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NOTATION

4, A2, A12 Plasticity coefficients
B Axial rigidity
¢ c, Coefficients in plastig buckling equations
c Shell parameter =
72 Rh
D Flexural rigidity
E Young’s modulus
E Secant modulus
E, Tangent modulus
e; Strain intensity
h Shell thickness
H Plasticity coefficient used to compute A’s
k Ratio of circumferential membrane stress to axial membrane stress
K2 1-k+ k2
L Length of cylinder between transverse boundaries
M Moment
N Force
n Number of axial half waves of buckling
P Pressure
Per Buckling pressure
Po Elastic buckling pressure of an infinitely long cylinder
R Radius of shell
u, v, W Displacements in the axial, circumferential, and radial directions,
respectively
z, 9y, 2 Coordinates in the axial, circumferential, and radial directions,
respectively
a Wave parameter = * —_.__3(1 -+
RZp?
Y Shear strain
ij Kronecker delta
€ Normal strain
© Poisson’s ratio at any stress level

iv



He
6, ¢, ¥

SUBSCRIPTS

m

ma,my

S-P
YpP
2,y
zy

Poisson’s ratio in elastic range

Angles used in applying Budiansky’s criterion
Coordinates of loading path diagram

Normal stress

Stress intensity

Shear stress

Curvature

Midbay

Membrane value in axial and circumferential directions,
respectively

Plastic

Salerno and Pulos analysis

Yield point

Axial and circumterential directions, respectively
Twisting

Primes refer to variations of the terms during the buckling
process.






ABSTRACT

A cylindrical shell stiffened by uniformly spaced transverse rings and
subjected to external hydrostatic pressure is analyzed for plastic buckling in
the axisymmetric mode. In this analysis strain-hardening of the material is
accounted for and Poisson’s ratio is treated as a variable which varies from
its value in the elastic state to an upper limit of 1/2 for incompressible mate-
rial. The differential equation of equilibrium for the plastic range is derived
for axisymmetric buckling. Expressions for the plastic axisymmetric buckling
pressures are obtained. A criterion of length of shell for ‘‘long’’ and “‘short’’
cylinders is presented, below which the shell can buckle in only one half wave.
As a special case of the problem considered, a solution for the plastic buckling
of a long cylinder under end compression is obtained. This solution degenerates
to that previously obtained by Gerard for a Poisson’s ratio of 1/2 but represents
a more rigorous solution in terms of variable Poisson’s ratios. Finally, limited
experimental evidence is presented in support of the theory.

INTRODUCTION

Recent developments in metallurgy have resulted in new structural materials which
can be advantageously used in closed stiffened cylinders loaded by external hydrostatic
pressure. Some examples are aluminum alloys, titanium alloys, and steel alloys with yield
strengths above 125,000 psi. All these materials exhibit strain-hardening stress-strain curves.
Hitherto, the theories for collapse pressure of stiffened cylinders loaded into the plastic
range have been developed for elastic, perfectly plastic materials or ones exhibiting a
plateau-type stress-strain curve. An extension of the theory is necessary to develop adequate
procedures for the design of stiffened cylinders made from strain hardening materials.

In particular, a cylindrical shell made from a strain-hardening material stiffened by
uniformly spaced transverse rings and subjected to external hydrostatic pressure will be
treated. Failure of the shell between stiffeners by plastic awisymmetr;:’o buckling will be
analyzed in detail. Theoretical expressions for collapse pressure will be derived for this

mode of failure, and some limited experimental results will be presented to confirm the theory.

HISTORICAL DEVELOPMENT OF THEORY

Considerable study has been devoted to the failure of ring-stiffened cylindrical shells
by the formation of an accordion pleat in the shell between stiffeners when the shells are

loaded by external hydrostatic pressure. Salerno and Pulos! determined from the elastic

1Referem:es are listed on page 31.



equations of equilibrium the pressure at which axisymmetric deflections of the shell would
be infinite. They showed that this pressure was identical to the elastic buckling pressure
derived by Timoshenko? for an infinitely long unstiffened cylinder loaded only by uniformly
distributed compressive end loads (i.e., no pressure on the lateral surface of the cylinder).
Invariably, failure in the axisymmetric mode involves yielding of the shell material.
Von Sanden and Gunther? derived expressions which predict failure on the basis of the onset
of yielding by a maximum-principal-stress criterion. Investigators® at the David Taylor Model
Basin extended this theory to include the Hencky-Von Mises criterion as a yield criterion
and to allow for a measure of plastic reserve strength between the onset of yielding and final
collapse. Various investigators at Brown University5'6'7 and the Polytechnic Institute of
Brooklyn®8:? analyzed the problem using an incremental theory of plasticity together with an
elastic, perfectly plastic material and a maximum-shearing-stress criterion of yielding. These
last analyses did not adequately account for the elastic stiffening rings commonly used.

Still another group of investigators 10,11,12

used an approach similar to that used in the
limit design of beams and trusses. In effect, a three-hinge mechanism of collapse was used
in conjunction with the Hencky-Von Mises criterion of yielding and, again, an elastic, per-
fectly plastic material was assumed. All these theories which are based on an elastic, per-
fectly plastic material are compared with experimental results in Reference 13.

None of the theories previously cited account for strain-hardening of the material. An
entirely different school of investigators concentrated on the plastic buckling of structural
elements composed of a strain-hardening material. Bijlaard 14 3nd Handelman and Prager15
used incremental plasticity theory to obtain expressions for the plastic buckling loads of
plates. Ilyushin1® Stowell, 17 and Bijlaard !8obtained comparable solutions using the defor-
mation theory of plasticity. Gerard!® extended the inelastic (or plastic) equations of equilib-
rium derived by Stowell for flat plates to cylindrical shells. Gerard’s inelastic differential

129 when

equations degenerate to the elastic differential equations of equilibrium of Donnel
the plastic moduli (tangent and secant) are set equal to Young’s modulus E and when Poisson’s
ratio u is assumed to be 4. Gerard !9 21 ysed his equations to solve the following cases of

plastic buckling:

1. The unstiffened circular cylinder subjected to uniform end load and failing in the

axisymmetric mode.
9. The unstiffened circular cylinder subjected to pure torsion.

R L
3. Moderately long (100 % <— < 5Rk)"* circular cylinders subjected to lateral pressure
2
only. E
L2 R\ . . .
4. Long|— >7 circular cylinders subjected to lateral pressure only.
R M

*
L, R, and h are the length, radius, and thickness of the cylinder, respectively.



In this report the work of Gerard will be extended to include the plastic (inelastic)
azisymmetric buckling of circular cylinders subjected to both end loads and lateral pressure
or, in other words, subjected to hydrostatic pressure. The theory will be applicable to
cylinders shorter than those considered by Gerard which buckle only under lateral pressure.
Furthermore, the solution for buckling pressure will not be confined to a value of Y for

Poisson’s ratio but will be expressed explicitly in terms of Poisson’s ratio.

THEORETICAL DEVELOPMENT OF ELASTIC AXISYMMETRIC BUCKLING PRESSURE

To understand better the buckling behavior of a stiffened cylinder in the plastic range,
the elastic buckling pressure should first be examined. The expressions for the plastic
buckling pressures should degenerate to those for the elastic case when the moduli used
are set equal to Young’s modulus E. Since stiffened cylinders have not been observed to
fail elastically in the axisymmetric mode, no expressions for the buckling pressure have
been reported, to the knowledge of the author, which take into account a shortening of the
half buckling wave due to the presence of ring stiffeners. The expressions for the elastic
buckling pressures will now be derived for a ring-stiffened cylindrical shell subjected to
hydrostatic pressure p, assumed positive when external.

The notation for displacements is shown in Figure 1. Primes are used to denote
variations of the displacements, loads, or forces developed during buckling. The equilib-

rium expressions of Donnell 20 during buckling are:

63 ’ 63 ’
Rv*u'=—y L LT [1]
923  dzdy>

BPw PBw’

Rv4»* = (2 +p) - (2]
dzdy ay3
Bf{ du” 9dv’ w’ 2w’ 2w’ 2w’
DV‘w'+—(p + +—)+N +2N,_  — + -p’=0
R\ 9z Tdy R ¥ o2 %Y dzdy Y 3y
(3]
where
ER3
D= —mor (4]
12(1 - p?)
and
Eh
B = (51
1-p?



For axisymmetric deflections
an

=0 6]
ayn
h For hydrostatic pressure loading the axial load is
R
N, =22 1]
. 2
Substituting Equations [6] and [7] into Equations
[1] and [3], we obtain
Figure 1 — Coordinates and Components 4, . 3,
of Displacement I u -_x 97w (8]
624 R az3
and
*w’- B[ ou’ w’) pR Pw’ . (01
+ — +— | +— -p’=
ot E\"e TR)T2 277
33
Applying — to Equation [9] and substituting Equations [4], [5], and [8] into the resulting
dz

expression, we obtain, after simplifying and expressing in terms of total derivatives of w,

d"w’ R d5w’ 12 d3w’
+8(1-p L + (1-p?)
dz’ ER® dz5 R2R? dz3

=0 [10]

LONG CYLINDERS

For the moment let us consider a ‘‘long”’ cylinder under hydrostatic loading, A ‘‘long’’
cylinder will be defined as one which buckles in more than one half wave. The criterion

for ‘‘long”® will be established in the analysis. A solution to Equation [10] can be written

, nax

w’=w ' sin [11]

where L is the length of the cylinder. When Equation [11] and the appropriate derivatives
are substituted into Equation [10], the expression for the buckling pressure in terms of the

number n of half waves of buckling results:

_ [( aL)2 l(nn)z] [12]
Per= P nw +Z alL




where

2
P = 2 E(—h-\) [13]
V3(1-p42) ‘B
and
4 _ 2)
w2 [14]

R242

The buckling curves represented by Equation [12] are shown in Figure 2.
If, for specified values of n, Equation [12] is differentiated with respect to al and if

the resulting expression is set equal to zero and then solved for aL, the value of aL at which
cr

the buckling pressure and is a minimum for a given n is

P
nw
(al) ;. = 73 [15]
. 3 3 . pcr - 3
From Figure 2 it can be seen that the minimum value of — at (aL)_. given by Equation

[15] is always unity.
The cusp points shown in Figure 2 where the curves for modes n and n + 1 intersect
can be obtained by equating Equation [12] to a similar equation where n has been replaced

by n + 1. In this manner the cusps are obtained at

g

(aL)cusp = \/’§

Va(n+1) (18]
Equation [18] gives aL = # when n = 1. If a cylinder is such that aL is greater than =, it

will buckle into two or more half waves and thus is defined as ‘‘long.”’

P
The values of —— at which the cusps occur are found by substituting Equation [16]
P

into Equation [12], thus

= [17]

(pcr) 2902 +2n +1
P ! cusp on? + 2n

From Equation [17] the buckling pressure p , of a cusp approaches p_ as n goes to infinity.
The buckling pressure p_ expressed in Equation [13] is identical to that obtained by

Timoshenko? for an infinitely long cylinder subjected to end forces only. This is not
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Figure 2 — Curves for Axisymmetric Buckling of Cylinders
under External Hydrostatic Pressure
n

surprising if one considers that, when — = 0 was applied to Equation [3], all the terms

ay"

involving forces other than the axial force N, vanish.

SHORT CYLINDERS

If aL is less than =z, the cylinder will be denoted as ‘‘short.”” If a cylinder is stiffened
by transverse rings uniformly spaced at distance L apart such that aL <z, then the half
wave of buckling can be taken as the distance between stiffening rings. For such ‘‘short”

cylinders n = 1, and Equation [12] reduces to

Por= p,.[(%[i)z It )2] (18]

Equation [18] can also be written as:

2 1 E 2
Per=2 EC’(—h) $—— — (—") [19]




where
L2
72 RA

c? =

[20]

For ‘‘short’’ cylinders it should be noted from Figure 2 and Equation [15] that the buckling

pressure is a minimum at

al = =2.22 [21]

Ve

THEORETICAL DEVELOPMENT OF PLASTIC AXISYMMETRIC BUCKLING PRESSURE

Plastic equilibrium expressions have been derived for flat plates by Stowell, 17 whose
work has been extended by Gerard!? to circular cylindrical shells. These equilibrium ex-
pressions were derived assuming the material to be incompressible and Poisson’s ratio to
be 1/2 Equilibrium expressions will now be derived for circular cylindrical shells in which
the deflections are axisymmetric and Poisson’s ratio pu varies between its value for the purely
elastic state and a value of Y for the purely plastic incompressible state.

The deformation theory of plasticity will be used in the plastic analysis. This theory,
in contrast to the incremental theory of plasticity, is valid only for a limited range of loading
paths. It has long been recognized to be valid for proportional loading, that is, where the
stresses increase linearly with an increase in load. Budiansky?2 has shown that loading
paths other than proportional loading are admissible without violation of general requirements
for the physical soundness of a plasticity theory. Budiansky presents a criterion for the
extent of admissible variations from proportional loading. The following analysis will be
applicable where Budiansky’s criterion is satisfied for both the prebuckling and the buckling
stresses. Later, when experimental results are presented for comparison with theory, it will
be shown that Budiansky’s criterion was satisfied for the stiffened cylinders tested.

In the deformation theory of plasticity the stress and strain intensities are defined by
Ilyushin!® as

o; = V03+af—ox oy+3'ﬁ2 [22]
and
2
- 2 2 2
€; ‘/'g“‘/‘x +‘y+‘x ¢7+Z4— (23]



where o is the stress in the z-direction,
o, is the stress in the y-direction,
T 18 the shear stress,
€_ is the strain in the z-direction,
€ _ is the strain in the y-direction, and

y is the shear strain.

The stress-strain relations consistent with Equations [22] and [23] are

1
ax——oy S
€ -2 "= [24]
* ES ES
g, ——0
y x S
€« . 2 " [25]
5
y ES ES
3
y=—T [26]
ES
where
g.
E -— [27]
€;

Stowell states ‘‘According to the fundamental hypothesis of the theory of plasticity,
the intensity of strain o, is a uniquely defined single-valued function of the intensity of
strain ¢, for any given material if o, increases in magnitude (loading condition). If o,
decreases (unloading condition), the relation between o; and e; becomes linear as in a purely
elastic case.” In practice the relationship between o; and e; is the stress-strain curve
obtained in a uniaxial loading test.(The results in tension and compression are assumed to

" be the same.)
Equations [22] through [26] can be generalized to any value of Poisson’s ratio as

follows:
o, —-po, S
€ =~ Y _ Z [28]
* ES ES
o,.—po, S
y x y
€ = - = 29
y ES s [ ]



2(1 +
y=_(—.“).r

[(30]
ES
For principal stresses for which 7=y =0
0;= \/af+ay2-ax o, [(31]
1
= V(L= ps i) (e2r e (tu-p-1) e ¢, [32]
—u

Equation [32] is derived by solving Equations [28] and [29] for o, and o~ysubstituting the
expressions for the stresses in Equation [31] and then using the resulting expression for
o, in Equation [27]. Equations [28] and [29] degenerate to Hooke’s law when the secant
modulus E _ equals Young’s modulus E. Also, Equations [28] through [32] degenerate to
Equations [22] through [27] for a Poisson’s ratio of % and for principal stresses.

When buckling begins, the strains e , and e y will vary slightly from their prebuckling
values. The variation € will arise partly from the variation of membrane strain and partly
from bending strain; thus

4
4

€= €. -ZX, (33]

The variation ¢ ; - will result only from the variation in membrane strain since only axisym-

metric deflections are considered; thus

€ ‘. = ‘.
y €my [34]
where € m' , is the membrane strain variation in the z-direction,

em')-, is the membrane strain variation in the y-direction,

X,  is the change in curvature in the z-direction, and

VA is the distance out from the middle surface of the shell.

The corresponding variations S.- and S ; - must be obtained. A procedure similar to
that presented by Stowell will be used. From Equation [28]



therefore

€ (0, do;
§,.=F_€' - —{— - -_ e'." [35]
The variation of the strain intensity expressed in Equation [32] can be shown to be

e/ =——-——1——-—— [(2—y)ox+(2p—1)ay] €,
2(1-;12)0'.
+[(2u-1)ax+(2—u)ay]¢; +[2(2—p) 9,9,

é;
_(1—2;1)(03 +03 )]-7;1'} (36]

Gerard and Wildhorn23 have shown that for isotropic, plastically incompressible solids the

following expression for Poisson’s ratio in the inelastic region is applicable:

1 1 E
"=§'(5"‘=)E 171

S

where ., is the value of Poisson’s ratio in the elastic region. The first variation of

Equation [37] is
1
3 ke

p=——(E ,-E)e/ [38]

s ]

Substitution of Equations [33], [384], and [88] into Equation [36] gives

e/ = ! I[(2-y)ax+(2u—1)oy]¢m'x+[(2p-1)ax
2(1 - p?)Ho, |
+(2'”‘)]‘m'5,“[(2-")ax+(2”-1)a}']zx::} [39]
E
where (1——‘)
Es 2
H = (2—y)ax—(1—2u)oy] ~3(1-p%)o} [40]
4(1-—;‘12)01'2

10



Substitution of Equation [39] into Equation [35] gives

. o, do;

*\e; de;

S;'gEs‘;'- " [(2—#) ox+(2u—1)ay]em'x
2(1-p")YHose;

[41]
+[(2p-1) o, +(2-p) ay]em"-, - [(2 -p)o, +(2p- l)ay]Zx;.

Let the coordinate for which e ; =0be Z =2, The expression for Z, is obtained from
Equation [39]:

_[(2 —y)ox+(2p,—1)ay]¢m"~‘+[(2;1-1)0”4-(2 —p)oy] €my

Z, [42]
[(2-wo, +(2-1)0 ]x;
o; do;
Substituting Equation [42] into Equation [41] and recognizing — as E _ and = 88 the
e, e.
tangent modulus £,, we have ' '
, , .. x(Eg-E))
S;=E (e, -Zx,)+ " [(2—p)ox+(2p—1)ay][z_z Ty’
2(1-p")Hose; 0" %=
[43]
Similarly, it may be shown that
e (E -E,)
‘= ‘. - - . [44]
Sy E'semy+ [(2 rlo, +(2p 1)ay][Z—ZO] X

2(1-p?)Hoye,

The variations of the stresses o and o ; can be found using S and § y’ . It can
easily be shown that
S, +uS
P 4 [45]
1-p?
Taking the variation of o, as given by Equation [45] and treating Poisson’s ratio p as a

variable, we have

11



S/ +uSy' [(1 + !‘2)Sy+2#5,,]#'
+

1-p? (1-p?)?

g =

[46]

Substituting Equations [43], [44], [38], and [39] into Equation [48] gives the expression for

ax' in terms of the strain variations:

4 1 rd 4 rd (Es—Et)
o, = Ei(e,~Zx, tre,, )+ (2-u)o, +(2p-1) 0,
1-p2 2(1-p*)Hoye,

1

(ay+y.ax) E_“e
[(Z"Z°)("‘+"‘Y)x"']+o(1 2y g (FmR) [(2—")0"
2(1-p*)YHose,

+(2"‘1)"y] (emz—ZXx.)+ [(2# -1o, +(2-4p) a~y]¢m'5,}} (47

Similarly, the variation of the circumferential stress is

E -E -
i [(2—p)ax+(2u—1)0)][(Z—Z0)(¢y+#€x)x;

= {E (e +mey) +

R P 2(1-u?)Ho,e,
(oy +po,) ‘:[
+ "Mep-1o,_+(2 - )a](e' +¢')—[(2— Yo +(2 —l)o]Z ’
‘———————-—{.\ P H B i X
2(1 —#2)H0lei\ x y mx my x X x
(48]
The variation in the longitudinal moment is
h/2
Mé’f 0. 2dZ [49]
-h/2

Substituting Equation [47] into Equation [49], integrating, using Equation [42] for Z , and
d2w’-

recognizing that x /= — the second derivative of the variation of radial displacement

dz

w’, we obtain

12



M’ =-D A {501
1
P dz?
where
3
b, - Bs b [51]
12(1 - p?)
and ( E‘ )
- .
A1=1"———s—[(2—u)0x-(1—2p)0y] [521]
4(1-p*)Ho?
The variation in the circumferential force is
h/2
Ny-=f a, az [53].
-h/2

Substituting Equation [48] into Equation [53], integrating, and then using Equation [42]
for Z o We get

, du’ w’
where
Esh
Bp = [55]
1 -u.2

4, -1 [(1 )0, ~ (2 )0]2 [56]
=1——|(1-2p)0, - (2- 4
2 41 -?)Ho? 7

(%)

4. =1+ ° [(2- )ax—(1—2p.)0][(1—2p)ax—(2—u)o]
" 4p(1 - p?)Hol ! ¢ ¢

(571

13-



and after recognizing that

, du’
mx Z
r'd w’
‘ . T —
my R
Similarly,
du’- w’

The prebuckling equilibrium expression 'for radial forces acting on a circular cylinder

undergoing axisymmetric deformations is

d?M_ N a2
- x+—y+Nx——w—p=0 [59]
dz? F dz?
. R : . . -~ d*w
To obtain the equilibrium expression during buckling, the variations of ¥, Ny » N oo :i;; )

and p are added to their respective prebuckling values, and the sums, such as (M, + M.y,
are substituted into Bquation [59] which then is subtracted. The following equilibrium

expression for buckling results:

2u ’ 4
aM, Ny' d?w’. ,dzw ) &2’ ,
- +—+N, +N/ + N/ -p°=0 (601
dz2 F dz? dz? dz?
But
4 R 4

Thus, from Equation [58]

or

B n [62]
o P THS12 7
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Equations [61], [62], [50], and [54] are substituted into Equation [60] to obtain

. d4" B A2 2. A 2 2.7
PR TRk Py L) WP Vo PR S Cc Al S )
P TR \"27HEY x 4 ' P

dz 1 dz? 1 2(idm2 dx?

During the buckling process the variation in pressure p“is very small compared with N and

2,7

with variations in deflection w’- or curvature . Consequently, p is assumed to be zero.

. da?
Then Equation [63]
2
4w’ B 43 2w’
Dp 4, +——'-,(A2-u2—)w'-+ N, ad =0 (64]
d* B 4, dar?

- . . . - PR
Substituting Equations [51] and [55] into Equation [64], recognizing that N = 5 and
rearranging terms, we have:

4’ 5, PE d?w’ 12 A122
A, +6(1 —-p%) + A, -p—— w’=0 [65]
da* E A da® R 4,

LONG CYLINDERS

As in the elastic solution let us first consider a long cylinder under hydrostatic load-
ing. The definition of long will be determined from the analysis. A solution of Equation [64]

can be written

nm
, ’ o0
w = wm-sm

[66]

The deflection function given by Equation [66] is based on the assumption that simple
support exists at the stiffeners bounding the shell during buckling. When Equation [66] and
its appropriate derivatives are substituted into Equation [65], the following expression in

terms of n results:

2 a L2 2
Py = e Es(i-) 0[( ! ) +1(———””) ] (671
/3(1_,‘2) R nn % “PL

where

C= [68]
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and

. - (69]

In a manner similar to that described for elastic buckling it can be shown that the num-
ber of half waves of buckling changes from n =1 to n =2 when o, L = 7. Thus, if a cylinder
is such that a, L is greater than =, it will be denoted as ‘‘long.’” Also, in a manner similar
to that described for the elastic case, it can be shown that as n goes to infinity, which would

be the case for infinitely long cylinders, the buckling pressure can be expressed as

2 A
Pep=C ——=E (——)2 (701

V3 - %) \E

Again, if the moduli E_ and E, are set equal to Young’s modulus £, Equation [70] degen-
erates to the elastic solution given by Equation [13].

LONG CYLINDERS UNDER AXIAL COMPRESSION

Equation [70] is general enough to apply to the case of loading a very long cylinder
by end compression as well as by an enveloping hydrostatic pressure field. Thus, for end

compression only, o, = 0, 0o;=0,, and the plasticity coefficients reduce to

4, =1- (2 - w?
4(1 - u2)H
Ll
(-5
4, =1- (1 - 2p)?
41 - p2)H
&

(-
A,=1+ (1- 2p)?
4p(1 - p®)H
Et
()
H=1+—(1-2p)? (71]

41 - p?)
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When Equations [71] are substituted into Equation [70], the expression for the buckling

pressure on the ends of the cylinder results:

p,,=C 2 il E (h\f [72]
er a /———“3(1_“2) Es s\R;
Since
P, B
acr= 2h ’
then
c ! . E ( A ) (73]
Oer = by 7/7/7—7F = s\ p
’3(1 _ #2) Es R
where
1
C, = [74]
a %’( Et)(1_2“)2
+ ——— ———————
EsT 41 -p2)
For
1
u = ”’e =_2—’ Ca =1
and

_2‘/-”5: o (2
ocr_g Es s\ p [75]

Equation [75] is identical to that derived by Gerard!? for p =%. Gerard, however, recom-

mended the use of the following expression for values of x other than 1:

E
e V5 (2) )
/3(1_#2) Es S\ R

It should be noticed that Equation [73] differs from Equation [76] only in the coefficient C,.
For values of u between 0.3 and %, C, is almost equal to one, and Equation [73] gives
values of o, which are less than 2 percent smaller than those given by Equation [76]. Thus
Gerard’s solution given in Equation [76] is a very good approximation to the more rigorous

solution represented by Equation [73].
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SHORT CYLINDERS

If aPL is less than =, the cylinder will be denoted as ‘‘short’’ as in the elastic
analysis. If the half-wave length of buckling is taken equal to the stiffener spacing, Equa-

tion [687] becomes, for n = 1,

a [\2
e n (A o[ (Y]

Equation [77] can be rewritten in another form, which may be more convenient to use, as

follows:

A2 2 A
2 ) A 1 A
Per= (Az—uz—”) c*E (—) 4 ——— —E (—)2 [78]
2 A4 s 2y .2 S\R
1-e%) 1 8(1-pn%) c

The parameters and coefficients of Equations [77] and [78] are:

L2
c?= [20]
m2Rh
4, AL
- ¢ —
ap= [69]
R2p2
1 (1 i (37]
E=9"\e He) &
(1-2)
Es 2 *
A1=1-————[(2—p)-(1—2#)k] [79]
4(1 - p?)K2H
(1-)
Es 2
A2=1-——[(1—2u)—(2-p)k] [80]
4(1 - p?)K2H

*
Equations [79] through [82] are derived by substituting Equations [83] and [84] into Equations [40] y [52], [56],
and [57].
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(1-3)
A,=1+ m[(z —u)-(1 - 2;;)1:] [(1 -ou) - (2 - n)k] [81]

E
(b5)
ES
H=1+-——-—-——-{[(2—u)—(1—2,¢)k]2—3(1—u2)} [82]
41 - p2)K?

ag
k= [83]
ax

K2=1-Fk+ k2 [84]

PROCEDURE FOR COMPUTING PLASTIC BUCKLING PRESSURE

The application of the plastic buckling equation requires some practical judgment.

In the buckling equation the moduli £  and E, are considered constant at all points throughout
the shell, whereas these moduli actually vary along the length as well as through the thick-
ness of the shell. An infinite number of buckling pressures p . can be obtained by substi-
tuting different values of the moduli into Equation [78], but the only ?., that is a solution is
that which satisfies both the buckling equation, Equation [78], and the prebuckling equilib-
rium condition of the shell. ’

At present there appears to be no rigorous theoretical solution for computing prebuck-
ling stresses in the plastic range for the problem considered. A procedure will be followed
analogous to that used in the past for elastic, perfectly plastic materials. For this case the
membrane stresses at collapse are computed by using an elastic analysis, such as that of
Salerno and Pulos. Furthermore, the stresses considered are those at midbay which is con-
sidered the critical point in the shell. Similarly, for a strain-hardening material the membrane
stresses can be computed at midbay by the elastic analyses of Reference 1. Then o, can be
computed for different values of pressure Ps_p + Consequently, a plot of pg_p against o;
is obtained.

From the stress-strain curve 0;y E , and E, can be obtained. The secant modulus is
computed as simply total stress divided by total strain, and E, is the slope of the stress-
strain curve measured at a particular o;. For different o , p . can be computed by substi-
tuting the values of E _ and E, into Equation [78]. A plot of ?,, against o; can be obtained.

The pertinent buckling pressure is obtained where the Ps_p —o;and p_ - o, curves intersect.
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For an elastic, perfectly plastic material £, = 0 and E_ varies from a value of E to
0 for constant stress equal to the yield point oy p . Thus, when the plastic buckling equa-
tion is used, the plot of p _ against o; is a vertical line at the abscissa oy p. The inter-
section of the pg_p —o; curve with the p_ - o; curves gives a buckling pressure which is equal
to that obtained by satisfying the Ilencky-Von Mises yield condition with the membrane stresses
at midbay. This membrane-stress procedure has been shown!3 to give collapse pressures that
agreed fairly well with those obtained in experiments with cylinders composed of steels with a
plateau-type stress-strain curve. However, this method generally gives pressures above the
experimental pressures since it does not adequately account for the plastic bending of the
shell. Nevertheless, within certain limits discussed in Reference 12, this membrane-stress
method is a good approximation. Thus the procedure for computing the plastic buckling pres-
-sure for a strain-hardening material degenerates to a known procedure for an elastic, perfectly

plastic material.

COMPARISON OF THEORY WITH EXPERIMENT

At the present time the amount of experimental evidence which can be offered in
support of the theory is very limited. Only three tests are presented; many more would be
required to prove conclusively the validity of the theory.

Test results are presented for two cylinders of strain-hardening steel, Models 1 and 2,
and a third cylinder of strain-hardening aluminum, Model 3. Nondimensionalized stress-

strain curves of the materials are shown in Figure 3 which includes tables of tangent and

1.20
S ey e
1.00 —
//
/
0.80 //
y,
/ K4 Plastic Moduli, psi
] 060 ‘yp E, Ey
/ 0.909 (2778 x 107 |1.086 x 107
/ 0.949(2.509 x 107 |5.825 x 106
. 0.989(2.171 x107|4.200 x 106
0.40 Vi
”e = 0.3
Steel
0.20 //
/
0 0.20 0.40 0.60 0.80 .00 .20 .40 1.60 1.80

&
ey

Figure 3a — Model 1
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Figure 3b — Model 2
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Figure 3c — Model 3

Figure 3 — Nondimensionalized Stress-Strain Curves
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Figure 4 — Geometry of Models

secant moduli used to calculate theoretical buckling pressures and also to evaluate the
criterion of Budiansky for ascertaining the validity of the deformation theory of plasticity.
This criterion, determinations of which is presented in detail in the Appendix, was satisfied
for the three cylinders.

The stiffened cylindees were made from thick forged tubes. The tubes were machined
to form ring frames of T-section integrally attached to a thin shell. The geometries of the
cylinders are shown in Figure 4.

The cylinders were tested under external hydrostatic pressure in a 20-in. diameter
pressure tank at the David Taylor Model Basin. The general appearance of a collapsed model
is shown in Figure 5.

The theoretical results are shown in nondimensional form in Figure 6. The intersection
of the curve representing the prebuckling equilibrium state of the cylinder as determined by
the analysis of Salerno and Pulos with the curve satisfying the plastic axisymmeiric buckling
equation is clearly shown as the theoretical buckling pressure. The membrane stress method
is simply the calculation of that pressure at which the membrane stresses satisfy the Hencky-
Von Mises criterion for the 0.2-percent-offset yield point of the material. The experimental
results are also indicated.

The theoretical results compare very well with the experimental results. For the
axisymmetric plastic buckling theory the calculated values were 2 percent higher than the
experimental values for Model 1, 1 percent lower for Model 2, and 6 percent higher for Model 3.

22






0300 ——————— ¥ __
/;M\ﬂnbmnj)_sness \
Method
/(Solerno and Pulos |
Q275 +
/ |
|
|
o L11 ! [T R N N B
58300 0350 1000

0.700

Experimental, L. 0.296
P 7/

Figure 6¢c — Model 3

1,050

Figure 6 — Graphical Determination of Buckling Pressure

0.650
0600 N 0650
-Plastic Buckling
Equation
0550 0600
"Plastic Buckling
Equation
0500 0550 A
TneoreticoL
8 .
a Buckling, = OAV:sO “{a’
0450 ! 0500
Experimental, BE = 0421 ) Theoretical Buckling
|
— alerno and Pulos 0450
0400 = ] \ 1| Experim
Membrane Stress | e ——
iR
Method, ot 0438 , -
0350 - 0400 S | /
| Membrane Stress
: Method, 5"— 20424
1 0350
0300
090 092 094 096 098 100
i
%p 0320960 0970 0980 0990 10 1.010
i
Oyp
Figure 6a — Model 1
Figure 6b — Model 2
0375
0250 Plastic Buckling Equation
0325
ol s Theoretical Buckling, p_ =0.313
a



SUMMARY

The theoretical and experimental results are as follows:

1. The differential equation of equilibrium for a cylindrical shell buckling azisymmetri-
cally under hydrostatic pressure has been derived for the plastic range and for wariations in

Poisson’s ratio.

2. Expressions for the plastic buckling pressures for ‘‘long’’ and ‘‘short’’ cylinders

have been derived. These expressions degenerate to those for the elastic buckling pressures.

3. The criterion of length of shell for ‘‘long’’ and ‘*short’’ cylinders is presented for both
elastic and plastic buckling, below which the shell can buckle in only one half wave.

4. Limited experimental evidence is in agreement with the theory, but more experimental

evidence is needed before confirmation is conclusive.

5. A solution for the plastic buckling of a cylinder under end compression has been ob-
tained as a special case of the problem considering hydrostatic loading. The solution degen-
erates to that previously obtained by Gerard for a Poisson’s ratio of ¥ but represents a more

rigorous solution in terms of variable Poisson’s ratio than that of Gerard.

RECOMMENDATIONS

A systematic series of stiffened cylinders designed to fail by axisymmetric plastic
buckling under external hydrostatic pressure should be tested. In particular, the following
effects should be studied:

1. The influence of strain-hardening on buckling pressure should be investigated.

2. The influence of geometry should be explored. The criterion between ‘‘long’’ and
‘“‘short’’ cylinders should be established experimentally. In addition, the geometries delim-

iting axisymmetric and asymmetric (multilobe) buckling should be investigated.

3. The influence of residual stresses and imperfections on plastic axisymmetric buckling

should be investigated.
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APPENDIX

DETERMINATION OF CRITERION FOR VALIDITY
OF DEFORMATION THEORY OF PLASTICITY

By Reference 22 the criterion to be satisfied for ascertaining the validity of the use
of deformation theory is

)

1
>
cos ¢ = [85]
v 1 1
E, E
1+
1 1
L E, E_.
where .
Sij Sij
cos ¢ = Y (861
Equation [86] is expressed in terms of the stress deviation tensor
Sij=aij—gakk 3i]. (871
where & ij is the Kronecker delta. For biaxial compression
033=0,=0
043=%,=0 [88]
23 =%z~ 0
Therefore
8138,3=0 [89]
and
311“’11"5("11*"22):% (0, +0,)
S5, 022——5(011 +022)=ay (°x+ay) [90]
8353=0 ——(a'u+022)= (ax+oy)
812=012=7

27



When the components of the tensor Si]. as expressed in Equations [90] are substituted

into Equation [86] and the appropriate derivatives with respect to time are performed,

cos ¥ = 2 : Y [91]
1. . 3 . .
{[5 (oy + ox)] + [—\/2:(0y - ax):l }
Let
¢ = § (Uy + Ux)
V3 {92]
n= ‘7(0,, - "x)

A plot of £ versus 5 is shown in Figure 7. Equation [7] indicates that ¢ is the angle between
the radius vector o, which has the value of stress intensity given by Equation [22], to any
point and the tangent to the loading path (£ - n diagram) at that point. The angle y is clearly
shown together with the angles @ and ¢ denoting the slopes of the radius vector o, and the
tangent to the loading path respectively.

From Figure 7 it can be seen that

3

Yy=0-¢ [93]
where ¢
v 6 = arctan — [94]
da; " n
A1 P
—_ n and ¢ = arctan -é [95]
< 8’!]
+
| Loading Path
e After substituting Equations [92] into
- A Equation [94] and using the relation % = 0y /0
we obtain
0 L (k ! 1) [96]
IRV AVES
0
\ - The variations of Equations [92] are:
n= é;—'("y "'1)
h 4 d
Figure 7 — Loading Path Diagram for 8¢ ) (Ny +N) [97]
Determination of Angle ¥
vg ’ rd
oy =—2(Ny -NJ) [98]
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Previously, it was found that

, du’ w”
Nx =BP [Al—‘};+p.A12—E] [58]
and
. _B A du’ w’
Ny = p n lza +A2—E [54]

4

du
By symmetry, e’ must be zero at midbay; therefore, at midbay
&£

[99]

where w ~ is the variation of the deflection at midbay. ,
After substituting Equations [99] into Equations [97] and [98], we obtain

th
&8¢ = T (4, +pd w,
(1001
\/ﬁhBP

2R

on = (4, —rd)w,

The slope of the tangent to the loading path is determined by substituting Equations [100]
into Equation [95], thus

1 4,+edy, [101]
=arctaD — ————————— 101
¢ = arctan NE Az‘#Au

For the models tested, the angles 6, ¢, and ¢ were evaluated at midbay and at the
computed buckling pressure. The angles 6 and ¢ were determined from Equations [96] and
{101]. Both equations depend on %k, which was determined by the elastic theory of Salerno
and Pulos at midbay and at the computed buckling pressure. As stated previously, an elastic

theory is admittedly approximate but is used in lieu of a more rigorous plastic stress analy-
g

sis. However, it is believed that the ratio of membrane stresses & = 2 will not change

Ox
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too much after yielding begins. Indeed, for very long cylinders, %4 always equals two for
both the elastic and plastic ranges. The angle ¢ was then obtained from ©quation [93] and
the criterion of Equation [85] was evaluated for the values of £, and E_and used to compute
the angles 6 and ¢.

Budiansky’s criterion can be evaluated only with the foregoing procedure at midbay.
As a rule, however, a point at midbay is considered to be the most critical in failure by

axisymmetric yielding.
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