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NOTATION

Cross-sectional area of rudder stock
Amplification factor of triode (i = 1, 2, 3)

Positive conversion factors (i =1, 2 . . . 6) (Sectionms
4.3, 4.4, and 5.3)

Lift constant (Section 8.2) (also, position of bearing of
rudder or diving plane)

z-coordinate of effective point of attachment of rudder to
rudder stock (using rudder x-axis)

Positive conversion factors (i =1, 2 . . . 6) (Sections
4.3, 4.4, and 5.3)

Distance in z-direction above rudder x-axis of center of
pressure on rudder

Damping constants (Section 8 and Appendix A)
Capacitance (1 =1, 2 . . .)
Center of pressure

Distance of neutral axis of ship cross section above rudder
stock bearing

Young's modulus of elasticity

Horizontal distance from centerplane of ship to centerplane
of rudder or to bearing of diving plane

Transverse lift force on rudder at center of pressure
Shear modulus of elasticity

Distance of bearing of upper or lower rudder from horizon-
tal plane of symmetry of ship (Section 7.3)

x-coordinate of effective center of attachment of rudder
to rudder stock (using rudder x-axis)

Height of rudder bearing above rudder x-axis (equal to-
£+ b)

Area moment of inertia of cross section of rudder stock
relative to a diameter through the centroid
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NOTATION (continued)

Moments of inertia of combined rudder and virtual mass
about x-, y-, and z-axes with origin at the effective
center of mass of the rudder in water

Products of inertia corresponding to I, Iy, I,

Polar moment of inertia of cross section of rudder stock
about a perpendicular axis through the centroid

Shear warping constant or shear-flexibility factor; this
numerical factor depends on shape of cross section of rud-
der stock (3/4 for circular and 2/3 for rectangular cross
sections)

See Equations [12a,b]

Horizontal distance between rudder stock and center of
pressure on rudder

Inductance (i = 1, 2, 3)

Effective length of rudder stock for computing bending or
torsional flexibility, respectively

Bending moment on bottom of stock (Section 2), positive
when it tends to produce positive 8; or on rudder at
center of mass about x-axis positive from y toward z

Similar moment about x-axis acting on ship at rudder
bearing

Mass of rudder

Effective mass of rudder including its virtual mass for
4, Vv, and w motions, respectively

Cross-inertial constants associated with my, g, and m,
Station numbers (Section 4.2)

Shear force on bottom of stock (Section 2); external force
on the ship, positive toward positive y (Section 4.2)

Similar force on ship when ship's y-axis is vertical

s . t .
Positive conversion factor equal to o (Section 4.3)
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NOTATION (continued)

Moment of force on rudder (or starboard plane) about rud-
der (or plane) y-axis positive from x toward z; similar
external moment on the ship about the ship's z-axis posi-
tive from ship x-axis to ship y-axis (Sections 5.1, 5.2,
and Reference 3)

Moment on ship at bearing in rudder (or diving plane)
xz-plane, positive from x toward z

Conversion factor (positive) for energy (Appendix B)
Resistance (i = 1, 2, 3)

Transformer turms ratio

A ratio defined following Equation [7]

Ship's forward speed relative to water

A fraction, O Ss < 1; sAx 1is the distance from station
n - % to rudder bearing

A fraction, O s s' < 1; s'Ax is the distance from station
n' to rudder bearing (Section 4.2)

Torsional moment in rudder stock; moment of force about
z-axis on rudder at center of mass, positive from x toward

y

Similar moment of force on ship at effective point of
attachment of rudder stock for torsion

Kinetic energy of rudder in v, 7, @ motion
Time (for mechanical system)

External torsional moment acting on ship in yz-plane
(Section 4.2) '

Potential energy of rudder in v, 7, @ motion

Small translations of effective center of mass of rudder
in rudder x-, y-, z-directions, respectively

Corresponding translations of top of stock

Forces on rudder acting at its effective center of mass
positive in rudder x-, y-, z-directions, respectively

ix
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NOTATION (continued)

Corresponding forces on ship at top of stock

Rectangular coordinates with x-axis always parallel to the
ship axis. In rudder theory (except as otherwise specified
for an upper rudder), the origin is at the effective center
of mass of the rudder and the z-axis is vertical and posi-
tive upward. In the theory of ship vibrations,3 when deal-
ing with horizontal-torsional hull vibrations, the ship y-
and z-axes are drawn in the same directions as for a rudder
but usually with a different origin; for vertical hull
vibrations, the ship y-axis is vertical and positive upward
so that the ship z-axis is horizontal and positive in the
opposite direction from positive rudder y. In certain
cases other axial positions are used temporarily (see
Section 7).

Horizontal displacement of point of ship initially on its
X-axis

Vertical displacement of ship

Height of rudder stock bearing above x-axis as drawn in
ship theory (see Figure 6)

Small rotations of rudder about rudder x-, y- and z-axes,
respectively; o is positive from y toward z, B from x
toward z, ¥ from x toward y

Corresponding small rotations of top of stock

Length of element (distance between stations)

See Equations [3] to [7b]

Conversion factor defined in Equation [2la]

Conversion factor defined below Equation [31]

Poisson's ratio

Conversion factors defined by Equations [21b,c]
Conversion factors defined below Equation [31]

Torsional angle of rotation about stock axis of rudder rel-
ative to ship; torsional angle of rotation of hull about

ship x-axis, positive from positive ship y-axis toward the
upward vertical z-axis



NOTATION (continued)

Natural circular frequency of vibration of mechanical
system

Electrical quantities analagous to mechancial quantities
are denoted by a primed exponent such as Vy and t'
corresponding to V, and t, respectively, except where
otherwise noted.

xi






ABSTRACT

A theory is advanced for treating the vibration characteristics of
a control surface (e.g., rudder or diving plane)-hull system subject to
hydrodynamic forces on the control surface. The control surface may have
6 degrees of freedom whereas the flexible hull itself may have additional
sprung bodies, representing machinery, cargo, or superstructures, with
1 or 2 degrees of freedom elastically attached to it at various locations.
The purpose of this report is to more adequately represent a ship in for-
ward motion and its appendages as a mass-hydroelastic system subject to
vibrations, including flutter. Analytical, digital, and electrical-analog
methods are devised to determine the natural frequencies, mode shapes,
critical flutter speeds, and damping of this system and/or parts of this

system.

1. INTRODUCTION

In the theory of ship vibrations a control surface, such as a rudder
or diving plane, is usually treated merely as a mass or sprung massl’z’j*
added to the ship, and in most cases this procedure is quite adequate. 1In
some cases, however, vibration of a control surface considered as a body
having 6 degrees of freedom relative to the ship assumes practical impor-
tance. The question is sometimes raised as to the influence of such con-
trol surface vibrations upon the frequencies and mode patterns of the ship
vibrations themselves. In attacking such questions, the control surface
may be idealized as a rigid body mounted on the end of a flexible control
surface stock. The control surface will then be a dynamical system with

6 degrees of freedom. The amplitude of vibration is assumed to be small.
Equations of motion for a rudder alone, with the ship stationary, were
used in calculations of rudder frequencies for USS ALBACORE (AGSS 569).4
The purpose of the present report is to extend the theory to include reac-

tions on the ship control surface and water causing control surface flutter

*References are listed on page 119.



and to present a design for an analog network representing the various
control surfaces subject to hydrodynamic forces, which may also be attached
in a suitable manner to the network representing the ship,3 for a study of
the vibrations of the combined system. In addition, finite difference
equations of motion for the control surface-hull system subject to hydro-
dynamic forces on the control surfaces have been devised and coded on the
IBM 7090.%

2. ELASTICITY OF THE RUDDER STOCK

The rudder itself can be assumed to be rigid without serious error
but the stock by which the rudder is attached to the ship exhibits appre-
ciable flexibility. Let ZT denote the effective length of the stock for
torsion, including, perhaps, additions to its actual length to allow for
local deformation of the ship structure at its top and of the rudder at
its bottom. At an intermediate point the rudder is restrained by a bear-
ing. It will be assumed to twist freely in this bearing but to be effec-
tively constrained by it against translation or rotation about a horizontal
axis. The effective length of the stock £ for bending may be taken as the
actual distance between the bearing and the point of attachment to the
rudder, or the length may be increased somewhat to allow for local flexi-
bilities in the bearing or the rudder. These effective lengths were used
in computations for ALBA.CORE.4

Regarded as a uniform beam, the stock has four elastic constants:
a. Extensional stiffness EA
b. Torsional stiffness GJ,
c. Bending rigidity EI
d. Shear rigidity or shear-slope constant KAG.

Here E is Young's modulus and G is the shear modulus, or G = E/[2(1 + v)]

with v denoting Poisson's ratio; A is the cross-sectional area of the stock;

*Application of this theory and the effects of a ship maneuver on flutter
will be given in two separate reports presently in preparation.



I is the areal moment (or "moment of inertia") of the cross section about
an axis drawn in it through its centroid; and J, is its "polar moment" or
areal moment about a perpendicular axis drawn through the centroid. K
might be called the shear-warping constant.

The mode of allowing for the effects of shear warping requires a
brief discussion. In a pin-ended beam loaded only at the ends, attention

need not be given to shear warping, and KAG does not appear in the formulas;

2 2
d
i.e., since V = constant, %’ = 0, so that M = EI(E% + %&) = EI d_;'
X dx

(see Reference 3 and Appendix A2 ). The significance of a "pin end" is
that the end does not retain its shape but rather is free to distort
locally at will. If, however, either end is fastened to a rigid base, the
shape of the end is retained but the position of this end is subject to a
constraint. If a shear force P exists in the beam at this end, the associ-
ated warping is hindered, and the effect of the resulting local distortion
is to rotate the beam relative to the base in the direction of P through an

(See Figure 1.) The value of K depends on the shape of the

P
angle XAG °

! — = P {(on hull)
|

\

\

—— P (on stock)

Figure 1 - Deflection of Rudder Stock Due to Shear Force P



cross section and is probably always less than unity; for a round uniform
cross section, the value K = 0.75 is commonly used. This shear slope at a
clamped end constitutes a modified boundary condition in the solution of
problems. (It is not certain that the same value of K should be used to
correct for clamping effects as is used in the Timoshenko beam-vibration
equations, although this assumption has often been made.3)

The rudder mounted on the stock will then have five elastic coeffi-

cients, expressible in terms of the constants of the stock, as follows:

a. If the rudder moves upward a distance w relative to the ship, a
compressive force F is developed in the stock of magnitude
EAw
= = 1
F== [1]
b. If the rudder rotates about the axis of the stock through an angle
¢ relative to the ship, a torsional torque T is developed by the stock of

magnitude
= K
T = GJg p [2]
EA GJe . . .
Hence A and I are two of the five elastic coefficients.
T

c,d,e. Lateral deflections due to translation or rotation require a
more complicated analysis. Assume for simplicity that the ship is at rest,
and draw the z-axis downward from the ship along the axis of the stock in
its unstrained position. Let y'(z) denote the displacement curve of the
stock in a certain plane drawn through the z-axis, caused by a translation
y of the rudder in this plane together with a rotation 6 about a perpendic-
ular axis, 6 being positive when it tends to give a positive value to
dy'/dz; see Figure 2. Let P be the force and M the moment that the rudder
then exerts on the lower end of the stock, these being positive in the y-
and @-directions, respectively. An equal force P and moment M then act on
the ship also, and there will be equal shear slopes of magnitude P/KAG at
the bearing level and at the bottom of the stock. See Figure 2, where all

quantities shown are positive.



Hull

Defiected
Stock

P

YG

Figure 2 - Forces and Moments Acting on Rudder and Rudder Stock

Stock has bending and shearing flexibility.

To find the relation between P, M, y, and 6, we solve the bending
equation for the stock. At any point z, to preserve equilibrium, the
bending moment must equal M + (£ - 2z) P with £ denoting the length of the

stock; hence:

2 v
EI%Z—Z—=M+(£—Z)P [3]
pA

The boundary conditions are:

d P
At z = 0: y'=0, EZL=—KA—G;
'
At z = § : y' =y, %%— =0+ f%ﬁ .

Integrating Equation [3] once and choosing the constant of integration so

as to satisfy the second boundary condition at z = 0 gives



dy' _ 12 EL

Taking z = £ in Equation [4] and using the fourth boundary conditionm,

we obtain

P . _ 1,2 EI
EI(9+m)—£M+2£P+—MGP
or
1 2
M + 5 4°P = EI6 [5]

Also, integrating Equation [4] and then making y' = 0 at z = 0 to satisfy

the first boundary condition yields

%23)P+ EL 5, 6]

2 1,2
Mz< + (2 Lz RAG

N~

EIy' =

Taking z = £ in this equation and noting that then y' = y by the third

boundary condition, we obtain

1
2

ET

2 1,3
2°M + (§ 27 + RAG

L) P = Ely (7]

This last equation and Equation [5] can now be solved for M and P. For

convenience we write, as a shear-reduction ratio for forces,4
r. = — 1
s 12ET
1+ 5
KAGS
Then we find that
EI ET
P=12rg =3y - 6r —5 6 [7a]
£ £
_ EL EI
M= -6rg ;5 y + (Brg + 1) - 6 [7p]
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Figure 3 - Sign Convention for Coordinates and
Displacements of Rudder

These equations exhibit the three lateral-stiffness coefficients

EL s =brg EL , and (3r_ + 1) EL for the mounted stock in terms

of the elastic stock parameters EI and rg.

12rS

3. RUDDER COORDINATES AND PARAMETERS

Let the right-hand x-, y-, z-axes be taken with the xz-plane passing
through the undisplaced position of the axis of the rudder stock, and with
the x-axis parallel to the ship axis, the z-axis being, therefore, verti-
cal; see Figure 3. Let any small displacement of the rudder be resolved
into translations u, v, w in the x-, y-, z-directions, respectively, plus
small rotations @, B, ¥ about the x-, y-, z-axes, respectively. « will
be taken positive from y toward z and 7 from x toward y but B from x
toward z, in order to harmonize better with the usual theory of the ship

motion.* Let the origin of the coordinates be at the effective center of

*In Reference 4, B was taken positive from z toward x.



mass of the rudder which will be defined presently. Let the effective
point of attachment of the rudder to the stock be at the point x = h,
z=b, y=0. If the ship moves, let its motion consist, for the present
only, of small oscillations including as special cases small rigid-body
displacements.

Since the sudder is symmetrical with respect to the xz-plane as
drawn, a little thought shows that, when the ship is at rest, the reactions
of the stock on she rudder caused by v, 7, o displacements of the rudder
have no tendency to excite u, w, or B motions, and vice versa.4 In each
of these two types of displacement the stock moves only in a certain plane:
in a transverse plane during v, 7, @ or "transverse' motions; in the xz-
plane during u, w, B or "longitudinal" motions. Furthermore, there is no

inertial coupling of mechanical origin between these two types of motionm,

since the two products of inertia T%y and T&z vanish because of the sym-
metry (see Reference 4, Tables 1 and 5), and consequently, rotational
velocity a does not contribute to angular momentum about the y-axis and
rotational velocity é does not contribute to angular momentum about the
z-axis, and vice versa.

The same lack of inertial coupling persists when the rudder is im-’
mersed in water provided any objects nearby, such as a skeg, have surfaces
symmetrical relative to the xz-plane. A little thought shows that, at any
two points on the rudder surface that are mirror images of each other in
the xz-plane, an acceleration ;, y, or o evokes water pressures of equal
and opposite sign; because of this fact and because of the relation between
the slopes of the surface at mirror-image points, these pressures give rise
to no net force in either the x- or z-direction and also to no net moment
about the y-axis; see Figure 4. Conversely, accelerations 4, w, or é
give rise to equal pressures at mirror-image points and these give rise
to zero net y force and zero net moment about the x- or z-axes.

Since the transverse and the longitudinal motions of the rudder are
thus independent of each other, they can be treated separately. The com-
plexity of the problem is thus greatly reduced. The more important case,

the transverse motion, is considered first.
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Figure 4 - Pressure at Mirror Image Points of Rudder Surface

Due to 3, ;, ﬁ, and é, Respectively

4. RUDDER-HULL MOTIONS AND CORRESPONDING MOBILITY ANALOGS
4.1 TRANSVERSE OR v, 7, @ MOTION OF THE RUDDER

When the rudder is given a translational acceleration v, the water
reactions on it are equivalent to a single force acting along a line paral-
lel to y and meeting the xz-plane in a certain point Cp called the center
of pressure. The magnitude of this force is -E& v, where Ey is the virtual
mass due to the water for y motion of the rudder. If the rudder also
undergoes angular accelerations % and (@ about axes meeting at Cp and drawn
parallel to z and x, respectively, these accelerations will give rise to
no further net force on the rudder, as can be shown from the conservation
of energy. They may give rise, however, to couples expressible in terms

of virtual moments and a virtual product of inertia, Ixn, T;n, and ?xnzu,
defined with respect to axes through Cp. The reactions on the rudder are
the same as if the water were replaced by a rigid body attached to the
rudder and having the same inertial parameters; hence such a replacement
may be supposed made in dealing dynamically with the v, 7, o motion of the
rudder.

The rudder itself has corresponding mechanical parameters m, i%v,
fzu, and T%nzn. The rudder and the virtual-mass body taken together as a
combined body will have a center of mass whose position can be calculated.?
This will be called the effective center of mass of the rudder. Hereafter

the origin of the x-, y-, z-axes will be taken at this effective center of
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Figure 5 - Positive Forces and Moments Acting on Rudder and
Rudder Stock for Transverse or v, ¥, @ Motion
of Rudder Parallel to yz-Plane

mass of the combined body. The combined mass, m + ﬁ§ will be denoted by
my; the moments and a product of inertia Ix’ Iz, I for the combined body,
defined with respect to the x-, y-, z-axes in their new position, can bve
calculated by the usual formulas for rigid bodies.4

These inertial constants should include the inertial effects of the
stock. It may be sufficiently accurate to treat the stock as rigid in
this connection. Or, approximate corrections can be made for the differen-
tial motion between stock and rudder by a process that will not be con-
sidered further here.

The displacement of the (effective) center of mass is then v, where-
as 7 and  represent rotations about axes drawn through the effective
center of mass; see Figure 5, which shows positive directions.

Forces and moments due to the elasticity of the stock must be con-
sidered next. The small displacements v, 7, o produce corresponding dis-

placements vy, 77, O3 of the rudder at the bottom of the stock of magnitude
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Vi =V - ba + hy ; Y1=73: 0 =Q [8a,b,c]

The forces and moments acting on the rudder at this point, denoted by Y1,
Ty, Mp will be, respectively, equal to -P, -T, -M, where P, T, M are given
by Equations [7a,b] and [2] with "y" = v;, "¢" = Qp, "¢" = yy; see Figure

2. Hence (when the ship is at rest)

EI

EI
Yy = - 12ry = vy + 6r, =
1 s 3 1 s 2
GJ
R
EI EL
M1=61’SZ‘2—V1- (3rs+1)£—o,'

When the ship also moves, these equations require generalization.

Let the rudder stock bearing undergo displacements Vbs 7ps> @ due to the
ship motion, defined in the same way as v, 7, @ for the rudder; see Figure
5. (The subscript '"b" denotes "bearing.'") Then, if rudder and stock were
to move as a rigid system attached to the ship, the bottom of the stock

would undergo displacements Vips 71p> %qp of magnitudes

Vib = Vp A0, 5 Y = 7p 5 Oy = O

and Y;, T;, M; would all be zero. Otherwise, Yy, T3, M; will have values

determined by the differences Vi = Vips 7 = 71ps & = Qpp» Or, in general,

EI EI
Yl = - ]_er —‘ﬁ (Vl -V - mb) + 6]’.‘8 ZE' (@ - ab) [98.]
6J,
T, = - T -7 [9b]
E I
M, = 6r, z_; (v = v = ) - Grg+ 1) E @ -ay) [9c]

The net force Y on the rudder acting at the effective center of mass

and the total moments of force T and M about the z- and x-axes drawn

11



through the effective center of mass of the rudder are

Y=Y ;3 T=7T;+hY;; M=M -b¥ [10a,b,c]

where b and h are the z- and x-coordinates of the effective center of
attachment of rudder to rudder stock, respectively. The angular moments

about the x- and z-axes are, respectively,
Iy = Ixpy 5 L7 = Ix,0

Hence the equations of motion of the rudder for the v, 7, & motion are,
respectively,

mV=Y; Iy -L,a=T; To-T,y=M [11a,b,c]
To simplify the notation, we write

k== ; k., =1, =% [12a,b]

Then, after substituting from Equations [10a,b,c], [9a,b,c], and [8a,b,c]

and collecting terms, Equations [1lla,b,c] become

my; = - 12ks [v+ hy - % (L + 2b) ¢ - vy - % zab] [13a]

1,7 - I,0= -12ksh (v = vp) + 6kgh (£ + 2b)

[13b]
GJe 2 GJe
T
LA - I,y = 6kg (4 + 2b)(v - w,) - [3kg (£ + 20)2 + k]
[13c]

+ 6kgh (£ + 2b)y - [3kg4 (£ + 2b) - ke?] oy

in which the right-hand members are expressions for Y, T, and M, respec-

tively.
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Equations [13a,b,c] have a useful symmetry. Let v be regarded as
the leading variable in [13al, 7 in [13b], and o in [13c]; and call the
equations the v, 7, and ¢ equations, respectively. Then note that terms
not containing a leading variable have symmetrical coefficients; that is,
the @ and 7y terms in the v equation have the same coefficients as the v
term has in the o and 7 equations, respectively; the term ‘Ixz; in the o
equation is matched by 'Ixz&. in the Y equation; and similarly, for 7 and o
on the right. 1If the equations of motion for an elastic mechanical system
do not already possess such symmetry, it can always be introduced by multi-
plying the equations, if necessary, by suitable constants. Furthermore,
the coefficients of the leading variables can be made to have, as here,
positive values on the left and negative values on the right.* (See

Appendix A.)

4.2 RELATIONS WITH HORIZONTAL-TORSIONAL SHIP MOTION

Equations [13a,b,c] constitute equations of motion for the rudder
alone and can be solved to determine its v, 7, o motion when the ship is
entirely at rest so that vy = 7, = o4 = 0. When the ship moves, however,
Vps 7ps and o are all functions of the time, expressible in terms of the
displacements of the ship.

Coupled horizontal bending and torsion are the types of ship vibra-
tion in which only displacements of the type of Vps 7p> and og occur. In
the approximate theory of such vibrations as formulated at TMB, axes are
drawn in the same direction as those drawn here for the transverse motion
of the rudder but with the x-axis for the ship drawn at a height convenient

for the ship theory. Also, the displacement of any cross section of the

*The coefficients of v, 7, and ¢ in Equations [13a,b,c] are expressions

for some of the elastic constants denoted by Kij's in References 4, 9, 10.
The independence of the v, 7, o and u, w, p motions corresponds to the

D ifi=v,y,orqgand j=u, w, or B. For v, 7, «
motion, K, = 12k, Kvy = K)’v = 12kh, Koo = Kpw = -6k (£ + 2b); KOW =

- - 2 _ 2, 1p2
Kyq = =6ksh(£ + 2b), K, = 12keh® + GIo/hy, Ky = 3kg(s + 2b)% + ke,

vanishing of K;
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ship is specified in terms of the horizontal displacement "y" of the point
that is initially on the x-axis, an equivalent rotation "y of the cross
section about an axis through its centroid parallel to z, and a rotation ¢
about the x-axis, taken positive from y toward z.* To avoid confusion with
the other case of ship motion, y, and 7y will be written in this report for
"y" and "7", respectively, to refer to horizontal bending. The variables

then correspond in direction to the rudder variables in this way:

Ship: Yh 7h ¢

Rudder: v V4 o

Both ship and rudder will be assumed to have the xz-plane as a plane
of symmetry. The special case of paired rudders offset from the median
plane of the ship will be discussed later in the report.

Let the rudder stock bearing be at a height zy above the x-axis, as
drawn in the ship theory.3 Then (see Figure 6) the displacements of the
rudder stock bearing vy, 7y» and 0y are related to the ship displacements

as follows:

Vp = Yh - Zb¢ 5 b= 7n s O < ¢ [14a,b,c]

where Yno "he and ¢ refer to the ship cross section that contains the
stock. Let the forces on the ship due to the stock be equivalent to a
force Yy, in the y-direction acting at the level of the bearing together
with couples about axes parallel to z and x of magnitude Ty and M, . The
reactions on the stock will then be -Yy, -Ty, and -My; these reactions

must be statically equivalent to force Y and moments T and M acting on the

center of mass of the rudder, since the rudder is treated as rigid and the

mass of the stock is either ignored or allowed for by a correction to the

rudder mass.**

*Thus the rudder and ship do not necessarily have a common x-axis.

**In Equation [10c] My = =My -(2)(-Yb), -Y, = Y; = Y; hence Equation
[15c].
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Z - Axis for Ship

/ [
/
/
I"‘:d
| Py
|
\ v/
L/
|
b / b
Rudder Stock Beari N~— | — x-Axis for rudder
arin /! i ) ) Rudder Satgzl:mq (as Drawn in Ship Theory)
I \\ Yb = Yh
Final Position of Rudder Stoclhy | Original Position of
Rudder Stock
| z
/ b x-Axis for Rudder
! l
- A
y- Axis for Ship yh

{ Point of Ship Initially on x- Axis as Drawn
in Ship Theory)

Z- Axis for Rudder

y-Axis for Rudder
-t

Effective c.m.of Rudder

Figure 6 - Correspondence between Displacements of Rudder and
Hull for Rudder Motion Associated with Coupled
Torsion-Horizontal-Bending Hull Motion

The effective center of mass of rudder is shown undisplaced.
Actually, the center of mass is displaced when the ship vibrates.

Hence
Y=-Yb 5 T=-Tb+h(-Yb) 5 M=-Mb- (E"‘b)(-Yb)

or [15a,b,c]
Yp=-Y ;5 Ty=-T+hY ; M =-M- (£+Db)Y
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By substituting here for Y, T, M the right-hand members of [13a,b,c],
respectively, we can express Y, Tb, and Mb in terms of the rudder coor-
dinates v, 7, & and Vs Tps O

In practice, however, difference equations are employed in represent-
ing the ship. In the system now preferred at TMB,3 values labeled 7h,n of
7L, are chosen at stations AX apart and values Yh,ntor and Ot of y, and
¢, at points midway between these stations, where n = 0,1,2 ... and @ = %.
(Ordinarily, of course, the subscript h is not used.) For some purposes
it may be sufficiently accurate to use in the formulas for vy and ¢y ,
the values of Yh, and ¢n+a at the nearest midstation, and for U the
value of 7h,n at the nearest station on the ship; also to assume that Yy
and My, act at the midstation and Ty at the station thus selected. Yy,

My, and Ty may then be identified with the terms in the ship equations
that represent external force, torsional and bending moment, actions on
the ship, such as P, Uy » and Qp in Equations [2.42] through [2.49]
in Reference 3. 1In Equation [2.46],3 also, h is to be replaced by zb.*
There is, of course, a certain inconsistency in this procedure, but the
resulting error may be tolerable.

Otherwise, an interpolation procedure may be used; see Reference 3.
Suppose that the point of attachment of the stock is located at a distance
s Ax toward positive x from the station labeled n - &, where O s s<1.
Then it will also be at a distance s'Ax from a certain station n' with

0 s s' < 1, where

If s = % : n' =n-1 s =s+ %

we

If s>% : n' =n H s' =s-%

(See Figure 7, which is drawn for s < %.) Good approximations are then

as follows:

vp = (1= 8) [Yh,n-q = %b%n-q )+ 5 [Yh,ma = % Onta ] [16a]

*In Reference 3, h was defined as the height of the rudder bearing above
the x-axis and is, therefore, replaced by zy to avoid confusion with h as
defined in the present report.
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Zp
7h,n—l yh,r\—a 7h,n yh,n+ a
(/y¥n-a 1 L/ $nta
n-I ~— n / n+l
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- ax ., _"'I
(n'+1) Ship's x-oxis
J&— s4X ——¥
e vax

Figure 7 - Method of Interpolating Displacements

7b (1- S.) 7h’nl + s' 7h,n'+1 [16b]

ap = (L -8) 6 o+ so [16c]
Similarly, Y may be replaced by two parallel forces, Pn-a acting on the
ship at n - o and Pn+oz at n + @ and at a height zy, above the ship x-axis,
and similarly My by Upgatn-aand U, ,atn+qa, and Ty by Q,' at

n' and Q.41 at n' + 1, where

Pig= 1-s)y ; Pog = 5T [17a,b]
Un_a = (1 - S) Mb H Un+a = SMb [17C,d]
Qpr = (1 - s')Tb 5 Qe = s'Tb [17e,f]

Here the forces Ph+q act at a height z;, above the ship's x-axis.
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It is shown that conservation of energy is preserved if both dis-
placements and forces are split in this manner.

Sufficient materials are now assembled to serve as a basis for a
numerical calculation of the normal frequencies and mode patterns of either
the rudder alone (v, = 7, = Oy, = 0) or the ship-rudder system. In the lat-
ter case Equations [2.42] through [2.49] in Reference 3 might be used with
the values given by Equations [17a-f] substituted for Ppi s Un+gs Q'
or Q,'41 in the equations referring to certain values n (and with h re-
placed by zp). In vibration at a definite circular frequency ®, v = -a)zv,
¥ o= -a>27, and O = -wza, so that the three Equations [13a,b,c] can be
solved for v, 7, @ in terms of v, 7y, Q4 ; for the latter the expressions
given in [16a,b,c] may be substituted. Then from Equations [1lla,b,c] Y,

T, and M can be calculated as Y = -wzm v, T= -0)2127 + wz Ixz @, and

2 y

M= -w2 Ix0 + " Iyx,7; from these equations and from Equations [15a,b,c]
Yp, My, and Ty can be found for use in Equations [17a-f]. Thereby, every-
thing in the ship equations is finally expressed in terms of ® and certain
ship variables. The set of equations thus obtained can then be solved

step by step, although not without some trouble. The finite difference

formulation and solution of these equations by means of a digital computer

is found _:!._Il Reference _5_.

In the present report only the design of a representative analog

network will be considered further.

4.3 MOBILITY ANALOG FOR TRANSVERSE MOTION OF THE RUDDER

In an analog network, nonleading terms in the equations of motion
usually require the use of transformers. In the present case, each equa-
tion of Equations [13] contains in its right-hand member all three of the
variables v, 7, @ ; for this reason design of the analog is facilitated
if the terms are grouped in a certain way. Let the terms on the right in
[13b,c] be rearranged so that v occurs in them only in the same combina-
tion with 7 and @ as it does in the v equation, [13a], where v is the

leading variable. The equations then read: ,

1 1
yv=-12k$[v+h‘)'- (-iz+b)a-vb-5.8ab] [18a]
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oo e GJ
1,7 - I,a=-12 kgh [v+ hy - (%z +b)a - v - -21-£ab] - T: (r - 7)

[18b]

o . 1 1
I,a- I,7 = 12 kg (%ub) [v+hy - (3 4+b)a - v, - EZab]-kz?'(a - o)

[18¢c])

A similar grouping procedure could be used for the left-hand members
of Equations [18b,c] also. The general rule is that the grouping proce-
dure should be continued, on the left-hand and the right-hand members
separately, until in each member there remains only one ungrouped term
and this term contains only the leading variable for the equation in
which it occurs (7 or @ in [18b,c]). It can be shown that, if. the orig-
inal equations represent a stable elastic system and are written with the
symmetry and the sign characteristics previously described, then, after
grouping, any term in an equation that contains only the leading variable
for that equation or a group beginning with that variable must have a
positive coefficient if it is in the left-hand member of the equation but
a negative coefficient if it is in the right-hand member. (Examples are
-ks? in [18c], -12kg in [18a], and I, in [18c].) See Appendix A for
proof. These properties of the coefficients guarantee that a representa-
tive network can be constructed from passive elements.

For members or groups containing only two variables, however, a
special procedure is preferable because it opens the way to a useful free-
dom in the choice of the transformer ratio. This procedure is described
presently.

Design of the analog may now proceed. In a mobility analog, veloc-
ities may be represented by voltages above ground at certain nodal points,
whereas the equations of motion are represented by current summations.3
In the present case, let v, 7, and ¢ be represented by voltages v', ;',
and ¢' at three nodal points. The variables v, 7, and ¢ themselves, being
equal to [vdt, fﬁ/dt, and [qdt, will then be represented by voltage
impulses at these nodes. If the ship remains entirely at rest, Vb = 7p

= ap = 0, and these quantities in the equations will be represented by
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connections to ground. When the ship moves, on the other hand, v, 7y
and op will be represented by voltage impulses occurring either at certain
points on the network that represent the ship or at points connected to
this network in a suitable manner, as will be explained later.

Denote by t' the time in the electrical network, which need not ad-
vance at the same rate as time in the mechanical system. Then the corre-

spondence will be such that
. .1 . .t . W | ]
v=Dbyv ; 7=Dby ; a=byga ; t=pt

where by, b2, b3, and p denote fixed conversion factors, which will be
assumed to be positive. Note that the time differentiation indicated in
v, for example, is included in the symbol v'. However,
« d._P1 a4 o e P
v-a—tv-Pdt,v ; v = [vdt=pby[vdt
and similarly for ;, &, Y, and @ . In particular

v=pbyv' , 7=pby? , a=pbza

where v', 7', and o' denote.fs'dt', [7'dt', [ a'at', respectively, or
the voltage impulses that represent v, 7, and @ . Also, similarly, assume
for the variables that refer to the displacements of the ship at the level
of the rudder bearing:

bl\.l}') 5 7b=b25']') H C.Xb=b3C.XI')

Vb

' _ ' '
Vb = pby vy 3 7p T Pby 7y, 5 O = PP3 O
Substitution into Equations [18a,b,c] and division of these equa-
tions by positive numbers a;, a;, ajz, respectively, which remain to be

determined, gives as electrical equations:

b b b b
1™y a4 . by v, P2 3 1,1 34 0
Pa; at' v +128—1-pks[v +b1 hy -_1(b+-2-£)a -Vb--]')—l-i- O, =0

[19a]
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b2 . b3 . pb b b
— 1, % '_—-Ixz—c—l—a'+12—-lksh[v'+b—2-h7'-'1-)—3'(b+%-2)a'
paj dt' pay de' a 1 1
[ b3 ' pb2 GJe [ '
v =2 | +=—==—= (" -%)=0 [19b]
b " by 2 b] ay Ay b
b ., b . P b
_31x—d—.a"—21xz—d— '-6—lks(£+2b)[v'+‘b—2h7’.
pa3 dt Pa3 dt' 1 [19(:]
b b pb
3 1 32 3
-b—l(b+§.e)a'—vb-—lia;)]-!-—agkﬁz(a'-Oll'))=0

In Equation [19a], the first term may be the value of a current
flowing to ground from the v' node through a capacitance of magnitude Cq
equal to blmy/pal; see Figure 8. Similarly, the second term may denote
a current leaving v' through an inductance L; of magnitude such that
Lil = 12b1;)ks/a1, on whose terminals has acted a voltage impulse of
magnitude equal to the quantity in brackets. One of these currents, of
course, must be negative. b

The subtraction of a voltage impulse BI (b + g)(x' from v', as re-

quired in the terms in the bracket in Equation [19a], can be effected by
connecting an ideal transformer, as shown at the upper left in Figure 8,
provided the transformer ratio for voltage r3 has a value of magnitude

by

£
b, (3 + b)

r3

In the figure the ends of the windings that become positive or negative
simultaneously (relative to the other end) are shown by plus (+) marks,
on the assumption that the quantity b, 32+ b)/b1 is positive; if this
quantity is in reality negative, one plus mark must be shifted to the
other end of the winding to correct the diagram.

Every transformer, however, relates two currents to each other as
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Figure 8 - Mobility Analog of Rudder for Transverse or
v, 7, 0 Motion of Rudder
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well as two voltages.* 1In the present case, a current will also be caused
to arrive at the ' node of a magnitude equal to r5 times the current
represented by the second term of Equation [19a)]. This current will supply

also that which is required to arrive at by the third term of [19¢c] if

b pb
-1 3 1 1
1'3L1 —[b]_ +b|](12—pk) 2-—3—k §ﬂ+b
or if ajb; = azby. It is readily seen that the usual relative reversal

of the currents in the two windings of a transformer relative to the direc-
tions of the voltages provides the negative sign in [19c], whatever the
sign of £ + 2b.

Similar treatment of the h7' term in [19a] and of the third term in

[19b], with use of another transformer, leads to the requirement that

o2, by
Iz 21 = b1

bl ]
(12 1pk) = 12paksh

or a;b; = asb, . Thus it is necessary that
ajby = ayb, = agbg [20]

The voltage VL + b3,&x£/2b1 , in which b3/b1 = al/a3, for subtraction from
v' in the brackets, is easily built up out of VL and aé with the help of

b3 ¢

another transformer, as shown in Figure 8; note rj = el
1

The first two terms in each of Equations [19b] and [19c] must then

*To preserve the conservation of energy the ratios of the current and
voltage drops in the transformer will both be positive only if one of the
voltages is taken positive in opposite direction to a positive current;

+ + +
i.e., )% g( or )3 g( . In other branches of the net-
+

work the direction of positive current flow corresponds to the direction
of positive voltage drop.
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represent currents leaving the y' and &' nodes through additional capaci-
tances. Application of the general grouping method previously described
leads to two alternative arrangements; in each the transformer ratio is
required to have a certain fixed value. However, if worthwhile, a range
of choices for this ratio can be secured by using an additional capaci-
tance; and again different arrangements are possible. One of these latter
arrangements, labeled I, is shown in the main diagram of Figure 8; the
three alternatives, labeled II, III, and IV, are shown in the figure as
supplementary diagrams. The validity of these alternative arrangements
is discussed presently. 1In all cases the plus marks on transformers are
positioned on the assumption that the quantity whose absolute value is
taken as the transformer ratio is itself positive; if this quantity is in
reality negative, one plus sign is to be moved to the other end of the
winding.

Before the necessary magnitudes of the network elements are written,
it is convenient to consider the conversion factors further and to intro-
duce a more convenient notation. Suppose, first, that the ship is at
rest, so that vy = 7y = Q;, = 0. Then p can be chosen freely, and, since
the six conversion factors a;, a,, as, bl’ bz, b3 are subject only to the
two restrictions implied by the double Equation [20], four of these con-
version factors can also be chosen arbitrarily. However, if all six fac-
tors are multiplied by any common factor, none of the coefficients in
Equations [19a,b,c] are altered. It is readily seen, in fact, that omly
the ratio of the amplitudes of mechanical and electrical vibration is
affected, and this ratio is of little interest. Thus it suffices to fix
only the ratios of the conversion factors; and, since assigning the value
of one factor together with the values of three independent ratios fixes
the values of all factors, only three independent ratios can be chosen
arbitrarily. When the ship moves, the choice of conversion factors is
further restricted, as is explained presently.

It seems to be most convenient in practice to choose arbitrarily,

besides p, the three quantities A, Py, and Py defined as

b b a b a
A= 1 5 P1 = Eg =L 5 Po = Bé =L [21a,b,c]
pPa) 1 1 23
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Then C; = Am The p's have simple relations to transformer ratios; it

g -
is convenient to be able to choose these with some freedom. The following

further relations are easily verified by using Equation [20]:

b2 2. k3 _ o D3

pa, - P15 pap T Pah g, T P12t
b2 by N by  b; N b3 a; py
pa;  pa; 17 7 pa; pay 27 ¢ b, T 33y

In terms of A, P15 and Py> Equations [19a,b,c] become, whether the
ship moves or not:
[22a]
d 1 2 1 ' £ 1 ' £ ] _

2 d LN} d -1 2 ' 1 E '
PI NI, —dt' ry - plp2>"1xz dTa + 12pTp; Akgh [v + p;hy - 0, (.2_.|. Do

Njs

GJ
-V -y o] eln 32 - = 0 [220]

2, d_ 0 d_ s 2 ' '
pthX P a - plplexz PR 7Y -6p p2 Akg (2 + 2b) [v +plh7

L )
- by (zH+ D)= v - b, 5a{,]+ p?e2 Ak s2(a - ap) = 0 [22¢]

From these equations the following values can be read off or verified
as correct for the elements required in the network shown in Figure 8.
Note that b and h may be either positive or negative, whereas £ is neces-

sarily positive.

Cl-}\.my

- ; 122

17 =12 p2aks 5 L3l =pPeiner, /ep 5 LY =pPeynks?
2 1

r) =P 3 s Ty =pplhl 5 r3=92|b+§”|
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p I < < Py I 1
2 | Ixz | S22 X s C, =00y A | Ixz |
P Iz Py [ Ixz | rL
v 2 ' v 1.2
1T
P 1 P I I
"1 I xz | < rz <Pl Iz : Cz = 0,0, N | Tzl
Py Ix Po | xz | rz
cy =pin1, - (rZ)Z ¢, 5 €y =piAT, - c,
I1I
rm - EZ. IIXZI
4 P I,
I2
mo_ 2 . m 2 XZ
Cy = p1 AL, H C3 = Py K(}x - f;;>
1v
r"" - E}_lIxz|
4 P2 Ix
I2
" 2 XZ . w2
Cy =Py X(IZ - ——Ix >‘ 5 C3 = Py >"Ix

The validity of alternative arrangements I and II in representing
the left-hand members of Equations [22b,c], although perhaps not intui-
tively obvious, is easily verified. In arrangement I, for example, the
current i through Ci taken positive upward, provided I, 2 0, is of

magnitude
. LI | . .
i=2¢C, — 7' - ri ahy

dt

Thus the total current leaving the o node, except through L; and Lj, is
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v d ] _ ' 1.2 v d ' 1 v d o s
°3§t—.0"r41‘[03+(r4) Sl @ T Cagy 7
- o2 '
pz )\'IX ,(1 = plplexz ] 4
in agreement with Equation [22c]. Similarly, the additional current
leaving 7' is
d o1 1 ' d .1 t 41 d e
Ch— 7y +i=(@ +¢c)) — 7' -1, C, — ¢
2 gt T 474 ¢!
_ 2 d o1 d -1
= pl }\'IZ F Y - plpz XIXZ dt' o

in agreement with Equation [22b]. If I , <O, so that |I ,|=-I  ,

the same results are obtained after reversing the connections to one wind-
ing of the transformer. The transformer ratio ri may be given any con-
venient value between the limits indicated; these limits are necessary to

keep Cé and C; positive or zero. A value of ri between these limits can

2

always be found, since always I, = I2

<z SO that

IIXZI S IX
I, | T

xz |

Arrangement II is verified similarly.

In some cases it may be preferable to eliminate one capacitance by
setting ri or rZ equal to its least permissible value. Then either Cé
or Cg is zero and the two resulting alternative arrangements obtained from
I and II, respectively, are shown as ITI and IV, with subscripts changed

and Cd or CZ relabeled as Cé" or C3° , respectively.

If I,, = 0, then C, = C)' = 0, and the corresponding capacitance and
Xz 4 4

the associated transformer may be omitted. If 0 < I, = I, and also

<
I.,=1I
can be omitted, Ci being connected directly between the &' and 7' nodes.

»» then it is possible to choose ri = 1 so that this transformer

An alternative (energy) method of deriving the mobility analog for

the rudder is given in Appendix B.
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4.4 CONNECTION TO THE SHIP NETWORK

In the ship network the velocities éh,n+a’ &h,n’ and $n+a are
represented by voltages at nodal points. When the rudder network is con-
nected to the ship network in order to study the vibrations of the combined
system, the network representing the ship must be connected to the nodes
representing Gb, &b , and db’ shown in Figure 8, so as to represent
Equations [16a,b,c]. This connection is facilitated if the same conver-
sion factors are used for both networks; that is, if p is the same for
both and if the factors bl’ b2, and b3 used for GL, &é , and dé , respec=-
tively, are the same as the factors used for &ﬁ,n+a , &ﬁ,n , and $&+a in
ship theory. These factors are commonly denoted by the same symbols.3
Then p, by, by, and b3 are all fixed when their values have been chosen
for the ship network.

One of the boundary conditions at the juncture of two networks, the
requirement of a common voltage at common points, is thereby satisfied.

A current balance is also necessary, however; the (algebraic) currents
entering the networks at any common point must be equal and opposite.
This requirement corresponds to the law of action and reaction in mechan-
ics, just as the identity of voltages at a common point represents the
existence there of a single velocity.

In ship theory the force and moments Ph,n+a , Qn , and Un+a are
represented by currents defined in terms of conversion factors ay, as,
and aj . In rudder theory analogous conversion factors have not been
introduced explicitly, but they are easily discovered. The right-hand
members of Equations [13a,b,c] or [18a,b,c] represent values of Y, T, and
M, respectively. They still represent such values after substitution for
v, ¥, and @ in terms of v', 7', and a'; after division by aj;, ap, and as,
respectively; however, they have become values of currents or current
sums. Thus the a's already introduced constitute conversion factors from

force or moment to current. Hence

In view of Equations [15a,b,c] and [17a-f], the conversion factors a;, a,,
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and aj for Y, T, and M must be the same as the conversion factors for

Ph,nta > Qn » and Uﬁta ’

determined for the rudder by the values chosen for them in the ship theory.

respectively. Thus'al, a9, and ag, also, are

The relations, Equations [16a,b,c] become the electrical requirement

(since b,/b; = a;/a,) that
3/71 1793

= -9 N M U Lo e
Vp = =8| Yh,n-a ~ a, Zb *n-a S1%h,m+a ~ as 2y ®nt+q
Wl ! ot T ot _ ! ot vt
7p = (- s) "h,n' +s h,n'+1 ~ 1-s") 7h,n-1 ts "h,n
L 1 MLl o1

ab- (1 - s) ¢n_a+ S¢n+a

Such combinations can be made by means of transformers, as shown in Figure

9. The nodes labeled §A,nia’ ¢nicx’ &L,n—l , or &L,n are nodes in the

ship network; points labeled Gé, &L, dL are those so labeled in Figure 8
for the rudder network. Figure 9 is labeled for zy, > 0; if z, < 0, one
plus sign is to be moved to the other end of the winding for each trans-
former; i.e., connections to one winding of both transformers having vol-
tage ratio r:1 are to be reversed from those shown in the figure.

Equations [17a-f] become current relations, such as

1 _ ' . ' =
Ph,n—a - (1 - S) Yb ’ Ph’rl"‘a SYb

in which Pﬂ o denotes currents entering the ship network at n*tq , and
b

YL denotes the current leaving the rudder network at the vé node. It is

easily verified that these relations are also satisfied. The currents

entering the 6;1 ship nodes through the r transformers represent tor-

a
sional moments -z, P +q @bout the ship's x-axis and are of magnitude

An alternative (energy) method of deriving the mobility analog for

the rudder-hull system is given in Appendix B.
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Figure 9 - Mobility Analog for Connection of Rudder
Shown in Figure 8 to Hull

P h,n"ﬂ =("$)Y,b
—~tl)——
Ph

= a3 1%l

For s, s', see Equations [1l6a,b,c].
The connections shown are for zy > 0

Hult | t_—**- \\;y

,r—-b ’w

cm.of Rudder

A

On Rudder
(Drawn as if Positive)

Figure 10 - Positive Forces and Moments Acting on Rudder
and Rudder Stock for Longitudinal (xz-Plane)
or u, w, B motion of Rudder
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5. LONGITUDINAL RUDDER-HULL MOTIONS AND
CORRESPONDING MOBILITY ANALOGS

5.1 THE LONGITUDINAL OR u, w, B MOTION OF THE RUDDER

The treatment of the longitudinal motion of the rudder largely par-
allels that of its transverse motion and may be stated more concisely,
especially since it is of less interest. The problem will be simplified
for the present by assuming that the rudder lies in the median longitudi-
nal plane of the ship.

The displacements of the rudder to be considered are the two transla-
tions u and w parallel to the rudder x- and z-axes, respectively, and the
rotation B about the rudder y-axis through the effective center of mass,
taken positive from x toward z; see Figure 10. The relevant inertial
parameters of the rudder will be only its mass and its moment of inertia
about the y-axis. There will probably be different virtual masses for
accelerations U and W. Furthermore, u will probably produce a z-component
of reaction by the water on the rudder, and w a corresponding x reaction.
This cross reaction will usually be relatively small, however, and is dif-
ficult to estimate; furthermore, the virtual masses for U and w accelera-
tion are themselves much smaller than that for v acceleration. Hence, the
cross reaction will be ignored. The inertial parameters for rudder plus
water will then be only total masses my and m, for U and w acceleration

and an equivalent moment of inertia I including water inertia, about

*

y)
the y-axis.

The displacements of the bottom of the stock will be, in this case,

u;, wy, and By, where

uy=u=->bp ; wy=w+hB ; B =8 [23a,b,c]

*The cross effect could easily be included in the equations of motion.
The left-hand members of Equations [26a,b] would become, respectively,
m U + mxyﬁ ; mzﬁ + mxzﬁ
with my, denoting a cross-inertial constant that may be either positive

or negative. It is always possible to make m,, = 0 by rotating the axes,
but in the present case this would be inconvenient.
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The reactions of the stock on the rudder at the bottom of the stock will be
forces X; and Z; in the x- and z-directions, respectively, and a moment Qp
in the xz-plane, positive from x toward z. When the top of the stock is
fixed, the magnitude of X; is -P as given by Equation [7a] with "y" = u
and 6 = By ; see Figure 2. Z; equals -F as given by Equation [1] with

"w' = w;; and Q; = -M as given by Equation [7b] with "y" = u; and

"@" = By . Thus, changing notation, as shown in Equations [12a,b], when

the ship is at rest:

EAWl .
y) ’

Xy = - 12kguy +6 k&P 5 Zp =~

2
Q = 6 kg bu; - (3kg + k) LB

If now the ship moves and the top of the stock (at the level of the bear-
ing) undergoes displacements uy, W, and Bb, then, if the stock were to
move as if rigid, its lower end would undergo displacements u;y, Wyy» and

Blb of magnitude

[

uy, =up H LBy 5 W =W, 5 By = By

and in this case X1 Z1 = Q1 = 0. Hence, in general,

X]. = - 12 kS (u1 - ub - Jeg‘b) + 6 ks,@ (Bl - Bb) [243]
zl = - %é (wl - Wb) [24b]
Q = 6 kg £ (up - wp - 2Bp) - (3kg + k) 4% (By - By) [24c)

The corresponding forces X and Z on the center of mass and the moment Q

about the rudder y-axis are

X=X 3 2Z2=27 ;3 Q=0Q -bXy +hZ [25a,b,c]

The angular momentum of the rudder is I,f . Hence

y

mU =X ; mw=2; IB =Q
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Thus, in terms of u, w, B, the equations of motion for the u, w, B motion

of the rudder are

mgU = - 12Kkg (u - bB - uy - £By) + 6 kgl (B - By) [26a]
mzﬁ=-%(w+hf3-wb) [26b]
T B = 6k. (£ + 2b)(u - BB = uy - £B,) - o2 (y + hB - w)
y s b =~ 4Py 7 b

[26c]
- [3kef (£ + 2b) +k£2] (B - By)

The right-hand members of these equations are expressions for X, Z, and Q,
respectively.

Note that if h = 0, the w motion is independent of the other motions;
it represents a simple vertical translational vibration of the rudder. If
EA is relatively large, the frequency of this vibration (where wy = 0) is
high. Even if h # 0, there is likely to be one mode of vibration at rela-
tively high frequency in which compressional elasticity plays a dominant
role.

There appears to be an advantage in concentrating the coefficient
EA in one equation by returning to wj as a variable instead of to w. We
have w; = w + hB, therefore w = ﬁl - hé. Direct substitution now destroys
the symmetry of the coefficients, but this can be restored by subtracting
h times the new form of the second equation from the third equation. The
design is also facilitated if the terms are grouped as in Equations
[18a,b,c]. The result is the following alternative set of equations of

motion in terms of u, wy, and B:

. 1 2
m, u =-12ks[u-5(,€+2b)6 -ub--z—Bb] [27a]
mz ;5;1 - hmzé F - 'E—j: (Wl - Wb) [27b]

(Iy+h2mz)§ -hmz;ﬁl = 6ks(2+2b)[u-%(2+2b)8
[27c]

N|x=

eb] - k8?2 (B - By)
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The right-hand members of these equations are equal to X, Z, and Q - hZ,
respectively.

If EA is large enough, it may be reasonable to ignore the high-
frequency mode of vibration mentioned previously by assuming as an approxi-
mation that w; = w, and then using only the first and third equations. As
a check, the difference w; - wy as given by Equation [27b] can then be
calculated to see if this difference is sufficiently small to justify
dropping Equation [27b].

The vibrational frequencies of the rudder when the stock is clamped
at the bearing level can be determined by solving Equations [26a,b,c] or

[27a,b,c] with uy = wy = By = 0.

5.2 RELATIONS OF LONGITUDINAL SHIP MOTION WITH VERTICAL SHIP MOTION

3 the verti-

In the usual theory of the vertical vibrations of ships,
cal displacement of any cross section of the hull is commonly denoted by
"y'", the y-axis being drawn vertical in this case instead of horizontal.*
Then there is an (equivalent) rotation 7 of the cross section about its

horizontal neutral axis. These displacements do not evoke a net compres-

sive or tensile longitudinal force in the ship. Such a force might result
from longitudinal vibration, but such vibrations are of relatively high
frequency and are not usually considered. In this report, y and 7 for

the vertical motion of the ship will be replaced by Yy and 7y to avoid
confusion. Thus, the correspondence of displacements in the present case
is as follows; see Figure 1l1:

Rudder: u, w, B

The rotation 7y, will displace the stock bearing if the latter does

not lie on the neutral axis of the ship cross section to which the stock

*For the case of vertical vibrations the y- and z-axes for the ship,
i.e., yy and zy, are rotated through 90 deg so that the y,-axis is vertical

and the zv-axis is horizontal; see Reference 3.
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__Neutrol
Axis

Effective c.m.
of Rudder

Figure 11 - Correspondence between Displacements in Rudder
and Hull for Rudder Motion u, w, B Associated
with Vertical Ship Motion

is attached. Let the neutral axis lie a distance d above the stock bear-
ing. Then the displacements of the bearing will be, omitting that dis-
placement due to longitudinal vibration of the ship
u, =dr, 5 W =Y, 3 By =7y [28a,b,c]

These values substituted for Uy, Wy, and Bb in Equations [26a,b,c]
or [27a,b,c] furnish equations for the rudder which, together with the
ship equations, make possible a calculation of the vertical vibration of
the ship as modified by motion of the rudder.

If finite-difference equations are employed, the displacement of the
ship may be represented by values Yv,n+q 3t midstations labeled n + ¢ and
by Yv,n at stations labeled n (@ = %). The connection of these values

with uy, wp, and By can be established by the interpolation procedure
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described just before Equations [16a,b,c],

up = d [ =8y o 8"y Ly ] = dBy [29a]
wp = (1 - S)yﬁ,n-a * S$¥y,n+a [29b]
By = (1 -s") 7v,n' + S|7v,n'+1 [29c]

3 s' < 1; the rudder stock is located sAx from point

Here O s s<1and O
n - ¢ and simultaneously, s'Ax from point n'.
The equivalent forces X and Z; and couple Q, acting on the ship,

assumed to act at the stock bearing, will have the values

Xp= -X 3 Zp= -2 ; Q=-Q - (£+bB)X+hZ=-Q - (£+ D)X
[30a,b,c]

where X, Z, and Q are equal, respectively, to the right-hand members of
Equations [26a,b,c], or Qg is the right-hand member of Equation [27c];
i.e., Qg =Q - hZ. The values of Zy and Qb thus found may now be substi-
tuted for Y, and Ty, respectively, in Equations [17a,b,e,f] to obtain
values of the external force Pty
use in ship equations representing vertical vibration. Ship equations

and external moment Q,r or Qv g for

given in Reference 3 may be used by adding P4, on the right in Equations
[2.5] or [2.18] and -Q, on the right in Equations [2.7] or [2.20], in
analogy with Equations [2.42] and [2.44] for horizontal vibration. For
Q,, eilther Q.1 or Q41 will be used according to the location of the

rudder, as was explained following Equations [17e,f] in the present report *

*Note that logically n has different meanings. In Equations [17a,b], n
is such that the rudder lies between n - @ and n + @, whereas for ship
theory in Equations [2.5] or [2.18] of Reference 3, n may have any value
within the specified range. The latter equations refer to station n + ¢
only, but by varying n all stations are covered; e.g., suppose the rudder
lies between stations 15 - o and 15 + o, then rudder n = 15. Now watch

the calculator: P, = 0Oforn=0...13, 16 . . . 20. Pt # 0 for

n = 14, 15. Similarly for Qn' and Qn'+1 .
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The ship equations thus modified may then be solved in conjunction
with Equations [29a,b,c] and either Equations [26a,b,c] or [27a,b,c],
noting that in the latter w; = w + hB.

The force Xy on the ship is ignored simply because longitudinal

vibrations of the ship are not being considered. The finite difference

formulation and solution of these equations by means of a digital computer

is found in Reference 5.

5.3 MOBILITY ANALOG FOR LONGITUDINAL OR u, w, B MOTION

The procedure for designing an analog is similar to that used for

the transverse motion. Write

l.1=b6l..l' H ‘:7

b, W 3 B = bs B' 5 t= pt

w
1

11=b6pu' 5 w b4pw' H -bspB'

up = bgPu, ; W, = DbgPwy 3 By = bsPBy
After substitution in Equations [27a,b,c] and division of these equations
by ag, as, as, respectively, we see that it is advantageous to require

that
a4b4 = a5b5 = a6b6 [31]

It is found also that ag and a, are the conversion factors from x force
(X or Xp) or z force (Z or Z) to current, and a; similarly from y moment
(Q or Qb) to current. Again the six factors 8, ag, g, b4, b5, and b6
may be taken as positive, and three of their five independent ratios may
be chosen arbitrarily so long as uy = w,, = B, = 0. When, however, the
ship moves, these ratios must agree with the choice made for the ship.

In the latter case, ay, and 64 are the same factors as those denoted by

a; and b1 in the ship theory, and ag and Bg; are equal similarly to a, and
b2.3 Since longitudinal motion of the ship itself is being ignored, the
ratio b6/a6 is arbitrary.

For greater convenience, write, in analogy with Equations [2la,b,c]:
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R R S VL I T
Then
bg a5 Py bs by _ _ bg by _ _
Ta -3 ¢ pa, T par - PN e, Tpa ~ P2t
5 6 P1 pPa8;  Pag pPa,  Pag
bs bg bs bg

Conversion of the mechanical Equations [27a,b,c] by substitution then

yields the electrical equations:

P 3
-2 = d - 2 =2 = ' _]_-l ! v 1 2 v}
pzhmxgt—,-u + 12 p Py )\.ks[u-_52(2£+b)B-ub-5223b]-0
[32a]
- 4 o = = d o ~ EA
Am, — wi - P A hm, — B8 + p2 N - (wi - WL) =0 [32b]
dt dt
—2 2 d 1 d .o 2——.—-
Py A (Iy + h“m,) e - P A h m, o 6p P1P9 N kg (£ + 2b)
[32¢]

] -5 ) - = ' '
[u'- _—1(%1,+b)6 -u{)-—]-'-gﬁb]+p2 o2 X k42 (B'- py) = U

One form of the corresponding network is shown in Figure 12; the
values of the electrical elements are collected in the following list.
The auxiliary connections needed to represent Equations [29a,b,c] are
also shown in Figure 12; the nodes labeled similarly in the various dia-

grams being the same nodes in all three diagrams.

C, =Amy, (1 -1, 07 |RD

- —-[-= 2 mz|h|
C5=p1)s.[pl(1y+hmz)-r
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Figure 12 - Mobility Analog of Rudder for Longitudinal
or u, w, B Motion of Rudder and Connection
of Rudder to Hull

The rotation 7 is about a horizontal axis;

connections to the |d | transformer are for
d > 0.
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C6 = Py A my
_= % Inl
Cy plkmz-;_.z-
-1 — EA -1 -2 =, ,2 -1 2 =2 =
L4=p2,\7;L5=p2p1xkz ; Lg =12 p° oy N kg
m, |hl <. < 1
S, S =
b1 (Ty + homy) P1le]
5 3
r5-_-_—1£ ’ r6=:]:|lz+b|
Py 2 Py 2

As usual, if the quantity whose absolute value appears in the formula
for a transformer ratio is negative, connections to one winding of that
transformer must be reversed from those shown in the figure. The value of
ry, is arbitrary within the limits shown.

As an alternative, the Cy capacitor can be connected through the
transformer to the w' mnode, as in changing from I to II in Figure 8; then
Cs4, C5, Cy, and ry4 all have different values.

If h = 0, then Cy = 0, and both this capacitor and the r, transformer
are to be omitted. If h >0 but is small enough to make r, equal to unity,
then again the 1, transformer can be omitted, C; being connected directly

between the w; and B' mnodes.

6. PAIRED RUDDERS AND CORRESPONDING MOBILITY ANALOG

Previously, a single rudder has been assumed to be located in the
median plane of the ship. If a single rudder, although parallel to the
median plane, is offset from it a distance e toward positive y, the theory
is more complicated. Let a line drawn through the center of the rudder
bearing and perpendicular to the median plane meet this plane at 0; see
Figure 13. This line will be at a height zy above the x-axis, as drawn in
the ship theory, and the displacements of the ship at 0 will be the same
as those of the rudder bearing when the rudder is in the median plane with

its bearing at 0, so that the displacements at O will be those given by
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Y Xy
Figure 13 - Positive Directions for Hull Displacement at O

(Intersection of a Line through Bearings and Hull Medium
Plane) and for Reactions on Hull at Bearings

Offset of rudder "e" is toward positive y.

Equations [l4a,b,c] and [28a,b,c]. In addition, however, the offset rudder
bearing has two other displacements, so that its total displacements due to

the ship motion, distinguished by the usual subscript b, are as follows:

up, =dyy- ey, 3 Vp = yp - Zpt W = Yy, t+ eo [33a,b,c]

%

) H By = 7y H s = 7n [33d,e,f]

When the ship vibrates in torsion, the term e¢ in Equation [33c]
gives rise to vertical motion of the rudder, and the resulting reactions
on the ship will excite vertical vibration of the ship. For this and other
reasons, the horizontal-torsional and the vertical vibrations of the ship

are coupled together by the presence of a single offset rudder.

Usually, however, offset rudders occur symmetrically in pairs, and
only this simpler case will be considered further in this report.

Let there be a pair of similar rudders with offsets from the median
plane *e, where e > 0; see Figure 13. It is shown that such a pair does
not couple the two types of ship vibration and that the vibrations of the

combined ship-rudder system fall into the following three distinct classes:

a. Vertical ship vibration accompanied by equal u, w, B vibrations of

the two rudders in the same phase.

b. Horizontal-torsional ship vibration accompanied by equal v, 7, a
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rudder vibrations in the same phase and also equal u, w, B vibrations in

opposite phases.

c. Equal v, 7, @ rudder vibrations in opposite phases, with the ship

stationary.
These three types are considered in order:

a. Vertical Ship Vibration. Suppose that the ship is vibrating

vertically, with y;, = 7, = ¢ = 0. Then the e terms disappear from Equa-
tions [33a-f]. The vertical ship motion will excite the same u, w, B
motion in both rudders, causing equal X, Z,, Q, reactions on the ship

(at the two rudder bearings). The two equal X, forces, acting together

in the same direction, have no tendency to excite Th rotation of the ship
about a vertical axis; similarly, the two Zb forces do not excite ¢ rota-
tion; and nothing excites y, motion. Thus no yy, 7y, ¢ motion of the ship
is excited, and it becomes clear that a possible type of vibration of the
rudder-ship system consists of vertical vibration of the ship accompanied
by equal u, w, B vibrations of the rudders in the same phase.

The combined effect of the two rudders on the vertical vibration of
the ship is the same as that of a single rudder in the median plane with
bearing at O, constructed exactly like each of the actual rudders except
- Iy, k, kg, and EAh are all

doubled. The equations of motion for u, w, B motion, Equations [26a,b,c]

that the inertial and elastic constants my, m

or [27a,b,c], show that for given values of Uy, Wy, and By the single rud-
der so designed will execute the same motion as each rudder of the actual
pair. The forces on the ship due to the single rudder, however, will all
be twice as great as those due to either of the actual pair. Hence, the
effect of the single rudder on the ship motion will be the same as the ef-
fect of the two actual rudders, whose combined reactions on the ship are
equivalent to single forces 2Xy and 2Z, acting at 0 in the midplane, plus
a torque 2Qb about y.

This type of vibration may be treated, therefore, by using the single-
rudder equations, [23a,b,c] through [30a,b,c], modified by the doubling of
constants just described. The values of uy, w,, By to be used in the equa-
tions will be the same as those given in Equations [33a,c,e] for the actual
rudders. The reactions of the single rudder on the ship equivalent to

those of the actual rudders can be written from Equations [30a,b,c]:
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2Xb = «2X H ZZb = - 2Z

2Qy = -2Q - (£ + b)(2X) + h (22) = - 2Q, - (£ + b)(2X)

where 2X, 2Z, and 2Q now represent the respective right-hand members of
the modified Equations [26a,b,c], or 2Qg represents those of the modified
Equation [27c¢]. For greater clarity, Xps 2y and Qb in these equations
may be replaced by the symbols Xys Zy, and Q, representing the reactions
due to the equivalent single rudder and, hence, also the equivalent reac-
tions due to the paired rudders acting in the median plane and at 0. The
force i£ acts at the height of the actual rudder bearings.

The procedure in calculations for the vibrations of the rudder-ship
system will now be the same as the one for the single midplane rudder
after Equations [30a,b,c] at the end of Section 5.2, except that the modi-
fied equations just described will be used, and the values just given for
27, and 2Q, will be substituted for Y, and Ty, respectively, in Equations
[17a,b,e,f] in obtaining values of Plig> Qrs and Qg -

b. Horizontal-Torsional Ship Vibration. Suppose, on the other hand,

that the ship vibrates in horizontal bending and torsiom, with Yn> 7he and

¢ active but with Yy =7y = 0. Then Equations [33a-f] become, after substi-

tuting for 7, and ¢ from Equations [33f,d] in the e terms and rearranging:

Vo T Y - %t 5 Tp =7y %

) [34a,b,c]

0 [34d,e,f]

up = Ty 3 wp=teoy, ;0 By
Here the upper signs (-,+) refer to the rudder whose offset is +e and
the lower signs,(+, -) to the other rudder.

Thus, in addition to the v, 7, o motions of the rudders that would
obviously be excited by horizontal-torsional motion of the ship, u, w, B
motions of the rudders are also excited. There is, however, no tendency
to excite vertical ship vibration since the contrasting signs in Equations
[34d,e] cause the two rudders to move oppositely, vibrating in their u, w,

B motions, with equal amplitudes but in opposite phases. The resulting
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two Xy forces on the ship are also equal and opposite, and they act at the
same height above the xy-plane, whereas the two Y, forces, also equal and
opposite, act along the same line. The two torques Qp cancel because of
opposite phases. The two Z, forces are also equal and opposite. Thus
none of these reactions excite X or z translation of the ship or rotation
about a horizontal axis parallel to y. It follows that the paired rudders

allow the ship to vibrate in horizontal bending and torsion without simul-

taneous vertical vibration of the ship.

Equal v, 7, 0 motions of the rudders are excited by the equal v,
7p> Op displacements of their bearings as given by Equations [34a,b,c].
Since these motions are in phase, the actual rudders may again be replaced
in the calculation by a single rudder in the median plane with bearing at
0, with doubled inertia and elasticity. The equations of motion for this
2> Ixzo ks kg,

and GJ, all twice as large as for one of the actual rudders. Given values

equivalent rudder will be Equations [13a,b,c] with m, I, I

of Vs 7ps O will cause the single rudder to execute the same v, 7, O
motion as that of each of the actual rudders, but its reactions on the ship
will be twice as great as the reactions due to one of the actual rudders,
thus simulating correctly the combined effect of the paired rudders.

The relations between the single rudder and the ship will be those
expressed by Equations [l4a,b,c] and [15a,b,c]. Here, for clarity, Yi»
Ty and My may be replaced by the symbols Yb’ Ty, and My, respectively,
since they now represent twice the reactions on the ship due to one uf the
actual rudders. The quantities Y, T, M, in Equations [15a,b,c] are equal
to the right-hand members of the modified Equations [13a,b,c].

For the u, w, B rudder motions that also occur in this case, it suf-
fices to calculate the motion of one rudder; for this the rudder with
offset +e will be chosen. The motion of the other rudder will then be
the same but in opposite phase. The equations to be used for the chosen
rudder are Equations [26a,b,c] or [27a,b,c]. 1In these equations u, wy,
B, are to be given the values specified for this rudder in Equations

[34d,e,f], or

ub = =g 7b 5 Wb = e be H Bb =0 [BSa,b,C]
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The reactions acting on the ship at the bearing of the chosen rudder
due to its u, w, g motion will be Xps Zys Q> as given by Equations
[30a,b,c]. The torque Q, however, is balanced out by an opposite torque
due to the u, w, B motion of the other rudder in the opposite phase. The
Xy and Zp forces due to the two rudders, acting in opposite directions
along parallel lines 2e apart, have zero force resultants but are equiva-
lent to a torque -2eXy about the z-axis and a torque 2eZ;, about the
x-axis.

Addition of the reactions due to both types of rudder motion then
gives as the total equivalent reactions on the ship, expressed in the
notation of the ship theory, a force P acting toward positive y along a
line through the rudder bearings and torques Q about the vertical z-axis

and U about the x-axis of magnitudes:

P=Y, ; Q=Ty -2eXy, ; U=HM + 2ez, [36a,b,c]

Here ?b’ Tﬁ, and ﬁb arise from the v, 7, o motions of the rudders described
previously. The method of introducing such external reactions into the
ship equations is described in Reference 3 and also briefly following
Equations [15a,b,c] in the present report.

The equations to be used simultaneously in calculating frequencies
of the rudder-ship system when the ship moves horizontally torsionally

may be summarized as follows:

(1) For the in-phase v, 7, o rudder motions:
Equations [l4a,b,c] or [l6a,b,c] to give Vps 7ps Qp in terms of y, 7, ¢;
Equations [13a,b,c] with constants doubled; Equations [15a,b,c] multiplied
through by 2 to give reactions 2Yy, 2Ty, 2Mp, on ship due to this motion

of the two rudders.

(2) For the opposite-phased u, w, B motions:
Equations [35a,b,c] to give Up> Wps By in terms of 7y and Q5 and thus
from Equations [l4a,b,c] indirectly in terms of Yhs 7ns ¢ Equations
[26a,b,c] or [27a,b,c] as equations of motion for rudder with offset +e;

Equations [30a,b] for reactions Xp and Z, on ship due to this rudder alome.
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(3) Equations [36a,b,c] for net reactions P, Q, and U on ship due

to both motions (v, ¥, o and u, w, p) of the two rudders.

(4) Ship equations such as Equations [2.42] through [2.49] in Refer-
ence 3, including forcing terms representing P, Q, and U. The way to intro-
duce such terms into difference equations for the ship is explained in
Reference 3 and also briefly following Equatioms [15a,b,c] in this report.
The expressions for P, Q, U given by Equations [36a,b,c] may be substituted
for Yy, Ty, and My, respectively, in Equations [17a-f] of the present re-
port to obtain values of Pp,, 5 Q' > Q,'+1» and Unta for use in differ-

ence equations for the ship.

c. Ship Stationary. Assume that the rudders execute equal v, 7, &

motions but in opposite phases. Then, of the reactions cited in Equations

[15a,b,c], the two Yy forces on the ship act in opposite directions and
along the same line, while the two T, and My torques cancel. Thus, there
is no net reaction on the ship at all. It follows that there exists a
type of vibration of the rudder-ship system in which the rudders vibrate
in equal but opposite v, ¥, a motions while the ship, although free to
move, stands still.

The frequencies of vibration and the associated motions may be found
by solving Equations [13a,b,c] for one rudder, with vy = 7y, = O, = 0.

The question may arise of whether still other types of vibration of
the rudder-ship system are possible (without appreciable axial vibration
of the ship). Always, in undamped vibration of an elastically coupled sys-
tem, all parts of the system come to rest periodically at the same instant.
It follows that in any type of free vibration of the rudder-ship system any
vibratory motions of the two rudders must occur either in the same or in
opposite phases. The alternative as to phases will hold separately for the
v, ¥, & and u, w, p motions of the rudders, since they are not coupled to-
gether; thus four combinations of rudder motions are possible. Since these
four combinations, together with the ship motions that each tends to excite,
have all appeared in the treatment just given, and since both of the pos-
sible modes of ship vibration have been considered, it is clear that no
other type of vibration of the system (besides those types that have been

discussed) is possible.
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Each of the three classes of vibrations consists of a sequence of
modes of increasing natural frequency. In classes a and b, the frequency
and the mode of motion of the ship must be nearly the same as those calcu-
lated on the assumption of rigid rudders, unless this frequency happens
to lie close to a natural frequency for the rudders when vibrating with
fixed bearings. 1In the latter case, relatively large amplitudes of rudder
vibration may occur, accompanied by a considerable distortion of the ship
motion. The theory should hold even in such a case, provided the simplify-
ing assumptions just made remain sufficiently valid.

Simplified formulas which may serve as a measure of the resonance
effect on a rudder when the frequency of ship vibration approaches the
natural frequency of a rudder are given in Appendix C. The significance
of these approximate formulas is that they give the conditions for which
large amplitudes of rudder vibration and corresponding damage to the rudder

system become possible.

6.1 ANALOG NETWORK FOR TWO RUDDERS

For vibrations of class c¢, in which the ship remains stationary while
the rudders execute similar v, 7, @ motions in opposite phases, it suffices
to represent one rudder by the network described in Section 4.3 and shown
in Figure 8. For the present purpose, however, the nodes labeled
Gé + % (b3/b1).Zd%, dé , and &L in Figure 8 are to be grounded, since the
rudder bearing is here stationary. The r; transformer, therefore, is not
needed.

For vibrations of class a, in which the ship vibrates vertically and

the rudders have similar u, w, B motions, the equivalent median rudder
described previously for this case may be represented by the network shown
in the upper part of Figure 12, but with all capacitances made twice as
large and all inductances half as large as they would be to represent one
of the actual rudders. The lower part of Figure 12 shows the additional
elements necessary to connect the ﬁé, &é, and éé nodes of the rudder net-
work to the network representing the ship in vertical vibration, as is
required by Equations [33a,c,e] with the e terms omitted.

For class b, involving horizontal-torsional motion of the ship,
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rudder networks of both forms must be connected simultaneously to the ship.

To represent the equal and in-phase v, 7, & motions of the rudders,
the equivalent median rudder described previously for this motion may be
represented by the network shown in Figure 8 with all capacitances made
twice as great and all inductances half as great as they would be for ome
of the actual rudders. The connections to the ship as required to repre-
sent Equations [33b,f,d] are shown in Figure 9.

For the u, w, B motions, the rudder having an offset +e might be
represented by a network designed as shown in the upper part of Figure 12,
with no change in the elements. The connections to the ship, however,
must be different from those shown in the lower part of Figure 12, since
the connecting equations to be represented are now Equations [33a,c,e]

with 7y =y, = 0, or, in electrical form,

. . ] o 1

The node labeled é£ in the upper part of Figure 12, therefore, is to be
connected to ground so that the rg transformer is superfluous and the node
shown at the bottom of Lg may be relabeled ﬁé . The nodes ﬁé and ﬁé may
then be connected to the &L and d; nodes of the v, 7, a network already
set up (Figure 8) through e transformers, as shown in Figure 14.

Still another network might then be added to represent the other
rudder. It is simpler, however, to include the effect of this rudder by
doubling all capacitances and halving all inductances in the network repre-
senting the rudder with offset +e. This change does not alter ‘the poten-
tials occurring in the network for given bearing potentials ﬁé and ﬁ% R
but it doubles all currents, including those that flow from the ﬁé and ﬁé
nodes into the ship network. The latter currents, therefore, will repre-
sent correctly the doubled terms -2eX, and 2eZj in Equations [36b,c].

This change in the rudder network corresponds to doubling the elastic
and inertial parameters of the rudder itself. Such a physical alteration
of the rudder having offset e, with removal of the other rudder, would in-
deed provide correct values of the resultant torques -2eXy and 2eZ.
However, the rudder would also react on the ship with x and z forces and

a y torque, which have no place in the resultant reactions due to the
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Figure 14 - Mobility Analog for Connection of Rudder in
Longitudinal or u, w, B Motion to Hull in
Torsion-Horizontal-Bending Motion

(o}

actual paired rudders. In calculations such spurious reactions can simply
be ignored. They are also ignored automatically by the modified network
just described, which delivers no corresponding currents to the ship.
Perhaps this becomes more plausible if it is noted that nothing would be
changed if x and z translation and y rotation of the ship at 0 were pre-
vented by an external support without interfering with other components of
motion. Then the spurious reactions would fall upon the supporting struc-
ture instead of on the ship, and the correctness of the modified network
becomes obvious.

Note that currents coming from both rudder networks simultaneously
enter the ship network at the ﬁé and ﬁé nodes. This feature corresponds

to the occurrence of two terms on the right in Equations [36b,c].

7. COPLANAR CONTROL FOILS AND CORRESPONDING MOBILITY ANALOGS

A "foil" is considered here as an appendage thin enough to be treated
satisfactorily as a two-dimensional body attached to the ship in a single
location. If several control foils are present, they can always be treated
by establishing separate equations for each one and adding up the reactions
on the ship or by connecting individual foils to the ship network. In some
cases, however, foils occur symmetrically; then it is possible to represent

the vibrations of both foils of a pair and their combined reactions on the
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ship by a single set of equations or a single analog network. Besides the
horizontally paired rudders already considered, important examples are
paired diving planes and, perhaps, upper and lower rudders, as on a sub-
marine.

Paired diving planes are discussed, special equations are derived for
an upper rudder, and finally symmetrical upper and lower rudders and con-

tinuous shafts are considered.

7.1 PAIRED DIVING PLANES

The diving planes will be assumed to be symmetrical so that each is
the mirror image of the other in the midplane of the ship, and for the
present they will be assumed to be attached independently.

As with paired rudders, it is sufficient to write explicit equations
for only one plane, for which the starboard plane will be chosen. The
horizontal z-axis for this plane will be taken positive toward the bearing
at B, whereas y is positive downward, the origin being at the effective
center of mass of the plane.

The relations of these axes to the starboard plane are then the same
as those between the axis and a single rudder, as previously defined.
Also, by adopting the same notation, it will be possible to use the rudder
equations as previously established, with the proper values inserted for
the constants. The significance of Z and £y in these equations will be
discussed later. The distance "h" will be positive as usual toward posi-
tive x but "b" will not be positive toward the ship, as drawn in Figures
15 and 16.

An analog to represent the motion of the starboard plane may be the
same as if the plane were a rudder, since the equations to be represented
are the same (only the y and z spatial directions being different).

To treat the port plane, note that the starboard plane can be con-
verted into the port plane by a rotation through 180 deg about an axis
parallel to x. By imagining the displacements as vectors to share in this
rotation, without change of magnitude (so that the relation of the dis-
placements to the plane is not changed), we see that each motion of the

starboard plane is converted by the rotation into a possible motion of the
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port plane. Thus, separate calculations for the port plane are not neces-

sary. Nor, in an electric analog, is it necessary to provide a separate

network for the port plane.

In dealing with vibrations of the ship-plane system, it turns out to
be useful to pair off the possible motions of the two planes in certain
ways, in analogy with the treatment of paired rudders.

Note first that rotation of any starboard motion through 180 deg
about an axis parallel to x generates a motion of the port plame in which
v, 7, W, B displacements are reversed in space while @ and u remain un-
changed. Positive displacements of the starboard plane are shown in the
lower parts of Figures 15 and 16; the rotation changes these into displace-
ments of the port plane as shown at the upper right in the same figures.

They are distinguished by a bar over each symbol.

Vye Analogous Contrary

Port

Starboard

y

Figure 15 - Diagram for Paired Diving Planes Showing for v, 7, a Motion,
Positive Directions of Displacements and Reactions on Ship at
Bearing for Starboard Plane, and Accompanying Directions
for Port Plane and in Each Type of Associated Motion
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uws Analogous Contrary

Port

Qp,Pp
Z,

Up 'Xb
Starboard

Figure 16 - Diagram for Paired Diving Planes Showing for u, w, g Motion,
Positive Directions of Displacements and Reactions on Ship at
Bearing for Starboard Plane, and Accompanying Directions
for Port Plane and in Each Type of Associated Motion

Let the starboard and port motions that are thus associated together
be called contrary motions of the two planes, since in the two motions
four of the six displacements have opposite directions in space.

Every motion of a plane, however, can also occur with all displace-
ments reversed. If the port motion just described is reversed, the result
is the new motion shown at the upper left in Figures 15 and 16. Since the
v, 7, W, B displacements in this new motion of the port plane are geometri-
cally the same as those in the initial starboard motion, with only o and u
being reversed, it is convenient to call this port motion and the initial
starboard motion with which it is associated analogous motions of the two
planes. By reversing the port motion, any pair of analogous motions can
be converted into a contrary pair of motions, and vice versa.

These two ways of pairing off motions of the two planes correspond

roughly to motions of two paired rudders, and their utility will become
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evident as the theory is developed. It will turn out that only paired
motions of these two sorts need be considered in combination with vibra-
tions of the ship. If the ship is held stationary, of course, each plane
moves independently of the other and paired motions are not likely to
occur.

In all cases the directions of forces and torques undergo the same
changes as do the directions of the corresponding displacements, without
any changes in magnitude. Directions for these reactions are shown in
Figures 15 and 16 also, as well as displacements and reactions on the ship
at the two points of attachment to the stock labeled, respectively, B and
B. The geometrical relationships thus defined are collected for conven-

ience in the following table:

Analogous Motion Contrary Motion
Mode

Same Reversed Same Reversed
vV, 7, Q vV, 7, Yb, T-b a, Mb a, Mb v, 7, Y-b, Tb
u, w, B W, B, Zb, Qb u, Xb u, Xb w, B, Zb, Qb

Expressions representing any motion of the starboard plane alone can
be converted into expressions for an associated motion of the port plane
by adding a bar over the displacement symbols and assuming the appropriate
changes in the geometrical directions, as determined from the table or
from a comparison of the upper and lower parts of Figures 15 and 16.

Discussions of vibrations of the plane-ship system now parallel

closely the treatment of a ship with paired rudders.

a. Ship vibrating vertically with analogous v, 7, @ motion of the

planes.

Vertical ship vibration causes equal vy and 7} displacements of the
points of attachment B and B of the two planes, thereby exciting the v, 7,
«a type of plane vibrations; see Figure 17. Conversely, in view of the
relative directions of the reactions on the ship in analogous motions, the
resulting torques My and ﬁb balance out, but Ty and TB result in a total

torque equal to 2Tb, whereas the equal forces Y, and Y£ are equivalent to
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Port Plane c.m. -

bt /9 Tb
B A
Yy, My
Ship y v, .Y,
(Vertical) y br'b
) W Axis through Centroid 0"
f Ship Section from which
) P and Q are Net ) ) o > !
Ship Station Reactions on Ship} p=-2Y, | Q=-2T, the Bearings B and B are
Zero Offset o Distance e
H ot
1 Shipy '
{ Vertical) A zZ,
Y, .
e § Ship x

Starboard Plane

Figure 17 - Relations for Paired Diving Planes in Analogous
v, 7, 0 Motion with Ship Vibrating Vertically

Positive directions are shown for ship and starboard plane,
associated directions for port plane. The ship y- and z-axes,
which intersect at distance z below centroid, are axes paral-
lel to ship y- and z-axes intersecting at actual origin.

a single force 2Y, acting in the midplane. Thus, simultaneous analogous
v, 7, @ motions of the two planes tend to excite only vertical vibration
of the ship.

Equations [13a,b,c] and [15a,b,c] may be used for the starboard
plane. It will be simpler, however, to include the dynamic effects of the
port plane by doubling the constants my, I, I,, Iy, kEZ, kg, GJ, in
Equations [13a,b,c]. This change does not affect the values of v, 7,

as determined by the equations for given vy, 7p, 04, but it does double
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the values of both members of the equations. Hence, the right-hand members
of the modified equations represent, respectively, 2Y, 2T, and 2M, and

Equations [15a,b,c] multiplied by 2 give as reactions on the ship:

2Y, = -2Y ; 2Ty = -2T + h (2Y)

The equations give also a resultant torque 2My but this may be ignored,
since in reality the My and ﬁb torques cancel each other.

In the ship theory for vertical vibration, as cited in Sectiomn 5.2,
the ship displacements are y,, upward and a rotation 7, about a horizontal
axis, positive from positive x toward the upward vertical. If the axis
for 7, does not lie on a transverse line through B and E, the 7, rotation
will cause a slight fore-and-aft motion of B and B. Such a motion gives
rise to analogous u, w, B motion of the planes. This slightly complicates
matters and will be ignored as unimportant, together with all other longi-

tudinal motion of the ship. Hence, in the present case

Vp = Yy 3 Yy = Yy 3 Oy =0 [37a,b,c]

In the notation used in the ship theory, the reactions on the ship
are a force P acting in the midplane and taken positive upward together
with a moment Q about a horizontal axis, positive from x toward the upward

vertical. In view of the differences in positive directions

P=-2Y, ; Q=-2T ; U=0 [38a,b,c]

Similarly, the analogs of Equations [29b,c] and more remote analogs of
[17a,b,e,f] will be

v = [@ 9yt e nia ] [39a]
7, = -[(1 =8V F 8 Y Ly 1] [39b]
B, = - (1-8)QY) , Py = -s(2Y,) [40a]
Qr == (1-58")Q2T) , Q1 = = s' 2T) [40b]
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Figure 18 - Mobility Analog for Connection of Diving Plane in
v, 7, ¢ Motion with Ship Vibrating Vertically

In calculations, however, the minus signs in Equations [37a] through
[40b] may all be dropped (except, of course, in -s or -s'). The result is
to reverse the values of vy and 7}, inserted in the modified Equations
[13a,b,c] and, hence, to reverse also the calculated values of v, 7, o ;
however, then the calculated values of 2Yb and 2Tb are also reversed in
sign, so that, if 2Y, and 2T, stand for values thus calculated, P and Q
are correctly given by Equations [38a,b] with the minus signs erased. If
a correct description of the actual motions of the planes is also desired,
the calculated values of v, 7, @ must be reversed in sign.

The network analog for the modified Equatiomns [13a,b,c] is that shown

in Figure 8 except that all capacitances are to be twice as great as they
would be in representing the starboard plane alone,* and the dﬁ node is
here to be grounded, the ry transformer being omitted. Connection of the
QL and &é nodes to appropriate points in the ship network, as required by
Equations [39a,b] with the minus signs before the brackets omitted, may be
made as in Figure 18. The voltages and currents in the plane network will
all be of the wrong sign to correspond to the equations as written, but
this is harmless. Inclusion of the minus signs would require two extra

1:1 transformers. The whole difficulty arises from the arbitrary choice

*The port plane analog is not discussed because the modified starboard
analog does the work of both planes. The motions of the port plane with
ship fixed are just like those of the starboard plane, only rotated about
x through 180 deg; hence, the port analog is the same as the starboard
analog and has the same frequencies.
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of opposite positive directions for certain plane variables and for the
analogous ship variables; actually, omission of the minus signs leads to

a closer resemblance to the geometrical situation.

b. Ship in horizontal bending and torsion vibration with planes in

both analogous u, w, B motion and contrary v, 7, & motion.

Let Yho denote the horizontal displacement of O, the common projec-
tion of B and B on the midplane. Then Yho will be related to y, and ¢ by

the following equation, analogous to Equation [14a]:
Yho = Yh - Zp° [41]

where zp, denotes the height, positive or negative, of the points of attach-
ment B and B of the planes above the x-axis as drawn for the ship theory.
In addition, there are ship rotations "h and ¢.

Let e denote, as for paired rudders, the distance from B or B to the

midplane. Then the displacements of B and B are; see Figure 19:

vy e¢;7b=0;ab=¢;ub=e7h;wb=yh0;ﬁb=7h [42a-f]

Vp = -ed 7p = 0 ab

Comparison with Figures 15 and 16 or with the table on page 53 shows that
these bearing displacements will excite analogous u, w, B motions of the
planes as well as contrary v, 7, @ motions.

For the u, w, B motion of the starboard plane, Equations [26a,b,c]
or [27a,b,c] may be used with Uy, Wy and By, given the values required by
Equations [42d,e,f]. (A 90-deg rotation of the axis for a lower rudder
brings the axes into a suitable position for the starboard plane.) The
analogous u, w, B motion of the port plane produces a force EB which com-
bines with Zj to give a resultant horizontal force 2Zy on the ship (Fig-
ures 16 and 19, and 65 and Q, give a total torque 2Qb about the downward
vertical. Also, Xy and Xp» acting in opposite directions, combine into a
further torque 2eXb about the vertical (positive as usual from x toward

z). Thus the net reactions on the ship due to both planes are a horizontal
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Figure 19 - Relations for Paired Diving Planes in Contrary
v, ¥, & and Analogous u, w, 8 Motions with Ship
Vibrating Horizontally Torsionally

force Z, and a torque Q. of magnitudes

Zr = ZZb H Qr = 2Qb + Zexb [43&,1)]

The factor 2 may again be provided by doubling m,, m,, Iy, kl,z, kg, and

EA/£ in Equations [26a,b,c] or [27a,b,c]; then Equations [30a,b,c] give
2Xb=-2X R 2Zb=-ZZ

2Q, = - 2Q - (£ + b)(2X) + 2hZ = - 2Q, - (£ + b)(2X)
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where 2X, 2Z, and 2Q are equal, respectively, to the right-hand members of
the modified Equations [26a,b,c] or 2Qg, to that of the modified Equation
[27¢].

For the v, 7, & motion of the starboard plane, Equations [l3a,b,c]
may be used; to include the effect of the port plane, let my, I I, Ig,,
kzz, kg, GJo/4p be doubled. The torques T, and Tb cancel (See Figure 15,
contrary motion, and Figure 19), but My and ﬁb add to a resultant torque
2Mb about x. The vertical forces Yb and Yb acting in opposite directions
along lines 2e apart are equivalent to an additional x torque 2eY;. The
resultant reaction on the ship due to this motion is thus only a torque

M, about x of magnitude

M, = 2Mp + 2eYy [44]

Here 2M, and 2Y; are given by Equations [15a,c] multiplied through by 2,
2Y, and 2M then representing the respective right-hand members of Equations
[13a,c] as modified by the doubling of constants.

The combined reactions on the ship due to both types of plane motion
are equivalent to a horizontal force P along a line through B and B, to-
gether with torques U and Q acting in transverse planes through B and B, of
magnitudes P = Z,, Q= Q., and U = M,.. Obviously, such reactions do not
tend to excite vertical vibration of the ship. The theory of horizontal-
torsional motion was discussed briefly in Section 4.2. In Equation [2.46]
of Reference 3, h is to be replaced here by z,. Values of Pnta’ Unta s
Q,'s and Q1,7 for substitution in difference equations for the ship may be
obtained from Equations [17a-f] with Y., My, and Ty replaced by Z,., M., and
Q., respectively.

A mobility amalog for the present case must include both types of

network for the starboard plane (i.e., u, w, B and v, 7, @), connected
simultaneously to the ship network.

For the u, w, g motion, the network may be that shown in the upper
part of Figure 12 and described in Section 5.3, with all capacitances twice
as great and all inductances half as great as they would be for the star-
board plane so as to represent the modified Equations [27a,b,c]. Connec-

tion to the ship network to represent Equations [42d,e,f] may be as shown
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Figure 20 - Mobility Analog for Connection of Diving Plane in u, w, B
Motion to Ship in Torsion and Horizontal Bending

The connections shown are for zp > 0.
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Figure 21 - Mobility Analog for Connection of Diving Plane in v, 7, «
Motion to Ship in Torsion and Horizontal Bending
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in Figure 20, drawn with reference to Equations [l6a,b,c] and Figure 9.
For the v, 7, o motion, the network, as in Case a, may be that shown
in Figure 8 and described in Section 4.3, with all capacitances doubled
and all inductances halved as they would be to represent the starboard
plane alone. Here, however, the &é node is to be grounded. The connec-
tions to represent Equations [42a,c] in analogy with part of Figure 9 may

be as shown in Figure 21.

c. Ship stationary, planes in contrary u, w, B motion.

In this case, 25 and 65 balance Zy and Q' ib and Xy add up but the
result is only to excite slight axial vibration of the ship, which may be
ignored as usual. Thus the ship is not disturbed.

The starboard plane will move according to Equations [26a,b,c] or
[27a,b,c]. An analog network to represent it may be the network described
in Section 5.3 and shown in Figure 12.

It may be noticed that, because of the geometrical relations of ship
and plane, neither type of ship vibration is associated with plane motions
of both analogous v, 7, @ and contrary u, w, B types. Such a combination
of plane motions may be due to other causes, of course, and also to many
other combinations. The difference between the analogous and the contrary
motions of the port plane that may be associated in different cases with
a given starboard motion can be regarded as merely a difference in phase
of half a period between the two alternative port motions. Any other phase
difference is possible; in that case the given motions may be regarded as
due to superposition of analogous and contrary paired motions of certain
amplitudes. Any component of analogous v, 7, & motions will then be asso-
ciated with vertical ship vibration and any component of contrary v, 7, &

or analogous u, w, B motions with horizontal-torsional motion of the ship.

7.2 EQUATIONS FOR AN UPPER RUDDER

The most significant difference between an upper and a lower rudder
is that the upper rudder is attached to its stock at a point above the
bearing or other effective point of attachment to the ship. The effect of

this difference on the equations of motion can be discovered by reviewing
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the derivation of the equations, but it is perhaps more easily found by
the following maneuver:

Let axes for the upper rudder be drawn with origin at its effective
center of mass but, temporarily, with the z-axis pointing downward and the
y-axis, therefore, in the opposite direction from that for a lower rudder;
see Figure 22. Then the axes will be related to the rudder and to its
stock in the same way as were the rudder axes employed in Sections 4.1
and 5.1, and the equations there derived can be used; namely, Equations
[13a,b,c], [15a,b,c], [26a,b,c], or [27a,b,c] and [30a,b,c].

z y
b
w A v
em u. [® «x cm A X
v MY B 4]
| |
w \ .
\ b
g Y , | |
y Ty ! |
h B | h i
z Jj Z
—B-Beorinq B- Bearing
Temporary Axes Final Axes

Figure 22 - Temporary and Final Axes for an Upper Rudder
Positive directions of u, v, w, &, B, 7 are

shown; o, B, 7 are positive, respectively, from
y to z, x to z, X to y.
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It is inconvenient, however, in dealing with the interaction between
the rudder and ship, to have their z-axes pointing in opposite directions.
Hence, let the axes be rotated through 180 deg about x so that y and z come
into their usual positions, with z pointing upward; see Figure 22. The
positive directions are thereby reversed for all displacements and reac -
tions associated with y or z so that, if the equations just specified are

to be used, all variables in the equations related to y or z (but not x)

must be replaced by their negatives.

Accordingly, let the following changes be made in succession in all

these equations, the last two changes being added merely for convenience:

a. Reverse the signs of all terms containing v, 7, w, Wis Bs Vs 7ps

Whs Brp» Yb’ Tb, and Qb in the equations specified.

b. Multiply Equations [13a,b], [15a,b], [26b,c], [27b,c], and [30b,c]
throughout by ~1 in order to restore the convenient initial plus signs on

the left.

c. Redefine Y, T, Z, and Q or Qg to represent the values of the right-
hand members of Equations [13a,b] or [26b,c], or [27b,c] after change b.
The terms containing Y, T, Z, and Q or Qg in Equations [15a,b,c] or [30c]
must then be reversed in sign (many terms are thus reversed in sign and so
return to their original sign; e.g., Y, term is reversed by change a and

again by change b).

A careful check now reveals the following simple rule for adapting
all specified equations to the upper rudder, with the z-axis drawn upward
as usual: replace I,, by -I,,, £ by -£ and b by -b throughout, except £
in the coefficient EA/Z4. (Thus £% and bg are not changed.)

Note that b is assumed positive when the attachment of the stock to

the upper rudder is above the bearing or other attachment to the ship.

7.3 SYMMETRICAL UPPER AND LOWER RUDDERS

Any case of upper and lower rudders in the midplane of the ship can
be treated by using the special equations just derived for the upper rud-
der together with the usual equations for the lower rudder. An analog net-

work may then contain a separate network for each rudder.
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If symmetry is present, however, a simpler method can be used, as
with paired offset rudders or diving planes. Suppose that the upper and
lower rudders are mirror images of each other in a horizontal plane of
symmetry. It is assumed that this plane contains the transverse axis for
the rotation 7, of the ship cross sections. This assumption should be suf-
ficiently valid at least for submarines; if the assumption is not made, the
theory becomes considerably more complicated.

Motions of the upper and lower rudders can now usefully be paired off
in the same way as was done in Section 7.1 for paired diving planes. 1In
fact, the treatment of the diving planes can be taken over bodily if axes
are drawn as usual for the lower rudder (y horizontal, z upward, origin at
the effective center of mass). The axes so drawn for the lower rudder are
then related to the rudder in the same way as the axes defined in Section
7.1 for the starboard plane are related to this plane, and every statement
in Section 7.1 will hold if "lower" and "upper rudder" are substituted for
"starboard" and "port plane," respectively. Of course, the spatial diréc-
tions of the axes and the relations to the ship motions will be different
in the case of the rudders. Also, let e be replaced by g, so that the dis-
tance is 2g between B and B, the respective points of attachment of the
lower and upper rudders. For generality, assume that the ship's x-axis is
drawn a distance zg below the plane of symmetry.

Analogous and contrary motions of the two diving planes now become
analogous and contrary paired motions of the lower and upper rudders. The
corresponding relations between displacements and bearing reactions on the
ship may be read from Figures 15 and 16 or from the table in Section 7.1.
To produce correct directions in space for the rudders, imagine that Fig-
ures 15 and 16 are rotated through 90 deg so as to make y horizontal and z

vertically upward, as they have been drawn for rudders.

a. Vertical ship vibration with analogous u, w, B rudder motions.

From Equations [28a,b,c], in which d = g (the axis for 7y having been

assumed to lie in the plane of symmetry), the displacements of B or B are:

B: u, =87 ;5 W=Y, ; Bp=7, [45a,b,c]
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B: u = 87, 3 Wy =Y, By =7y [45d,e,f]

In stating values in the equations, the same positive directions are as-
sumed for both rudders (and planes). In Equations [45a,d] up, = g7, but
u, = -8”y , hence if uy is positive as shown in Figure 23, uy is negative
and so has the opposite direction.

Clearly, only analogous u, w, p rudder motions are excited (wb and
Bb the same, uy reversed for upper and lower rudders); see Figure 23.

The analysis for the rudder motions is the same as that given in
Section 7.1(b) for analogous u, w, B motions of the planes but with e re-
placed here by g and Equations [42d,e,f] by Equations [45a,b,c]. The bear-

ing reactions on the ship are

Xr =0 ; Zr = 22b H Qr = 2Qb + 2gXb [46a,b,c]

Plane
of Symmetry

Figure 23 - Upper and Lower Rudders in Analogous u, w, B
Motion with Ship Vibrating Vertically

Ship axis and Zg are not shown.
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with Z, and Q, copied from Equation [43a,b). The values of Xy, Zy, and Q
are explained following Equations [43a,b]. Here, however, Zy, and Z_ are
vertically upward. According to the explanation given at the end of Sec-
tion 4.2, Z, and Q, may be substituted for Y, and Ty, respectively, in
Equations [l7a,b,e,f] to obtain Peg > Q> and Quuyy for use in differ-
ence equations for the ship. (Here Xy = 0.)

An analog network for the lower rudder must represent Equations
[26a,b,c] or [27a,b,c], but with m,, m,, Iy’ kzz, kg, and EA/£ all doubled.

(See Equations [32a,b,c].) Connections to the ship network for vertical

motion to represent Equations [45a,b,c] may be as shown in Figure 20 if
this figure is modified by changing e to g, &ﬁ to &;, and §£0 to &; ;

also, the connections shown below §£0 are to be omitted.

b. Horizontal-torsional ship vibration and v, 7, @ rudder motion.

Ship displacements Y "he and ¢ produce at B and B the following

displacements; see Figure 24:

vp =y, - (2 -8 5 vy =y - (2 + )0

4%

These displacements are neither analogous nor contrary. In this case it
might be preferable to use separate sets of equations for the two rudders.
As an alternative, the procedure followed previously can be used by re-

solving the displacements into two superposed sets defined as follows:
V1T V1S Vh " Z%® 3 71T 71T "h 5 %1 T %1 T O
Vpy T 8O 5 Vpp = <8 5 My TV =0 5 %y =y =0

The first of these sets of partial displacements, in which B and B
have equal v, 7 displacements, will generate analogous v, 7, ¢ motiong of
the rudders; whereas the second set, similar in form to the displacements
in Equations [42a,b,c] for planmes, will excite contrary v, 7, o motions.

These two sets of v, ¥, o motions occur superposed. '
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Figure 24 - Upper and Lower Rudders in v, ¥, a Motion
with Ship Vibrating Horizontally Torsionally

Wherever two rudders (or planes) are drawn, the directions
shown are positive for lower rudder (or starboard plane).
However, for upper rudder (or port plane) the actual direc-
tions are shown that accompany positive quantities for lower
rudder (or starboard plane) in the type of associated motion
shown (analogous or contrary). This enables the reader to
see the directions in space that go together.

For each partial motion, Equations [13a,b,c] may be used for the
2
z> Lyzs k&7, kg, and GJe/ET all
doubled (as for the planes) and with the proper values substituted for
Vs 7po and o -
For the first or analogous v, y, @ motions, the method of Section

lower rudder with the constants my, Ix, I

7.1(a) is available. In the modified Equations [13a,b,c], Vp1» ?p1> and
Op1 are to be inserted for v, 7po and Q- The resultant reactions on
the ship are given by Equations [15a,b] (lower row) multiplied through by 2,

where 2Y and 2T then represent, respectively, the right-hand members of
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the modified Equations [13a,b]. Let these reactions be relabeled 2Y,, and
2Tb1‘ 2Ybl is a force acting in the y-direction and in the plane of sym-
metry, while the moment 2T,; acts about vertical z.

For the contrary v, 7, & rudder motions, Vpos 7pb2> and Qpy are to be
inserted for vy, 7, and oy . The argument used in the v, 7, o part of
Section 7.1(b) then shows that the resultant reaction on the ship is only

an x moment M, of magnitude (corresponding to Equation [44])

where 2Y,, and 2M1b2 are found by substituting them for 2Yb and 2Mp, in Equa-
tions [15a,c] multiplied through by 2; 2Y and 2M then represent the respec-
tive right-hand members of the modified Equatioms [13a,c].

Thus the combined reactions on the ship due to both types of rudder

motions are:

o
]

2Yb1 = - 2Y1

3
I

= 2T, = - 2T, + h(2Y;) [47a,b,c]

o

Equation [47c] is physically reasonable because Y is being shifted from
the center of mass up to bearing (£ + b), then up to the plane of symmetry.

The values of P, Uhta’ Q> and Q,r,; to be used in the ship

a’
equations to represent the combined reactions on the ship due to both types
of v, 7, @ rudder motions may then be found by substituting 2Yy;, 2T, and
2M, + 2g Yy, into Equations [17a-f] for Yy, Tp, and My, respectively.

In an analog network, separate rudder networks must be used to repre-

sent the two v, ¥, & motions. Internally they may be duplicates of each
other, like one of the alternatives described in Section 4.3 and shown in
Figure 8, except that all capacitances are to be doubled and all induct-
ances halved. Their connections to the ship network must be different,
however.

The 6%1 and &él nodes of the first rudder network may be connected

as shown in Figure 9 except that zy is to be replaced here by zg . The dél
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node is to be grounded.
The 062 and é%z nodes of the second rudder network may be connected
as shown in Figure 21 with e changed to g and b to b,. The &éz node is to

be grounded.

c. Contrary u, w, B motions of the two rudders.

Contrary u, w, p motions of the rudders may occur without appreciable
disturbance of the ship, corresponding to Section 7.1(c) for diving planes.

Remarks similar to those at the end of Section 7.1 may also be made
concerning the motions of symmetrical upper and lower rudders.

For convenience, the relative directions in space of the various sets

of axes used up to this point, together with corresponding displacements
and principal reactions, are shown in Figure 25. This figure does not show
the relative locations of the center of mass, bearings, centroid, ship

axes, etc.

7.4 CONTINUOUS SHAFTS

Frequently two control foils are mounted on a continuous shaft ex-
tending across the ship. 1In such cases interaction between the two foils
may occur by way of the shaft. If the foils are significantly unlike, it
may be necessary to treat them together as a many-dimensional system. When
the foils are symmetrical, however, the method of paired motions described
in Sections 7.1 and 7.3 becomes available. Simple relations then exist
between the distortions of the two halves of the shaft so that, just as it
was necessary to write equations of motion for only one of the foils, it
suffices to analyze the distortion of only the corresponding half of the
shaft. It is found that allowance for the effect of the simultaneous dis-
placement of the other foil can be made by assuming suitable boundary con-
ditions for the half shaft at 0, the midpoint of the shaft in the plane of
symmetry.

Torsion of the shaft will be considered first. 1In contrary v, 7, «
motion of the foils, the opposite rotations 7, and 75 (Figure 15) of the
ends of the shaft leave undisplaced its middle cross section at 0. Hence,

in Equation [13b] Ly runs to the middle of the shaft. In analogous v, 7,
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Ship
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Rudder
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I n .
v f-\¢ Ship x
S
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y Starboard Horizontal - Torsional
Plane Vibration

Figure 25 - Sign Conventions for Rudder-Diving Plane-Ship
Coordinate Systems, Motions, and Reactions
Check list of positive directions.

Rotations and moments are positive y toward z,
x toward z, or x toward y.

Uy Wys Bps Vo 7 % have directions of u, w,
B, V, ¥, O, respectively.

Relative locations of center of mass, bearings,
centroid, ship axes, etc., are not shown here.
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« motion, however, the reactions to the moments T, and Tb rotate the ends
of the shaft in the same direction. The effect of this depends upon the
elasticity of the structure by which the shaft is attached to the ship at
0. If this structure may be assumed to be rigid, £T runs again to O.

Otherwise allowance for the effect of elastic yielding at O may be made by

a suitable increase in the value assumed for ET.

Bending of the shaft, which may occur with either type of foil mo-
tion, presents a much more complicated problem. In practical cases a
simple rough correction may suffice. Since, however, the correction varies
with the type of shaft mounting, an exact analysis will be attempted here.

In analggous v, 7, o or contrary u, w, g motion of the foils, the
similar displacements vy and VB or uy and u, of the bearings, and the oppo-
site rotations @} and &b or B and Eﬁ, all tend to bend the inner section

of the shaft like a bow, with zero slope at 0; see Figure 26. On the other

Bow
(=~ N
e g
\\\‘~?420P|
Yo

(@,

Figure 26 - Positive Forces and Moments Acting on a
Continuous Shaft in Flexure

The shear force and bending moment
shown are those transmitted toward O.

71



hand, in contrary v, y, & or analogous u, W, B motion, Vp and Vb are oppo-
sitely directed, as are uy and Gb’ whereas Qy and 6% are in the same direc-
tion, as are By and By . The effect is to bend the shaft in an S-shape
with zero displacement at 0; see Figure 26.

In analyzing one-half the shaft (the starboard half for diving planes
or the lower half for vertically paired rudders), the effect of the other
half is partly equivalent to a geometrical boundary condition at 0. A
second condition concerning the shear force or bending moment will be
stated presently. Otherwise, the other half of the shaft may be ignored.

The relevant quantities are shown in Figure 26. The length of the
section of shaft between 0 and bearing B is denoted by Zl, that between B
and foil attachment F by £, as usual. The mounting at O may be displaced
transversely a distance ¥o> the bearing B by y,, the attachment to the
foil by y; corresponding rotations are 90, 0> 6. The cross section of
the shaft at 0 is also displaced Yo the slope of the shaft just outside
the mounting, which may be altered by shear warping, is denoted by 901.
Similarly, the shaft slope is 6, on the £; side of B and 69 on the £
side of B.

The shear force (transmitted toward 0) is denoted by P in the £ sec-
tion, by P; in £;. The associated bending moment is M at F, M + 4P on the
£ side of B, M1 on the zl side, and M1 + ZlPl at 0.

In bending like a bow the shaft cross section at 0 is unrotated, as
if the shaft were rigidly held here, hence the usual shear slope should
occur; thus 901 =6yt PI/KAG. Also, the net force on the mounting at 0 _
due to both halves of the shaft is 2P;, hence y, = 2P1/Do, with 2D denot-
ing the (total) rigidity of the mounting at O against lateral displacement.
(1f 2D, = 0, P =0 necessarily.)

When the bending is of the S-type, the mounting may be rotated
through an angle 80 = Z(M1 + £1P1)/2H0, the rotational rigidity at O being
denoted by 2H;. In this case the shear force in the shaft is practically
constant through the mounting, and it is assumed that the mounting does
not interfere with shear warping in the shaft. Hence there is no shear
correction, and 901 = 6g-

At the bearing B it may happen that P1 = P; then, as at 0 in S~

bending, the shear force is uniform throughout the bearing, hence there
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will be no shear effect and ebl =6, = sz. Or it may happen that P1 = -P.
Then the forces on the ends of the section of shaft inside the bearing are
similarly directed, being ~P; or P at one end and P at the other. Hence
in this case shear slopes occur of magnitude P/KAG at the right end of the
bearing and -P/KAG at the end toward O.

Any given values of Py and P can be resolved into two superposed

sets of these two types, thus:
Te+ep-te-rp=p; Lee+ry+l@-py=p
2 1 2 1 1> 2 1 2 1

The P + P; pair, being related as are P; and P, will cause no shear effect;
whereas the P - P; set will cause shear slopes as do P; and P when P; = -P.
Hence, in general,

1
2 KAG

6p1 = 6, -0 (P = P;) Opp = 8+ 0(P -P)) ; o= [48a,b,c]

Amplification of this analysis is given in Appendix D.
Also, the net reactions on the bearing itself being P - P; and
M+ ZP"M]-’

where Dy and Hy, denote rigidities of the bearing in transverse displace-

ment and in rotation, respectively.

a. zl section of shaft.

For this section it is convenient to use as a basis Equations [5]

and [7] with KAG & o, or
y=ap Prtap M 5 0=q5 Pyt M [50a,b]

3 2
4 41 44

-1 N S =L 51a,b,
91 = 3w 3 Y2 7ET 0 Y2 T EH [51a,b,c]

Here y, 6 represent displacement and shaft slope at the B end, those at

the 0 end being assumed to be zero.
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(1) Bow-like bending.

Here, as explained previously,

6.=0 ; 6,, =20P [52a,b,c]

0 01 1 3 P1 = Dg¥p

To fit this case, the shaft, deformed according to Equations [50a,b], must

be given an additional translation y, and a rotation 901 about 0. Then
Yp =T+ Yo+t b8 3 6y =8+ 6

It seems better, however, to introduce 9b2 here instead of ebl. From

Equations [48a,b] and [49a]:
6, = Oy - ODpyy 3 6,7 = 6pp = 20D,y [53a,b]
Then, from Equations [50a,b] and [52b,c] also:
Yp = Vot 204 B Fap By M

9b2 = 20P1+ ZcDb Yp + 45 P1 + q22M1

Now multiply this yy equation through by Dy > substitute D0 Yo = P1 from
Equation [52c], and then also, in both equations, from [49a,b] and [53a]:

Pp=P-D yy 5 M =4P+M-H (8, = 9Dy ¥y,)

The resulting equations, rearranged, are:
[Dg + Dy + (a7 + 204;) DyDy, = 04y, DDy By ] ¥y, + dyp Doy O

=[1+ (a7 + 4dy, + 20 4p) Do P+ a5, DM [54a)

(919 = 949y Hy) Dy yp + (1 + qypH ) O, = (@15 + L4y + 20) P + qy,M [54b]
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These two equations may now be solved for ¥y, and sz in terms of P
and M. If, as is likely, Db is large, it may be preferable to rearrange
the first term of [54a] and solve for Dy v, and ebz. Then ¥y, itself is
small but Dy ¥, need not be.

(2) S-shape bending.

Here
Yo=0 5 65 =6y ;3 M+ £ P =H6, [55a,b,c]
In using Equations [50a,b], a rotation 6y about 0 must be added, so that
Yp =Y+ L6y ;3 6y =8+ 6,
Or, using Equation [53b] also:
Yo = 418 + Ay By app My
%2 = O * 20Dp%, * APt M)

Multiply both equations by HO’ substitute for Hoé%) from Equation [55c],
and then for P; and M; from [49a,b], and use [53a] for 6,- The result,

rearranged, is:

2
(Ho+ (41 + qy1Hy - o4y Hy = 0qq, HeB) D] vy + (4 + qy, Hy) Hy 6

[56a]
=[2G+ 2+ (g + 2479 HgJ P + (47 + qqp Hy) M

(£) + a1y Hy - 20Hy - 0oHy = 0qy HyH) Dyyy + (Hy + Hy + g5, HoH) 6,

[56b)
= [zl + 4+ (q, + £dy,) HO] P+ (1+4q,,H)M

These two equations may now be solved for ¥y, and 6y in terms of P and M.
As in the bow case, if Db is large, it may be best to solve for Db Y and

9b2 rather than for ¥ and sz.
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b. /£ section.

For the £ section, Equations [7a,b] and [12a] may be used with
KAG &> « :

P=12ky - 6 4k8 ; M= -64ky + 4 £2kB ; k=% [57a,b,c)

Here y and 8 denote displacement and slope of attachment to the foil,
there being no displacement at the other end.

If 6 is the rotation of the foil itself, 6 = 6 - 2 0P (Figure 2).
Also, to fit conditions at B, a tramslation b and a rotation ebz about B

must be added. Hence, if y is the displacement of the foil,

y=y+yb+,89b2’ 5 9=9-20P+9b2

c. Final equations.

Either Equations [54a,b) or [56a,b] may be solved for ¥y, and 6, ,.

The result may be written in the form
Yp = ap P tapM 5 8y =8y P +a, M

The a's represent net flexibilities at the bearing B and are different for

bending of the bow or S types.
Insertion of these values of b and sz into the expressions for y -
and 6 and then substitution from the resulting expressions for y and 6 in

Equations [57a,b], gives the equations:

[1+6k(a;; + 2ay; + 204)] P + 6k (2a;, + fay,))M = 12 ky - 6 Lk

2
-2 4k (3ay; + fay + 4 00)P+[1 - 24k (3a;, + Lay,)] M= -64ky + 447K6

The solutions of these equations for P and M may be written in the

form
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P=12 1), ky - 6 r, £ko

11

2 [58a,b]

Here the r's represent correction factors (compare with Equations [7a,b,c]
for yielding of the bearing and for shear slope there), and are different

for the bow and for the S types of shaft bending.

d. Use in equations of motion.

Equations [58a,b] may be used instead of Equations [7a,b] in deriving
equations of motion for the chosen foil. A possible inequality of ry, and
ry; may result in some complexities. However, such an inequality can only
be caused by the o terms (involving KAG). A similar inequality is easily
shown to exist for a cantilever forced by P and M at the free end; appar-
ently it is prevented from violating the conservation of energy through
additional work done by M when the shear warping varies (see Appendix E).

The difference between ry, and ryq must be relatively small, however,
and it may be sufficiently accurate to ignore it in practice by replacing
both ry, and ryy by T = (rq9 + r51)/2. 1If this is done, Equations [58a,b]
may be rewritten in a form to resemble Equations [7a,b] more closely, as

follows:
P=12kyy -6 £'k;6 ; M=-62'kiy + [(z')z(ské + k")]6 [59a,b]

where

11722
kg =ty k 5 4 =4 ; Kk's= k;(l& - 3> [60a,b,c]

In the equations of motion, however, the factor £ enters not only
from Equations [7a,b] but also because a rotation Qp, or By produces a dis-
placement Aoy or LBy . A careful check shows that use of Equations
[59a,b] instead of [7a,b] changes the results given in Sections &4 and 5
only in the following ways: kg is replaced by k; and k by k'; also, £
becomes £' except that £ is to be kept in EA/Z and in the -£Qy term in

77



Equations [9a,c] and the - 4B, term in Equations [24a,b,c] and [26a,b,c],
whereas ¢ is to be replaced bf (24 - £') in the formulas for ry and rg;
also where it immediately precedes @y in Equations [13a,b,c] and [18a,b,c],
or ag in [19a,b,c] and [22a,b,c], or By in [27a,c] or Bé in [32a,c], and
in the factor 3kg 4 in [13c], which becomes 3kg (24 - £'y.

8. RUDDER DAMPING AND LIFT AND CORRESPONDING MOBILITY ANALOGS

8.1 RUDDER DAMPING

Two possible features of the actual situation have not yet been con-
sidered; namely, damping of the rudder motion and the effect of forward
motion of the ship. Damping will be considered first.

Damping forces proportional to velocities can be easily introduced
into the equations of motion. For example, in the right-hand members of
Equations [13a,b,c], which are the equations of motion for the transverse
or v, ¥, o motion of the rudder, the following respective expressions may
be added:

- CpV - ST - c93Q

- C31V - C327 - €30

It can be shown that, since "damping! forces by definition must have the
effect of dissipating energy during any motion whatever, necessarily
> > >
cp = 0, cy = 0, cg = 0, and Cg1 = €195 €23 = C395 €31 = c13.* (See Appen-
dix A.)
Since the c's thus have the same characteristics as to sign and sym-

metry as the coefficients representing elastic reactions, the additional

*At least the c's have these characteristics in the equations as obtained
by direct substitution in Lagrange's equations of motion. See Reference
6, Section 81 of Vol. I.
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network to be connected to the G', i', a' nodes in order to represent the
damping terms has the same general form as that already used to represent
the right-hand members of Equations [13a,b,c] or [18a,b,c], except that
resistances are now used instead of inductances and all values of param-
eters are expressed in terms of the c's. The same grouping process may

be used here as for Equations [18a,b,c], for example:

C Cl
[} C Cz C15C
(u + 12 . + 13 . ) 12\ . 12713\ . .
el d) ()i (e =)

2
., ‘13, €23, €13. €13¢23\ .
—013 V+C—1'}’+—cl—05 - 023-—7- ¢y - a

A simple example will be shown in detail presently.
A second set of damping terms in which v, ¥, @ are replaced, respec=-
tively, by v - %b’ y - &b’ a - éb may be added or substituted for those

just shown.

8.2 EFFECT OF SHIP'S FORWARD MOTION

The ship so far has been assumed to be dead in the water, its only
motion being vibratory. If it is moving toward positive x at a steady
speed S relative to the water, new characteristics are encountered. When
the rudder is either displaced or moved, the flow of water past it gives
rise to lift forces and moments acting on the rudder, analogous to the
lift on the wings of an airplane.* The complete theory of these forces is
complicated. To illustrate the general nature of their effect, the same

simple assumption will be made here as was made by McGoldrick and Jewell

*Free surface effects are not considered, since the rudder is assumed
to be deeply submerged.
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in TMB Report 1222.7*

The dynamical effect of the flow is assumed to be a simple horizon-
tal, transverse lift force Fy acting on the rudder along a line at a dis-
tance L ahead of the axis of the rudder stock and also at a distance by
above the x-axis (in the z-direction). L is usually relatively small, if
not zero, and may be negative. The line of action of Fy meets the median
plane of the rudder in a point Cj called the center of pressure.

First, let the rudder be stationary relative to the ship and in
such an angular position that the lift force vanishes; in this position a
single rudder in the median plane of the ship points dead astern. If the
rudder is turned from this position about the stock through an angle ¥ and,
hence, by Equation [8b] about the center of mass by the same angle 7y, the
magnitude of the 1ift force on it can be assumed, with sufficient accuracy,
to be Bszy in terms of a positive constant B.

If, now, because of vibratory motion, the rudder has a transverse

translational velocity v, its velocity relative to the general mass of
water is inclined at an angle v/S to the axis of the ship (Figure 27),
hence the flow relative to the rudder is inclined at this same angle and
the "angle of attack"™ that determines the lift force is changed from ¥

to ¥ - (v/S). The rudder may also have rotational velocities, but if rota-
tion occurs about an axis through the center of pressure Cp, its effect on
the lift force may reasonably be assumed to be, if not zero, at least neg-
ligible. 1If, however, small angular velocities y and ¢ exist about the z-
and x-axes, respectively, these velocities are equivalent to equal angular

velocities about parallel axes through Cy plus a translational velocity

*As indicated in Reference 7, the validity of the equations for the 1lift
forces and moments is still to be determined. Nevertheless, it is likely
that the method of solution of ship problems involving some revised set of
equations would be similar to the method presented in this report. Hence,
it is the analytical and the corresponding analog or digital treatment
rather than the correctness of the analytical description of the hydrp-
dynamic forces and moments that is stressed in this report (see, however,
references given in footnote on page 82).

**The angle of attack is the angle between the direction of motion and
the chord line or centerplane of the rudder.
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Figure 27 - Lift Force and Angle of Attack for Rudder with Forward
Motion S and Transverse Translational Velocity v

equal to the velocity of Cy,» or (h + L)& - de. These terms must be
added to v to represent the angle of attack. Thus the complete formula

for Fy during rudder vibrations is*

) s/ v+ (h+1)7 - by & ) . . .
F; = BS [7 -( 5 > =BS“y - BS [v+ (h+L)y - bya] [61]

*The equations corresponding to the extended simplified analysis given
in Appendix C of Reference 7 are a special case of Equations |[61] through
[62c]. To compare the equations, the origin of the coordinate system of
Reference 7 is translated to the center of mass of the rudder by letting
Y=Y, +h'6. Then¥=7Y, , +h'6 and Y = Y, , +h'6, the symbols Y,

Y , h', and 6 being defined in Reference 7. Since the definition for
c.g.

h in Reference 7 is different from the definition here, the symbol h in
Reference 7 is replaced by h'.

The equation for the lift force Fj corresponding to the modified
Theodorsen analysis given in Appendix C of Reference 7 has the same form
as Equation [61] for F;. This is shown as follows. In Reference 7 let

. - . 1 .
Y = Yc.g_ +h o
1

CK=§

(Footnote continued on page 82.)
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The u, w, B motion of the rudder is not affected by such a lift
force, at least to the first order in 7, ¥ and the other rudder displace-
ments or velocities. Hence, only the transverse or v, 7, @ motion will be
considered here.

The effect of the 1ift force on the rudder motions may be represented
by adding Fy on the right in the first equation of motion, Equation [13a],
and also a term (h + L)Fy in the right-hand member of the second equation,
[13b], which is intended to represent the total moment of force about the
z-axis, and a corresponding term -bLFL in the right-hand member of the
third equation, [13c], which represents the total moment about x. An ex-

ample of such additions follows.

Then, in Reference 7

A L2 A, AR' .
5 (8%0) - 3 (8Y¥c.g.) - (S - Ab)(S6)

Fp =

Therefore, certain terms in Equation [61] are replaced as follows (and the
values of the components in the corresponding analog are easily changed to
agree with the revised value of the coefficients):

Yy > 0
v > Yc.g.
A
B > 5
hl
Bth+ L) > A(2—+ b)
by, > O

Depending upon the form of the expression for My in Reference 7, the
analog for My is easily obtained from the new expression and analog for Fy.

Recent results8’9 indicate that the Modified Theodorsen Analysis
appears to be the most suitable analysis for yielding good predictions of:

a. The damping ratio and frequency for a given speed.
b. The critical flutter speed.

Finally, it is of interest to note that if Theodorsen's lag function
Ckg is taken to be a complex quantity, it can be represented by linear
transfer functions to within an accuracy of 2 percent for the complete fre-
quency spectrum (0 to w). For a more restricted range of frequencies,
greater accuracy is achievable; see Figure 24 of Reference 10.
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8.3 AN EXAMPLE OF DAMPING AND LIFT

The general treatment of linear damping and 1lift is illustrated by
writing out equations of motion and designing the analog for a case in
which there is a lift force Fy of the kind just described and also, as in

Reference 7, a damping term -Cv such as might arise from water resistance

to transverse motion and a term -c(i- &b) representing a damping couple

such as might arise from viscous friction in the rudder bearings. Here

C>0, ¢c>0. It is assumed that the damping force -Cv acts through the
center of mass of the combined rudder-water system, so that it has no
turning effect about the z- and x-axes.

When these additional forces are included, the equations of motion
for the rudder become

2

myi}=.....-Cx}+387-Bs[{z+(h+L)7'-bLo}] [62a]

I,7 - T,,0 = eevve =c(¥ = %) + (b + L)BS%y = (h + L)BS
. ) ‘ [62b]
[v+ b+ 1)y - bra]

IO - L7 = «veee =byBS%y + b BS[V+ (h + L)y - bya ] [62¢]

where ..... stands for the right-hand member of Equations [13a,b,c] or
[18a,b,c], respectively.®

An additional point must be noted, however, if these equations are
used in calculating the combined vibratory motion of rudder and ship. The

reactions to the Cv damping force and to the lift act on the water, not on

the ship. Hence, in using expressions [15a,b,c] for the reactions Yo Ty

My on the ship, only the term -c(i-—&b) is to be added to the right-hand

*It is important to note that in solving the combined rudder (or diving
plane)-hull equations, normally by means of an analog or digital computer,
a term representing hull damping must be included in the equations for the
ship. Such a term, based on experimental data, is included in Reference 5.

83



member of Equation [13b] to obtain T, and Y and M are still just the right-
hand members of [13a] or [13c] with no additions.

The terms in C, c, or BS all have a damping effect.® This is easily
seen from the origin of these terms. It also can be shown, as a check on
the equations, by writing an expression for the time rate of change of
Tg + Up, the sum of the kinetic and potential energies of the rudder. Ex-
pressions for Ty + Up are given in Equations [B.1] and [B.4] of Appendix B.
Multiplication of Equatioms [49a,b,c] by v, 7, and &, respectively, gives,

when vy = 7y, = Oy = 0,

d . . . . .92
= (g + Up) = _cv?2-c72-BS[v+ (h+ L)y - b G
+BSZ[vy+ (h+ L)yy - bpdy]

Thus the C, ¢, and BS terms in Equations [62a,b,c] act continually to de-
crease the energy and, as a result, have a positive damping effect.

The BS2y term in Equation [62b] is equivalent in part to a simple
change in the torsional stiffness of the stock. To see this clearly, sub-

tract h times Equation [62a] from [62b], obtaining, if vy = 7 =@ = 0,

. .o .. GJe 2 . . . . .
I,7 - Ixza—hmyv =-(—g- BS* )}y + hCv - ¢y - LBS [.v+ th+L)y- bLOL]

The same equation would be obtained if all BSZ terms were omitted and the,

G
torsional constants were changed to be numerically equal to (-i—g - BSZ).
T

Tf S is so large that the latter expression is zero, a static solution of
Equations [62a,b,c] is possible in which 7 has an arbitrary constant value
accompanied by constant values of v and O/, as determined by Equations

[62a,c]. 1In design such a lack of static stability is made impossible at

speeds within or near the operating range.

*The BS part of the lift force Fp, acts at the center of pressure and is
always oppositely directed to the velocity there, hence it necessarily
dissipates energy.
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The other effects of the B82

terms are more subtle. Study of several
simplified problems suggests that, even if the C, c, and BS terms are omit-
ted from the equations, the BS2 terms may merely alter the frequencies of
vibration, may result in solutions exponential in time, or may intro-

duce positive or negative damping. A damping effect due to the 382 term
in Equation [62a] is facilitated if other damping terms are present, be-
cause then v and 7 are likely to differ in phase so that in a vibration ¥
contains a part proportional to v.

When damping terms are present, such as the C, ¢, and BS terms in
Equations [62a,b,c], then if S is small enough, terms containing s2 may be
neglected, and positive damping will exist. As S increases, the damping
may decrease until it vanishes at a speed Sp, so that at this speed a
steady harmonic vibration may occur. As S increases above Sp, the damping
becomes negative and the amplitude of vibration increases without limit
(according to the linearized equations).® Such a self-excited vibration
is called flutter, and the speed Sp is called the (critical) flutter speed.
At this speed the energy lost through damping forces is just offset by
energy supplied out of the water by means of the lift force; see Reference
7.

The numerical solution of Equations [62a,b,c] and determination of
Sg (if such a speed exists) presents a complicated problem, conveniently
soluble only with the help of a digital automatic computer. Alternatively,
an analog network may be used. In general, solutions are sought for Sg»

w, and the degree of damping as a function of speed; see Reference 7, page

39.

8.4 NETWORK REPRESENTATION OF DAMPING AND LIFT TERMS

The substitution of electrical quantities and the division of the

equations by ay, a,, aj, respectively, which resulted previously in the con-

version of Equations [13a,b,c] or [18a,b,c] into Equations [22a,b,c], give

*In practice the increase would lead to structural damage unless it were
brought to a halt by nonlinear effects that are not represented in the
linear equatiomns.
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as the electrical equivalent of Equations [36a,b,c]:

d - ) 2 2.0
A.my (-i-t—,v + (eves.) +PACV - P pl)\.BS Y
[63a]
+ pABS [v' + py(h+ L)Y - pybyd'] =0
2 d L d M 2 ‘1t W
pl)\.Iza—t—'-y - plpzkIXZ ETO! + (cenes) +pp1)s.c(7 - 7)
[63Db]

- pPo2 A (b + L)BSZy' + poyn (h + 1) BS [V' + py(h + L)% - p,byd'] =0

2 d . d . 2 2 1
Po M Ix -dt—'a - plpz)\.Ixz I Y 4+ (ceee) + P p1p2>\.bLBS y
[63c]
ot A 1
- ppz}\.bLBS [v + pl(h + L)y - pszOt J =0
where (..... ) now stands for the collection of kg or k and GJ, terms in

the corresponding term of Equations [22a,b,c].

The added damping and lift terms require only appropriate additions
to the network already designed and shown in Figure 8. Thus if connections
of the rudder network to the ship network are made, they need not be al-
tered by inclusion of damping and lift networks.

The term p%.CGJ in Equation [63a] requires a resistor of resistance
(p)x.C)‘1 connected between the v' node and ground; the term pp%)\c(i' - ié)
in Equation [63b] requires, similarly, a resistance (pp%'xc)'l between 7'
and &é (or 7' and ground if &é = 0). The terms in BS require a resistance
of magnitude (p)\.BS)‘1 between ground and a point at which, by means of
two transformers and suitable conmnections, a voltage is maintained equal
to that specified by the quantity in brackets; all three of the BS terms
are then seen to be represented.

The BS? terms, however, present a new problem. Because these terms
are not symmetrical in Equations [63a,b,c], they cannot be represented
entirely by passive elements, but require the use of a nonpassive device

such as an amplifier.

An ideal linear amplifier is a device that accepts as input any
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voltage above ground unaccompanied by current, and delivers as output a
voltage above ground equal to the input voltage reversed in sign and multi-
plied by a constant amplification factor, together with whatever current
the load requires. (The amplification factor is a positive number.) The
output current is supplied from a separate ground connection, so that an
amplifier is really a 3-terminal element. A fairly satisfactory approxi-
mation to the ideal amplifier can be obtained by use of a 3-electrode
electronic tube.

The term -p2p17sB327' in Equation [63a] requires that a current
enter the v' node proportional to the voltage impulse 7' at the 7' node,
but without disturbing the current balance at the 7' node itself. Revers-
ing the 7' voltage with a 1:1 transformer and then delivering it to the in-
put of an amplifier produces an output voltage impulse that is positively
proportional to 7', and does not draw any current from the y' node. If
the output terminal of the amplifier is then connected to the v' node
through an inductance of suitable magnitude, the desired current will be
entering the v' node whenever v' is zero. Disturbance by a nonzero v' can
be suppressed by using another transformer to add a voltage drop propor-
tioned to v' in the input to the amplifier; the transformer should be of
such magnitude as to add a voltage equal to v' at the output terminal.

The arrangement thus invented is shown in Figure 28.

The BSZV' term in Equation [63c] can be represented similarly except
that here the 7' voltage need not be reversed. The B827' term in the y-
equation [63b] presents a simpler problem. If h + L < 0, so that the
current is to leave the 7' node when 7' > 0, a simple inductance of magni-
tude [pzp%%.(h + L)BSZ]-I, connected between 7' and ground, will be suf-
ficient. An alternative when ié = 0, provided h + L is not too large a
positive number (as cannot really happen), is to combine this term with
the last one in Equation [22b], thus:

22

GJ
+p pl}‘[’ET_e - (h + L)352] 5!

This expression requires only an inductance of magnitude

GJ -1
{pzpik[ﬁ - (h + L)BS2 ]}
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Figure 28 - Mobility Analog for Addition of Damping and Lift
Forces on Rudder in Transverse or v, ¥, O Motion to
Rudder Network Shown in Figure 8

The ratios rj/A;, r3/A3, and the product’ rpA, are
free. For alternatives to the Ay amplifier, see text.
The triangle is the usual symbol for an amplifier,
with input to the right and output to the left. "A;"
denotes the numerical amplification factor; the minus
sign before it is a reminder of the voltage reversal.

between 7' and ground. As a last resort, whemn h + L > 0, a simplified
form of the device used for the other BSZ terms can be employed.

The additions to the rudder network required by the damping and lift
terms are shown in Figure 28, where the nodes labeled G', i', a' are simply
the nodes so labeled in Figure 8. However, only the last of the three al-

ternatives for the 3827' term in Equation [63b] is shown. Magnitudes are
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stated below Figure 28.

Note that the added current -c (7'- ig) that enters the 7' node comes
from the fg node and correctly represents there the added reaction on the
ship. The currents representing the C and the S or S2 terms come from

ground and have no direct effect on the ship network.

9. SUMMARY

A theory has been advanced for determining the vibrations, including
flutter of a control surface-hull system. The control surface may have 6
degrees of freedom whereas the hull may have additional sprung bodies with
1 or 2 degrees of freedom elastically attached to it at various locations.

The transverse and longitudinal motions of the control surface and
their coupled relations with the hull motions have been treated; the con-
trol surfaces include single rudders, horizontally paired rudders, upper
and lower rudders, paired diving planes, and foils mounted on a continuous
shaft.

Equations of motion derived for flutter analysis based on the Modi-
fied Theodorsen Analysis include structural damping and lift force terms.

Analytical, digital, and electric-analog methods have been devised
to determine the natural frequencies, mode shapes, critical flutter speeds,
and damping of this control surface-hull system and/or parts of this sys=-
tem.

The theory and methods of solution established here permit a more
adequate representation of a ship in forward motion and its appendages
(rudders, diving planes, machinery, cargo, superstructures, nuclear reac-
tors, boilers, radar masts, etc.) as a mass-hydroelastic system subject
to vibrations and flutter.

The theory may be used to predict the vibrations and/or flutter
characteristics of a hydroelastic system and to design such a system (or
its components) to prevent excessive vibrations or flutter. General ap-
plication of the theory for an existing or contemplated system requires
evaluation of a specific set or variable sets of hydroelastic parameters,
respectively, for use as data in the digital and analog solutions of the

equations of motion.l%515,2 Based on the solutions obtained for a range
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of parameters, graphs and/or nomographs may be devised to aid in the de-
sign of an optimum system with respect to minimum vibrations and avoidance
of flutter for a given speed range.

The theory, while having some degree of verification,9 requires
additionmal validation through further comparison with experiment. In par-
ticular, it is important to establish the conditions (range of parameters)

for which it is wvalid.
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APPENDIX A

FEASIBILITY OF MOBILITY ANALOGS FOR ELASTIC
SYSTEMS INCLUDING DAMPING

Consider any elastic mechanical system that is at least not unstable.
If it is attached to other bodies, let the points or areas of attachment be
immovable. The kinetic energy Ty of the elastic system can be expressed

as a homogeneous quadratic function of the velocities of the coordinates

of the system,6 assumed finite in number and denoted by qj, qg ..... q,;
thus:
L R 9 n n
T, == X mq5 + 2 X m.dq;q, [A.1]
K
L W N S

The potential energy Up, assumed zero in the position of equilibrium, is

a similar function of the coordinates themselves:

1 R 9 n n
Up = 7 E kiqi + 2 2 kij quIj [A.2]
i=1 i=1 j>i
The coefficients my, My, ki’ and kij stand for constants such that neither

Tg nor Up can be negative for any values of the q's or dz's. Obviously, all
2 s
m; £ 0 and all k; < 0.
The equations of motion for a conservative system having n degrees

of freedom as obtained from Lagrange's equations,6 or

dt 3q;  oqg = 34z [A.3]

can be written in the convenient form

m.

49; + > m ;= - kyq; - jfi k.. q. [A.4]

j#i 113

where i =1, 2 ..... n, and it is to be understood that by definition
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=k (Note that in the expressions as written for Ty and

myi T Mije Ky T Kige
Up, j > 1 always, whereas here this is no longer the case. Note too that

oT
i S 0, since Ty is not a function of the coordinates but only of the

dq;
velocities of the coordinates.)

The equations in this form obviously have the symmetry described
for Equations [13a,b,c]. 1In each equation q; appears as the leading vari-
able, and nonleading variables occur symmetrically in the equations since
it T Mige i
are nonnegative and those of all qi's on the right are all nonpositive.

= my = kij' Also, the coefficients m; of all q;'s on the left
This symmetry and these signs may have been destroyed in the equations of
motion as encountered in a given case, but these features can always be
recovered by multiplying certain equations throughout by the proper con-
stants.

To point out that a passive analog network can always be set up for
such a system in spite of the fact that some of the coefficients mj § and.
kij may be negative, we show first that both Ty and Up can be expressed
as sums of squares with positive coefficients. This is possible because
Ty and Up can never be negative.

Let any one of the q's be chosen and labeled qj, then collect all

terms containing q; or dl into a square term thus:

1o=lm g+ 2 gt 4, ) [4.5]
k=72 ™M >1 M 13 2 g +orer 9p )
k..
1 1 2
UP=§ kl (q1+ .§1 T{-I—J-qj) +U2 (q2 cee e q.n) [A°6]
J

Here T2 and U2 are quadratic expressions not containing qq or dl; they
contain, however, the following terms added to those already appearing in
Tg or Up in order to correct for the unwanted terms introduced by the

first term as written, namely:

W‘IW‘
Q

m2
13

N| =
(-

|

(I
e N

2 1 .
q% in g ;5 -2 3 in Up [A.7]

- X
>l 1 >l

92



Now, whatever values qQp «+--. q, OF d2 oo dn may have, dl and q
can be so chosen as to cause the square terms in Tg and Up as just written
to vanish. But TK and Up as a whole can never be negative; hence Ty and U,
themselves cannot be negative for any values of Qy +eeo Qs dz cesoa dn‘

It follows then that the new coefficients of d% in Ty and of q% in Up can-

not be negative. Thus T, and U, have the same properties as Ty and Up
themselves.

Obviously, this process can be repeated until all q's and q's have
been included in squares with coefficients that cannot be negative.

A mobility analog network can then be constructed containing n nodes

at which the voltages above ground are proportional to the (d')'s; the ground
4
i
at once be represented by connecting a capacitor between di and ground, and

may be regarded as an (n + 1) phantom node. A term such as % mi(d )2 can
a term such as % k;(d;)z by similarly connecting an inductor. The com-
binations occurring in other squares can be produced by suitable connec-
tions involving ideal transformers.

It can be shown that with a suitable choice of conversion factors,
the same network is obtained in this way as by representing the equations
of motion. Alternatively, the q's can be made proportional to successive
voltage drops between points or lines within the network. An example of
this latter procedure is shown in Appendix B.

If the damping forces acting on the system are all proportional to
either the velocity of the system at a certain point or the difference

6

between the velocities at two points, then the equations of motion become
my g + j§, mjdy = - kjq; - § kjjaq5 - ¢34y - X cy54;  [A.8]

where c; and Cij denote damping constants. By definition a damping force
is always in such a dircction that it decreases the energy of the system
(that is, the sum of the kinetic and potential energies). It follows from

this that all cy 2 0 and cij = Cji- (See Reference 6, page 102.)
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APPENDIX B

ENERGY METHOD OF DERIVING MOBILITY ANALOG FOR TRANSVERSE OR
v, 7, & MOTION OF RUDDER ATTACHED THROUGH FLEXIBLE
RUDDER STOCK TO FLEXIBLE HULL

The energy method for deriving an analog, described briefly in Appen-
dix A, is especially convenient in dealing with an elastic system that has
only a few degrees of freedom and for which energy expressions can be writ-
ten down without knowledge of the differential equations of motion. 1In
designing the ship network, on the other hand, it is more convenient to
work from the equations of motion; also, if the rudder motions are to be
included, it seems less confusing to use the same method in designing the
rudder network. This has been done in the present report.

Since, however, the energy method has found wide application, its
use will be shown here for the v, ¥, @ motion of the rudder. Expressions
for the energy are found easily from materials already assembled.

The kinetic energy Ty of the rudder moving as a rigid body is equal

to the work required to set it moving by means of external forces, hence

. Tg = [ (YV +Ma + Ty) dt
= [{my¥Vv + GG + 1,77 - L, (Ya+ay)]at
by Equations [lla,b,c]. (See also Figure 5.) Thus

1 .2 1 . 1 . .o
Tg = 7myV" + 5 I + 5 1,77 - IQ) [B.1]

This expression can be converted into a sum of squares with positive
coefficients in various ways. The general procedure described in Appendix

A gives, as one form,

1 2 1 ez .\ 2 1 I>2cz 2
TK'-:EIIIYV +§Ix(a"i‘x—7) +§Iz(1_1xlz)7 [B-Z]

For analog purposes, however, some freedom in the choice of trans-

former ratios may be desirable. Hence the following form is preferred
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here:

2

I . - . 1 Ix . -
(Ix-—;—z)a2+—;-(12 -r]lxz)‘)'2 -i—:;(a-r‘)') [B.3]

N =

1
TK—'Z‘myV +

where, to keep all coefficients positive, T has the same sign as I4, and

is to be chosen so that

[B.3a]
Ix Ile
Since Ii = I,1I,, at least one allowed value of r exists. Equation [B.2]
results from the choice: = Ixz/Ix' The limits on |T| = r are necessary

to keep both (I, - Ixz/r) or (I, - rIy,) from being negative.

The potential energy stored in the rudder stock at any moment is
equal to the work that would have to be done in producing the elastic
deformation that exists at that moment. If the stock remained undistorted
while its top acquired displacements vy, 7}, and Qy, the bottom of the

stock would receive displacements (see page 1ll):
Vb =Vt 2% 3 p =% 3 V1 =7

As these displacements change further to v;, Qj, and 7y, the reactions on
the bottom of the stock increase from O to -Y;, -T;, and -M;. Hence, the
potential energy Up has the value

Up = - 5 (¥ (vy - vy - £op) + My (g =) + Ty (77 - 7))

Substituting here Y;, M;, and T; from Equations [9a,b,c] and vy, 0, 7;
from Equations [8a,b,c], and also using the notation defined in Equations
[12a,b], we obtain:
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2

- 6k 2 (v -ba+hy - v - Loy)(a-oy) [B.4]
1 2 2,1 2
+ 35 (3kg + k) £° (@ - ap) * 70 (7 = 7p)

or converting into a sum of squares with positive coefficients by the

usual procedure, we obtain:

2
Up = 6k [v - (b +28)a+hy - v -%zab]

- [B.5]
+lkzz(oe-0tb)2+l—-E 2

2 2 3y 777

For a mobility analog, use the following conversion relations:

L *t

v =byv' & = by Y = by ¥
v = pblv' a = pb3(x' Yy = pb27'
1 1 1

Here T& and Ué are electrical energies representing Ty and Up. Let by,
by, b3, p, and q all be positive. Substitution in Equations [B.3] and
[B.5] gives

g =g my 02+ 218 @)+ 218 GNP+ 3L, @ -9 [B.6)
' 1 ' ' 1 vy 1 1 1 U 2

G [B.7)
+ % (D' @ - op? + %(ﬁ) o' - 7’
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where

Ixz\ . 2 - 2
qmy = myby ; q1;=<lx'_?_>b3 s aly = (I - TI)by
I
" Xz , 2
ez =5 73
1
2 2 2.2 GJe GJe 2.2
q (12kg)' = 12kgp? by 5 q(k25)' = ks5p" by q<£T> = P b2
_ = P2 1 _ 1, P3 v by
r=lTlE 5 e+ =ergzog s b =elg s
' b
1,] 1 3
|24 =2 165

Here, for convenience, the transformer ratios have also been stated.

', and 7' would now be assumed to be

In the usual procedure, v,
voltages above ground. In ship theory this method is the most convenient.
For a system involving only a few variables, however, a slightly neater
result is obtained by using different reference lines for the separate
variables.

Let v', &', and 7' be voltage drops between successive pairs in a

system of four nodes or lines, numbered 1 to 4 in Figure 29. The first
term of Té may then represent the energy in a capacitance m; subjected to
the voltage v', and similarly for the other terms of Tk. The combination
of 7' and @' in the last term of Equation [B.3] requires a transformer.
Analogously the terms of Equation [B.7] require inductances.

In a term such as % (12ks)' (v')z, for example, v' = [v'dt' so that
v' is a voltage impulse; if v' is the voltage drop across an inductance L,

the current through the inductance is % ) vidt' = % v', and the energy

stored in the inductance is % % (v')z. Hence, to represent the term just

cited, L = [(12ks)']-1. In Ué a similar term occurs with v' replaced by
a combination that must be obtained with the use of transformers.

The terms vﬁ, ay, and 7£ may be represented by voltage impulses
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Figure 29 - Alternative Mobility Analog for Rudder in Transverse
or v, ¥, @ Motion Attached to Moving Hull

Transformer signs are shown for
positive T, b+ 3£, h, and £.

across three gaps located as shown in Figure 29. To add (%2)'0&1') to Vt'a
requires a transformer.

The network thus designed is shown in Figure 29. Transformer con-
nections are shown for positive values of ¥, b +%E, h, and £; if any one
of these quantities is negative, one + mark is to be moved to the other
end of the winding on the corresponding transformer.

Note that the left and right halves of the network, representing,
respectively, TI'< and UI"’ must be connected, thus representing the fact

that only the sum Ty + Uj is constant.
K P
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It remains to be shown, however, that a correspondence thus estab-
lished at one moment between a mechanical and an electrical vibration will
persist.* 1In an isolated network, i.e., network not conuected electrically
to anything else, the electrical energy must remain constant, as does the
mechanical energy of an isolated system. This condition does not determine
the mechanical motion, however; it is necessary that Lagrange's equation be

satisfied:**

d -
TS ts-=0

where qj = v, o, or Y. This equation holds even when Vs Qs and 7p vary
with time.

The corresponding electrical equation, obtained by substituting the
conversion relations in Lagrange's equation and then canceling out q, p,
and the b's is:

a g  p _

at' 8&3 Bq3

*Consider any given motion of the mechanical system with total energy
Tg + Up. At a given time t;, we may start the network with voltages and

. o . v o (T HUp)
currents satisfying v = b;v , etc., and with total energy TK4fUP=-—-7;———.
Then this relation between the total energies will persist, since both sys-
tems obey the conservation of energy (hence Ty + Up does not change, nor -
does TK + UP) Now is it possible for the currents and voltages at time
t > t; to wander off so that the ratios v/v' change, but of course in such
a way that TK + UP does not change? The proof given is supposed to show
that the voltages and currents will not wander off in this way — the cor-
respondence once established (in terms of certain values of b, etc.) will
persist.

If the analog is set up from the equations of motion, this proof is

'l
not necessary; m %% is matched by C g -, etc., so that electrical quan-

tities obviously change with time at the right rate.
**The correctness of Up and Ty can be checked by comparing the equations

of motion previously derived by using Newton's laws with the equations of
motion derived from Up and Ty by using Lagrange's equation.
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where q3 =v',a', or y'. If this equation holds for electrical vibrations
in the network, the correspondence between v and v' and v and v', etc.,
will continue to hold. Now from Equations [B.6] and [B.7] and Figure 29,

d BTk N aUé
dt' ov' = ov'

downward from Line 3 into Line 4 from which there is no outlet. It can be

we can see that is the sum of the two currents flowing

reasoned next that the sum of the currents flowing downward from Line 2
must vanish, and similarly for Line 1. Hence the electrical Lagrange
eguation will hold in the network.

It should be noted that the network shown in Figure 29 does not dif-
fer essentially from that shown as choice II in Figure 8. In fact, if
q= b%/x, as in Equation [B.8], and if pj and py, that is, by/b; and b3/b1,
have the same values in the two cases, then the only difference is that in
Figure 29 the interior Line 3 above the v' drop serves, in effect, as a
"ground or reference line'" for &', and Line 2 serves similarly for &'.
This difference affects some of the actual voltages in the network but not
the voltage differences that control the currents.

That the elements and transformer ratios are the same is easily veri-
fied by comparing the values given for Figure 29 with those given at the

end of Section 4.3 for Figure 8II. For example, after substituting (see

—, Db3r'  por'
equations following Equation [B.7]) HE yanlialiars
2 1

» Equation [B.3a]

becomes

so that the range of choice for r' is the same as for rz in Figure 8II.

Also

by lIsz

2
®3 oy |Txz | = 2y, —

1 A
%Z IIxZI = b%

so that I;; = C, if r' is chosen equal to r, . Again,
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=Amy=Cp 5 (12kg) = A (12kg p2) = 17!

Choice I in Figure 8 would have been obtained if Equation [B.2] had
been so written that the last term contained (7 - ?d)z, T being different
in valué. Choices III and IV result merely from choosing an extreme value
for the transformer ratio.

An increase in q decreases all capacitances and increases all induct-
ances in proportion to q, thereby decreasing the network currents caused
by given voltages; however, there is no effect on the natural frequencies
of vibration or on the mode pattermns.

If the rudder bearing is fixed so that Vi, =0p =7 = 0, the gaps
shown in Figure 29 are to be closed. In this case, it is simplest to
choose q = 1. Such a choice does not restrict the range of possible values
for the elements, since the same changes in the elements can be made either
by changing q in a certain ratio or by changing b%, bg, and bg in the in-
verse ratio. The correspondence between mechanical and electrical vibra-
tions is altered by such changes, but this is of little interest because
the amplitude of vibration is arbitrary in any case. If, on the other hand,
the bearing is forced to vibrate in a certain way, corresponding voltage
drops are to be impressed upon the 6%, dg, and §£ gaps in the network. 1In
this case, a choice for q other than unity may be preferable.

Connections to the ship network can be made provided two precautions
are observed. Let the ship network be extended as in Figure 9 to provide
6%, &é, and §£ nodes. Then Line 4 of the rudder network may be connected.
directly to the ground line for the ship network and the top of the gap
labeled Gé, to the Gé node just specified. The other two gaps, however,
require 1:1 transformers in order to impress the voltage drops, between dé
and &é and ground in the ship extension upon the corresponding gaps pro-
vided in the rudder network.

Furthermore, the conversion facior for energy must be the same for
both networks. This requirement may be regarded as arising from the fact
that in both the mechanical and the electrical systems energy lost by.the
rudder is gained by the ship and vice versa. In Section 4.4, however, it

was required that, besides bj, by, bj, the conversion factors a;, aj, aj
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from force or torque to current must be the same for rudder and ship, but
this is easily shown to be equivalent to identity of the energy factors.
Consideration of any element described in Section 4.3 and shown in Figure

8 leads to the conclusion that

o

2
1

For example, the electrical energy in thexn; capacitor is

*\2
1 4, 1 a1 2

Em};(v')z or 5 ()\my) (b—‘;‘) or ;'2-(5 my Vv )
1

so that the mechanical energy is b%/x times the electrical energy. Since
P, a1, and by were all required to have identical values in rudder and

ship network, the same was true of q.
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APPENDIX C

RUDDER RESONANCE

When a natural frequency of the rudder lies close to a frequency of
ship vibration, large amplitudes of rudder vibration become possible. 1In
such cases it may be important to make sure that any vibration of the
rudder-ship system that may occur in practice will not cause damage to the
rudder structure. For this purpose calculations can be made by the methods
described in Sections 4 and 5 of the present report, either numerically or
with the use of electrical analogs. Near rudder resonance, however, use-

ful simplified formulas can be obtained.

1. Transverse or v, 7, @ Rudder Motion

Transverse motion of the rudder will be considered first. To shorten

the notation, write

GJe 1 .
g =t ¢ g Tk g I =

Assume harmonic motion so that v = -cnzv, etc., and simplify Equations
[13a,b,c] for calculation by dividing Equation [13a] through by kg, sub-
tracting the original Equation [13a] multiplied by h from [13b], and add-
ing the original Equation [13a] multiplied by (b + 2 £) to Equation [13c].

The modified equations thus obtained can be written, for harmonic motion:

(1-tod)v+ hy - bya = v, + 3 Loy [C.1a]
hmo A2v + (km - I. 02)7 + L. 02a = ko [C.1b]
y T z Xz T’b :
- bomy cnzv + Ixzwz‘}' + (k.l&2 - waz)a = kﬂzab [C.1c]

The natural frequencies for v, ¥, o motion of the rudder alone may

be found by setting vy = 7y = oy = 0 and equating to zero the determinant

105



D of the coefficients of the v, 7, a terms. The equation thus obtained

has the form

D=-(I,1, [aﬁ + w4 (...) + w2 (...)+ ...]=0

This cubic equation in ®? has three roots, w%, w%, and m%, which are the

squares of the natural circular frequencies for vibrations of the rudder
with the top of the stock fixed. In terms of these roots, the expression
in brackets can be written for any w as an - w%)@nz - w%)(wz - wg).

Hence, in general,
D= (LI [ef+a* (L) +e? LD+ D=0

Solution of Equations [C.la,b,c] for v, 7, and o by the usual method
of determinants gives (the solutions v, 7, and @ have been multiplied
through by D):

Dv = (v, + 280p) [kpkt? - (gl + K2 T) 0% + (I, - Ip)e” ]
- 7 kp [hk 42 - (hI, - by Iyz) w?] [C.2a]

+ oy ks [boky - (b T, - hT ) a?]

DY = - (vb + %ﬂab)mywz |:hk,82 - (hIx - bo Ixz)u)z]
+ 7pkp (k2% = 02 my + I, + tkeD? + £ T, o ] [c.2b]

- ap k22 o [hbymy + I, - £ 1, ,0%]

1 2
Da = (Vb + E Eab)my(l) [bo kT - (bo IZ- hIxz)(Dz]
- yykpo? (hbymy + T, = £, o) [C.2¢]

+ oy ke2 [ky - (Ckp + bPmy + Lo+ (T, o]
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The corresponding reactions on the ship at the rudder bearing are (from
Equations [15a,b,c] with the left-hand members of Equations [13a,b,c] sub-
stituted for Y, T, M):

Yy = mywzv [C.3a]
Ty = w? (-hmyv +I,7-I,0) [C.3b]
My = w2 [(1& + b)myv - I.,7+ Ixa] [C.3c]

From the formulas [C.2a,b,c], v, 7, and @ can be calculated provided w%,

*
11 (unless o = Wy, Wy, OF w3).

w%, a)g, Viy» 7b’ and Qy are known or assumed
If w lies close to one of the natural frequencies, say w7 the latter may
be substituted for w without great error in the right-hand members of
Equations [C.2a,b,c] and also in the determinant D, except in the factor
(w; - w) that occurs after w% - w? has been replaced by (wl - w) (a)l + w).
Furthermore, if the ratios of the displacements v, 7, and « during a free
w; vibration are known, it may be sufficiently accurate to calculate from
the formulas only one displacement, perhaps v, and to find the other two
from the known ratios.

1'I'he approximate values of v, 7, and ¢ thus obtained are proportional

to - °F to make the factor of proportionality nondimensional, they
1 -

are numerically proportional to R, where

9 1 _ [ %

(.l)l"(l) d)-(.l)l

When w is near wi, the value of R may serve as a rough measure of the reso-
nance effect. If w < 0.7 wy, Or > 1.3 Wy R < 3.4; if |a) - wll = %‘Dl’

R>5; iflw-wl| <T16a>1, R > 10. When R < 3 or 4, the approximation

*In Appendix A of Reference 12, rudder-hull calculations were made in
which the rudders were treated simply as an equivalent sprung mass tuned
to the frequency of the second horizontal mode as computed without the
sprung mass effect.
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that has been made is likely to be poor, i.e., the resonance effects may
probably be ignored, but it becomes better as w moves toward w;. If R > 10
there is certainly a decided resonance effect. Of course, either w, or w;
may be used instead of wj-.

It can be shown that the ratio 7/v during an w; free vibration is
equal to the ratio of the coefficient of 7, in Equation [c.2b] to the cor-
responding coefficient in [C.2a], provided w is replaced by ®; in both;
and 7/v is also equal to the similar ratio of the‘(vb + %z@O%) or the oy,
coefficients.* Similar statements hold for a/v or a/y. It follows that as
expected near resonance, the vibration pattern approximates the pattern for
free vibration independently of the relative magnitudes of vy, 7}, and Q.

It may be that a complete analysis of the rudder-ship system might
not predict an infinite rudder amplitude even when ® = wj, because the re-
actions on the ship would then reduce v, 7y, and oy, either to zero or at
least to a combination of values consistent with limited values of v, 7,
and . This feature is well known in the case of a sprung mass whose am-
plitude at exact resonance becomes only large enough to hold its base at
rest.l’2 Probably the corresponding situation cannot be reached with a

rudder except as a result of structural damage.

*Proof: Set right-hand members of Equations [C.la,b,c] to zero and let.
w=w). Then D = 0 and nonvanishing values of v, 7y, and @ can exist.
To find 7/v divide [C.la] and [C.lc] by v and solve the resulting equations
for yY/v. We obtain

[aa-t¢ w%)(kﬂz— I, w%) -bgmyw%]

[h es? = ,02) + by I, 0 ]

<1
!

coefficient of 74 in [Cc.2b]

= . h
coefficient of 73 in [C.2a] with o P wi

Other ratios can be checked in the same way. Omitting Equation [C.la]

gives /v = ratio of coefficient of (vb + %uio%), etc.
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2. Longitudinal or u, w, B Rudder Motion

For longitudinal motion of the rudder, corresponding results are

obtained; only the equations need be given. Let

B .
ka = 7 ’ g'12ks

By the addition of b, times Equation [27a] and h times [27b] to [27c], the
division of [27a] by 12kg, and the assumption of harmonic motion, we con-

vert Equations [27a,b,c] into the following:

2 1
(1 -tw)u - boﬁ = uy + f‘eBb [C.4a]
2 2. _
(kg - m; @7 )w; + hm, 0B = k, wp, [C.4b]
bomew?u + k;hwy + (k82 - I, 02)p = k,hw, + kg2 [C.bc]
= Pomly at V] y ©7)B all¥p Bb «ac

The determinant D of the coefficients can be written
= -2 2\ ,—2 2, ,—2 2
D=§,szy (cnl-a))(wz-a))(w3-a>)

in terms of the three circular frequencies w;, o, wq, for free u, w, B

vibration of the rudder with the top of the stock fixed. The equations

yield
Du = (wp + 7 48p) [l ks? - (i m, + k2w, + kT ) 0% +m, 1) 0]
2 9 9 [c.5a]
- kaahbo+ (kahwb+ ke Bb) bO (ka - mz(.l) )
Dw, = +2op)h 4
Dwp = = (up + 3LBp) hogmymy
+ apky [k - Cere?+ bdm + 1)a? + £, 0]
[C.5Db]

- (kghwy + k42 py) hmyw? (1 - € wd)
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— 2
DB = (u + -;— zﬁb)bomxa)z (k, - mzwz) -w,k;h (1 - §w2)
[c.5¢]
+ (k,hw, + k62 k k, + 2 o
a Wp Bb)[a"(ga my) "+ Emy e’
The reactions on the ship are (from Equations [30a,b,c]):

Xb = mxa)zu

Zy = wz(mzwl - hmz B)

% o’ [+ b)ymyu - hm,wy + (Iy + hzmz)B]

Remarks similar to those following Equations [C.3a,b,c] may be made

with appropriate changes in the case of longitudinal vibratiomn.

MOBILITY ANALOGS

Apparently there is no simpler way to investigate resonance in a
rudder-ship system with use of a mobility analog than to set up the usual
network and vary the natural rudder frequency past the ship frequency by

suitable variation of one or more of the network elements.
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APPENDIX D

SHAFT ROTATION IN S-BENDING

Consider a cantilever shaft with load L at the right end. Imagine
the shaft divided at a certain point and moved apart there; see Figure 30a.
At the gap, which may be anywhere, there are two shear forces, L acting on
Section A and -L acting on Section B. L is here designated as '"the shear
force' meaning that it represents the shear force acting towards the left.

Then in the cantilever the shear force is uniform and equal to L.

In Figure 26, P and P; are the shear force acting toward the left or

toward 0. Let us now consider the effect of the bearing on the shaft rota-

tions for the cases where P; = P, P; = -P, P; # P or -P.

1. P1=P

In this case the forces on the ends of the short section of the shaft
inside the bearing are equal but opposite (-P; or -P and P), as shown in
Figure 30b. These forces tend to bend this section like an S; but this
bending may be ignored.

The shear force is P at one end and Py at the other end; but P; = P
in this case, hence the shear force must be uniform throughout the bearing,
accompanied by uniform shear warping, which is assumed not to be interfered

with by the bearing. Thus there is no shear effect, and 6] = 6 = 6y9 -

2. Pl = -P
This case is illustrated in Figure 30c. Note the reversal of shear
warping as the shaft passes through the bearing. The force -P; or P on
the left end of the bearing tips the shaft upward and thereby decreases
its slope from 6 to 6, - 20P. Hence, 6,7 = 6, - 20P.
3. P #Por -P

The pair of shear forces P; and P can be divided into the following

two superposed sets:
(a) % (P + Pp) at left and 2@+ P;) at right.

(b) --% (P - P;) at left and %—(P - P;) at right.
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Figure 30a - Shear Forces Acting on Shaft

Shaft

)

P (=P)
, I

|1 f | IL
_pl(=-P)¢ [;ho“ Bearing N

Figure 30b - Shear Forces Acting on Shaft at
Bearing Terminals when Py = P

Figure 30c - Shear Forces Acting on Shaft at
Bearing Terminals when P; = -P

Figure 30 - Shear Forces and Rotations for Shaft Passing through a Bearing
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In both cases the force "at left" acts, not on the shaft in the bearing,
but toward the left, like P; in cases 1 and 2.

In the first set, the two forces %—(P-+ P1) are equal and in the
same direction, as were P; and P in case 1. Hence, the same reasoning as
in case 1 leads to zero shear effect, so that this set introduces no differ-
ences between 6p1> 6p and Bp2 -

In the second set, however, the force -v%(P - Pl) at the left is
equal and opposite to the force -%(P - Pl) at the right, just as in case 2
Pl = -P. Hence, this set introduces differences as in case 2, except that
here % (P - Pl) replaces P.

Therefore, in general,

6b1=9b-(P-P1) s 9b2=9b+ U(P-Pl)
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Figure 3la - Forces and Moments Acting on a Uniform Cantilever
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Figure 31b - Shear Warping in Shaft

dx -

Figure 3lc - Variation in Shear Warping for Section of Length dx
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Figure 31d - Displacement and Stress Associated with Pure Bending of a Shaft

Figure 31 - Forces and Moments Acting on Uniform Cantilever and
Associated Shear Warping and Bending Displacements

Displacement is positive toward +x, hence it is negative

here. Actual direction of o}, if 6; is positive, is negative
as shown; op is positive toward +x.
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APPENDIX E

ENERGY RELATIONS FOR A UNIFORM CANTILEVER

Let a uniform cantilever be acted on by a force P and a moment M,
resulting in a displacement v and a slope 9 at the end; see Figure 3la.
The relations of v and 6 to P and M can be found from Equations [7] and
[4]. These particular equations are not affected by the "fourth boundary
condition," which does not hold in the present case because the free end
of the cantilever is not connected to anything, i.e., the rudder; this
end is, therefore, free to shear-warp to suit itself.* Substitution of

1
—g}; =0, z=£, and y = v in Equations [7] and [4] yields*¥

(L3 2, L2
EIV—(3£ +KAG)P+2[,M

The coefficients in these equations are not symmetrical; e.g., the coeffi-
cients of M in the v equation and P in the @ equation are not equal. How
is this consistent with conservation of energy?

If W is the work done by P and M gradually applied, elementary anal-

ysis gives

dW = Pdv + Md6

]

S L[(L 3, s 1, 1,2, EL
_EI[(3'e +KAG)PdP+2,6PdM+(2,@ +KAG)MdP+£MdM]

whence, integrating between the limits P = 0, P and M = 0, M, we have

*of course, the actucl shape of the end will depend on how the P stresses
are distributed over it; we tacitly assume these stresses to be distributed
as they would be if the cantilever extended onward beyond this point.

1
**Henceforth x replaces z so that %%— becomes %% ; see Figure 3la.
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P
1 ff1,3, #ET\.2 1 2. 1,2 EI
W——ET[(‘E.Z +2KAG)P +2£PM+2.3M +KAG£ MdP]

The last term is not unique. For example, if P is applied while

M = 0 and the M is added, JFPMdP = OJdeP = 0, whereas if M is applied
PYO pVO
first and P is added, L[\ MdP = M‘jp dP = MP. The first three terms of W
are the same; however, éoand M are prlied, and the final state of the
cantilever is the same. Hence, it appears as if two different amounts of
energy can bring the beam to the same final position, depending upon the
manner in which M and P are applied. In other words, energy does not seem
to be conserved in a conservative system.

The source of this apparent dilemma is the shear warping effect which
has not been taken into account, thus making the expression for W incomplete.
As P and M change, the shear warping at the end changes, perhaps as shown
in Figure 31b. M does negative work on the end of the cantilever in such a
case;* the amount of negative work by M (or by M stresses) when shear dis-
tortion of the end cross-section changes, will now be calculated.

Let s (P, y, z) be the x-displacement due to shear warping, or

s = Pf(y, z). It may be assumed that [[sdydz = 0, hence (see Reference
13) [[f (y, z)dydz =0 since P # 0; see Figure 3lc. The unknown function
of £ (y, z) can be connected with the shear-warping constant K by the fol-
lowing analysis:

Consider a case in which P varies along the beam. In such a case

- dp
dx °

ds _ .
= P £ (v, z), and the associa -

ted normal stress is o = EP, f (y, z), the stress force acting across the

Syerdx > Sx by the amount ds = P f (v, z)dx; P, Thus the strain in

the corresponding longitudinal fiber is

*When P and M change, the change in shape and position of the cantilever
is as shown in Figure 31b. The change in 0 gives for work due to M, the
value used in the usual "elementary analysis" Md6. But M is applied by
means of stresses, as shown by small arrows. On both the upper and lower
part of the end cross section, the additional displacement of elements due
to ds caused by dP are opposite to the stresses. Hence, negative work is
done by the M stresses when P increases and warps the end cross section
more (negative at least, provided M and P have the directions shown ).
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cross section on the material lying to the left of it being directed toward
+x if Py f(y, z) > 0.% Therefore, the shear-warping moment Mg, positive as

shown in Figure 3lc, is

Mg = - [[yodydz = - EP, [[y£ (y, 2z)dydz

The level from which y is measured here does not matter because it has been
assumed that [[f (y, z)dydz = O so that adding a constant to y does not
change this equation.**
From Appendix A2 of Reference 3 (Equations [A25b] and [A26]), when
KAG is uniform
EI

MS=-K—AEPX

since P here = -V there. Hence, we conclude that

_ I
[Iy£(y,2)dydz = =

Along the cantilever, however, P is uniform; hence P, =0 and ¢ = 0.
Normal stresses on the cross section arise only from bending and have their

usual values. In pure bending, on the other hand, the cross sections re-

main plane, hence the x-displacement is -y6 at a height y above the neutral
axis which is taken as the reference level for bending, the strain is -¥64 5
and the stress is 0 = -Ey6, (ob is the force acting on the material lying
toward -x, taken positive toward +x as shown in Figure 31d).

Now let P change with time by an amount dP. Then ds = f (y, z) dP and

*5 = + EPxf(y,z). If Py >0 and f(y, z) > 0, then o is in tension,

so that the stress force acting on the material lying on the side of the
cross section toward x < 0, taken + in the direction of x > 0, is positive.
Therefore, 0 > 0.

*[[f (y,2z)dy dz was assumed zero to make [[sdydz = P[[f(y, z)dydz = 0.
Making [[s dydz = O makes the total x force on a cross section zero when

P varies with x and so stretches or compresses the fibers; the total x-
force will then be E[[sydydz=EP, [[f(y, z)dydz = 0. Thus shear warping
will be cleanly separated from longitudinal stretching or compression.
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integrating, the work done by oy on the end of the cantilever due to dP is
[[opdsdydz =- [[ (Ey6y) f (y, 2)dPdydz
= - E0,dP [[yf (y, z)dydz

or inserting M = EI6; (6, being the curvature) and the value found for

[[yf (y, z)dydz, the work is

(3)er () - &

Thus the total work done by the applied P and M is not Pdv + Md6 but

HIR

) MdP
dW = Pdv + Md6 - oo
_L1[(L 3, $EI 1,2 1
= = [(3 2+ KAG)PdP + 5 £2PaM + 5 4%Mdp + ﬂMdM]

from which
w=—1-[(%,e3+ ‘eEI)P2+ 1 zzm+%zmz]

ET 2KAG 2

Thus the law of conservation of energy holds.
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"Synopsis. — In an endeavour to explain some of the troubles which are so
frequently experienced with rudders and their attachments to the hulls of
ships, a study was made of the vibration characteristics of rudders. This
was followed by experimental investigations which confirmed the calculated
values of the critical rudder frequencies which are propeller excited under
service conditions. From the measured results the vibratory forces that
can be applied to the stern post of a ship have been found to be of such
magnitude as may cause appreciable transverse vibration of the hull, in
addition to explaining some types of rudder failure met with in service.
The frequency lowering effects of internal flooding of plated-in rudders
are considered and recommendations are made for eliminations of the major

modes of vibration from the running range."

Conclusions

"(1) The tests have established the existence of rudder critical

frequencies which, when propeller excited, can produce substantial torsional
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and flexural modes of rudder vibration and which are predictable by calcu-
lation to a practical degree of accuracy. These forces may be of suffi-
cient magnitude to cause appreciable hull vibration, and excessive wear and

tear of the rudder and attachments."

""(2) The tests are, however, an introduction to the study of an in-
teresting phenomenon, and nothing more is claimed for them. It is hoped,
however, that they will attract the attention of many who have all the
facilities for carrying out further tests, with or without the vibration
exciter, in order that a more general and comprehensive study may be made

of the problem."

""(3) The calculations have omitted on purpose any consideration of
the damping and propeller forces which determine the extent of the vibra-
tion amplitudes that may be built up, because it is felt that a lot more

results are necessary before this aspect of the work is entered upon."

2. Duffy, D.J., Becker, L.A., and Brock, J.S., "Experimental Determina-
tion of Rudder Forces during Full-Scale Trials of USS WILLIS A. LEE (DL 4),"
David Taylor Model Basin Report 1382 (Mar 1960).

121



122



Copies

13

R &N RN N NN N NN N N N

INITIAL DISTRIBUTION

CHBUSHIPS

Lab Mgt (Code 320)
Tech Info Sec (Code 335)
‘Appli Res (Code 340)
Ship Des (Code 410)
Prelim Des (Code 420)
Hull Des (Code 440)
Submarines (Code 525)

CHBUWEPS
1 Dr. A. Miller (R56)

L N =t = N D

1 Mr. H.A. Eggers (RUT0Q-32)

Copies

1
1

—

2- Aero & Hydro Sec (RAAD-3)

CHONR
1 Math Br (Code 432)
2 Mech Br(Code 438)
1 Undersea Br(Code 466)

NAVSHIPYD MARE
NAVSHIPYD NORVA
NAVSHIPYD PTSMH
NAVSHIPYD BSN
NAVSHIPYD NYK
NAVSHIPYD PHILA
NAVSHIPYD CHASN
NAVSHIPYD LBEACH
NAVSHIPYD SFRAN
NAVSHIPYD PUG
NAVSHIPYD PEARL
DIR, USNRL

CDR, USNOL, Mech Div
CDR, USNOTS, China Lake

1 Underwater Ord Div, Pasadena

123

ONR, San Francisco

0 in C, PGSCOL, Webb
DIR,DEFR&E

NRC

CDR, ASTIA

DIR, NASA

DIR, Langley Res Ctr NASA
1 Dr. A.E. von Doenhoff
1 Mr. N. Tetervin
1 Hydro Div

DIR, Lewis Res Ctr NASA
DIR, Ames Res Ctr NASA

CDR, AF Cambridge Res Ctr
Attn: CROQSR-1

DIR, Ballistic Res Lab, APG
DIR, Tech Info Br APG
CHF, Appl Nav Arch, USMMA
ADMIN, U.S. Maritime Admin
COMDT, USCG

DIR, Natl BuStand
1 Chief, Natl Hydraulic Lab

DIR, Op Res Off, Bethesda

Dr. Theodore Theodoresen,
Republic Aircraft Corp,
Farmingdale, Long Island,
New York

Fluid Dynamics Res Gr, MIT,
Cambridge, Mass
1 Mr. John Dugundji
1 Mr. Holt Ashley



INITIAL DISTRIBUTION (continued)

CDR, USNPG

CO & DIR, USNUSL

C0, USNUOS, Des Sec

SUPT, USNAVPGSCOL

DIR, Marine Physical Lab, USNEL
SUPT, USNA

CO, USNROTC & NAVADMINU MIT

CO, USNADMC
Attn: NADC Library

CO, USNAF, China Lake
CO, USNAOTS, Chincoteague
CO, USNOL, Corona

CO, USNOU, Key West

ONR, Boston

ONR, Chicago

ONR, London

ONR, New York

ONR, Pasadena

124

Mr. J.D.C. Crisp, Aeroelastic &
Structures Res Lab, MIT,
Cambridge, Mass

Mr. Maurice Sevik, College of Engin &
Arch, Penn State Univ, ORD Res
Lab, University Park, Pa

Dept of Applied Mech, Southwest Res
Inst, San Antonio, Texas
1 Dr. H. Norman Abramson
1 Mr, Wen-Hwa Chu

DL SIT, Hoboken, New Jersey
1 Mr. Charles J. Henry
1 Dr. Paul J. Kapian

Mr. Alexander H. Flax, Comell
Aeronautical Lab, Inc

Prof Walter M. MacLean
Univ of Calif, Berkeley



*D ydrey ‘zjimoqre [y
*H'H ‘preuue)] |
suoysorddy

--s1enduod [9y181q ‘g
suopsorddy

--sieyndwoo Sosuy °§
K100y ] --uo1}BIQIA --SWOISAS
[Ing-e08jins [onu0) ‘g
K100y J--uonsBaqIA--s10ppPNY ‘G
100y ] --uOnBIQIA
--8008BJINS [O1UO) °T

pue ‘Tendip ‘reonksuy “Jeyny) Fuipnjour ‘suonBIqIA 0
100[qns weysAs onse[eoipAy-sssw 8 s8 seFepuedds s1 pus uonow
paeamioj ut diys v quesesdes A[eyunbepe esow 07 st y0des s1Y)
jo esodand ey, ‘SuopBOO] SNOWIBA 38 )1 0] poyoeys A[[Bo1sB[e
wopaeij jo seesdep g 10 T YIIA ‘seanjonnsiedns 1o ‘0frwo ‘Aeuryo
-sw Sunuesexdea ‘serpoq Sunids [vuO}IppPE BABY ABW J[6SII [[NY
o[qIXO[) Oy} §BeIeyM WOpoel) Jo seeifep g eAsy AsW e0BJINS [ON)
-u0o BYJ, ‘008JIns [ONUOD 8Y) U0 S0010) OIWBUAPOIPAY 09 joelqns
wesAs [ny-(eus|d SuiArp 10 zJeppms ¢*3+e) e0Bjins [ONUOD B JO
S01)S118)08IBYD UOHIBIGIA 8Y) SuljBex 0] peousAps s1 L100y) VY

QATAISSYTONN *sjea “*snyJt

dpgr ‘1x 3961 qed ‘zimoqrer] *) ydiey pus pisuue) ‘H'H

Aq ‘NOILN'IOS 4O SAOHLIN DNIANTONI ‘4ALLNTA ANV
SNOILVHEIA AIHS-ANV1d DNIAIA-4AAANY A0 XHOTHL

*/0G| 4soday ‘uisog jepoy J0|Ap) piang

*0 ydiey ‘z3tmoqre °If
"H'Y ‘prouuo) °I
suoneoriddy
--s1eynduoo [#)3ig °¢
suoysorddy
--sioyndwos Jorsuy °§
K100y J--UO1IBIQIA --SWEYSAS
[Iny-eoBjNE [ONUOD °g
K100y J--uonBIqIA--5IOpPPRY °F
A100Y J--uonBIQIA
--§008JaN8 [0U0) T

pus ‘[83181p ‘[sonAeuy ‘iepmny) Suipnjoul ‘suolyvIqIA 0}
joelqns weysAs onssejeoipAy-ssew 8 s8 seFepuedds §)1 pus worjow
pasaio) ut digs 8 jueseades Ajeyenbepe exow 03 s1 u0dea siyy
jo esodind ey, ‘SuUONBOO] SNOLIBA 78 }1 0} poyovNE A[[8ons8]e
wopeeyj Jo seeifep g 10 T A ‘sesnjonnsiedns 10 ‘03180 ‘Lieuryo
-sw Sunuesexdea ‘sorpoq Sunids [suONIpps eAvy ABwW J[e6)I [[nY
e[qIXe[j oy} SBeIoyM WOpesl) Jo seaifep g oABY ABW edejins [on
-UOD 9y, "608BJINS [ONUOD oY) UO §8010] orwsuApoapAy 09 y0elqns
weysAs [[ny-(euv|d SurAlp Jo Jeppni ‘*3°e) e98JINS [OXU0CD B JO
§01)8110108I8Y0 UOHBIQIA O] FuliBex]) JO] POOUvAPS 1 AJooy) Y

QEIAISSVTONA *sjea ‘*snyj!

dy31 ‘1x *3961 qed “zytmoqrer] *D ydsy pus preuuey ‘H'H

4q ‘NOLLNTOS 40 STOHLIAN ONIANTONI ‘YIALLNTA ANV
SNOILVHLIA dIHS-ANV'1d DNIAIG-4IAANyd 40 XYOIHL

*[0S] #oday ‘uisng |apoy s0jdo] plang

*0 ydiey ‘z3imoqre °Ij

"H'Y ‘pisuue) ‘T
suoneorddy

--s1epndwoo [83f1q °g
suoneolddy

--sioyndwoo Forsuy
K100y ] --UOIIBIGIA --S WIS AS
[Iny-ed8jNs [oNUO) ¢
Aloey [ --uonvIqIA--s10ppny ‘g
Lioey--uoneaqIp
--§808JIS [O1UO) T

pue ‘[e3131p ‘[voni[euy “zemnyy Surpnjout ‘suonviqia 0)

joelqns wesAs oryse|e0ipAy-ssew 8 s8 sefepuedds )1 pus uonow

paeaioj ut diys v Juesesdes A[eyenbeps esow 0y s1 pode sy

jo esodind eyJ, ‘SuUONBOO] SNOLIEBA 18 )1 03 poyoB)E A[[BONSEB[e

wopeeyj jo seeidep g Jo T Y} ‘semjonnsiedns 10 ‘0B1vo ‘Liouryo

-sw Funuesesde: ‘selpoq Junids [suonIpps easy Avw JjosyI [[ny

o[qIXe[} oy} svoIeyM WOpeelj Jo seeifep g eAsy Aew oovjns [ox)

-UOO Y], ‘098BJINS [OQUOD 8Y) UO §6010) dIWBUAPOIpAY 03 10elqns

waysAs [[ny-(eus]d SurAlp Jo Joppi ‘*3°0) eoByms [ONUOD B JO
§017511690848YD UOIJRIGIA 8Y) SulBer; o) peousApe sI A100y) Y

QUIAISSYTONN *sjoz ‘*sny[t

dp3T ‘1x °g96T qe ‘zymoqier] D ydjey pue preuuey 'H'H

Aq ‘NOILO'TOS A0 SAOHLAN HNIANTONI ‘HALLNTA ANV
SNOILVYEIA dIHS-ANV1d DNIAIA-YHAANE A0 XYOHIHL

*£0G1 40dey ‘uisog |epoy sojdp} pianq

*D ydiey ‘zyimoqrery I

"H'® ‘preuuc)] T
suonsorddy

--s1yndwoo MFiq g
suopsorddy

- u,ndwoo Sorsuy ‘p

K100 ],--UO1}BIQIA --S WA SAS
[Ing-ed8jans [onuo) ‘g

A100Y ] --uonBIqIA--5I10ppnY ‘3
K100y L--uOT)BIQIA

--8608BJINS [ONU0) ‘[

pus ‘[eudIp ‘{8onA[su, ‘zemnyy Surpn[oui ‘SUOIBIqIA C
100[qns weysAs onse|ecipAy-ssew ¢ sv sofvpuedds s)1 pue uono!
pismioj ur diys © Juesexdea Ajeyenbepe exou 0} st yodes siy
Jo esodind ey, °SUOIBOO] SNOLIBA 38 1 0} POYOE)}8 A[[8O1)SB]
wopeey) Jo seeidep g 10 [ YIa ‘seinjonnsiedns 1o ‘0180 ‘Aieury
-sw Funjuesexdes ‘serpoq Funids [BuOI)IppPB ©ABY ABW J[OSII |[n
o[qIXe[] oY) sveleym WOpoelj Jo seaijep 9 0ABY ABW 00BJIRS [O:
-U0D 9YJ, °*©0BJINE JO)UOD 8Y) U0 §6010) dlwsuipoipAy 03 j0elqn
w-}8As |[[ny-(eus]d SurAip 10 zeppna ¢*§-e) eowjNS [ONUOD B §
§01)5110)0BIBYD UOT)BIGIA ©Y) SunBer 10 peousaps st A10ey) ¥

AATAISSYIONN *sje1 ‘*sny|

&wmﬁ .mx *G961 ao.& .Namioamwﬂ .O an:cﬂ vns Edﬂnov— .m.“

Aq ‘NOILNTOS A0 SAOHLIN HNIANTONI ‘YALLATA AN'
SNOILVAHSEIA dIHS-ANV1d DNIAIA-4AAANY 40 XYOTHL

*0S1 Hsoday ‘uisng |apoy 4oj4D| PplAD




‘weysAs sty Jo sued 10/pus weysds sigy Jo Furdwep pue ‘speeds Jepn[ (8010

wersks sty jo sud do/puv weysks siy) jo Smduep puv ‘speeds danny [sonK0 ‘sedeys epow ‘serouenbeyy [BanyBU OY) BUTWIG)Ep 0) pesIAep eie spoyjew Jo[eus-[BOLHOO[E

‘sedeys opow ‘serouenbeyj [sImBU 6Y) SUIWILIEp 0} pesIAep 818 Spoyjew Fo[sus-[8I1NOA[

‘weysks siy3 jo sued Jo/pus weysAs s1y) Jo Juidwep pue ‘speeds epnyy 8o11IO

]
‘woyshs s1yy Jo sued 10/pue weyshs s1q3 Jo Suidwep puv ‘speeds Jepnyy [EoNLO ‘sedeys opow ‘serouenbey [sinjBU BY) GUINLIGJEP 0) PESIASP I8 SPOYIeW FO[BUE-[BOLIO[S

‘sedeys opow ‘setouonbeyj [8injBU OY) oulULG)ep O} pesIAep eis spoyjew Jo[sus-[8oIfoL[e



*0 ydiey ‘zyimoqiery I
*H'Y ‘preuuey [
suonyuorddy

--szeyndwoo (MBI °g
suonyeorddy

--s1ondwod Fopsuy ‘§
K100y J--uonBIqIA -~ WOYSAS
[Ing-eoBjans [ONUOD ‘g
Aioeq--uonsiqIA--s10ppny ‘g
Ai00qJ--uonBIqIA
--§008JNS [ONUC)) ‘T

pus ‘[8nSip ‘[vonA[suy ‘Jeyny Juipnioul ‘suoljviqiA 0F
100lqns weysAs onse[eoiply-sseuw v 88 seJupuedde s31 pus voow
pieaioj ur diys v quesexdes Ajeyenbeps ew o) s1 podea sigy
Jo esodind eyJ, °*SuUOI}BOO] SNOWIBA 8 )1 0) peyse)e A[[8o1s8[o
wopeeyj jo seaifep 3 10 T PIa ‘seanjonnsiedns 10 ‘0J1vo ‘Aeuryo
-sw Sunjuesedes ‘se1poq Funids [euOI)Ippe @ABY AvW J[os)I [[nY
o[qIX0[} Oy} SBeleyM WOpeel) Jo seaifep g eAsy Avw eosBlNS [On
-U0D OY], ‘©08BJINS [ORU0D Oy} UO S00J0) dtwwrApoipAy 0 j0elqns
weysAs [[ny-(eusjd JuiAip o Jeppna ¢*3°e) o¥jins jOnUOD ¥ JO
£01181107)08I8YD UONBIQIA 0Y3 FunpBey) I0] peousAps SI A108Y) Y

QAIAISSVTIONA *sjex “say[t

dpaT ‘1x °396T qed ‘zjimoqrer] °p ydiey pue pisuue) ‘H'H

Aq ‘NOILNTOS 40 SAOHLAN HNIANTONI ‘HALLNTA ANV
SNOILVHGIA dIHS-ANV'1d DNIAIA-4AAANd 40 XHOAHL

*£0§1 410day uisog |apoy 10|40} plang

*0 ydiey ‘zymoqrer Il
‘H'H ‘preuuey I
suonyeoriddy

--s1eyndwoo 19BIq °g
suoneolddy

--s1eqndwoo Jopsuy °§
K100y J,--UO)BIQIA --SWOYSAS
[Iny-eo8)Ins [ONUOD ‘¢
fi00yJ--uon8IqIA--SI0PPNY °Z
K100 J--u0nBIqIA
--§008JINS [ONU0) °I

pus ‘[e131p ‘[sonA[euy ‘aeynyy Surpnjout ‘suonBIqIA 0}
100lqns weysAs onsejeocipAy-sssw 8 58 sedspuedde s)1 pus uorow
pasaioj ur diys 8 Jueseades K[ersnbepe eaow 03 s podea s1yy
Jjo esodind eyJ, *suo1BOO] SNOLIBA %8 I 0] poyo®e A[[BoI)SB]O
wopeeyy Jo seeddep g 0 T YIIA ‘seinjonnsiedns 1o ‘0B18s ‘Aleuryo
-sw Jurjuesesdes ‘sotpoq Sunxds [BuOIppe oABY ABw Jlos)I [Ny
a[qIXe[j oy} S8eioym WOpOel) jo seeidep 9 8ABY AvW 8o¥jans [on
-U0D B(J, ‘©08JINS [ONUOO VY] UO §00I0) OTWBUAPOIPAY 09 jo0lqns
we)sAs [[ny-(eus|d Furalp Jo Jeppu ‘-F°0) eovjns [oNUOO B JO
S01)81i0108BIBYD UOHBI|IA 6Y) Furpves) 10] peousAps s1 L100Yy] Y

AAIJISSYIONN *sjea ‘*sn[[1

dpgT ‘1x °396T qod ‘zymoqler] D ydiey pus pisuuey ‘H'Y

£q ‘NOILNTOS 40 SAOHLAN HNIANTONI ‘YILLATI ANV
SNOILVYUSEIA JIHS-ANV1d DNIAIA-4EAANY 40 XHOTHL

*[0G] #odey -uisng |spoy i0jdp) pian(

*D ydiey ‘zyimoqre I
H'T ‘pasuue) °I
suonsorddy

--szmndwoo [e1181q ‘g
suoneorddy

--s1eyndwoo orsuy °§
K100y ] --UOT)BIqIA --S WOYSAS
[Iny-eo8yms [onuoc) 'g
K100y J--uoTIBIqIA--SI0PPNY G
Kooy --uonBIqIA
-§098Jms [01U0) °T

pus ‘[endip ‘rsond[suy ‘iepnyj Surpniour ‘suonviqia 09

100lqns weysAs orsejeoipAy-ssew 8 s8 seFvpuedde sy1 pus uonow

pasaioj ur diys v jueseides Ajeyenbeps esow 0 s1 yodes s1yy

Jo esodind ey], *SUOKBOO] SNOWLIBA 38 I 0) peyoe}8 A[[BOI}SB[O

wopeayj Jo seeidep g 30 T Y)m ‘seanjonnsiedns 10 ‘08180 ‘L1euryo

-sw Funjueseides ‘seipoq Funids [BUOIIIpPE 8ABY ABw j[OS)I [[nY

9[qIXe[] ey) sBeleym wopeel] JOo seeifep g eAvy Avw oovjins [on

-U0D @YJ, °"99BJINE [ONUOD Of) U0 §6010) OTWBUAPOIpAY 0} j00lqns

weysAs [[ny-(eus]d FurAlp Jo 1eppna ¢*3+'8) e8NS [ONU0D ¥ JO
S011814870818YD UOWBIQIA Y] Suljser J0j peousAps sI L100y) Y

AATAISSYTIONN *sjex *sny[t

dygT ‘1x 3961 qed ‘zImoqrer] °p yd[wy pus pisuuey ‘H'Y

Aq ‘NOLLNTOS 40 STOHLIN DNIANTONI ‘4FLLNTL ANV
SNOLLVYH4IA dIHS-ENVTd DNIAIA-4AddNY A0 XHOTHL

*[0G1 Hsodey ‘uisog [epoy so]doj piaoq

*0 ydrey ‘zyimoqre] °qJ

*H'd ‘prsuue)
suorysoriddy

--s1endwoo 183181q °¢
suonpeoryddy

=% w,ndwoo Fopwuy -y

A108Y J,--U01)BIQI A --SWOISAS
[Iny-eo8jins jonuo) °g

K100y ] --uOnBIqIA--8I0PPNY T
A100YJ--UONBIQIA

--S00BJANS [O1UC) ‘]

pus ‘[endIp ‘[8onABu , zeynp Furpnjout ‘SuONVIQIA C
100lqns weysAs onssviecipAy-ssvw 8 s8 soFepuedds s)1 puv uoONO!
paesioj ur diys 8 juesesdes A[eyenbeps exou 03 st yodes siy
jo esodind eyJ], ‘SUONBOO] SNOWIEBA 38 71 0} peyoe)8 A[[8oNs8]
wopeeyj Jo seeidep g 10 T Y)Im ‘seanjonnsiedns 10 ‘03180 ‘Aleury
-sw Junueseides ‘setpoq Funids [BUOHIPPB 8ABY ABW JjOsI [[n
o[qIXo[] oY) sBeloyM WOPeel) Jo seeijep 9 eAvy A8W 0BNE |O.
-U0o Y], °00BJINS [OQUOD OY) UO §0310) OlWBUApOIpAY 0} j9elqn
w-984s [[ny-(euw]d FutAip 10 z9ppna ‘*F-e) eovjns [ONUOD B J
S01)5110)0818YD UOT)BIQIA 0y} Surjser; 10] peousAps st A100Y) Y

AAIAISSVTIONN *sjes ‘*sn
dy3T ‘1x '396T1 qod ‘zyimoqler] 0 ydisy pus pisuuoy| ‘H°
4q ‘NOILNTOS 40 STOHLAN ONIANTONI ‘HILLNT AN

SNOLLVEEIA JIHS-ANVTd DNIAIG-4AddANY A0 X4OHAHL
*L0S1 #0day ‘uisng |epoy 10]AD] piAD




‘mwesks s1yy Jo syed Jo/pus weysAs s1y) jo Surdwep pue ‘speods senny [8o11I0

‘weysAs s1y) jo syed 10/pue weysAs siyy jo Jurdwep pus ‘speeds iepny (81110
P B P po oRI [Sonts ‘seduwys epow ‘serouenbey [sinyvu oY) euruIe}ep 0) pesiAep eav spoylew Jo[BUB-[BOINIV[O

‘sedeys epow ‘serousnbeyy [Banysu oY) outwIAEp 0} pasirep 018 spoyeul Jo[sus-[BOINOS[

‘weyshs s1y) jo syred 10/pus weysAs sry) jo Surdwep pue ‘speeds lepny) [BolLI0 . ‘weysAs s1y) jo sued 10/pue weysAs siyy jo Jurdwep puw ‘speeds zemny [BorzLIO
‘sedeys epou ‘serouonbeyy [sanjBu oY) SUIWIeIEp O} pesIAep 618 spoyjew Fo[sus-[BIIHOL[d sedeys opou ‘selouenbey [vimysu eyy eurwiejep 0) pesiaep ers spogiew Jo[vus-[8oINIS[O
{s opo ! 3 1 Lt P ! % T T 1 POy} [BUB-]BIIHOO]









