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NOTATION

a, b, c, d, f, g

E

h.

Hi

Mi

P

Qi

R

U

w

a i

Fa, Fb, Fc, Fd

Coefficients representing edge rotation and displacement per unit
edge or surface load

Young's Modulus

Shell thickness

Discontinuity shearing force normal to axis of symmetry

Discontinuity bending moment in a meridional plane

Hydrostatic pressure

Discontinuity shearing force normal to shell surface

Radial distance from axis of symmetry

12 (1 - v2 )

Displacement perpendicular to axis of shell

Coordinate taken along shell generator, measured from juncture or
base of cone

Coordinate taken along cone generator, measured from apex of cone

Angle between axis of cone and generator

3 (1 - 2) cos 2 a

R i2 2

Strain

Poisson's ratio

Stress

Functions defining bending action of the shell

Axial rotation of shell

Eh3

, flexural rigidity of shell
12 (1 - v2 )

Ring dimensions associated with Figure 6a1' S,
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ABSTRACT

A second approximation to the complete theory for the axisymmetric

deformations of thin elastic conical shells, as derived by E. Meissner and

F. Dubois, is presented. This simplification of the exact differential equa-

tion leads to a so-called Geckeler-type approximation for conical shells.

From this approximation, a step-by-step numerical procedure is de-

veloped for calculating stresses and strains throughout the conical elements

of shell structures. The methods include computation of the edge shearing

forces and bending moments which arise from discontinuity effects at cone-

cone and cone-cylinder junctures, either with or without transverse rein-

forcing rings.

The range of applicability of the approximation is also discussed.

INTRODUCTION

Because of the increasingly frequent use of conical shells in the pressure hulls of

submarines, a simplified procedure has been developed by which the elastic behavior of these

structural elements may be easily computed. The method makes use of exponential and trigo-

nometric functions for determining the axisymmetric discontinuity stresses and strains at

either end of a truncated cone joined to another cone or to a cylinder with or without trans-

verse reinforcement at the intersection, or those at or near stiffeners on semi-infinite cones.

The analysis underlying this computational procedure follows closely the Geckler approxi-

mation 1 to the more rigorous Love-Meissner equations of equilibrium for shells of revolution. 2

The use of a Geckeler-type approximation for analyzing stresses in conical shells has

long been employed in the pressure-vessel industry. However, when design calculations for

steep conical transition sections on submarines were first required in 1951, it was not known

whether the approximation was sufficiently accurate for the strength analysis of submarine

pressure hulls. A study of the exact Love-Meissner theory, as applied to conical shells by

Dubois3 and Watts and Burrows 4 showed it to be impracticable for reinforced cone-cylinder

intersections. There was then developed by Wenk and Taylor5 a first approximation to the

complete theory which would facilitate analysis of reinforced junctures. These same authors

later presented a different form6 of the exact solution and one from which the errors involved

in an approximate solution could be specifically evaluated. Their results included a state-

ment of edge coefficients for conical shells which provided a convenient method for analyzing

the reinforced intersections at both the large and small ends of truncated cones. The results

published in TMB Reports 8265 and 9816 were evaluated experimentally and were found

valid. 7

1References are listed on page 32.
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In a search for more rapid methods of computation, a second approximation to the com-
plete theory which is essentially the Geckeler-type approximation for conical shells was re-
considered. For the geometries of interest to submarine designers this further approximation
was found to differ but little from the more rigorous analyses.5 ,6 Also, as might be expected,
this Geckeler-type approximation was more reducible to a step-by-step form of computation.
The numerical procedure resulting from this simplified analysis is presented in this report.
First, equations for computing stresses and strains throughout a conical shell as a function
of edge forces and moments and the hydrostatic pressure loading are presented. Next, equa-
tions are provided for computing these edge forces and moments where the cone element is
joined to another cone or cylinder, with or without transverse reinforcement at the common
juncture. A numerical example is then given in Appendix A showing in tabular form the
routine by which stresses and strains may be computed for a structure composed of two cylin-
drical shells of different diameters joined by a conical transition section and having rein-
forcing rings at both intersections.

The derivation of this second approximation to the complete theory for conical shells
and its justification are presented in Appendix B. The formulas for stresses and strains re-
sulting from this analysis are derived in Appendix C.

GENERAL CONSIDERATIONS

In accordance with general methods for evaluating discontinuity stresses at shell inter-
sections, an unstiffened truncated section of cone, which is assumed to have a length sufficient
that the boundary conditions at one end do not disturb membrane deformations at the other, is
isolated for study. Under pressure loading, the stresses and displacements everywhere in
the shell are the sum of the membrane terms and additional terms corresponding to discon-
tinuity shear and moment loads uniformly distributed on the periphery of each boundary. These
discontinuity effects, considered to be axisymmetrical, depend on the contiguous structure
to which the conical element is joined. They result from the fact that the membrane defor-
mations which would occur in each member, separately, under pressure loading are not iden-
tical so that the edges of the several elements theoretically would deform different amounts
and hence would not match. To enforce compatibility of displacements and rotations of the
intersecting elements such a discontinuity can be eliminated by the introduction of additional
forces and moments at the edges of each component shell. These, of course, must themselves
satisfy equilibrium conditions. The method is readily applied to cone-cylinder and cone-cone

junctures.

If transverse reinforcement in the form of a ring stiffener is provided at the intersection,
a corresponding analysis is made with the additional feature that compatibility of displace-

ments and rotations is required of both the shell components and the stiffener at the common
juncture. As another special case, stresses near ring stiffeners in a reinforced conical shell

are obtained simply by considering the large end of one semi-infinite cone joined to the small

II II a- Il r ,I II_- IIII rr~



end of another semi-infinite cone of equal apex angle, with a transverse ring at their inter-

section. In considering the reinforced-intersection problem, it is first assumed that the stif-

fening rings are very narrow and thin so that there is practically line contact around the cir-

cumference at the common juncture of the three elements-the ring and the two axisymmetric

shells-and that the ring properties are concentrated on this line. However, if the inter-

section is reinforced by a heavy forged-ring type of stiffener with appreciable cross-sectional

dimensions, then the assumption of line concentration is no longer valid, and the analysis is

extended to include the effects of such finite width and depth upon the intersection defor-

mations.

Particular cases of composite structures such as these are discussed in further detail,

and final formulas for the discontinuity shears and moments are given in this report. The

analysis of composite structures including other components, such as spherical, elliptical,

and toroidal shells of revolution follows closely that described in this report, and sugges-

tions are given for extending the present results to such cases.

COMPUTATION OF STRESSES AND STRAINS

A thin-walled shell, such as a cone or a cylinder, develops only membrane stresses

and strains when loaded solely by uniform hydrostatic pressure provided that the edges of the

shell are unrestrained. However, in reality the edges of such shell structures must be re-

straihed in some manner, i.e., attachment to other components or foundations or closures to

make them pressure-tight. In the vicinity of these restrained edges, local bending stresses

are developed in addition to the uniform membrane stresses. Formulas are presented herein

for determining the total stresses and strains which arise from the superposition of these

discontinuity and membrane effects.

The nomenclature and sign conven-

tions used in the analysis of a truncated

conical shell are defined in Figure 1. These

are applicable whether the edge of the shell

under consideration is the large- or small-

diameter end of the cone, or the end of a cy-

linder, which is taken to be the limiting case

of a truncated cone (either end) as the angle S
a i approaches zero. Note that ax is the dis-

tance along the generator of the shell meas-

ured from the edge under consideration and

not the distance from the cone apex as in

Reference 5.

A bending moment Mi is considered posi-

tive if it tends to put the outer surface of the

pRi
2

Axis of

ymmetry

Figure 1 - Notation for Conical
Shell Element
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shell in tension, and a shearing force Hi is considered positive when it acts in a direction

away from the axis of symmetry. The transverse shearing force Qi is composed of the radial

shear component H. and the axial force pRi/2. A hydrostatic pressure p is considered positive

when it is external; for internal pressure p is negative. The subscript i is used to distinguish

the structural elements from each other where an intersection composed of two or more such

elements is being analyzed.

The quantities H, and Mi are discontinuity shears and moments arising from the inter-

sections of various shell elements with each other and with stiffening rings. They may be

determined in terms of the shell geometry and elasticity and the surface loading by enforcing

conditions of force and moment equilibrium and continuity of radial displacement and axial

rotation at the juncture.

Once the discontinuity shears Hi (or Qi) and moments Mi are known, the following

formulas may be used for determining the longitudinal and circumferential stresses and

strains in each shell element as functions of the distance x from the shell edge under study:

Longitudinal stresses (the upper sign is for the external fiber and the lower sign for the in-

ternal fiber):

pR Q i
=- + 2 - M. tan a. +

2h cosa. h. I H -,i

[1]

6M [ - Qi

h,2 Pi Mi

Circumferential stresses:

= - 1 --- - - + vu x  [2]
k. cos a. 2 . 2 'i

Longitudinal strain (external fiber):

pR Q
S- (1 - 2v) + 2 - (1-v 2) Mi tana

x 2Eh.cos a i  Eh. o M [3
[3]

SQ.
+ - Fa - Fb

Eh. 2 L w P'i ih i M £ l
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Longitudinal strain (internal fiber):

pR /3i Qi
ex=- (1-2v) + 2 (1- 2) Mi tanai Q V +

2Eh cos a I  Eh 2Li M
[4]

Mi Qi
+ - F Fd

Circumferential strain (all fibers throughout shell thickness):

pR v U 2 Mi F Qi 1

Eh cosai 2 Eh2 Mi

In these expressions

43 cos 2 a. cos a
P (1 - v2 ) 1.2854 ; for v 0.3

R2 2 R.

[6]

and

U= 4 2(1-v 2 ) = 1.81784; for v = 0.3

Equations [1] through [5] are derived in Appendix C.

It should be noted that for a conical shell the radius R varies linearly with the coordi-

nate distance x, i.e., R = R i + x sin a i where the minus sign applies to the large end and the

plus sign to the small end of a truncated cone. In the limiting case as the half apex angle

a i -+ 0, Formulas[l] through [5] reduce to analogous expressions for a circular cylindrical shell

for which case the radius R now becomes a constant.

The functions 4, , 0, 0, Fa , Fb, F., and Fd used in computing the bending terms in

Equations [1] through [5] are defined by the following:

S(3x) = e-Px (cos 3x + sin px); (/3x) = e - x cos 3x

, (3ax) = e - 1x (cos 83x - sin 3x); (3x) = e- 1 x sin [7]

Fa, c ( ) = + 6(1- v 2 ( )+v / ( v 2 ) (3X)

Fb,d ( X) = + 6(1- 2) ( )+v v2) 0 (Ox)

S If II MI,
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where the plus signs apply to F and Fb and the minus signs to F, and Fd; they are all functions

of the dimensionless variable xa. These quantities computed for several values of /x are

given in Table 1 and represented graphically in Figures 2 and 3. It is seen that all the func-

tions approach zero as the quantity 3x becomes large. This indicates that the bending pro-

duced in the shells by the discontinuity forces and moments is actually local and damps out

rapidly away from the loaded edge. In practice, it is convenient to choose values of 8x which

appear in rable 1 so that interpolation will not be necessary. From these and with [3 com-

puted from Equation [6] the corresponding values of x can easily be found, and the stress and

strain distributions may then be determined using Equations [1] through [5]. The procedure

for carrying out these computations is illustrated in Appendix A.

TABLE 1

Functions Defining Bending Action of Shell

8-z f 8 . F4 F b Fc Fd

0 1.0000 1.0000 1.0000 0 6.4514 0.9914 -4.4686 0.9914
0.1 0.9907 0.8100 0.0903 0.0903 6.2122 1.3855 -4.6062 0.3995
0.2 0.9651 0.6398 0.8024 0.1627 5.9037 1.6838 -4.6351 -0.0928
0.3 0.9267 0.4888 0.7077 0.2189 5.5444 1.8968 -4.5752 -0.4936
0.4 0.8784 0.3564 0.6174 0.2610 5.1494 2.0372 -4.4428 -0.8130

0.6 0.7628 0.1431 0.4530 0.3099 4.3068 2.1412 -4.0230 -1.2430
0.8 0.6354 -0.0093 0.3131 0.3223 3.4601 2.0702 -3.4785 -1.4494
1.0 0.5083 -0.1108 0.1988 0.3096 2.6655 1.8875 -2.8851 -1.4933
1.2 0.3899 -0.1716 0.1091 0.2807 1.9588 1.6408 -2.2990 -1.4244
1.4 0.2849 -0.2011 0.0419 0.2430 1.3562. 1.3683 -1.7550 -1.2853

1.6 0.1959 -0.2077 -0.0059 0.2018 0.8637 1.0960 -1.2755 -1.1076
1.7 0.1576 -0.2047 -0.0235 0.1812 0.6576 0.9661 -1.0634 -1.0127
1.8 0.1234 -0.1985 -0.0376 0.1610 0.4770 0.8418 -0.8706 -0.9164
1.85 0.1078 -0.1945 -0.0433 0.1511 0.3958 0.7821 -0.7814 -0.8679
1.9 0.0932 -0.1899 -0.0484 0.1415 0.3206 0.7246 -0.6972 -0.8206

2.0 0.0667 -0.1794 -0.0563 0.1230 0.1864 0.6158 -0.5420 -0.7274
2.2 0.0244 -0.1548 -0.0652 0.0895 -0.0203 0.4241 -0.2867 -0.5533
2.6 -0.0254 -0.1019 -0.0636 0.0383 -0.2397' 0.1461 0.0377 -0.2721
3.0 -0.0423 -0.0563 -0.0493 0.0071 - 0.2868 - 0.0101 0.1752 -0.0877
3.4 -0.0408 -0.0237 -0.0323 -0.0085 -0.2463 -0.0784 0.1993 0.0144

4.0 -0.0258 0.0019 -0.0120 -0.0139 - 0.1390 -0.0878 0.1428 0.0640
5.0 -0.0046 0.0084 0.0019 -0.0065 - 0.0168 -0.0336 0.0334 0.0374
7.0 0.0013 0.0001 0.0007 0.0006 0.0072 0.0040 -0.0070 -0.0026

DETERMINATION OF EDGE FORCES Hi AND MOMENTS Mi

The discontinuity forces and moments which arise from a mismatch of membrane defor-

mations in intersecting shells may be determined from considerations of force and moment

equilibrium and of compatibility of rotations and displacements of the edges of the component

shells at the common juncture. The unit edge rotations and displacements can be expressed

in terms of edge coefficients such as those defined and discussed in References 5 and 6.

rim I14i I All im a



These edge coefficients are functions of the geometry and elasticity of the two intersecting
component shells; they represent the amount of axial rotation and radial displacement per
unit edge bending moment, unit edge shearing force, and unit surface pressure. The total

rotation 0i and displacement wi of the edge for combined loading are then obtained by super-

position, i.e.,

i = a i Mi + bi Hi + tip

[81
i = di Mi + gi Hi + fip

where ai, bi, ci, di, fi, and g, are defined as the edge coefficients.

The method of using edge coefficients is general and is very convenient in the analysis

of any composite structure, such as those encountered in pressure-vessel design. Here we

shall consider in detail the intersections of conical and cylindrical shells, a typical case of

which is shown schematically in Figure 4 with the discontinuity forces and moments acting

at the shell edges, and treat particular cases of interest in the field of submarine pressure-

hull design.

Symmetry 

Figure 4 - Notation for Cone-Cylinder Juncture

CASE A: UNSTIFFENED INTERSECTION OF CONICAL AND CYLINDRICAL
SHELLS OF DIFFERENT THICKNESSES, SUBJECT TO EXTERNAL HYDRO-
STATIC PRESSURE

In this analysis of the intersection of two shells of revolution, it should be recalled

that each component shell is assumed to be sufficiently long that the boundary conditions at

the far ends do not affect those at the common juncture.

When two such shells, identified by i = 1 and i = 2, are joined together with no trans-

verse reinforcement at their intersection, the discontinuity bending moment and radial shearing

_.I I I--. 11 ~II I - -111 1111 I- ra41



force may be determined from the following expressions:

fb-cy
M p1 ag - bd

cd - af

H, ag- bd

and the transverse shearing force from

pRi
Qi = Hi cos a i + -

where

where

a = a + 2 ; b = b - b2 ; c =c 1 + c 2

d = d - d 2 ;f-f 2; g = g + g 2

The quantities a1 , a2, b1, b2 . . .

shells as

are edge coefficients defined for conical and cylindrical

U3 / 2R ia. -- cos
E cos a

bi= + -

E h?

U2

. =+-2E
2E

R 2 tan a i  3R i  tan a i

h2  2Eh cos a
I

= + -
Eh.2

9

RV sin2 a.

2 h cos a

-- )
2

E hi cos a.

=- H 2

sin a. $ [10o]

[11]

U
fi = -

E

--- --- INIM A NI m ll IY III Ii,

=M
2

R2t



and

gi = - cos a.
E h3

where

U = 12 (1- v2)

These edge coefficients are functions of the shell geometries and material properties

only and are independent of the type of intersection. Since the coordinate x is measured from

the intersection (Figure 4), the signs of the coefficients aj, bi, and ci differ from those given

in Reference 5 where x is measured from the cone apex. The upper signs in Equations [10]

and [11] apply to the large-diameter end of a cone, and the lower ones to the small-diameter

end of a truncated cone. It should be noted that those terms in Equations [11] with alternate

signs vanish for a cylinder since a = 0.

Thus, after the appropriate edge coefficients have been determined from Equations [11]

the edge moments and shears at the unreinforced intersection of any combination of two cy-

lindrical or conical shells may be found from Equations [9] and [10].

For the particular case of the intersection of the large-diameter end of a truncated cone

(i = 1) with a cylinder (i = 2) of the same shell thickness (hA = h2 = h), Equations [9] and [10]

reduce to the following:

p sin a 34I 3

r S/U (cos a + o ) U2 RI cosaM 2

pR 1 sin a (1 - -) (1 - cos a) A
H[1 2 =-H Q

2 (cos a + ) U sina R cos a 2 2

[12]
pR

1
Q 1 

= H , cosa +-- sina
2

where R is the radius of the larger end (base circle) of the cone.

Another special case is that of the intersection of the small-diameter end of a truncated
cone (i = 1) with a cylinder (i = 2) of the same shell thickness. Here, Equations [9] and [10]
become:

-4 ..................- l~ ~y~-~p-rl1R C - -- ^Y~-~I---- II~IIIIY* I



p sin a

U (cos

pR1' sina

21  (
2 (cos a + os )

where R1 is the radius of the smaller end (frustrum circle) of the cone.

CASE B: CONICAL OR CYLINDRICAL SHELLS WITH CLAMPED EDGES,
SUBJECT TO EXTERNAL HYDROSTATIC PRESSURE

When cone-cylinder intersections are reinforced by very heavy bulkheads, reasonably

accurate solutions may be obtained by treating each component shell separately and assuming

that the edges of each shell are rigidly fixed, i.e., zero radial displacement and zero rotation.

The resulting bending moments, radial shearing forces, and transverse shearing forces for

this case are, respectively,

pRh (1 -- )
M M= 2

U2 cos a

3p Rh 3 tan2 a

'2-U3 cos a

pR 3ph tan a 2 p (1 - )
H = - tana T +

2 2U 2cosa U

Rh

cos 3 a

[14]

pR
Q=Hcosa + -- sin a

2

where the upper sign in each expression together with R = R 1 applies to the large-diameter

end of a truncated cone and the lower sign together with R = R ' applies to the small-diameter

end. These same equations may be used to determine the fixed-ended moment and shear for

a cylindrical shell by setting a = 0. It should be noted that the terms with alternative plus

and minus signs will vanish for the case of the cylinder.

111

1+ = M2
ar + hos L U2R cos

1 - )(1 - cos da )
+ 2 - H2 Q2 [131

Ssina Rcosa [13]

pR[
Q 1 = H cosa -- sina

2



CASE C: INTERSECTION OF CONICAL AND CYLINDRICAL SHELLS REINFORCED
BY A STIFFENER OF FINITE RIGIDITY, SUBJECT TO EXTERNAL HYDROSTATIC
PRESSURE

A general composite structure, -that of two intersecting cones, covered under this case,

is shown schematically in Figure 5.

Ro Rr f,
Axis of I

Symmetry C

Figure 5 - Reinforced Cone-Cone Juncture

Particular cases of interest to the pressure-vessel designer which are specializations

of this somewhat general case are: the reinforced intersection of the large-diameter end of a
cone with a cylinder, that of the small-diameter end of a truncated cone with another cylinder,
that of two cylinders, that of the large-diameter ends of two cones, and that of the small-

diameter ends of two truncated cones.

For all these cases, the simplifying assumption is made that the two shell elements

and the reinforcing ring have line contact around the circumference at their common juncture.
A more refined analysis including the effects of a finite-width intersection is presented in

the next section.

The discontinuity shears and moments acting on the edges of the two shell elements

identified by the subscripts i = 1 and i = 2 as in Figure 5 may be determined by solving the

following set of four simultaneous algebraic equations. These equations result from satis-

fying conditions of continuity of radial displacements and angular rotations of the three in-

tersecting elements at their common juncture, and force snd moment equilibrium.

dM + k.) H - ka H = - f pdM01 + ( Rr R

d2M2 - ka H + (9 - ka R 2 P
Rr Rr

kb M, + b M2 + b 1 = - cl

S- R RR
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R kb 1 + a2 - k b  M2 + b2H2  = 2 - c 2 p

Rr Rr

where
Rr2 R2r r

ka=-- ; k b
EA r  EIr

and Ar is the cross-sectional area of the ring stiffener,

Ir is the moment of inertia of the ring cross section about the radial axis through its
center of gravity,

Rr is the radius to the center of gravity of the ring cross section from the axis of
symmetry, and

E is Young's modulus for the ring material.

As has already been mentioned, the general Equations [15] may be applied to the rein-

forced intersection of any combination of two conical or cylindrical shells simply by computing

the appropriate edge coefficients (al, a2 , bl, b2,etc.) for each component shell from Equations

[11]. The procedure for getting these coefficients is identical to that for the unreinforced in-

tersection problem, Case A. 'The transverse shearing force Qi may be determined as before

from Equation [10].

CASE D: EFFECT OF A HEAVY FORGED-RING TYPE STIFFENER
UPON THE INTERSECTION DEFORMATIONS

In Case C where various reinforced intersections were considered, it was assumed that

the stiffening rings were very narrow so that there was practically line contact around the

circumference at the common juncture-of the three elements-the ring and the two axisymmetric

shells. Consequently, the axial rotations 0i and radial displacements Ei of the two component

shells and the stiffening ring were considered to be equal at the common juncture. This is a

valid assumption provided the stiffening ring actually is very narrow as in the case of a deep

slender rectangular or "Tee" cross section attached at the web as shown in Figure 5.

If, however, the stiffening ring has a thick web or a wide faying flange, or if the inter-

section includes a heavy forged ring as is common in submarine pressure-hull design, then

the juncture effectively consists of the two shell edges with a reinforcement of finite dimen-

sions between them; see Figure 6. Although the lines of action of the axial membrane forces

of the component shells may intersect at a common point on the centroidal z-axis of the forged

ring and stiffener, eccentricities in the radial as well as in the axial direction may arise where

the edges of the shells meet the forging. The effects of these eccentricities on the discon-

tinuity moments and shearing forces, which may be significant, are taken into consideration

in the following extended analysis of the boundary conditions. Here, as before, any secondary

bending of the juncture ring in the meridional plane is neglected.
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Figure 6 - Notation for Reinforcement at Cone-Cvlinder Juncture

The new juncture conditions are as follows:

Force and moment equilibrium require,

R R 2  R3
H 3  - H 1 +-- H 2 + (1 + 82)

R r Rr Rr

R1 R2 R1 R2 p [16]
M3 =-M 1 - -- M2 + - 1 H1 - 2 2 2 + 1) 2

R r  Rr Rr Rr 8R r

P R
+- (82 - 22)
2 Rr

while continuity of structure requires,

3 = W3 + 1 0

w2 = w 3 - a 2 3  [17]

01 = 03 = - 02

where the rotation 03 and radial displacement i53 of the juncture ring are given in Reference

5 to be
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03 = bM 3 = k b  1  M 2 +

Rr R,

R R 2  p
- 81 H 1 - a2 2 + - (R2 - R1(R 2 + R1)2
Rr Rr 8Rr

P R

- (82 32 ]
2 Rr

[18]

wT = kaH =

Rr2
k -

a
EA r

where

k a  - HI +-
r Rr

and

H 2 + p (81 +

Sr2

kb-

EI r,

from the elementary thin-ring analysis. Here Ar is the cross-sectional area and Ir is the mo-

ment of inertia about the z-axis of the composite reinforcement shown shaded in Figure 6.

The total rotations and radial displacements at the edge of each component shell for

combined loading are obtainedby superposition:

01 = aM 1 + b1H 1 + cp

1 =di M + g H + f p

02 = a2 2 + b2H 2 + C2p

2 d2 M2
+ 92 H 2

+ f 2 p

[ 19]

where the edge coefficients a1, a, b1, b2 , etc. are defined by Equations [11] as before.

The four continuity conditions [17] together with Equations [18] and [19] .lead to the

following system of four simultaneous algebraic equations for the unknown discontinuity mo-

ments and shears M1, 2, H 1, , and H2:

(dl- 1kb M1 +1 kb M2 +( - ka
R r Rr

+ ( aa 2

1

+ - kb
8Rr

k b - - k a - H 2
Rr Rr

(R2 - R )(R 2 + R )2

R R1
- 2 - kb-- ) H1

R, Rr

1 1
+- kb (2
2

R3
+ 6 2 ) ka-

Rr

- 2 -
Rr

R3]
2) --Rr

[20]
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R2 1 R I

1 + d2 - 2 k b  2  1 2kbR- k a  H
Rr Rr Rr

+ 2 - k 2 - 2 kb 2 [-2 +(361 +
2 ) ka

Rr R,

82

r

kb (R2 - R1) (R2 + R 2 - k b ( 2 - 2) 3P
2 Rr

(at - kb M1 + kb
Rr 12 +  bi -

R r

R R2
a1k b  1 2k b  H 2

Rr Rr [20]

kb kb R 3 1
+- (R2 - R ) (R 2 R) 2 +- ( 2 -2

8R r 2 R,

R
kb M 1 + a2 -kb

Rr
R) M2 + 1 k b  1 + b

r Rr

(R2 R 1) (R2 + R 1)2
kb R3
- -12 22
2 Rr

Thus, for all the examples considered under Case C, if the reinforcing rings have fay-

ing webs or flanges of appreciable width or if the intersection includes a heavy forged ring

as shown in Figure 5, Equations [20] should be used instead of [15]. Any contiguous piece

of shell material in contact with the faying flange should be included when computing A, and

Ir.

APPLICABILITY OF METHOD

The range of applicability of the methods in this report was determined by comparing

the edge coefficients with those of the exact solution of Reference 6. The expressions for

determining the edge forces and moments and the stresses and strains are derived from the

R
r

Rr

f I I I I L II a I III I

= -c,

Skb
= - C 2 --[ 8.



transverse deflection function and its derivatives. The higher derivatives of w, at least

through the third, will be as valid as w itself, since derivatives up to the third were used in

determining the constants of integration. Therefore, the accuracy of the computed stresses

and strains should be about equal to that of the deflection function. The edge coefficients

are found directly from w and its first derivative, evaluated at the shell edge (x = 0) so that

the errors in the entire analysis should be of the same order of magnitude as those in the

edge coefficients.

The edge coefficients that follow from the analysis of the report are almost identically

equal to those obtained by setting the special 02 functions, which appear as multiplying fac-

tors in the coefficients of the exact solution of Reference 6, equal to unity. The exceptions

are that the third terms in the equations for c i and fi are not present in the approximate co-

efficients of this report. However, these omitted terms are generally negligible compared to

the other terms if a is not nearly equal to r/ 2 . An estimate of the maximum error in each of

the approximate edge coefficients may be made in terms of the special f0 functions, appearing

in Reference 6, of the dimensionless parameter 6, where

4/12 (1- ) R2 COS2 a

h2 sin4 a

If e is restricted to values of 10 or more for a conical shell made of steel (v = 0.3), the maxi-

mum error in any one of the edge coefficients computed from Equation [11] of this report would

be about 10.5 percent for the large-diameter end and about 6.9 percent for the small-diameter

end of the cone. If 6 is restricted to values of 20 or more, the maximum errors would be about

4.8 percent and 3.8 percent, respectively. The inequality 6L 10 corresponds to

2R cosa
> 15

h sin 2 a 0

and 6 > 20 to

2R cos a

h sin 2 a > 60

The analysis presented in this report is also based upon the assumption that the axi-

symmetric shell elements are of semi-infinite length so that there is no interaction between

discontinuity forces and moments arising at adjacent ends. From an examination of Figures

2 and 3 it can be seen that this condition is satified if fil for either end is greater than or

equal to 3.0 (where I is the length of shell between discontinuities). If the value of fil is

less than 6.0, then the discontinuity stresses and strains from each end will overlap through

a portion of the shell and they should then be superimposed. This linear superposition may

- oil 1UI



be done graphically as in the example of Appendix A.

The discontinuity bending moments and shearing forces which arise at the juncture of

any two shells of revolution may be found from Equations [9], [15], or [20] providing the ap-

propriate edge coefficients for the component shells are used. In Reference 2, Timoshenko

gives an approximate method for analyzing the stresses in spherical shells in which he sim-

plifies the problem by replacing the portion of the shell near the edge by a tangent conical

shell and, in turn, treating this as an "equivalent cylinder." In this particular case, the

edge coefficients a, b i , di, and gi as given by Equation [11],can be used directly, but the

membrane (second) terms of c i and fi for a spherical shell should be derived. Similarly, Equ-
ations [1] through [5],can be used to compute the stresses and strains in such a shell except

that the membrane terms appearing there, those terms containing the pressure p, should be re-

placed with those derived for a spherical shell. This same procedure for analyzing discon-

tinuity stresses may be extended to any other shells of revolution, i.e., ellipsoidal, tori-

spherical, tori-conical, provided the slope and change in slope at the edges are not too great.

Although the results presented herein lead to a rapid method for computing elastic

stresses, which at the same time have been verified by experiment, no attempt is made in this

report to establish a criterion for allowable strbss in design. The application of these results

to a design process is subject to the skill and judgment of the engineering designer.
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APPENDIX A

NUMERICAL EXAMPLE

The methods described herein for computing the edge moments and shearing forces and

the resulting stresses and strains in the vicinity of an intersection reinforced by a ring of

finite dimensions will be applied to a specific model tested at the Taylor Model Basin as an

illustration. This model consists of two cylindrical shells of different diameters joined by

a conical transition section. Both cone-cylinder intersections were reinforced with stiffening

rings of finite dimensions. The dimensions, including details of the cross section of the

large cone-cylinder intersection are shown in Figure 7.

h= 0.125"

h =0.110

I 3.5
a =60 \
degrees\

-0. 1875"

p = psi 625"

Rcyl

Rcone

Rr

Figure 7 - Schematic Drawing of Illustrative Model

The analysis of the large-diameter intersection will be demonstrated in detail. An ex-

amination of the cross section of the juncture shows the effective stiffening ring to have an

appreciable width which is estimated to be 0.36 in. (including effective weld material); there-

fore, 81 = 62 = 0.18 in. The radii of the two shells at the juncture and the radius to the neutral

axis of the ring are very nearly equal so it is assumed that

R1 R 2 R 3

Rr Rr Rr

1.0

and

R -R t =0

I- - 111=11



The moments and shearing forces, M1 , M2 , H 1 , and H2 will be determined from Equ-

ations [20]. The subscript "1" willbe assigned to the cone, and "2" to the cylinder. Note

that every term in Equation [20] contains Young's modulus E in the denominator. Since all

the component parts of the juncture are made of the same material (steel, for which E = 30 x

106 psi), all equations may be multiplied by E to simplify the computation. Edge coefficients

(multiplied by E) are first computed for both shells from Equations [11]. Then the cross-

sectional area Ar and moment of inertia I r (about axis a - z) of the effective ring are computed,

and the quantities Eka and Ekb are determined from Equations [18]. The values thus deter-

mined are substituted into Equations [20] which are then solved numerically, giving:

M1 = 2.16056

M2 = 0.739266

H = -5.69747

H2 = 2.27055

From Equation [10]:

Q1 = 2.99694

Q2 = H 2 = 2.27055

Note that a large number of significant figures are carried here and in the following calcula-

tions. This is believed necessary because of the many numerical operations that are performed

on each quantity.

With these values for M1 , M2 Q 1, and Q2 and the geometric and material properties of

the shells, the stresses and strains in the large cylinder and in the cone as the result of the

discontinuities arising from the juncture with the stiffening ring may be determined from Equ-

ations [1] through [5]. Membrane stresses and strains (due to pressure alone) are included in

these expressions. When all these stresses and strains are to be found for a large number of

values of x, the computations are rather tedious, so a calculation sheet has been devised

which facilitates the work somewhat. This sheet, filled in for the large-diameter end of the

cone of the model under discussion, is shown in Table 2. The numbers and expressions in

bold-face type are permanent figures on the sheet. Similar calculation sheets for the large-

diameter cylinder, the small-diameter cylinder and the small-diameter end of the cone are re-

quired to obtain a complete stress and strain distribution. Note that on the sample calcula-

tion sheet the procedure was not derived from Equations [1] through [5], but directly from the

expressions appearing in Appendix C. This amounts to an algebraic rearrangement of Equ-

tions [1] ,through [5] which was found more advantageous in cases where a large number of

calculations are required for all the stresses and strains.

The circumferential strain distribution as a function of distance from each intersection

are shown as solid lines for the two cylinder components and as broken lines for the cone in
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TABLE 2

Calculation Sheet for Computing Stresses and Strains at

Large-Diameter End of Cone in Illustrative Example

1 2 3 4* 5 6 7 8 9 10 11 12

Piz z sina R + (qX) t4(OX') 2iM~i ton a , i tan a 
i  +2

h. x hj~ 2h osa 1  ®

0 0 0 13.500 1.0000 0 0 47.18 47.18 -122.72 - 75.53 1.0000

0.3 0.4022 0.3483 13.151 0.4888 0.2189 11.10 23.06 34.17 -119.56 - 85.38 0.7077

0.6 0.8044 0.6866 12.803 0.1431 0.3099 15.72 6.75 22.47 -116.39 - 93.91 0.4530

1.0 1.3407 1.1610 12.338 -0.1108 0.3096 15.71 - 5.22 10.48 -112.17 -101.68 0.1988

1.4 1.8770 1.6255 11.874 - 0.2011 0.2430 12.33 - 9.48 2.84 -107.94 -105.10 0.0419

2.0 2.6814 2.3221 11.177 - 0.1794 0.1230 6.24 - 8.46 - 2.22 -101.61 -103.84 - 0.0563

3.0 4.0221 3.4832 10.016 -0.0563 0.0071 0.36 2.65 - 2.29 - 91.06 - 93.35 -0.0493

4.0 5.3628 4.6443 8.855 0.0019 - 0.0139 - 0.70 0.08 - 0.61 - 80.50 - 81.12 - 0.0120

5.0 6.7035 5.8054 7.694 0.0084 - 0.0065 - 0.32 0.39 + 0.06 - 69.95 - 69.88 0.0019

13 14 15 16 17 18 19 20 21 22 23 24

U2Q1  U2M -1 6M. 6Qi
x 2ix x + + -) x - x + vx ( - v/E x x 106 1/E x x 10

h2, h i coa h
2  h2f,

1097.33 -590.05 14.15 -245.45 275.98 1.0000 1071.35 0 1071.35 321.40 0.75 9.19

776.58 -288.41 10.25 -239.12 259.29 0.9267 992.82 -436.14 556.68 167.00 0.85 8.64

497.09 - 84.43 6.74 -232.78 186.61 0.7628 817.22 -617.45 199.77 59.93 0.93 6.22

218.15 + 65.37 3.14 -224.34 62.33 0.5083 544.56 -616.85 - 72.28 - 21.68 1.01 2.07

45.97 +118.65 0.85 -215.89 - 50.40 0.2849 305.22 -484.15 - 178.92 - 53.67 1.05 -1.68

- 61.78 +105.85 - 0.66 -203.23 -159.82 0.0667 71.45 -245.06 - 173.60 - 52.08 1.03 -5.32

- 54.09 + 33.22 - 0.68 -182.12 -203.68 - 0.0423 - 45.31 - 14.14 - 59.46 - 17.83 0.93 -6.78

- 13.16 - 1.12 - 0.18 -161.01 -175.48 - 0.0253 - 27.64 27.69 0.05 0.01 0.81 -5.84

2.08 2.08 0.01 -139.90 -142.75 -0.0046 - 4.92 12.95 8.02 2.40 0.69 -4.75

25 26 27 28 29 30 31 32 33 34

e x 106 I E X 06  E x X -n6 1 x2 x x106 1x ext. x0 6  x int.10 Ox ext. ax int. Od ext. 41 m t.

+ @ - E t 
6 - + X-l+@ + ®+-® 9+© P-® @+@ ©-@

9.95 -2.75 -2.51 32.49 27.21 -37.77 995.81 - 1146.89 597.39 - 45.41

9.49 -2.59 -2.84 16.88 11.44 -22.32 471.29 - 642.06 426.30 + 92.29

7.15 -1.86 -3.13 6.05 1.06 -11.05 105.86 - 293.69 246.54 + 126.68

3.09 -0.62 -3.38 - 2.19 - 6.20 - 1.82 -173.97 - 29.40 40.64 + 84.01

-0.62 0.50 -3.50 - 5.42 - 8.42 + 2.42 -284.03 + 73.82 - 104.08 + 3.27

-4.28 1.59 -3.46 - 5.26 - 7.12 + 3.40 -277.44 + 69.76 - 211.90 - 107.74

-5.85 2.03 -3.11 - 1.80 - 2.87 + 0.72 -152.82 - 33.89 -221.52 - 185.85

-5.03 1.75 -2.70 0.00 - 0.94 - 0.95 - 81.06 - 81.17 - 175.46 - 175.50

-4.05 1.42 -2.32 0.24 - 0.65 - 1.14 - 61.86 - 77.90 - 140.34 - 145.15

4, 2.16056 tan a, 1.73205 2p, Mi tan a U2 Qi 6 Mi
- 50.748 1097.338 1071.35

II, - 5.69747 Q, 2.99694 h h257Bi  h,

a 60 degrees 3, 0.745870 Q, tan a t  U2 M 6QI

sin a, 0.866025 R, 13.500 47.189 590.054i1992.41
cos a 0.500000 h 0.110 1 h2

2 A, cos a, 9.09090 18.1818 V1 06  - 0.030333
hA cos a, E

*The plus sign applies to the small-diameter end of a truncated cone and the minus sign to the large-diameter end.



Figure 8. The circumferential membrane distribution for the cone, represented by the first

term of Equation [5], is also shown. It is seen that the discontinuity effects from both inter-

sections exist throughout most of the conical shell and overlap with each other, that is, the

circumferential discontinuity strains indicated by the broken curves differ from the membrane

strain throughout a large portion of the cone. The total circumferential strain at any point in

the conical shell then is the algebraic sum of the discontinuity strains from both intersections

and the membrane strain. This superposition was done graphically in Figure 8 and the result-

ing distribution is shown as the solid line labeled Total. The broken-line curve labeled 1

was found from'the analysis of the large end of the cone and that labeled 2 from the analysis

of the small end. The difference between the ordinates of curve 2 and the membrane line

were then added to those of curve 1 to obtain CTt.

A similar procedure was followed in determining the distribution of longitudinal strain

on both the external and internal surfaces of the shell elements. The longitudinal strain dis-

tributions for this example are shown in Figure 9. For clarity of the curves, the component

strains (strains from each intersection and the membrane distribution) are not shown. Note

that the total strains and also stresses thus found are for an external pressure of 1 psi; i.e.,

they are essentially strain and stress sensitivity distributions.

The technique indicated by the results of Figures 8 and 9 of this report for linearly

superposing the discontinuity and membrane effects can be used for short shells provided the

length I between adjacent edgesis such that il > 3.0; this has already been discussed under

"Applicability of Method." For cases where fi l < 3.0 the discontinuity forces and moments

at one edge of the shell may influence those at an adjacent edge and vice versa, so that in

such instances this method of superposition may still be used but the resulting distributions

would be questionable. An analysis which considers this interaction and which may prove

convenient in practical application is given in Reference 8.

Experimental strain data have also been plotted on Figures 8 and 9 for comparison with

the theoretical distributions determined by the analysis given herein. It is seen from these

plots that the agreement between theory and experiment for this particular case is very good

and certainly falls within the limits of experimental error. The agreement is considered for-

tuitous, and this one example does not constitute any extensive verification of the simplified

cone analysis presented. This model is one of a series of six such models which have al-

ready been tested at the Taylor Model Basin. The experimental strain data obtained from the

complete program will be used to check further the validity of the simplified cone analysis

developed in this report. These additional results will be forthcoming in a Taylor Model

Basin report.
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APPENDIX B

GECKELER APPROXIMATION FOR CONICAL SHELLS

From considerations of equilibrium of a shell element, Dubois 3 established by stand-

ard elastic analysis an expression for the transverse displacement w of a thin conical shell

in terms of a fourth-order differential equation. The homogeneous form of this equation is

d4 w d3 w d2 w 12 (1- v 2 )

y2 + 2y -- - 2 -- + w = 0 [B.1]
dy 4  dy 3  dy 2  h2 tan2 a

where y is the meridional distance along a cone element measured from the apex.

Solutions of Equation [B.1] are considered to be very accurate but usually require far

too much computational time to be practical. Hence, resort is often made to approximate

methods of the type discussed below. Taylor and Wenk in Reference 6 have found solutions

to the complete Equation [B.1] in terms of Bessel functions of the first and second kind, both

of second order.

The radius R for any point on the cone is (Figure 1)

R = y sin a [B.2]

If the y's, which are coefficients of the derivatives in Equation [B.1], are eliminated by using

[B.2], and if [B. 1]is then multiplied by sin2 a , the following results:

d4 w d3 w d 2 w 12 (1 - v 2 ) cos 2 a
R 2 - + 2R - sin a - 2 - sin2 a + w = 0 [B.3]

dy 4  dy 3  dy 2  h2

It has been shown in Reference 5 by order-of-magnitude considerations that, for the range of

parameters of interest to pressure-vessel designers,

d4 w d3 w d2 W 2 dw
R 2  >> 2R- sin a >> 2- sin2 a >> - sin 3a [B.4]

dy max dy 3  
max dy 2  

max R dy max

i.e., the second- and third-order terms,appearing in the complete Equation [B.3] may be neg-

lected in comparison with the fourth-ordertone. 'W6nk.and.Taylor.in Reference 5 carried out

the first approximation, that of neglecting the second-order term only, .and obtained a solution

for the transverse displacement w in terms of Bessel functions of the first and second kind,

both of zero order. They indicate that from the inequalities [B.4] the original differential equa-

tion could be further simplified if the'thir'd-order term is also iinglected. The analysis of the

present report is based on this second--pproxiation.

Further, the discontinuity bending stresses are very local and-damp out rapidly away

from the juncture region of any two intersecting shells. Hence it is sufficiently accurate to

--- -- ------- - - - '~-IIIYlllii IYIYIIIYYI IYIIY IIYIYIIIYYIIYIIYI IIIYIY IIYY Ilriiii '111NMW



treat the radius R appearing in Equation [B.31 as constant and equal to Ro, the radius at the

edge of the component shell, in determining these local effects. Geckeler 2 proposed approxi-

mations of this type in dealing with such local bending effects in thin shells; thus the so-

called "Geckeler approximation" for conical shells reduces to the integration of the equation:

d 4  12 (1 - v 2 ) cos 2 a
- + w= 0 [B.5]
dy4  h 2 R2

As may be seen from Figure 1, the distance x from the juncture edge of the cone to an

arbitrary point on its surface is

X = Yo - Y [B. 6]

where yo is the slant height of the cone. Further, if we define

3(1 - v2) cos 2  [B.
34 = [B.7]

h2R 2
0

Equation [B.5] may then be rewritten in the form

d4 w
- + 4/4 w = 0 [B.8]
dx4

It should be noted that Equation [B.8] is identical in form to the homogeneous differencial

equation which governs the axisymmetric transverse bending displacements (and therefore the

stresses) of a cylindrical shell as given on page 392 of Reference 2. For this reason the

Geckeler approximation is sometimes referred to as the "equivalent cylinder" approximation.

It is further noted that as the cone degenerates to a cylinder, i.e., a -* 0, Equations [B.7] and

[B.8] reduce exactly to those for a cylinder.

It should be emphasized that such so-called "approximate" methods are schemes to

obtain simpler solutions to the exact Love-Meissner equations for the bending of shells. The

membrane solutions for conical shells, which depend upon the loading and are particular in-

tegrals of the complete equation with a nonzero right-hand side, are very simple for the case

of hydrostatic pressure loading; they should always be used with either the exact or the ap-

proximate bending solutions when the cone angle is not nearly equal to zero, i.e., 'a 8 deg.

When the angle a is very nearly equal to zero, the radius R varies only slightly so that the

membrane solution for a cylindrical shell is sufficiently accurate for superposition with a

bending effect.
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APPENDIX C

DERIVATION OF THE STRESS AND STRAIN EXPRESSIONS,
EQUATIONS [11 THROUGH [5]

The stresses developed in the shell are given by

Nx  6Mx
ax = +

h h2

[C.1]

N 6M

h h2

where the upper sign is used for the outer fiber and the lower one for the inner fiber; this sign

convention is retained throughout this appendix. The first expression of [C.1] is the total

longitudinal or meridional stress given as the sum of the meridional compressive component*

and the meridional bending component. The second expression is the total circumferential or

hoop stress given as the sum of the hoop compressive component* and the hoop bending com-

ponent.

The corresponding strains are determined from the two-dimensional Hooke's law to be

1 1 6Mx  6M
x - (x - vo - Nx - vN -- N -

E Eh h h

[C.2]
1 1 6M 6MX

E Eh h h

The complete expressions for the stress couples and stress resultants pertaining to an

axisymmetric conical shell are given in Reference 5. In terms of the sign convention of the

present report these are

d2 w v sin a dw

dx2  R dx

( d2 w sin a dw [C.3]
M¢ = D V [C.3]

dx2  1 dx

d3 w sin a d2 w sin 2 a dwu

x d3 R dx 2  R2 dx

*Tensile if Nx, N are positive.
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No =x tan a -
dx sin a cos a

R d4 w d3 w sina d2 w sin 2a dw P
=Dtana (- 2 - ) plo

sina dx4  dx 3  R dx 2  R 2  dx Cos O

PR 
[0.3]

Nx = tan a ---
2 cos a

Eh 3

where the flexural rigidity D =
12 (1- v2)

4fx is the moment in a meridional plane,

Ml is the moment in a transverse plane,

Qx is the transverse shearing force,

N is the stress resultant in the O-direction,

Nx is the stress resultant in the x-direction, and

p is the external hydrostatic pressure (replace p by -p for internal pressure).

It should be noted that the terms containing p in Equations [C.3] are the membrane stress re-

sultants obtained from membrane analysis for hydrostatic pressure loading.

From the same order-of-magnitude considerations as those used in Appendix B to de-

rive Equation [M.8], it can be seen that the following approximate stress couples and stress

resultants should be of sufficient accuracy:

d2 w
Mx = D -

dx 2

pR [C.41
Nx = Qx tan a -

2 cos a

R d4 w pR
N =D--

cosCa d 4  cos a

d3 w
Qx =-D-

dx3

It will now be shown that another term should be included in the expression for N0

given by [C.4]. From Hooke's law [C.2] and the geometry of deformation it is seen that
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1w
(N 0 - vN ) f-

Eh R

so that

N = - +N [C.5]

By superposition,

W wbending membrane

i.e.,

pR2
W = W b COS + - [C.6]

Eh cos a 2

where wb is that part of the transverse displacement w exclusive of the membrane component.

If Equation [C.6] is evaluated at the shell edge x = 0, the edge coefficients, d, g, and f are

obtained; see Equation [8]. The edge coefficients so derived differ only slightly froim those

given in Reference 6 which are believed to be exact.

If Nx from Equations [C.4] and E as given by [C.6] are substituted into [C.5], then

Eh pR
No =---w b cos -- +vQx tan a [C.7]

R cos a

Further, if wb is determined from Equation [B.8] and substituted into [C.7], then

R d4 w .pR
N= D - + vQx tan a [C.8]

cos a d 4  coS a

With the stress resultants Nx, No, Qx, and the stress couples Mx and M thus deter-

mined, Equations [C.4] and [C.8], the expressions for the shell stresses ax and a., become:

pR D d3 w 6D d 2 w
ax -- -- tana - + - [C. 9]

2h cos a h dX3  h2 dX2

pR D R d4 w v d3 W 6 vD d2 w
S=- + - - - - D tana--- + [C.10

h cosa h cosa dx 4  h dX3  h2  dX2

To express these stresses in terms of the edge and surface loadings and also the geometric

and elastic properties of the shell, expressions for the deflection w and its various deriva-

tives must be found. This is done by integrating the differential Equation [B.8]. The solu-

tion of this homogeneous differential equation is



w = e- x (c1 cos jx + c2 sin 3) + eB x (c 3 cos OX + c 4 sin [xz) [C.11]

where the constants of integration cl, c2 , c3 , and c4 are determined from the boundary con-

ditions

w -*3 at x -* o

Mx = Mi at ax= 0 [C.12]

Qx =Qi at x = 0

where Mi and Qi are the edge bending moment and shearing force, respectively. The first of

these conditions requires that

C3 = C4 = 0 [C.13]

When the second and third conditions are satisfied,

1
c - (- Q + 3Mi)

2D0l 3

2 2D032

[C.14]

[C.15]

With these values for the constants, the solution for w becomes:

S= 0 [(- i + 13Mi) cos X - [3M i2D8 3 sin x] [C.16]

Successive derivatives of this deflection function are:

dw e-Px - Q i

SD -- (sin c + cos Ox) + BM i cos ]3
dx D 3 2  2

d2w e-f8x= - - Qi sin 13 + 8M, (cos fx + sin Ox)

dx2 93

[C.17]
d 3w e-eex "
c- = - Qi (cos zx- sin 3x) +
dx 3  D L

- = 2Qi cos Ox -2,3i(cos
dx 4 D L

2fM i sin zx

am - sin /z)
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Substitution of Equations [C.17] into [C.9] and [C.10] gives for the stresses,

pR 20 Qo
ax  +- Mi tan a e-f x (cos f -

2h cosa h L2Mi

6Mi Qi
h+ i [e - x (cos ax + sin )) - e-B x

h2 3Mi

hR vc 2Rh cos2
h Cos a 2 h Cos a

sin 3x) + e- ,fx sin 3]

s 1 [C.18]

sin f8XJ

e- fx (cos ax - sin 3x) - - e cos v
[C.~

[C.19]

Therefore, Equations [C.18] and [C.19] for the stresses are identical with Equations [1] and

[2], respectively, if the functions 0 (sx), ¢ (pz), e (pz) and S(j3x) as defined by Ecuations

[7] are substituted therein.

To derive Equations [3], [4], and [5] for the strain distributions it is merely necessary

to substitute Equations [C.18] and [C.19] into the two-dimensional Hooke's law, Equation

[C.2], which expresses the strains c x and qe in terrms of the stresses.
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