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ABSTRACT

Formulas are deduced for vibrating systems of one, two,and

three dimensions. Undamped and damped free vibrations and

harmonic forced vibrations are treated. Methods are proposed

for calculating the damping constants from test observations.

I. INTRODUCTION

In developing formulas for vibration and possible flutter of structures

1,2
such as rudders, it may be necessary to include damping forces. Since

these forces are not easy to c alculate, methods of determining them from test

observations may be needed.3* The basic theory for two- and three-

dimensional cases will be considered and feasible methods of observation

will be sought. First, however, formulas for the one-dimensional system

will be written to assist in treating the main problem. For convenience of

reference, a summary of the results is given in Table 1; see pages 30 and 31.

II. ONE-DIMENSIONAL VIBRATIONS

Assume as the equation of motion

mx + cx + kx = P(t) [1]

in which m, c, and k are positive constants, i: = dx/dt, and P(t) denotes an

applied force varying with the time t.

1 References are listed on page 33.
* In Reference 1 (see pages 78 and 83), certain damping terms were omitted
from the flutter equations because methods for determining these terms from
experiments were unknown to the authors at that time. These flutter equa-
tions including the damping terms originally omitted are of the same form as
the equations given here for the three-dimensional case.
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1. DAMPED FREE VIBRATIONS

If P = 0, the general solution of Equation [1] can be written (as is

easily verified) as follows in terms of independently arbitrary amplitudes a

and b:

If c2 < 4 mk (less than critical damping): x = et (a cos wt + b sin ot)

c 2 k 1 2 2
where a=- and w - - - mc

2m m 4

If c2 = 4 mk (critical damping): x = (a + bt)e -- , t m
2m

If c2 > 4 mk (greater than critical damping): x = ae - lt + be P2t

where/ 1 and .L2 denote the following two values:

=1,2m (c - 4 mk )/'1,2 2m

2. HARMONIC FORCED VIBRATIONS

With P = p cos wo t in terms of arbitrary constants p and wo:

x = a cos o t + b sin w t
o o

(k- m2) + c2 oW a = (k-mw p

2 2 2 2
o o o

2 2[(k - mw ) + cK2o b = c0 p

m 2 2 k - mm
2 2 2 2 2 a o

o b c(k - mw )+ (a +0b 1b

Thus a = 0 and the vibration is in time quadrature relative to P

when w = f , which is the value of w for undamped free vibration. The
o

maximum amplitude or maximum of a2 + b2 for given p, however, occurs

when

(d/dw) L(k -mwm ) + c = 0
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or when

2 k c
o m 2

2m

This differs from k/m by twice as much as does w2 in a damped free

oscillation.

These formulas exhibit several features for which analogs mayreason-

ably be expected in more complicated cases, namely:

(1) Two independent modes of damped free vibration occur. Their

amplitudes can be chosen to make x and k agree with any assumed initial

values.

(2) These free vibrations are oscillatory provided the damping constant

c is not too large; in this case, c produces only a second-order change in the

oscillatory frequency.

(3) In a harmonic forced vibration, c introduces a component of x in

time quadrature relative to the applied force P (proportional to sin 0 t

instead of to cos wot).

(4) x is entirely in quadrature relative to P when the forcing frequency

factor wo equals the value of w for undamped free vibration.

(5) The maximum amplitude of x for forcing at given p, when damping

is present, occurs at an wo differing from the undamped free w by more than

does the oscillatory w in damped free vibration.

3. EXPERIMENTAL DETERMINATION OF c

If L 0, its value can easily be determined from a curve showing

either x or * as a function of t during damped free motion. Then c = 2ml, .
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If w is also determined from the curve, the ratio k/m can be calculated as

2 2
k/m = + A, . To determine k and m separately, one of them must be

known from some other source.

Or, during a damped forced vibration the ratio b/a may be observed as

the ratio of the components of x respectively in lagging quadrature to P and

in phase with p, or the equal ratio for x~. (Note that here x = -wo2x). Then

1 2bc-- (k- mw )-W o a

In this case, the values of both k and m must be known.

III. TWO-DIMENSIONAL VIBRATIONS

Assume that the kinetic energy T and potential energy V of a two-

dimensional system can be written as 4,5*

1 .2 1 .2 1 2 1 2T=- mlx + - m 2 y + ml 2 xy, V- kl + +kl2x2 1 2 2 1 k2Y +k 2 xy

in which x and y are generalized coordinates and m i , m 2 , ml1 2 are inertial

and k I , k 2 , k 1 2 elastic constants, of which only m 1 2 and k 1 2 may be

negative. Substitution of first q = x and then q = y in Lagrange's equation

or

d aT aV Qq
dt a q aq

gives as equations of motion

mlx + klx + ml2Y + kl2Y = P(t)

m1 2 1 + k 1 2 x+m 2
; + k 2 Y Q(t)

in which P(t) and Q(t) represent the total generalized forces acting on the

* Also see Appendix A of Reference 1.

I~ IC~r"DYL~~,-~luar I~~qlJ1 IY (~UIIU~ - I1UIITr I ~*C-~

11 ,, ill Il luHNMH111N EM



system (not including internal elastic forces). Part of P and Q may be due

to linear damping forces. Expressing the latter in terms of damping

constants c1 , c 2 , c 1 2 , c 2 1, the equations of motion may be written:

mx+ klx+ m2Y +k 1 2 Y+ x+ c =P(t)
1 1 12 12 1  12 [2]

m1 2 x+ k 1 2 x + m2 y + k2Y + c 2 1 + c 2 Q(t)

in which P and Q represent possible external forces acting on the system

(aside from damping forces).

Certain restrictions on the possible values of the constants are worth

noting. Let x and y be so chosen that T and V are never negative. Damping

effects can never increase the sum T + V. Multiply the first of Equations [2]

by x and the second by y and add the two equations. The sum of the

resulting m and k terms is easily seen to equal (d/dt) (T + V); hence, if

P=Q=0

-d (T + V) = - -- c - (c 1 2  c 1 
)

To keep (d/dt) (T + V) from ever being positive, it is necessary that c > 0,

c 2 > O0, since either k or r may vanish., Similarly, to keep T > 0 and V ? 0,

it is necessary that m I , m 2 , kl, and k 2 all be > 0.

Further restrictions may be inferred from the following theorem. Let.,

/,y , e, g be real numbers. Then
e2 g2 2 2

e + g + yeg>0 or de +./g >-yeg [3]

for all values of e and g if and only if

d0, 0, ? 2< 4o

To prove this, note first that o( and 3 cannot be negative because of
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cases in which only e = 0 or g = 0. Relation [3] then clearly holds if e and

g are such that yeg > 0.

Suppose, however, that yeg < 0., Then Equation [3] in its second

form is equivalent to the following:
2

(ce2 + 2) 2 (yeg)2  [3a]

provided that positive square roots are taken in passing back from Equation

[3a) to Equation [3] . But

(de2 2) = (e 2 _g 2 ) + 4o3(eg) 2

Hence, ifo(>0 and/3>0 and if e and g are chosen so that oe2 2 g 2

2 22 2then Ve + ,g ) = 4l, (eg). Thus Equation [3a] can hold generally only if

4oL/ , 2 ,1f either o or 3 vanishes, Equation [3] requires thaty=0. Conversely,

if the condition that 4d?y 2-y is met buto4 e :/g 2, then (ace2+ 2 2

2 2>44,8 (eg) 2 > y (eg) and Equation [3a] holds, also Equation [3] .

Substitute here =ml1 /2, 8=m2 /2, y=m1 2, e = k and g = ,; next,

o = kl/2, G= k2/2 , Y=kl2, e = x and g = y; and finally o=Cl =c 2 ,

y = c 1 2 + c 2 1 , e = 2 and g = 9. Compare the resulting expressions with

expressions previously written for T, V, and (d/dt) (T + V). It will then be

clear that, to prevent T and V from ever, becoming negative or (d/dt) (T + V)

positive, it is necessary and sufficient that

12 < m1m2 k2 k k2' (c12 + c 2 1  4c l c 2 [4]

These restrictions will be assumed to hold.

It follows then also that

2m 1 2 k 1 2 < mlk 2 + m 2 kl, c 1 2 c 2 1 < clc 2 [5a, b]

Wi il lm l i MA li
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2 2 2 2
For (mlk 2 

+ m 2 k 1 2 = (mlk 2 - m 2k1 + 4mlm2klk 1 2 >4mlm2klk2 4m12 k

by relations [4] . (Note that a square cannot be negative.) Similarly, in

2 2
any case 4c12c21 4c12c21 + (c12 - c21) = (c12 + c21) ; hence, by

Equation [4], 4c 1 2 c 2 1 < 4clc 2 .

Two other relations that can be inferred in a similar way from relations

[4] are:

(c 1 2 + c 2 1 )m 1 2 <c l m 2 + c 2 ml, (c 1 2 + c 2 1 )k 1 2 < clk 2 + c 2 k 1 [5c,d]

1. UNDAMPED FREE VIBRATIONS

Undamped free oscillations merits consideration as background for

study of the damped case. Let c = c 2 = c 1 2 = c 2 1 = 0, P = Q = 0. Then

Equations [2] become

ml + klX + m1 2 y + kl2y = 0 ml 2 x + kl 2 x + m2 y + k2 y= 0 [6]

Two special cases may first be noted. According to Equations [6] , x

2 2
can vibrate while y = 0 only if k I - ml 2 and k12 - m12 2 are both zero.

The first condition fixes w at kl/ml; the second requires that either

m 12= k12 = 0 or mlkl2 = m 2k . Similarly, y can vibrate with x = 0, and

S= k2/m 2 only if either m2 = k2 0 or m2k2 = ml2k 2
22 12 1 2  2 12 12 2

If x and y vibrate together in proportion to cos wt, the following

equations must be satisfied:

(k 1  mlw2) x + (k1 2  ml1 2 ) y= 0

(k 1 2 - ml2 2 ) x+ (k 2 -m 2
2 ) y= 0

Elimination of x and y gives for the determination of w the following equation:

(k1 mlw)(k 2) (2- m2) (k 2  m 1 2 ) = 0 [7a]

_ - - :o [74
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or

(m1m2 - m122 4 (mlk2 1 12k12)2 + (klk - k12 2) 0 [7b]
2 2

If k12 = klk 2 , one root of Equations [7b] is: w = 0. Alternatively,

if mm2 = m1 2
2 only one mode of vibration is possible.

2 2 2
Assume now that k12 k k2 and m12 <mlm2 . To locate ,

consider L, the left-hand member of Equation [7a] or Equation [7b] ,as a

2 2 2 2
function of . At = 0, L > 0; but when w has increased to w mmin

representing the lesser of the two values kl/ml and k2/m 2 , then it is clear

from Equation [7a] that L < 0. Hence L = 0 at some positive value of 02

2
less than min' . Also at the greater of the values k 1 /m 1 and k 2 /m 2 , L<0,

but as 02 - 00 it is clear from Equations [7b] that L > 0. Hence a second

root of Equation [7a, b] occurs at a value of w2 greater than both kl/ml and

k2/m 2

Thus two different modes of vibration of the system are possible with

both x and y vibrating. In each mode

2 2
y k12 - m12 1 1 m10
x 2 2k -mw k -mw

2 2 k12 12

2. DAMPED FREE VIBRATIONS

Let P= Q = 0 so that Equations [2] read

mlx+ klx+ ml2y + kl2Y + c 1 2 9 = 0 [8a]

ml 2 x + k2X+ m2 y + k2 Y+ c 2 j1 + c 2  0 [8b]

In special cases especially if m1 2  k = 0 and c 12 so that

Equation [8a] reduces to Equation [1] with P = 0, x can vary while y = 0; or,

ii i mlitialil i
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similarly, if c 2 1 = 0, y alone may vary. Such cases will not be discussed

further here.

For the general case, solutions may be sought in which 6

x = ae Xt y=beXt

where a, b, and X are non-zero constants, real or complex. Substituting in

Equations [8a, b] and canceling out e Xt.

(m 2 + k I + c ) a + (ml2 2+ kl 2 + c 12X) b= 0 9a

2 2
(m1 2 X+ k12+c 2 lX) a+(m 2  + k2 c2X) b= 0 [9b]

The result of eliminating a and b from these equations may be written:

4 4 + e 3 + e2 
2 + 1 + =0 [10]

4 2 o

where

E =kk -k 2 E =ck +ck -(c +c )k
o 1 klk2 12 E1  1 Clk2 2 1 12 21)12

E2 =m k2 m2k1- 12k12 + c1C2 - c12c21

2
E3 =lm2 mI - (c12 21)m12 4 = mlm2 - m12

The coefficients Eo ' " " E4 are all > 0, according to Equations [4]

and [5a, b, c, d] . Hence no root X of Equation [10] can be a positive real

number. Probably if the damping is strong enough, negative real roots may

occur, possibly even four in number, but this difficult question is of little

practical interest here.

For the general case, writeX= - + iw where i= I and L and a

are real numbers. The following two equations result from substituting in

Equation [10], then equating the real and imaginary parts separately to zero,

-- -YIYIIIY 1



and dividing the imaginary equation by iw on the assumption that w 0:

4 (e-3 E 2 2 2 3 4
4o (e 2 -3 3+ 6 ) + e -Iei/+e2- - 3 4= 0 [iH a]

2 2  2 3
1- 3 - (2,2 - 4 e4w )) + 3, 3 4 4 0 [11b]

These equations determineu. and w 2. The conjugate quantity -IL -iw

is then also a root of Equation [10] . Since there are only four roots in all,

there can be only two pairs of values, A 1 and wl, and u 2 and w2. These

pairs define two modes of damped oscillation. Since damping cannot

increase the total energy, it must turn out that both kL1 and p. 2 are positive.

To obtain real expressions either the real parts of all quantities (i.e.,

solutions) may be chosen or the imaginary parts divided by i; the two pairs

of real solutions thus obtained are in relative time quadrature. The value of

the ratio b/a for each mode may be obtained from Equations [9a,b] . Since

usually b/a will turn out complex, there will generally be a difference of

phase between x and y as functions of the time.

Thus four real expressions are obtained representing four independent

damped oscillations. For these oscillations, x and y can be written thus:

x = e-lt (A1 cos 1 t + A1 sinw1 t), y = r1 e - l t A1 cos (Wlt + E1 )+A! sin(01t 1+iE1

or

2 12 cos(t + E)+A2 sin(t+E2)

Here Al, A!, A2 , A2 are independent arbitrary constants which can be

adjusted to fit any assumed initial values of x, k, y, r. It should be noted

that

I
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2 2 2 2S= -( -2 1 ) x and y = - (wl -Cl1)y

in any one mode whereas in the other

* 2 2 2 2x - - /2) x and y = - (w2 2) y

Only small damping effects appear to be important in practice. Hence

no general discussion of Equations [lla,b] will be undertaken here.

If the c's are sufficiently small, /. will also be small, and the co-

efficients E and E3 are likewise small. Consequently all terms in

Equation [l1a] containing At are small at least to the second order, and the last

three terms in Equation [11b] are small to the third order. For an approximate

solution, these terms may all be dropped. Then Equation [Ila] becomes:

4 2E4 W - 20 + E =:0. This agrees with Equations [7a,b] for the case of

no damping so that to the degree of approximation under discussion, the

oscillation frequencies are the same as if there were no damping. From

Equation [lib] the approximate value of .L is

2
1 1 [12]
2  2

E2 -2 E4

More accurate solutions can be obtained from Equations [Ila, b] by a

process of successive approximation.

3. HARMONIC FORCED VIBRATIONS

If the applied forces are harmonic functions of the time t, they cause

harmonic vibrations of x and y. At the start there may also exist superposed

damped free oscillations whose amplitudes can be adjusted so as to produce

-- IIM EYII1111milill fi II
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on the whole any initial values of x, y, x, y. These damped free oscillations

will be assumed to have died out.

Since in the one-dimensional case, the presence of damping intro-

duces a phase difference, assume:

P = pcosw 0t + p' sin w t, Q= qcosw t + q' sinc to o o [13]
x = a 1 cos 0 t+a' sin w t, y = a 2 cos wt + a' sin w t1 o o1 o o 2 o

In Equations [2] the cos wt and sinwo t terms must balance separately.
O O

After canceling the time factors, the result is the following four equations:

1 1 1 o 1 1 2 1 2 o2

-c l C 1o a + (k 1 - m l2 o )a1  -c woa + (k - m )a = '

21 o 1 12 12 o 1 2 o 2 2 2 o 2

Here p, p', q, q', a1 , a! , a 2 , a' are eight real numbers. In general, any

four of them can be assigned arbitrarily; the equations then fix the values

of the other four. Furthermore, since cos o t and sin o t differ only in
o o

phase, the zero for t can be so adjusted that any chosen one of the eight

quantities a . . . . q' vanishes, without altering the physical form of the

vibration. Thus all cases can be covered while keeping one coefficient

zero.

In particular, Equations [14] may be solved for the amplitudes al, a'

a 2 , a 2 caused by given applied forces represented by p, p', q, q'. The

determinant a of the coefficients of al, a', a 2 , , a 2 is easily found to have

11_~ 1111 1
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the value

A=(k 1 - m W2) (k- m2  ) - (k - m 2) 2  4 (cc - cc )
a= (k~ -mlw o (k 2~ mZWo  - (k12 12o -Wo C2 c12 21

If there is no damping, comparison with Equation [7a] shows that a = 0

when wo equals the value of w for either of the frequencies of undamped free

vibration of the system.

If cl, c 2 , c 1 2 , c 2 1 are merely all small, a will vanish at two

slightly modified frequencies that differ also slightly from the frequencies

of damped free oscillation. As wo approaches either of these frequencies at

which a = 0 while p, p', q, q' remain fixed, the amplitude of the forced vi-

bration becomes large (the phenomenon called resonance).

4. EXPERIMENTAL DETERMINATION OF c l , c 2 , c 1 2 c 2 1

One method is to make "bumping" observations by starting a motion

and recording it as it decays. By proper adjustment of the initial values of

x, k, y, r, the system can be made to vibrate in either of its two modes of

damped free vibration with the other mode absent. Observations may be

made of either x and y or * and "'as functions of the time since = - (w1
2 -

2 2 2 2 2
( ) xand L' - (l - 1  ) yin one mode and = - (w2  2) x, '=

2 2
- (w2 - L2 ) y in the other. From these observations, values can be cal-

culated for each mode of the frequency w, the damping constant L , and the

amplitude ratio r and phase E of y relative to x, giving the eight known

quantities

Wl W2 FL1 F2 rl r2 E1 E2

- I IIII P11111111 ,, , , III 1, 1 0 1 11 1,



Insertion of w1 and ~ and then of w2 and L 2 for w and p/ in Equations

[lla,b] then provides four equations which can be solved numerically for

c 1 , c 2 , c 1 2 , and c 2 1 provided the six constants mi, m2 , m 1 2 , kl, k 2 , and

k12 are known. It might be more accurate, however, to use equations

containing the constants E 1 and E 2 which differ from zero only because of

damping. If bumping observations are to be used, further study of the

methods of calculation should be made. The damping may be weak enough

to justify the use of simplifying approximations.

It may be worth noting that observation of all eight quantities wl to

E2 should make possible the calculation of nine of the ten quantities m 1 ,

m2 , m 1 2 , kl, k 2 , k12, c 1 , c2' c12, and c21. For a restriction exists on

the possible variation of these quantities. Let Equations [8a, b] be

multiplied by an arbitrary constant s. The new equations may then be

regarded either as equations in a different form for the original system or as

equations for a different system having constants s times as great but the

same damping modes as the original system. In order to know which system

of this similitude class the observed constants w " ........" E 2 refer to,

it is necessary to know at least one of the ten quantities m 1 . . . . . . . c 2 1.

Then the remaining nine can all be calculated from the eight observed

constants wl ...... . E2

(If Equations [8a, b] are multiplied by different numbers, they are still

valid for the original system but cannot be regarded as equations in the same

form as Equations [8a,b] for a different system because the new m 1 2 m2 1

Ir I _~ - 111 11 I - In~- -I-----
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and k1 2 # k2 1 .) Even if the initial values of x, k, y, r cannot be properly

adjusted, since one mode will usually die out before the other, both sets of

values, /il and wl and 112 and w2 , can be inferred from the same curve of x

or y as a function of time. If both modes persist, it is still possible to

7-10
observe each mode in turn by means of a filter. Or a vibrator may be

used and adjusted in frequency so as to be in resonance with one mode;

then, after the vibrator is removed, a damped free oscillation will occur in

this mode only.

If c12 c21 = 0, c1 and c 2 can be calculated from /L 1 andk 2"

Otherwise the observed values of k 1 and AL 2 furnish only two relations

among the four quantities cl, c 2 , c1 2 , c 2 1 .

An alternative method is to study forced harmonic vibrations produced

by applied forces P and Q whose relative amplitudes and phases can be

controlled. (Applied forces are pure P when they do no work during varia-

tion of y alone, or pure Q when no work is done during variation of x alone.)

Two alternative procedures will be described which require no measurements

of P or Q. The constants m i , m 2 , m 1 2 , k1 , k 2 , kl2, however, must be

known. Either x and y or 3* and V may be observed since in forced

2 2 2
oscillations o - - x, y = -W y and w will be seen to cancel out in all

final formulas.

First Procedure: Isolation of c I , c 2 , c 1 2 , c 2 1 in turn. Make

observations as follows:

(1) Cause x to vibrate with y = 0. Assume p' = 0, so that al denotes

lolmi

3c- ----Y rm~ar~- - ----~- ---~-arp-rr~ rurg
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the amplitude of the component of x that is in phase with P and al the

amplitude of the quadrature component of x. To do this, apply P = p cos o t

and adjust the amplitude and phase of Q so that a 2 = a' = 0. Then Equations

[14] reduce to

(k-m 2) a + c I oa= P -C w a + (k - m 2) a =- 0

(k 1 2 - ml 2 ) a + c 2 1 ooa =q -c 2 1woal + (k1 2 - m  l 2)a'=q'

The magnitude of w should be made quite different from k . Only the

ratio al/a 1 needs to be observed.

Probably the adjustment of Q can be effected most conveniently by

varying its amplitude (q)2 + (q)2 until a2 (or the component of y in phase

with P) is zero, then varying the phase of Q (thus varying q') until the

quadrature amplitude a' of y equals zero, and repeating these adjustments

in turn until both a2 and a 2 remain negligibly small.

Then

1 a l  ( 1 l 1
2 )

(2) Similarly, to keep x = 0, apply Q = q cos wot, hence q' = 0, and

with wo not near k /m 2  adjust p and p' so that a = a = 0, and read

a 2 /a 2 . Then

a2 2
c - (k2  m2
o2

I 'II IL I Ill I ----------~I~--~--~,
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(3) Cause x and y to vibrate in phase with P; that is, writing

P = pcos0 t with p' = 0, adjust q and q' so that a' = a 0. Read a /a

Then from the second one of Equations [14]

a1
c 1 2  a2 1

In this case the simplest way to effect the required adjustment of Q

might be to vary its amplitude so as to reduce the larger of a I and a 2 until

al = a 2 , then adjust the phase of Q so as to minimize a 2 , and repeat these

adjustments until a I and a 2 have been made sufficiently small.

(4) Cause x and y to vibrate in phase with Q, assuming q' = 0. Adjust

p and p' so that a I = a 2 = 0 nearly enough. Read a2/al . Then from the

fourth of Equations [14]

a2C- C2c21 a 1  2

This procedure should yield the most accurate values of the four c's,

but the experimental adjustments required may be considered too tedious.

Second Procedure: Single-phase forcing. Apply P and Q in any known

ratio but in the same phase. Write P= p cos0 ot, Q = q cos wt, so that

p' = q' = 0. Read al, a2 as amplitudes of inphase and a I , a as amplitudes

of quadrature components of x and y. Repeat with a different ratio Q/P,

distinguishing the amplitudes thus obtained by a bar.

Substitute each set of a's in turn into the second and fourth of .

Equations [14] , in which p' = q' = 0. The resulting equations can be
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written:

2 - 2
wa c + woa 2 c 1 2 = (k - m ) a' + (k -m 2wo )a'

o 12 1 1 1 12 12 o 22 2

oalc 21+ woa 2C2 =(k12 -ml 2 o ) a' + (k - m2o ) a'

2 2alc21 + oa2C2 ( k a (k - m2 o) a2

These two pairs of equations are easily solved for c l , cl 2 , and c2 , c 2 1 .

IV. THREE-DIMENSIONAL VIBRATIONS

Let x, y, z denote the three displacement variables for example v; Y

oC motion of a rudder (see Reference 1). Then linear equations of motion

can be written as follows:

ml + kl + k 12 + m 1 3 z + k 1 3 + C + c 1 2 + c 1 3 =P(t) [15a

ml2" + kl2X + m2 '; + k 2 y + m2 3 z + k23z + c21x + C2 + C23 = Q(t) [15b]

m 1 3x+k x+ 23 y m +k z+c +c y c R(t) [15c)
n13 + k13 m23; + k23 +m3 +k3z + c31+ 32R(t) [15c

Here P, Q, and R are generalized external forces so defined that the rate at

which they do work on the system is always Pk + Q9 + Ri. The m's are of

the nature of inertial constants and the k's of elastic constants.

Then there may be, as in Equations [15a,b,c] , nine linear damping

constants cl, c 2 , c 3 , c 1 2 , c 1 3 , c 2 1 , c 2 3 , c 3 1 , c 3 2 . The six cross

constants c 1 2 , etc., will be limited in relative size, as in the two-

dimensional case, since the damping necessarily tends to decrease the total
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energy T + V; they are likely to be relatively small and may be negligible,

but this cannot be assumed to be true in general because the magnitudes of

all nine constants will vary with the choice of the variables to be called x,

y, z.

The situation will be analogous in general to that for two dimensions.

If P = Q = R = 0 and all c's are zero, there will be solutions of Equations

[15a,b,c] representing three modes of undamped free vibration. If any c's

do not vanish, these modes become three modes of damped free oscillation;

or, if the c's are sufficiently large, one or more modes may be replaced by

two modes of exponential decrease without oscillation, such as were

represented by formulas in the one-dimensional case.

In the oscillatory case, on the other hand, there will be three damping

constants t 1' tA2' /L3 . In any one mode of damped oscillation, the three

variables x, y, and z may be assumed to be proportional to e-l t cos

(w1t + e), in another mode to e-L2t cos (w2t + E), and in the third to e-/3t

cos (o3t + E), the phase angle E being different in general for x, y and z

and different in the three modes.

The frequency factors wl , I 2 , W3 will not be quite the same as in the

undamped vibrations, but the difference will be only of the second order if

the damping is relatively small.

A more detailed discussion of these various cases follows:
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1. UNDAMPED FREE VIBRATIONS

If P = Q = R = 0 and all the c's are zero, a solution of Equations

[15a,b,c] is

x = al cos wt, y = a2 cos wt, and z = a3 cos t, al, a 2 , and a 3 being real

numbers; from Equations [15a,b,c] :

(k - m ) a +(k2 m 12w)a + (k -m 13)a 0
1 1 12 12 2 13 13 3

(k 2 -m ml2 2 )a + (k 2 -m 2c2)a 2 + (k 23 - m2 3
) a3  0

(k13 3 3) + (k m 23) a 2  (k3 - m 3 ) a 3  0

Equating the determinant of al, a 2 , a 3 in these equations to zero gives the

equation:

(k1 - ml 2)(k 2
- m 2

2 )(k 3 - ml32 )

+2(k 12- m 1 2 )(k13 - m 13
2 )(k 2 3 - m 23

2 )

-(k - m ) (k23 - m2 3 )

- (k 3 - m 3 )(k 1 2 - m 1

-(k 2 - m 2
2 )(k 1 3 - m 13 2 )

2
2

2W ) =0

This is a cubic equation in w2 whose three roots furnish the frequencies for

three modes of undamped free vibration. Any two of the original equations

can be solved for the ratios of a l , a 2 , and a 3 to each other in any one of

the three modes (see, for example, Appendix C of Reference 1).

2. DAMPED FREE VIBRATIONS

Assume P = Q = R = 0 and write

Xt
x = ale , y =a 2e

[16]

, z =a 3 e
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where al, a 2 , a 3 and X may all be complex

Equations [15a,b,c] then gives:

2
mi X +ClX ) a I

numbers. Substitution in

2
+ (k 1 2 + i 1 2 X + c 1 2 X) a2

+(k13 + m13
13 13

2X + c21 ) a21 1

S + c 13 ) a = 02 13 3

2
+ (k + m X + c2X)

2 2 *2

+(k 2 3 + m2 3 X + c 23) a = 023

(k13 + m13 2 + c
3 1 X ) al + (k2 3 + m2 3 + c32 ) a 2

(k 3 + m3
+ c3X) a3 = 0

The determinant of al , , a a 3 in these three equations set equal to zero

gives :

(k1 + m i 2 + X )(k 2 +2 2 + c2X )(k 3 + 3 X2 + c 3 )

+(k 1 2 + i 1 2 X

+(k12+ m1 2 X2

+ c 1 2 X)(k 2 3 + M2 3

+ c 2 1 X)(k 2 3 + m 23

-(kI + ml 2 + clX)(k23 + m23 2

- (k2 + m 2 X 2

- (k3 + m3X 2

2
X + c 23X)(k 13

2
X + c32X)(k13

+c23X ) ( k 2 3 + n

+2 X) (k 13 + m13

+c 3X)(k1 2 + m1 2X

2+ m13X + c3 1X )

2
+ m 13 X + c 1 3 X)

2
n23 + c32 )

+ c 13) (k 13+ m 13

+Cl2 )(kl2 + ml2

+ c31 X)
31

+ c 2 1
) 0

[17]

(k1 +

(k12 + m
. 12 12
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This is an equation of the sixth degree in X . It may have real roots

if the c's are large enough, perhaps as many as six real roots. On the

other hand, analogy with the two-dimensional case suggests that if the c's

are not too large, there will be six complex roots in three pairs: -/ 1 + iW1'

-/ 2 +iW2, - u 3 ± iW3

Two equations for the determination of co, w2 , 3 and 1Ll, t 2'/1 3'

analogous to Equations [11lla, b] in two dimensions, can be obtained by sub-

stituting = -1, + iw and separating real and imaginary parts. In the three-

dimensional case, however, these equations are voluminous and the chance

of their ever being put to practical use seems to be very small, hence they

will not be written out here in full.

For practical use when the c's and hence also the ~ 's are small,

abbreviated approximate equations can be obtained by omitting all terms of

second or higher order, that is, all terms containing a power of ,u higher

than the first or both u and one of the c's or the product of two c's. This

rule of approximation justifies replacing X2 in Equation [17] by -w2 -2iw/

and also X by iW. Furthermore, all products of c terms may be omitted. The

first of the six products in Equation [17] , for example, is to be replaced by

(k1 - ml 2 - 2iwm 1 a + ihc 1 )(k 2 - m 2 2 - 2iwm 2 / + i c2

(k 3 - m3 - 2im 3 L + iWc3)

and then expanded as
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(k 1 - m 1 2 )(k 2 - m2 )(k 3 - m 3 2)

+ i (-2ml + cl)(k 2 - m 2 2)(k 3 - m3 2

+iw (-2m2 !u+c 2 )(k 1 - ml 2 )(k 3 - m3 2

+iw (-2m3 AL +c 3 )(k 1 - ml 2(k 2 - m 2 , 2)

It is easily seen that the real part of Equation [17] as thus reduced is

the same as Equation [16] for undamped vibration. Hence the frequencies

of oscillation in the three damped modes are approximated here by the

frequencies of undamped vibration and may be calculated from Equation [16].

To shorten the notation, write now

2 2 2
G1= k I - ml , G 2 = k 2 - m 2 , G 3 = k 3 - m3 2

2 2 2
G12 k12 - m12 ' G3 13 m 1 3  ' 23 k23 - m230

Then it will be found that the imaginary part of Equation [17] divided by iw

can be written in its approximated form thus.

-2 [ml(G 2 G 3 - G 2) + m 2 (G 1 G 3 - G132)+ m 3 (G 1 G 2 - G122)

+2m12(G13G 2 3 - G3G12)+ 2m13 (G12G13 - G2G13)
] 2 2

+2m 23(G 2G13 - G G 2 3 )] + c (G 2 G 3 - G23 ) + c 2 (G 1 G 3 - G13 )

+c3(GG G 1 2 ) + (c 1 2 + c 2 1 )(G 1 3 G 2 3 - G 3 G 1 2 ) +(c 1 3 + 3 1 )

(G 1 2 G 2 3 - G 2 G 1 3 ) + (c 2 3 + c 3 2 )(G 1 2 G 1 3 - G 1 G 2 3 ) = 0 [18]
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After inserting in the G's the proper value of w2 for any one of the

damped modes, this equation is easily solved for an approximate value of

the damping constant LL for that mode.

3. HARMONIC FORCED VIBRATIONS

Assume

P = pcosw t + p' sinw t, Q = q cos wt + q' sin w t

R = r coswo t + r' sin o t
o o

where p, p', q, q', r, r' are any six real amplitudes and wo is any positive

real number. For the resulting steady vibration write

x = a Cosw t + a' sin w t, y = a 2 cosco t + a' sino to 1 o o 2 o

z = a3 cos wt + a' sino t3 o 3 o

a .... a' being six real numbers.

In any particular motion, by a proper choice of the origin for t, any

chosen one of the six variables P, Q, R, x, y, z can be made to vibrate in

proportion to cos w t, or to sin o t. Thus any one of the twelve amplitudes

p, p' .... a3 , a 3 can be assumed to be zero without altering the motion

that is represented.

Substitution in Equations [15a, b, c] and separation of sine and cosine

terms gives six equations. To shorten the notation, write:

2 2 2F = k -ml F = k -m2 F 3 k -m3
1 1 lo 2 2 2 0 3 3 3o

2 2 2F k -mwo F= k -m3 F = k -m23Wo
12 12 12o 13 13 13o 23 23 23o
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Then the six equations read:

Flal C 1 oal F12a2 +C12 oa2 +F133 13wo [19a]

-C woa 1 + Fla' - c12 woa + F12 - c3 woa 3 + F 13a = p' [19b]

F a+ c Wa' +Fa + c a' + F + c wa' = q [19c]
12al 21 oa 1 2a2 2 Coa2 23a3 23oa3

-c wa + F a' - c2oa + F a' - c 23a + F23 = q' [19d]
21o1 121 2o 2 2a2 23 oa3 233

F 3al + 31W a' + + F c 32w a' + F3a3 + c3 a' = r [19e]

-c wa + F a' - c wa + F ' - wa +a' = r' [19f]
-31oaI  F131 32o2 + F23a2 3oa3 F3a3

In general any six of the twelve amplitudes al .... r' can be

assigned arbitrarily and the equations then fix the values of the other six.

4. EXPERIMENTAL DETERMINATION OF

cl, c 2 , c 3 , c 1 2 , c 1 3 , c 2 1 , c 2 3 , c 3 1 , c 3 2

The methods described for a two-dimensional system can be extended

to three dimensions. Determination of the nine damping constants from

general bumping observations, however, will not be discussed here because

it appears to involve very complicated observations and calculations.

A feasible alternative might be to lock each of the three coordinates in

turn so as to hold it at zero. The given three-dimensional system could thus

be studied as a combination of three two-dimensional systems and the

methods already described for such systems would be available.

Of three-dimensional motions, only forced harmonic motions will be

considered here and only the simplest use of these. In such motions, x, y,

2 2 2
and z are equal respectively to -o x, -W y, and -w0 z so that either x, y,

25
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or z may be measured.

Apply P, Q, R in any convenient ratio but all in the same phase.

Assume p' = q'= r' = 0. Read the resulting three inphase amplitudes a1 , a 2,

a 3 and the three quadrature amplitudes a', a 2 , a 3 , the latter being

relatively small. Repeat with different ratios of P, Q, R, distinguishing

the a's thus obtained by a bar, and then with a third set of ratios, marking

the a's with a double bar. A possible choice would be to use only P the

first time, only Q the second time, and only R the third time.

Substitution of the first set of observed a's in Equations [19b,d,f]

then the second set of a's, and finally the third set gives three groups of

three equations each for the determination of the nine c's. Since in all

cases p' = q' = r' = 0, the equations may be slightly rearranged to read as

follow s:

1 1 2 12 3 13 1 '122 133 [

alcl+ a 2 c 2 + a3c1 3 = - (F la + F2a + F 3a)
0

alc1
+ a2cl2 + a 3 c1 3  +(Fa F + F23a)

0alc21+ a2c12 a3cl3 F (1al + F 2 + F23a3

al + 2c2 + 3 c23  - (F 2
a + 2 + F2 3 a)

- - - 1 -

+ a 2 c 2 + a3c 2 3  (F a' +F a' + a')

alc21+ a2 c2 + 3c23  0 2a + F2 a2 + F2 3 a3
0

1

a1c31 + a2c2+ a3c3 (F13a F2 a2  F3a)
O
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a c31+ a 2 c 32 + a3c3 1 (F1 3a + F2 3 a + F3 a)

a l c 3 1 + a 2 c 3 2 + a 3 c 3  1 (F1 3a + F23 a + F3a)

Assuming that the six constants F1 , F2 , F, F12, F13, F23 have been

calculated from the constants of the system and the chosen value of w , the

first three of Equations [20] can be solved for cl, c 1 2 , c 1 3 , the middle

three for c 2 , c2 1 , c 2 3 , and the last three for c 3 , c 3 1 , c 3 2 .

The computation can be shortened by observing differently. Using

chosen p and q, adjust r (p', q', r' being all zero) so that a3 = 0. Read a1,

a2' al, a2 , a 3 . Repeat with a different pair of values of p and q, making

a 3 = 0. Read al' a2' al , a', a'. Then the first two of Equations [20] are

easily solved for cl and c 12, the foufth and fifth for c 2 and c21, and the

seventh and eighth for c 3 1 and c 3 2 .

Repeat using two pairs of values of p and r and adjusting q each time

so that a2 = a2 = 0. Read a, a ' a> a', a' and a , a 3 , a, a', a'. Then
2  2 1 3 1 2 3 1 3 1  2 3

the same three pairs out of Equations [20] yield c l and c1 3 , c21 and c23'

and c3 and c31'

All of the c's have thus been obtained, with duplicate values of cl

c21 and c 3 1 . Other combinations of p, q, r may be used in a similar way.

It will be noted that neither procedure requires actual measurements

of P, Q, or R.
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V. VARIABLE DAMPING

In practice there seems to be a tendency for high-frequency vibrations

to die out more rapidly than low-frequency vibrations. Such differences may

result in many ways from the characteristics of the systems. It is worth

noting, however, that

(1) A simple increase of scale is likely to lower the damping rate.

(2) The damping rate of a high-frequency mode of vibration can be

less than that of a low-frequency mode of the same system.

1. CHANGE OF SCALE

As a simple example, consider a mass on a spring subject to linear

damping, its equation of motion being

mx + ck + kx = 0

In a damped vibration

x = Ae /t sin wt

where = c/(2m) and w2 = (k/m) -)U 2

Now let all linear dimensions be changed in any ratio X without change of

material. Then* m oc X , k c X2 . What happens to c? At given A,

water resistance will tend to vary in proportion to the surface wetted; hence

2 2
c oc X2 . For simplicity, suppose 2 may be dropped in comparison with

k/m. Then, approximately,

* In a change of scale including change of both cross section and length of
X2  3,spring, k c X . Fora mass on a spring, when all dimensions change, mocX
1

k oc , wc c -. If onlythe length of the spring does not change, m oc 3

k oc X 2
28



wac 1/ ; /c ; .*.Aoc W2

Or, if c does not change when X -= 1, then approximately when . is small

oc 1/ ; 0oc 1/X3; ..oc W6

In both casesp/ and c both increase if X < 1 and decrease if X > 1, thus

varying "in the same direction."

2. CONTRARY MODES FOR A GIVEN SYSTEM

Since higher frequency tends to mean higher velocities at a given

amplitude, it might reasonably be guessed that the damping will be greater

in modes of higher frequency. This is not necessarily the case, however,

because the components of displacement are in different ratios in different

modes and some components may be damped more heavily than others.

As a simple example, suppose

ml + klx + kl2+Cl= 0 m 2 + k 2 + k 2 x + c 2  0

where k2/m2>> kl/ml but c2/m 2 <<cl/ml.

If k12 = 0 and cl = c2 = 0, then in one mode, x vibrates with y = 0; in the

other, y vibrates at much higher frequency with x = 0. If k12 0 but c 1

and c 2 are merely small, then the two frequencies are little altered by cl

and c 2 , and the damping will be much less for the second or y vibration

than for the first or x vibration.

Thus higher frequency is accompanied here by lower damping. This

conclusion will not be altered if kl2 is merely kept small but not zero, so

that y vibrates a little in the first mode and x vibrates a little in the second

mode.

IIWNN WIEN I





Table 1

Summary of Results

One Dimensional Damped Vibrations

m" + cm + kx = P(t)

CASE SOLUTIONS REMARKS EXPERIMENTAL DETERMINATION OF DAMPING

(lj DAMPED FREE When (1) Two independent modes of damped free (1) Obtain , from curve of x vs t ( when p 1 0)

VIBRATIONS c
2 

< 4mk (less than critical damping), x = e- 
t 

(acoswt + b sin wt) vibration can occur. Their amplitudes Then c = 2mp.

pa O
/  

where p = w, = - 1 m2cZ can be chosen to make x and i agree

c = 4mk (critical damping), x a (a + bt)e 
t 
where with any assumed initial values.

c
2 
> 4mk (greater than critical damping), x ae It+ be

"
2t (2) The free vibrations are oscillatory pro-

where P - (c* c
2 

- 4mk) vided the damping constant c is not too
1,s 2m

a, b arbitrary large. Small c has negligible effect on

the oscillatory frequency.

(2) HARMONIC FORCED x s acoswot + b sinwot (1) c introduces a component of x in time (1) Observe ratio of quadrature and in phase components of x relative

VIBRATIONS P2 (k - mwo
)2 

+ c2 oz quadrature relative to P. When to the phase of P.

P(t) pcosotw
o  w

o 
s , a = 0 and the vibration is in Then c -L o(k -mwo

P(t) Pcos wot i cw o a

p, w ° 
arbitrary time quadrature only relative to P.

(2) xlmax  for given p occurs when

wo k k 
2

m 2M
2

TWO DIMENSIONAL IAMPED VIBRATIONS

ml + klx + m 1 2  
+ k1 2

y + Clk + cl2y -P(t)

mlZx+ kl2x+ m2~ + k2Y+ c
2 1
i+ c2y Q(t)

CASE SOLUTIONS REMARKS EXPERIMENTAL DETERMINATION OF DAMPING

(1) UNDAMPED FREE When x and y vibrate together in proportion to coswt (i.e. x,y o coswt) (1) When w E Kand either mil2 k12 0

22ky - .1 w or rn k •m k thenx vibrates and

cl • c 2 
- C12 cZ1 - 0 Where the w's are determined from y = 0. When w s and either

(kl - mlw
2
)(k m 2 w

2
) - (k12 - mnl2w

2)
2 (mlm2 -ml2 )w4 m12 k12 -0 orm kl n l2k then

-(mIk 2 
+ mk I 

- Znl2kl2)2 + (kIk 2 - k12
)2 

0 y vibrates and x a 0.

(2) When x and y vibrate together then in

general two independent modes of vi-

bration occur with y and x in fixed

ratio depending on the mode.

(a) If kl2
2 
- klk

2 , 
then one root of the

frequency equation is w2 2 0.

(b) If mlm 2  
i m122 

then only one mode

of vibration is possible.

(c) If k122 < kk
2 

and ml2 < mlm2

then one root for w occurs at a

value less than the smaller of the

k k
two quantities - and and amn m 2

second root for w
2 

occurs at a value

greater than these quantities.

(2) DAMPED FREE x a a y be 
,  

(1) When ml2lk12=- c12Z 0 then x vi- (1) Using transient excitation on initial deflection obtain p , w 1 
and

VIBRATIONS where ) is determined from brates and y- 0. When nm12 = k 1 2  2
' w2 from decay curve of x and/or y vs t if one mode of

PQ 40 C4 4+ 3 
3  

+2 2 +1+ o  
0 c2 1 = 0 then y vibrates and x

= 
0. vibration dies out before the other; if two tape recorded modes

a, b. non-zero constants real or complex (Xnegative real or complex) (2) Since =- is complex there is gener- persist, filter the taped record to separate the modes.

i f (m's, k's, c's) positive or zero (see equation 10) ally a phase difference between x and 2) Adjust frequency of vibration to be in resonance for either mode

For Acomplex (,-p iw) pand w are positive and determined by y as functions of time. Remove vibration and obtain ,wii (i = 1 or 2) for that

successive approximation from (3) The general solution is the sum of four mode from curve of x and/or y vs t.

4
w
4 

- ( t - 3 p + 6C40 )w
2 
+ o - 1 + t2o - t3 

3 +
4 0 real expressions representing four 3) Constrain system into configuration corresponding to one mode

- 3 w
2 

- (2 2 - 4g4w
2

) + 33 4p
3 

- 0 independent damped oscillations whose then remove constraint and obtain 1i,wi(i = 1 or 2) for that

For small damping 2 More accurate solutions are amplitudes can be chosen to agree with mode from curve of x and/or y vs t.

.1 1l -t
3
w determined by successive any assumed initial (or other time) NOTE l:f cl 2 

= 
c2 1 

- 0, c 1 and c2 can be calculated from pl and 2'

C2 - 24w approximation from the two values of x, ix, y,y. Otherwise the observed values of lI and p, furnish only two

and w is determined from equations immediately above. (4) For small damping p is small and the relations among the four quantities cl, c2, c12, c21.

4  2  
0 oscllation frequencies are the s

4
w  

-
w

oi + o thNOTE 2: More general procedures for calculating from observations

for the undamped case. values for each mode of the frequency w , the damping

In general constant a , the amplitude ratio r, and phase a of y

I n
2  

+ k 1 + ci relative to x, are given in the text.

mlA + k2 + clZA m 2 i + k + c
2

Apl 

csr nl ie 's0 n ajs mltd n

(3) HARMONIC FORCED

VIBRATIONS

P s pcoswot + p' sinwot

Q qcoswot+ q' sin wot

x - a cosw t+ a'sinwot, y - a2cosWot+ a sinwot

p. p'., q, q'. a , a , , a eight real numbers, four arbitrary, one

can be zero. Determination of amplitudes al, a 1, a 2, a' caused by

applied forces p, p', , q' is made by solving

(k1 - ml oZ)al + clw oa + (k 12 - ml2oZ)a 2 + clZwoa 2 a p

-Clwoal + ( k-mlol)al - cl a (k. - mrlZ o)a2 , p

(klZ - mlZWoZ)al + cZlWoal + (k2 - mz o Z)a2 + c2Woa2 : q

-c wa+ - - -
21 oal 12 - wmlZ

2
o)al - ca 2  

+(k 2 
i 2

w o)a2- q'

For these equations the determinant of the coefficients a1 , al, a 2 , a2 is

A & [(k 1 - ml o)(k2 - mgwo
2

) " (k 1 2 - ml 2woZ )]

- wo2(clc 2
- c 1 2 c 2 1)

2

(1) If there is no damping, then when wo

equals the value of w for either of the

frequencies of undamped vibration

A = 0 and the amplitude of the forced

vibration becomes large (i.e. reso-

nance occurs)

(2) If cl, c c, c12 , c21 are all small Z = 0

at two slightly modified frequencies

that differ also slightly from the fre-

quencies of damped free oscillation.

As wo approaches either of these fre-

quencies at which A n 0 while p, p', q,

q' remain fixed, the amplitude of the

forced vibration becomes large (i.e.

resonance occurs)

Apply P - pcoswot only (i.e. p' - 0) and adjust amplitude and

phase of Q (as discussed in text) so that a Z a' z - (i.e. y = 0).

With w >or< observe-. Then c (k1 o

Similarly, apply Q - qcoswot only (i.e. q' * 0) and make x s 0 by

adjusting p and p' so that al z al * 0.

With wo > or < observe . Then c 2 = W2(k 2 - m2wo
2

)

Apply P = pcoswot only (i.e. p' s 0). Adjust Q (as discussed in

text) so that a, a = 0. Read al/a
2. Then cl 2  a2 c I

Similarly. apply Q = qcosw
ot only (i.e. q' 0). Adjust P so

a2  
a2

that a, - a. - 0. Read a-. Then c 2 1 = - c 21 1

Apply P - pcoswo
t 

only (i.e. p' = q' s 0). Read al, a
2 , a', a~.

Repeat with different ratio = and read corresponding

(barred) values al, at, al, a2. Substitute each set of a's in

turn in second and fourth of the set of four equations given in

"solution" in whicn p' s q' * 0. Solve resulting two pairs of

equations for cl, c 1 2 and c
2 , c

2 1

(#J0
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Table 1 - Summary of Results (Continued)

Three Dimensional Damped Vibrations

Mlx + k1 X + m1 2Y + k12y + m1z " + k13z + Cl + c12i + c13 = P(t)

ml 2X + k 12x + m2 y + k 2y +23 + k + c21 + + 23 = Q(t)

m13 + k13xz+ m 23 + k y + mz + k3 + c31 + 32+ = R(t)

.P RINTAL DETERMINATIOTTN OF DAMPING

CASE SOLUTIONS

(1) UNDAMPED FREE x = a 1 cos wt y = a 2 
cos wt z a 3 cos wt a 1, at, a3 real

VIBRATIONS x a1 Y a2  a 3Ratios - -- ,- T--, = or their inverses are found by solving

P.Q-R 0 Y 32 3 1

c= c = C 12 C. - 13

31 C23 C32 0

(2) DAMPED FREE

VIBRATION

p=Q.R=0

(3) HARMONIC FORCED

VIBRATIONS

P pcoswot + p' sinwot

Q . qcoswot + q'sinwot

R rcoswot + r' sinwot

in any one of the three modes

(k mlwal + - i 1 
-_ m 1 2w )aZ + (k13 - m13w

2
)a3 0

(k12 - mlZw
2

)al
+ 

(k 2 - mZW2)a 2 + (k23 - m3wZ2)a3 0

(k 1 3 - ml3 w
2

)a+ (k 2 3 - m 2 3 w
2

)a 2 
+ (k 3 - m 3w

2
)a 3 

: 0

where the w's for these modes are determined from the cubic equation

in w2

L (I1 - m l wz)(k - mw
2 

)(k 3 - m 3w
2

) + (k 1 2 
- ml2

w )

(k13 - ml3 )(kZ23 - mZ3w
2

) - (kI - mw
2

)(k 2 3 - m2)2

- (k 2 - m2 w
2

)(kl 3 - ml3w)
2 

- (k 3  
m3w

2
)(kl 2 - m12

w2)
2 

= 0

x I alekt y = aZe
t 

z - a 3 et a 1 , a 2 , a3 , X generally complex

Ratios x:y:z are found by solving in any one of the three damped modes

(kl + mlk + Clk)al + (ki2 + m12%2 + C12)a2 +

(kl3+ ml3
2 

+ Cl3k)a3 3 0

(k12+ mlz22 + c21%)al+ (k 2 + m 2X2 + C2X)a 2 
+

(k23 + m23 2i+ c23X)a 3 : 0

(k13+ ml3Z
+ 

c3 1 )al + (kZ3+ m 2 3 2+ c32%)a2+

(k 3 + m 3  + c 3  X)a3 = 0

Where the X's for these modes are determined from the sixth degree

equation in X

(k I + m I k
2 

+ clk)(k2 + mk2++ cZ)(k 3 + m3k2+ c3)

2 2+(k12+ m 2+ cl )(k23+ m23 
Z + 

c23)(kl3+ m13 + c31 X)
12 12 c21 23 23 c32 )(kl3+ m 3 13

- (kl+ m
1

2
+ X k1)(

2 
+ mZ X

2
+ c 2. )(k 2 3 + m 2 3 X

2 + 
cXk)

- (k z m2 2 ck1)(kl3+ m13 1 3 Cl)( 13+ m132 c31

- (k3+ m3 
2 

+ c 3%)(kl2+ m 2 + c1 2X)(k 12
+ ml 2X+ c 2 1%) . 0

For each mode or value of w2 found from the cubic equation in w
2

for undamped free vibrations (an approximation for small damping) a

corresponding L is obtained from

-2 [mI(G2G3 
- G2 3

2
)+ m 2 (G 1G 3 - 0132)+ m 3 (GIG 2 - z12

)

+2mlZ(G 13G23 - G3G1 2 ) + 2m (G1 2 G1 3 - G 2G13

+ 2m 2 3 (G1 2 G 1 3 - G1G23)]

+ cl(GZG3 - G232) + c 2 (G1G 3 - G 13 2)+ c 3 (GIG2 - G 1 2 2)

+ (C1 2 + c21)(
1 3G23 - G3 0G ) + (c13+ c31)(G12G23 - 0G013)

+ (c 2 3 + c 3 )(G12G13 - G 1G)23 0

Where

G1 1 k1 - miwZ, G2 = k2 - mw2 , G3 a k3 - m3w2

G12 2 kl2 - m12w2, G13 k13 - ml3W2,G23 a k23 - m23w2

xi £1 cosw ti-a 5mw

x = a cowot + a 1 sinwot
,  y = aCOwot + a sinwot

z a 3 coswot + a ' sinwot

p, p'; q, q'. r, r', a l, a, 
2 a, a3 , a 3 twelve real numbers, six

arbitrary, one can be zero. In general. any six of these numbers

can be assigned arbitrarily and the remaining six are found by

solving

Flal+ clWoal+ Fia + cl2Woa + Fl3a 3 + Cl3woa
3 . p

-Clwoal+ Fa - clw2 oa2 + Fla 2 - Cl3woa3 + F13a3 p'

F12al + cZlwoal + Fa 2 +c 2 
woa + F3a 3 + c23Woa3

where

F1 k I - m1 o2 F z  k2 - m2Wo
2  

F 3  k 3 - m3w

F12 1 k12 - ml2Wo
2

F 3 " kl3 - ml3Wo2 F23 ' k23 - m2

2

3Wo
2

(1) When x, y and z vibrate together then

in general three independent modes of

vibration occur with x:y:z in fixed ratio

to each other depending upon the mode.

1 4

(1) The sixth degree equation in X may

have some or all roots if the c's are

large enough. If the c's are not too

large there will be six complex roots

- k* iwk, k * 1, 2, 3.

(2) For small c's and therefore small i's

the frequencies of oscillation in the

three damped modes are approximated

by the frequencies of undamped vi-

brations obtained from the cubic

equation in w
z
.

1 9 aI.Nl I

(1) Methods of measurement similar to those for the two-

dimensional case; elaborate procedure necessary to isolate

the nine c's in turn.

(1) Apply P, 0, R in any ratio but in same phase. Assume p' s q'

2 r' s 0. Read al, a 2 , 3y a 2, a'3 . Repeat with different

ratios of P, Q, R, distinguishing a's thus obtained by a bar, and

then with a third set of ratios, making the a's with a double bar.

(see suggestions for choosing P, Q, R in text). Substitute each

set of a's in turn in second, fourth and sixth equations of the

set of six equations given in "solution" in which p' = q' a r' * 0.

Solve resulting three groups of three equations for the nine

c's (a rearrangement of the nine equations convenient for

computation, is given in text (Equation (20)). With this rearrange-

ment each of the three groups of three equations is solved

separately, the first group yielding cl, c1 2 , c1 3 the second

group yielding c 2 , c 2 1 , c 2 3 and the last group c 3 , c 3 1 , c32.
)

(2) Computation is further shortened by observing differently.

Choose p and q and adjust r (p' s q' a r' s 0) so that a3 = 0.

Read 31' 2 al, a', a ' Repeat with different pair of values of
making - - - -'

p and q making a3 3 0. Read al 2, a
1
, a

2
, a 

. 
Solve first two

of rearranged equations (Equation (20) in text) for cl and el2'

the fourth and fifth for c
2 

and c21 and the seventh and eighth for

c31 and c32' Repeat choosing two pairs of values of p and r and

adjusting q each time so that a2 - a
Z 

s 0. Then the same three

pairs out of the rearranged equations yield c
2 1 and c2 3

, and c
3

and c31. All c's thus obtained are duplicate values of cl, c 2 1 '

c31'

NOTE: Neither (1) nor (2) require actual measurements of P, Q or R.

13 . I . I f.3 f 3 r.
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