37]

[38]

Kik () = a ( sk do. [39]
Sat

We can now write the equations of motion of the ship which
is subjected to an arbitrary set of exciting forces, {fk(t)}.
These will be
6 t

I [(mJ, + mk) Rk + mjk Xj + JKjk (t--) xj (T) dT] = fk (t)
j= 1 -- [40]
where

mj = inertia of the ship in the jth mode

Cjk xj = hydrostatic force in the kth mode, due to displace-
ment xi in the jth mode

bjk = Kronecker delta (bjk = 1 if j = k, = 0 if j = k).

Case II - Ship Underway

The case of the ship experiencing small oscillations about
a reference position of mean uniform velocity is much more
complex. A pair of functions, pqj and qj, no longer suffices,
although the pattern of our analysis will be similar to that
followed in Case I.

We use a fixed reference system, with t3 = 0 on the free
surface and with the c.g. of the ship at l = 0 at time t = 0.
We suppose the ship to be moving with a uniform velocity V in
the t, direction.

Consider the Cauchy-Poisson problem defined by [30], [31],
[32], and [33], except that now [33] is to hold on the moving
surface S. This problem has a solution qj (&, t2, t3, t, V) which
is, of course, identical with the cpj of Case I when V = 0.
Using this qcj and the Vj obtained in Case I, we may write the
velocity potential for steady motion,

t

8 = V [V (t - Vt, t2 , 3 ) f qi r, t - r)dl] [41]
-oo

where
q 1 (T, t- ) = ql (t - VT, t2 , t3 , t- r, V) .

That this satisfies the boundary condition on S is evident, as
Vp1 provides the necessary instantaneous normal velocities,
and al / an = 0 on S for all r. The free surface condition is
also satisfied, as may be verified by direct evaluation, as in
Case I.

The velocity potential for the flow generated by the ship
moving with constant velocity, after an impulsive start at time
zero, is

t

0 = V [p (ti - Vt, t2 , R 8 ) + J ql (r, t -r) dc] [42]

The free surface and ship surface conditions are satisfied as
before. The surface elevation at t = 0 is

a - V + q (0,0) 0

_ ~ )II/



as required, and the initial conditions are met. Therefore, this
must be the stated potential.

We shall need the steady motion velocity potential for the
case in which the ship is displaced by Axj from its reference
position. We could, of course, consider the displaced ship as
a completely new hull and write down a potential similar to
[41], with new functions Vq and q 1 . Instead, we determine the
corrections to the 'V and qp, discussed above, which are
necessary to satisfy the new boundary conditions. We wish a
1jj such that

V1 + Axj 'j = 0 on t3 = 0

which implies that
91j = 0 on t3 = 0

Also

(a + Axj 91j) = n iI  on S (displaced)
Sn

or

Axj n il - on S (displaced)
On On

[43]

[43a]

[441

[44a]

In three cases, solutions are immediately available. If j = 1

91 (t - Ax, 2, 93) = , - Axl a ± o (Ax l )
at,

is a solution of [43] and [44] since in this case we have simple
translation. Therefore

911 - [45a]

Similarly

[45b]912 3= - @t2
For j = 3, there is no such simple solution. Noting that the
right side of [44a] is zero on S (original), it is only necessary
to find its change when S is displaced. Then

Ax 3 3 13  Ax 3 32

an anb3

or a3s azor o -is - .1 [46]
an ana3 [

If j = 6, the displacement is simply a rotation in yaw. The
translation of a yawed body is equivalent to simultaneous trans-
lations parallel and perpendicular to the body axis. Therefore,
the solution to [43] and [44] is

V1 (t, + 2 Ax6, t2 -- A 6, , 3)

Ax 6  z (t1l +2 Ax 6 , t2 -2 1 Ax 6, V3)

= ( + Ax6 1 - ' + 2)
at, 3t 2 /

a - 3 xn* i - [j _3xn • 'V + n- (ij _xr- V) V 91]
an

a314 =
an

--a , 1  a ,
a3 at anan3 an[48a]

[48a]
and

an = 53o n v k o a t3 a - 02 V l

[48b]
Conditions [43a] und [44a] are sufficient to determine Vj."

Strictly, [44a] holds on S (displaced), but we only introduce
errors of order (Axj) 2 if we take the ship surface condition to
hold on the original S. Similarly, [46] and [48] can be applied
on the reference position of S.

To Vj corresponds a (q1j, with

-_ - -g -aW1  for t3 = 0, t = 0
at a 3

and with conditions corresponding to [30], [32], and [33] hold-
ing. Again we take the ship surface condition to hold on the
reference position of S.

We need yet one more pair of functions. The normal deri-
vative 3qp / n will differ from zero on S (displaced) to the
first order in Axj. To correct it, we define a function which
satisfies the conditions

t

Axj a°WJ0  -- aAx n n- qI (T, t - T) dT on S (displaced)

and
and o = 0 on t3 = 0

[50]

[51]
As we do not intend to exhibit solutions for 9oj, we shall not
reduce the right side. We also need a (qoj, with

- g 
[52]

at @t3
and the other appropriate conditions also holding.

We now have all the pieces needed to write the velocity
potential for the flow about the ship when displaced by Axj
from its reference position. It will be

E = V {['V, + f Cql (T, t - T) dr]

t
+ Axj [V1j + f yplj (T, t - t) dr]

-0o

+ Axj [9oj + J qoj (, t - ) dT]}
-oo

The terms

[53]

V (9i1 Axj ,ij)

[49]

[47]so V16 = t2 W1 
1 tl 2 

If j = 4, or 5, the first term of [44a] becomes

[n + Axj (i _ 3 xn)] -i.
The second term is

-- - n " VV1 on S (displaced)
an

which may be written, using values of n and VV evaluted
on S (original),

-. -) -*

-[n + Axj (i _3xn)] * [V1 + Axi (ij -3 xr * ) VVi]

If we drop terms of higher order in Ax and use [27], con-
dition [44a] reduces to

provide the necessary normal velocity in the displaced position.
The normal velocities due to

t
V Axj Voj and V J" p (-, t-r) dT

cancel, and none of the other terms contributes normal
velocities of first order in Axj. Therefore, the ship surface
condition is satisfied in the displaced position. Further, each
pair of terms in brackets satisfies the free surface condition,
as may be verified by direct evaluation..

We also have all the pieces needed to assemble the potential
for the flow generated by a ship experiencing small oscillations
{xj (t)). It will be

t

8 = V { [1 + J q (T, t - ) dr]

6 t

+ 7 [xj 1j + Jf qj (T, t-T) xj (T) dT]
j=1 -0o

a - a I I I r I a II I I ~r~"



6 t

+ I [xj Voj + f 0 j (v, t- ) xj (T) dv]}

6 t
+ I [ij Vj + J q (T, t - r) ij (r) dv]
j=1l _( O

+S aqJ (, t-) - (t- ) d}r)
at atI

[54]

The ship surface condition is satisfied as before, except now
the term Mi, Vj provides the additional components required
for the oscillatory velocities. And again, the bracketed pairs
of terms satisfy the free surface condition.

The dynamic pressure at any point in the fluid is given

p 6°
t V (ij (Vij

ae1

t t

SV [ 
j (T, t-T)

+ va) (,t-)( +

+ qoj (T,t-T) (

at I

+ 3 ((, t- v) (r) dv}

-00

t

- V V t- d [55]
t - at

There are two convolution integrals in [55], one involving
the oscillatory displacement and one involving the oscillatory
velocity. These may be reduced to one by means of an inte-
giation by parts. We can go either way, but there is some
advantage in defining

J [(Plj (T, t-) + (Po0 (r, t--)] dt = Ij (t - o)

so that
so that

[56]

f f +
-- ---- ± t = [57]

at at at
and

t

alj -( Oj x ( t r) =
at ataJt

3 xj (t) 3 (t- ) ij (t ) drt at
-o (t -

S Vx J(0) )j (tt) j (r) dr. [58]
f1 at

The significance of this function Oj can be seen by rewriting
the potential for the uniform flow with the body deflected
(Equation [53]). It becomes

t

V { + J p, (,, t-r) dr + Axj [(lpi + Voj)+ ' (0)1}. [59]

Equation [55] now reduces to

±ij + o __
P j W j + Xj V

-x 1 V
2 a [Vlj + poj + 41j (0)]

at,

SV2 v + V S p (, t- ) d. [60]
a, at

We are concerned with the oscillatory value of the hydro-
dynamic force, but not steady components. The last term [59]
does not involve the {xj)}. However, when we integrate the
pressure over S, the fact that S is changing its position in a
steady flow field implies that even this term contributes to the
oscillatory pressure. These pressures will be functions of the
displacement only.

Integrating the pressure over the surface of the ship, we
can write the equations of motion

6

Y [(m bjk + m
j k ) 

j + bjkX Cjk Xj

+ J Kjk (t-v) ij (v) dT] fk (t) [61]

where mj and mjk are as defined in [40] and [38], and

bjk = QV ) + oj- _ s k do [621

cjkXj = Total hydrodynamic and hydrostatic force in the
kth mode, due to displacement xj in the jth mode.

Kjk(t-) = (, t-) -V 3(t-T)
sk dt o.

f at at
8

[63]

There are symmetries which reduce the number of coeffi-
cients. For instance

mjk = j Sk do

=- f V j do.

8
If we consider the space enclosed by S, the free surface, and an
infinite hemisphere, we can apply Green's theorem, and we
find

[64]m'k do = mki

Further, if we consider the transverse symmetry of the ship,
the matrix {mjk) reduces to

mill m13  o m 15  o
o m22 o m24  O m26

(mjk} _ 31 o ma33  m35 o [65]
o m42 o m 4 4  o m 4 6

m51 0 m 53  o m55 o
o m62  o m 64  o m66 1 -

Evidently, the matrix (bjk) is of the same form, except that
in general bjk * bkj . The matrix cjk is even simpler as surge

and sway displacements provide no restoring forces, hydro-
static or hydrodynamic.

Therefore

0 0 0 0 0 0

(Cjk) = c31  0 C33  o c5 0 [661
o C4 2  O c4 4  O C4 6

c 5 1  0 C5 3  C55 O0

Lo C6 2  0 C6 4  o C66

The matrix (Kik (t)} is of the same form as ({bjk}

II



Equations [61], though similar in form to those developed
by Haskind, differ from his in several essentials. Haskind
found no hydrodynamic force proportional to the displacement,
nor did he find the components of bi due to Vj and ij . He
also found that bs3 = b,5 = 0, and b:, = - b :. The presence
of ipo, in the definition of bik makes it unlikely that such rela-
tions hold here. Further, his kernel in the convolution integral
must differ from that found here. The reason for these diffe-
rences is that Haskind neglected terms in satisfying the boun-
dary condition on the displaced S which are of first order in xj.

With equation [61], we have advanced a long way toward
the second objective of this paper. The dynamics of the body
have been separated from the dynamics of the fluid. Further,
the hydrodynamic effects have been separated into well defined
components, each of which can be found (in principle) from
the solution of a Neumann problem or a Cauchy-Poisson pro-
blem. Specifically, we draw the conclusions:

1. The equations of motion are universally valid within the
range of validity of our assumption of linearity. That is,
any excitation, periodic or non-periodic, continuous or
discontinuous, is permissible, just so it results in small
displacements from a condition of uniform forward velo-
city. The case of motion with a negative restoring force,
or at least the early history of such motion, is not ex-
cluded.

2. The inertial properties of the fluid are reflected in the
products mjk Kj. The coefficients are independent of
frequency and of the past history of the motion, so they
are legitimate added masses. Further, they are inde-
pendent of forward velocity.

3. There is an effect proportional to ii which accounts for
some of the damping. This effect vanishes when the
mean forward speed is zero.

4. There is a hydrodynamic "restoring" force (it may be
negative). It is equal to the difference between the hydro-
dynamic forces acting on the ship due to the steady
flow in the equilibruim position and in the deflected posi-
tion.

5. The effect of past history is embedded in a convolution
integral over i i (t). For sinusoidal motions, this integral
will ordinarily have components both in phase with the
motion and 900 out of phase. The latter component con-
tributes to the damping.

Hydrodynamics of the Impulse Response Function

We now have two systems of relations between the excitation
and the response of the ship: the impulse response relations,
[2], and the equations of motion, [61]. The former are of grea-
ter value in describing the response to a given excitation,
while the latter are useful in analyzing the nature of the re-
sponse. Both systems hold for small oscillatory motions, so
there are relations between them. We shall examine these.

First, let us start with the equations of motion and derive
the functions {Rij (t)}. Suppose a ship, moving at constant
forward velocity, to be subjected to a unit impulse in the
ith mode at time t = 0. During the impulse, the equations of
motion reduce t6

6

mk Xk + I mjk ij = fi bik
j=1

where bik is the Kronecker delta. Suppose the impulse acts
during time At.

Then, since jj At = Aij = Rij (+ 0)
6

we have mk Rik (+ 0) + 1 mjk Aij (+ 0) = bik- [671
j=1

As i and j range independently from 1 to 6, we have 36 equa-
tions relating the two sets, (mij} and (Rij (0)}. If the equa-

tions of motion are known, equations [67] fix the initial condi-
tions from which the impulse response functions can be deter-
mined. Conversely, if the impulse response functions are
known, these equations yield the apparent masses.

Immediately after the impulse, we have
xj = 0 (t)
if = ij (0) + 0 (t)
S= 5j (O) + 0 (t)

F Kij (r) i i (t - ) dr = 0 (t).
0

Therefore, considering only zero order terms in t, the equa-
tions of motion yield:

6

mk Rik (+ O0) + I [mik Rij (+ 0) + bjk ,j (+ 0)] = 0 [68]
J-1

which relates the coefficients {bjk) to the accelerations

Rij (+ 0)} .
Now suppose the ship to be acted upon by a constant unit

force in the ith mode (we assume a positive restoring force to
exist in this mode). Then, after equilibruim is reached,

6

SCjk x = bik
J-1

and xj = JRij (r) dr
0

ICjk Rij (T) dT = bik
j=1 o

[69]

In modes without a positive restoring force there is difficulty
as there is no guarantee that all of the coupling coefficients
are necessarily zero. Thus, c62 x6 , the sway force due to a yaw
angle x6, will not ordinarily be zero, or even negligible. We
shall return to this point a little later.

If we rewrite [61] in the form

[70]j6 t
j-1o

- I [(mi 6 jk + mjk) Rij (t) + bjk Rij (t) + Cjk Rij (t)]
j=1

we have a set of 36 equations which can either be regarded
as a set of simultaneous integral equations for the kernels
{Kjk (T)}, or a set of simultaneous integro-differential equa-
tions for the impulse response functions (Rij (t)}.

We have already seen (equation [16]) that if

fi (t) = cos ot
then

xj (t) = Rije cos ot + Rijs sin ot

Substituting these values in the equations of motion, we get
6

- {[(mj bjk + mik) o Rij
c - bjko )Rijs 

- jk Rije
j=1

- ) (Rijg Kjkc + Rije Kjik)] cos Oot

+ [(mj 6jk + mjk) o ' Rij8 - bjk o Rij e 
- Cik Rijs

- a (Rijs Kjks
- Rijc Kjk)] sin wot = bik cos ot

For any given frequency, this is an identity, so the net
coefficients of cos wt and sin ot must be zero. This gives us
72 equations relating the transforms (Ric, Rijs} with the
transforms {Kijc, KjkS}.

6
We have wE (Rijs Kike + Rijc KRjk) [71a]

6

= 
5

ik + I [(mj 
8 ,k + mjk) o Rije _ bjk o Ris - cjk Rijc]

j=1

and -- o (Rijc 
Kk -- Rij Kiks

)
Ji-1

= 0E [(mi 6
jk + mk ) w RijO + bik o Rijc - Cjk Rij] - [71b]

j=1
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or, equivalently
6

I ([(m bjk + mk) W
2 

- Cjk - W Kjk
s ] Rijc

J-1
- (bJk + Kjkc) Rij = - ik [72a]

X ((bik + Kikc) w Rijc

+ [(m, bk + mjk) W2 - Cik - w Kjk'
] Rij)} = 0 [72b]

Thus, instead of the integral and integro-differential equations
relating {R,j} with {Kjk}, Equation [70], we have systems of
linear equations relating their transforms.

Equations [72] are particularly revealing. If we were to
arbitrarily set the Kjke and Kjk" to be zero, these are precisely
the equations we would get between the frequency response
functions, Rijc and Rijs and the usual frequency dependent
coefficients. Thus, it is clear how frequency dependency of the
Kjkc and Kijk is forced onto these coefficients in the conven-
tional representation.

The transforms of {Rij} also yield useful variants of the
relations already given. For instance, if we let w = 0, we have

6

I Cjk Rii (0) = 6ik [73]
Ji-

a more general form of [69].

Also, noting that tij (t) o w R ij " 
(W) cos ot do

and i (t) = - 2 (0 Rij (w) cos wt dw

we have Aj (0) = 2 w Rijs dw [74a]
X Jo

RiJ (0) = - 2 s WRije dw [74b]

Therefore, [67] and [68] may be written
6 00

I [(mi 6jk + mjk) f o 
Rij

s 
dw] = bik [75]

j-1 0 2

6 00 00

S[(mj bik ± mik) f w2 Rijo do - bjk J'w Ris1 dw] = 0
3l1 0o

[76]

Conclusion

In the foregoing, we .have presented two mathematical
models for representing the response characteristics of a ship.
The equations of motion are more general, as they apply to
the initial stages of an unstable motion. Where the two
systems are equally valid, we have relations wlich permit us
to pass (at least in principle) from either system to the other.

The impulse response function is certainly the better
representation for computing responses. It integrates all
factors, mechanical, hydrostatic, and hydrodynamic, in the most
efficient manner possible for computation. However, for this
very reason, it is a poor analytical tool for explaining why the
ship responds the way it does or how the response will be
affected if any change in conditions occurs. For instance,
models are ordinarily tested with restraints in certain modes.
A .restraint in any mode will affect the impulse response
function in any coupled mode. Since the ship is free in all
modes, it is evidently improper to use these response functions
to predict full-scale behavior unless they are corrected for the
effect of such restraints.

The hydrodynamic equations do not suffer from this dis-
advantage. Known restraints are readily includable and their
effects determinable. Or a change in mass distribution can be

treated independently of the hydrodynamics. It is not uncom-
mon in model testing to have "incompatible" parasitic inertias
in the different modes. Thus, the towing gear may contribute
a different mass in surge from that in heave. By means of the
equations of motion, the effect of these inertias upon the
motions can be analyzed. Thus, the equations of motion pro-
vide a more powerful analytic tool for studying the relation-
ship of the response to the parameters governing that response.

We can conclude, then, that these two representations com-
plement each other; the one for response calculation, the other
for response analysis. In fact, if it is truly practicable to pass
from one representation to the other, several possibilities
present themselves:

a) Model experiments may be designed to obtain maximum
accuracy rather than maximum realism. Hydrodynamic
effects should be emphasized in the design since other
effects are separately determinable. Thus, one should test
at small gyradius in order that the effect of the inertial
properties of the body itself will be minimized.

b) Restraints are permissible if their character is fully known.
Thus, rather than directly find the impulse response
matrix, in its complete generality, more elementary experi-
ments may be conducted to determine specific terms in the
equations of motion. We may restrict ourselves to one,
two, or three degrees of freedom and obtain results which
are completely valid when interpreted by means of the
equations of motion.

c) The recurring difficulty of handling modes in which the
the restoring force is zero or negative can be easily'over-
come. It is clear that an accurate experimental investi-
gation of these modes would uncover practical difficulties
analogous to the theoretical ones we have discussed. How-
ever, the problem can easily be solved by imposing known
restraints (i. e. springs) which will restore positive stability.
The effect of these restraints is readily includable in the
equations of motion, it can be removed by calculation, and
the correct impulse response, free of restraint, can be
determined. (Vorgetragen am 25. Januar 1962)

References

1.) Weinblum, G., and St. Denis, Manley: "On the
Motions of Ships at Sea". Transactions, The Society of
Naval Architects and Marine Engineers, Vol. 58, 1950.

2.) St. Denis, Manley, and Pierson, W. J., Jr.: "On the
Motions of Ships in Confused Seas". Transactions, The
Society of Naval Architects and Marine Engineers, Vol.
61, 1953.

3.) T i c k, Leo J.: "Differential Equations with Frequency-
Dependent Coefficients". Journal of Ship Research, Vol.3,
No. 2, October 1959.

4.) D a v i s, Michael C.: "Analysis and Control of Ship Mo-
tion in a Random Seaway". M. S. Thesis, Massachusetts
Institute of Technology, June 1961.

5.) S n e d d o n, Ian N.: "Fourier Transforms". McGraw-Hill
Book Company, Inc., 1951.

6.) H a s k i n d, M. D.: "Oscillation of a Ship on a Calm Sea".
Bulletin de 'Academie des Sciences de I'URSS, Classe des
Sciences Techniques, 1946 no. 1, pp 23-34.

7.) G o 1o v a t o, P.: "A Study of the Transient Pitching Oscil-
lations of a Ship". Journal of Ship Research, Vol. 2, No. 4,
March 1959.

8.) T asa i, Fukuzo: "On the Free Heaving of a Cylinder
Floating on the Surface of a Fluid". Reports of Research
Institute for Applied Mechanics, Vol. VIII, No. 32, 1960.

9.) W e i n b I u m, G. P.: "On Hydrodynamic Masses". David
Taylor Model Basin Report 809, April 1952.

10.) H e ss, John L, and S mi t h, A.M.O., "Calculation of
Non-Lifting Potential Flow about Arbitrary Three-Dimen-
sional Bodies." Douglas Aircraft Company, Inc. Report
ES 40622, 15. March 1962.

9

__ I





INITIAL DISTRIBUTION

Copies

7 CHBUSHIPS
3 Tech Info Br (Code 335)
1 Appl Res (Code 340)
1 Prelim Des Br (Code 420)
1 Sub Br (Code 525)
1 Lab Mgt (Code 320)

3 CHBUWEPS
1 Aero & Hydro Br (Code RAAD-3)
1 Ship Instal & Des (Code SP-26)
1 Dyn Sub Unit (Code RAAD-222)

4 CHONR
1 Nay Analysis (Code 405)
1 Math Br (Code 432)
2 Fluid Dyn Br (Code 438)

1 ONR, New York

1 ONR, Pasadena

1 ONR, Chicago

1 ONR, Boston

1 ONR, London

1 CDR, USNOL

2 DIR, USNRL (Code 5520)
1 Mr. Faires

1 CDR, USNOTS, China Lake

1 CDR, USNOTS, Pasadena

1 CDR, USNAVMISTESTCEN

10 CDR, ASTIA
Attn: TIPDR

1 DIR, APL, JHUniv

1 DIR, Fluid Mech Lab, Columbia Univ

1 DIR, Fluid Mech Lab, Univ of Calif, Berkeley

5 DIR, Davidson Lab, SIT

1 DIR, Exptl Nay Tank, Univ of Mich

1 DIR, Inst for Fluid Dyn & Appl Math,
Univ of Maryland

1 Dr. L.J. Tick, Res Div, New York Univ

1 DIR, Hydrau Lab, Univ of Colorado

1 DIR, Scripps Inst of Oceanography, Univ of Calif

1 DIR, Penn State Univ, University Park

1 DIR, Woods Hole Oceanographic Inst

3 0 in C, PGSCOL, Webb
1 Prof Ward
1 Prof Lewis

1 DIR, Iowa Inst of Hydrau Research

1 DIR, St Anthony Falls Hydrau Lab

3 Head, NAME, MIT, Cambridge
1 Prof Abkowitz
1 Prof Kerwin

1 Inst of Mathematical Sciences, NYU, New York

2 Dept of Engin, Nav Architecture, Univ of Calif
1 Dr. J. Wehausen

1 Dr. Willard J. Pierson, Jr., Coil of Engin, NYU,
New York

1 Dr. Finn Michelsen, Dept of Nav Architecture,
Univ of Mich, Ann Arbor

1 Prof Richard MacCamy, Carnegie Tech,
Pittsburgh 13

1 Dr. T.Y. Wu, Hydro Lab, CIT, Pasadena

1 Dr. Hartley Pond, 4 Constitution Rd,
Lexington 73, Mass

1 Dr. J. Kotik, TRG, 2 Aerial Way, Syosset, N.Y.

1 Prof B.V. Korvin-Kroukovsky, East Randolph, Vt

1 Prof L.N. Howard, Dept of Math, MIT,
Cambridge 39, Mass

1 Prof M. Landahl, Dept of Aero & Astro, MIT,
Cambridge 39, Mass

2 Hydronautics, Inc., 200 Monroe St., Rockville, Md.

1 Pres, Oceanics, Inc., 114 E 40 St., N.Y. 16

1 Mr. Richard Barakat, Itek, 700 Commonwealth Ave.,
Boston 15, Mass

1 Dr. M St. Denis, 5252 Sangamore Rd, Glen Echo
Heights, Maryland

Copies

11







, , i Illollull

lm - -- - 111. - - - -- - --- "Now"- iomo

, Ami'll'i'l I IdIllulliklm WMINNIM Wilm , I I W1141111 WNW1611iiiill





yll

q4t.

IL

A, AiU4- -


