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ABSTRACT

A surface ship model was constrained to perform forced heaving

oscillations in still water and the resulting lift forces and pitching mo-

ments obtained. The influence of forward speed, frequency and ampli-

tude of oscillation were investigated.

The added mass and damping of the ship motion were determined

as well as the coupling moments (the pitching moments due to heaving

velocity and acceleration). Comparisons are made between the various

theoretical prediction procedures and these experimental results. The

significance of the observed nonlinear damping forces is discussed.

INTRODUCTION

In the past five years the Transactions of the Society of Naval Architects and Marine

Engineers has included a succession of papers dealing with the motion of ships in waves.

These papers, by Weinblum, St. Denis, Pierson, and Korvin-Kroukovsky, present the tools

necessary for the analytical determination of these motions.

Uniformly, the assumption is made that the forces on the body are of two types. The

first is due to wave action and the remaining forces are proportional to the instantaneous posi-

tion, velocity, and acceleration of the ship. This yields two linear, second order, differential

equations with constant coefficients, which are simple to solve.

Unfortunately, these metlods do not represent exact solutions to the boundary value

problem. The analytical procedures require strong assumptions to be made in order to gain

simplicity in the solution. Among these are the use of two-dimensional solutions, and the

neglect of the free-surface influence, of nonlinear terms and of the speed dependence of the

coefficients. Such an approximate procedure may be justified in practical ship problems, but

the range of validity must be firmly established by adequate experimental investigations.

There have been few experimental studies wherein measured model motions have been

compared with predicted motions using these analytical procedures. The little data available

indicates that discrepancies do exist. No doubt, part of the problem involves the inherent

experimental difficulties which make for poor accuracy in the measurements.

When discrepancies are revealed it is then difficult to decide whether to ascribe the

fault to the form of the equations or to the particular coefficients used in the computation.

This difficulty can be avoided by experimentally determining the coefficients. The body can

be oscillated and either the forces or motions measured. The dependence of these coeffici-

ents on speed of advance, frequency, and amplitude of oscillation can be determined. This

experimental procedure is quite analogous to that used in aerodynamic stability investiga-

tions wherein the wind tunnel balance, whirling arm and oscillator are used to measure the



so-called static and rotary derivatives. These are nothing more than the coefficients in the

equations of motion. Having this information, reliance can be placed on the coefficients, and

the comparison between theoretical and experimental motions then becomes an adequate test

of the linear equations. In the past, no thorough experimental study of this kind has been

made on ship forms.

In this report only the first phase of a broader investigation will be described; namely,

the forces and moments due to heaving motions. It is the purpose of the overall study to

completely define the terms in the equations by experimental means, to evaluate the existing

analytical procedures for determining these terms, and finally, to compare predicted and ob-

served motions using these experimental results.

It has been most common in the past to use a free oscillation technique for such studies

primarily due to its simplicity. However, there are difficulties in interpreting the data since

the motion is not strictly periodic. Also, we are not assured of a given frequency of oscil-

lation and, of course, the effect of amplitude cannot be determined.

The forced oscillation of the model overcomes these objections, with two alternative

methods being possible. Either the model can be supported on a spring and oscillated, or it

can be oscillated while supported on a stiff force balance. The latter method has been used

because the amplitude of oscillation can be preset and the coupling forces and harmonic con-

tent can be directly measured.

At the outset, ,credit should be given Dr. Georg Weinblum for having led the way in in-

vestigations of this kind. It was through his efforts while associated with the David Taylor

Model Basin several years ago that the Model Basin now possesses the mechanical oscil-

lator, as well as the ship models used for these tests.

THE MODEL

The symmetrical model used in the present tests was one of a family constructed to

mathematical lines defined by Weinblum. 1 The family has the general form

I= IX (6)- V (6) V, (0)11 [(0)

where the longitudinal, transverse, and vertical offsets of the hull, x, y, and z, are divided

by the half-length, half-breadth, and draft to yield the nondimensional offsets, 4, r, and 4.
The equation of the waterplane is 7 = X () and the equation of the midship section is

S= Z(q). For the particular model used the form was described by

S= [(1 - 2) - (e2 - .4) 410] [1 - 0.3 8 - 0.7150]

The model constants are tabulated in Table 1 and the body plan is shown in Figure 1.

1 References are listed on page 31.
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TABLE 1

Model Constants

Length 136 inches
Beam 16 inches
Draft 6.4 inches
Displacement 316.6 pounds
Midship Area Coefficient 0.964
Load Waterline Coefficient 0.667
Prismatic Coefficient 0.655
Block Coefficient 0.632

6.40 in
DWL

4 I 2 3 4 5

Keel
Dead Rise Angle-O*-25 '

Figure 1 - Body Plan of the Model

The model was constructed as light as possible (about 80 pounds) and no attempt was

made to ballast it to design displacement. This reduced to a minimum the inertia loading of
the force balance during oscillation and allowed greater accuracy in determination of hydro-

dynamic force components.

TEST EQUIPMENT

The mechanical oscillator is mounted on the carriage over the deep-water basin. A
d-c motor drives a Scotch yoke through an intermediate flywheel and 2-step gear reducer.

The Scotch yoke converts rotation to linear motion and causes a vertical rigid strut to per-
form simple harmonic heaving oscillations. The oscillation frequency is varied by altering

the motor speed and gear box setting, while oscillation amplitude can be altered by mechani-

cal adjustment of the Scotch yoke mechanism.

A six-component strain-gage balance (Figure 2) is attached to the bottom of the oscil-
lating strut and the model is attached to the balance. At midstroke of the oscillator the mo-
del is at the specified draft, keel parallel to the water surface, -and the center of the sym-

metrical model is below the oscillating strut.

The six-component balance is positioned so that it directly measures lift and drag
force and pitching moment about the center of the model. These three components are sensed
by 4 active-arm bridge circuits and are recorded on a string oscillograph. In addition, a

Schaevitz differential transformer provides a record of the heaving displacement. A sample

record is shown in Figure 3.
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Figure 2 - The Six-Component Strain-Gage BalanceFigure 2 - The Six-Component Strain-Gage Balance
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TEST PROGRAM

[t was necessary to determine the influence of forward speed and amplitude and fre-

quency of oscillation on the hydrodynamic forces and moments.

Tests were run at 0, 1, 2, 3, and 4 knots, corresponding to Froude numbers of 0 to 0.35.

The amplitude of oscillation was + 1/4, ± 1/2 or + 1 inch, ,and the frequency was varied from

about 1/8 to 3 cycles per second. It was hoped that the amplitude range was broad enough to

establish the linear range of the equations of motion. The practical range of frequencies for

ship motions at model scale would not exceed 2 cycles per second but the higher frequencies

are of interest in establishing the validity of several theoretical methods of determining ship

damping.

METHOD OF ANALYSIS

A surface ship model is constrained to oscillate sinusoidally, a = z o e i t , at frequen-

cy o and with amplitude zo. It will be assumed that the ship experiences forces and moments

proportional to the instantaneous displacement and its first and second derivatives. A bal-

ance, located between the ship and the oscillating support senses the lift force and pitching

moment on the ship, ,F = Fo ei( t - 8) and M = Mo ei(t - a). The force and moment equations

are

A+ B + Cz = Foei( t - 8 ) [la]

d' + e + fz = Me ei(A t - a) [1b]

Substituting a = soeit into these equations yields

(-AW2 + C) + iwB = F O e i  [2a]Zo

(-do2 + f) + io)e = - e- 'a  r2b]
0  B alance

Equating real and imaginary parts of [2], we obtain zoe Bow

F +Z
- A ( + - a: cos 8 ' F Fo *e

i( t- 6 ) tso
[3a] M Moei(wt-cO p

&B -0 sin8
zo0  Figure 4 - Schematic Diagram of

the Model and Balance



-dco2 t f -o cos ao

[3b]

-Ao
ce = sin a

Zo

In [la] the coefficient A is recognizable as the virtual mass, the sum of the mass

suspended beneath the balance m and the hydrodynamic added mass ma . The damping force

Bi represents, primarily, the energy dissipated by the system in progressive gravity waves.

The coefficient C is the effective "spring" constant or buoyant force coefficient. For the

range of amplitudes used in these tests, the ship is essentially wall-sided so that C can be

assumed constant.

Solving for the unknown hydrodynamic coefficients in terms of known or measurable

quantities, we obtain,

C - F- cosaz0
ma2Ma = .2 -mCs)

[4a]
F

-o sin

B= zo

The hydrodynamic moments imposed on the ship by the heaving motion are given in

Equation [1b] and results in the coupling of the heaving and pitching motions. Since the mo-

del in these tests has fore-and-aft symmetry and nearly wall sides, it can be assumed that

there is negligible buoyancy moment due to heave so that f = 0.

Solving for the cross-coupling coefficients in Equation [3b]

_ .cos si0 Cosa

d=- 
[4b]

M0 sin a

e0e'

I III I II I I II] I -



In the actual experiment, ,the motion s, of the model cannot be measured directly. In-
stead the motion of the oscillating strut above the balance is recorded. Since the balance
cannot be infinitely stiff, these two motions may differ in amplitude and phase. This is
particularly true at high frequencies; that is, high relative to the natural frequency of the sys-
tem. In Appendix A the dynamic system is analyzed, considering the balance to be a spring,
and correction factors are obtained which allow the above analysis to be used.

TEST RESULTS

FORCE COEFFICIENTS

In order to determine the added mass and damping coefficients it has been shown that
the complex ratio, F/s or Fo/zoe - i , must be determined.

The variation of Fo/z o with frequency for constant speeds of 0, 1, 2, 3, and 4 knots
and displacement apmlitudes of 1/4, 1/2, -and 1 inch are shown in Figure 5.

Figure 6 shows the complementary plots of 3, the phase angle by which the force lags
the displacement. At zero speed, for low frequencies, these data scattered excessively and
so are not shown in Figure 6a. It is believed that this is due to wave reflections from the
basin walls. At low frequencies, the high wave celerity makes it difficult to conclude a test
before significant reflections are felt at the body. The phase angle at 3 and 4 knots at high
frequencies is not shown due to excessive noise in the trace caused by carriage vibration.

The dynamic system represented by the model supported on the balance has a natural
frequency of about 70 rad/sec. Random disturbances cause the model to oscillate at this
frequency, the amplitude increasing as the carriage speed increases. In addition, the oscil-
lator is mounted on a carriagewhich has its own vibratory modes and which is excited by the
oscillating model and the motion of the carriage. Thus, -the model vibrates at the oscillator
frequency and in accordance with these extraneous influences. These additional high frequen-
cies appear in the force and moment records and necessitate hand fairing of the traces in order
to extract the true fundamental component.

The damping coefficient B is proportional to the sine of the phase angle a. At high
frequencies, 8 approaches 180 deg and great accuracy is required in the phase angle determi-
nation in order to obtain a reasonbly accurate coefficient. It was found necessary, .for fre-
quencies above 7 rad/sec, -to determine all phase angles shown in Figure 6 by harmonic
analysis using a "Runge Schedule.. ' 2

The dynamic correction described in Appendix A has already been applied to the data
shown in Figures 5 and 6.

The physcial explanation of the shape of the curves in Figures 5 and 6 can be made as
follows: the total force on the model is the sum of three forces; buoyancy, damping, -and
inertia. The buoyancy force is independent of frequency. The damping force is proportional
to frequency, and leads the buoyancy force by 90 deg, while the inertia force is proportional



Figure 5 - Plots of Fo/zo versus Frequency at Various Speeds
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to a2 and leads the buoyancy force by 180 deg (Figure 7). Assuming the coefficients A, B,

and C to be approximately constant and the damping to be small, it can be seen that at very

low frequencies the total force is essentially all buoyancy force and the phase angle is very

small. As the frequency increases the inertia force increases and cancels part of the buoy-

ancy force so that the total force drops and the phase angle increases toward 90 deg. When

the two are equal, the total force curve is at its minimum, the phase angle is 90 deg. and we

see the pure damping force in the record. As frequency increases, the inertia force increases

as a 2 so that the total force at high frequencies is essentially the inertia force. The total

force rises sharply and the phase approaches 180 deg.

The data shown in Figures 5 and 6 are substituted in Equation [4a] to obtain the added

mass ma and damping coefficient B. Below a = 7, values obtained from the faired curves of

Fo/s o and 8 were used. Above w = 7, however, due to the sensitivity to small errors in 83, the

measured values for each run were combined to yield ma and B and then these results were

faired.
m

Figure 8 is a plot of an added mass coefficient kf =-a where A is the displacement

of the model and g is the acceleration of gravity. In Figures 5 and 6 no systematic amplitude

I effects were observed so that the added mass in Figure 8 represents all amplitudes used in

the tests. At low frequencies, .the added mass appears to decrease with increased forward

speeds. However, at higher frequencies for Froude numbers 0, 0.09, and 0.18, there does not

appear to be any variation of ma with speed.
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Figure 6 - Plots of Phase Angle between Force and Displacement at Various Speeds
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B
A damping coefficient defined by B'-= A/& , .where L is the length of the model, is

given in Figure 9 for nondimensional frequencies between 0.4 and 4. Below o = 0.4,
the accuracy of B is very poor due to the smallness of the phase angle, 8.

The damping did not show any dependence on the amplitude of motion as was true for
the added mass. A decrease in forward speed causes the peak in the damping curve to move
to higher frequencies although it has little effect on the maximum value.

MOMENT COEFFICIENTS

Equation [4b] indicates that the moment coefficients d and e are determined from the
amplitude ratio of pitching moment to displacement, Moo0 /z 0 , and the phase angle a by which

the moment lags the displacement. The amplitude ratio Mo/zo is presented in Figure 10, the

dynamic correction described in Appendix A having already been applied. The phase angle

is shown in Figure 11.

Since the model had fore-and-aft symmetry, tests were run both east and west. Although
the hydrodynamic moments must be the same in both directions the phase angle clearly is

13
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different at higher frequencies. This is due to a mass unbalance in the model which yields

a moment signal proportional to the square of the frequency. This moment must change sign

relative to the apparent bow as the direction of travel reverses. Thus it either adds or sub-

tracts from the hydrodynamic moment so that the phase angle for travel east and west is dif-

ferent. The amplitude ratio is essentially unaltered.

The magnitude of this extraneous inertia loading can be obtained from the moment

versus frequency curve at zero speed since at this speed no hydrodynamic moment can exist.

It was found that the unbalance was equivalent to a weight of 32 pounds at an arm of 1 foot.

In Figure 11 it was necessary to draw the two curves ("east" and "west") so that

when the inertia moment correction is made to the data in applying Equation [4b], the east

and west tests will yield the same coefficients d and e. That is, the two curves are a best

fit to the data spots while being consistent with each other. At low forward speeds, the

accuracy of the hydrodynamic moment is low since its magnitude is small relative to the
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inertial correction. Phase angles at 1 knot are not presented for this reason and also be-

cause the moment signal was unsteady in the neighborhood of w = 4 rad/sec at 1 knot.

Applying Equation [4b] to these data yields the coefficients d and e. In Figure 12a,
the product da 2 (which is proportional to the moment on the model) has been plotted in order

to better present the data at high frequencies. In Figure 12b a nondimensional moment co-

efficient d'= d9 has been used. The nondimensional coefficient e '= f gL is given in
AL A

Figure 13. Unlike the coefficient d,' the value of e' at 1 knot is given because it is insensitive

to errors in phase angle.

SECbND HARMONICS IN THE LIFT FORCE

It is commonly assumed in ship-motion problems that the hydrodynamic damping varies

as the first power of the velocity. This is true of bodies moving in a fluid at relatively low

velocities but at larger velocities a dependence on the second power of velocity more nearly

describes the physical phenomenon. Such an assumption destroys the linearity of the system

and necessarily complicates the solution of the problem. Therefore, it would be of interest to

examine the lift data in these experiments in order to determine the validity of the usual

linearizing assumptions.

The existence of square law damping would be indicated by significant second harmonic

content in the lift forpe trace. This can be shown as follows: assume a damping force of the

form B 2 (dz/dt)2 . Then, if the ship is constrained to perform heaving oscillations z = s in

(t, the measured damping force will be

B2  2 + cos 2at
B2 20 2

Thus the observed amplitude of second harmonic in the lift force will be

B Z2 C 2
2 0

2

Unfortunately, the present experiments do not lend themselves readily to such meas-

urements. The second harmonie is largely masked by the inertia, .buoyancy, and fundamental

of the damping force. It only becomes visually apparent on the records at the frequency where

the inertia and buoyancy forces cancel one another. If one were to redesign the experiment

to accurately determine this component, the fundamental should be filtered-out and the sec-

ond harmonic amplified greatly.

All lift curves at frequencies above 7 rad/sec and at speeds of 0, 1, and 2 knots were

harmonically analyzed in order to obtain accurate phase lags at the fundamental frequency.

This analysis also yielded the amplitude of the second harmonic. In addition a few tests at



lower frequencies were analyzed similarly. The second harmonic forces resulting from the

1/4-inch oscillations were to small to be analyzed. As a result only 19 tests spots were

obtained.

It was found when the widely scattered force data was divided by 2 co2/2 that the re-

sulting damping coefficient B2 was scattered but remained within an interval of 0.06 to 0.16

lb-sec 2 /in. 2 , as shown in Figure 14. The accuracy of the data -was too poor to define a

frequency, amplitude, or speed dependence. In Figure 15 the number of test points in an in-

terval is shown in a bar graph. We are compelled at this stage, to assume a single "best"

value of 0.11 + 0.05 for all speeds, frequencies, and amplitudes.

4 8 12 16 20 24
w in rod/sec

Figure 14 - The Nonlinear Damping Coefficient B2
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DISCUSSION

PREDICTION OF DAMPING-IN-HEAVE

Recent papers on ship motions have utilized the principle that the damping of the

vertical motion of a ship's section can be related to the waves generated by a suitable dis-

tribution of pulsating sources along its surface. The attractive feature of this method is its

essential simplicity.

One of the characteristics of this solution is the existence of an infinite succession

of the values of the frequency at which the damping is zero. This phenomenon is due to

interference effects between the wave systems generated on both sides of the body.

Ursell 3 has pointed out that at higher frequencies, when the draft is several times the

wavelength, there is a shielding effect and there cannot be any interference. In fact, he has

demonstrated that the exact solution does not reveal any such zeros and showed that the

pulsating source technique is valid only at low frequencies. Ursell was able to find the ex-

act solution for several oscillating cylindrical forms.

Grim 4 has found a nearly exact solution for a wider class of two-dimensional forms.

The section is reflected about the waterplane and the potential for this double body in an in-

finite medium is found. To this is added a potential such that the sum of the two satisfies

the free-surface condition. To these are then added a sum of other potentials so that the

total still satisfies the free-surface condition and satisfies the boundary conditions at certain

points on the body. Only a few such terms are found necessary in the calculation. From

these results the added mass and the damping can be calculated. Grim's results for the added

mass compare very closely with the exact solutions of Ursell. No multiple zeros are found

in the damping.

Grim has computed the wave amplitude (and consequently the damping) of a class of

ship-like forms of beam-draft ratios of 3, 2, 4/3, and 0.4 with varying fullness. An effort

will be made to compare these results with the experimental values. A procedure is used

which is analogous to that used by Prohaska s for finding the added mass.

It is assumed that ship-like forms having the same beam-draft ratio and fullness would

have the same damping characteristics. Thus for any section, Figures 9, 10, 11, and 13 of

Reference 4 can be used, with suitable interpolation, to find the damping of each section of

the model. Integrating these results along the length of the body gives the total damping. No

correction was made for the three-dimensional nature of the flow. Grim suggests that such a

correction is not necessary for ship forms when the frequency is large enough, say w 2L/g> 6.

For the model being tested, this corresponds to a > 4 rad/sec.

In Figure 9 the experimental damping coefficient B for 0, 1, and 2 knots is given. Also

shown is the damping as computed by two methods; using the Grim curves and the distributed

source technique. Both the Grim method and source method over estimate the damping but the



Grim method yields a better approximation. It should be noted that a three-dimensional cor-

rection, especially at the lower frequencies, would tend to reduce the damping and so improve

the prediction.

Both theoretical procedures, although differing on the existence of zeros, predict very

small damping at higher frequencies. As mentioned in an earlier section the accuracy of the

measured damping coefficient at higher frequencies is severely limited by inaccuracies in the

phase-angle determination. Therefore, it is not possible for the experiment to resolve the

question concerning multiple zeroes.

At the higher frequencies the experiments show the damping falling toward zero and

then increasing with the increasing frequency. In spite of the experimental error, there is

clear evidence that at higher frequencies this increase with increasing frequency does in fact

exist. This rise in damping cannot be explained by means of the suggested theories, for at

frequencies above & j/B = 2.5 they would predict essentially zero damping. One might

speculate that another damping law is indicated at high frequencies.

PREDICTION OF ADDED MASS

The common method used for prediction of the added mass of surface ships for vertical

motion is based on the familiar work of Lewis 6 . By suitable conformal mapping, the circle is

transformed into a ship-like section which has been reflected about the waterplane. The ad-

ded mass of the ship section is assumed to be one-half that of the ship and image together in

an infinite medium. This procedure is theoretically correct only at high frequencies since the

influence of gravity on the free surface is neglected. The section characteristics are inte-

grated over the length of the body and are then corrected by a factor to account for the three-

dimensional effects. This factor is chosen to be the ratio of the exact solution and the inte-

grated two-dimensional results for an ellipsoid whose three axes are equal to the principal

dimensions of the ship plus image. Thus the procedure yields an added mass which is inde-

pendent of frequency, amplitude of oscillation, and speed of advance.

Prohaska s extended this procedure by assuming that the added mass of a ship section

was dependent on the fullness and beam-to-draft ratio of the section alone. The Lewis trans-

formation was used to set up this dependency and all other forms were assumed to follow the

same law. Some experimental evidence was used to substantiate this assumption.

The Lewis-Prohaska procedure was used for the model being tested and the results

compared with the experiments. Since the calculations involved two distinct processes (that

is, the integration of section characteristics and the correction for three-dimensional effects),

it is not possible to ascribe differences between calculation and theory to a shortcoming in

either step. In Figure 8, .it is clear that the constant value obtained in the calculation can-

not represent the strong frequency dependence of the added mass. In fact the added mass
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does not asymptotically approach the Lewis value at high frequencies as might be expected.

It is seen to be 20 percent higher than the Lewis value at the highest frequency shown and

is still rising.

The two-dimensional solutions obtained by Grim 4 can be used to obtain the frequency

dependence of the added mass. Grim's results show the added-mass coefficient dropping

sharply from infinity to a minimum value as the frequency is increased and then rising asymp-

totically toward the high frequency solution for the section reflected in the waterplane. This

general form of the curve was also obtained in Ursell's exact solution for the circular cylin-

der. Observing the test results in Figure 8, we see that the experimental curve for a three-

dimensional form has this same general shape. Similarly, the experimental results of Haskind

and Riman 7 show this same trend.

Grim has indicated that at low frequencies the added mass of any section can be alSproxi-

mated by - ±pb2 lne where the frequency parameter e is b-2, b is the half-breadth of the
TT 9

section, p is the mass density, and o is the circular frequency. Comparison of this approxi-

mate formula with Grim's exact solution (Figures 1 and 2 of Reference 3) would indicate that

the approximation is good up to values of about -= 0.4.

The Grim approximation has been applied to the model under test and the two-dimensional

results integrated over the length of the body. The resulting added-mass values are shown in

Figure 8. The small three-dimensional end correction has not been applied to the curve.

It can be seen that the sharp drop of added mass with increasing frequency is ade-

quately represented by this approximation up to a frequency a w = 0.8 or = 1/3. This

confirms the utility of the Grim method.

The two-dimensional theoretical solutions do not reveal any dependence of added mass

on forward speed. The experimental results indicate the speed effects are negligible except

at very low frequencies where the added mass at 4 knots is lower than that at slower speeds.

However, the data at these low frequencies is not considered accurate enough to warrant any

definitive statements on speed dependence.

COUPLING OF HEAVE AND PITCH

Havelock8 has recently investigated the coupling of the heaving and pitching motions

for a body with forward velocity. A long spheroid half immersed in a uniform stream executes

small heaving and pitching oscillations. A rigid wall surface condition is satisfied and damp-

ing is neglected. He finds a heaving force equal to - pMUO and a pitching moment equal to

qMUi where M is the displaced mass, U is the forward velocity, 0 is the pitching velocity, ;

is the heaving velocity, and p, q are positive coefficients. Calculations show that p and q

are approximately 1 and 1/2 respectively.



Haskind9 has found similar terms in the equations of motion although the constants

p and q are different. This results from the imposition of another surface condition, namely

that 4 = 0 on the surface. For the elongated spheroid p and q equal 1/2.

A recent paper by Korvin-Kroukovsky,' 0 using the "source" iethod for computing ship

damping, indicated that a ship with fore-and-aft symmetry and a forward velocity can experi-

ence no pitching moment due to heaving velocity. As Havelock suggests, the asymmetry in

the flow should result in such a coupling moment. The data appearing in Figures 12 and 13

confirm this thesis.

The present experiments offer an opportunity to check the values, of the theoreticdl

coupling terms given by Havelock and Haskind. Havelock calculated the coefficient desig-

nated as q to be about 1/2. Using the mass of a floating spheroig of length and displacement

equal to that of our model, Havelock's expression, e = qMU, has been nondimensionalized and

plotted in Figure 13. The magnitude of these frequency-independent curves proportional to

the forward speed correspond to the minimum point of the experimental curves. However, .the

experiments indicate a very strong frequency dependence not indicated b' the theory. The

steep rise at low frequencies appears to coincide with a velocity-wave celerity ratio of 1/4

where the character of the waves generated by the oscillating body is known to change mark-

edly. 11

Havelock neglects any pitching moment due to heaving acceleration whereas Haskind

finds this term to be zero for a symmetrical model under way. However, our experiments in-

dicate that such a moment, represented by the term d" in theiequations of motion, Equation

[1b], -does exist. In Figure 12 the coefficient d is shown to be sharply peaked at low fre-

quencies, the amplitude of the peak increasing with increasing speed as would be expected.

However, at higher frequencies, .the coefficient is very small and may be unimportant when

compared to inertia moments.

It is not possible to immediately assess the importance of these coupling terms on the

motion of a ship in a seaway. Havelock has computed the alteration in the frequencies of

free oscillation due to these terms and found them to be only slightly altered even at high

speeds of advance. However, this may not be a sufficient criterion to judge the effect on the

motions. The answer awaits a detailed study of the solutions of the coupled equations of

motion. Such a study could ideally be performed by analogue computer techniques.

HASKIND-RIMAN EXPERIMENTS

Haskind and Riman 7 have performed experiments which are similar to those described

in this report. A symmetrical model with V-sections was supported on a spring whose upper

end was constrained to oscillate harmonically in heave. The damping and added mass of the

heaving model at zero speed of advance was computed from the relative motions of the top

and bottom of the spring. The damping coefficient was found to be independent of oscil-

lation amplitude and its frequency dependence is shown in Figure 16.
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Source Distribution These data afford another opportunity

S.- Grim to compare the Grim method and source method

/ for computing damping. Again, the sections

- Hsnd e of the Haskind-Riman model were compared
S /, osknd Model with the forms derived by Grim. Sections of

equal fullness and beam-draft ratio were as-

/ sumed to have equal damping. Suitable inter-

o 2 polation and integration over the body length

g gave the curve shown in Figure 16. Distri-

Figure 16 - The Variation of Damping buting pulsating sources on the surface of the

Coefficient with Frequency for the sections, computing the waves generated and
Haskind Model therefore the damping, and then integrating

-A

over the length gave the curve marked "Source Distribution." Again, as in the case of the

present ekperiments, the Grim method is seen to yield a closer prediction of the damping

although both methods predict excessive damping. Application of a three-dimensional cor-

rection would improve the correlation.

QUADRATIC DAMPING OF THE HEAVING OSCILLATION

i - It has been shown earlier that a measurable amount of second harmonic content is pre-

sent in the lift.forc9 traces and that this could be attributed to the existence of quadratic

damping of the heaving oscillation. It is intended at this point to evaluate its effect on the

motions of a surface ship.

The method of Kryloff and Bogoliuboff 13 allows one to find an approximate solution to

nonlinear equations of the form

S+ v 2 z + E f(z,i) = 0

where the motion is nearly sinusoidal.

The free oscillations of a heaving ship, ,assuming both linear and quadratic damping,

can be written

+ Iv2 + B 1 + 2 (sgn b) g2 = 0
m m

If the damping forces are small compared to the restoring forces, the approximate so-

lution has been given 12 as

z= asin(vt+ 9)
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and a = a when t = 0.

Setting B2 = 0 we obtain the usual solution to the linear damped equation

B t

a= a e 2m

The decay curves for free heaving oscillations of the model under test have been calcu-

lated for several initial displacements, with and without quadratic damping. The curves were

computed at v = 6.1, the natural frequency in heave, using the measured damping coefficients.

In Figure 17 the amplitudes of successive peaks have been plotted for 1-, 2-, and 3-inch

initial displacements. The dashed curves include the quadratic damping while the solid curves

do not. It can be seen that the neglect of nonlinear damping becomes more serious as the

initial amplitude increases. After the fourth peak, when all the amplitudes are small, all

curves are essentially parallel. This indicates that when the motion is small enough they

have the same logarithmic decrement or ratio of the amplitude of successive peaks. The rate

of decay is then governed by the linear damping coefficient and the quadratic damping influ-

ence is negligible.

For this particular model, the peak of the linear damping curve occurs at about the

natural frequency in heave. This would tend to minimize the influence of nonlinear damping.

No general conclusions should be drawn since this may be coincidental and other forms may

show greater nonlinear effects at the frequency of free oscillation.

For forced oscillations, the method of "equivalent linearization" can be used. The

nonlinear damping term B2 (sgn ) 2 is replaced by a linear term such that the work dissipated

per cycle by each term is the same; that is,

T T
(T Be ;) dt = (B2I i ) idt

For pure harmonic heaving motion, z =z o sin cat, -the above equality can be replaced by

2 Be 2  cos2 wt d(a t) = 4 B2  2 /2 cos 3 a t d(t)
P 6 0

I II I I
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Solving for Be, we obtain

sin ct cos 2 a)ot 2 sin o t. f/2

B 43 + 3 do 8

S- o2  cot sin 2 &t 2r B2

-+

2 4 0

Jacobsen 1 4 has adopted this linearizing procedure for the case of forced steady vibra-

tions with nonlinear damping. The reasoning was intuitive but was substantiated for several

cases by comparing the approximate solutions with either experiments or known exact solu-

tions.

Schwesinger1 5 has shown that the linearized equation obtained by equating the work

done per cycle yields a "best" one term approximation to the solution; that is, the sum of

the forces is minimized rather than being exactly zero.

With this justification, we can replace the equation for the forced nonlinear vibration

by a linear one

m" + (Bi + Be) + ks = P sin ait

8
where Be = z o B2

e31r 02

In Figure 18 the equivalent damping coefficient Be for 1-inch and 1/2-inch oscillations

is shown. A band is indicated within which all test points fall. The mean line and the limits

correspond to the measured values of B2 = 0.11 + 0.05. For comparison purposes an average

curve for the linear damping coefficient B1 is plotted. It appears that Be becomes comparable

to B1 at higher frequencies and for larger amplitudes of oscillation.

To assess the effect of the nonlinearity on the motion of a ship acted on by a harmonic

heaving force, the uncoupled heave equation is considered. Knowing the frequency dependence

of the coefficients, the variation of magnification factor with frequency can be computed when

the equivalent linear damping term is neglected. This is shown as the solid curve in Figure

19. This frequency dependence can then be recomputed for the nonlinear case by using the

mean line in Figure 18 as the equivalent damping term. This cannot be done explicitly since

Be depends on the resultant amplitude, so that successive approximations must be used. The

resultant solutions depend on the magnitude of the harmonic force imposed on the system and

these have been obtained for forces equivalent to static deflections of 1 and 3 inches.

It should be noted that the curves in Figure 19 are not the usual magnification factor

plots although they superficially resemble them. Usually the variation with frequency is

shown with the ratio of the damping to critical damping held fixed. In Figure 19, however,

as the frequency varies the virtual mass as well as the damping ratio is changing.
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It can be seen that at very low and very high frequencies the nonlinearities can be

neglected. At low frequencies this is due to the smallness of Be, while at high frequencies

the magnification factor is insensitive to large changes in damping. However, in the vicinity

of resonance, the neglect of the nonlinear damping could result in a serious over-estimate of

the motions particularly if the amplitudes of heaving motion are large.

Thus it is apparent that the neglect of nonlinear features of the equations of motion

may lead to erroneous motion predictions. Furthermore, this is far from the complete picture

since pitching experiments may indicate additional significant nonlinear elements.
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APPENDIX A

DYNAMIC CORRECTIONS TO MEASURED FORCES

i ty = y0 tS= Yoe

k

z = Zo
e i( t +P)

A _

F- Fo ei( t-6)f

M= Moei(wt - c)

Figure 20 - The Model-Balance
Dynamic System

F(t)

z( t)
Fo e-i(+8)

so

F(t)
y(t)

The determination of the coefficients in

the equations of motion requires that the dis-

placement of the model, z(t), be known. Un-

fortunately it is not possible to measure the

model motion directly but rather the motion

above the balance, y(t). Ideally, with an in-

finitely stiff balance, the two would be the

same. Actually, the balance must be consid-

ered to be a spring with high spring constant

k, for, being a strain gage balance, it must

deflect in order to sense the forces.

We wish to know F (t)/z(t) [or M(t)/z(t)]

but can only measure F (t)/y(t). Using the com-

plex representations shown in Figure 20

x-
z(t)

Fo -is x o e-io

Yo Zo

Thus 0 e- if is a correction which must be applied to the measured quantity

0

50 e or MO e-oYo YO

Assuming as before that the force on the model is proportional to z, i, and i, we can write

the force quation

Ai + Bh + Ca = k (y-z)

Ai + Bi + (C + k) z = ky

substituting a = zo ei(t + 9) and y = yo e it we obtain

[(-A 2 + C + k)+i B ] zo e i = kyo



or the correction factor is

Yo e- i -Ao + C + k + iBo

so k k

This equation can only be solved by

successive approximation since the added
0

mass (contained within A) and the damping o

coefficient B are unknown. The procedure -

would be to solve for A and B assuming y/z £
c

equals unity. Then use these values in .

Equation [6] and obtain yo/zo e- iP. This

correction will yield new values for A and B 8

and the process can be repeated. E

For the present system approximate

values are k = 5000 lb/in., and C = 52 lb/in. o

The value / is essentially proportional to

frequency and is very small. At o = 20 rad/sec,

it equals 1/3 deg. Thus the correction to the

measured lift or moment can be considered a

real number whose variation with frequency is

shown in Figure 21.
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Figure 21 - Dynamic Correction to
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