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NOTATION

A Cross-sectional area of rudder stock

Ai  Amplification factor of triode (i = 1, 2, 3)

ai  Positive conversion factors (i = 1, 2 . . . 6) (Sections
4.3, 4.4, and 5.3)

B Lift constant (Section 8.2) (also, position of bearing of
rudder or diving plane)

b z-coordinate of effective point of attachment of rudder to
rudder stock (using rudder x-axis)

bi  Positive conversion factors (i = 1, 2 . . . 6) (Sections
4.3, 4.4, and 5.3)

bL Distance in z-direction above rudder x-axis of center of
pressure on rudder

C, c, ci, cij Damping constants (Section 8 and Appendix A)

Ci  Capacitance (i = 1, 2 . . .)

CL, Cp Center of pressure

d Distance of neutral axis of ship cross section above rudder
stock bearing

E Young's modulus of elasticity

e Horizontal distance from centerplane of ship to centerplane
of rudder or to bearing of diving plane

FL Transverse lift force on rudder at center of pressure

G Shear modulus of elasticity

g Distance of bearing of upper or lower rudder from horizon-
tal plane of symmetry of ship (Section 7.3)

h x-coordinate of effective center of attachment of rudder
to rudder stock (using rudder x-axis)

hb Height of rudder bearing above rudder x-axis (equal to,

2 + b)

I Area moment of inertia of cross section of rudder stock
relative to a diameter through the centroid

vii
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NOTATION (continued)

Ix, Iy I z

Ixy, lyz' Izx

Je

K

k, ks

L

Li

2, 2T

M

Mb

m

mx, m, mz

mxy, mxz

n, n

P

P

p

Moments of inertia of combined rudder and virtual mass

about x-, y-, and z-axes with origin at the effective

center of mass of the rudder in water

Products of inertia corresponding to Ix, 1y, Iz

Polar moment of inertia of cross section of rudder stock

about a perpendicular axis through the centroid

Shear warping constant or shear-flexibility factor; this

numerical factor depends on shape of cross section of rud-

der stock (3/4 for circular and 2/3 for rectangular cross

sections)

See Equations [12a,b]

Horizontal distance between rudder stock and center of

pressure on rudder

Inductance (i = 1, 2, 3)

Effective length of rudder stock for computing bending or

torsional flexibility, respectively

Bending moment on bottom of stock (Section 2), positive

when it tends to produce positive e ; or on rudder at
center of mass about x-axis positive from y toward z

Similar moment about x-axis acting on ship at rudder

bearing

Mass of rudder

Effective mass of rudder including its virtual mass for

u, v, and w motions, respectively

Cross-inertial constants associated with mx , my, and mz

Station numbers (Section 4.2)

Shear force on bottom of stock (Section 2); external force

on the ship, positive toward positive y (Section 4.2)

Similar force on ship when ship's y-axis is vertical

Positive conversion factor equal to t- (Section 4.3)

viii
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NOTATION (continued)

Tb

Tk

t

U

Up

u, v, w

ub, vb, wb

X, Y, Z

Moment of force on rudder (or starboard plane) about rud-
der (or plane) y-axis positive from x toward z; similar
external moment on the ship about the ship's z-axis posi-

tive from ship x-axis to ship y-axis (Sections 5.1, 5.2,
and Reference 3)

Moment on ship at bearing in rudder (or diving plane)
xz-plane, positive from x toward z

Conversion factor (positive) for energy (Appendix B)

Resistance (i = 1, 2, 3)

Transformer turns ratio

A ratio defined following Equation [7]

Ship's forward speed relative to water

A fraction, 0= s < 1; snx is the distance from station
n - to rudder bearing

A fraction, 0 s' < 1; s'Ax is the distance from station
n' to rudder bearing (Section 4.2)

Torsional moment in rudder stock; moment of force about
z-axis on rudder at center of mass, positive from x toward

y

Similar moment of force on ship at effective point of
attachment of rudder stock for torsion

Kinetic energy of rudder in v, 7, a motion

Time (for mechanical system)

External torsional moment acting on ship in yz-plane
(Section 4.2)

Potential energy of rudder in v, 7, a motion

Small translations of effective center of mass of rudder

in rudder x-, y-, z-directions, respectively

Corresponding translations of top of stock

Forces on rudder acting at its effective center of mass
positive in rudder x-, y-, z-directions, respectively

III



NOTATION (continued)

Xb' Yb' Zb Corresponding forces on ship at top of stock

x, y, z Rectangular coordinates with x-axis always parallel to the
ship axis. In rudder theory (except as otherwise specified
for an upper rudder), the origin is at the effective center
of mass of the rudder and the z-axis is vertical and posi-
tive upward. In the theory of ship vibrations, 3 when deal-
ing with horizontal-torsional hull vibrations, the ship y-
and z-axes are drawn in the same directions as for a rudder
but usually with a different origin; for vertical hull
vibrations, the ship y-axis is vertical and positive upward
so that the ship z-axis is horizontal and positive in the
opposite direction from positive rudder y. In certain
cases other axial positions are used temporarily (see
Section 7).

Yh Horizontal displacement of point of ship initially on its
x-axis

Yv Vertical displacement of ship

zb Height of rudder stock bearing above x-axis as drawn in
ship theory (see Figure 6)

a, P, 7 Small rotations of rudder about rudder x-, y- and z-axes,
respectively; a is positive from y toward z, p from x
toward z, Y from x toward y

ab, Ob, Yb Corresponding small rotations of top of stock

Ax Length of element (distance between stations)

0 See Equations [3] to [7b]

% Conversion factor defined in Equation [21a]

T Conversion factor defined below Equation [31]

v Poisson's ratio

pl P2  Conversion factors defined by Equations [21b,c]

p1 ' P2  Conversion factors defined below Equation [31]

4 Torsional angle of rotation about stock axis of rudder rel-
ative to ship; torsional angle of rotation of hull about
ship x-axis, positive from positive ship y-axis toward the
upward vertical z-axis

asr II I II I I I lr I ~------
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NOTATION (continued)

Co Natural circular frequency of vibration of mechanical
system

Electrical quantities analagous to mechancial quantities
are denoted by a primed exponent such as V and t'
corresponding to Vn and t, respectively, except where
otherwise noted.
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ABSTRACT

A theory is advanced for treating the vibration characteristics of

a control surface (e.g., rudder or diving plane)-hull system subject to

hydrodynamic forces on the control surface. The control surface may have

6 degrees of freedom whereas the flexible hull itself may have additional

sprung bodies, representing machinery, cargo, or superstructures, with 6

I or 2 degrees of freedom elastically attached to it at various locations.

The purpose of this report is to more adequately represent a ship in for-

ward motion and its appendages as a mass-hydroelastic system subject to

vibrations, including flutter. Analytical, digital, and electrical-analog

methods are devised to determine the natural frequencies, mode shapes,

critical flutter speeds, and damping of this system and/or parts of this

system.

1. INTRODUCTION

In the theory of ship vibrations a control surface, such as a rudder

or diving plane, is usually treated merely as a mass or sprung mass1,2,31*

added to the ship, and in most cases this procedure is quite adequate. In

some cases, however, vibration of a control surface considered as a body

having 6 degrees of freedom relative to the ship assumes practical impor-

tance. The question is sometimes raised as to the influence of such con-

trol surface vibrations upon the frequencies and mode patterns of the ship

vibrations themselves. In attacking such questions, the control surface

may be idealized as a rigid body mounted on the end of a flexible control

surface stock. The control surface will then be a dynamical system with

6 degrees of freedom. The amplitude of vibration is assumed to be small.

Equations of motion for a rudder alone, with the ship stationary, were

used in calculations of rudder frequencies for USS ALBACORE (AGSS 569).4

The purpose of the present report is to extend the theory to include reac-

tions on the ship control surface and water causing control surface flutter

*References are listed on page 119.
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and to present a design for an analog network representing the various

control surfaces subject to hydrodynamic forces, which may also be attached

in a suitable manner to the network representing the ship,3 for a study of

the vibrations of the combined system. In addition, finite difference

equations of motion for the control surface-hull system subject to hydro-

dynamic forces on the control surfaces have been devised and coded on the

IBM 7090.*

2. ELASTICITY OF THE RUDDER STOCK

The rudder itself can be assumed to be rigid without serious error

but the stock by which the rudder is attached to the ship exhibits appre-

ciable flexibility. Let IT denote the effective length of the stock for

torsion, including, perhaps, additions to its actual length to allow for

local deformation of the ship structure at its top and of the rudder at

its bottom. At an intermediate point the rudder is restrained by a bear-

ing. It will be assumed to twist freely in this bearing but to be effec-

tively constrained by it against translation or rotation about a horizontal

axis. The effective length of the stock A for bending may be taken as the

actual distance between the bearing and the point of attachment to the

rudder, or the length may be increased somewhat to allow for local flexi-

bilities in the bearing or the rudder. These effective lengths were used

in computations for ALBACORE.
4

Regarded as a uniform beam, the stock has four elastic constants:

a. Extensional stiffness EA

b. Torsional stiffness GJe

c. Bending rigidity El

d. Shear rigidity or shear-slope constant KAG.

Here E is Young's modulus and G is the shear modulus, or G = E/[2(l + v)]

with v denoting Poisson's ratio; A is the cross-sectional area of the stock;

*Application of this theory and the effects of a ship maneuver on flutter

will be given in two separate reports presently in preparation.
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I is the areal moment (or "moment of inertia") of the cross section about

an axis drawn in it through its centroid; and Je is its "polar moment" or

areal moment about a perpendicular axis drawn through the centroid. K

might be called the shear-warping constant.

The mode of allowing for the effects of shear warping requires a

brief discussion. In a pin-ended beam loaded only at the ends, attention

need not be given to shear warping, and KAG does not appear in the formulas;
V d2y d d2y

i.e., since V = constant, 3 = 0, so that M = EI dx dx G = E dx 2

(see Reference 3 and Appendix A2). The significance of a "pin end" is

that the end does not retain its shape but rather is free to distort

locally at will. If, however, either end is fastened to a rigid base, the

shape of the end is retained but the position of this end is subject to a

constraint. If a shear force P exists in the beam at this end,. the associ-

ated warping is hindered, and the effect of the resulting local distortion

is to rotate the beam relative to the base in the direction of P through an
P

angle -L . (See Figure 1.) The value of K depends on the shape of the
q

~ Hull

- - P (on hull)

P (on stock)

P
KAG

Figure 1 - Deflection of Rudder Stock Due to Shear Force P
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cross section and is probably always less than unity; for a round uniform

cross section, the value K = 0.75 is commonly used. This shear slope at a

clamped end constitutes a modified boundary condition in the solution of

problems. (It is not certain that the same value of K should be used to

correct for clamping effects as is used in the Timoshenko beam-vibration

equations, although this assumption has often been made.
3)

The rudder mounted on the stock will then have five elastic coeffi-

cients, expressible in terms of the constants of the stock, as follows:

a. If the rudder moves upward a distance w relative to the ship, a

compressive force F is developed in the stock of magnitude

F EAw [1

b. If the rudder rotates about the axis of the stock through an angle

0 relative to the ship, a torsional torque T is developed by the stock of

magnitude

T = Ge [2]

EA Ge

Hence EA and - are two of the five elastic coefficients.

c,d,e. Lateral deflections due to translation or rotation require a

more complicated analysis. Assume for simplicity that the ship is at rest,

and draw the z-axis downward from the ship along the axis of the stock in

its unstrained position. Let y'(z) denote the displacement curve of the

stock in a certain plane drawn through the z-axis, caused by a translation

y of the rudder in this plane together with a rotation 9 about a perpendic-

ular axis, 9 being positive when it tends to give a positive value to

dy'/dz; see Figure 2. Let P be the force and M the moment that the rudder

then exerts on the lower end of the stock, these being positive in the y-

and e-directions, respectively. An equal force P and moment M then act on

the ship also, and there will be equal shear slopes of magnitude P/KAG at

the bearing level and at the bottom of the stock. See Figure 2, where all

quantities shown are positive.

--- IMhhh'
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P -

KAG

Deflected

KAG

Rudder

Figure 2 - Forces and Moments Acting on Rudder and Rudder Stock

Stock has bending and shearing flexibility.

To find the relation between P, M, y, and e, we solve the bending
equation for the stock. At any point z, to preserve equilibrium, the

bending moment must equal M + (I - z)P with £ denoting the length of the

stock; hence:

El = M + (Y - z)P [3]
dz2

The boundary conditions are:

At z = 0 : y' = 0 dy = P
' dz KAG '

At z = : y = y dy = e + P
dz KAG

Integrating Equation [3] once and choosing the constant of integration so

as to satisfy the second boundary condition at z = 0 gives

I Im I INNNOY I



E dy' = Mz + (z - _Iz2) p El pz2 -P [4]d z 2 KAG

Taking z = I in Equation [4] and using the fourth boundary condition,

we obtain

P i El

El (e + ) = M + _ £2p + -G
KAG 2 KAG

or

£M + 1 2 P = Ele [5]
2

Also, integrating Equation [4] and then making y = 0 at z = 0 to satisfy

the first boundary condition yields

, 1 1 2 E

Ely = 1 Mz2+ (2 z2 - z 3 ) P + - Pz [6]
2 2 6 KAG

Taking z = I in this equation and noting that then y = y by the third

boundary condition, we obtain

1 12 ( . 3  Y ) P = EIy [7]
2 KAG

This last equation and Equation [5] can now be solved for M and P. For

convenience we write, as a shear-reduction ratio for forces,
4

1
rs 12EI

1 + KAGA 2

Then we find that

El El
P = 12rS y - 6r -E [7a]

M9 3 s 1 2

M = - 6r s y + (3r5 + 1) H e [7b]
2 19
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Waterline

Figure 3 - Sign Convention for Coordinates and
Displacements of Rudder

These equations exhibit the three lateral-stiffness coefficients

El El El
12r s - , -6rs  , and (3r + 1) - for the mounted stock in terms

s 13 A 2 2 A

of the elastic stock parameters El and rs .

3. RUDDER COORDINATES AND PARAMETERS

Let the right-hand x-, y-, z-axes be taken with the xz-plane passing

through the undisplaced position of the axis of the rudder stock, and with

the x-axis parallel to the ship axis, the z-axis being, therefore, verti-

cal; see Figure 3. Let any small displacement of the rudder be resolved

into translations u, v, w in the x-, y-, z-directions, respectively, plus

small rotations C, P, 7 about the x-, y-, z-axes, respectively. a will

be taken positive from y toward z and 7 from x toward y but p from x

toward z, in order to harmonize better with the usual theory of the ship

motion.* Let the origin of the coordinates be at the effective center of

*In Reference 4, p was taken positive from z toward x.



mass of the rudder which will be defined presently. Let the effective

point of attachment of the rudder to the stock be at the point x = h,

z = b, y = 0. If the ship moves, let its motion consist, for the present

only, of small oscillations including as special cases small rigid-body

displacements.

Since the *udder is symmetrical with respect to the xz-plane as

drawn, a little thought shows that, when the ship is at rest, the reactions

of the stock on the rudder caused by v, 7, a displacements of the rudder

have no tendency to excite u, w, or p motions, and vice versa.4 In each

of these two types of displacement the stock moves only in a certain plane:

in a transverse plane during v, 7, a or "transverse" motions; in the xz-

plane during u, w, p or "longitudinal" motions. Furthermore, there is no

inertial coupling of mechanical origin between these two types of motion,

since the two products of inertia Ixy and lyz vanish because of the sym-

metry (see Reference 4, Tables 1 and 5), and consequently, rotational

velocity a does not contribute to angular momentum about the y-axis and

rotational velocity does not contribute to angular momentum about the

z-axis, and vice versa.

The same lack of inertial coupling persists when the rudder is im-

mersed in water provided any objects nearby, such as a skeg, have surfaces

symmetrical relative to the xz-plane. A little thought shows that, at any

two points on the rudder surface that are mirror images of each other in

the xz-plane, an acceleration v, 7, or a evokes water pressures of equal

and opposite sign; because of this fact and because of the relation between

the slopes of the surface at mirror-image points, these pressures give rise

to no net force in either the x- or z-direction and also to no net moment

about the y-axis; see Figure 4. Conversely, accelerations u, w, or

give rise to equal pressures at mirror-image points and these give rise

to zero net y force and zero net moment about the x- or z-axes.

Since the transverse and the longitudinal motions of the rudder are

thus independent of each other, they can be treated separately. The com-

plexity of the problem is thus greatly reduced. The more important case,

the transverse motion, is considered first.

II I I II I r a~--------
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S v Y y z y z Y

+ /+ + - - +

x ax x , x-X A X =_X AX

Figure 4 - Pressure at Mirror Image Points of Rudder Surface

Due to v, 7, u, and , Respectively

4. RUDDER-HULL MOTIONS AND CORRESPONDING MOBILITY ANALOGS

4.1 TRANSVERSE OR v, 7, ac MOTION OF THE RUDDER

When the rudder is given a translational acceleration v, the water

reactions on it are equivalent to a single force acting along a line paral-

lel to y and meeting the xz-plane in a certain point Cp called the center

of pressure. The magnitude of this force is -my v, where my is the virtual

mass due to the water for y motion of the rudder. If the rudder also

undergoes angular accelerations 7 and a about axes meeting at Cp and drawn

parallel to z and x, respectively, these accelerations will give rise to

no further net force on the rudder, as can be shown from the conservation

of energy. They may give rise, however, to couples expressible in terms

of virtual moments and a virtual product of inertia, Ix" Iz", and Ixlz,,

defined with respect to axes through Cp. The reactions on the rudder are

the same as if the water were replaced by a rigid body attached to the

rudder and having the same inertial parameters; hence such a replacement

may be supposed made in dealing dynamically with the v, 7, a motion of the

rudder.

The rudder itself has corresponding mechanical parameters m, Ix ,,

I, , and Ix'z' . The rudder and the virtual-mass body taken together as a

combined body will have a center of mass whose position can be calculated.
4

This will be called the effective center of mass of the rudder. Hereafter

the origin of the x-, y-, z-axes will be taken at this effective center of

0i- ----



Hull

S- b Mb (on Ship)

Stock 
7b Tb
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Effective
c.nM.of Rudder

b ,T1

a Bearing- On Rudder
M (Drown as if Positive )

TO

Figure 5 - Positive Forces and Moments Acting on Rudder and

Rudder Stock for Transverse or v, 7, a Motion
of Rudder Parallel to yz-Plane

mass of the combined body. The combined mass, m + y will be denoted by

my; the moments and a product of inertia Ix, I z Ixz for the combined body,

defined with respect to the x-, y-, z-axes in their new position, can be

calculated by the usual formulas for rigid bodies.
4

These inertial constants should include the inertial effetts of the

stock. It may be sufficiently accurate to treat the stock as rigid in

this connection. Or, approximate corrections can be made for the differen-

tial motion between stock and rudder by a process that will not be con-

sidered further here.

The displacement of the (effective) center of mass is then v, where-

as 7 and a represent rotations about axes drawn through the effective

center of mass; see Figure 5, which shows positive directions.

Forces and moments due to the elasticity of the stock must be con-

sidered next. The small displacements v, 7, a produce corresponding dis-

placements vl, 71, a1 of the rudder at the bottom of the stock of magnitude

.Rmi - __ 1 
I -- I
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v I = v - ba + h7 ; 71 = 7 1 = a [8a,b,c]

The forces and moments acting on the rudder at this point, denoted by Y1 ,

TI , M I will be, respectively, equal to -P, -T, -M, where P, T, M are given

by Equations [7a,b] and [2] with "y" = vl, "" = a1, ' " = 71; see Figure

2. Hence (when the ship is at rest)

El ElYI = - 12rs E 'v1 + 6rs EI a
13v2

TI- -T

M1 = 6rs I v1 - (3r s + 1) EI a

When the ship also moves, these equations require generalization.

Let the rudder stock bearing undergo displacements vb, 7b , b due to the

ship motion, defined in the same way as v, 7, a for the rudder; see Figure

5. (The subscript "b" denotes "bearing.") Then, if rudder and stock were

to move as a rigid system attached to the ship, the bottom of the stock

would undergo displacements vlb, 7 1b' lb of magnitudes

vlb =Vb + b; 7 1b 7b C'lb = ab

and Y1 , T1 , M1 would all be zero. Otherwise, Y1 , T1 , M1 will have values

determined by the differences v, - vlb, ' - 7 1b' a - lb, or, in general,

El ElY1 = - 12rs 3 (Vl - Vb - lb) + 6rs E (a - b) [9a]

T W [9b]
GJe

T1 - T (7- b )  [9b]

El ElMl = 6rs  I (vl - vb - ab) - (3r s + 1) - (a -a b) [9c]

The net force Y on the rudder acting at the effective center of mass

and the total moments of force T and M about the z- and x-axes drawn

ANIMII



through the effective center of mass of the rudder are

Y = Yl ; T = T, + hY 1 ; M = MI - bY1

where b and h are the z- and x-coordinates of the effective center of

attachment of rudder to rudder stock, respectively. The angular moments

about the x- and z-axes are, respectively,

Ix& - Ixz I - 'XZ&

Hence the equations of motion of the rudder for the v, y, ca motion are,

respectively,

Iz Ixza = T ;
Ix - Ixzy = M [lla,b,c]

To simplify the notation, we write

EE
k = 3 ; k rs [12a,b]

Then, after substituting from Equations [10a,b,c], [9a,b,c], and [8a,b,c]

and collecting terms, Equations [lla,b,c] become

my = - 12k s [v + h7 -- ( + 2b) c - vb - I

Iz - Ixza = - 12ksh (v - vb) + 6ks h (I + 2b) a

GJe 2] e

- T + 1 2ks h2 7 + 6 ks h a b + T 7b

IxC - Ixzy = 6k s (2 + 2b)(v - vb) - [3k s (I + 2b) 2 + k 2 ] 0

[13a]

[ 13b]

[13c]

+ 6k s h (2 + 2b)7 - [3k s 1 (2 + 2b) - k. 2 ] ab

in which the right-hand members are expressions for Y, T, and M, respec-

tively.

[ 10a,b,c]

"1-. 1111 111 ILI I _ I I II I I I
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Equations [13a,b,c) have a useful symmetry. Let v be regarded as

the leading variable in [13a], 7 in [13b], and a in [13c]; and call the

equations the v, y, and a equations, respectively. Then note that terms

not containing a leading variable have symmetrical coefficients; that is,

the a and y terms in the v equation have the same coefficients as the v

term has in the a and 7 equations, respectively; the term -Ixzy in the a

equation is matched by -Ixza in the 7 equation; and similarly, for 7 and a

on the right. If the equations of motion for an elastic mechanical system

do not already possess such symmetry, it can always be introduced by multi-

plying the equations, if necessary, by suitable constants. Furthermore,

the coefficients of the leading variables can be made to have, as here,

positive values on the left and negative values on the right.* (See

Appendix A.)

4.2 RELATIONS WITH HORIZONTAL-TORSIONAL SHIP MOTION

Equations [13a,b,c] constitute equations of motion for the rudder

alone and can be solved to determine its v, 7, a motion when the ship is

entirely at rest so that vb = 7b = ab = 0. When the ship moves, however,

vb, 7b' and ab are all functions of the time, expressible in terms of the

displacements of the ship.

Coupled horizontal bending and torsion are the types of ship vibra-

tion in which only displacements of the type of vb, 7b' and ab occur. In

the approximate theory of such vibrations as formulated at TMB, axes are

drawn in the same direction as those drawn here for the transverse motion

of the rudder but with the x-axis for the ship drawn at a height convenient

for the ship theory. Also, the displacement of any cross section of the

*The coefficients of v, 7, and a in Equations [13a,b,c] are expressions

for some of the elastic constants denoted by Kij's in References 4, 9, 10.

The independence of the v, 7, a and u, w, motions corresponds to the

vanishing of Ki , if i = v, 7, or a and j = u, w, or B. For v, 7, a

motion, Kvv = 12ks, Kv = v = 12ksh, K = K = -6ks(2 + 2b); K,=

Ka = -6ksh(I + 2b), Ky = 12ksh 2 + GJe/ 2 T, K a = 3ks(I + 2b) 2 + k 2 .

11 _



ship is specified in terms of the horizontal displacement "y" of the point

that is initially on the x-axis, an equivalent rotation "7" of the cross

section about an axis through its centroid parallel to z, and a rotation 4

about the x-axis, taken positive from y toward z.* To avoid confusion with

the other case of ship motion, Yh and 
7h will be written in this report for

"y" and "7", respectively, to refer to horizontal bending. The variables

then correspond in direction to the rudder variables in this way:

Ship: Yh 7 h

Rudder: v 7 C

Both ship and rudder will be assumed to have the xz-plane as a plane

of symmetry. The special case of paired rudders offset from the median

plane of the ship will be discussed later in the report.

Let the rudder stock bearing be at a height zb above the x-axis, as

drawn in the ship theory.
3 Then (see Figure 6) the displacements of the

rudder stock bearing vb, 
7b , and % are related to the ship displacements

as follows:

vb = Yh - zbo ; 7b = 7 h ; b = ¢  [14a,b,c]

where yh' 7h' and 0 refer to the ship cross section that contains the

stock. Let the forces on the ship due to the stock be equivalent to a

force Yb in the y-direction acting at the level of the bearing together

with couples about axes parallel to z and x of magnitude Tb and. Mb. The

reactions on the stock will then be -Yb' -Tb, and -Mb; these reactions

must be statically equivalent to force Y and moments T and M acting on the

center of mass of the rudder, since the rudder is treated as rigid and the

mass of the stock is either ignored or allowed for by a correction to the

rudder mass.**

*Thus the rudder and ship do not necessarily have a common x-axis.

**In Equation [10c] Ml = -Mb - b ) , b = = Y; hence Equation
[15c].
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Rudder Stock Bearipng -

Final Position of Rudder Stock-y I

/

y- Axis for Ship

z - Axis for Ship

er Stock x-Axis for rudder

Bearing (as Drown in Ship Theory)

Original Position of
Rudder Stock

x-Axis for Rudder

Point of Ship Initially on x-Axis as Drawn

in Ship Theory)

Z- Axis for Rudder

y- Axis for Rudder

Effective c.m.of Rudder

Figure 6 - Correspondence between Displacements of Rudder and
Hull for Rudder Motion Associated with Coupled

Torsion-Horizontal-Bending Hull Motion

The effective center of mass of rudder is shown undisplaced.
Actually, the center of mass is displaced when the ship vibrates.

Hence

; T = -Tb + h ('-Yb)

Tb = -T + hY

; M = -Mb - ( + b)(-Yb)

; Mb= -M - ( + b)Y

Y= -Yb

Yb 
= - Y

[15a,b,c]



By substituting here for Y, T, M the right-hand members of [13a,b,c],

respectively, we can express Yb' Tb, and Mb in terms of the rudder coor-

dinates v, 7, a and vb, Yb' b"

In practice, however, difference equations are employed in represent-

ing the ship. In the system now preferred at TMB,
3 values labeled Yh,n of

Yh are chosen at stations Ax apart and values yh,n+a and On+a of Yh and

4', at points midway between these stations, where n = 0,1,2 ... and a = .

(Ordinarily, of course, the subscript h is not used.) For some purposes

it may be sufficiently accurate to use in the formulas for vb and 0b ,

the values of yh,n+a and On+a at the nearest midstation, and for 
7 b' the

value of Yh,n at the nearest station on the ship; also to assume that Yb

and Mb act at the midstation and Tb at the station thus selected. Yb'

Mb, and Tb may then be identified with the terms in the ship equations

that represent external force, torsional and bending moment, actions on

the ship, such as Pn+a,' Un+ , and Qn in Equations [2.42] through [2.49]

3*
in Reference 3. In Equation [2.46],3 also, h is to be replaced by zb.

There is, of course, a certain inconsistency in this procedure, but the

resulting error may be tolerable.

Otherwise, an interpolation procedure may be used; see Reference 3.

Suppose that the point of attachment of the stock is located at a distance

sAx toward positive x from the station labeled n - a, where 0 : s < 1.

Then it will also be at a distance s'Ax from a certain station n' with
0<,

0 = s < 1, where

If s = : n' = n- ; s =s +

If s > : n =n ; s = s -

(See Figure 7, which is drawn for s < .) Good approximations are then

as follows:

vb = (1 - s) [yh,n-a - zb n-a ] + s [yh,n+ - zb n+] [16a]

*In Reference 3, h was defined as the height of the rudder bearing above

the x-axis and is, therefore, replaced by zb to avoid confusion with h as

defined in the present report.
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- s'a X
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n

n+a

Ax(n+1) 
Ship's

Figure 7 - Method of Interpolating Displacements

7b  (1 - s') 7 h, n ' + s'7 h,n'+1 [16b]

Cb = ( - s) n-a + Sen+a [16c]

Similarly, Yb may be replaced by two parallel forces, Pn-a acting on the

ship at n - a and Pn+a at n + a and at a height zb above the ship x-axis,

and similarly Mb by Un-C at n - a and Un+, at n + aC, and Tb by Qn' at

n' and Qn'+l at n' + 1, where

Pn-a = (1 - s) Yb ;I Pn+e = SYb [17a,b]

Un- ca = (1 - s) Mb ; Un+r = sMb [17c,d]

Qn' = (1 - s')Tb ; Qn'+l = s'Tb [17e,f]

Here the forces Pn±C act at a height zb above the ship's x-axis.

,17
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It is shown that conservation of energy is preserved if both dis-

placements and forces are split in this manner.

Sufficient materials are now assembled to serve as a basis for a

numerical calculation of the normal frequencies and mode patterns of either

the rudder alone (vb = 7b = ab = 0) or the ship-rudder system. In the lat-

ter case Equations [2.42] through [2.49] in Reference 3 might be used with

the values given by Equations [17a-f] substituted for Pn + a, Un±a, Qn' ,

or Qn'+l in the equations referring to certain values n (and with h re-

2
placed by zb). In vibration at a definite circular frequency c, v = -C v2

= - 27, and = 2, so that the three Equations [13a,b,c] can be

solved for v, 7, a in terms of vb, 7 b, ab; for the latter the expressions

given in [16a,b,c] may be substituted. Then from Equations [lla,b,c] Y,

T, and M can be calculated as Y =-2m v, T = -m21zy + W2DIxz a , and

M = W2 xa + W2 Ixz7; from these equations and from Equations [15a,b,c]

Yb, Mb, and Tb can be found for use in Equations [17a-f]. Thereby, every-

thing in the ship equations is finally expressed in terms of W and certain

ship variables. The set of equations thus obtained can then be solved

step by step, although not without some trouble. The finite difference

formulation and solution of these equations by means of a digital computer

is found in Reference 5.

In the present report only the design of a representative analog

network will be considered further.

4.3 MOBILITY ANALOG FOR TRANSVERSE MOTION OF THE RUDDER

In an analog network, nonleading terms in the equations of motion

usually require the use of transformers. In the present case, each equa-

tion of Equations [13] contains in its right-hand member all three of the

variables v, 7, a ; for this reason design of the analog is facilitated

if the terms are grouped in a certain way. Let the terms on the right in

[13b,c] be rearranged so that v occurs in them only in the same combina-

tion with 7 and a as it does in the v equation, [13a], where v is the

leading variable. The equations then read: .

• = 1 1
m = 12 k s [v+ hY X+ b)a - vb -!Aab] [18a]

I" 1IimiUIIMIMIMIIg0 I,,,
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1 1 GIz - xza= -12 ksh [v+ hr - ( + b)a - vb - Lab] - 7 - 7b)

[18b]

S=I I121 1 2

Ix xz = 12 k s (1+b) (v+ hy- ( +b)a- vb - ab] -k (a -ab)

[18c]

A similar grouping procedure could be used for the left-hand members

of Equations [18b,c] also. The general rule is that the grouping proce-

dure should be continued, on the left-hand and the right-hand members

separately, until in each member there remains only one ungrouped term

and this term contains only the leading variable for the equation in

which it occurs (7 or a in [18b,c]). It can be shown that, if.the orig-

inal equations represent a stable elastic system and are written with the

symmetry and the sign characteristics previously described, then, after

grouping, any term in an equation that contains only the leading variable

for that equation or a group beginning with that variable must have a

positive coefficient if it is in the left-hand member of the equation but

a negative coefficient if it is in the right-hand member. (Examples are

-kL 2 in [18c], -12 ks in [18a], and Ix in [18c].) See Appendix A for

proof. These properties of the coefficients guarantee that a representa-

tive network can be constructed from passive elements.

For members or groups containing only two variables, however, a

special procedure is preferable because it opens the way to a useful free-

dom in the choice of the transformer ratio. This procedure is described

presently.

Design of the analog may now proceed. In a mobility analog, veloc-

ities may be represented by voltages above ground at certain nodal points,

whereas the equations of motion are represented by current summations. 3

In the present case, let v, 7, and & be represented by voltages v', 7',
and a' at three nodal points. The variables v, 7, and a themselves, being

equal to fvdt, frdt, and f&dt, will then be represented by voltage

impulses at these nodes. If the ship remains entirely at rest, vb = 7b
= Cb = 0, and these quantities in the equations will be represented by
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connections to ground. When the ship moves, on the other hand, vb, Yb'

and ab will be represented by voltage impulses occurring either at certain

points on the network that represent the ship or at points connected to

this network in a suitable manner, as will be explained later.

Denote by t' the time in the electrical network, which need not ad-

vance at the same rate as time in the mechanical system. Then the corre-

spondence will be such that

v=bv ; = b 2 Y ; = b3  ; t = pt'

where bl, b2 , b3 , and p denote fixed conversion factors, which will be

assumed to be positive. Note that the time differentiation indicated in
"I

v, for example, is included in the symbol v . However,

• d _ b1 d *,
V - v = ; v= f vdt = pb l fv ' dtv = dt P dt'

and similarly for ', U, Y, and a . In particular

v = pb1 v , 7 = pb2 ' , a = pb3 at

where v', Y', and a' denote f ' dt', f '" dt', f ' dt' respectively, or

the voltage impulses that represent v, Y, and a. Also, similarly, assume

for the variables that refer to the displacements of the ship at the level

of the rudder bearing:

*I "I *

vb = bl vb ; b = b2 b b = b3 ab

V I I

vb = pbl b ; b = pb2 Yb b = pb3 ab

Substitution into Equations [18a,b,c] and division of these equa-

tions by positive numbers al, a2 , a3 , respectively, which remain to be

determined, gives as electrical equations:

ld [vi b2  ' b 3  +1 , b3  ' q
bpa1Y dt' + 12 L pk s v bl hy b3 (b + ) - vb  b 2 b = 0

pal d' a i [19a]b
[19a]

I I I III I I I I I II_ IC I
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b2 d b3  d *, pb1  b2 b3 1
- I -7 -- I - a +12 ksh v' + -hy' - (b +-)a
pa2  z dt' pa2  xz dt' a2  bl bl 2

, b3 , + pb 2 GJe
- Vb b3 2 + 2 T 7 - 7b ) 

= 0 [19b]
b a 2 iT

b3 d b2 d t pbl , b 2- I I ' - Ixz - 6 i k (2+ 2b) v + h7
pa3 x dt' pa3  dt' a 3  s b [19c]

b3 b3 , pb3 2 C,Si(b + 1 b b 2 -b I+ k2( -b ) = 0

In Equation [19a], the first term may be the value of a current

flowing to ground from the v node through a capacitance of maghitude C1

equal to b1my/pal; see Figure 8. Similarly, the second term may denote
"I

a current leaving v through an inductance L1 of magnitude such that

L11 = 12blpks/al, on whose terminals has acted a voltage impulse of

magnitude equal to the quantity in brackets. One of these currents, of

course, must be negative. b3b3 £ ' ,
The subtraction of a voltage impulse b- (b + 2)a from v , as re-

quired in the terms in the bracket in Equation [19a], can be effected by

connecting an ideal transformer, as shown at the upper left in Figure 8,

provided the transformer ratio for voltage r3 has a value of magnitude

j b 3 J

r3 = (I+ b)

In the figure the ends of the windings that become positive or negative

simultaneously (relative to the other end) are shown by plus (+) marks,

on the assumption that the quantity b3 ( 2 + b)/b 1  is positive; if this

quantity is in reality negative, one plus mark must be shifted to the

other end of the winding to correct the diagram.

Every transformer, however, relates two currents to each other as

lli lilYi ill IYIIIYYIIUY IYIIYI -~'~
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well as two voltages.* In the present case, a current will also be caused

to arrive at the &' node of a magnitude equal to r3 times the current

represented by the second term of Equation [19a]. This current will supply

also that which is required to arrive at c by the third term of [19c] if

r3 L bI I + b (12 - pks ) = 12 a3 k s  I + brbl1L 2 12 al a3  s1

or if alb 1 = a3b3 . It is readily seen that the usual relative reversal

of the currents in the two windings of a transformer relative to the direc-

tions of the voltages provides the negative sign in [19c], whatever the

sign of 2 + 2b.

Similar treatment of the h7 term in [19a] and of the third term in

[19b], with use of another transformer, leads to the requirement that

-1 [1b 2  bl b 1 I1 p k h
r2 L1  I h (a2-- pks)] 2  s

or alb 1 = a 2 b2 . Thus it is necessary that

alb1 = a2b2 = a3b3  [20]

The voltage vb + b3 1ab/2b1 , in which b3 /b 1 = al/a 3 , for subtraction from
I I

v in the brackets, is easily built up out of vb and a b with the help of
b3

another transformer, as shown in Figure 8; note rl b3 2

The first two terms in each of Equations [19b] and [19c] must then

*To preserve the conservation of energy the ratios of the current and

voltage drops in the transformer will both be positive only if one of the
voltages is taken positive in opposite direction to a positive current;

i.e., or . In other branches of the net-

+
work the direction of positive current flow corresponds to the direction
of positive voltage drop.
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represent currents leaving the 7' and a nodes through additional capaci-

tances. Application of the general grouping method previously described

leads to two alternative arrangements; in each the transformer ratio is

required to have a certain fixed value. However, if worthwhile, a range

of choices for this ratio can be secured by using an additional capaci-

tance; and again different arrangements are possible. One of these latter

arrangements, labeled I, is shown in the main diagram of Figure 8; the

three alternatives, labeled II, III, and IV, are shown in the figure as

supplementary diagrams. The validity of these alternative arrangements

is discussed presently. In all cases the plus marks on transformers are

positioned on the assumption that the quantity whose absolute value is

taken as the transformer ratio is itself positive; if this quantity is in

reality negative, one plus sign is to be moved to the other end of the

winding.

Before the necessary magnitudes of the network elements are written,

it is convenient to consider the conversion factors further and to intro-

duce a more convenient notation. Suppose, first, that the ship is at

rest, so that vb = 7b =  b = 0 . Then p can be chosen freely, and, since

the six conversion factors al, a2 , a3, blI, b2 , b3 are subject only to the

two restrictions implied by the double Equation [20], four of these con-

version factors can also be chosen arbitrarily. However, if all six fac-

tors are multiplied by any common factor, none of the coefficients in

Equations [19a,b,c] are altered. It is readily seen, in fact, that only

the ratio of the amplitudes of mechanical and electrical vibration is

affected, and this ratio is of little interest. Thus it suffides to fix

only the ratios of the conversion factors; and, since assigning the value

of one factor together with the values of three independent ratios fixes

the values of all factors, only three independent ratios can be chosen

arbitrarily. When the ship moves, the choice of conversion factors is

further restricted, as is explained presently.

It seems to be most convenient in practice to choose arbitrarily,

besides p, the three quantities X, p1 , and p2 , defined as

b I  b2  a1  b3  al
SP, - - = a [21a,b,c]

pal b, a 2 b, a3
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-U~iP III ,,, I II I IYI I _ _M-n *1

dailvu luuiginlii br~



Then C1 = Xm . The p's have simple relations to transformer ratios; it

is convenient to be able to choose these with some freedom. The following

further relations are easily verified by using Equation [20]:

2

pl

b3  2
pa3

b3 bl

pal pa 3

b3

pa 2

b 3  a2

b2 a3

P2

P1

In terms of X, pI, and p2, Equations [19a,b,c] become, whether the

ship moves or not:

m v + 12p 2 ks +
tm It

1 z dt'

plh - p2 ( + b)' - vb - 2 I.b =

-lP2 xz dt' + 12p ksh

[22a]

0

+ plhy - P2 ( + b)a'

S+ 22 GJe  , ,
vb - ,I pP 12 T 7b )

= 0

p2X x d tdt' SplP2X Ixz d ' - 6 P2 Xks (I + 2b) v +

- P 2 (4 + b)' - v b - P.2 4 + p2 X k 2 - cb) = 0
[22c]

From these equations the following values can be read off or verified

as correct for the elements required in the network shown in Figure 8.

Note that b and h may be either positive or negative, whereas I is neces-

sarily positive.

Cl = my

LI = 12 p2 ks ; L1 p2 p 2 GJ e /
rl 2 ; r2 Pl h

222

T L31 = p2 p 2 k 12

; r 3 P2 b +

b2

pa
2

b2 bl

pa1 pa 2

[22b]

plh 7'



SP 2 Ixzl < , < P2  Ix
Pl z-- =r = p I xz

C2 = p2 -z C4

P1  xz I < i < PI Iz

P2 Ix =r 4 =P2 1xz I

C= 2
C2 1 I z -

,2 C
(r 4 ) C

fit P2 I Ixzr4 PI Iz

=p2
p1 Alz

Pi IxzI
P2 Ix

2
2 Ixz
1 -I

; C4 ,I xz

r.

S= )2 CC3 .2 x- (r4) C4

C 4 IIxzI
= plp2 rr4

I 2 II
; C3  2 Ix - C4

2
fit 2 Ixz)

C3 = p 2  x I

3 2 x
; C3 2 X k x

The validity of alternative arrangements I and II in representing

the left-hand members of Equations [22b,c], although perhaps not intui-

tively obvious, is easily verified. In arrangement I, for example, the

current i through C4 taken positive upward, provided Ixz = 0, is of

magnitude

, d _ , *,

i = C4 -- (' r )
dt'

Thus the total current leaving the 1 node, except through L I and L3, is

III

C
C2

Sr4

fl C2l
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I d -s v I. C) )2 C d C d *
C3 ' a - r 4 = C3 + (r)2 C d r C dCdt' 4dt' - 4dt'

2 d * d a,
= P2  Ix dt P12 xz dt' 7

dt dt

in agreement with Equation [22c]. Similarly, the additional current
*I

leaving 7 is

C 7 + i (C + C2 ) 7 -r
dt dt dt

- 2 X d *' d *'
1~ ~ 2 dt' -pp I -CtS zdt' 2 xz dt

in agreement with Equation [22b]. If Ixz < 0, so that j Ixz -Ixz

the same results are obtained after reversing the connections to one wind-
I

ing of the transformer. The transformer ratio r4 may be given any con-

venient value between the limits indicated; these limits are necessary to

keep C2 and C3 positive or zero. A value of r4 between these limits can

always be found, since always Ix z  2 so that
Sxz,

Ixzl < Ix

Iz ITxz [

Arrangement II is verified similarly.

In some cases it may be preferable to eliminate one capacitance by

setting rl or r equal to its least permissible value. Then either C'

or C is zero and the two resulting alternative arrangements obtained from

I and II, respectively, are shown as III and IV, with subscripts changed

and C4 or C4 relabeled as C2 or C3  , respectively.

If I = 0, then C = C = 0, and the corresponding capacitance and

the associated transformer may be omitted. If 0 < Ixz = Ix and also

Ixz Iz then it is possible to choose r4 = I so that this transformer

can be omitted, C being connected directly between the &' and 7 nodes.

An alternative (energy) method of deriving the mobility analog for

the rudder is given in Appendix B.
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4.4 CONNECTION TO THE SHIP NETWORK

In the ship network the velocities Yh,n+a' 
7h,n' and n+a are

represented by voltages at nodal points. When the rudder network is con-

nected to the ship network in order to study the vibrations of the combined

system, the network representing the ship must be connected to the nodes

representing vb 7b , and &b, shown in Figure 8, so as to represent

Equations [16a,b,c]. This connection is facilitated if the same conver-

sion factors are used for both networks; that is, if p is the same for3 01bn & respec-

both and if the factors bl, b2 , and b3 used for v 7b , and , respec-

tively, are the same as the factors used for Yh,n+' "h,n , and 4n+, in

ship theory. These factors are commonly denoted by the same symbols. 3

Then p, b1 , b2 , and b3 are all fixed when their values have been chosen

for the ship network.

One of the boundary conditions at the juncture of two networks, the

requirement of a common voltage at common points, is thereby satisfied.

A current balance is also necessary, however; the (algebraic) currents

entering the networks at any common point must be equal and opposite.

This requirement corresponds to the law of action and reaction in mechan-

ics, just as the identity of voltages at a common point represents the

existence there of a single velocity.

In ship theory the force and moments Ph,n+e ' Qn ' and Un+e are

represented by currents defined in terms of conversion factors al, a2 ,

and a3 . In rudder theory analogous conversion factors have not been

introduced explicitly, but they are easily discovered. The right-hand

members of Equations [13a,b,c] or [18a,b,c] represent values of Y, T, and

M, respectively. They still represent such values after substitution for

v, Y, and a in terms of v', ', and '; after division by al, a2 , and a3 ,

respectively; however, they have become values of currents or current

sums. Thus the a's already introduced constitute conversion factors from

force or moment to current. Hence

Y = aY' T = a2 T ' ; M = a3 M'

In view of Equations [15a,b,c] and [17a-f], the conversion factors al, a2,

- I I I I I II I I I



and a3 for Y, T, and M must be the same as the conversion factors for

Ph,ri ' Qn and Un± , respectively. Thus al, a2 , and a3 , also, are

determined for the rudder by the values chosen for them in the ship theory.

The relations, Equations [16a,b,c] become the electrical requirement

(since b3/b1 = al/a 3 ) that

"' ="1-s yai- zb 4 + s yh - -- zb

b = (1 - s) hn-a a3 b n- + [h,n+ a3 Zb n+c,]

b = (1 - s') h,n' + s 7h,n'+l = (1 - s') hn- + s 7h,n

-, 

*1

ab = (1 s) + sof
b _ n_ n+t

Such combinations can be made by means of transformers, as shown in Figure

9. The nodes labeled yh,nc' n±o 7h,n-1 ' or Th,n are nodes in the

ship network; points labeled vb, b, cb are those so labeled in Figure 8

for the rudder network. Figure 9 is labeled for zb > 0; if zb < 0, one

plus sign is to be moved to the other end of the winding for each trans-

former; i.e., connections to one winding of both transformers having vol-

tage ratio r:l are to be reversed from those shown in the figure.

Equations [17a-f] become current relations, such as

PI = (1 - s) Y, P I = sY,Ph, n-a ( b h, n+

in which Ph, denotes currents entering the ship network at n±c , and

Yb denotes the current leaving the rudder network at the v node. It is

easily verified that these relations are also satisfied. The currents

entering the n' ship nodes through the r transformers represent tor-n± a
sional moments -zb Pn±e about the ship's x-axis and are of magnitude
al

a3 zb +

An alternative (energy) method of deriving the mobility analog for

the rudder-hull system is given in Appendix B.
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Figure 9 - Mobility Analog for Connection of Rudder
Shown in Figure 8 to Hull

a,
r = - IzbIa3

For s, s', see Equations [16a,b,c].
The connections shown are for zb > 0.

b
-u

On Rudder
(Drawn as if Positive)

Figure 10 - Positive Forces and Moments Acting on Rudder
and Rudder Stock for Longitudinal (xz-Plane)

or u, w, p motion of Rudder
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5. LONGITUDINAL RUDDER-HULL MOTIONS AND
CORRESPONDING MOBILITY ANALOGS

5.1 THE LONGITUDINAL OR u, w, P MOTION OF THE RUDDER

The treatment of the longitudinal motion of the rudder largely par-

allels that of its transverse motion and may be stated more concisely,

especially since it is of less interest. The problem will be simplified

for the present by assuming that the rudder lies in the median longitudi-

nal plane of the ship.

The displacements of the rudder to be considered are the two transla-

tions u and w parallel to the rudder x- and z-axes, respectively, and the

rotation P about the rudder y-axis through the effective center of mass,

taken positive from x toward z; see Figure 10. The relevant inertial

parameters of the rudder will be only its mass and its moment of inertia

about the y-axis. There will probably be different virtual masses for

accelerations u and w. Furthermore, 'u will probably produce a z-component

of reaction by the water on the rudder, and w a corresponding x reaction.

This cross reaction will usually be relatively small, however, and is dif-

ficult to estimate; furthermore, the virtual masses for U and w accelera-

tion are themselves much smaller than that for v acceleration. Hence, the

cross reaction will be ignored. The inertial parameters for rudder plus

water will then be only total masses mx and mz for u and w acceleration

and an equivalent moment of inertia Ty, including water inertia, about

the y-axis.*

The displacements of the bottom of the stock will be, in this case,

ul, wl, and l, where

ul = u - bp ; wl = w + hp ; B I = B [23a,b,c]

*The cross effect could easily be included in the equations of motion.
The left-hand members of Equations [26a,b] would become, respectively,

mx U + mxyW ; mzW + mxzu

with mxz denoting a cross-inertial constant that may be either positive
or negative. It is always possible to make mxz = 0 by rotating the axes,
but in the present case this would be inconvenient.
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The reactions of the stock on the rudder at the bottom of the stock will be

forces X1 and Z, in the x- and z-directions, respectively, and a moment QI

in the xz-plane, positive from x toward z. When the top of the stock is

fixed, the magnitude of X, is -P as given by Equation [7a] with "y" = ul

and 0 = P1 ; see Figure 2. ZI equals -F as given by Equation [1] with

"w" = w1 ; and Q, = -M as given by Equation [7b] with "y" = u, and

"e" = Pi Thus, changing notation, as shown in Equations [12a,b], when

the ship is at rest:

EAwl
X1 = - 12 k s ul + 6 ks 1  ; Z 1 

= -

QI = 6 k s lul - (3 ks + k)12 P

If now the ship moves and the top of the stock (at the level of the bear-

ing) undergoes displacements ub, wb, and Bb , then, if the stock were to

move as if rigid, its lower end would undergo displacements ulb, wlb, and

Plb of magnitude

ulb = ub + b W lb = wb b = b

and in this case X = Z = Q = 0. Hence, in general,

X1 = - 12 ks (ul - ub - b ) + 6 k s  ( I - 3b)  [24a]

Z = A [24b]
1 -- (wI - wb)

Q1 = 6 k s I (ul - ub - Yb) - (3k s + k)£ 2 (1I - Ib) [24c]

The corresponding forces X and Z on the center of mass and the moment Q

about the rudder y-axis are

X = X1  ; Z = Zl ; Q Q - bX1 + hZ1  [25a,b,c]

The angular momentum of the rudder is I . Hence

mxu = X ; mzw = Z ; Iy = Q

-- __ I - I I II I I I I I II
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Thus, in terms of u, w, , the equations of motion for the u, w, P motion

of the rudder are

mxi = - 12 ks (u - b - ub - b) + 6 ks - b )  [26a]

m = - (w + hP -w b )  [26b]mzw - T( b

EAh
y = 6 k s (2 + 2b)(u - bP - ub - b) (w + hP - wb) [26c][26c]

- [3 ks  (2 + 2b) + k 2 ] ( - b)

The right-hand members of these equations are expressions for X, Z, and Q,

respectively.

Note that if h = 0, the w motion is independent of the other motions;

it represents a simple vertical translational vibration of the rudder. If

EA is relatively large, the frequency of this vibration (where wb = 0) is

high. Even if h # 0, there is likely to be one mode of vibration at rela-

tively high frequency in which compressional elasticity plays a dominant

role.

There appears to be an advantage in concentrating the coefficient

EA in one equation by returning to wl as a variable instead of to w. We

have wl = w + hP, therefore w = Wl - h . Direct substitution now destroys

the symmetry of the coefficients, but this can be restored by subtracting

h times the new form of the second equation from the third equation. The

design is also facilitated if the terms are grouped as in Equations

[18a,b,c]. The result is the following alternative set of equations of

motion in terms of u, wl, and P:

mx u = - 12 k s [u - (2 + 2b) P - ub - b  [27a]

Mz -EA

mwi -hm -=- (wl - wb) [27b]

(Iy + h2mz) - hmz w = 6ks (9 + 2b) u - ( + 2b) 3

I 1 k2 b[27c]
- ub - N -k2 2 ( b)
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The right-hand members of these equations are equal to X, Z, and Q - hZ,

respectively.

If EA is large enough, it may be reasonable to ignore the high-

frequency mode of vibration mentioned previously by assuming as an approxi-

mation that w = wb and then using only the first and third equations. As

a check, the difference wl - wb as given by Equation [27b] can then be

calculated to see if this difference is sufficiently small to justify

dropping Equation [27b].

The vibrational frequencies of the rudder when the stock is clamped

at the bearing level can be determined by solving Equations [26a,b,c] or

[27a,b,c] with ub = wb = Pb = 0.

5.2 RELATIONS OF LONGITUDINAL SHIP MOTION WITH VERTICAL SHIP MOTION

In the usual theory of the vertical vibrations of ships, 3 the verti-

cal displacement of any cross section of the hull is commonly denoted by

"y", the y-axis being drawn vertical in this case instead of horizontal.*

Then there is an (equivalent) rotation 7 of the cross section about its

horizontal neutral axis. These displacements do not evoke a net compres-

sive or tensile longitudinal force in the ship. Such a force might result

from longitudinal vibration, but such vibrations are of relatively high

frequency and are not usually considered. In this report, y and 7 for

the vertical motion of the ship will be replaced by yv and 7v to avoid

confusion. Thus, the correspondence of displacements in the present case

is as follows; see Figure 11:

Ship: (u), yv' 7v

Rudder: u , w, B

The rotation 7v will displace the stock bearing if the latter does

not lie on the neutral axis of the ship cross section to which the stock

*For the case of vertical vibrations the y- and z-axes for the ship,

i.e., yv and Zv, are rotated through 90 deg so that the yv-axis is vertical

and the zv-axis is horizontal; see Reference 3.

- -- wmmw-^wlhi
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Effective c. m.
of Rudder

Axis

Figure 11 - Correspondence between Displacements in Rudder
and Hull for Rudder Motion u, w, P Associated

with Vertical Ship Motion

is attached. Let the neutral axis lie a distance d above the stock bear-

ing. Then the displacements of the bearing will be, omitting that dis-

placement due to longitudinal vibration of the ship

ub = d 7 ; wb = Yv ; 1b = 7v [28a,b,c]

These values substituted for ub, wb, and Bb in Equations [26a,b,c]

or [27a,b,c] furnish equations for the rudder which, together with the

ship equations, make possible a calculation of the vertical vibration of

the ship as modified by motion of the rudder.

If finite-difference equations are employed, the displacement of the

ship may be represented by values yv,n+a at midstations labeled n + a and

by 7vn at stations labeled n (a = ). The connection of these values

with ub, wb, and Bb can be established by the interpolation procedure



described just before Equations [16a,b,c],

ub= d [(1 - s') 7v,n ' + S'7v,n'+l ] = db [29a]

wb = (1 - s) yvn + S Yv,n+ce  [29b]

b = (1 - s') 'yv,n' + s'17v,n'+l [29c]

Here 0 = s < 1 and 0 = s' < 1; the rudder stock is located sAx from point

n - c and simultaneously, s'Ax from point n'.

The equivalent forces Xb and Zb and couple Qb acting on the ship,

assumed to act at the stock bearing, will have the values

Xb = -X ; Zb = -Z ; Qb = -Q - (2 + b)X+ hZ = Qs- (2 + b)X

[30a,b,c]

where X, Z, and Q are equal, respectively, to the right-hand members of

Equations [26a,b,c], or Qs is the right-hand member of Equation [27c];

i.e., Qs = Q - hZ. The values of Zb and Qb thus found may now be substi-

tuted for Yb and Tb, respectively, in Equations [17a,b,e,f] to obtain

values of the external force Pn±a and external moment Qn' or Qn'+l for

use in ship equations representing vertical vibration. Ship equations

given in Reference 3 may be used by adding Pn+a on the right in Equations

[2.5] or [2.18] and -Qn on the right in Equations [2.7] or [2.20], in

analogy with Equations [2.42] and [2.44] for horizontal vibration. For

Qn, either Qn' or Qn'+l will be used according to the location 
of the

rudder, as was explained following Equations [17e,f] in the present report.

*Note that logically n has different meanings. In Equations [17a,b], n

is such that the rudder lies between n - a and n + a, whereas for ship

theory in Equations [2.5] or [2.18] of Reference 3, n may have any value

within the specified range. The latter equations refer to station n + a

only, but by varying n all stations are covered; e.g., suppose the rudder

lies between stations 15 - a and 15 + o, then rudder n = 15. Now watch

the calculator: Pn+a = 0 for n = 0 . . . 13, 16 . . . 20. Pn+~ # 0 for

n = 14, 15. Similarly for Qn' and Qn'+1 "
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The ship equations thus modified may then be solved in conjunction

with Equations [29a,b,c] and either Equations [26a,b,c] or [27a,b,c],

noting that in the latter wl = w + h3.

The force Xb on the ship is ignored simply because longitudinal

vibrations of the ship are not being considered. The finite difference

formulation and solution of these equations by means of a digital computer

is found in Reference 5.

5.3 MOBILITY ANALOG FOR LONGITUDINAL OR u, w, P MOTION

The procedure for designing an analog is similar to that used for

the transverse motion. Write

= b 6 u ; w = b4 w ; = b 5 = P'

u = b6Pu ; w = b4pw ; = b5P
I

ub = b6 pub ; wb = b6P wb b = b5pb

After substitution in Equations [27a,b,c] and division of these equations

by a6 , a4 , a5 , respectively, we see that it is advantageous to require

that

a4b4 = a5b5 = a6b6  [31]

It is found also that a6 and a4 are the conversion factors from x force

(X or Xb) or z force (Z or Zb) to current, and a5 similarly from y moment

(Q or Qb) to current. Again the six factors a4 , a5 , a6 , b4 , b5 , and b6

may be taken as positive, and three of their five independent ratios may

be chosen arbitrarily so long as ub = wb = Pb = 0. When, however, the

ship moves, these ratios must agree with the choice made for the ship.

In the latter case, a4 and P4 are the same factors as those denoted by

a1 and b1 in the ship theory, and a5 and P5 are equal similarly to a2 and

b2.3 Since longitudinal motion of the ship itself is being ignored, the

ratio b6/a6 is arbitrary.

For greater convenience, write, in analogy with Equations [21a,b,c]:

111111111111



b 4  b5  a4  b6  a 4
a P1 = - = l2-

pa 4  b4 a5  b4 a6

Then

b6  a 5  P2  b5  b4  - - b6  b4  -
--- P- - - - - 2

b5 a6 p a4  pa5  pa pa6

b5 -2b6 -2- b5  b6  -b = 2 -- P2 1 PI2

pa5  pa 6  pa 6  pa 5

Conversion of the mechanical Equations [27a,b,c] by substitution then

yields the electrical equations:

2 m u + 12 p2 k s  u' - (1 + b) u 0
X22 51 + b) B' - u b  -Pb2 -

p2  
2 -b

[32a]

d -, -- d ", p2 EA w, ,

mz d - Pl h wz d 2 - wb ) =0 [32b]

-2 -2 , d 2- -p2

P (Iy + h2mz ) J -P Khmz T wI  6p2 l2 p X ks ( + 2b)

[32c]

r I I 1 ' 1 2I 2 K k2- 2 '
u - ( + b) -ub-b P 21Xk2 (b I+

One form of the corresponding network is shown in Figure 12; the

values of the electrical elements are collected in the following list.

The auxiliary connections needed to represent Equations [29a,b,c] are

also shown in Figure 12; the nodes labeled similarly in the various dia-

grams being the same nodes in all three diagrams.

C4 = X mz (1 - r4 pl Jhi)

1  
2  mjhl]

C5=PI % I (I y + h mz) r4

limmilm lmiillllmY I 11,11N
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+ + A b

S + .+ .
n-a I + n+

S I + n'+l

Figure 12 - Mobility Analog of Rudder for Longitudinal
or u, w, P Motion of Rudder and Connection

of Rudder to Hull

The rotation 7 is about a horizontal axis;
connections to the I dl transformer are for
d> 0.
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T2 -
C6 2 mx

C mP I hil
C7 1 91 A m z r4

LI p2 ; L1 2 -2 k2 2  L1 = 12 p2 -2 k s

p ~. 5  P PI p1  12 Pp 2  k

m z IhI < < 1
--- r4 -- jh

(Iy + h 2 mz) =i hI

Pi y 1 +1
r 5  2 2 ; r 6  -- + b

As usual, if the quantity whose absolute value appears in the formula

for a transformer ratio is negative, connections to one winding of that

transformer must be reversed from those shown in the figure. The value of

r 4 is arbitrary within the limits shown.

As an alternative, the C7 capacitor can be connected through the

transformer to the w' node, as in changing from I to II in Figure 8; then

C4 , C5 , C7 , and r4 all have different values.

If h = 0, then C7 = 0, and both this capacitor and the r4 transformer

are to be omitted. If h > 0 but is small enough to make r4 equal to unity,

then again the r4 transformer can be omitted, C7 being connected directly

between the wl and ' nodes.

6. PAIRED RUDDERS AND CORRESPONDING MOBILITY ANALOG

Previously, a single rudder has been assumed to be located in the

median plane of the ship. If a single rudder, although parallel to the

median plane, is offset from it a distance e toward positive y, the theory

is more complicated. Let a line drawn through the center of the rudder

bearing and perpendicular to the median plane meet this plane at 0; see

Figure 13. This line will be at a height zb above the x-axis, as drawn in

the ship theory, and the displacements of the ship at 0 will be the same

as those of the rudder bearing when the rudder is in the median plane with

its bearing at 0, so that the displacements at 0 will be those given by

niOl- III I II I I I I
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Figure 13 - Positive Directions for Hull Displacement at 0
(Intersection of a Line through Bearings and Hull Medium

Plane) and for Reactions on Hull at Bearings

Offset of rudder "e" is toward positive y.

Equations [14a,b,c] and [28a,b,c]. In addition, however, the offset rudder

bearing has two other displacements, so that its total displacements due to

the ship motion, distinguished by the usual subscript b, are as follows:

Ub = d7Yv - eyh ; vb Yh - Zbt ; Wb = Yv + eD [33a,b,c]

b =  ; pb 7v 7b = h [33d,e,f]

When the ship vibrates in torsion, the term et in Equation [33c]

gives rise to vertical motion of the rudder, and the resulting reactions

on the ship will excite vertical vibration of the ship. For this and other

reasons, the horizontal-torsional and the vertical vibrations of the ship

are coupled together by the presence of a single offset rudder.

Usually, however, offset rudders occur symmetrically in pairs, and

only this simpler case will be considered further in this report.

Let there be a pair of similar rudders with offsets from the median

plane ±e, where e > 0; see Figure 13. It is shown that such a pair does

not couple the two types of ship vibration and that the vibrations of the

combined ship-rudder system fall into the following three distinct classes:

a. Vertical ship vibration accompanied by equal u, w, 0 vibrations of

the two rudders in the same phase.

b. Horizontal-torsional ship vibration accompanied by equal v, 7, ca



rudder vibrations in the same phase and also equal u, w, 0 vibrations in

opposite phases.

c. Equal v, 7, a rudder vibrations in opposite phases, with the ship

stationary.

These three types are considered in order:

a. Vertical Ship Vibration. Suppose that the ship is vibrating

vertically, with yh = Yh = 4 = 0. Then the e terms disappear from Equa-

tions [33a-f]. The vertical ship motion will excite the same u, w, B

motion in both rudders, causing equal Xb, Zb, Qb reactions on the ship

(at the two rudder bearings). The two equal Xb forces, acting together

in the same direction, have no tendency to excite 7h rotation of the ship

about a vertical axis; similarly, the two Zb forces do not excite 4 rota-

tion; and nothing excites yh motion. Thus no yh' 7h' 4 motion of the ship

is excited, and it becomes clear that a possible type of vibration of the

rudder-ship system consists of vertical vibration of the ship accompanied

by equal u, w, 0 vibrations of the rudders in the same phase.

The combined effect of the two rudders on the vertical vibration of

the ship is the same as that of a single rudder in the median plane with

bearing at 0, constructed exactly like each of the actual rudders except

that the inertial and elastic constants mx, mz, ly, k, ks, and EAh are all

doubled. The equations of motion for u, w, P motion, Equations [26a,b,c]

or [27a,b,c], show that for given values of ub, wb, and Ob the single rud-

der so designed will execute the same motion as each rudder of the actual

pair. The forces on the ship due to the single rudder, however, will all

be twice as great as those due to either of the actual pair. Hence, the

effect of the single rudder on the ship motion will be the same as the ef-

fect of the two actual rudders, whose combined reactions on the ship are

equivalent to single forces 2Xb and 2Zb acting at 0 in the midplane, plus

a torque 2Qb about y.

This type of vibration may be treated, therefore, by using the single-

rudder equations, [23a,b,c] through [30a,b,c], modified by the doubling of

constants just described. The values of ub, wb, bb to be used in the equa-

tions will be the same as those given in Equations [33a,c,e] for the actual

rudders. The reactions of the single rudder on the ship equivalent to

those of the actual rudders can be written from Equations [30a,b,c]:
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2 Xb = - 2X ; 2 Zb = - 2Z

2Q b = - 2Q - (I + b)(2X) + h (2Z) = - 2Qs - (Y + b)(2X)

where 2X, 2Z, and 2Q now represent the respective right-hand members of

the modified Equations [26a,b,c], or 2Qs represents those of the modified

Equation [27c]. For greater clarity, Xb, Zb, and Qb in these equations

may be replaced by the symbols Xb, Zb, and Qb' representing the reactions

due to the equivalent single rudder and, hence, also the equivalent reac-

tions due to the paired rudders acting in the median plane and at 0. The

force Xb acts at the height of the actual rudder bearings.

The procedure in calculations for the vibrations of the rudder-ship

system will now be the same as the one for the single midplane rudder

after Equations [30a,b,c] at the end of Section 5.2, except that the modi-

fied equations just described will be used, and the values just given for
2 Zb and 2Qb will be substituted for Yb and Tb, respectively, in Equations

[17a,b,e,f] in obtaining values of P $ n', and Qn'+

b. Horizontal-Torsional Ship Vibration. Suppose, on the other hand,

that the ship vibrates in horizontal bending and torsion, with yh' 7Yh' and

P active but with Yv = 7 v = 0. Then Equations [33a-f] become, after substi-

tuting for Yh and 0 from Equations [33f,d] in the e terms and rearranging:

vb Yh - ; YD = Y h Clb =  [34a,b,c]

ub =Te 7b b = ±e b ; b = 0 [34d,e,f]

Here the upper signs (-,+) refer to the rudder whose offset is +e and

the lower signsf(+, -) to the other rudder.

Thus, in addition to the v, 7, a motions of the rudders that would
obviously be excited by horizontal-torsional motion of the ship, u, w, P

motions of the rudders are also excited. There is, however, no tendency

to excite vertical ship vibration since the contrasting signs in Equations

[34d,e] cause the two rudders to move oppositely, vibrating in their u, w,

P motions, with equal amplitudes but in opposite phases. The resulting



two Xb forces on the ship are also equal and opposite, and they act at the

same height above the xy-plane, whereas the two Yb forces, also equal and

opposite, act along the same line. The two torques Qb cancel because of

opposite phases. The two Zb forces are also equal and opposite. Thus

none of these reactions excite x or z translation of the ship or rotation

about a horizontal axis parallel to y. It follows that the paired rudders

allow the ship to vibrate in horizontal bending and torsion without simul-

taneous vertical vibration of the ship.

Equal v, 7, a motions of the rudders are excited by the equal vb,

7b, ab displacements of their bearings as given by Equations [34a,b,c].

Since these motions are in phase, the actual rudders may again be replaced

in the calculation by a single rudder in the median plane with bearing at

0, with doubled inertia and elasticity. The equations of motion for this

equivalent rudder will be Equations [13a,b,c] with My, Ix Iz' Ixz, k, ks,

and GJe all twice as large as for one of the actual rudders. Given values

of vb, 7b, 1b will cause the single rudder to execute the same v, 7, c

motion as that of each of the actual rudders, but its reactions on the ship

will be twice as great as the reactions due to one of the actual rudders,

thus simulating correctly the combined effect of the paired rudders.

The relations between the single rudder and the ship will be those

expressed by Equations [14a,b,c] and (15a,b,c]. Here, for clarity, Yb'

Tb, and Mb may be replaced by the symbols Yb' Tb, and Mb, respectively,

since they now represent twice the reactions on the ship due to one uf the

actual rudders. The quantities Y, T, M, in Equations [15a,b,c] are equal

to the right-hand members of the modified Equations [13a,b,c].

For the u, w, P rudder motions that also occur in this case, it suf-

fices to calculate the motion of one rudder; for this the rudder with

offset +e will be chosen. The motion of the other rudder will then be

the same but in opposite phase. The equations to be used for the chosen

rudder are Equations [26a,b,c] or [27a,b,c]. In these equations ub, Wb,

Pb are to be given the values specified for this rudder in Equations

[34d,e,f], or

ub = - e 7b wb = e ab pb = 0 [35a,b,c]
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The reactions acting on the ship at the bearing of the chosen rudder

due to its u, w, p motion will be Xb, Zb, Qb' as given by Equations

[30a,b,c]. The torque Q, however, is balanced out by an opposite torque

due to the u, w, p motion of the other rudder in the opposite phase. The

Xb and Zb forces due to the two rudders, acting in opposite directions

along parallel lines 2e apart, have zero force resultants but are equiva-

lent to a torque -2 eXb about the z-axis and a torque 2eZb about the

x-axis.

Addition of the reactions due to both types of rudder motion then

gives as the total equivalent reactions on the ship, expressed in the

notation of the ship theory, a force P acting toward positive y along a

line through the rudder bearings and torques Q about the vertical z-axis

and U about the x-axis of magnitudes:

P = Yb ; Q = Tb - 2 eXb ; U = Mb + 2 eZb [36a,b,c]

Here Yb' Tb, and Mb arise from the v, y, a motions of the rudders described

previously. The method of introducing such external reactions into the

ship equations is described in Reference 3 and also briefly following

Equations [15a,b,c] in the present report.

The equations to be used simultaneously in calculating frequencies

of the rudder-ship system when the ship moves horizontally torsionally

may be summarized as follows:

(1) For the in-phase v, y, a rudder motions:

Equations [14a,b,c] or [16a,b,c] to give vb, 7b, 01b in terms of yh, h' ;

Equations [13a,b,c] with constants doubled; Equations [15a,b,c] multiplied

through by 2 to give reactions 2Yb, 2Tb, 2Mb, on ship due to this motion

of the two rudders.

(2) For the opposite-phased u, w, p motions:

Equations [35a,b,c] to give ub wb, Pb in terms of Yb and ab, and thus

from Equations [14a,b,c] indirectly in terms of yh' Th, 4; Equations

[26a,b,c] or [27a,b,c] as equations of motion for rudder with offset +e;

Equations [30a,b] for reactions Xb and Zb on ship due to this rudder alone.
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(3) Equations [36a,b,c] for net reactions P, Q, and U on ship due

to both motions (v, 7, a and u, w, p) of the two rudders.

(4) Ship equations such as Equations [2.42] through [2.49] in Refer-

ence 3, including forcing terms representing P, Q, and U. The way to intro-

duce such terms into difference equations for the ship is explained in

Reference 3 and also briefly following Equations [15a,b,c] in this report.

The expressions for P, Q, U given by Equations [36a,b,c] may be substituted

for Yb' Tb, and Mb, respectively, in Equations [17a-f] of the present re-

port to obtain values of Pn±a ' Qn' , Qn'+l , and Un±t for use in differ-

ence equations for the ship.

c. Ship Stationary. Assume that the rudders execute equal v, 7, a

motions but in opposite phases. Then, of the reactions cited in Equations

[15a,b,c], the two Yb forces on the ship act in opposite directions and

along the same line, while the two Tb and Mb torques cancel. Thus, there

is no net reaction on the ship at all. It follows that there exists a

type of vibration of the rudder-ship system in which the rudders vibrate

in equal but opposite v, 7, a motions while the ship, although free to

move, stands still.

The frequencies of vibration and the associated motions may be found

by solving Equations [13a,b,c] for one rudder, with vb = 7b = ab = 0.

The question may arise of whether still other types of vibration of

the rudder-ship system are possible (without appreciable axial vibration

of the ship). Always, in undamped vibration of an elastically coupled sys-

tem, all parts of the system come to rest periodically at the same instant.

It follows that in any type of free vibration of the rudder-ship system any

vibratory motions of the two rudders must occur either in the same or in

opposite phases. The alternative as to phases will hold separately for the

v, 7, a and u, w, p motions of the rudders, since they are not coupled to-

gether; thus four combinations of rudder motions are possible. Since these

four combinations, together with the ship motions that each tends to excite,

have all appeared in the treatment just given, and since both of the pos-

sible modes of ship vibration have been considered, it is clear that no

other type of vibration of the system (besides those types that have been

discussed) is possible.
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Each of the three classes of vibrations consists of a sequence of

modes of increasing natural frequency. In classes a and b, the frequency

and the mode of motion of the ship must be nearly the same as those calcu-

lated on the assumption of rigid rudders, unless this frequency happens

to lie close to a natural frequency for the rudders when vibrating with

fixed bearings. In the latter case, relatively large amplitudes of rudder

vibration may occur, accompanied by a considerable distortion of the ship

motion. The theory should hold even in such a case, provided the simplify-

ing assumptions just made remain sufficiently valid.

Simplified formulas which may serve as a measure of the resonance

effect on a rudder when the frequency of ship vibration approaches the

natural frequency of a rudder are given in Appendix C. The significance

of these approximate formulas is that they give the conditions for which

large amplitudes of rudder vibration and corresponding damage to the rudder

system become possible.

6.1 ANALOG NETWORK FOR TWO RUDDERS

For vibrations of class c, in which the ship remains stationary while

the rudders execute similar v, 7, a motions in opposite phases, it suffices

to represent one rudder by the network described in Section 4.3 and shown

in Figure 8. For the present purpose, however, the nodes labeled
• 1 " o *f *r
b+ .1 (b3/bl) 2b' c4b , and 7b in Figure 8 are to be grounded, since the

rudder bearing is here stationary. The rl transformer, therefore, is not

needed.

For vibrations of class a, in which the ship vibrates vertically and

the rudders have similar u, w, 0 motions, the equivalent median rudder

described previously for this case may be represented by the network shown

in the upper part of Figure 12, but with all capacitances made twice as

large and all inductances half as large as they would be to represent one

of the actual rudders. The lower part of Figure 12 shows the additional

elements necessary to connect the ub, b, and nodes of the rudder net-

work to the network representing the ship in vertical vibration, as is

required by Equations [33a,c,e] with the e terms omitted.

For class b, involving horizontal-torsional motion of the ship,
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rudder networks of both forms must be connected simultaneously to the ship.

To represent the equal and in-phase v, 7, a motions of the rudders,

the equivalent median rudder described previously for this motion may be

represented by the network shown in Figure 8 with all capacitances made

twice as great and all inductances half as great as they would be for one

of the actual rudders. The connections to the ship as required to repre-

sent Equations [33b,f,d] are shown in Figure 9.

For the u, w, motions, the rudder having an offset +e might be

represented by a network designed as shown in the upper part of Figure 12,

with no change in the elements. The connections to the ship, however,

must be different from those shown in the lower part of Figure 12, since

the connecting equations to be represented are now Equations [33a,c,e]

with 7v = yv = 0, or, in electrical form,

• I .1 * 1 * I "I

ub = -eb Wb =  eab ; b = 0

The node labeled pb in the upper part of Figure 12, therefore, is to be

connected to ground so that the r5 transformer is superfluous and the node

shown at the bottom of L6 may be relabeled ub. The nodes ub and w may

then be connected to the b and a'b nodes of the v, 7, a network already

set up (Figure 8) through e transformers, as shown in Figure 14.

Still another network might then be added to represent the other

rudder. It is simpler, however, to include the effect of this rudder by

doubling all capacitances and halving all inductances in the network repre-

senting the rudder with offset +e. This change does not alter 'the poten-

tials occurring in the network for given bearing potentials ub and w

but it doubles all currents, including those that flow from the ub and wb

nodes into the ship network. The latter currents, therefore, will repre-

sent correctly the doubled terms -2 eXb and 2eZb in Equations [36b,c].

This change in the rudder network corresponds to doubling the elastic

and inertial parameters of the rudder itself. Such a physical alteration

of the rudder having offset e, with removal of the other rudder, would in-

deed provide correct values of the resultant torques -2 eXb and 2eZb.

However, the rudder would also react on the ship with x and z forces and

a y torque, which have no place in the resultant reactions due to the
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Figure 14 - Mobility Analog for Connection of Rudder in
Longitudinal or u, w, p Motion to Hull in

Torsion-Horizontal-Bending Motion

actual paired rudders. In calculations such spurious reactions can simply

be ignored. They are also ignored automatically by the modified network

just described, which delivers no corresponding currents to the ship.

Perhaps this becomes more plausible if it is noted that nothing would be

changed if x and z translation and y rotation of the ship at 0 were pre-

vented by an external support without interfering with other components of

motion. Then the spurious reactions would fall upon the supporting struc-

ture instead of on the ship, and the correctness of the modified network

becomes obvious.

Note that currents coming from both rudder networks simultaneously

enter the ship network at the ub and wb nodes. This feature corresponds

to the occurrence of two terms on the right in Equations [36b,c].

7. COPLANAR CONTROL FOILS AND CORRESPONDING MOBILITY ANALOGS

A "foil" is considered here as an appendage thin enough to be treated

satisfactorily as a two-dimensional body attached to the ship in a single

location. If several control koils are present, they can always be treated

by establishing separate equations for each one and adding up the reactions

on the ship or by connecting individual foils to the ship network. In some

cases, however, foils occur symmetrically; then it is possible to represent

the vibrations of both foils of a pair and their combined reactions on the
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ship by a single set of equations or a single analog network. Besides the

horizontally paired rudders already considered, important examples are

paired diving planes and, perhaps, upper and lower rudders, as on a sub-

marine.

Paired diving planes are discussed, special equations are derived for

an upper rudder, and finally symmetrical upper and lower rudders and con-

tinuous shafts are considered.

7.1 PAIRED DIVING PLANES

The diving planes will be assumed to be symmetrical so that each is

the mirror image of the other in the midplane of the ship, and for the

present they will be assumed to be attached independently.

As with paired rudders, it is sufficient to write explicit equations

for only one plane, for which the starboard plane will be chosen. The

horizontal z-axis for this plane will be taken positive toward the bearing

at B, whereas y is positive downward, the origin being at the effective

center of mass of the plane.

The relations of these axes to the starboard plane are then the same

as those between the axis and a single rudder, as previously defined.

Also, by adopting the same notation, it will be possible to use the rudder

equations as previously established, with the proper values inserted for

the constants. The significance of I and IT in these equations will be

discussed later. The distance "h" will be positive as usual toward posi-

tive x but "b" will not be positive toward the ship, as drawn in Figures

15 and 16.

An analog to represent the motion of the starboard plane may be the

same as if the plane were a rudder, since the equations to be represented

are the same (only the y and z spatial directions being different).

To treat the port plane, note that the starboard plane can be con-

verted into the port plane by a rotation through 180 deg about an axis

parallel to x. By imagining the displacements as vectors to share in this

rotation, without change of magnitude (so that the relation of the dis-

placements to the plane is not changed), we see that each motion of the

starboard plane is converted by the rotation into a possible motion of the
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port plane. Thus, separate calculations for the port plane are not neces-

sary. Nor, in an electric analog, is it necessary to provide a separate

network for the port plane.

In dealing with vibrations of the ship-plane system, it turns out to

be useful to pair off the possible motions of the two planes in certain

ways, in analogy with the treatment of paired rudders.

Note first that rotation of any starboard motion through 180 deg

about an axis parallel to x generates a motion of the port plane in which

v, Y, w, P displacements are reversed in space while a and u remain un-

changed. Positive displacements of the starboard plane are shown in the

lower parts of Figures 15 and 16; the rotation changes these into displace-

ments of the port plane as shown at the upper right in the same figures.

They are distinguished by a bar over each symbol.

VYr Analogous Contrary

Port

Starboard

Figure 15 - Diagram for Paired Diving Planes Showing for v, y, a Motion,
Positive Directions of Displacements and Reactions on Ship at

Bearing for Starboard Plane, and Accompanying Directions
for Port Plane and in Each Type of Associated Motion
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Figure 16 - Diagram for Paired Diving Planes Showing for u, w, Motion,

Positive Directions of Displacements and Reactions on Ship at

Bearing for Starboard Plane, and Accompanying Directions

for Port Plane and in Each Type of Associated Motion

Let the starboard and port motions that are thus associated together

be called contrary motions of the two planes, since in the two motions

four of the six displacements have opposite directions in space.

Every motion of a plane, however, can also occur with all displace-

ments reversed. If the port motion just described is reversed, the result

is the new motion shown at the upper left in Figures 15 and 16. Since the

v, 7, w, p displacements in this new motion of the port plane are geometri-

cally the same as those in the initial starboard motion, with only a and u

being reversed, it is convenient to call this port motion and the initial

starboard motion with which it is associated analogous motions of the two

planes. By reversing the port motion, any pair of analogous motions can

be converted into a contrary pair of motions, and vice versa.

These two ways of pairing off motions of the two planes correspond

roughly to motions of two paired rudders, and their utility will become
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evident as the theory is developed. It will turn out that only paired

motions of these two sorts need be considered in combination with vibra-

tions of the ship. If the ship is held stationary, of course, each plane

moves independently of the other and paired motions are not likely to

occur.

In all cases the directions of forces and torques undergo the same

changes as do the directions of the corresponding displacements, without

any changes in magnitude. Directions for these reactions are shown in

Figures 15 and 16 also, as well as displacements and reactions on the ship

at the two points of attachment to the stock labeled, respectively, B and

B. The geometrical relationships thus defined are collected for conven-

ience in the following table:

Analogous Motion Contrary Motion
Mode

Same Reversed Same Reversed

V, 7, l V$ 7, Yb Tb a, Mb  a, Mb  V) Y$ Yb, Tb

u, w, w, P, Zb, Qb u, Xb u, Xb  w P, Zb, Qb

Expressions representing any motion of the starboard plane alone can

be converted into expressions for an associated motion of the port plane

by adding a bar over the displacement symbols and assuming the appropriate

changes in the geometrical directions, as determined from the table or

from a comparison of the upper and lower parts of Figures 15 and 16.

Discussions of vibrations of the plane-ship system now parallel

closely the treatment of a ship with paired rudders.

a. Ship vibrating vertically with analogous v, 7, a motion of the

planes.

Vertical ship vibration causes equal vb and 7b displacements of the

points of attachment B and B of the two planes, thereby exciting the v, 7,

a type of plane vibrations; see Figure 17. Conversely, in view of the

relative directions of the reactions on the ship in analogous motions, the

resulting torques Mb and Mb balance out, but Tb and Tb result in a total

torque equal to 2Tb, whereas the equal forces Yb and Yb are equivalent to
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(Vertical) 

e

Yv Axis through Centroid "O"

P and Q ore Net of Ship Section from which

Ship Station Reactions on Ship P=-2Yb the Bearings B and B ore
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(Vertical) zb

e Ship x

',,Actual Origin 7Vof ShipAxes YbTb

Ship z
Ship z z B Starboard Plane

b+1 absMb
c.m. h x b'b

Figure 17 - Relations for Paired Diving Planes in Analogous
v, 7, a Motion with Ship Vibrating Vertically

Positive directions are shown for ship and starboard plane,
associated directions for port plane. The ship y- and z-axes,
which intersect at distance z below centroid, are axes paral-
lel to ship y- and z-axes intersecting at actual origin.

a single force 2Yb acting in the midplane. Thus, simultaneous analogous

v, 7, motions of the two planes tend to excite only vertical vibration

of the ship.

Equations [13a,b,c] and [15a,b,c] may be used for the starboard

plane. It will be simpler, however, to include the dynamic effects of the

port plane by doubling the constants my, Ix, Iz, Ixz , k92, ks, GJe in

Equations [13a,b,c]. This change does not affect the values of v, 7, a

as determined by the equations for given vb, 7b, Ob, but it does double
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the values of both members of the equations. Hence, the right-hand members

of the modified equations represent, respectively, 2Y, 2T, and 2M, and

Equations [15a,b,c] multiplied by 2 give as reactions on the ship:

2Yb = - 2Y ; 2Tb = -2T + h (2Y)

The equations give also a resultant torque 2Mb but this may be ignored,

since in reality the Mb and Mb torques cancel each other.

In the ship theory for vertical vibration, as cited in Section 5.2,

the ship displacements are yv upward and a rotation 7v about a horizontal

axis, positive from positive x toward the upward vertical. If the axis

for 7v does not lie on a transverse line through B and B, the 7v rotation

will cause a slight fore-and-aft motion of B and B. Such a motion gives

rise to analogous u, w, p motion of the planes. This slightly complicates

matters and will be ignored as unimportant, together with all other longi-

tudinal motion of the ship. Hence, in the present case

vb = - Yv ; 7b = 7-v ; Cb = 0 [37a,b,c]

In the notation used in the ship theory, the reactions on the ship

are a force P acting in the midplane and taken positive upward together

with a moment Q about a horizontal axis, positive from x toward the upward

vertical. In view of the differences in positive directions

P = - 2Yb ; Q = - 2Tb  ; U = 0 [38a,b,c]

Similarly, the analogs of Equations [29b,c] and more remote analogs of

[17a,b,e,f] will be

vb = - [(l - s)y vn-a+ syv,, [39a]

7  = - 1- ns') '4 1 [39b]

Pn-a = - (1- s)(2Yb) n+ = - s (2Y b )  [40a]

Qn' = - (1 - s')(2Tb) Qn'+1 = s'(2Tb) [40b]
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Figure 18 - Mobility Analog for Connection of Diving Plane in
v, 7, a Motion with Ship Vibrating Vertically

In calculations, however, the minus signs in Equations [37a] through

[40b] may all be dropped (except, of course, in -s or -s'). The result is

to reverse the values of vb and 7b inserted in the modified Equations

[13a,b,c] and, hence, to reverse also the calculated values of v, 7, a ;

however, then the calculated values of 2Yb and 2Tb are also reversed in

sign, so that, if 2Yb and 2Tb stand for values thus calculated, P and Q

are correctly given by Equations [38a,b] with the minus signs erased. If

a correct description of the actual motions of the planes is also desired,

the calculated values of v, 7, a must be reversed in sign.

The network analog for the modified Equations [13a,b,c] is that shown

in Figure 8 except that all capacitances are to be twice as great as they

would be in representing the starboard plane alone,* and the b node is

here to be grounded, the rl transformer being omitted. Connection of the

vb and 7b nodes to appropriate points in the ship network, as required by

Equations [39a,b] with the minus signs before the brackets omitted, may be

made as in Figure 18. The voltages and currents in the plane network will

all be of the wrong sign to correspond to the equations as written, but

this is harmless. Inclusion of the minus signs would require two extra

1:1 transformers. The whole difficulty arises from the arbitrary choice

*The port plane analog is not discussed because the modified starboard

analog does the work of both planes. The motions of the port plane with
ship fixed are just like those of the starboard plane, only rotated about

x through 180 deg; hence, the port analog is the same as the starboard
analog and has the same frequencies.
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of opposite positive directions for certain plane variables and for the

analogous ship variables; actually, omission of the minus signs leads to

a closer resemblance to the geometrical situation.

b. Ship in horizontal bending and torsion vibration with planes in

both analogous u, w, P motion and contrary v, 7, a motion.

Let yh0 denote the horizontal displacement of 0, the common projec-

tion of B and B on the midplane. Then yh0 will be related to yh and 0 by

the following equation, analogous to Equation [14a]:

Yh0 = Yh - Zbo [41]

where zb denotes the height, positive or negative, of the points of attach-

ment B and B of the planes above the x-axis as drawn for the ship theory.

In addition, there are ship rotations 7h and 0.

Let e denote, as for paired rudders, the distance from B or B to the

midplane. Then the displacements of B and B are; see Figure 19:

vb = eo ; 7 b = 0 ; ab = 0 ; ub = e7 h ; wb = Yh0 ; b = 7 h [42a-f]

vb = -e ; 7b =0 ; ab = P ; ub = -eYh ; Wb = Yh0 ;b = 7h [42g-1]

Comparison with Figures 15 and 16 or with the table on page 53 shows that

these bearing displacements will excite analogous u, w, p motions of the

planes as well as contrary v, 7, a motions.

For the u, w, p motion of the starboard plane, Equations [26a,b,c]

or [27a,bc] may be used with ub, wb, and b given the values required by

Equations [42d,e,f]. (A 90-deg rotation of the axis for a lower rudder

brings the axes into a suitable position for the starboard plane.) The

analogous u, w, P motion of the port plane produces a force Zb which com-

bines with Zb to give a resultant horizontal force 2Zb on the ship (Fig-

ures 16 and 19, and Qb and Qb give a total torque 2Qb about the downward

vertical. Also, Xb and Xb, acting in opposite directions, combine into a

further torque 2eXb about the vertical (positive as usual from x toward

z). Thus the net reactions on the ship due to both planes are a horizontal
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Figure 19 - Relations for Paired Diving Planes in Contrary

v, 7, C and Analogous u, w, Motions with Ship

Vibrating Horizontally Torsionally

force Zr and a torque Qr of magnitudes

Zr = 2 Zb [43a,b]Qr = 2Qb + 2eXb

The factor 2 may again be provided by doubling mx, mz, Iy, k92 , ks, and

EA/A in Equations [26a,b,c] or [27a,b,c]; then Equations [30a,b,c] give

2Xb = - 2X , 2 Zb = - 2Z

2Qb = - 2Q - (I + b)(2X) + 2hZ = - 2Qs - (I + b)(2X)

c.m.
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where 2X, 2Z, and 2Q are equal, respectively, to the right-hand members of

the modified Equations [26a,b,c] or 2Qs, to that of the modified Equation

[27c].

For the v, 7, a motion of the starboard plane, Equations [13a,b,c]

may be used; to include the effect of the port plane, let MY, Ix, Iz Ixz
2

k2 , ks, GJe/T be doubled. The torques Tb and Tb cancel (See Figure 15,

contrary motion, and Figure 19), but Mb and Mb add to a resultant torque

2Mb about x. The vertical forces Yb and Yb acting in opposite directions

along lines 2e apart are equivalent to an additional x torque 2eYb. The

resultant reaction on the ship due to this motion is thus only a torque

Mr about x of magnitude

Mr = 2 Mb + 2 eYb [44

Here 2Mb and 2Yb are given by Equations [15a,c] multiplied through by 2,

2Y, and 2M then representing the respective right-hand members of Equations

[13a,c] as modified by the doubling of constants.

The combined reactions on the ship due to both types of plane motion

are equivalent to a horizontal force P along a line through B and B, to-

gether with torques U and Q acting in transverse planes through B and B, of

magnitudes P = Zr, Q = Qr, and U = Mr. Obviously, such reactions do not

tend to excite vertical vibration of the ship. The theory of horizontal-

torsional motion was discussed briefly in Section 4.2. In Equation [2.46]

of Reference 3, h is to be replaced here by zb. Values of Pn±a-, Un+-a '

Qn', and Qn'+l for substitution in difference equations for the ship may be

obtained from Equations [17a-f] with Yb, Mb, and Tb replaced by Zr, Mr, and

Qr, respectively.

A mobility analog for the present case must include both types of

network for the starboard plane (i.e., u, w, p and v, 7, a), connected

simultaneously to the ship network.

For the u, w, p motion, the network may be that shown in the upper

part of Figure 12 and described in Section 5.3, with all capacitances twice

as great and all inductances half as great as they would be for the star-

board plane so as to represent the modified Equations [27a,b,c]. Connec-

tion to the ship network to represent Equations [42d,e,f] may be as shown
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in Figure 20, drawn with reference to Equations [16a,b,c] and Figure 9.

For the v, 7, a motion, the network, as in Case a, may be that shown

in Figure 8 and described in Section 4.3, with all capacitances doubled

and all inductances halved as they would be to represent the starboard
-!

plane alone. Here, however, the 7b node is to be grounded. The connec-

tions to represent Equations [42a,c] in analogy with part of Figure 9 may

be as shown in Figure 21.

c. Ship stationary, planes in contrary u, w, P motion.

In this case, Zb and Qb balance Zb and Qb; Xb and Xb add up but the

result is onlyto excite slight axial vibration of the ship, which may be

ignored as usual. Thus the ship is not disturbed.

The starboard plane will move according to Equations [26a,b,c] or

[27a,b,c]. An analog network to represent it may be the network described

in Section 5.3 and shown in Figure 12.

It may be noticed that, because of the geometrical relations of ship

and plane, neither type of ship vibration is associated with plane motions

of both analogous v, Y, a and contrary u, w, p types. Such a combination

of plane motions may be due to other causes, of course, and also to many

other combinations. The difference between the analogous and the contrary

motions of the port plane that may be associated in different cases with

a given starboard motion can be regarded as merely a difference in phase

of half a period between the two alternative port motions. Any other phase

difference is possible; in that case the given motions may be regarded as

due to superposition of analogous and contrary paired motions of certain

amplitudes. Any component of analogous v, Y, a motions will then be asso-

ciated with vertical ship vibration and any component of contrary v, Y, a

or analogous u, w, P motions with horizontal-torsional motion of the ship.

7.2 EQUATIONS FOR AN UPPER RUDDER

The most significant difference between an upper and a lower rudder

is that the upper rudder is attached to its stock at a point above the

bearing or other effective point of attachment to the ship. The effect of

this difference on the equations of motion can be discovered by reviewing



the derivation of the equations, but it is perhaps more easily found by

the following maneuver:

Let axes for the upper rudder be drawn with origin at its effective

center of mass but, temporarily, with the z-axis pointing downward and the

y-axis, therefore, in the opposite direction from that for a lower rudder;

see Figure 22. Then the axes will be related to the rudder and to its

stock in the same way as were the rudder axes employed in Sections 4.1

and 5.1, and the equations there derived can be used; namely, Equations

[13a,b,c], [15a,b,c], [26a,b,c], or [27a,b,c] and [30a,b,c].

z y

B-Bearing B - Bearing

Temporary Axes Final Axes

Figure 22 - Temporary and Final Axes for an Upper Rudder

Positive directions of u, v, w, c0, $, 2' are
shown; cx, @, 7' are positive, respectively, from

y to z, x to z, x to y. w 
b

bzT
i- Bearing B - Bearing

Temporary Axes Final Axes

Figure 22 - Temporary and Final Axes for an Upper Rudder

Positive directions of u. v,, W3, alP, Y are

shown; ct, p. Y are positive, respectively, from

y to z2 X to z2 x to Y.
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It is inconvenient, however, in dealing with the interaction between

the rudder and ship, to have their z-axes pointing in opposite directions.

Hence, let the axes be rotated through 180 deg about x so that y and z come

into their usual positions, with z pointing upward; see Figure 22. The

positive directions are thereby reversed for all displacements and reac -

tions associated with y or z so that, if the equations just specified are

to be used, all variables in the equations related to y or z (but not x)

must be replaced by their negatives.

Accordingly, let the following changes be made in succession in all

these equations, the last two changes being added merely for convenience:

a. Reverse the signs of all terms containing v, 7, w, wl, , vb, 7b'

wb' Pb' Yb' Tb, and Qb in the equations specified.

b. Multiply Equations [13a,b], [15a,b], [26b,c], [27b,c], and [30b,c]

throughout by -1 in order to restore the convenient initial plus signs on

the left.

c. Redefine Y, T, Z, and Q or Qs to represent the values of the right-

hand members of Equations [13a,b] or [26b,c], or [27b,c] after change b.

The terms containing Y, T, Z, and Q or Qs in Equations [15a,b,c] or [30c]

must then be reversed in sign (many terms are thus reversed in sign and so

return to their original sign; e.g., Yb term is reversed by change a and

again by change b).

A careful check now reveals the following simple rule for adapting

all specified equations to the upper rudder, with the z-axis drawn upward

as usual: replace Ixz by -Ixz , I by -1 and b by -b throughout, except I

in the coefficient EA/2. (Thus 12 and bi are not changed.)

Note that b is assumed positive when the attachment of the stock to

the upper rudder is above the bearing or other attachment to the ship.

7.3 SYMMETRICAL UPPER AND LOWER RUDDERS

Any case of upper and lower rudders in the midplane of the ship can

be treated by using the special equations just derived for the upper rud-

der together with the usual equations for the lower rudder. An analog net-

work may then contain a separate network for each rudder.
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If symmetry is present, however, a simpler method can be used, as

with paired offset rudders or diving planes. Suppose that the upper and

lower rudders are mirror images of each other in a horizontal plane of

symmetry. It is assumed that this plane contains the transverse axis for

the rotation 7v of the ship cross sections. This assumption should be suf-

ficiently valid at least for submarines; if the assumption is not made, the

theory becomes considerably more complicated.

Motions of the upper and lower rudders can now usefully be paired off

in the same way as was done in Section 7.1 for paired diving planes. In

fact, the treatment of the diving planes can be taken over bodily if axes

are drawn as usual for the lower rudder (y horizontal, z upward, origin at

the effective center of mass). The axes so drawn for the lower rudder are

then related to the rudder in the same way as the axes defined in Section

7.1 for the starboard plane are related to this plane, and every statement

in Section 7.1 will hold if "lower" and "upper rudder" are substituted for

"starboard" and "port plane," respectively. Of course, the spatial direc-

tions of the axes and the relations to the ship motions will be different

in the case of the rudders. Also, let e be replaced by g, so that the dis-

tance is 2g between B and B, the respective points of attachment of the

lower and upper rudders. For generality, assume that the ship's x-axis is

drawn a distance zs below the plane of symmetry.

Analogous and contrary motions of the two diving planes now become

analogous and contrary paired motions of the lower and upper rudders. The

corresponding relations between displacements and bearing reactions on the

ship may be read from Figures 15 and 16 or from the table in Section 7.1.

To produce correct directions in space for the rudders, imagine that Fig-

ures 15 and 16 are rotated through 90 deg so as to make y horizontal and z

vertically upward, as they have been drawn for rudders.

a. Vertical ship vibration with analogous u, w, P rudder motions.

From Equations [28a,b,c], in which d = g (the axis for 7v having been

assumed to lie in the plane of symmetry), the displacements of B or B are:

B: ub = g7v ; wb = Yv ; Bb = 7v [45a,b,c]
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B: ub -g7 v Wb Yv b = 7v

In stating values in the equations, the same positive directions are as-

sumed for both rudders (and planes). In Equations [45a,d] ub = g v  but

ub = -gv , hence if ub is positive as shown in Figure 23, Ub is negative

and so has the opposite direction.

Clearly, only analogous u, w, p rudder motions are excited (wb and

Ob the same, ub reversed for upper and lower rudders); see Figure 23.

The analysis for the rudder motions is the same as that given in

Section 7.1(b) for analogous u, w, p motions of the planes but with e re-

placed here by g and Equations [42d,e,f] by Equations [45a,b,c]. The bear-

ing reactions on the ship are

Xr = 0 ; Zr = 2 Zb ; Qr = 2 Qb + 2gX [46a,b,c]

Figure 23 - Upper and Lower Rudders in Analogous u, w, B
Motion with Ship Vibrating Vertically

Ship axis and Zs are not shown.
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with Zr and Qr copied from Equation [43a,b]. The values of Xb, Zb, and Qb

are explained following Equations [43a,b]. Here, however, Zb and Zr are

vertically upward. According to the explanation given at the end of Sec-

tion 4.2, Zr and Qr may be substituted for Yb and Tb, respectively, in

Equatiois [17a,b,e,f] to obtain Pn a' l' , and Qn'+l for use in differ-

ence equations for the ship. (Here Xb = 0.)

An analog network for the lower rudder must represent Equations

[26a,b,c] or [27a,b,c], but with ex, mz, I, k22, ks, and EA/i all doubled.

(See Equations [32a,b,c].) Connections to the ship network for vertical

motion to represent Equations [45a,b,c] may be as shown in Figure 20 if

this figure is modified by changing e to g, Th to 7, and h0 to Yv ;

also, the connections shown below yho are to be omitted.

b. Horizontal-torsional ship vibration and v, 7, aC rudder motion.

Ship displacements Yh' Yh, and 0 produce at B and B the following

displacements; see Figure 24:

vb = Yh - (zs - g) ; b =Yh - (zs + g)

7b =  h ; Cb = 'b =

These displacements are neither analogous nor contrary. In this case it

might be preferable to use separate sets of equations for the two rudders.

As an alternative, the procedure followed previously can be used by re-

solving the displacements into two superposed sets defined as follows:

Vbl = vbl Yh - zs ; 7bl bl = Yh ; bl = bl = 0

vb2  b2  -g b2 b2 = 0 2 =  2 = 0

The first of these sets of partial displacements, in which B and B

have equal v, 7 displacements, will generate analogous v, 7, ca motionp of

the rudders; whereas the second set, similar in form to the displacements

in Equations [42a,b,c] for planes, will excite contrary v, 7, a motions.

These two sets of v, 7, a motions occur superposed.
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Figure 24 - Upper and Lower Rudders in v, 7, a Motion
with Ship Vibrating Horizontally Torsionally

Wherever two rudders (or planes) are drawn, the directions
shown are positive for lower rudder (or starboard plane).
However, for upper rudder (or port plane) the actual direc-
tions are shown that accompany positive quantities for lower
rudder (or starboard plane) in the type of associated motion
shown (analogous or contrary). This enables the reader to
see the directions in space that go together.

For each partial motion, Equations [13a,b,c] may be used for the

lower rudder with the constants M , Ix Iz Ixz , k22 , ks, and GJe/AT all

doubled (as for the planes) and with the proper values substituted for

vb, 7
b , and ab .

For the first or analogous v, 7, a motions, the method of Section

7.1(a) is available. In the modified Equations [13a,b,c], vbl, 7 bl, and

abl are to be inserted for vb, 7 b, and ab . The resultant reactions on

the ship are given by Equations [15a,b] (lower row) multiplied through by 2,

where 2Y and 2T then represent, respectively, the right-hand members of
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the modified Equations [13a,b]. Let these reactions be relabeled 2Ybl and

2Tbl. 2Ybl is a force acting in the y-direction and in the plane of sym-

metry, while the moment 2Tbl acts about vertical z.

For the contrary v, 7, a rudder motions, vb2, 7b2 , and ab2 are to be

inserted for vb, 7 b , and ab. The argument used in the v, 7, a part of

Section 7.1(b) then shows that the resultant reaction on the ship is only

an x moment Mr of magnitude (corresponding to Equation [44])

Mr = 2Mb2 + 2g Yb2

where 2Yb2 and 2Mb2 are found by substituting them for 2Yb and 2Mb2 in Equa-

tions [15a,c] multiplied through by 2; 2Y and 2M then represent the respec-

tive right-hand members of the modified Equations [13a,c].

Thus the combined reactions on the ship due to both types of rudder

motions are:

Yr = 2 Ybl = - 2Y1

Tr = 2Tbl = - 2TI + h(2Y1 ) [47a,b,c]

Mr = 2 Mb2 + 2 g Yb 2 = - 2M - (2 + b)(2Y2 ) - 2gY 2

Equation [47c] is physically reasonable because Y is being shifted from

the center of mass up to bearing (2 + b), then up to the plane of symmetry.

The values of Pn-+a, Un+a' Qn' , and Qn'+l to be used in the ship

equations to represent the combined reactions on the ship due to both types

of v, 7, a rudder motions may then be found by substituting 2Ybl , 
2Tbl, and

2Mb2 + 2gYb2 into Equations [17a-f] for Yb, Tb, and Mb, respectively.

In an analog network, separate rudder networks must be used to repre-

sent the two v, 7, a motions. Internally they may be duplicates of each

other, like one of the alternatives described in Section 4.3 and shown in

Figure 8, except that all capacitances are to be doubled and all induct-

ances halved. Their connections to the ship network must be different,

however.

The Vbl and 7bl nodes of the first rudder network may be connected

as shown in Figure 9 except that zb is to be replaced here by zs . The abl

.. Eiml IM Mlm M ill~ilmlii I,

I I I I II I I I lal I I Ir ---



node is to be grounded.

The vb2 and Vb2 nodes of the second rudder network may be connected

as shown in Figure 21 with e changed to g and b to b2 . The b2 node is to

be grounded.

c. Contrary u, w, p motions of the two rudders.

Contrary u, w, p motions of the rudders may occur without appreciable

disturbance of the ship, corresponding to Section 7.1(c) for diving planes.

Remarks similar to those at the end of Section 7.1 may also be made

concerning the motions of symmetrical upper and lower rudders.

For convenience, the relative directions in space of the various sets

of axes used up to this point, together with corresponding displacements

and principal reactions, are shown in Figure 25. This figure does not show

the relative locations of the center of mass, bearings, centroid, ship

axes, etc.

7.4 CONTINUOUS SHAFTS

Frequently two control foils are mounted on a continuous shaft ex-

tending across the ship. In such cases interaction between the two foils

may occur by way of the shaft. If the foils are significantly unlike, it

may be necessary to treat them together as a many-dimensional system. When

the foils are symmetrical, however, the method of paired motions described

in Sections 7.1 and 7.3 becomes available. Simple relations then exist

between the distortions of the two halves of the shaft so that, just as it

was necessary to write equations of motion for only one of the foils, it

suffices to analyze the distortion of only the corresponding half of the

shaft. It is found that allowance for the effect of the simultaneous dis-

placement of the other foil can be made by assuming suitable boundary con-

ditions for the half shaft at 0, the midpoint of the shaft in the plane of

symmetry.

Torsion of the shaft will be considered first. In contrary v, 7, a

motion of the foils, the opposite rotations 7b and 7b (Figure 15) of the

ends of the shaft leave undisplaced its middle cross section at 0. Hence,

in Equation [13b] IT runs to the middle of the shaft. In analogous v, 7,
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Vertical Vibration
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Figure 25 - Sign Conventions for Rudder-Diving Plane-Ship

Coordinate Systems, Motions, and Reactions

Check list of positive directions.

Rotations and moments are positive y toward z,
x toward z, or x toward y.

ub, Wb' b' vb b' b have directions of u, w,

, v, 7, a, respectively.

Relative locations of center of mass, bearings,
centroid, ship axes, etc., are not shown here.
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a motion, however, the reactions to the moments Tb and Tb rotate the ends

of the shaft in the same direction. The effect of this depends upon the

elasticity of the structure by which the shaft is attached to the ship at

0. If this structure may be assumed to be rigid, AT runs again to 0.

Otherwise allowance for the effect of elastic yielding at 0 may be made by

a suitable increase in the value assumed for IT*

Bending of the shaft, which may occur with either type of foil mo-

tion, presents a much more complicated problem. In practical cases a

simple rough correction may suffice. Since, however, the correction varies

with the type of shaft mounting, an exact analysis will be attempted here.

In anal9gous v, 7, a or contrary u, w, 1 motion of the foils, the

similar displacements vb and Vb or ub and Ub of the bearings, and the oppo-

site rotations aCb and ab or b and Pb' all tend to bend the inner section

of the shaft like a bow, with zero slope at 0; see Figure 26. On the other

M QBow

' , tDPI "Yo

0
MI+'I I l bIoM1 b2 t

P 'Db YS P

IIM +1 P Ob 
0

. .0- - -/ -,., - -,. .

o B F

Figure 26 - Positive Forces and Moments Acting on a
Continuous Shaft in Flexure

The shear force and bending moment
shown are those transmitted toward 0.

Plin u a lllll il , ' olli il RNWIYI IIIYIII 111N~-



hand, in contrary v, 1, a or analogous u, w, f motion, vb and vb are oppo-

sitely directed, as are ub and ub' whereas Cb and b are in the same direc-

tion, as are Pb and b. The effect is to bend the shaft in an S-shape

with zero displacement at 0; see Figure 26.

IA analyzing one-half the shaft (the starboard half for diving planes

or the lower half for vertically paired rudders), the effect of the other

half is partly equivalent to a geometrical boundary condition at 0. A

second condition concerning the shear force or bending moment will be

stated presently. Otherwise, the other half of the shaft may be ignored.

The relevant quantities are shown in Figure 26. The length of the

section of shaft between 0 and bearing B is denoted by 1,' that between B

and foil attachment F by 2, as usual. The mounting at 0 may be displaced

transversely a distance y0 , the bearing B by Yb' the attachment to the

foil by y; corresponding rotationp are e0, eb, e. The cross section of

the shaft at 0 is also displaced y0 ; the slope of the shaft just outside

the mounting, which may be altered by shear warping, is denoted by e0 1 '

Similarly, the shaft slope is ebl on the i side of B and eb2 on the I

side of B.

The shear force (transmitted toward 0) is denoted by P in the 2 sec-

tion, by P1 in 21. The associated bending moment is M at F, M + P on the

2 side of B, MI on the 21 side, and M + 1P1 at 0.

In bending like a bow the shaft cross section at 0 is unrotated, as

if the shaft were rigidly held here, hence the usual shear slope should

occur; thus e01 = e0 + P1/KAG. Also, the net force on the mounting at 0

due to both halves of the shaft is 2PI, hence y0 = 2P1/D0 , with 2D0 denot-

ing the (total) rigidity of the mounting at 0 against lateral displacement.

(If 2D0 
= 0, PI = 0 necessarily.)

When the bending is of the S-type, the mounting may be rotated

through an angle e0 = 2 1 + 2 1P)/2H0 , the rotational rigidity at 0 being

denoted by 2H0 . In this case the shear force in the shaft is practically

constant through the mounting, and it is assumed that the mounting does

not interfere with shear warping in the shaft. Hence there is no sheor

correction, and e01 = 0.

At the bearing B it may happen that P = P ; then, as at 0 in S-

bending, the shear force is uniform throughout the bearing, hence there
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will be no shear effect and ebl = b = eb2 . Or it may happen that P = -P.

Then the forces on the ends of the section of shaft inside the bearing are

similarly directed, being -P1 or P at one end and P at the other. Hence

in this case shear slopes occur of magnitude P/KAG at the right end of the

bearing and -P/KAG at the end toward 0.

Any given values of P1 and P can be resolved into two superposed

sets of these two types, thus:

1 1 1 1. (P + P ) - 1 (P - Pl ) = PI ; , ( P + Pl ) + - (P - PI ) = P

The P + P1 pair, being related as are P1 and P, will cause no shear effect;

whereas the P - P1 set will cause shear slopes as do P1 and P when PI = -P.

Hence, in general,

ebl = eb - o(P - P1) ; eb2 = eb + a(P - PI) ; a = - G[48a,b,c]b - C (P pl) b2 b2 KAG

Amplification of this analysis is given in Appendix D.

Also, the net reactions on the bearing itself being P - P1 and

M + IP - M1,

P - P1 
= Db Yb ; M + IP - MI = Hb eb [49a,b]

where Db and Hb denote rigidities of the bearing in transverse displace-

ment and in rotation, respectively.

a. £I section of shaft.

For this section it is convenient to use as a basis Equations [5]

and [7] with KAG - co, or

y = q1 1 1  q 12 M q 12 P1  q 22 M1  [50a,b]

3 2 Y1
11= 1 E2 I q22 [51a,b,c]3 EI 1 2  2E1 2 E

Here y, e represent displacement and shaft slope at the B end, those at

the 0 end being assumed to be zero.



(1) Bow-like bending.

Here, as explained previously,

S = 0 ; e01 = 2aP 1 ; P1 D= 0Y0
[52a,b,c]

To fit this case, the shaft, deformed according to Equations [50a,b], must

be given an additional translation y0 and a rotation e01 about 0. Then

Yb = 1 + YO + Jle0 ; ebl = + e 0 1

It seems better, however, to introduce eb2 here instead of ebl. From

Equations [48a,b] and [49a]:

eb = eb2 - a DbYb. ebl = eb2 - 2 cDb Yb

Then, from Equations [50a,b] and [52b,c] also:

Yb Y0 + 2 ail P + qll PI + ql2Ml

eb2 = 2a P1 + 2a Db Yb + q 1 2 P1 + q2 2 Ml

Now multiply this Yb equation through by DO, substitute D0 y0 = P1 from

Equation [52c], and then also, in both equations, from [49a,b] and [53a]:

P1 = P - Db Yb ; = AP + M - Hb (eb2 - a Db yb
)

The resulting equations, rearranged, are:

[D0 + Db+ (q1 1 + 2al) DODb - aql2 DoDbHb] Y + q12 DOHb eb2

= [I + (qll + 2q1 2 + 2a l )D 0o] P + q 1 2 D0 M [54a]

(q12 - a q 2 2 Hb) DbYb + (1 + q2 2 Hb)e b 2 = (q12 + Iq2 2 + 2a)P +q 2 2
M [54b]

[53a,b]
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These two equations may now be solved for Yb and eb2 in terms of P

and M. If, as is likely, Db is large, it may be preferable to rearrange

the first term of [54a] and solve for Db Yb and eb2. Then yb itself is

small but Db Yb need not be.

(2) S-shape bending.

Here

Y0 = 0 ; 01 = e0 ; M + 1 + P1 = H0 e0  [55a,b,c]

In using Equations [50a,b], a rotation e0 about 0 must be added, so that

Yb =  +  1 e ; ebl =  + e0

Or, using Equation [53b] also:

Yb = le + qll PI +12 Ml

eb2 = e0 + 2a Db yb + q12 P1 + q22 MI

Multiply both equations by H0 , substitute for H0 e0 from Equation [55c],

and then for P1 and MI from [49a,b], and use [53a] for eb. The result,

rearranged, is:

[H 0 + (2 + qll H0 - a Hb - aq 1 2 HoHb) Db YB + (1 + q12 H0 ) Hbeb2

[56a]

= [ ( 1 + )+ (qll + 
1 1 ql 2 )HO] P + (1 + q 1 2 H0 )M [56a]

(21 + q 1 2 H0 - 2 o Ho0 - aHb - a q2 2 HOHb) DbYb + (H0 + Hb + q2 2 HOHb) eb2

[56b]
= [1 + + (q 1 2 + Iq 2 2 ) HO] P + (1 + q2 2 H0 ) M

These two equations may now be solved for Yb and eb2 in terms of P and M.

As in the bow case, if Db is large, it may be best to solve for Db Yb and

eb2 rather than for Yb and eb 2 .
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b. A section.

For the A section, Equations [7a,b] and [12a] may be used with

KAG - co :

- 2 El
P = 12ky - 6 ke ; M = - 6 ky + 4 k ; k =- [57a,b,c]

Here y and e denote displacement and slope of attachment to the foil,

there being no displacement at the other end.

If e is the rotation of the foil itself, e = e - 2 aP (Figure 2).

Also, to fit conditions at B, a translation Yb and a rotation eb2 about B

must be added. Hence, if y is the displacement of the foil,

y = y + Yb eb2 . ; e =  - 2 P + eb 2

c. Final equations.

Either Equations [54a,b] or [56a,b] may be solved for Yb and eb2.

The result may be written in the form

Yb = all P + al2M ; eb 2 
= a 2 1 P + a 2 2 M

The a's represent net flexibilities at the bearing B and are different for

bending of the bow or S types.

Insertion of these values of Yb and eb2 into the expressions for y.

and e and then substitution from the resulting expressions for y and e in

Equations [57a,b], gives the equations:

1 + 6k (2all + Aa2 1 + 2 aI)] P + 6k (2a 1 2 + Aa2 2)M = 12 ky - 6 ike

- 2 Ak (3all + Aa2 1 + 4 ci)P+ [1 - 2 1k (3a 1 2 + a22)] M = -6£ky+ 412ke

The solutions of these equations for P and M may be written in the

form

l, IY I n l . . . . . nll I II M nn
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P = 12 r1 1 ky - 6 r12 1ke

2 [58a,b]

M = - 6 r2 1 Aky + 4 r22 ke [58ab]

Here the r's represent correction factors (compare with Equations [7a,b,c]

for yielding of the bearing and for shear slope there), and are different

for the bow and for the S types of shaft bending.

d. Use in equations of motion.

Equations [58a,b] may be used instead of Equations [7a,b] in deriving

equations of motion for the chosen foil. A possible inequality of r12 and

r2 1 may result in some complexities. However, such an inequality can only

be caused by the a terms (involving KAG). A similar inequality is easily

shown to exist for a cantilever forced by P and M at the free end; appar-

ently it is prevented from violating the conservation of energy through

additional work done by M when the shear warping varies (see Appendix E).

The difference between r12 and r2 1 must be relatively small, however,

and it may be sufficiently accurate to ignore it in practice by replacing

both r12 and r2 1 by 7 = (r12 + r2 1)/2. If this is done, Equations [58a,b]

may be rewritten in a form to resemble Equations [7a,b] more closely, as

follows:

P = 12 ks y - 6 2'k s e ; M = - 6 k' ) 2 (3ks + k')]e [59ab]kY+ (') + k)]e [59a,b]
5 s

where

r a'- ( k r 1 1 r 2 2ks = r1 1 k ; £ = ; k = ks 2 - 3 [60a,b,c]

In the equations of motion, however, the factor I enters not only

from Equations [7a,b] but also because a rotation ab or Pb produces a dis-

placement 2b or YPb" A careful check shows that use of Equations

[59a,b] instead of [7a,b] changes the results given in Sections 4 and 5

only in the following ways: ks is replaced by ks and k by k'; also, I

becomes 2' except that I is to be kept in EA/2 and in the -2b term in

~~~~~-4LUI-II



Equations [9a,c] and the -£Pb term in Equations [24a,b,c] and [26a,b,c],

whereas 2 is to be replaced by (21 - 2') in the formulas for rl and r5;

also where it immediately precedes ab in Equations [13a,b,c] and [18a,b,c],

or b in [19a,b,c] and [22a,b,c], or Pb in [27a,c] or Bb in [32a,cl, and

in the factor 3ks2 in [13c], which becomes 3k s (22 - 2').

8. RUDDER DAMPING AND LIFT AND CORRESPONDING MOBILITY ANALOGS

8.1 RUDDER DAMPING

Two possible features of the actual situation have not yet been con-

sidered; namely, damping of the rudder motion and the effect of forward

motion of the ship. Damping will be considered first.

Damping forces proportional to velocities can be easily introduced

into the equations of motion. For example, in the right-hand members of

Equations [13a,b,c], which are the equations of motion for the transverse

or v, 7, ce motion of the rudder, the following respective expressions may

be added:

- cv - c12 - c13c

- c2 1v - c27 - c 2 3 &

- c3 1v - c3 2Y - c3 '

It can be shown that, since "damping!' forces by definition must have the

effect of dissipating energy during any motion whatever, necessarilyl 01c 2 > 0 c3 
>  n -*(See Appen-

c 0, c2  0, c3 =0, and c2 1 = c 1 2 , c 2 3 = c 3 2 , c 3 1 = c1 3 . (See Appen-

dix A.)

Since the c's thus have the same characteristics as to sign and sym-

metry as the coefficients representing elastic reactions, the additional

*At least the c's have these characteristics in the equations as obtained

by direct substitution in Lagrange's equations of motion. See Reference

6, Section 81 of Vol. I.
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*I , 1 *Inetwork to be connected to the v , 2', ' nodes in order to represent the

damping terms has the same general form as that already used to represent

the right-hand members of Equations [13a,b,c] or [18a,b,c], except that

resistances are now used instead of inductances and all values of param-

eters are expressed in terms of the c's. The same grouping process may

be used here as for Equations [18a,b,c], for example:

- cc 1 2  c 1 3c I v +cl + cl2I  +

2

( . c2 . c13 .Ic2 . 12 1lc 3 .
c12 v + - 7 + -- ' - c2 - - c23 cl3

C cI  c -

2

c13 c23 c 1 3 cl3c23
1 c3 c7 + cla c23 cl (7-c3 cl

A simple example will be shown in detail presently.

A second set of damping terms in which v, ', & are replaced, respec-

tively, by v - Vb' - 7 b' - ab may be added or substituted for those

just shown.

8.2 EFFECT OF SHIP'S FORWARD MOTION

The ship so far has been assumed to be dead in the water, its only

motion being vibratory. If it is moving toward positive x at a steady

speed S relative to the water, new characteristics are encountered. When

the rudder is either displaced or moved, the flow of water past it gives

rise to lift forces and moments acting on the rudder, analogous to the

lift on the wings of an airplane.* The complete theory of these forces is

complicated. To illustrate the general nature of their effect, the same

simple assumption will be made here as was made by McGoldrick and Jewell

*Free surface effects are not considered, since the rudder is assumed
to be deeply submerged.
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in TMB Report 1222.7*

The dynamical effect of the flow is assumed to be a simple horizon-

tal, transverse lift force FL acting on the rudder along a line at a dis-

tance L ahead of the axis of the rudder stock and also at a distance bL

above the x-axis (in the z-direction). L is usually relatively small, if

not zero, and may be negative. The line of action of FL meets the median

plane of the rudder in a point CL called the center of pressure.

First, let the rudder be stationary relative to the ship and in

such an angular position that the lift force vanishes; in this position a

single rudder in the median plane of the ship points dead astern. If the

rudder is turned from this position about the stock through an angle 7 and,

hence, by Equation [8b] about the center of mass by the same angle 7, the

magnitude of the lift force on it can be assumed, with sufficient accuracy,

to be BS27 in terms of a positive constant B.

If, now, because of vibratory motion, the rudder has a transverse

translational velocity v, its velocity relative to the general mass of

water is inclined at an angle Iv/S to the axis of the ship (Figure 27),

hence the flow relative to the rudder is inclined at this same angle and

the "angle of attack" that determines the lift force is changed from 7

to 7 - (v/S). The rudder may also have rotational velocities, but if rota-

tion occurs about an axis through the center of pressure CL, its effect on

the lift force may reasonably be assumed to be, if not zero, at least neg-

ligible. If, however, small angular velocities 7 and & exist about the z-

and x-axes, respectively, these velocities are equivalent to equal angular

velocities about parallel axes through CL plus a translational velocity

*As indicated in Reference 7, the validity of the equations for the lift

forces and moments is still to be determined. Nevertheless, it is likely
that the method of solution of ship problems involving some revised set of
equations would be similar to the method presented in this report. Hence,
it is the analytical and the corresponding analog or digital treatment
rather than the correctness of the analytical description of the hydrp-
dynamic forces and moments that is stressed in this report (see, however,
references given in footnote on page 82).

**The angle of attack is the angle between the direction of motion and
the chord line or centerplane of the rudder.
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Relative Flow

FL
Apparent Angleof Attack

7- V,

h L-

Figure 27 - Lift Force and Angle of Attack for Rudder with Forward
Motion S and Transverse Translational Velocity v

equal to the velocity of CL, or (h +

added to v to represent the angle of

for FL during rudder vibrations is*

FL = BS2 (h+L) - bL

L) - bL. These terms must be

attack. Thus the complete formula

= BS 2 Y - BS [v + (h+L)7 - bL&] [61]

*The equations corresponding to the extended simplified analysis given

in Appendix C of Reference 7 are a special case of Equations [61] through
[62c]. To compare the equations, the origin of the coordinate system of
Reference 7 is translated to the center of mass of the rudder by letting

Y = Yc.g.+h'e. Then Y = Yc.g.+h'6 and Y = Yc.g.+h'e, the symbols Y,

Yc.g., h', and e being defined in Reference 7. Since the definition for

h in Reference 7 is different from the definition here, the symbol h in

Reference 7 is replaced by h'.

The equation for the lift force FL corresponding to the modified
Theodorsen analysis given in Appendix C of Reference 7 has the same form
as Equation [61] for FL. This is shown as follows. In Reference 7 let

S= c.g. + h'4

1CK I
CK = 2 (Footnote continued on page 82.)
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The u, w, P motion of the rudder is not affected by such a lift

force, at least to the first order in 7, 7 and the other rudder displace-

ments or velocities. Hence, only the transverse or v, 7, a motion will be

considered here.

The effect of the lift force on the rudder motions may be represented

by adding FL on the right in the first equation of motion, Equation [13a],

and also a term (h + L)FL in the right-hand member of the second equation,

[13b], which is intended to represent the total moment of force about the

z-axis, and a corresponding term -bLFL in the right-hand member of the

third equation, [13c], which represents the total moment about x. An ex-

ample of such additions follows.

Then, in Reference 7

S A Ah'
FL = (S) - i (SY c.g.) - - Ab)(S)

Therefore, certain terms in Equation [61] are replaced as follows (and the

values of the components in the corresponding analog are easily changed to

agree with the revised value of the coefficients):

Y -10 e

v 0 Yc.g.

B A
2
h'

B(h + L) -> A(2-+ b)

bL 0

Depending upon the form of the expression for Me in Reference 7, the

analog for Me is easily obtained from the new expression and analog for FL.

Recent results8'9 indicate that the Modified Theodorsen Analysis

appears to be the most suitable analysis for yielding good predictions of:

a. The damping ratio and frequency for a given speed.

b. The critical flutter speed.

Finally, it is of interest to note that if Theodorsen's lag function

CK is taken to be a complex quantity, it can be represented by linear

transfer functions to within an accuracy of 2 percent for the complete fre-

quency spectrum (0 to c). For a more restricted range of frequencies,

greater accuracy is achievable; see Figure 24 of Reference 10.
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8.3 AN EXAMPLE OF DAMPING AND LIFT

The general treatment of linear damping and lift is illustrated by

writing out equations of motion and designing the analog for a case in

which there is a lift force FL of the kind just described and also, as in

Reference 7, a damping term -C such as might arise from water resistance

to transverse motion and a term -c( - ;b) representing a damping couple

such as might arise from viscous friction in the rudder bearings. Here

C > 0, c > 0. It is assumed that the damping force -Cv acts through the

center of mass of the combined rudder-water system, so that it has no

turning effect about the z- and x-axes.

When these additional forces are included, the equations of motion

for the rudder become

my = . 6.... - Cv + BS 27 - BS [v + (h + L)7 - bL ] [62a]

Iz - Ixz = ..... - c( - b) + (h + L)BS 2 7 - (h + L)BS

v + (h + L)y - bLl 
[62b]

Ix- Ixz = ..... - bLBS 27 + bLBS [v + (h + L)' - bL [62c]

where ..... stands for the right-hand member of Equations [13a,b,c] or

[18a,b,c], respectively.*

An additional point must be noted, however, if these equations are

used in calculating the combined vibratory motion of rudder and ship. The

reactions to the Cv damping force and to the lift act on the water, not on

the ship. Hence, in using expressions [15a,b,c] for the reactions Yb' Tb,

Mb on the ship, only the term -c( - 7b ) is to be added to the right-hand

*It is important to note that in solving the combined rudder (or diving

plane)-hull equations, normally by means of an analog or digital computer,
a term representing hull damping must be included in the equations for the
ship. Such a term, based on experimental data, is included in Reference 5.
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member of Equation [13b] to obtain T, and Y and M are still just the right-

hand members of [13a] or [13c] with no additions.

The terms in C, c, or BS all have a damping effect.* This is easily

seen from the origin of these terms. It also can be shown, as a check on

the equations, by writing an expression for the time rate of change of

TK + Up, the sum of the kinetic and potential energies of the rudder. Ex-

pressions for TK + Up are given in Equations [B.1] and [B.4] of Appendix B.

Multiplication of Equations [49a,b,c] by v, , and &, respectively, gives,

when vb = 7b = ab = 0,

d (TK + Up) = - C - c2 2 - BS [v + (h + L) - bL&]2
dt KL

+ BS2 [vy+ (h + L)7y - bL7]

Thus the C, c, and BS terms in Equations [62a,b,c] act continually to de-

crease the energy and, as a result, have a positive damping effect.

The BS2 7 term in Equation [62b] is equivalent in part to a simple

change in the torsional stiffness of the stock. To see this clearly, sub-

tract h times Equation [62a] from [62b], obtaining, if vb = 7 b = lb = 0,

Izhxz Tl-hyv = -( J e . - BS2 7 + hCv - cy - LBS [v + (h + L) - bL]

The same equation would be obtained if all BS
2 terms were omitted and the

torsional constants were changed to be numerically equal to (Je - BS2).

If S is so large that the latter expression is zero, a static solution of

Equations [62a,b,c] is possible in which 7 has an arbitrary constant value

accompanied by constant values of v and C, as determined by Equations

[62a,c]. In design such a lack of static stability is made impossible at

speeds within or near the operating range.

*The BS part of the lift force FL acts at the center of pressure and is

always oppositely directed to the velocity there, hence it necessarily

dissipates energy.
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The other effects of the BS2 terms are more subtle. Study of several

simplified problems suggests that, even if the C, c, and BS terms are omit-

ted from the equations, the BS2 terms may merely alter the frequencies of

vibration, may result in solutions exponential in time, or may intro-

duce positive or negative damping. A damping effect due to the BS2 term

in Equation [62a] is facilitated if other damping terms are present, be-

cause then v and 7 are likely to differ in phase so that in a vibration 7

contains a part proportional to v.

When damping terms are present, such as the C, c, and BS terms in

Equations [62a,b,c], then if S is small enough, terms containing S2 may be

neglected, and positive damping will exist. As S increases, the damping

may decrease until it vanishes at a speed SF, so that at this speed a

steady harmonic vibration may occur. As S increases above SF, the damping

becomes negative and the amplitude of vibration increases without limit

(according to the linearized equations).* Such a self-excited vibration

is called flutter, and the speed SF is called the (critical) flutter speed.

At this speed the energy lost through damping forces is just offset by

energy supplied out of the water by means of the lift force; see Reference

7.

The numerical solution of Equations [62a,b,c] and determination of

SF (if such a speed exists) presents a complicated problem, conveniently

soluble only with the help of a digital automatic computer. Alternatively,

an analog network may be used. In general, solutions are sought for SF,

c, and the degree of damping as a function of speed; see Reference 7, page

39.

8.4 NETWORK REPRESENTATION OF DAMPING AND LIFT TERMS

The substitution of electrical quantities and the division of the

equations by al, a2 , a3 , respectively, which resulted previously in the con-

version of Equations [13a,b,c] or [18a,b,c] into Equations [22a,b,c], give

*In practice the increase would lead to structural damage unless it were
brought to a halt by nonlinear effects that are not represented in the
linear equations.



as the electrical equivalent of Equations [36a,b,c]:

m d v + (.....) + pXCv - p 2 1 XBS 2 *
Sdt'

[63a]

+ p XBS [v' + pl(h + L) - p2 bLC" ' ] = 0

P2 d 1 +l x z d .? 2+c( ' W 
I Z t' l PlP XZdt'

[63b]

- p 2 X (h + L)BS2 7' + pp1  (h + L) BS [v' + pl(h + L)' - P 2 bL'] = 0

d J , d + . ) + p2l bLBS2

2  x dt - lP2 xz dt' .2 L

[63c]

- PP 2 XbLBS [v' + pl(h + L)' - p 2 bLC'] = 0

where (.....) now stands for the collection of ks or k and GJe terms in

the corresponding term of Equations [22a,b,c].

The added damping and lift terms require only appropriate additions

to the network already designed and shown in Figure 8. Thus if connections

of the rudder network to the ship network are made, they need not be al-

tered by inclusion of damping and lift networks.

The term p XCv' in Equation [63a] requires a resistor of resistance

(p% C)-1 connected between the v' node and ground; the term pp2 xc( ' -

in Equation [63b] requires, similarly, a resistance (pp2 Xc ) -1 between '

and 7b (or " and ground if b = 0). The terms in BS require a resistance

of magnitude (p XBS) - 1 between ground and a point at which, by means of

two transformers and suitable connections, a voltage is maintained equal

to that specified by the quantity in brackets; all three of the BS terms

are then seen to be represented.

The BS 2 terms, however, present a new problem. Because these terms

are not symmetrical in Equations [63a,b,c], they cannot be represented

entirely by passive elements, but require the use of a nonpassive device

such as an amplifier.

An ideal linear amplifier is a device that accepts as input any
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voltage above ground unaccompanied by current, and delivers as output a

voltage above ground equal to the input voltage reversed in sign and multi-

plied by a constant amplification factor, together with whatever current

the load requires. (The amplification factor is a positive number.) The

output current is supplied from a separate ground connection, so that an

amplifier is really a 3-terminal element. A fairly satisfactory approxi-

mation to the ideal amplifier can be obtained by use of a 3-electrode

electronic tube.

The term -p2p1 XBS
27' in Equation [63a] requires that a current

enter the v' node proportional to the voltage impulse 7' at the ' node,
*1

but without disturbing the current balance at the 7 node itself. Revers-

ing the 2' voltage with a 1:1 transformer and then delivering it to the in-

put of an amplifier produces an output voltage impulse that is positively

proportional to 7', and does not draw any current from the j' node. If

the output terminal of the amplifier is then connected to the v' node

through an inductance of suitable magnitude, the desired current will be

entering the v' node whenever v' is zero. Disturbance by a nonzero v' can

be suppressed by using another transformer to add a voltage drop propor-

tioned to v' in the input to the amplifier; the transformer should be of

such magnitude as to add a voltage equal to V' at the output terminal.

The arrangement thus invented is shown in Figure 28.

The BS27' term in Equation [63c] can be represented similarly except

that here the ' voltage need not be reversed. The BS27' term in the y-

equation [63b] presents a simpler problem. If h + L < 0, so that the

current is to leave the ' node when 7' > 0, a simple inductance of magni-

tude [p2 p 2 (h + L)BS 2 ]-l, connected between 2' and ground, will be suf-.!

ficient. An alternative when 7b = 0, provided h + L is not too large a

positive number (as cannot really happen), is to combine this term with

the last one in Equation [22b], thus:

+ p2P2% IT- (h + L) BS 2"

This expression requires only an inductance of magnitude

p2P 2 - (h + L)BS 2
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R = pAC LI = pP2PIA BS2/A rA, =1

L= p 2 Plx(h+L)BS 2  r3 A3 IR2'=P k c L -'= P =
RI I= c 2 r2 A2 -1 r4 =P (h+L)

R=pBS L =p2 IP 2 xbLBS2/A 3  r5 =P2 bL

Figure 28 - Mobility Analog for Addition of Damping and Lift

Forces on Rudder in Transverse or v, 7, C Motion to
Rudder Network Shown in Figure 8

The ratios rl/A 1 , r3/A3 , and the product'r2A2 are

free. For alternatives to the A2 amplifier, see text.

The triangle is the usual symbol for an amplifier,

with input to the right and output to the left. "Ai"

denotes the numerical amplification factor; the minus

sign before it is a reminder of the voltage reversal.

between 7' and ground. As a last resort, when h + L > 0, a simplified

form of the device used for the other BS
2 terms can be employed.

The additions to the rudder network required by the damping and lift

terms are shown in Figure 28, where the nodes labeled v', 7', ' are simply

the nodes so labeled in Figure 8. However, only the last of the three al-

ternatives for the BS2y, term in Equation [63b] is dhown. Magnitudes are

,IN - 11 - - 1 1 - - - ,- - I--- _ P PP



stated below Figure 28.

Note that the added current -c ('- b) that enters the 'node comes

from the 7b node and correctly represents there the added reaction on the

ship. The currents representing the C and the S or S2 terms come from

ground and have no direct effect on the ship network.

9. SUMMARY

A theory has been advanced for determining the vibrations, including

flutter of a control surface-hull system. The control surface may have 6

degrees of freedom whereas the hull may have additional sprung bodies with

1 or 2 degrees of freedom elastically attached to it at various locations.

The transverse and longitudinal motions of the control surface and

their coupled relations with the hull motions have been treated; the con-

trol surfaces include single rudders, horizontally paired rudders, upper

and lower rudders, paired diving planes, and foils mounted on a continuous

shaft.

Equations of motion derived for flutter analysis based on the Modi-

fied Theodorsen Analysis include structural damping and lift force terms.

Analytical, digital, and electric-analog methods have been devised

to determine the natural frequencies, mode shapes, critical flutter speeds,

and damping of this control surface-hull system and/or parts of this sys-

tem.

The theory and methods of solution established here permit a more

adequate representation of a ship in forward motion and its appendages

(rudders, diving planes, machinery, cargo, superstructures, nuclear reac-

tors, boilers, radar masts, etc.) as a mass-hydroelastic system subject

to vibrations and flutter.

The theory may be used to predict the vibrations and/or flutter

characteristics of a hydroelastic system and to design such a system (or

its components) to prevent excessive vibrations or flutter. General ap-

plication of the theory for an existing or contemplated system requires

evaluation of a specific set or variable sets of hydroelastic parameters,

respectively, for use as data in the digital and analog solutions of the

equations of motion.14,15,2 Based on the solutions obtained for a range



of parameters, graphs and/or nomographs may be devised to aid in the de-

sign of an optimum system with respect to minimum vibrations and avoidance

of flutter for a given speed range. 9

The theory, while having some degree of verification, requires

additional validation through further comparison with experiment. In par-

ticular, it is important to establish the conditions (range of parameters)

for which it is valid.
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APPENDIX A

FEASIBILITY OF MOBILITY ANALOGS FOR ELASTIC
SYSTEMS INCLUDING DAMPING

Consider any elastic mechanical system that is at least not unstable.

If it is attached to other bodies, let the points or areas of attachment be

immovable. The kinetic energy TK of the elastic system can be expressed

as a homogeneous quadratic function of the velocities of the coordinates

of the system,6 assumed finite in number and denoted by ql q2 n. . . . .  ;
thus:

n n n

TK = l i mq + Z Z mij ij [A.1]
i=l i=1 j>i

The potential energy Up, assumed zero in the position of equilibrium, is

a similar function of the coordinates themselves:

n n n
Up = ki q + l i k i j q i q j  [A.2]

2i=1 i=l j>i

The coefficients mi, mij , ki, and kij stand for constants such that neither

TK nor Up can be negative for any values of the q's or q
2 's. Obviously, all

mi = 0 and all ki = 0.

The equations of motion for a conservative system having n degrees

of freedom as obtained from Lagrange's equations,6 or

d TK TK Up
dt - - q -qi [A.3]

can be written in the convenient form

mi i . .q j = - k qi . k.qj [A.4]

hee i + 1 m ii qu o k
ii n ditro

where i = 1, 2... .n and it is to be understood that by definition

i l Unil i l lmlYl wYill HINIIll I WI IInNIimih ml n lu



mji = mij. kji = kij. (Note that in the expressions as written for TK and

Up, j > i always, whereas here this is no longer the case. Note too that
TK
TK- 0, since TK is not a function of the coordinates but only of the

6qi

velocities of the coordinates.)

The equations in this form obviously have the symmetry described

for Equations [13a,b,c]. In each equation qi appears as the leading vari-

able, and nonleading variables occur symmetrically in the equations since

mji = mij , kji = kij. Also, the coefficients m i of all qi's on the left

are nonnegative and those of all qi's on the right are all nonpositive.

This symmetry and these signs may have been destroyed in the equations of

motion as encountered in a given case, but these features can always be

recovered by multiplying certain equations throughout by the proper con-

stants.

To point out that a passive analog network can always be set up for

such a system in spite of the fact that some of the coefficients mij and.

kij may be negative, we show first that both TK and Up can be expressed

as sums of squares with positive coefficients. This is possible because

TK and Up can never be negative.

Let any one of the q's be chosen and labeled q1 , then collect all

terms containing ql or ql into a square term thus:

T m  z + T [l5
TK = 2ml jl J + T2 (q2 . . . . .  n ) [A.5]

I klj 2

Up = 2 k (q +  l qj) + U2 (q2 . . . . . qn) [A.6]

j>l 1

Here T2 and U2 are quadratic expressions not containing q1 or ql; they

contain, however, the following terms added to those already appearing in

TK or Up in order to correct for the unwanted terms introduced by the

first term as written, namely:

2 2

S l j in TK j; -qj --- in U [A.7]

j>1 2ml j> 2
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Now, whatever values q2 ..... qn or q2 ..... n may have, ql and q,

can be so chosen as to cause the square terms in TK and Up as just written

to vanish. But TK and Up as a whole can never be negative; hence T2 and U2
themselves cannot be negative for any values of q2 ..... qn ' 2 . . . .. n'
It follows then that the new coefficients of 2 in T and of q2 in Up can-

q TK q3 P~
not be negative. Thus T2 and U2 have the same properties as TK and Up

themselves.

Obviously, this process can be repeated until all q's and q's have

been included in squares with coefficients that cannot be negative.

A mobility analog network can then be constructed containing n nodes

at which the voltages above ground are proportional to the (q')'s; the ground

may be regarded as an (n + 1) phantom node. A term such as mi( i)2 can
at once be represented by connecting a capacitor between qj and ground, and

a term such as ki(4i) 2 by similarly connecting an inductor. The com-

binations occurring in other squares can be produced by suitable connec-

tions involving ideal transformers.

It can be shown that with a suitable choice of conversion factors,

the same network is obtained in this way as by representing the equations

of motion. Alternatively, the q's can be made proportional to successive

voltage drops between points or lines within the network. An example of

this latter procedure is shown in Appendix B.

If the damping forces acting on the system are all proportional to

either the velocity of the system at a certain point or the difference

between the velocities at two points, then the equations of motion become6

mi qi + E mijqj = - kiqi - Z kij qj - ci 4i - L cij 9j [A.8]
j#i j#i j#i

where ci and cij denote damping constants. By definition a damping force

is always in such a direction that it decreases the energy of the system

(that is, the sum of the kinetic and potential energies). It follows from

this that all ci 0 and cij = cji. (See Reference 6, page 102.)
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APPENDIX B

ENERGY METHOD OF DERIVING MOBILITY ANALOG FOR TRANSVERSE OR
v, 7, a MOTION OF RUDDER ATTACHED THROUGH FLEXIBLE

RUDDER STOCK TO FLEXIBLE HULL

The energy method for deriving an analog, described briefly in Appen-

dix A, is especially convenient in dealing with an elastic system that has

only a few degrees of freedom and for which energy expressions can be writ-

ten down without knowledge of the differential equations of motion. In

designing the ship network, on the other hand, it is more convenient to

work from the equations of motion; also, if the rudder motions are to be

included, it seems less confusing to use the same method in designing the

rudder network. This has been done in the present report.

Since, however, the energy method has found wide application, its

use will be shown here for the v, 7, a motion of the rudder. Expressions

for the energy are found easily from materials already assembled.

The kinetic energy TK of the rudder moving as a rigid body is equal

to the work required to set it moving by means of external forces, hence

STK = f (Yv + M& + TT) dt

= f [my vV + IxC + I 7  - Ixz (& + 7)] dt

by Equations [lla,b,c]. (See also Figure 5.) Thus

1 *2 1 i2 1 2
TK 2 myv + Ix Iz - IxzY [B.l]

This expression can be converted into a sum of squares with positive

coefficients in various ways. The general procedure described in Appendix

A gives, as one form,

1 *2 1 xz 2 1 1xz *2 [2
TK my + Ix I z  7 [B.2]TK =- 2 yIx 2Ixlz

For analog purposes, however, some freedom in the choice of trans-

former ratios may be desirable. Hence the following form is preferred



here:

1 2 1 xz )&2+ 1 ( z  )2 1 Ixz )2TK -- my v+ .Ix .2 - rx 1 2 r& [B.3]

where, to keep all coefficients positive, r has the same sign as Ixz and

is to be chosen so that

lxzl <r = I z  [.a

I FI I 'Z [B.3a]

2 <5

Since Ixz Ix z , at least one allowed value of r exists. Equation [B.2]

results from the choice: r = Ixz/ x . The limits on In = r are necessary

to keep both (Ix - Ixz/r) or (Iz - rlxz) from being negative.

The potential energy stored in the rudder stock at any moment is

equal to the work that would have to be done in producing the elastic

deformation that exists at that moment. If the stock remained undistorted

while its top acquired displacements vb, 7 b, and ab, the bottom of the

stock would receive displacements (see page 11):

vlb =v b + b ; alb = ; 71b 7b

As these displacements change further to vl, ai, and71, the reactions on

the bottom of the stock increase from 0 to -Y1 , -TI, and -Ml. Hence, the

potential energy Up has the value

Up = - Y1  (v1 -Vb" - ) + M (a 1 - ab) + T1 (l- Yb)

Substituting here Y1 , Ml, and T, from Equations [9a,b,c] and vl, al, 71

from Equations [8a,b,c], and also using the notation defined in Equations

[12a,b], we obtain:
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Up= 6k s (v -ba + hy - vb - ab) 2

- 6ksI (v- ba + h7 - vb - ab)(a - ab) [B.4]

1 2 2 1 GJe 2
+ (3k s + k) (a - ab) + 2 ( Y - 7 b)

or converting into a sum of squares with positive coefficients by the

usual procedure, we obtain:

Up = 6k s v - (b + . ) a + h7 - vb - b

1 2 '0ab]

[B.5
1 2 2 GJe 2

+ 2k (a - ab) +-2 --T (- b)

For a mobility analog, use the following conversion relations:

v = bly'

v = pblv

t = pt

a = b 3 &'

a = pb 3 a

TK = q K

= b2 2

7 = pb 2 7

Up = q Up

Here TK and Up are electrical energies representing TK and Up. Let bl,

b2 , b3 , p, and q all be positive. Substitution in Equations [B.3] and

[B.5] gives

S I m , )2 I ( )2 I ,, ( )2 1
TK = m (v') + x a z 7 2 Ixz (&' - ry') 2 [B.6]

Up (12ks) v - (b + ) a + h
2p= v' 2

[B.7]

(Y" - )2
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where

( 1 xz13 2
qmy = 2y ;Kl x

= Ix - b,) ; ql z = (1 z - Ixz)b 2 ;

q I x b
xz 3

2 2 2 2(GJe ' GJe p2 2
q (12k)' = 12 ks p b, ; q (k 2 kg p b- 2(= p b 2

r r 2 (b + ) (b + 1 b)3  h' = h b2

1 'g' 1 b3

Here, for convenience, the transformer ratios have also been stated.

In the usual procedure, v', ', and *' would now be assumed to be

voltages above ground. In ship theory this method is the most convenient.

For a system involving only a few variables, however, a slightly neater

result is obtained by using different reference lines for the separate

variables.

Let v', ', and ' be voltage drops between successive pairs in a

system of four nodes or lines, numbered 1 to 4 in Figure 29. The first

term of TK may then represent the energy in a capacitance m subjected to

the voltage v', and similarly fQr the other terms of TK. The combination

of 7' and &' in the last term of Equation [B.3] requires a transformer.

Analogously the terms of Equation [B.7] require inductances.

In a term such as (12ks), (v,) 2 for example, v' = f' dt' so that

v' is a voltage impulse; if v' is the voltage drop across an inductance L,

the current through the inductance is 1 f d = v', and the energy

stored in the inductance is (v . Hence, to represent the term just

I -I
cited, L = [(12ks) ]-. In U' a similar term occurs with v' replaced by

a combination that must be obtained with the use of transformers.

The terms v, a, and may be represented by voltage impulses
The terms vb', ct , and yb may be represented by voltage impulses

~~ ~-II IIIYIIIYLII

5-C~I I _ I I I II I - ----

MHIMIM Mmom lliYlY ..



+

(12 ks)']

II /BUp I

I I+
d OT I b

dt' O

Figure 29 - Alternative Mobility Analog for Rudder in Transverse
or v, 7, a Motion Attached to Moving Hull

Transformer signs are shown for
positive F, b + -. , h, and I.

across three gaps located as shown in Figure 29. To add ( )' b to v

requires a transformer.

The network thus designed is shown in Figure 29. Transformer con-

nections are shown for positive values of 7, b +-., h, and 1; if any one

of these quantities is negative, one + mark is to be moved to the other

end of the winding on the corresponding transformer.

Note that the left and right halves of the network, representing,

respectively, T' and Up, must be connected, thus representing the fact

that only the sum TK + U is constant.
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It remains to be shown, however, that a correspondence thus estab-

lished at one moment between a mechanical and an electrical vibration will

persist.* In an isolated network, i.e., network not connected electrically

to anything else, the electrical energy must remain constant, as does the

mechanical energy of an isolated system. This condition does not determine

the mechanical motion, however; it is necessary that Lagrange's equation be

satisfied:**

d TK +Up
dt j qj =

where q = v, a, or 7. This equation holds even when vb, ab, and 7 b vary

with time.

The corresponding electrical equation, obtained by substituting the

conversion relations in Lagrange's equation and then canceling out q, p,

and the b's is:

d TK UP
+ - 0

dt' q ~q q

*Consider any given motion of the mechanical system with total energy

TK + Up. At a given time tl, we may start the network with voltages and
' = ( TK + Up)

currents satisfying 4 = bl', etc., and with total energy TK +U= (TK +U.)
K P q

Then this relation between the total energies will persist, since both sys-
tems obey the conservation of energy (hence TK + Up does not change, nor-
does TK + U). Now is it possible for the currents and voltages at time
t > tI to wander off so that the ratios 4/v' change, but of course in such
a way that TK + Up does not change? The proof given is supposed to show
that the voltages and currents will not wander off in this way - the cor-
respondence once established (in terms of certain values of b, etc.) will
persist.

If the analog is set up from the equations of motion, this proof is
d4. d4'

not necessary; m is matched by C , etc., so that electrical quan-

tities obviously change with time at the right rate.

**The correctness of Up and TK can be checked by comparing the equations
of motion previously derived by using Newton's laws with the equations of
motion derived from Up and TK by using Lagrange's equation.
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where q' = v', a', or y'. If this equation holds for electrical vibrations

in the network, the correspondence between v and v' and v and v', etc.,

will continue to hold. Now from Equations [B.6] and [B.7] and Figure 29,

d biT 3U1dwe can see that + is the sum of the two currents flowing
dt' -' 3v'

downward from Line 3 into Line 4 from which there is no outlet. It can be

reasoned next that the sum of the currents flowing downward from Line 2

must vanish, and similarly for Line 1. Hence the electrical Lagrange

equation will hold in the network.

It should be noted that the network shown in Figure 29 does not dif-

fer essentially from that shown as choice II in Figure 8. In fact, if

q = b2/X, as in Equation [B.8], and if pl and p2 , that is, b2/b1 and b3/bl,

have the same values in the two cases, then the only difference is that in

Figure 29 the interior Line 3 above the v drop serves, in effect, as a
I *1

"ground or reference line" for ', and Line 2 serves similarly for 7y

This difference affects some of the actual voltages in the network but not

the voltage differences that control the currents.

That the elements and transformer ratios are the same is easily veri-

fied by comparing the values given for Figure 29 with those given at the

end of Section 4.3 for Figure 811. For example, after substituting (see

[l=b 3r' _p 2r Euton[.a
equations following Equation [B.7]) I- = b 3r ' = - , Equation [B.3a]

b2 P1

becomes

Ixz P2 , Iz
- r

Ix P1 1Ixz1

so that the range of choice for r' is the same as for r" in Figure 811.

Also

S 1 b3 1 1 b2 b2 1Ixz
xz q Ixz = 3 b3r xz 1 2 r'

so that Ix = C4 if r' is chosen equal to r". Again,
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m = Nm = Cl ; (12k)' = X(12k s p2 ) = LI

Choice I in Figure 8 would have been obtained if Equation [B.2] had

been so written that the last term contained ( - _r )2, r being different

in valud. Choices III and IV result merely from choosing an extreme value

for the transformer ratio.

An increase in q decreases all capacitances pnd increases all induct-

ances in proportion to q, thereby decreasing the network currents caused

by given voltages; however, there is no effect on the natural frequencies

of vibration or on the mode patterns.

If the rudder bearing is fixed so that vb = ab = 7b = 0, the gaps

shown in Figure 29 are to be closed. In this case, it is simplest to

choose q = 1. Such a choice does not restrict the range of possible values

for the elements, since the same changes in the elements can be made either

by changing q in a certain ratio or by changing b 2, b 2 , and b3 in the in-

verse ratio. The correspondence between mechanical and electrical vibra-

tions is altered by such changes, but this is of little interest because

the amplitude of vibration is arbitrary in any case. If, on the other hand,

the bearing is forced to vibrate in a certain way, corresponding voltage

drops are to be impressed upon the vb, &b, and 7b gaps in the network. In

this case, a choice for q other than unity may be preferable.

Connections to the ship network can be made provided two precautions

are observed. Let the ship network be extended as in Figure 9 to provide

vb, b, and yb nodes. Then Line 4 of the rudder network may be connected.

directly to the ground line for the ship network and the top of the gap

labeled vb, to the vb node just specified. The other two gaps, however,
"I

require 1:1 transformers in order to impress the voltage drops, between b

and 7b and ground in the ship extension upon the corresponding gaps pro-

vided in the rudder network.

Furthermore, the conversion facLor for energy must be the same for

both networks. This requirement may be regarded as arising from the fact

that in both the mechanical and the electrical systems energy lost bysthe

rudder is gained by the ship and vice versa. In Section 4.4, however, it

was required that, besides bl, b 2, b3, the conversion factors al, a2 , a3
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from force or torque to current must be the same for rudder and ship, but

this is easily shown to be equivalent to identity of the energy factors.

Consideration of any element described in Section 4.3 and shown in Figure

8 leads to the conclusion that

2
q --- pa l b1  [B.8]

For example, the electrical energy in the m capacitor is

1 , *)2 1 (v 1 *2y m (v') or ( (Amy) bl or 2( my V2 )

so that the mechanical energy is b2/X times the electrical energy. Since

p, al, and b, were all required to have identical values in rudder and

ship network, the same was true of q.
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APPENDIX C

RUDDER RESONANCE

When a natural frequency of the rudder lies close to a frequency of

ship vibration, large amplitudes of rudder vibration become possible. In

such cases it may be important to make sure that any vibration of the

rudder-ship system that may occur in practice will not cause damage to the

rudder structure. For this purpose calculations can be made by the methods

described in Sections 4 and 5 of the present report, either numerically or

with the use of electrical analogs. Near rudder resonance, however, use-

ful simplified formulas can be obtained.

1. Transverse or v, 7, a Rudder Motion

Transverse motion of the rudder will be considered first. To shorten

the notation, write

MY Je 1 I

12ks ; -T k 2 
( + 2b) = b0

Assume harmonic motion so that v = -2 v, etc., and simplify Equations

[13a,b,c] for calculation by dividing Equation [13a] through by ks, sub-

tracting the original Equation [13a] multiplied by h from [13b], and add-

ing the original Equation [13a] multiplied by (b + ! ) to Equation [13c].

The modified equations thus obtained can be written, for harmonic motion:

2 1(1 - i )v + h7 - boa = vb + ab [C.la]

hm y 2 v + (kT - I z 2 ) 7 + Ixz 2 = kT b [C.1b]

- bomyW v2+ Ixzl27 + (k2 - IxW 2)c = k, 2 ab [C.1c]

The natural frequencies for v, 7, a motion of the rudder alone may

be found by setting vb = 7b = ab = 0 and equating to zero the determinant
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D of the coefficients of the v, 7, a terms. The equation thus obtained

has the form

D = - Ix z [6 + 0 4 + W2 (...) + ... ] = 0

This cubic equation in w2 has three roots, W2 2, and 02 , which are the

squares of the natural circular frequencies for vibrations of the rudder

with the top of the stock fixed. In terms of these roots, the expression

in brackets can be written for any w a s (w2 W 2) ( 02 _ )( 2 _ ).

Hence, in general,

D = IxI y [06 + 4 (..) + 2 (. . .) + ... ] = 0

Solution of Equations [C.la,b,c] for v, 7, and ce by the usual method

of determinants gives (the solutions v, 7, and a have been multiplied

through by D):

Dv = (vb + 1 Ub) kTk 2 - (kTI + k8 2 Iz) W2 + (x z  z) 4

- 7 b kT [hk2 2 - (hlx - bo Ixz) 02 ] [C.2a]

+ ab k 2 [bo k T- (b o Iz - hIxy) W 2 ]

D7 = - (vb + b) y [hk 2 - (hl x - bo Ixz ) w2

+ 7bkT [k 2 - (b 2 m + Ix + k1 2 ) c 2 + tI x c4] [C.2b]

- b k i 2 [2 hbomy + Ixz - xIxz 2

Da = (v b + 1 my 2 b o k - (b o z - h Ixz) 2 ]

- 7bkT w2 (hb o my + Ixz - ixz W2) [C.2c]

+ ab k i 2 [ kT - (Q kT + h 2 m + Iz)w 2 + Iz W 4
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The corresponding reactions on the ship at the rudder bearing are (from

Equations [15a,b,c] with the left-hand members of Equations [13a,b,c] sub-

stituted for Y, T, M):

2
Yb = my v [C.3a]

Tb = 2 (-hmyv + Izy - Ixz) [C.3b]

Mb = 2 [( + b)my v - IxzY + IxC [C.3c]

From the formulas [C.2a,b,c], v, 7, and a can be calculated provided w2
2 2 11*

~2 3, Vb 7b' and ab are known or assumed * (unless o = wl, W2 , or 3)'.
If w lies close to one of the natural frequencies, say wl the latter may

be substituted for o without great error in the right-hand members of

Equations [C.2a,b,c] and also in the determinant D, except in the factor

2 2(wl - w) that occurs after wl - o has been replaced by (wl - w) (wl + w).

Furthermore, if the ratios of the displacements v, 7, and ce during a free

w 1 vibration are known, it may be sufficiently accurate to calculate from

the formulas only one displacement, perhaps v, and to find the other two

from the known ratios.

The approximate values of v, 7, and a thus obtained are proportional
1

to , or, to make the factor of proportionality nondimensional, they
Wl - aW

are numerically proportional to R, where

ool ool

R 
=  =

ol - Ws W - Wl

When w is near l, the value of R may serve as a rough measure of the reso-
1

nance effect. If o < 0.7 l, or w > 1.3 wl, R < 3.4; if - l l'

R > 5; if Io - il <T - l, R > 10. When R < 3 or 4, the approximation

*In Appendix A of Reference 12, rudder-hull calculations were made in

which the rudders were treated simply as an equivalent sprung mass tuned
to the frequency of the second horizontal mode as computed without the
sprung mass effect.
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that has been made is likely to be poor, i.e., the resonance effects may

probably be ignored, but it becomes better as w moves toward wl. If R > 10

there is certainly a decided resonance effect. Of course, either W2 or W3

may be used instead of l.

It can be shown that the ratio 7/v during an wl free vibration is

equal to the ratio of the coefficient of 
7 b in Equation [C.2b] to the cor-

responding coefficient in [C.2a], provided w is replaced by wl in both;

and 7/v is also equal to the similar ratio of the (vb + 2ab) or theab

coefficients.* Similar statements hold for a/v or al/7. It follows that as

expected near resonance, the vibration pattern approximates the pattern for

free vibration independently of the relative magnitudes of vb, 7b , and ab"

It may be that a complete analysis of the rudder-ship system might

not predict an infinite rudder amplitude even when w = wl, because the re-

actions on the ship would then reduce vb, 
7b, and ab either to zero or at

least to a combination of values consistent with limited values of v, 7,

and a. This feature is well known in the case of a sprung mass whose am-

plitude at exact resonance becomes only large enough to hold its base at

rest.1 ,2  Probably the corresponding situation cannot be reached with a

rudder except as a result of structural damage.

*Proof: Set right-hand members of Equations [C.la,b,c] to zero and let.

w= wi. Then D = 0 and nonvanishing values of v, 7, and c can exist.

To find 7/v divide [C.la] and [C.1c] by v and solve the resulting equations

for 7/v. We obtain

S [( - m2)(k 2 - I x ) -b2 my ]

Sh (k2 x wl) + bo Ixz ]

coefficient of 7 b in [C.2b]
= ~with a -mI

coefficient of 
7b in [C.2a] with w wl

Other ratios can be checked in the same way. Omitting Equation [C.la]

gives 7/v = ratio of coefficient of (vb + 1 ab), etc.
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2. Longitudinal or u, w, P Rudder Motion

For longitudinal motion of the rudder, corresponding results are

obtained; only the equations need be given. Let

EA mx
ka l 12ks

By the addition of bo times Equation [27a] and h times [27b] to [27c], the

division of [27a] by 12ks, and the assumption of harmonic motion, we con-

vert Equations [27a,b,c] into the following:

(1 - o 2)u - bo = ub + 8b [C.4a]

(ka - mz M2 )w + hmz w2p = kawb [C.4b]

- bomxw 2 u + ka hwl + (k 2 _ Iy o2 )p = kahwb + k1 2 b [C.4c]

The determinant D of the coefficients can be written

-2 2 -2 2 -2 2D = mz y ( l- - )(0 3 - o)

in terms of the three circular frequencies ,1' (2 9 3 , for free u, w, p

vibration of the rudder with the top of the stock fixed. The equations

yield

2 2 22 4
Du = (ub + b)[kak 2 - (kah 2 mz + kY2mz + kaly) 2 + mzI yO 4 ]

2 [C.5a]
wb k a h b o + (kahw b + k12b ) bo (k - mz  2C5a]

aawb o a m(O)

1 4Dwl = - (ub + 2 b) o mx mz o4

+ bka [kI 2  (k 2 + bo mx + Iy)C02 + ylyo 4 ]

[C.5b]

- (kahwb + k 2 b)hmz 0 2 ( - C o 2

109

AlUYII gI mlMYI IYI ni

'~3 ----- - Ifl I ^-L II~LI-WCUII-

_ II_



2 2
DfB = (ub + b ) b o m x 2 (ka - mz ) - Wbkah (1 - ( 002)

[C.5c]

+ (kahWb+k2 2 b ) )[ka - (Qka+mz)C)2 + tmyC4

The reactions on the ship are (from Equations [30a,b,c]):

Xb = max 
2 u

Zb = 2 (mzw 1 - hmz i)

Qb =  2 C( + b)mx u - hmzwl + (Iy + h2mz)]

Remarks similar to those following Equations [C.3a,b,c] may be made

with appropriate changes in the case of longitudinal vibration.

MOBILITY ANALOGS

Apparently there is no simpler way to investigate resonance in a

rudder-ship system with use of a mobility analog than to set up the usual

network and vary the natural rudder frequency past the ship frequency by

suitable variation of one or more of the network elements.
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APPENDIX D

SHAFT ROTATION IN S-BENDING

Consider a cantilever shaft with load L at the right end. Imagine

the shaft divided at a certain point and moved apart there; see Figure 30a.

At the gap, which may be anywhere, there are two shear forces, L acting on

Section A and -L acting on Section B. L is here designated as "the shear

force" meaning that it represents the shear force acting towards the left.

Then in the cantilever the shear force is uniform and equal to L.

In Figure 26, P and P1 are the shear force acting toward the left or

toward 0. Let us now consider the effect of the bearing on the shaft rota-

tions for the cases where P1 = P, P1 = -P, P1 # P or -P.

1. P1 = P

In this case the forces on the ends of the short section of the shaft

inside the bearing are equal but opposite (-PI or -P and P), as shown in

Figure 30b. These forces tend to bend this section like an S; but this

bending may be ignored.

The shear force is P at one end and P1 at the other end; but P1 = P

in this case, hence the shear force must be uniform throughout the bearing,

accompanied by uniform shear warping, which is assumed not to be interfered

with by the bearing. Thus there is no shear effect, and ebl = eb = 0b2

2. Pi = -P

This case is illustrated in Figure 30c. Note the reversal of shear

warping as the shaft passes through the bearing. The force -PI or P on

the left end of the bearing tips the shaft upward and thereby decreases

its slope from b to eb - 2o P. Hence, eb = eb - 2 aP.

3. Pl # P or -P

The pair of shear forces P1 and P can be divided into the following

two superposed sets:

(a) 1 (P + Pl) at left and - (P + P1) at right.

(b) - (P - PI) at left and 1 (P - P1l) at right.
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A B

Figure 30a - Shear Forces Acting on Shaft

Shaft

P (=P)

-p (=P~l z-p
I Shaft Bearing

Figure 30b - Shear Forces Acting on Shaft at
Bearing Terminals when PI = P

Shaft,

Bearing

P= P/ KAG=9b2- 
b

/Ob2-ebI=-

P,(=-P)

>0

Figure 30c - Shear Forces Acting on Shaft at

Bearing Terminals when PI = -P

Figure 30 - Shear Forces and Rotations for Shaft Passing through a Bearing
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In both cases the force "at left" acts, not on the shaft in the bearing,

but toward the left, like P1 in cases 1 and 2.

In the first set, the two forces - (P + PI) are equal and in the

same direction, as were P1 and P in case 1. Hence, the same reasoning as

in case 1 leads to zero shear effect, so that this set introduces no differ-

ences between ebl, eb and eb2.
In the second set, however, the force -- (P - PI) at the left is

equal and opposite to the force !(P - PI) at the right, just as in case 2

PI = -P. Hence, this set introduces differences as in case 2, except that

here (P - PI) replaces P.

Therefore, in general,

ebl = eb - (P - PI) , b2 = eb + o (P - Pl)

113

~Clrwrr)ni lu*



P

Figure 31a - Forces and Moments Acting on a Uniform Cantilever

P+dP

SM+dM

Figure 31b - Shiear Warping in Shaft

Y z P P+dP

I -0

x x+dx

-dx -,J

Figure 31c - Variation in Shear Warping for Sectidn of Length dx

I
I -yOI

Displacement -yO .
" b I Displacement

y Neutral y
Axis

Enlarqed Cross-Section

Figure 31d - Displacement and Stress Associated with Pure Bending of a Shaft

Figure 31 - Forces and Moments Acting on Uniform Cantilever and

Associated Shear Warping and Bending Displacements

Displacement is positive toward +x, hence it is negative
here. Actual direction of ab, if ex is positive, is negative
as shown; ab is positive toward +x.
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APPENDIX E

ENERGY RELATIONS FOR A UNIFORM CANTILEVER

Let a uniform cantilever be acted on by a force P and a moment M,

resulting in a displacement v and a slope e at the end; see Figure 31a.

The relations of v and 0 to P and M can be found from Equations [7] and

[4]. These particular equations are not affected by the "fourth boundary

condition," which does not hold in the present case because the free end

of the cantilever is not connected to anything, i.e., the rudder; this

end is, therefore, free to shear-warp to suit itself.* Substitution of

dy' = e, z = 2, and y = v in Equations [7] and [4] yields**
dz

E-v = 3 + p + g M
3 KAG 2

(1 y2 EI

EI= ~ 2 + G P + IM

The coefficients in these equations are not symmetrical; e.g., the coeffi-

cients of M in the v equation and P in the e equation are not equal. How

is this consistent with conservation of energy?

If W is the work done by P and M gradually applied, elementary anal-

ysis gives

dW = Pdv + Mde

2 E 2Pd 1(22 El1- -- " + -~ PdP + PdM + - + MdP + 9MdM
E- [(13 KAG 2 (2 KAG) d

whence, integrating between the limits P = 0, P and M = 0, M, we have

*Of course, the actual shape of the end will depend on how the P stresses

are distributed over it; we tacitly assume these stresses to be distributed
as they would be if the cantilever extended onward beyond this point.

**Henceforth x replaces z so that d becomes dv ; see Figure 31a.
dz dx
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W = 1E3 212 + 2 P M + I M2 + E dPEI +2KA2_ 2 KAG jo I

The last term is not unique. For example, if P is applied while

P P
M = 0 and the M is added,f MdP = 0 dP =0, whereas if M is applied

P OP i0

first and P is added, f MdP = M f dP = MP. The first three terms of W

are the same; however, P and M are applied, and the final state of the

cantilever is the same. Hence, it appears as if two different amounts of

energy can bring the beam to the same final position, depending upon the

manner in which M and P are applied. In other words, energy does not seem

to be conserved in a conservative system.

The source of this apparent dilemma is the shear warping effect which

has not been taken into account, thus making the expression for W incomplete.

As P and M change, the shear warping at the end changes, perhaps as shown

in Figure 31b. M does negative work on the end of the cantilever in such a

case;* the amount of negative work by M (or by M stresses) when shear dis-

tortion of the end cross-section changes, will now be calculated.

Let s(P, y, z) be the x-displacement due to shear warping, or

s = Pf (y, z). It may be assumed that ffsdydz = 0, hence (see Reference

13) fff (y, z)dydz = 0 since P # 0; see Figure 31c. The unknown function

of f (y, z) can be connected with the shear-warping constant K by the fol-

lowing analysis:

Consider a case in which P varies along the beam. In such a case
dP

sx+dx > sx by the amount ds = Px f (y, z)dx; Px =  " Thus the strain in

the corresponding longitudinal fiber is = P f (y, z), and the associa -

ted normal stress is a = EPx f(y, z), the stress force acting across the

*When P and M change, the change in shape and position of the cantilever

is as shown in Figure 31b. The change in e gives for work due to M, the
value used in the usual "elementary analysis" Mde. But M is applied by

means of stresses, as shown by small arrows. On both the upper and lower

part of the end cross section, the additional displacement of elements due

to ds caused by dP are opposite to the stresses. Hence, negative work is

done by the M stresses when P increases and warps the end cross section

more (negative at least, provided M and P have the directions shown).
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cross section on the material lying to the left of it being directed toward

+x if Px f (y, z) > 0.* Therefore, the shear-warping moment Ms , positive as

shown in Figure 31c, is

Ms = - ffyodydz = - EPx ffyf (y, z)dydz

The level from which y is measured here does not matter because it has been

assumed that fff(y, z)dydz = 0 so that adding a constant to y does not

change this equation.**

From Appendix A2 of Reference 3 (Equations [A25b] and [A26]), when

KAG is uniform

El
Ms E Ps KAG x

since P here = -V there. Hence, we conclude that

ffyf (y,z)dydz - IKAG

Along the cantilever, however, P is uniform; hence Px = 0 and a = 0.

Normal stresses on the cross section arise only from bending and have their

usual values. In pure bending, on the other hand, the cross sections re-

main plane, hence the x-displacement is -y9 at a height y above the neutral

axis which is taken as the reference level for bending, the strain is -yex,

and the stress is ab = -Eyex (ab is the force acting on the material lying

toward -x, taken positive toward +x as shown in Figure 31d).

Now let P change with time by an amount dP. Then ds = f (y, z) dP and

a = +EPxf (y,z). If Px > 0 and f (y, z) > 0, then a is in tension,
so that the stress force acting on the material lying on the side of the
cross section toward x < 0, taken + in the direction of x > 0, is positive.
Therefore, a > 0.

**fff (y, z)dydz was assumed zero to make ffs dydz = Pfff(y, z) dydz = 0.
Making ffs dydz = 0 makes the total x force on a cross section zero when
P varies with x and so stretches or compresses the fibers; the total x-
force will then be Effsxdydz =EPxffff(y, z)dydz = 0. Thus shear warping
will be cleanly separated from longitudinal stretching or compression.
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integrating, the work done by cb on the end of the cantilever due to dP is

ffcbds dy dz = - ff (Eye x ) f (y, z)dPdydz

- - Eex dP ff yf (y, z)dydz

or inserting M = EIex (ex being the curvature) and the value found for

ffyf (y, z)dydz, the work is

dP
(I /

MdP
KAG

Thus the total work done by the applied P and M is not Pdv + Mde but

MdP
dW =  Pdv + Mde - M --

KAG

+ L PdP + -2 PdM + -N 2MdP + MdM
KAG 2 2

from which

W = [( + EI
2KAG

2 + - 2pM + M 2

2 2. I

Thus the law of conservation of energy holds.
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and flexural modes of rudder vibration and which are predictable by calcu-
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cient magnitude to cause appreciable hull vibration, and excessive wear and

tear of the rudder and attachments."

"(2) The tests are, however, an introduction to the study of an in-
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