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NOTATION

Distance from neutral axis to fiber being considered

Horsepower

Moment of inertia about neutral axis

Local bending moment

Revolutions per minute

Local direct bending stress

Direct stress

Shear stress

RPM
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ABSTRACT

Failures in service of wide bladed marine propellers

indicate that the design stage stress analysis may have

engen ered a false sense of security in the propeller's

strength. The Taylor method of stress analysis is

accordingly examined and compared with a newly developed

shell theory of stress analysis. The results of certain

photoelastic experimental work are also reported as

verifying that actual stress distributions in propellers

are different from those predicted by the Taylor Method.

INTRODUCTION

Naval architects engaged in marine propeller design have long

recognized the inadequacies of the simple cantilever beam stress analysis

in its application to certain propeller blades. These shortcomings have

been shown to exist by reason of known failures in service of propellers

that presumably had been particularly designed for the conditions under

which they were operating. During efforts to discover the reason for

these failures, suspicion has fallen on the original stress analysis and

on the justification for utilizing simple beam theory in this stress

analysis.

From study of damaged propellers it has been evident that metallur-

gical deficiencies and collisons with underwater obstructions usually have

not caused the failures. Rather, it has appeared that failure was due to

simple overloading in the immediate areas of failure. Since the beam

theory stress analysis had indicated there was adequacy of strength it

could only be concluded that the actual stress level at time of failure

had been higher than predicted.

Further study indicates that failure of propellers designed by beam

theory has been more frequent in the case of wide bladed propellers than

for narrow blades. These wide bladed propellers may incorporate consid-

erable variation in pitch and employ cross sections that are very thin.
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Consequently, they are more nearly like thin shell type structures. For

this reason shell type analyses of the stresses caused by hydrodynamic

loading would seem to be more in keeping with the geometry of the structure.

The desirability of such a shell type analysis has been world-widely

recognized by naval architects; however, a search of the literature will

indicate that efforts at the development of a truly rigorous, dependable

shell analysis applicable to the marine propeller have been singularly few

and generally unsuccessful. See references and Appendix I.

This lack of success has not been due to a misunderstanding of the

problem, but more because of the mathematical complexity of the calculations

associated with the shell analysis. The availability of modern high speed

computing machines helps to remove much :of the onerousness of the problem,

so the real need has reduced to that of development of a suitable and

reliable shell theory applicable to marine propellers. The David Taylor

Model Basin in cooperation with the Office of Naval Research has therefore

initiated an experimental and theoretical program aimed at the development

of just such a shell type analysis. Accordingly, this two part report

attempts to present information which will indicate:

1. The various shortcomings of the simple beam theory.

2. The more rigorous approach of the proposed shell analysis being
developed.

3. The actual distribution of stresses in propeller blades as
compared with simple beams.

4. The comparison between stresses predicted by applied shell
theory and those actually measured by use of electrical strain
gages.

5. The utilization of applied shell theory in actual design work
and comparison with results predicted from beam theory.

BEAM THEORY

Practical application of elementary, cantilever beam theory in the

design of marine propellers undoubtedly was utilized in the early 1800's

1-1- -a~~m



by such competent engineers of that period as John Ericsson; however, in

modern times, D. W. Taylor is credited with having formally published one

of the first papers on such an applicationI . The fact that in 130 years

there have been so many successful propellers and comparatively so few

failures emphasizes the general validity of this application. Indeed,

for narrow bladed propellers of low pitch, it id quite reasonable to treat

the structure as a simple, single cantilever beam. However, when the blades

become wide and thin, and radially varying pitch is introduced, then the

validity of such an application is open to question.

It is to be recognized that in essence Taylor's application of the

beam theory reduces the complex effects of hydrodynamic loading on the

blades to the more simplified effect of a distributed resultant loading

along a single cantilever beam of varying cross-section. Thereafter, the

elementary, basic formula

s = + Mc/I

is used to predict the magnitude of the local maximum bending stresses

that will occur for a given loading. Inherently, this approach neglects

two fundamental facts that become critically important as the geometry of

the propeller changes.

First, Taylor's distributed resultant loading is expressed as bending

moments acting perpendicular and parallel to the blade face at the center

point of each radial section. See Figure 1. As pointed out in Reference 2,

such a simplification of the hydrodynamic loading neglects localized

reactions to possible peaked pressure loadings. These may arise because

of the hydrodynamic pressure distribution across the radial sections of the

blades. As shown in Figure 2, these pressure peaks can be quite significant

at some points over certain section shapes. Hence, the geometry of the

radial section will exercise a governing influence as to whether or not such

peaked loadings arise. Thus, it is quite reasonable to expect that these

1 References are listed on page 11
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peaks in loading may be cause for high concentrations of stress in

propeller blades that are relatively very thin as compared with their

corresponding chord lengths. It is undoubtedly the presence of these

stress concentrations due to hydrodynamic pressure peaks that have been
a contributing cause of service failure of some wide, thin bladed pro-
pellers. During the design of these propellers, utilization of a modified
Taylor beam analysis had been cause for not considering the effect of these

peak loadings.

Further, consideration of Reference 1 indicates that the Taylor

analysis considers both compressive and tensile bending stresses as well
as the normal stresses caused by centrifugal force. However, transverse
shear and torsional shear stresses caused by the pressure distribution are
not considered. This may not be a shortcoming of any significance, provided

this analysis is used for the narrow bladed, parabolic sectioned propellers

such as Taylor employed in 1910. But, for modern, wide bladed, thin, airfoil

sectioned propellers having peaked pressure loadings, one cannot neglect the

definite existence of these shear loadings. It is possible that the presence

of combined shear, direct, and bending stresses in thin bladed propellers can
give rise to local maximum principal stresses and maximum shear stresses
that may be twice as large as the individual direct and shear stresses.
This point is best illustrated by the usual Mohr's circle diagram shown in
Figure 3. It is probably the presence of these principal stresses that has
also contributed to the cause of service failures of some wide, thin
bladed propellers. Perhaps this has been the main source of the excessive

stress levels that were not revealed by the conventional Taylor method of

stress analysis.

Now, in recent experimental work at the Model Basin it has been
further established that the distribution of stresses in propeller blades
under hydrodynamic loading is not the same as would occur in a simple single
cantilever beam. This added discrepancy is discussed more fully in another

section of this report.

In summation, the fact that (1) the Taylor method does not consider

the presence of certain localized concentrations of loading, (2) that it

I
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considers only direct stresses and not combined principal stresses, and

(3) that it ignores a stress distribution significantly different from that

of a single cantilever beam is considered to be its most unacceptable

shortcoming. Frequently, it has been pointed out by others, as Rosingh
3'4

and Hancock5 , that Taylor's consideration of the bending stresses in blade

sections cut by a cylinder are different from those occuring in plane

sections as is the usual case when using elementary beam theory. This

approximation of Taylor's for reasons of simplification is considered to

be no worse than his assumption that the propeller acts as a single

cantilever beam. As has been stated before, Taylor's method works well

with the type of propellers he utilized in 1910; rather, it is encumbent

upon the modern naval architect to recognize that Taylor was not concerned

with thin, wide bladed propellers. Thus, some shortcomings of his method may

arise from improper application rather than from lack of rigorousness on

Taylor's part. Significantly, recent work of both an analytical and exper-

imental nature done by Cohen and the Shipbuilding Research Association of

Japan7 has shown that Taylor's method can still be recommended for the

practical strength calculations of narrow bladed propellers.

SHELL THEORY

The desirability of applying shell theory to the wide marine propeller

blade has been well recognized, but various mathematical difficulties have6
been an everpresent impediment. Cohen's very notable recent effort to

develop a rigorous shell analysis required a number of assumptions and

resulting approximations in order to achieve mathematical tractability.

As a consequence, Cohen was able to conclude only that his method and
8

Taylor's were equivalent. More recently, Conolly also has been faced by

similar mathematical difficulty in an application of shell theory to

propeller blades* Thus, it is to be realized that there is no easy road

to success in this application of shell theory.

Nevertheless, the need for a workable method of analyzing stresses

in wide bladed propellers by shell theory remains. Thus, under Contract
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Number Nonr-3072 (00) (x) with the Model Basin, the General Applied Science

Laboratories, Inc., of Westbury, L.I., New York, has developed such an
9analysis . This analysis is programmed for solution on an electronw

computer which greatly reduces the time required in its utilization.

The analysis has been specifically developed to permit its use in

practical propeller design problems. The effects on blade geometry caused

by changes in camber or pitch (as a function of radial position along the

blade) are considered. Additionally, not only is section shape an input

into the program, but also the particular pressure loading on that section.

In this way, the presence of possible pressure peaks is not ignored as in

the Taylor method.

In the development of this analysis, use has been made of basic dis-

tortion energy theory and accordingly the presence of principal stresses

is duly considered. Regarding the distribution of stresses, it does

remain necessary to check this new shell analysis against experimental

results for various possible loading conditions. The second part of this

report, to be issued subsequently, will treat this consideration in more

detail.

The fact that this new analysis has been developed around usage of

electronic computers has not lessened the basic mathematical difficulties

that have plagued others. During development of this analysis, which

employs tensor analysis techniques, it was found necessary to increase

significantly the number of degrees of freedom in order to improve on the

accuracy of the solution. Thus the pioneer efforts of Cohen and Conolly

to overcome mathematical difficulties are vindicated by this latest work.

Part II of this report subsequently will establish a comparison with the

Taylor method so that a conclusion may be reached as to the worth of this

new analysis.

STRESS DISTRIBUTION

OBJECTIVES

In anticipation of the eventual need to experimentally prove the

validity of the General Applied Science Laboratories' (hereafter referred
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to as G.A.S.L.) shell theory, the Model Basin has initiated an experimental

program having these objectives:

1. To determine the general nature of the stress distribution in
typical modern wide bladed propellers.

2. To establish the location of highly stressed areas in some of
these typical modern propellers so as to permit intelligent
positioning of electrical strain gages.

3. To compare experimentally determined stresses with stresses
predicted by the G.A.S.L. shell theory and the Taylor method.

At this time, only the first two objectives have been considered; later,

in Part II, the results of consideration of the third objective will be

reported.

EXPERIMENTAL METHOD

Having considered the experimental stress measurement work done earlier

by Rosingh , Biezeno 10 , Romsom 1, the Shipbuilding Research Association of

Japan 7 , and Conolly , it was decided to utilize a photoelastic approach in

the initial determination of stress distributions in model propellers.

Generally, experimental work employing electrical strain gages submerged

in a water environment have been beset with electrical continuity problems.

Since the qualitative nature of changes in stress distribution was considered

to be of primary interest rather than quantitative numerical data, it

appeared that photoelastic methods would provide a ready answer to the

nature of stress distributions in propellers under hydrodynamic loading.

Using a plastic, bi-refringent material manufactured by the Tatnall

Measuring Systems Co., single 0.08 inch thick layers of plastic were molded

and attached to the blade contours of four model propellers. These pro-

pellers are shown in Figure 4. Some difficulties in achieving satisfactory

molded sheets were experienced at the start of the program; however, these

problems were solved eventually. The solutions to the various difficulties

are presented in Appendix II

The plastic coated propellers were placed in a water filled tank that

was fitted with a heavy glass viewing port. T-ie propellers were then

brought up very close to the viewing port where they were driven by a

"T~n~, ~*-ml*r*r^ yun*rrm~rr*na*sr~n~ ~Frrrrrrr -- -



35 HP propeller dynamometer. In this manner, the nearest possible simulation

to actual hydrodynamic loading was achieved.

While the propellers were turning in the otherwise still water,

polarized white light, stroboscopically set to flash at a frequency equal

to propeller RPM, was directed at the propellers. See Figure 5. The

reflected light from the propeller blades was then viewed through a polaroid

analyzing lens whose axis was at right angles to the axis of the lens achiev-

ing initial polarization of the white light. This arrangement cons'*tuted

a simple plane polariscope, and it incorporated means to permit the usual

rotation of the lens.

RESULTS

By controlling the propeller RPM it was feasible to achieve a variety

of thrust loadings, and as these loadings were changed an observer could

actually see definite lines of stress distribution in the plastic coatings.

These lines were recorded by use of color photography but are presented

herein as black and white photographs. See Figure 6.

Because of the manner in which the white light had to be projected onto

the propeller blade and then giewed, it was not possible to satisfy the

usual photoelastic requirement that the light pass at right angles through

the bi-refringent material. Additionally, as the propeller RPM was increased,

cavitation began to occur on the propeller blades. This condition, both on

the blades and in the wake of the propeller, iide viewing of the photo-

elastic patterns almost impossible.

It was not possible to control the thrust loading on the propeller

blades to the fine point where definite tints of passage, or distinct

changes in photoelastic fringe order, could be observed. In reality

therefore, what was photoelastically observed were lines of stress dis-

tribution, that is, colored bands representing constant difference of

principal stress. See Figure 7.

From a study of thq photographs taken, it is possible to intuitively

sense the meaning of these lines in terms of the stresses that result from

.rr~uuam~~ -- -- --~--



the known hydrodynamic loading. Realization of the significance of the

line orientation also follows from a knowledge of how certain propellers

have failed. For example, in Figure 8 will be seen the lines of stress

distribution for a model propeller which was tested to destruction as

shown in Figure 9. From the arrangement of the stress distribution lines

at the blade tips one would suspect that failure could probably occur as

it did.

More importantly, from the standpoint of whether or not the Taylor

method is properly applicable to wide bladed propellers, these photographs

of the actual stress distributions have indicated that the directions of

the stresses in propeller blades are not oriented as are the simple direct

stresses in a single cantilever beam. See Figures 10 and 11.

Regarding the objective of establishing the location of highly stressed

areas in typical modern propeller blades, it is repeated that no attempt was

made to determine quantitatively the magnitude of the stress levels in the

plastic coated blades. It was not possible to view the material at right

angles, and additionally the same blade was not always viewed at the same

rotary position. These difficulties plus that of attempting to synchronously

photograph the observed photoelastic condition during the period of the

stroboscopic flash all introduced considerable doubt as to the reliability

of any stress magnitudes that might be inferred. Also, determination of

stress levels in photoelastic studies requires a basic knowledge of the

fringe order change as a function of applied load. As stated earlier,

observance of distinct changes in fringe order was not possible.

Thus, from comparative study of the photographs taken of the pro-

peller blades, it is observed that increases in thrust had the effect of

causing an increased number of stress distribution lines to appear in the

propellers that were considered. However, the relative spacing of these

lines did not significantly change with load. See Figure 6. Accordingly,

it was not possible to unequivocally designate certain areas in these

blades as being characterized by high concentrations of stress merely from

these photographs.
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In summary, the objective of gaining some idea of the general nature

of propeller stress distribution has been achieved. However, the establish-

ment of the location of highly stressed areas by photoelastic means was not

achieved in the propellers considered. This may mean that these particular

propellers either did not contain such an undesirable condition or that

the plastic coatings were not sensitive to the presence of such concen-

trations. Due to the previously mentioned difficulties in the use of the

photoelastic method, it is not considered worthwhile pursuing the study of

these concentrations any further by this approach.

CONCLUSIONS

The fact that wide bladed propellers are periodically failing in

service requires that naval architects fully appreciate the limits on

application of the Taylor method of propeller stress analysis. Because

it ignores local concentrations of loading and does not consider the

effect of biaxial principal stresses, it is reasonable to expect that the

stress distributions predicted by the Taylor method are different from

actual observed stress distributions. Photoelastic experiments have

verified this to be the case, and loading tests to destruction have

corroborated the significance of the photoelastic studies.

RECOMMENDATIONS

For the work still to be done in Part II of this report it is

recommended that primary attention be paid to examining the nature of the

static stress levels that arise around the leading and trailing edges of

wide bladed propellers. Failures appear to be quite frequent in these

outer areas. Since the objective of discovering stress concentrations

by photoelastic means has not been successful, it will be necessary to

base the location of electrical strain gages on this experience. Knowing

that these edges are critical areas, a careful comparison of stresses

caused by static point loads (measured in an air environment in the



laboratory) with those predicted by the G.A.S.L. shell theory can be

made for the same leading conditions.
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Pitch Angle = 0

Figure 2 - Possible Peaked Pressure Loading on a Propeller
Blade Section
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Figure 6 - Typical Stress Trajectory Patterns Caused

by Hydrodynamic Loading
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Figure 8 - Stress Trajectories Before Failure
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Figure 9 - Actual Mode of Failure
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Figure 10 - Orientation of Simple Direct Stresses Based
on Photoelastic Studies
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on Taylor"s Method
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APPENDIX I

The following additional literature references are appended for

possible use by some readers. This list is not to be considered as

including all published literature on propeller strength calculations.

1. Hecking, J., "Strength of Propellers: Analysis made in Conn*tion

with qlarification Rules at American Bureau of Shipping", M.E.S.A.,

October 1921.

2. Schoenherr, K.E., "Recent Developments in Propeller Design",

Transactions, Society of Naval Architects and Marine Engineers,

Vol. 42 (1934).

3. Schoenherr, K.E., "Propulsion and Propellers", Principles of

Naval Architecture, Chap. III, Vol. II, The Society of Naval Architects

and Marine Engineers, 1939.

4. Muckle, W., "Stresses in Propeller Blades", The Shipbuilder

and Marine Engine Builder, Vol. XLVII, No. 388, November 1941.

5. Suppiger, E.W., "Notes on Propeller Blade Stress and Deformation",

AAF Technical Report 4923, May 1943.

6. Conn, J.F.C., "Marine Propeller Blade Deflection", Transactions,

Institution of Naval Architects, 1943.

7. van Lammeren, W.P., Troost, L., Koning, J.G., "Resistance,

Propulsion and Steering of Ships", Technical Publishing Co., Haarlem,

Holland, 1948.

8. Arnoldi, W.E., "Torsional Rigidity and Tensile Stress Distri-

bution of Thin, Pretwisted Sections Under Axial Load", Short Memorandum

Report No. SMR-855, Hamilton Standard Division, United Aircraft Corporation,

23 February 1950.
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10. Amatt, W., and Stulen, F.B., "Structural Analyses of the
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11. Stone, F.R., and Schulze, J.O., "Calculation of Steady
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Report 53-20, March 1953.
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APPENDIX II

The following paragraphs are intended to provide assistance to

those who may wish to similarly apply bi-refringent plastic to model

propeller blades.

As stated earlier, the material used was a product of the Tatnall

Measuring Systems Co. called Photostress Plastic. In the beginning of the

experimental program, attempts were made to use heated mixtures of liquid

Photostress material and hardener. Following the manufacturer's suggestions

as to mixing proportions and heating temperature, the liquid material was

allowed to become plastic on a sheet of Teflon coated with a silicon

releasing grease. This method proved unsuccessful because the Photostress

material tended to solidify before it could be lifted from the Teflon sheet

and molded to the shape of the propeller blade. Additionally, the material

surface that had been in contact with the Teflon was sufficiently roughened

to make it nearly opaque.

Attempts at use of cold mixtures of liquid Photostress material were

next tried. This material was poured onto three different types of

covered glass plate before a successful way to lift the soft plastic was

found. First a glass plate was covered with domestic type Saran Wrap and

then the liquid Photostress plastic was poured onto the Saran Wrap. It

was found that it was impossible to remove the Saran Wrap from the soft

plastic without great difficulty with the Wrap tearing and bonding at

isolated points to the plastic. The only good thing about this method was

that success was achieved in removing the plastic from the glass plate.

Next, glass plates coated with a special releasing varnish suggested

by the manufacturer were used, but once again it was found extremely

difficult to separate the plastic from the glass. When the plastic

finally became free of the varnished plate, it was found that the plastic

was no longer sufficiently soft to permit molding it to the propeller

blades.

Finally, the glass plates were first thinly coated with mineral oil

over which another domestic type plastic wrap called Reynolon was laid.
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Mold forms made of thin aluminum bars were laid beneath the Reynolon so

as to contain the liquid Photostress material on the plate. Then the

material was poured to a thickness of 0.08 inch and allowed to become

plastic during a 2Y hour period.

Next, the softly plastic Photostress material was lifted from the

glass plate and was easily separated from the Reynolon. In the mean-

while, the model propeller blades had been coated with mineral oil as had

been the hands of the person who was to mold the plastic to the shape of

the blades. The plastic coating was then cut with scissors to the rough

outline of the blades and was next formed onto the blades in shape.

Considerable care has to be exercised to prevent leaving fingerprints in

the soft plastic as well as preventing locked-in stresses from occuring.

Such stresses will be caused by forced bending of the semi-plastic

Photostress material after it has ceased to be sufficiently plastic to

permit it to bend to a new shape. When this forced bending is achieved

by use of tapes stuck to the material's surface, resultant locked-in

stresses are almost inevitable.

The Photostress material was allowed to harden for twenty-four

hours while resting on the propeller blades. Following this hardening

period the coatings are then cut to a more exact outline of the blades

and are then glued to the blades by use of special Photostress adhesive

material. Once again, a hardening period of twenty-four hours is allowed

to elapse, and then the attached coating is scraped and filed down to the

exact shape of the blade edges. These coating edges are rounded and

faired to make them hydrodynamically smooth. In all of these scraping and

filing operations extreme care has to be taken to avoid injuring the face

of the coating through which light must be reflected. Finally, it is noted

that the Photostress material is easily worked once it is hard and there

is little danger of causing locked-in stresses due to mechanical working.

With regard to photoelastic performance of the metal blade - plastic

coating combination it was found that a metal having a low modulus of

27,
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elasticity had to be utilized in order to cause visible stress distribution

lines in the coating. For this reason, a special alloy of tin and bismuth,

called "white metal", was employed in all propellers tested, except

Propeller No. 3707.
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