

FIVE-HOLE SPHERICAL PITOT TUBE
by
P. C. Pien

AEFOOONAMICS

STRUCTURAL MECHANICS

APPLED MATHEMATCS
-

DAVID TAKLOR MODEL BASIN

 .
 \({ }^{\circ}\) afroonamics

HYDROMECHANICS LABORATORY
IEESEARCH AND DEVELOPMENT REPORT
$+4 \quad$ i
(

FIVE-HOLE SPHERICAL PITOT TUBE

by
P. C. Pien

ABSTRACT

The theory used in developing a 5-hole spherical pitot tube to measure three-dimensional flow is fully described. Some considerations in the design aspect of the tube are given. The procedures for calibretion of tho tube, test, and analysis of tho tast date are also included.

INTRODUCTION

A simple and reliable way to measure the magnitude and direction of the water velocity around ships and ship models has been sought by naval architects for a long time. A brief description of earlier developments and various types of instruments built in different towing tanks has been discussed in Reference 1^{*}. At the David. Taylor Model Basin a 13 -hole spherical pitot tube wes developed and built many years ago. Since then this tube has been used as a standard instrument in making wake surveys around ship models. The construction and calibration of the tube and the method of analyzing the test data are fully described in the above reference.

Tiis method has been found quite successful except that it is very tedious and time-consuming to process the test data. In view of the fact that the value of knowing the water velocity distribution behind the hull becomes greater as propeller theory advances, the demand for wake survey tests on ship models is more frequent. A simplification of the existing method of wake survey became a necessity. A study of tire possibility of simplifying the procedure of processing the test data has led to the develqpent of a 5-hole spherical pitot tube for measuring threedimensional flow.

THEORETICAL BACKGROUND

The pressure on the surface of a sphere in an incompressible nonviscous fluid with a uniform velocity is given in Reference 2 by the following equation:

$$
\begin{equation*}
\frac{p-p_{0}}{w}=\frac{v^{2}}{2 g} \quad\left(1-\frac{9}{4} \quad \sin ^{2} \beta\right) \tag{1}
\end{equation*}
$$

where $V=$ velocity of undisturbed flow
$\mathrm{p}=$ pressure at a given point on a sphere
$p_{0}=$ pressure in the undisturbed flow
$\mathrm{w}=$ weight per cubic foot of the fluid
$\mathcal{F}=$ angular distance measured from the
stagnation point to the given point

[^0]Figure 1 shows a sphere in an ideal stream of uniform velocity V with a stagnation point S. From equation (l) we have,

$$
\begin{align*}
& \frac{p_{a}-p_{o}}{w}=\frac{v^{2}}{2 g}\left(1-\frac{2}{4} \sin ^{2} \angle s o a\right) \tag{2}\\
& \frac{p_{b}-p_{o}}{w}=\frac{v^{2}}{2 g} \quad\left(1-\frac{2}{4} \sin ^{2} \angle s o b\right) \tag{3}\\
& \frac{p_{c}-p_{o}}{w}=\frac{v^{2}}{2 g} \quad\left(1-\frac{2}{4} \sin \angle s o c\right) \tag{4}
\end{align*}
$$

where $p_{a,} p_{b,}$ and p_{c} are the local pressures at points $a_{9} b_{9}$ and c, respectively.
(4) - (2)

$$
\begin{equation*}
\frac{p_{c}-p_{a}}{w}=\frac{9 V^{2}}{8 g} \quad\left(\sin ^{2} \angle \operatorname{soa}-\sin ^{2} \angle s o c\right) \tag{5}
\end{equation*}
$$

(4) - (3)
$\frac{p_{c}-p_{b}}{w}=\frac{9 V^{2}}{8 g}\left(\sin ^{2} \angle \operatorname{sob}-\sin ^{2} \angle \operatorname{soc}\right)$
$(6)+(5)$

$$
\frac{2 p_{c}-p_{a}-p_{b}}{w}=\frac{9 v^{2}}{8 g} \quad \begin{aligned}
& \left(\sin ^{2} \angle \operatorname{soa}+\sin ^{2} \angle \operatorname{sob}-\right. \\
& \left.2 \sin ^{2} \angle \operatorname{soc}\right)
\end{aligned}
$$

(6) - (5)

$$
\begin{equation*}
\frac{p_{a}-p_{b}}{w}=\frac{9 v^{2}}{8 g}\left(\sin ^{2} \angle \operatorname{sob}-\sin ^{2} \angle s o a\right) \tag{8}
\end{equation*}
$$

Since \angle da is a right angle, we have:

$$
\begin{align*}
& \cos \angle \text { sou }=\cos \angle \operatorname{sod} \times \cos \left(\mathcal{B}_{h}-a\right) \tag{9}\\
& \sin ^{2} \angle \text { sou }=1-\cos ^{2} \angle \operatorname{sod} \times \cos ^{2}\left(B_{h}-a\right)
\end{align*}
$$

Likewise $\sin ^{2} \angle$ sob $=1-\cos ^{2} \angle \operatorname{sod} x \cos ^{2}\left(\mathscr{\beta}_{\mathrm{n}}{ }^{+}\right)$

$$
\begin{equation*}
\sin ^{2} \angle \operatorname{soc}=1-\cos ^{2} L \operatorname{sod} \times \cos ^{2} \beta_{h_{1}} \tag{10}
\end{equation*}
$$

Combining (7), (9), (10), and (11) we have:

$$
\begin{align*}
& \frac{2 p_{c}-p_{a}-p_{b}}{w}=\frac{9 v^{2}}{8 g} \\
&=\frac{9 v^{2}}{8 g} \\
& \cos ^{2} \angle \operatorname{sod}\left[2 \cos ^{2} \beta_{h}-\cos ^{2}\left(\beta_{h}-\alpha\right)-\cos ^{2}\left(\beta_{h}+\alpha\right)\right] \\
&=\frac{9 v^{2}}{8 g} \tag{12}\\
& \cos ^{2} \angle \operatorname{cod}\left[\cos 2 \beta_{h}-\frac{\cos 2\left(\beta_{h}-2\right)+\cos 2\left(\beta_{h}+\alpha\right)}{2}\right] \\
&=\frac{9 v^{2}}{8 g}
\end{align*}
$$

Combining (8), (9), and (10) we have

$$
\begin{align*}
& \frac{p_{a}-p_{b}}{w}=\frac{9 V^{2}}{8 g} \\
&=\frac{9 V^{2}}{8 g} \\
& \cos ^{2} \angle \operatorname{sod}\left[\cos ^{2}\left(\beta_{h}-\alpha\right)-\cos ^{2}\left(\beta_{h}+\alpha\right)\right] \\
&=\frac{9 v^{2}}{8 g} \quad \cos \left[\frac{\cos 2\left(\beta_{h}-\alpha\right)-\cos 2\left(\beta_{h}+\alpha\right)}{2}\right] \tag{13}\\
&=\frac{9 V_{h}^{2}}{8 g} \quad \sin 2 \alpha x \sin 2 \alpha x \sin 2 \beta_{h}
\end{align*}
$$

where $V_{h}=V \cos \angle$ sod, the projection of V on $x y$ plane

$$
\begin{equation*}
\frac{(13)}{(12)} \frac{p_{a}-p_{b}}{2 p_{c}-p_{a}-p_{b}}=\frac{\sin 2 \alpha}{1-\cos 2 \alpha} \times \tan 2 \mathcal{P}_{\mathrm{h}} \tag{14}
\end{equation*}
$$

From equation (14), \mathcal{B}_{h} can be computed, and then from equation (13) V_{h} can be obtained. Since V_{Z}, the component of V perpendicular to the my plane, does not enter equations (13) and (14), the two components of V, V_{h} and V_{z}, can be, treated independently. It immediately suggests that a sphere with five holes, as shown in Figure 2, can be used to measure the velocity V. Use the pressures measured at $a^{\prime} c b^{\prime \prime}$ to obtain the values of V_{V} and ℓ_{V} just as V_{h} and β_{h} were obtained, by using the pressures measured at a, b, and c, as described above. Then we have

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{h}} \cos \mathcal{B}_{\mathrm{h}} \\
& \mathrm{~V}_{\mathrm{y}}=\mathrm{V}_{\mathrm{h}} \sin \mathcal{B}_{\mathrm{h}} \\
& \mathrm{~V}_{\mathrm{z}}=\mathrm{V}_{\mathrm{v}} \sin \mathcal{B}_{\mathrm{v}}
\end{aligned}
$$

where V_{X}, V_{y}, and V_{z} are the three components of V along X, Y, and Z axes, respectively. Also $V_{V} \cos \beta_{V}$ is equal to V_{X}. This can be used as a check.

It is of interest to note that a number of 5 -hole pitot tubes were previously designed and built for this purpose. Admiral Taylor designed and built one in 19151. The Dutch built one3 and so did F. Gutsche of the Berlin Tank ${ }^{4}$. But in none of these designs was advantage taken of the fact that the velocity component in any plane in space can be obtained independently from the three pressure measurements in that plane. The utilization of this knowledge is the basis of the method here presented.

SOME IMPORTANT CONSIDERATIONS IN THE DESIGN OF A 5-HOLE SPHERICAL PITOT TUBE

The 5-hole spherical pitot tubes previously built at various towing tanks were very similar. However, two important items, the diameter of the spherical head and the angular distance between the center hole and side holes, deserve special attention and are briefly discussed below.

The Diameter of the Spherical Head

The diameter of the spherical head should be made as small as practical for two reasons: (l) the smaller this diameterg the smaller will be the interference effect of the instrument on the flow; (2) the smaller the diameter, the greater the accuracy in measuring the nonuniform velocity field around ship models. As will be described later, the calibration of the tube is performed in a towing tank where the water velocity relative to the tube is uniform. If the spherical head is small enough, the velocity field within the small radius of the sphere can ve considered uniform in a nonuniform velocity field, so that the calibration curves obtained in a uniform velocity field can be used with good results in nonuniform flow.

The Angular Distance Between the Center Hole and Side Holes

The pattern of pressure distribution on a spherical surface in a uniform viscous stream is dependent upon the Reynold's
number. However, there is a region, within about 40° angular distance from the stagnation point, where the pattern of pressure distribution is nearly independent of the Reynold's number. ${ }^{2}$ If the angular distance between the center hole and side holes is in the order of 20 degrees, the measured velocity can be 20 degrees off the center hole, and the angular distance between the stagnation point and the furthermost side hole will still be about 40 degrees. Hence, the calibration curves obtained at one speed can be used for any other speed for a large range of $\mathcal{\beta}$ angles.

The angular distance between the center hole and side holes of the 5-hole spherical pitot tubes built in the past was in the order of 40 or 50 degrees. This might very well be one of the difficulties experienced with these tubes. Figure 3 shows a 5hole spherical pitot tube built recently at TMB. The diameter of the spherical head is half an inch. The angular distance between the center hole and side holes is about 20 degrees. Two of the side holes are on a horizontal great circle and the other two are on a vertical great circle, while the holder of the tube is held in the vertical position. The diameter of the holes is about $1 / 32$ inch.

CALIBRATION

Equations (13) and (14) are true only if the fluid has no viscosity, the sphere is perfect, and the diameter of the opening at points a, b, etc. for measuring the local pressures approaches zero. In actual practice none of these conditions is true. Thus the relationships of equations (13) and (14) have to be represented by curves obtained from calibration of a particular tube.

The calibration of the tube is performed by mounting the tube on a platform under the carriage, with the spherical head submerged, in such a way that the tube can be rotated either vertically or horizontally. The five holes are connected to a manometer board so that the pressures can be measured. The water is drawn up to the manometer board by partial vacuum created inside the manometers. Since only the pressure differences are of interest, the board reading, while the tube is at rest in the water, is insignificant. The carriage speed is kept constant at a given speed; e.g., 6 knots. The stagnation point is first adjusted to the position of the center hole by rotating the tube up and down or sideways until the board readings of all the side holes are equal and the center hole pressure reading reaches the maximum. This is tho position of zero Pangle. To cineck the vertical holes with the vertical plane, the tube is rotated to both the port anc starboard sides about 20 degrees. The pressure reading of the two verticai holes should be the same. If thev are not equal, the tube should be
rotated about the axis parallel to the direction of motion and checked again until these readings are equal.

The tube is then turned to the left at intervals of about 3^{0} of β_{h} angle. At each position the board readings are taken when they have reached steady values. The manometers are fitted with stopcocks by means of which the columns are closed off before the end of a run and opened again when the new run has reached the correct speed. In general, a few runs are needed before the manometers reach the steady state. This operation is repeated by rotating the tube to the right, upward and downward at intervals of 3 degrees. Figure 4 shows the calibration curves of the tube shown in Figure 3. The capital letters C, S, P, T, and B represent the board readings at center hole, starboard hole, port hole, top hole, and bottom hole, respectively. The capital letters V_{h} and V_{V} represent the velocity components in the horizontal plane and the vertical plane, respectively. A positive β angle means the stagnation point is on the starboard side or top side. Here $\frac{C-S}{V_{h}{ }^{2}} \frac{C-P}{V_{h}{ }^{2}}$, etc. are plotted against B instead of $\frac{2 C-P-S}{V_{h}^{2}}$, etc., since the latter factors, when plotted against \neq, give very flat curves.

These curves have been checked at different speeds (3 and 6 knots). No significant change has been found. It will be noted that these curves are not quite symmetrical with respect to the central position. This is due to the fact that the side holes may not be exactly equally spaced and there may have been some irregularity on the spherical surface of this particular tube。

TEST FROCEDURE

The tube is mounted on the model as shown in Figure 5. The centerline of the pitot tube is parallel to the shaft line in the case of velocity survey in the propeller plane. Sometimes it is necessary to rotate the vertical arm of the tube toward one side so that there will be enough clearance under the carriage. A target is set up on the deck of the model to facilitate the positioning of the tube. The water is drawn to the manometer board by creating a partial vacuum inside the manometers. The model is towed at the desired speed. The manometer board readings are taken for each position of the tube when these readings have reached steady values.

ANALYSIS OF TEST RESULTS

The procedure for analyzing the test is completely described in the analysis sheet and its accompanying instructions on pages 15-17. The method of analysis, of course, is based
on the preceding development and the calibration procedure just described.

The end results of the velocities measured in a propeller plane are resolved into three mutually perpendicular components V_{n}, V_{t}, V_{r}, and tabulated. Where V_{n} is normal to the propeller plane, V_{r} is the radial component in tire propeller plane and V_{t} is the tangential component in the propeller plane. In order to give a visual picture of the velocity components in the propeller plane, the resultant vectors of V_{t} and V_{r} are plotted at corresponding positions in the propeller plane. A typical result of a velocity survey in the propeller plane of a twinscrew ship model is shown in Figure 6.

DISCUSSION

The 5-hole spherical pitot tube and the procedure of analyzing the test data presented in this report are now adopted as a standard method for any velocity survey test around ship models at TMB. It is rather thought-provoking to note that the 5-hole spherical pitot tube, which had been abandoned a long time ago, becomes very useful again with a slightly different procedure.

The new method of analyzing velocity survey test data in a propeller plane has reduced the time involved from a week to a day. The new procedure is being adapted to UNIVAC computation, and further time-saving in processing the $t e s t$ data will thus be realized.

ACKNO WLEDGEMENT

The author wishes to extend his thanks to Mr。J.B. Hadler, Head of the Ship Powering Division, for his valuable suggestions in preparing this report, and to Mr. N. L. Ficken for his help in carrying out the mathematical derivations involved in this report.

REFMRENCES

1. Jenis, C. E., "Instruments and Methods for Measuring the Flow of Vater Around Ships and Ship lodels", David Taylor Model Basin Report 487 (Mar. 1948)
2. Taylor, D. W., "The Speed and Power of Ships", United States Government Frinting Office, Washington (1943)
3. Meyer, H., "Onderzoek betreffende de meetmethode met de pitot-buis van Dr. Ir. J. J. Borren" (Investigation on the Method of Measurement with Pitot Tube, Designed by Dr. Eng. J. J. Borren) De Ingenieur (7 July 1928), p. 173
4. Gutsche, Fritz, Dipl. Ing., "Das Zylinderstaurohr" (Cylindrical Fitot Tube), Schiffbau, Schiffahrt, und Hafenbau, Vol. 32, No. 1 (January 1931) pp. 13-19. TMB Translation 172, Unpublished. Reference copy in TMB Library.

FIG. I

FIG. 2
-10-

FIG. 3

FIG. 5, FIVE-HOLE PILOT TUBE MOUNTED ON MODEL

Velocity Survey FOR

a Cargo Vessel

table of velocity componsat ratios

	POSITION FUMBER	$\mathrm{V}_{\mathrm{n}} / \mathrm{N}$	∇_{t} / \sim	$\nabla_{r} / 7$	position NUMBER	$\nabla_{n} /$ /	$\nabla_{t} / 7$	$\nabla_{\mathrm{r}} / \mathbf{}$
	1	. 76	. 12	-. 12	19	. 98	-. 02	. 09
	2	. 67	. 01	-. 09	20	. 97	. 02	. 10
	3	. 66	-. 11	-. 16	21	. 95	. 07	. 09
	4	. 82	-. 15	-. 03	22	. 98	. 11	. 05
	5	. 95	-. 09	. 03	23	. 94	. 17	. 02
	6	. 96	-. 06	. 07	24	. 86	. 16	-. 06
	7	. 97	-. 03	. 09	25	. 86	. 12	-. 10
	8	. 96	. 02	. 09	26	. 69	. 01	-. 04
	9	. 98	. 06	. 09	27	. 90	-. 05	-. 05
	10	. 98	. 10	. 06	28	. 96	-. 16	-. 03
	11	. 92	. 15	. 20	29	. 96	-. 10	. 03
+	12	. 83	. 16	-. 05	30	. 97	-. 07	. 06
+	13	. 83	. 12	-. 12	31	.98	-. 02	. 09
1	14	. 72	. 07	-. 09	32	.98	. 03	. 10
	15	.91	-. 05	-. 05	33	. 99	. 09	. 09
	16	. 88	-. 16	-. 04	34	.96	. 15	. 09
	17	. 95	-. 08	. 03	35	. 94	. 18	. 01
	18	. 96	-. 06	. 07	36	. 89	. 16	-. 06

v IS The ship spred
V_{r} is the radial component of velocity in pla'e a and is positivg toward the center of the propeller.
V_{t} is the tangential component of velocity in plant a and is positive in the clockitse direction.
$\gamma_{\text {n }}$ is the component of velocity normal to plane a and is POSITIVE IN THE ASTERN DIRECTION.
$\boldsymbol{v}_{\mathrm{t}}, \mathrm{V}_{\mathrm{r}}, \mathrm{V}_{\mathrm{n}}$, AND V_{tr} ARE RELATIVE to the ship

Notes:
dane a is the plane of velocity survey which
is ferpendicular to the base line and centerdins
and intersects the centeriing 35 FEet forward
or station 20.
tector shown in diagram represents magnitude and direction of transverse component of velocity Ratio designated as $\mathrm{v}_{\mathrm{tr}} / \mathrm{N}$.
shaft, fairwater and duma hub were in place.

FIG. 6

VELOCITY SURVEY CALCULATION SHEET

MODEL NO. _ VESSEL_ TE TEST NO._ DATE OF TEST _ \quad PITOT TUBE
SURVEY MADE ABOUT _ SHAFT. VERTICAL ARM OF PITOT TUBE ROTATED _ _ SHEET NO. _ _

PROCEDURE FOR ANALYZING VELOCITY SURVEY
(5-Hole Picot Tube)

1. Center hole reading in inches of water from the test data sheet.
2. Stbd. hole reading in inches of water from the test data sheet.
3. Port hole reading in inches of water from the test data sheet.
4. Col. 2 - Col. 3
5. $2 \times$ Col. 1 - Col. 2 - Col. 3
6. Col. $4+$ Col. 5
7. If Col. 4 is positive use $\frac{S-P}{2 C-S-F}$ curve to obtain positive β_{h} angle, and if Col. 4 is negative use $\frac{\mathrm{P}-\mathrm{S}}{2 \mathrm{C}-\mathrm{F}-\mathrm{S}}$ curve to obtain negative β_{h} angle from the calibration sheet.
8. If β angle is positive, record the value of $\frac{C-P}{V_{n}^{2}}$, and if β angle is negative, record the value of $\frac{V_{h}^{2}}{V_{h}^{2}}$ from the appropriate curve.
9. Col. 1 - Col. 3 if β_{h} is positive. Col. 1 - Col. 2 if β_{h} is negative.
10. Col. $9+$ Col. 8
11. $\longdiv { \text { Col. } 1 0 }$
12. $\sin \beta_{h} \times \operatorname{Col}$. 11
13. $\operatorname{Cos} \beta_{\mathrm{h}} \times$ Col. 11
14. α, position angle measured from the vertical line, positive in the counter clockwise direction. -
15. $r=90^{\circ} \bullet \theta-\infty$ where θ if the angle between the grin of the tube and the vertical line, positive in the counter clock-

- wise direction.

16. Col. $12 \times \sin \gamma$

17．Col． $12 \times \cos \boldsymbol{\gamma}$
18．Center hole reading in inches of water，same as Col． 1
19．Top hole reading in inches of water from the test data sheet．
20．Bottom hole reading in inches of water from the test data sheet．

21．Col． 19 －Col． 20
22． $2 \times$ Col． $18-\mathrm{Col}$ 。 $19-\mathrm{Col}$ 。 20
23．Col． $21 *$ Col． 22
24．If Col． 21 is positive use $\frac{\mathrm{T} \cdot \mathrm{B}}{2 \mathrm{CoTmB}}$ curve to obtain positive \mathcal{F}_{V} angle，if Col． 21 is negative use $\frac{B \oplus T}{2 C \propto B=T}$ curve to obtain negative V_{v} angle from the calibration sheet．
25．If $f v$ angle is positive record the value of $\frac{C o B}{\sigma^{2}}$ ，and if β angle is negative record the value of $\frac{V_{v}^{2}}{V^{2}}$ from the appropriate curve 。

26．Col． 18 －Col． 20 if F_{V} is positive．Col： 18 －Col． 19 if β_{∇} angle is negative．．
27．Col． 26 －Col． 25
28．$\sqrt{C O 1.27}$
29．Col． $28 \times$ cos $\boldsymbol{P}_{\text {ए }}$
30．Col． $28 \times \sin \boldsymbol{P}_{\text {E }}$
31．$\delta, 90^{\circ}+$ Col． 25
32．Col． $30 \times \sin \delta$
33．Col． $30 \times$ cos ：
34．（Col． $13+$ Col．29）+2
35．Col 16 Col． 32 positive is．counter clockwise
36．Col． 17 －Colo 33．positive is outward fam theater of prop．
37．Colo 34 • $\boldsymbol{v}_{\text {m }}$ 39．Col． $36 \otimes \mathrm{~V}_{\mathrm{m}}$
38．Col． $35^{\circ}: \mathbf{V}_{\mathbf{n}}$

INITIAL DISTRIBUTION

Copies
8 Chief，BuShips，Library（Code 312）
5 Tech Library
1 Tech Asst to Chief（Code 106）
I Prelim Des（Code 420）
1 Prop \＆Shafting（Code 554
1 CHONR，Fluid Mech Br（Code 438）
1 CO，USNOTS，Pasadena，Calif．
1 DIR，ORL，Penn St Univ，University Park，Pa。
1 ETT，SIT，Attn：Prof．Korvin－Kroukovsky
1 Head，Dept NAME，MIT，Cambridge，Mass．
1 DroHoA．Schade，Dr of Engin Res，Col of Engin， Univ of Calif，Berkeley，Calif。

1 Supt，Admiralty Experiment Works，Haslar，Gosport， Hants，England

1 Supt．Ship Div，Nati Phys Lab，Teddington， Middlesex，England

1 DIR，Netherlands Scheepsbouwkundig Proefstation， Wageningen，Holland

1 DIR，Bassin d^{0} Erance \quad Esais des Carenes，Paris XVe，
1 DIR，Statens Skippsmodeltanken，Tyholdt， Trondheim，Norway

1 DIR Statens Skeppsprovingsanstalt，Gotheburg，Sweden
1 DIR，Canal de Experienceas Hidrodinamicas． EL Pardo，Madrid，Spain

1 DIR Vasca Nazionale Perle Experienze，via Della Vasca Navale 89，Rome－SEDE，Italy。

2 DIR，Hamburg Model Basin，Hamburg 33，Germany
1 DIR，Institute for Schiffbau，Berliner Tor 2l， Hamburg，Germany

1 British Shipbldg Res Assoc，Chesterfield Gardens， London W1，England

1 Prof。L．C．Burrill，Dept of Nav Arch，Kings College， Univ of Durham，Newcastle upon Tyne，England

1 Karlstads Mekaniska Werkstad，Kristinehamm，Sweden
1 Prof。Dr。F。Horng Laehr St 28，BerlinهZelendorf， Germany

1 Prof。Dr。H。Amtsberg，Tech Univ，Berling Germany

David Taylor Model Basin. Report 1229. FIVE-HOLE SPHERICAL PITOT TUBE, by P.C. Pien. May 1958. 18p. illus., refs. UNCL ASSIFIED The theory used in developing a 5 -hole spherical pitot tube to measure three-dimensional flow is fully described. The procedures for calibration of the tube, test, and analysis of the test data are also included.	1. Pitot tubes Calibration 2. Pitot tubes - Design - Theory 3. Three-dimensional flow - Measurement I. Pien, Pao C. II. NS 715-102	David Taylor Model Basin. Report 1229. FIVE-HOLE SPHERICAL PITOT TUBE, by P.C. Pien. May 1958. 18p. illus., refs. UNCL ASSIFIED The theory used in developing a 5 -hole spherical pitot tube to measure three-dimensional flow is fully described. The procedures for calibration of the tube, test, and analysis of the test data are also included.	1. Pitot tubes Calibration 2. Pitot tubes - Design - Theory 3. Three-dimensional flow - Measurement I. Pien, Pao C. II. NS 715-102

\qquad

SENT TO HD. DEPT. NAVAL ARCH. \& MAR. ENG.
ON_-.-JUN 251956

[^0]: * Rerences are listed on page 8.

