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ABSTRACT
Formulas are deduced for vibrating systems of one, two,and
three dimension-s . Undamped and damped free vibrations and
harmonic forced vibrations are treated. Methods are proposed
for calculating the damping constants from test observations.
I. INTRODUCTION
In developing formulas for vibration and possible flutter of structures

1

such as rudders, it may be necessary to include damping forces. Since
these forces are not easy to calculate, methods of determining them from test
observations may be needed.3* The basic theory for two- and three-
dimensional cases will be considered and feasible methods of observation
will be sought. First, however, formulas for the one-dimensional system
will be written to assist in treating the main problem. For convenience of
reference, a summary of the results is given in Table 1; see pages 30 and 3l.
II. ONE-DIMENSIONAL VIBRATIONS
Assume as the equation of motion

mx + cx + kx = P(t) [l]

in which m, ¢, and k are positive constants, %x = dx/dt, and P(t) denotes an

applied force varying with the time t.

1 References are listed on page 33.

* In Reference 1 (see pages 78 and 83), certain damping terms were omitted
from the flutter equations because methods for determining these terms from
experiments were unknown to the authors at that time. These flutter equa-
tions including the damping terms originally omitted are of the same form as
the equations given here for the three-dimensional case.



1. DAMPED FREE VIBRATIONS

If P = 0, the general solution of Equation [1] can be written (as is
easily verified) as follows in terms of independently arbitrary amplitudes a
and b:

If c2 < 4 mk (less than critical damping): x = e—F’t (@ cos wt + b sin wt)
c 2_k 1 22
where ™ and w = m 2 m C

If c2 = 4 mk (critical damping): x = (a + bt)e M, M= 2;

if c2 > 4 mk (greater than critical damping): x = ae Tt + be-/‘th

where,u,1 and oy denote the following two values:

| 2
i GRS
2. HARMONIC FORCED VIBRATIONS

With P = p cos wot in terms of arbitrary constants p and Wy

x—acoswot+bsmwt

2
O

|
X

L(k—mw )+Cw

L(k-mw ) + c w a (k'—mwoz)p

b

]

3
(o]

Ko}

2

i 2 k - mw
2 2 2 2 2 2 a_ o
(k-mwo)i-cwo](a + b)=p, b-—cw—o

59

Thus a = 0 and the vibration is in time quadrature relative to P
when w = Qk/m, which is the value of w for undamped free vibration. The
‘I 2
maximum amplitude or maximum of Y a + b2 for given p, however, occurs

when

2
(d/d(.oo) [(k - mwoz) + CZwOZ} =0



or when

2 k c2
w z - -
(o] m

2m2
This differs from k/m by twice as much as does wz in a damped free
oscillation.

These formulas exhibit several features for which analogs mayreason-
ably be expected in more complicated cases, namely:

(1) Two independent modes of damped free vibration occur. Their
amplitudes can be chosen to make x and X agree with any assumed initial
values.

(2) These free vibrations are oscillatory provided the damping constant
c is not too large; in this case, ¢ produces only a second-order change in the
oscillatory frequency.

(3) In a harmonic forced vibration, ¢ introduces a component of x in
time quadrature relative to the applied force P (proportional to sin wot
instead of to cos wot) .

(4) x is entirely in quadrature relative to P when the forcing frequency
factor w, equals the value of w for undamped free vibration.

(5) The maximum amplitude of x for forcing at given p, when damping
is present, occurs at an wg differing from the undamped free w by more than
does the oscillatory w in damped free vibration.

3. EXPERIMENTAL DETERMINATION OF c

If /_,,io, its value can easily be determined from a curve showing

either x or X as a function of t during damped free motion. Then ¢ = 2mp .



If w is also determined from the curve, the ratio k/m can be calculated as
k/m = oo2+ ,U«z . To determine k and m separately, one of them must be
known from some other source.

Or, during a damped forced vibration the ratio b/a may be observed as
the ratio of the components of x respectively inlagging quadrature to P and

in phase with p, or the equél ratio for X. (Note that here x - —wozx). Then

In this case, the values of both k and m must be known.
III. TWO-DIMENSIONAL VIBRATIONS

Assume that the kinetic energy T and potential energy V of a two-

*
dimensional system can be written as 4.3
1 201 .2 .. 1 2. 1 2
TegmX *+ 5 myy + my Xy, VEg kpxorgkgy +kpoxy

in which x and y are generalized coordinates and ml , mz, m12 are inertial

and kl’ k., k., elastic constants, of which only m 2 and k12 may be

2 12 1

negative. Substitution of first g = x and then q = y in Lagrange's equation

or

)
3
)
<
O

!

e
Q@

.Qo

Q

Q

gives as equations of motion

m, X, + klx + MY+ klzy = P(t)

my X+ klzx +myY + kzy =Q (t)

in which P(t) and 6(t) represent the total generalized forces acting on the

* Also see Appendix A of Reference 1.



system (not including internal elastic forces). Part of P and 6 may be due
to linear damping forces. Expressing the latter in terms of damping

constants ¢, C , C the equations of motion may be written:

1 » ©

2’ 712" T21

y+c Xx+c.y =P(t)
1 12
2]

my X+ klzx +m,y + kzy +Cy X czy:Q(t)

mXxX+ k. x+m_ .V +k

1 1 12 12

in which P and Q represent possible external forces acting on the system
(aside from damping forces).

Certain restrictions on the possible values of the constants are worth
noting. Let x and y be so chosen that T and V are never negative. Damping
effects can never increase the sum T + V. Multiply the first of Equations [2]
by % and the second by y and add the two equations. The sum of the

resulting m and k terms is easily seen to equal (d/dt) (T + V); hence, if

P=Q=0
d _ .2 .2 _ ‘ .o
= (T+V):= c % c,¥ (012* 021) Xy
To keep (d/dt) (T + V) from ever being positive, it is necessary that ¢ > 0,

c, > 0, since either X or y may vanish. Similarly, to keep T = 0 and V 20,

, m., k., and k. all be = 0.

it is necessary that m1 2 1 2

Further restrictions may be inferred from the following theorem. Letw,
3.,y . e, g be real numbers. Then
°4ez * Bgz * yeg=20or ocez +,,892 >-yeg [3
for all values of e and g if and only if

(20, 520, yzs 4¢3

To prove this, note first that« and B cannot be negative because of



cases in whichonly e = 0 org = 0. Relation [3] then clearly holds if e and
g are such thatyeg > 0.
Suppose, however, that yeg < 0.. Then Equation [3] in its second

form is equivalent to the following:
2

e’ + ,Bgz) > (yeg)? [3a]
provided that positive square roots are taken in passing back from Equation
[3a) to Equation [3] . But

e’s Bg®) = (°<e2-[3@12)2 + 4B (eq)”

Hence, if>0 and 8>0 and if e and g are chosen so that °<e2= Bgz,
then @(e2+ Bgz)2 = 43 (eg)2 . Thus Equation [Sa] can héld generally only if
43 =y 2,If either o€ or Bvanishes, Equation [3]requires thaty=0. Conversely,
if the condition that 40652‘72 is met but«( e2¢ Bgz, then (t:Ce2 + Bgz)z
>44f3 (eg)2 >)'2(eg)2 and Equation [3a] holds, also Equation [3] .

Substitute here &€ :m1/2, B:mz/z, ysmi,. €= x and g = y; next,
oL = k1/2, B:kz/Z, y:klz, e =xand g = Y; and finally o< =c,. B =C,,
Y =Cyp* Cypr € = xand g=y. Compare the reéulting expressions with
expressions previously written for T, V, and (d/dt) (T + V). It will then be
clear that, to prevent T and V from ever becoming negative or (d/dt) (T + V)

positive, it is necessary and sufficient that

2 2
Mg S MMy Ky < Kikyo (e 0p)7s o0, [4]
These restriections will be assumed to hold.
It follows then also that
2mygk1p < Myky + Mpkys 1501 < 019 [5a.b]



2 2 2. 2
_ - >
For (m k, + m k)" = (m k) - m)k))" + 4mym k k) 24m m k k)>4m "k,

by relations [4] . (Note that a square cannot be negative.) Similarly, in

4 (

c..) = (c.,+cC )2; hence, by

any case 4c C12 ~ %9 12 21

12621 < *%12%1 °*

Equation [4] , 4c < 4c.c,.

12%21 S %¢1%

Two other relations that can be inferred in a similar way from relations
[4] are:

m,+ c.m,, (c ck~..ckl [SC,d]

(€% Cp)my, <My + Comyy (Cpp+ €y )k pc Ck) 4 O

1. UNDAMPED FREE VIBRATIONS
Undamped free oscillations merits consideration as background for

study of the damped case. Let clz c2 = c12= 021 =0, P=Q =0. Then

Equations [2] become

m, X +klx+ m12y+k12y =0 m12x+k12x +myY + kzy: 0 [6]

Two special cases may first be noted. According to Equations [6] , x

can vibrate while y = 0 only if k1 - mlwz and k12 - mlzwz are both zero.

The first condition fixes w at dkl/ml; the second requires that either

= = k = k.. imi , i i = ,
m12 klZ 0 or ml 12 m12 1 Similarly, y can vibrate with x= 0, and

w = { kz/mz only if either m, = k12 = 0or mzk12 = m12k2'
If x and y vibrate together in proportion to cos wt, the following
equations must be satisfied:

2 2
(kl -mlw)x+ (klz—mlzw)y- 0

k., -m

2 2
12 12m)x+(k2—m2,m)y:0

Elimination of x and y gives for the determination of w the following equation:

m wz)z: 0 [7a]

2 2
(kl-mlw)(kz-mw)-(klz— 12

2



or

2. 4 2 2, _ A
(mym, - m ") - (mk,+ mk, - 2m ki o+ (kjk, -k %) =0 [7b]
2

If k12 = klkz’ one root of Equations [7b] is: wz = 0. Alternatively,

if mlmZ = mlzz’ only one mode of vibration is possible.
2

Assume now that k < k. k. and m

2 , 2
12 159 12 <m1m2. To locate w ,

consider L, the left-hand member of Equation [74 or Equation [7h] , as a

function of wz. At wZ: 0, L > 0; but when wz has increased to wz

representing the lesser of the two values kl/rn and kz/m , then it is clear

1 2

from Equation [7a] that L < 0. Hence L= 0 at some positive value of wz
less than wz .. Also at the greater of the values k./m_ and k./m_, L<O,
min 1" 1 2 2
but as w2—> o it is clear from Equations [7b] that L > 0. Hence a second
root of Equation [7a,b] occurs at a value of wz greater than both kl/ml and
kz/mZ .
Thus two different modes of vibration of the system are pos‘sible with

both x and y vibrating. In each mode

y . K12 =™ Ky mme
X

kg = myo kig =M@

2. DAMPED FREE VIBRATIONS

Let P= Q = 0 so that Equations [2] read

m X+ kjx+ m Y+ klzy +cikvc v 0 [8a]
m, X + klzx + MY + k¥4 CpuX4c,y =0 (8D]
In special cases especially if my, = k12 = 0 and c12 = 0 so that

Equation [8a] reduces to Equation [1] with P= 0, x can vary while y = 0; or,



similarly, if c2 = 0, y alone may vary. Such cases will not be discussed

1
further here.

For the general case, solutions may be sought in which6

X = ae>‘t, y:be)‘t

where a, b, and A are non-zero constants, real or complex. Substituting in
, . At
Equations [8a,b] and canceling out e "

2 2
(ml)\ + k +cl)\)a +(m12)\ + k +clz)\)b:0 [96{'

1 12

2 2
(mpAs kpgecpr N aslmy Ay ky Sy 1o g [9b]

The result of eliminating a and b from these equations may be written:

4 3 2 N
e4>\ +e3>\ +e:2)\ +el>\+eo—0 [10]
where
e =k k,-k 2 e. =c k. +c k. -(c..+c.. )k
o - F1%2 7 12 0 17 %1% T %y 12 7 21712
€) TMpky T myky = 2myoky +€16 T 1%
2
€3 = Cymy + Cymy = ey voy)dmyy. g mmy - m),

The coefficients €, ¢+ ¢+ - € are all 2 0, according to Equations [4]
and [Sa,b,c,d] . Hence no root A of Equation [l 0] can be a positive real
number. Probably if the damping is strong enough, negative real roots may
occur, possibly even four in number, but this difficult question is of little
practical interest here.

For the general case, write \= - pu + iwwhere i= ﬂ and 4 and w

are real numbers. The following two equations result from substituting in

Equation [1 0] , then equating the real and imaginary parts separately to zero,



and dividing the imaginary equation by iw on the assumption that w =+ 0:
4 2, 2 2 3 4
€49 - (62—3 €qpt 6 €M1 Jw™ + € T AU~ gt g T 0 [lla]

3

2);.L+3€3,u.2-4e4/.1, =0 [111]

-ewz-—(Ze

17 93

9~ 4e4w

These equations determine . and wz . The conjugate quantity -p -iw
is then also a root of Equation [1 O] . Since there are only four roots in all,
These

there can be only two pairs of values, Ko and w and g 9 and w

1’ 2°
pairs define two modes of damped oscillation. Since damping cannot
increase the total energy, it must turn out that both Fq and Ko are positive.

To obtain real expressions either the real parts of all quantities (i.e.,
solutions) may be chosen or the imaginary parts divided by i; the two pairs
of real solutions thus obtained are in relative time quadrature. The value of
the ratio b/a for each mode may be obtained from Equations [9a,b] . Since
usually b/a will turn out complex, there will generally be a difference of
phase between x and y as functions of the time.

Thus four real expressions are obtained representing four independent
damped oscillations. For these oscillations, x and y can be written thus:
e'/-‘lt[Al COSs (wlt + €1)+ A'1 sin(wlt + 61)]

X = e_'l'Lllc (Al cos w,t + A! sinwlt), y=r

1 1 1

or

M2t o ) -#zt[ Vo ]
y=e (Az cos w, t+A smwzt), y=r,e A, cos (wzt + ez)+A2 sm(wzt+ez)

1 2

Here Al' Al’ Az, A2

2

are independent arbitrary constants which can be
adjusted to fit any assumed initial values of x, %, y, y. It should be noted

that

10



.. 2 2 e 2 2
X = - (wl—,ul)xandy: - (wl -,u,l)y

in any one mode whereas in the other

. 2 2 . 2 2
X = - (- H)xandy = - (0, -p,)y
Only small damping effects appear to be important in practice. Hence
no general discussion of Equations [l la,b] will be undertaken here.
If the c¢'s are sufficiently small, & will also be small, and the co-

efficients el and 63 are likewise small. Consequently all terms in

Equation [l la] containing p are small at least to the second order, and the last
three terms in Equation [llhﬂ are small to the third order. For an approximate

solution, these terms may all be dropped. Then Equation ‘_—lla] becomes:

4 2 , , .
€4w - ezw + eo =0. This agrees with Equations [7a,b] for the case of
no damping so that to the degree of approximation under discussion, the
oscillation frequencies are the same as if there were no damping. From

Equation [11b] the approximate value of i is

1 3 [12]
€2— 2 €4w

More accurate solutions can be obtained from Equations [l la,b] by a
process of successive approximation.
3. HARMONIC FORCED VIBRATIONS

If the applied forces are harmonic functions of the time t, they cause

harmonic vibrations of x and y. At the start there may also exist superposed

damped free oscillations whose amplitudes can be adjusted so as to produce

11



on the whole any initial values of x, y, X, y. These damped free oscillations
will be assumed to have died out.

Since in the one-dimensional case, the presence of damping intro-
duces a phase difference, assume:

P =pcoswt+ p' sinmot, Q= gcosw t +q'sinw t

[13]

X T a,Cosw t+a
o) 1

. t - Ve
1 sin @, y a2 cos wot + a2 sin wot
In Equations [2] the cos w and sin w,t terms must balance separately.

After canceling the time factors, the result is the following four equations:

z 1] 2 1
(k) - mw ay +cyjoa) + k) -mpe Ma, + ¢ a, =P

2, 2,
“C02y kg mmype Nay - cppeay v k), - m e g =p

2 ' 2 )
(kyp = myp, )2y *0ppeap + (k) -myw May + cyea) = q
-c,,wa +(k..-m wz)a'-cwa + (k -mwz)a'—q'
2101 12 1270 771 20 2 2 20 72"
Here p, p', 9, q', al, a'l, az, a'z are eight real numbers. In general, any

four of them can be assigned arbitrarily; the equations then fix the values
of the other four. Furthermore, since cos wot and sin ooot differ only in
phase, the zero for t can be so adjusted that any chosen one of the eight

quantities a, . . . . g' vanishes, without a-ltering the physical form of the

1

vibration. Thus all cases can be covered while keeping one coefficient
zero.

,al,

In particular, Equations [14] may be solved for the amplitudes al 1

a.l

8y0 8

caused by given applied forces represented by p, p', 4, q'. The

determinant a of the coefficients of a_, a', a

1 30 308

2 is easily found to have

12



the value

22

2 2 2
Wiy = mpug )= kyp —mypey) } T

4

(c.c, - c,,C )2
o 12 12721

A:[(kl - mlwo
If there is no damping, comparison with Equation [7a] shows that 4 = 0
when R equals the value of w for either of the frequencies of undamped free
vibration of the system.

If cl, c are merely all small, a will vanish at two

2’ %12' 21
slightly modified frequencies that differ also slightly from the frequencies

of damped free oscillation. As @, approaches either of these frequencies at
which a= 0 while p, p', 4, ' remain fixed, the amplitude of the forced vi-

bration becomes large (the phenomenon called resonance).

4. EXPERIMENTAL DETERMINATION OF S+ Cyr C194 Sy

One method is to make "bumping" observations by starting a motion
and recording it as it decays. By proper adjustment of the initial values of
X, X, ¥, ¥, the system can be madeA to vibrate in either of its two modes of
damped free vibration with the other mode absent. Observations may be

2

made of either x and y or X and Vas functions of the time since X= - (wl -

2 . 2 2. v 22 .
,u.l)xandy—-(w -y.l)ymonemodeandx- (wz ;,Lz)x,y-

1
- (wzz —/-Lzz) y in the other. From these observations, values can be cal-
culated for each mode of the frequency w, the damping constant i , and the

amplitude ratio r and phase € of y relative to x, giving the eight known

quantities

s By Yot et R IR IS B

13



Insertion of w and,u1 and then of w

1 and K for w and w in Equations

2

[1la,b] then provides four equations which can be solved numerically for

, m_, m__, k., k., and

Cyr Gy 1° Mg Mygr Xy %

1 2 ClZ' and ch provided the six constants m

k12 are known. It might be more accurate, however, to use equations

containing the constants el and €, which differ from zero only because of

damping. If bumping observations are to be used, further study of the
methods of calculation should be made. The damping may be weak enough
to justify the use of simplifying approximations.

It may be worth noting that observation of all eight quantities w to

€, should make possible the calculation of nine of the ten quantities ml .
k., k

mz, le' 1 . k.., Cc.,c., and ¢ For a restriction exists on

2° “12° “1" T2' 127 21°

the possible variation of these quantities. Let Equations [8a,b] be
multiplied by an arbitrary constant s. The new equations may then be
regarded either as equations in a different form for the original system or as
equations for a different system having constants s times as great but the
same damping modes as the original system. In order to know which éystem
of this similitude class the observed constants w,. . . . . . . . €, refer to,

2

it is necessary to know at least one of the ten quantities My o v v v v

Then the remaining nine can all be calculated from the eight observed

constants 0.)1 R

. 620
(If Equations [8a,b] are multiplied by different numbers, they are still
valid for the original system but cannot be regarded as equations in the same

form as Equations [8a,b:| for a different system because the new mlzqé m21

14



and klz:r# k21.) Even if the initial values of x, X, y, y cannot be properly
adjusted, since one mode will usually die out before the other, both sets of

values, Hq and w, and ,u,z and w can be inferred from the same curve of x

1 2’

or y as a function of time. If both modes persist, it is still possible to
observe each mode in turn by means of a filter.7_10 Or a vibrator may be
used and adjusted in frequency so as to be in resonance with one mode;
then, after the vibrator is removed, a damped free oscillation will occur in
this mode only.

If Clg %17 0, c, and c, can be calculated from u , andp 9
Otherwise the observed values of p 1 and oy furnish only two relations

among the four quantities c,, ¢,, C

1" 27 “127 Ca1-

An alternative method is to study forced harmonic vibrations produced

by applied forces P and Q whose relative amplitudes and phases can be
controlled. (Applied forces are pure P when they do no work during varia-
tion of y alone, or pure Q when no work is done during variation of x alone.)
Two alternative procedures will be described which require no measurements

k., k k however, must be

of Por Q. The constants m_., m,, m 97 ®1g7

1 2 12° 71
known. Either x and y or X and V¥ may be observed since in forced

. . oo 2. .o 2 2 . s
oscillations X = —w, X ¥y = N y and w will be seen to cancel out in all

final formulas.

, C., C.., C.. in turn. Make

First Procedure: Isolation of €17 %27 C127 ©21

observations as follows:

(1) Cause x to vibrate withy = 0. Assume p'= 0, so that a; denotes

15



the amplitude of the component of x that is in phase with P and al' the
amplitude of the quadrature component of x. To do this, apply P= pcos wot

and adjust the amplitude and phase of Q so that a, = a' = 0. ThenEquations

2 2
[l 4:[ reduce to

2 , 2.,
wo)a +c.wa' :=p c<;oa1+(kl mw)al:O

(k) - m 17 C19%% 1% 1%

1

(k m, w )a

12 - M12% =4

_ 2
+Cp 19021 =4 c..wa.+(k m wo)al

1 21 0 21 o1 12 12
The magnitude of N should be fnade quite different from le/ml . Only the

ratio a'l/a1 needs to be observed.

Probably the adjustment of Q can be effected most conveniently by
varying its amplitude d(q)2 + (q')2 until a, (or the component of y in phase
with P) is zero, then varying the phase of Q (thus varying q') until the
quadrature amplitude a'2 of y equals zero, and repeating these adjustments

in turn until both a, and a!

9 9 remain negligibly small.

Then

= al

c
1 woa 1

2
(kl I s )

(2) Similarly, to keep x = 0, apply Q = gcos wot, hence q' = 0, and

with @y not near qkz/m2 , adjust p and p' so that atl = a'l = 0, and read

az/az. Then

16



(3) Cause x and y to vibrate in phase with P; that is, writing

P = pcos wot with p' = 0, adjust g and q' so that a'l = a'2 = 0. Read al/az.

Then from the second one of Equations [14]

In this case the simplest way to effect the required adjustment of Q

might be to vary its amplitude so as to reduce the larger of a'1 and a:z until

al'l = alz, then adjust the phase of Q so as to minimize a'z, and repeat these

adjustments until a! and a! have been made sufficiently small.

1 2
(4) Cause x and y to vibrate in phase with Q, assuming q' = 0. Adjust

p and p' so that a'l = a'2 = 0 nearly enough. Read atz/al1 . Then from the

fourth of Equations [14]

This procedure should yield the most accurate values of the four c¢'s,
but the experimental adjustments required may be considered too tedious.

Second Procedure: Single-phase forcing. Apply P and Q in any known

ratio but in the same phase. Write P= pcos wot, Q = qgcos wot, so that

p'=q'=0. Read a., a

1 as amplitudes

g s amplitudes of inphase and a'l, a'2
of quadrature components of x and y. Repeat with a different ratio Q/P,
distinguishing the amplitudes thus obtained by a bar.

Substitute each set of a's in turn into the second and fourth of -

Equations [14] , in which p'= q' = 0. The resulting equations can be
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written:

wa.c, +wacC

(kl-mwz)a'+(k “m. @ ) a

o1l o 212 10 1 12 12 0 2
a a = (k, - m z)g' k., -m, 2);,

©o81%1* 9o%2%12 T 1 T M% 9t W2 T ™% 1 %
C..+ a,c,= (k,,-m wz) ! (k-mwz)a'

“o21%21% 9%%2 7 W2 TMa% 8 W T MY 7 %y
w a.c +wgc=(k -m w2)§'+(k —mwz)g'
o121 o2 2 12 12 o 1 2 2 0 2

These two pairs of equations are easily solved for cl, 012' and cz, 021.

IV, THREE-DIMENSIONAL VIBRATIONS
Let x, y, z denote the three displacement variables for example v, ¥
£ motion of a rudder (see Reference 1). Then linear equations of motion

can be written as follows:

.0 o0 LK ] L] L] 2 :
m ¥+ kx+m ¥+ k,yem ek zrckec V4o, P(t) [154]

v+m, %+ k,.Z +C

mypX * KX+ myy + Kk 23 23

DA S S 15b
2 g1% + ¥ + g% = QM) [158)

m, X + leX +m, ¥+ k23y +mo¥ 4 k3z +Cy X +Cao¥ +C 2 =R(t) [15¢

Here P, Q, and R are generalized external forces so defined that the rate at

which they do work on the system is always Px+ Qy + RZz. The m's are of
the nature of inertial constants and the k's of elastic constants.
Then there may be, as in Equations [15a,b,c] , nine linear damping
' . C,,C.,.C.,,C, ., C__, t Cone i
constants cl c2 3 12 13 21 23 031 32 The six cross
constants 012’ etc., will be limited in relative size, as in the two-

dimensional case, since the damping necessarily tends to decrease the total

18



energy T + V; they are likely to be relatively small and may be negligible,
but this cannot be assumed to be true in general because the magnitudes of
all nine constants will vary with the choice of the variables to be called x,
Y, Z.

The situation will be analogous in general to that for two dimensions.
If P= Q =R =0 and all ¢'s are zero, there will be solutions of Equations
[1 Sa,b,c] representing three modes of undamped free vibration. If any c's
do not vanish, these modes become three modes of damped free oscillation;
or, if the c¢'s are sufficiently large, one or more modes may be replaced by
two modes of exponential decrease without oscillation, such as were
represented by formulas in the one-dimensional case.

In the oscillatory case, on the other hand, there will be three damping
constants f . Hos fhg- In any one mode of damped oscillation, the three
variables x, y, and z may be assumed to be proportional to e_'“'lt cos

(w.t + €), in another mode to e_/J'Zt cos (wzt +€), and in the third to e_/‘3t

1
cos ((.o3t + €), the phase angle € being different in general for x, y and z

and different in the three modes.

, w., w, will not be quite the same as in the

The frequency factors @, 2 3

undamped vibrations, but the difference will be only of the second order if
the damping is relatively small.

A more detailed discussion of these various cases follows:
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1. UNDAMPED FREE VIBRATIONS

If P=- Q=R =0and all the ¢c's are zero, a solution of Equations

[15a,b,c] is
X = alcoswt, y = a2 coswt, and z = ascoswt, al, az, and a3 being real
numbers; from Equations [1 Sa,b,c] :
(k -mwz)a+(k -m wz)a +(k.,-m wz)a =0
1 1 1 12 12 2 13 13 3
k., -m wz)a+(k —mwz)a+(k -m wz)a =0
12 12 1 2 2 2 23 23 3
k., -m wz)a + (k,,-m wz)a+(k -mwz)a =0
13 13 1 23 23 2 3 3 3

Equating the determinant of a., a,, a

1 2 3 in these equations to zero gives the

equation:

2 2 2
(kl - mw )(k2 - M, )(k3 - m)aw )

2 2 2
*2lkyy - my e )k g = my ek, - myg07)

2 2
2 2 2 2
m.w )k m, 40 ) - (k2 - my )(k13 =m0 )

'(kl' 1 23

2

- (kg - m3w2)(k12 -my ) =0 [16]

2
This is a cubic equation in w whose three roots furnish the frequencies for
three modes of undamped free vibration. Any two of the original equations

can be solved for the ratios of a8, and a, to each other in any one of

3
the three modes (see, for example, Appendix C of Reference 1).
2. DAMPED FREE VIBRATIONS

Assume P = Q = R = 0 and write



where a1 , a2 , a3 and A may all be complex numbers. Substitution in

Equations [15a,b,c] then gives:
2 k \ 2 )
A +cl)\)a1+(12+m12 +Cyg ap

(ky + my

2
) N cl3)\)a3 =

[
o

tkyg* Mg

2 2
(g12+ m, N +021)\)a1+ (k2+m2)\ +C‘z)\)az

2
+(k23+ mz3)\ +cz3)\)a3 0

k.. +m _ A2+c . (k +m23)\2+c32>\)a2

137 ™13 31M)a

1 23

2 \ -
(k3+m3)\ +C3)a3 0

The determinant of al, a2, a3 in these three equations set equal to zero

gives :

2 2
(kl+ ml)\z +cl>\)(k2+ mzk +cz)\)(k3+ m3)\ +03)\)

2 2 2
tlhygrm AT re  Mlkyat mpa AT vy M)k g my g AT 4y )

2

2 2
tlhypt my AT vy Mlkya# mya AT wogy Ak g+ mya X" wcya))

2 2 2
-k e m AT eo Mk, my AT we M)yt my AT vog,N)

2 2 2
- (k2 +m2)\ +cz)\)(k13+ m13)\ +013)\)(k13+ m13)\ + 031)\)

2 2+c

2 -
- =0
(k3 +m3)\ +03>\)(k12 + mlz)\ +c12>\)(k12 + mlz)\ 21 \)

[17]
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This is an equation of the sixth degree in A\ . It may have real roots
if the c's are large enough, perhaps as many as six real roots. On the
other hand, analogy with the two-dimensional case suggests that if the c's
are not too large, there will be six complex roots in three pairs: Ky + iwl '
—,uz + iwz, -,u.3 tiw3.,

Two equations for the determination of W) Wy, Wg and Peyrfgr b g
analogous to Equations [l la,b] in two dimensions, can be obtained by sub-
stituting\ = - p + iw and separating real and imaginary parts. In the three-
dimensional case, however, these equations are voluminous and the chance
of their ever being put to practical use seems to be very small, hence they
will not be written out here in full.

For practical use when the c's and hence also the u 's are small,
abbreviated approximate equations can be obtained by omitting all terms of
second or higher order, that is, all terms containing a power of u higher
than the first or both x and one of the c¢'s or the product of two ¢'s. This
rule of approximation justifies replacing )\2 in Equation [17] by —wz -2iwp
and also A by iw. Furthermore, all products of c terms may be omitted. The

first of the six products in Equation [1 7] , for example, is to be replaced by

2 . . 2 .
(kl -mw - leml oL+ 1<.ucl)(k2 M, 21c.om2 U+ 1oocz)

)

(k3 -m wz - Ziwm3 M+ iwc

3 3

and then expanded as
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(k, - mlwz)(kz - mzwz)(k3 - m3w2)

m wz)

, 2
+iw (—2ml 7 4-01)(k2 m,w )(k3 3
tiw (-2m, pec )k, - mw2)(k, - mw?)
2 HTE T 3~ M3
+iw (-2m +c )k, -m wz)(k -m Ouz)
3 #7530 1 2 2
It is easily seen that the real part of Equation [17] as thus reduced is
the same as Equation [16] for undamped vibration. Hence the frequencies
of oscillation in the three damped modes are approximated here by the -

frequencies of undamped vibration and may be calculated from Equation [1 6] .

To shorten the notation, write now

_ 2 .
G—k-mm,Guz—k2 m2<;.>,G3-k3 m3w

Then it will be found that the imaginary part of Equation [1 7] divided by iw

can be written in its approximated form thus.
-2 [m(GG-G 2) e m(G.G. -G.. Y m.(G.G. -G..9
Tl R A 23 2173 13 3192 12

+2m. G..G..-G.G..)+ 2m., (G..G.., -G,.G,.,)

12€13%23 ~ G3C1, 13 (G12C813 7 GG
+2m,3(G) )G - G1Gy) | +0) (G,Gy - 3+ c,(G\Gg - G132)
+c5(G )G Glzz)"(clz Gy (G13G 5 = G3Gpp) + (o5 + c5y)
(G15CGp3 = GyG1g) * (g3 * 035)(G ;G153 G Gag) = O [1g]
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2
After inserting in the G's the proper value of w~ for any one of the
damped modes, this equation is easily solved for an approximate value of

the damping constant u for that mode.

3. HARMONIC FORCED VIBRATIONS
Assume
= ' gi t, = t ''si
P pc03w0t+ P smm0 Q = gcos wo +qg smwot
R=rcosw t+ r'sinwt
o o
where p, p', q, @', r, r' are any six real amplitudes and w5 is any positive

real number. For the resulting steady vibration write

1

X za,Cosw t +a
o 2

i t, = t
1 smwo Y az COs (.OO +a

sinw t
(o]

zZ=-a,coswt+a
o 3

inw t
3 smo

a....a3

being six real numbers.

In any particular motion, by a proper choice of the origin for t, any
chosen one of the six variables P, Q, R, x, v, z can be made to vibrate in
proportion to cos wot, or to sin wot. Thus any one of the twelve amplitudes

p,.p ....a,, a!

3 3 can be assumed to be zero without altering the motion

that is represented.
Substitution in Equations [15a,b, c] and separation of sine and cosine

terms gives six equations. To shorten the notation, write:
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Then the six equations read:

F12)* €193 *F1p®p * 012972 *F13%3 * ©13%%3 ° P [19a]
—C gd) + F1a] = ©pp0,3, +Fppay = ©pgwag + Fraay=pt [190)
Plzal + chwoa'l +F2a2 + czmoa'2 + F23a3 + czswoaé =q [190]
€191 T F12317 Cp922 * Fpdp T Cp3¥R3 * Fpgdz = @ [194]
F139) ¥ C31903] * Fpgdp " O3p9023 % Falg ¥ O38533 = ¢ [19€]

-cg @3 * 11‘13a1 - Cgw a, + Fyoal - Cow ay + Fjajy =r [19f]

. « . o I''can be

In general any six of the twelve amplitudes a1

assigned arbitrarily and the equations then fix the values of the other six.
4, EXPERIMENTAL DETERMINATION OF
15 25 €30 €125 ©130 210 €230 310 C32

The methods described for a two~-dimensional system can be extended
to three dimensions. Determination of the nine damping constants from
general bumping observations, however, will not be discussed here because .
it appears to involve very complicated observations and calculations.

A feasible alternative might be to lock each of the three coordinates in

turn so as to hold it at zero. The given three-dimensional system could thus

be studied as a combination of three two-dimensional systems and the

methods already described for such systems would be available.

Of three-dimensional motions, only forced harmonic motions will be
con'sidered here and only the simplest use of these. In such motions, x, y,
and z are equal respectively to -wozx, —wozy, and -wozz so that either x, vy,
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or z may be measured.
Apply P, Q, R in any convenient ratio but all in the same phase.

Assume p' = q'= r'= 0. Read the resulting three inphase amplitudes a., a

ll 2[

a!, a!, the latter being

a. and the three quadrature amplitudes a 9t 5

3 1’
relatively small. Repeat with different ratios of P, Q, R, distinguishing
the a's thus obtained by a bar, and then with a third set of ratios, marking
the a's with a double bar. A possible choice would be to use only P the
first time, only Q the second time, and only R the third time.

Substitution of the first set of observed a's in Equations [19b,d,f] ,
then the second set of a's, and finally the third set gives three groups of

three equations each for the determination of the nine c¢'s. Since in all

cases p'= g'= r'= 0, the equations may be slightly rearranged to read as

follows:
' __1 | [ ]
a)Cy* 35019+ 33%3° o (Fa) + Frpay+ Fraas) [20]
- - __l Iy 1 )
3181 % 85C5 " 83%;3 o (Fja) * Fyyay + F jaz)
. = = -1 ' =, =,
a1C1 * 35C 9% 33C 3 F o (Fja) + Fpyay + Figaz)
a.c a,c, +a.c =—1—(F a' +F.a' +F_.a')
1917 %2% " %3%3 T V12717 2% T Fas%s
a.c a,.c.+ a.c '—l(F a' +F.a' +F_.a')
19217 %27 3%3 "o Y12%1 * 2%z T T23%
3.C. + a.C. +a.c, T—— (F..a +F.a +F. a')
1917 %2% " %5%3 70 F12%1 T 2%z T 2%
a,c,. +a,.c +ac'—l—(F a' + F..a' +F.a')
1931 T 32%327 ¥3%3 T, W13%1 t T3%p Y303



+ F3a3

Assuming that the six constants Fl' PZ' F., P12' F13, F23 have been

calculated from the constants of the system and the chosen value of wo’ the

3

c, ., the middle

€127 ©13

first thtee of Equations [2 O] can be solved for Cye

three for cz, c21, 023, and the last three for c3, 031, 032 .

The computation can be shortened by observing differently. Using

chosen p and q, adjustr (p', q', r' being all zero) so that a, = 0. Read a

'3 Repeat with a different pair of values of p and g, making
a a —2, gll’ al, 5'3. Then the first two of Equations [20] are

easily solved for ¢, and ¢ the fourth and fifth for ¢, and Cpy- and the

1 12° 2 1

seventh and eighth for 031 and 032 .

Repeat using two pairs of values of p and r and adjusting q each time

,a',a', a'anda., a ,a'l,a',a'. Then

so thata, = a,. = 0. Readal,a3 1 o0 @3 1 3 2 3

2 2

the same three pairs out of Equations [20] yield c and 013, €51 and 023,

and 03 and c31.

All of the c¢'s have thus been obtained, with duplicate values of cl,

c,., and c Other combinations of p, g, r may be used in a similar way.

21 31°
It will be noted that neither procedure requires actual measurements

of P, Q, or R.
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V. VARIABLE DAMPING
In practice there seems to be a tendency for high-frequency vibrations
to die out more rapidly than low-frequency vibrations. Such differences may
result in many ways from the characteristics of the systems. It is worth
noting, however, that
(1) A simple increase of scale is likely to lower the damping rate.
(2) The damping rate of a high-frequency mode of vibration can be
less than that of a low-frequency mode of the same system.
1. CHANGE OF SCALE
As a simple example, consider a mass on a spring subject to linear
damping, its equation of motion being
m¥X + cx +kx =0
In a damped vibration
X = Ae_"‘Lt sin wt
where u=c/(2m) and W= (k/m) -1 2
Now let all linear dimensions be changed in any ratio A without change of
material. Then* m cc )\3, k cc )\2. What happens to ¢? At given X,
water resistance will tend to vary in proportion to the surface wetted; hence
c cc >\2 . For simplicity, suppose u 2 may be dropped in comparison with

k/m. Then, approximately,

* Ina change%of scale including change of both cross section and length of

, 3
spring, k oc %\ =\ . Foramassona spring, whenalldimensions change, moc A",
koc XA, weoc %\ If onlythe length of the spring does not change, m cc A 3

koc)\z,woc A
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woee 1/ 4)\ ; arcc 1/ ;.’.,uocwz

Or, if c does not change when A = 1, then approximately when gy is small

wa 1/ V_)\_; o 1/)\3; . .ucc W

In both casesu and w both increase if X < 1 and decrease if A\ > 1, thus
varying "in the same direction."
2. CONTRARY MODES FOR A GIVEN SYSTEM

Since higher frequency tends to mean hi‘gher velocities at a given
amplitude, it might reasonably be guessed that the damping will be greater
in modes of higher frequency. This is not necessarily the case, however,
because the components of displacement are in different ratios in different
modes and some components may be damped more heavily than others.

As a simple example, suppose

y +k X+C9:0

mx+klx+k12y+cx=0 m2y+k 12 2

1 1 2

where kz/mz>>k1/m1 but cz/m2<<cl/ml.

If k12 = 0 and cl =Cy= 0, then in one mode, x vibrates with y = 0; in the

other, y vibrates at much higher frequency with x = 0. If k12 = 0 but cl

and c, are merely small, then the two frequencies are little altered by c

and cz, and the damping will be much less for the second or y vibration

1

than for the first or x vibration.
Thus higher frequency is accompanied here by lower damping. This

conclusion will not be altered if k., is merely kept small but not zero, so

12
that y vibrates a little in the first mode and x vibrates a little in the second

mode.
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Table 1

Summary of Results

One Dimensional Damped Vibrations

mx

+ ¢ + kx = P(¢)

CASE

SOLUTIONS

REMARKS

EXPERIMENTAL DETERMINATION OF DAMPING

(1) DAMPED FREE
VIBRATIONS

PO

When

-ut
(:z < 4mk (less than critical damping), x = e L4 {acoswt + bsin wt)

,wz=ﬁk-i-mzcz

where p = >

% » 4mk (critical damping), x = (a + bt)e Pt where | = -
bt
e "z

“p,t
¢ > 4mk (greater than critical damping), x = ae "1 t+ b

where --l-(c*“ cz-4mk)
L3 2m

a, b arbitrary

(1) Two independent modes of damped free
vibration can occur. Their amplitudes
can be chosen to make x and k agree
with any assumed initial values.

(2) The free vibrations are oscillatory pro-
vided the damping constant ¢ is not too
large.

Small ¢ has negligible effect on

the oscillatory frequency.

(1) Obtain y from curve of x v t ( when y £ 0)

Then ¢ = 2mau.

{2) HARMONIC FORCED
VIBRATIONS

P(t) = pcosw,t

xe ncolwot + bsinw,t

2 2 2, 2
pl[(‘k-ﬂi\vo)+cwo]
:_k-mwo

b ew,

P Wy arbitrary

(1) c introduces a component of x in time

quadrature relative to P. When

w, -J , a = 0 and the vibration is in
m
time quadrature only relative to P.

for given p occurs when

@ Ixl ..

2

2 [
2

.k
Yo

2m

{1) Observe ratio of quadrature and in phase components of x relative,

to the phase of P.

1 b
Th =5 (k- 2y 2,
en ¢ wo( mwo)a

TWO DIMENSIONAL BAMPED VIBRATIONS

1

mlzx+ klz

m %+ kx +m i+ kYt ekt ""12;' = P(t)

X+ m,y+ kzy+ cuk-f ey " Q(t)

CASE

SOLUTIONS

REMARKS

EXPERIMENTAL DETERMINATION OF DAMPING

(1} UNDAMPED FREE
VIBRATIONS
PeQ=0

ec, 0

€1 "% 2"

When x and y vibrate together in proportion to coswt (i.e. x,y & coswt

2 2
kyp - m,w k) - myw

"l

z - 2
kp - mpw kg - mp¥

Where the w's are determined from
28 2, .4
(kl - :-nlwz)(k2 < mzwz) - (klz - m,w )= (m‘m2 -m, w

2 2.
+mk - Zmlzklz)w + (klk2 klZ) =0

-(m, k, + mpk,

(1) Whenw = and either m, klZ =0

1

orm k
112

{ k.
y=0. Whenw s and either

k. th
R, then

= m k_ then x vibrates and
121

.0 x
1277 %" e

y vibrates and x = 0.

m =k
12

{2) When x and y vibrate together then in

general two independent modes of vi-

bration occur with y and x in fixed

ratio depending on the mode.

{a) 1f "122 - klkz. then one root of the
frequency equation is wz = 0.

o) I mym, = mlz2 then only one mode

of vibration is possible.

2
<
< kxkz and mlz mlmz,

2

2
c) If k
(c) 12
then one root for w” occurs at a
value less than the smaller of the
i k2
two quantities — and _— and a
m mz
second root for w? occurs at a value

greater than these quantities,

(2) DAMPED FREE
VIBRATIONS

P=Qs0

» »

xzae’,y=be™,

where )\ is determined from

z‘)\4 + '3)‘3 +:zxz tE At E,EO

a, b, \ non-zero constants real or complex (Anegative real or complex)
;i = f (m's, k's, c's) positive or zero (see equation 10)

For Acomplex (m—p # iw) pand w are positive and determined by

successive approximation from

4 2, 2 2 3 4
gw -le, -3e,ut6gu )W v gt -t v 0

2 2 2 3
€ - €W - (z;2 -4gw ) p+3ean -4gu =0
For small damping 2 More accurate solutions are
€ " v
PPy determined by successive
2
-2
¢ v approximation from the two

and w 18 determined from equations immediately above.

4 2
g‘w -;zw +¢°-0

In general

2
ml)‘ 4»kl +c1h T

z
LOPLIRESPIES)

xl<

2

(1) When mlz"‘lz"lz- 0 then x vi-

k

brates and y= 0, When m =k, -

"zl' 0 then y vibrates and x= 0.

{2) Since f-% is complex there 18 gener-
ally a phase difference between x and

y as functions of time.

(3) The general solution is the sum of four
real expressions representing four
independent damped oscillations whose
amplitudes can be chosen to agree with
any assumed initial (or other time)
values of x, X, y,'y.

(4) For small damping p 18 small and the

oscillation frequencies are the s

for the undamped case.

K1) Using transient excitation on initial deflection obtain AWy and
B2 Wy from decay curve of x and/or y vs t if one mode of
vibration dies out before the other; if two tape recorded modes
persist, filter the mi record to separate the modes.

2) Adjust frequency of vibration to be in resonance for either mode
Remove vibration and obtain MWy (1 =1 or 2) for that
mode from curve of x and/or y vs t.

3) Constrain system into configuration corresponding to one mode
then remove constraint and obtain ‘i'"i(i = 1 or 2) for that
mode from curve of x and/or y vs t.

NOTE 1:If €2 2ey 0, ¢ and c, can be calculated from ¥l and B2

Otherwise the observed values of [ and Hy furnish only two

y €

relations among the fo titi
ng ur quantities €y ':2' ch 21

NOTE 2: More general procedures for calculating from observations
values for each mode of the frequency w , the damping
constant # , the amplitude ratio r, and phase ¢ of y
relative to x, are given in the text.

(3) HARMONIC FORCED
VIBRATIONS
P s pcosw t+ p'sinw t

= ' ai
Q=qcosw t+ q sinw t

[, [
t+ a_sinw t, s a_cosw t+ a sinw t
x-alccu\vo 1 b Y 2 o 2 o

p.p.q. 9", al. a'l N az, a'z eight real numbers, four arbitrary, one

,a',a

Determination of amplitudes a.a.a,

can be zero. N a'z caused by

applied forces p, p', q, q' is made by solving

2 t 2 [
(ky -myw Ya) + eyweay + (kyy - MW )3, 4 €ppWedz TP
2, . i
- clwoal + (kl -mw )al - €Wyt “‘:z -myw ) )az =p
2 ) 2 .
(), - my,w D12+ ey woay + (ky - mpw IR, €Wed; T

2, i} 200 4o
+ (k=MW By - Ayt (k, - mw, Ja, *q

- w a
¢ o [+

21 1

For these equations the determinant of the coefficients a, n;, 2, a.'z is
2 2 2.

A [(kl - mw ik, - mgwo?) - fkyz - ¥ )]

2 )2
-w, (c:lcz - €126

(1

If there is no damping, then when v,
equals the value of w for either of the
frequencies of undamped vibration

A = 0 and the amplitude of the forced
»

nance occurs)

,c..,c__areall small A= 0
2’ 12" 21

4t two slightly modified frequencies

2y ¥ €y c

that differ also slightly from the fre-
quencies of damped free oscillation.

As A approaches either of these fre-
quencies at which A 2 0 while p, p', 4,
q' remain fixed, the amplitude of the {
forced vibration becomes large (i.e.

resonance occurs)

(1) Apply P = pcosw,t only (i.e. p' = J) and adjust amplitude and

vibration becomes large (i.e. reso- (2

(3) Apply P = pcosw,t only (i.e. p' = 0). Adjust Q {as discussed in
a
' v 1
text) so that a) =a; = 0., Read allaz. Then €2 " -l_zcl

(4) Similarly, apply Q = qcos Wt only (1.e. q' = 0). Adjust P so

phase of Q (as discussed in text) so that a_, = "z =0 (i.e. y = 0).

2

1 [
k1 %1 2 2
With wy > or < —’n—l_ observe = Then < =woal (kl -mw )

Similarly, apply Q = qcosw t only (1.e. q' = 0) and make x = 0 by

adjusting p and p' so that a

'
ky ay "‘Z 2
With wg > or< ) observe "_2' Then <, :w_c'a_z (kz - myw . %)

zn;:O.

a.

that a! = a) s 0. 2 -
a, ra; s 0. Read "1. Thencz] z -

1
5) Apply P = pcos wotonly (1.e. p'=q' = 0). Read 2,3, a; a)
" 2.
; . Q. 37
Repeat with different ratio Y and read corresponding
- — v
{barred) values ‘l' az, al. -z. Substitute each set of a's in

turn in second and fourth of the set of four equations given in
"'solution" in whicn p' = q' = 0. Solve resulting two pairs of

equations for € CIZ and 5 :21
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Table 1 — Summary of Results (Continued)

Three Dimensional Damped Vibrations

My + ky@ + mypy + koY + Mya2 + k132 + C1@ + CppY + C132
M, T + byt + Moy + koy + MygZ + kg2 + €% + CoY + C32

Myl + Kyg® + Mozl + kgl + m32 + kyz + c3% + CpY + C32

REMARKS

P(¢)
- Q)
- B()

EXPERIMENTAL DETERMINATION OF DAMPING

SOLUTIONS

CASE
(1) UNDAMPED FREE
VIBRATIONS
PeQ-R=0
1T 1 " 13
-0

Fc31 73" %32

x= .'l coswt ys= ‘2 coswt z= ‘3 coswt a,, .2’ 13 real
a

3
— or their inverses are found by solving

ﬂ.l z
'x*a

x
Ratios — s —,
y 2, 3

L1

22
.-z
a

in any one of the three modes

*, - mpwha, + (ky, - mlzwz)az oy - m, wha, " 0
(klz - mlzwz)al+ (kz - mzwz)aZ + (k23 - m23w2)13 =0
(ky3 - ™y
where the w's for these modes are determined from the cubic equation

2 2 . 2 =0
w );l+ (kyy - m, W Ja, + (ky - mw )a,

in w?

2 2
& * (kg - W)y - mywd)(ky - myw’) + Gy, - mp,wh)
2
2 2 2
(k3= my5 g3 ) - (k= my WO, 5 - my W)

2 -
W )():23 m, A )
- (kg = mpwiiky 5 - mygwh) - (g - m W)y, - mywE)

=0

(1) When x, y and z vibrate together then

in general three independent modes of
vibration occur with x:y:z in fixed ratio

to each other depending upon the mode.

{2) DAMPED FREE
VIBRATION

P=QsR=0

x = a.le)" y= ;Zekt z= aae)“ a. lz, a A generally complex

Ratios x:y:z are found by solving in any one of the three damped modes
(kl+ ml)\z + cl)\)al + (klz + mlz)\2 + clz)\)nz+
(k13+ mn)\z + cl}”"ii z0
(klz+ mlzkz + cu)\)al + (k2 + mzkz + cz)\)a.z +
(kZS + m23}\2 + c23)\)a’3 =0
O Rt egphe,+
(k3+ m])\z+ c3Ma3 =0
Where the A's for these modes are determined from the sixth degree
equation in A
()uzl +m, A2+ <:1)\)(k2 + m, 2+ :2)\)(!(3 +my P c3 N
+ e+ my, Pt e Mlkyyt magAB4 cpn Nl g+ m A ey )
+ mls)\z+ cn)\)

13

0

LY "'12"2+ M5t m23x2+ ey Mk
- (ky+ my Z2 e MMk, S+ m“kzi» cua MK, + mu?\z* €3N
-t mz)‘z+ e Nk 4+ mla)‘z+ TP m)s)‘z+ TR
- (k3+ m3)\z+ c3>\)(klz+ mlz).z + clz)\)(klz+ mlz;\z+ CZ])\) =0

2 found from the cubic equation in '2

For each mode or value of w
for undamped free vibrations (an approximation for small damping) a

corresponding u is obtained from

3 L 2 LG 2 LG 2
z“[mx(czc’a Gpyi)+ m,y(G)Gy - G370+ my(G) G, - Gy %)

N R -
2m (G 30,5 - G3Gy,) + 2m 46,65 - GGy 5)
+2m, (G .65 - Gles)]
+ ¢ (GG, -G, 2 +¢c (GG, -G % +¢c(GG,-G 2
14623 7 G253 2119 - 13 391%2 - Gy,
+ G.. G - -
(612 €300 138,5 - G38)p) * (ey3+ €50 ,0p5 - GpG)4)
tlegyt e3pHG 0 5 - G G0 0 0
Where
= - 2 = . 2 - 2
G] kl mlw N GZ 1|:2 mzw N G3 3 k3 m3w
G =k -m wz, G =k -m wz G =k _-m wz
12 127 ™12 137 513 " ™Y Ga3 P 3 T My

(1)

(2)

The sixth degree equation in \ may
have some or all roots if the c's are
large enough. If the c's are not too
large there will be six complex roots
-“k* iwk, k=1,2,3.

For small c's and therefore small u's
the frequencies of oscillation in the
three damped modes are approximated
by the frequencies of undamped vi-

brations obtained from the cubic

equation in w2,

(1) Methods of measurement similar to those for the two-
dimensional case; elaborate procedure necessary to isolate

the nine c's in turn.

(3} HARMONIC FORCED
VIBRATIONS

Pz pcosw t+ p'sinwgt

Q = qcos wut +q' linwot

R = rcoswgt+ r'sinw t

= v = '
x = 'l colw°t+ 11 lmwot, y= -zcolw°t+ a, linwot

z - I3COIW°C + a sinw t

'
3
p.P'7q. q', 1, 1, Il,l;, a, aé, ay a'3 twelve real numbers, six

arhitrary, one can be zerc. In general, any six of these numbers

can be assigned arbitrarily and the remaining six are found by

solving
' ' '
Flal+ c1w°n1+ Flz‘z + clzwoaz + F1313 + <:13wna3 =p
Al 1 v
1%t Fi2p - p%e2 t Fra?z T S13Vota t Fraat P

1 1] LI
Fi2,+ € Woldy + anz + CoWody + F23:3 +ca3%ya3 % a

- 1 - 1 - 1
C12%e1t Fia®1 = %02 + Fa?z - S3%o%s + Fppd3 = @'

F i) Al t
13817 S Vo1t Faaa * C3%o?p t Fata t S3Wedy t t

B v v . .
c:uwoa1 + F31‘l C3a%odpt 1-‘2333 c}wl’a.3 + F333 r!

where

F o=k, -mw 2 F o=k, - m,w F,*k 2
15k MY, P Tl A 3" K3 - MV,

F ok - 2 - - 2z - - 2
127512 "M% Fryt Ryt mpg¥,t Fyytkyy - myywg

(1) Apply P, Q, R in any ratio but in same phase. Assume p' = q'
Sr'x0. Reada,a, a, A'l, n;, "3‘ Repeat with different
ratios of P, Q, R, distinguishing a's thus cbtained by a bar, and
then with a third set of ratios, making the a's with a double bar.
(see suggestions for choosing P, Q, R in text). Substitute sach
set of a's in turn in second, fourth and sixth equations of the

set of six equations given in "solution' in which p' 2 q' « r' « 0,

Solve resulting three groups of three equations for the nine

c's (a rearrangement of the nine equations convenient for

computation, is given in text (Equation (20)). With this rearrange-
ment each of the three groups of three equations is solved
separately, the first group yielding €)r €330 €30 the second
¥ S Saz7)
(2) Computation is further shortened by Sbserving differently.

group yielding €50 €30 €23 and the last group ¢

=0,
3

Repeat with different pair of values of

Choose p and q and adjust r (p' = q' ® r' z 0) s0 that a

Al Al Al
Read ‘l' lz. ‘l' I.z, 13.

-— —_— - - -t
and q makin, =0, .
P q '] 13 Read ll, az. ‘l' ;z. .3 Solve first two

of rearranged equations (Equation (20) in text) for cl and °1z

the fourth and fifth for c2 and ¢__ and the seventh and eighth for

21

c., and ¢ Repeat choosing two pairs of values of p and r and

31 32°

=2, = 0. Then the same three

adjusting q each time so that a, 2

21 and c”, and c,

+ All c's thus obtained are duplicate values of € e

pairs out of the rearranged equations yield ¢

and ¢

31 21’

C;l'

NOTE: Neither (1) nor (2) require actual measurements of P, Q or R.
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