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HYDRODYNAMIC SOURCES OF SOUND

H. M. Fitzpatrick and M. Strasberg
David Taylor Model Basin

ABSTRACT

The paper describes the various flow phenomena that result in underwater
sound in flowing water, and reviews the recent experimental and theoretical investiga-
tions of the sound sources. Four distinct sources of hydrodynamic noise are discussed:
entrained air bubbles; vaporous cavitation; surface disturbances; and unsteady flows.
For each of these, brief descriptions are given of 1. the physical mechanisms involved
in the noise generation; 2. the available experimental data; 3. the theoretical methods of
analysis; and 4. the relations between the flow parameters and the amplitude and spectral
distribution of the sound.

I. INTRODUCTION

Sounds associated with flowing air and flowing water are everyday experiences.
Examples are the splash of water and the proverbial babble of the brook, the howl of
the wind, the hiss of escaping air, and indeed all the sibilant and aspirate sounds of
speech itself.

Despite their familiarity, sounds from flowing fluids have received comparatively
little scientific attention. Although most text books on acoustics discuss at length the
sounds produced by vibrating bodies, the equally-common sounds associated with flow
are usually ignored.

Within the past decade, however, interest in hydrodynamic and aerodynamic
sources of sound has increased. At the same time, a theoretical foundation for dealing
with these acoustical problems has been provided by recent developments in fluid
dynamics, particularly in the study of turbulence. As a result, important advances in
our understanding of hydrodynamic noise have been made since Folsom, Howe and
O’Brien [1] reviewed the subject in 1942.

The study of hydrodynamic noise involves a combination of hydrodynamics
and acoustics. These two subjects were closely allied in the classical physics of the
nineteenth century; Stokes, Helmholz, Rayleigh, and Lamb, for example, contributed
to both. But in recent years they have grown apart; acoustics becoming associated
with electronics, while hydrodynamics concentrated on problems of steady motion.
As a result, many workers in each of the fields are scarcely aware of developments
in the other. The study of hydrodynamic noise requires a reunion of the two disciplines.

The object of this paper is to describe the various flow phenomena that can
result in sound, and to review the recent theoretical and experimental investigations that
have led to a partial understanding of the relations between the flow parameters and
the intensity and spectral distribution of the resulting sound. Because this symposium
is concerned with naval problems, it is appropriate to limit the discussion to underwater
sounds associated with the flow of water. The discussion will also be limited to those
sounds which can be_considered to be “noise” in the sense that the sound is either
undesirable or else an incidental concomitant of the flow.*

* The generation of sound by underwater sirens and other devices specifically designed
to act as sound sources is discussed by Bouyoucos.(2)
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Underwater sounds are ordinarily detected by devices sensitive to pressure
fluctuations. These devices are called “hydrophones,” and they are simply waterproofed
microphones. Accordingly, the physical quantity of interest in hydrodynamic noise is
generally the fluctuating pressure associated with the hydrodynamic flow. The magni-
tudes of the fluctuations of interest are very small compared with the pressures
ordinarily met in steady hydrodynamics: a pressure fluctuation of only 100 dyne /cm?
(a head of about 0.04 inch of water) is an intense sound in water. The power associ-
ated with these fluctuations is also very small: the entire underwater sound output of
a noisy ship is only a few watts. It is thus apparent that hydrodynamic noise may
stem from second-order effects which have no influence at all on the more obvious
characteristics of the flow.

It is convenient to classify the various forms of hydrodynamic noise according
to the grosser flow phenomena with which they are associated. Four categories will
be considered here: 1. Air bubbles entrained in water, 2. Vaporous cavitation, 3. Sur-
face disturbances such as splashes, and 4. Unsteady flows such as vortex shedding and
turbulence. Each of these phenomena requires somewhat different methods of analysis;
accordingly they will be discussed in separate sections, the order being chosen merely
for convenience of exposition.

II. ENTRAINED GAS BUBBLES

Perhaps the most commonplace of all the sounds in water are those associated
with bubbles. Sound is generated when bubbles form, when they divide or unite, and
when they stream past an obstacle in a flow or through a constriction in a pipe.

The sound of bubbles forming at a nozzle was investigated by Minnaert [3] in
1933, and later by Meyer and Tamm [4], who showed that the sound was associated
with volume pulsations of the bubble, and that in these pulsations the bubble behaved
like a simple oscillating system with damping. The frequency of the pulsation was
calculated by Minnaert and the damping by Pfriem [5] among others.

When bubbles are observed as they rise through a liquid, large oscillations in
their shape are apparent. It is natural to ask whether the sound associated with these
shape changes is significant relative to the sound from the volume pulsation. This
question can be answered by representing the vibration of the bubble wall by a sum
of spherical surface harmonics (see Lamb [6] §294)

R(0,6,8) = Ro + Z.A4.8,(8,¢)emi/nt, 1)

where R is the instantaneous radial coordinate of a point on the bubble wall, as a func-
tion of the spherical angles § and ¢, and time t; R, is the mean radius of the bubble;
$,(0,¢) is the surface harmonic of order n giving the variation with the angles;
i= \/:1; and A, and f, are the amplitude and frequency of oscillation for the n-th
order. The zeroth order, with S, = 1, corresponds to volume pulsation, the first order
to translational oscillation, and the higher orders to oscillation in shape with n nodal
lines.

If the amplitude of oscillation is small, i.e., if 4, <R,, the oscillations of each
mode contribute .independently to the sound pressure. Far from the bubble, the sound
pressure amplitude p, associated with oscillation in th¢ r-th mode at frequency f is
given by

pA R (2nf) 2= (1kRo)"S,,
L D)[35- - (2n—1)] -

where r is distance from the bubble, and k = 27xf/c. The derivation of this equation
assumes that the bubble is small, so that AR,< 1, and that the distance is large so that
kr> 1.

2)

Pn
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damping; and the dots indicate time derivatives.* The volume oscillates sinusoidally
with decaying amplitude about its mean value. Accordingly, the instantaneous sound
pressure is also a decaying sinusoid represented by

Pa(t) = poe™™¥o* cos (2xfot — &), (6)

where £, is the natural frequency of pulsation as given by Eq. (3a), and =8 is the
natural-logarithmic decrement of the oscillation. The amplitude p, and phase constant
9 depend on the initial conditions exciting the bubble. (For an air bubble in water at
atmospheric pressure, f,R, = 330 cm/sec; and =8 = 0.0045 + 0.0014(f,sec)V2, the
two terms resulting from radiation and thermal dissipation, respectively.)

For a bubble leaving a nozzle, the constants which depend on the initial condi-
tions can be evaluated from the radial velocity attained by the growing bubble just
before it separates from the nozzle. The sound pressure was calculated in this way by
one of us {7} using values of the radial velocity measured on motion pictures of the
bubble. The calculated sound pressures agree quite well with the measured values. The
frequency and decay rate also agree with the theoretical values. Accordingly, it can be
concluded that the generation of sound at bubble formation is well understood.

When bubbles split or unite, a pulse of sound is generated just as at bubble
formation. In this case the excitation is caused by a change in the pressure inside the
bubble: the single larger bubble has less surface tension pressure. If a bubble splits into
two smaller ones of equal size, the peak sound pressure of the pulse at distance r can
be shown to be of the order of 0.5T /r, independently of the bubble size. This value is
considerably less than the pressure generated at bubble formation.

Sound from entrained bubbles.—Probably the most important sounds result from
the flow of entrained bubbles past a body in a stream. The bubbles experience a
transient pressure as they move through the hydrodynamic pressure field around the
body. The transient pressure causes the bubbles to pulsate and radiate sound.

The pulsations are described by a differential equation like Eq.(5) but with a
forcing term on the right side equal to P, — p.(t), where p.(t) is the instantaneous
environmental pressure, i.e., the pressure that would exist in the liquid at the bubble
location if the bubble were absent. The solution of this equation is conveniently ex-
pressed in terms of Fourier transforms.

If a Fourier transform A(f) of the environmental pressure is defined by

h() = [ [p) = Poleteirt dy, (7

then the transform s(f) of the sound pressure radiated by the bubble can be calculated
from
(R 0 /r)e—ikr
8(f) = ——————h(); ®
(off)* — 1 +id

where the entire fraction is the response characteristic of the bubble. The spectral
density E(f) of the sound energy is related to these transforms by

E(f) = (8wr?/pc) [s(f)I?, 9)
E(f) being defined so that the energy radiated by the bubble in a narrow frequency
band of width Af is Af E(f), and the total sound enérgy radiated over the entire fre-

quency range in all directions is [ °: E(f) df. If a large number of bubbles radiate simi-
lar transients at random intervals with average repetition frequency N, the spectral

* When written in terms of the volume, Eq.(5) gives an approximate description of
the pulsations even for a non-spherical bubble, if R, is taken as the radius of a spherical
bubble of equal volume. Eq.(4), however, is exact regardless of the bubble shape.
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density of the sound power is N E(f), and the rms sound pressure in a band of width
Af is (2NAf)% s(f).

The sound energy tends to be concentrated at the natural frequency f, of the
bubble, because the denominator in Eq. (8) is a minimum when f = f,. However, in
many practical situations the fluctuating environmental pressure is such that A(f) differs
from zero only at low frequencies, much below the natural frequency f, of the bubble.
In this case, the instantaneous sound pressure p,(f) can be expressed directly in terms
of environmental pressure p,(¢') at earlier time ¢’ = t-r/c by

Pi(t) = — (Bo/1) 2afo)?pe(t)). (10)

The calculation of the sound radiated by motion about a particular body re-
quires a knowledge of the environmental pressure at the moving bubble as a function of
time. This can be obtained from the known pressure and velocity field around the
body. If, for simplicity, it is assumed that the bubble follows a streamline, its position
as a function of time is determined by integrating the velocity along a streamline, and
the pressure is then determined from the position. This procedure, although straight-
forward in principle, usually results in expressions which cannot be expressed in closed
form.

These calculations have been carried out by one of us [7] for the flow past a
circular cylinder, with the bubble moving around the surface of the cylinder. The rela-
tively complicated result for the sound pressure is

32p2(]o4Ro:lx 2 Uo 2Uo
ps(t) = ————— | sech?{ —t' } — % sech* t (11)
3vP.R.r R.

where U, is the free-stream velocity; R, is the radius of the cylinder; t is measured
relative to the instant the bubble passes the median plane; and it is assumed that
(2U,/R,) €f,- The waveform of the sound pressure is shown in Fig. 2. The sound
pressure has a negative peak at ¢ = 0 and two smaller positive peaks at ¢ =
=+0.6R./U,. The peak pressure can be quite high: for the conditions U, = 5 meters/
sec, R, = V53 e¢m, R, = 10 cm, the negative peak from an individual bubble is about
16 dyne/cm?® at 1 meter. No experimental work has yet been performed to verify these
calculations.

For bubbles streaming past a cylinder, the sound pressure should increase with
the fourth power of the velocity, as indicated by Eq.(11). In fact, the sound pressure
should increase as U,* for all similar forms of bubble motion, as is apparent from a
dimensional consideration of Eq.(10): the environmental pressure fluctuations increase
as U,? and the second time derivative introduces another factor (U,/L)? L being a
characteristic length.

Large-amplitude pulsations.—The rapid increase of sound pressure with increas-
ing velocity leads to a consideration of the limitations of the linear theory on which
the above results are based.

The large-amplitude free pulsations of gas bubbles have been studied extensively
in connection with underwater explosions [8]. It is known that the radiated pressure
loses its sinusoidal form with increasing amplitudes, the negative excursion becoming
flatter while the positive excursion develops a sharp peak. The same effect occurs in
forced large-amplitude pulsations in response to a widely fluctuating environmental
pressure.

As a first step toward a more-exact description of large-amplitude pulsations, the
radial pulsation is described by a non-linear equation

o(RR + %R? = P — p.(0), (12)

where R is the instantaneous radius of the bubble, and p,(t) is again the environmental
pressure that would exist at the bubble location in the bubble’s absence. Also, P is the
actual pressure in the water at the bubble wall; for a bubble filled with gas obeying the
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Figure.2.. .The sound pressure radiated by a bubble in response to an environmental pressure given by

pe{h = P,—P, sech’at, which is similar to the pressure on a bubble moving around the surface
indicate the de p t of non-linearity for successively

of a cylinder in a flow. The curves
smaller values of P, relative to P,. The solid curve represents the linear range.

adiabatic gas law, P = P,(R,/R)%" — ('ZT/R), where R, is the equilibrium radius of

the bubble at the mean gas pressure P, = P, + 2T/R,; and T is the surface tension.*
The non-linear effects can be investigated most easily if the environmental pres-

sure is assumed to vary in some definite way. For comparison with the linear theory,
consider the fluctuation given by p.(t) = P, — P,sech?at, which results in sound with
a waveform like that of Eq. (11) if P,&<P,. The chahges in the waveform associated
with larger values of P, are illustrated qualitatively in Fig. 2. For P,<P,, Eq. (12)
becomes linear and the waveform of the radiated pressure (solid curve) is just that
given by Eq. (11). As P, is made larger, non-linearity occurs first in the term (R,/R)?®
in Eq.(12), and the negative peak in the sound pressure grows rapidly (dashed curve).

* All pressures are measured relative to the vapor pressure of the water, in order to

avoid a repetitive constant.
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If P,>P,, so that p.(t) is actually negative at 1 = O, the bubble becomes statically
unstable and the non-linear time-derivative terms in Eq.(12) control the radial motion
of the bubble.** As p,(1) goes negative, the bubble grows to many times its equilib-
rium size and then, when p,(t) returns to positive values, the bubble suddenly collapses
and radiates a very large positive pulse (dotted curve). Noltingk and Neppiras [9] have
calculated the size to which the bubble grows and the magnitude of the pressure pulse
as a function of the ratio P,/P,.

During its growth, the bubble becomes filled primarily with vapor. The large
growth and subsequent rapid collapse of the bubble are characteristic of the behavior
of vaporous cavitation bubbles. Indeed, the transition from small to large amplitude
pulsations is just the transition to cavitation, with the bubble acting as a cavitation
nucleus. The sound associated with these large-amplitude pulsations will be discussed in
greater detail in the following section.

1II. CAviTATION

The origin of cavitation noise—The earliest investigators of cavitation were
aware of the noise it makes. It was probably the loud hissing sound which first at-
tracted the attention of Osborne Reynolds [10] to the occurrence of cavitation in water
flowing through a constricted tube. He recognized the cause of the sound to be the
“boiling” of the water. During the First World War, it was known that cavitation of
ships’ " propellers radiated sound which could be heard underwater for great dis-
tances [11].

The sound is generated as a result of the growth and collapse of vapor cavities.
A cavity, beginning as a microscopic nucleus, grows when its environmental pressure
becomes sufficiently negative and collapses when the pressure is restored. Such be-
havior, with accompanying noise, is to be expected wherever nuclei in the water are
subjected to sufficiently extreme transient reductions in their environmental pressure.

The sketch, Figure 3, depicts one common occurrence, the growth and col-
lapse of individual cavities in the pressure field produced by flow past a curved
boundary such as that of a propeller, a strut or similar appendage, or past a contrac-
tion in a conduit. The growth begins after a nucleus of some sort enters the region
of low pressure and the collapse takes place when the cavity is carried downstream
into a region of higher pressure. Various experimenters have employed high-speed
photography to demonstrate the existence of individual cavities, roughly spherical,
which grow and collapse in the manner indicated [12, 13, 14, 15].

Cavitation noise may be produced also in turbulent shear flows in pipes, jets,
or boundary layers; by water hammer and by acoustic radiation; and even as a con-
comitant of “steady” cavities. In each instance. the sound is related directly to the
kinematics of the individual transient cavities. The latter may appear as elongated
“cores” at the centers of vortices; in shear flows, they may be rather amorphous and
may undergo rapid distortion. Where the velocity gradients are mild, the cavities
tend to a spherical shape. Nearly all analytical treatments of the hydrodynamical
problems assume a spherical cavity. This is not completely unrealistic: the validity
of many of the relations derived is not seriously affected by departures from spherical
symmetry.

Interest in the inception, growth, collapse, and rebound of vapor cavities stems
from various fields of interest: boiling of liquids, detergent and chemical effects of
ultrasonics, absorption of sound in water, efficiency of hydraulic machinery, and
pitting and corrosion of structural materials. A great amount of research has been

#* If the equilibrium size of the bubble is very small, the condition for instability is

not simply P,>P,, but rather P,>P, + (4V3 T/9R,) |1 -+ (P.:Ro/2T)T%. If P. exceeds
this value by an appreciable amount, the size to which the bubble grows before collapsing
is relatively independent of its original size R,.
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Figure 3. Sketch indicating growth and collapse of a vapor cavity.

directed toward each of the aspects mentioned. For our purpose, here, it will be
sufficient to select a few examples of theory, experiment, and computation best suited
to illustrate the way in which cavitation acts as a source of sound. Those interested
in more general aspects of the various phenomena touched upon will find extensive
discussions in bibliographical material relating to cavitation [16].

Calculation of the sound pressure: acoustic theory—In the previous section,
the sound pressure generated by a gas bubble was related to the fluctuating environ-
mental pressure encountered by the bubble. It is of interest to ask whether, in the
case of a transient vapor cavity, a corresponding relation can be given.

One of the characteristics of the behavior of transient vapor cavities is the
violence of the collapse. In that part of the motion, the inward radial velocity of the
fluid in the immediate vicinity of the cayity may exceed the velocity of sound in the
liquid and pressures comparable to the modulus of compressibility of the liquid may
be developed. The description of the motion in the final stages of collapse therefore
requires consideration of the compression of the liquid. But during the period of initial
growth and most of the period of collapse, the incompressive theory yields a correct
description of the motion of the cavity, and the sound pressure (at sufficiently great
distance r > R) is given accurately by Eq. (4) in Section 2.

If the temporal variation of the environmental pressure encountered by the
cavity is known, the resulting motion, or at least the incompressive stages thereof,
may be computed from Eq. (12). The roles of surface tension and of any minute
quantity of gas which may be contained in the cavity are important only when the
cavity is very small. For the purpose of the present discussion it is sufficient to con-
sider that their combined effect is simply to forestall the inception of growth of the
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nucleus until the environmental pressure has reached a certain value (smaller than
the vapor pressure and, in fact, typically negative) characteristic of the individual
nucleus (See Section 2). Once the growth has begun, the pressure P at the cavity
becomes essentially zero*. The example of Figure 4 rather exaggerates the ordinary
extent of the delay of the inception of growth.

Of special interest is the computation of the motion for situations like that
depicted in Figure 3. If the temporal variation of the environmental pressure

=T 1.0

Radius -

oS s

0 0
External /
Pressure >

Radiated
Pressure

2 | 0
t-to [R |2

R LA

Figure 4. Computed radial motion and sound pressure for a growing and collapsing vapor cavity.

encountered by a passing nucleus can be deduced from a. knowledge of the velocity
and pressure fields in the vicinity of the curved boundary, Eq. (12) can be solved by
numerical integration to obtain the radius of the cavity as a function of the time.
Plessett [17] has done this and, despite the obvious idealizations introduced, found the
computed radial motion to resemble the observed behavior reasonably well. Figure 4
shows the results of a typical, though hypothetical, example of such a computation,

* Note that, to avoid needless repetition throughout the discussion, all pressures are
referred to the vapor pressure.
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illustrating not only the radial motion of the cavity but also the resulting sound pres-
sure. The abscissa represents time. The curve labelled “External Pressure” indicates
a temporal variation in environmental pressure typical of that encountered by a
cavity under conditions like those being considered. The radius of the cavity is shown
by the heavy solid curve. The constant P, is the value of the pressure difference,
(p — P), at the final instant of collapse, z,. A characteristic radius, R,, may be
defined so that, in the final stages of collapse, the total energy, kinetic and potential, is
4

?PORS.

The sound pressure, shown by the light solid line, oscillates once and, at the
end of the collapse, rises in an extremely high narrow “spike.” The details of this
high narrow pulse (which determine the high-frequency portion of the sound spectrum)
are not given correctly by the acoustic theory. While most of the energy radiated as
sound is associated with the pulse at the end of the collapse, the sound associated with
the earlier part of the motion is by no means negligible.

The broken lines indicate the solution for the special case, considered by

Acoustic
R R |- Pressure

Bubble
Radius

w3

Figure 5. Radial motion and sound pressure for a vapor cavity which rebounds after growing and
collapsing.

250



Rayleigh [18], in which (p, — P) is constant and equal to P,. He found, by express-
ing the constancy of the sum of the kinetic energy, 27rpR3R2, and the potential energy,

?-R3P0, that the radius and the wall velocity are related by the equation,

(R1/R)® = 1 + (3pR?/2P,). (13)
For this case, R, is the maximum radius of the cavity.

Some cavities rebound after collapse. The mechanism by which the rebound
comes about is not known. Apparently a small quantity of gas contained in the cavity
plays an essential role, but details are uncertain. What is known is that the flow
velocity and pressures attain such values that the acoustic theory is not applicable to
the part of the motion for which the cavity is very small. Figure 5 continues the
illustration, however, showing the behavior typical of those cases in which rebound
occurs. The assumption of an empty cavity and an incompressible liquid have been
retained. The cavity is assumed to collapse to an indefinitely small radius and to
rebound with an arbitrarily postulated loss of energy. The whole sequence is clearly
only an illustration; actual cavities show a wide range of behavior. Knapp and Hol-
lander [13] photographed cavities which rebounded as many as five times. Benjamin
[19] has also observed repeated rebounds under different conditions.

5_4
2_
r2S
PRR It
Sr
2

Figure 6. Spectral distribution of the sound, for motions shown in Ffigure 5, as computed for an
incompressible liquid.

The spectrum of the sound: acoustic theory.—From the sound pressure, the
spectral distribution of the radiated energy may be computed. Figure 6 shows the
spectra corresponding to the growth and single collapse and to the growth and multiple
collapse postulated in the example. The spectra exhibit maxima at frequencies of the
order of the reciprocal of the time required for growth and collapse. At lower fre-
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Figure 7. A measured spectrum of cavitation noise. The solid curve represents the spectrum of the
steady noise observed at a distance of 1 meter from a metal rod, 2 inches long and 1/16 inch
in diameter, rotated at 4300 rpm about a transverse axis through its center. The reference level
for the decibel scale corresponds to sound pressure of 1 dyne/e¢m’ in a 1 cy/sec band of frequency.

The cavities observed were about 1 mm in diameter. The pressure was approximately 1 atmos.

quencies, the spectral density necessarily varies as the fourth power of the frequency.*
The oscillations in the spectrum of the sound generated by the multiple collapse do
not disappear from the computation at the higher frequencies. However, the oscilla-
tions will not appear in the spectrum of the sound generated by a succession of cavities
which do not all grow, collapse, and rebound in exactly the same way. Accordingly,
at the higher frequencies the “smoothed out” spectrum is shown. The asymptotes

# This follows from the fact that the volume of the cavity is nécessarily positive during
its lifetime and essentially zero before and after. The magnitude of the Fourier transform
of the volume (the latter considered as a function of time) is then, by well-known properties
of the Fourier transformation, to the first order, independent of the frequency at values of
the latter which are small in comparison with the reciprocal of the total lifetime of the
cavity. Since the sound pressure is proportional to the second time derivative of the volume
of the cavity (Eq. (4), Sect. 2), the exponent relating the spectral density and the frequency
at small values of the latter is thereby determined. The conclusion applies to the spectrum
of the sound generated by a single cavity or by a random succession of cavities, but must
be modified if referred to a sequence of cavities in which the behavior of successive cavities
is in any way correlated. The presence of a reflecting boundary, especially a free surface
will, of course, alter the frequency dependence also.
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indicating that the spectral density at high frequencies varies as the reciprocal of the
two-fifths power of the frequency cannot, of course, correctly describe the spectra
of real cavitation noise, if only because of the physical requirement of finite energy.
The departure is simply a manifestation of the fact that the high-frequency portion
of the spectrum is determined by details of the “spike” of sound pressure which are
not given correctly by the incompressive and acoustic theories.

The spectrum of the sound: experimental—Figures 7 and 8 show examples
of spectra of cavitation noise obtained experimentally by Mellen [20] and Jorgensen
[21] respectively. Three features characterize the spectrum: the location of the peak,
and the two exponents corresponding to the asymptotic behavior at low and at high
frequency. At high frequencies, the spectral density is observed to vary roughly as
the reciprocal of the square of the frequency (—6db/octave). This feature of the
spectrum suggests that the sound pressure undergoes a sharp rise of the nature of a
shock. Direct evidence of the sudden rise, such as an oscillograph record showing
it, is difficult to obtain because of the extremely short time interval which must be
resolved (perhaps 10-7 second or smaller). However, such records showing indications
of a shock have been obtained through the use of tiny barium titanate transducers
[22]. Shock waves emitted by collapsing cavities have also been shown by Schlieren
photography [23, 24].

Compressive flow in the collapse of a cavity.—The explanation of the outgoing

O =.175

S0l

.00l

]
~—
00

'OOQBI 1 | 10

fD

U

Figure 8. The measured spectrum of noise produced by a cavitating jet. The symbol ‘P represents
the rms pressure in a half-octave band of frequency, at a point four diameters off the axis and
four diameters downstream from the orifice. The different spots represent different combinations
of jet diameter, D (3%, Y%, and 1Y, inch), and ambient pressure, P, (2, 1, and 2 atmos). U, is
the efflux velocity; o is the cavitation index, 2P,/ on’. {From Jorgensen [211)
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shock developed at the collapse of a vapor cavity must begin with a consideration of
the effect of the compressibility of the liquid upon the motion. Various extensions
of acoustic theory in which the wave equation in the velocity potential has been
retained have provided relations which can be said to give “first order” corrections for
the effect of compressibility of the liquid [25]. These results are useful in the con-
sideration of the collapse of the gas globe formed by an underwater explosion, where
the flow velocities do not exceed one-tenth of the velocity of sound and the pressures
do not exceed about six percent of the compressibility modulus of the liquid. In the
case of a collapsing vapor cavity, however, the significant effects of compressibility
are manifest while the cavity contains essentially only condensing vapor: the small
amount of gas inside is not sufficient to arrest the collapse before the inward flow
velocities exceed the velocity of sound [26]. The problem can be put then, in idealized
form, as the calculation, first, of the motion and, then, of the surrounding pressure
and velocity fields, in the case of the collapse of an empty spherical cavity in a
compressible liquid [27].

The equations of compressive flow do not, in general, admit of explicit solu-
tions. Gilmore [28, 29] however, has derived an equation relating the radius of the
cavity explicitly to the velocity and acceleration of the wall of the cavity. In the special
case of the empty cavity, Gilmore’s differential equation is

RR(1 — R/co) + %R%(1 — R/3co) = — Py/po, (14)

which reduces to the corresponding form of (12) for vanishingly small values of

R/co. For the initial conditions considered by Rayleigh in the incompressive case,

Gilmore gives
R1 3 R 4 3001‘?2
—)=(1-= ) (1+—) (15)
R 3co 2P,

which also reduces to the corresponding incompressive solution, Eq. (13), as Ié/c0 — 0.
Gilmore’s results are derived from a hypothesis of Kirkwood and Bethe which states
that in the spherically symmetric flow about the cavity the quantity r(h + %u?),

which in isentropic flow is exactly equal to rq;, is propagated outward with variable
velocity (¢ 4+ u). Here r is the radial coordinate; ¢ is the local value of the velocity

of sound and ¢ is the time derivative of the velocity potential. The enthalpy k4 is
defined in Fig. 9. Where the pressure in the fluid differs from the ambient value by
only a few atmospheres, & is simply (p — P,) /po» but where the pressures are not
negligible in comparison with the modulus of compressibility, pc2, of the liquid (about
21,000 atmos for -water), the value of % depends also on the relation between the
pressure and the density of the liquid. (In the present discussion, ¢ and p must be
considered variable; their values at ordinary pressures (near zero) will be denoted by
¢, and p,). Here, p and u are the pressure and the radial flow velocity.

The sound pressure, p,, at some large value of the radial coordinate is, accord-
ing to the theory, determined as follows: The value of the propagated quantity

r(h + Y2u?) is easily evaluated at the wall of the cavity as RR2/2. The “outgoing
path” of each of its successive values may be traced through the pressure and velocity
field surrounding the collapsing cavity according to the rule given by the Kirkwood-
Bethe hypothesis. The assumed behavior is illustrated qualitatively in the diagram,
Figure 9. Several outgoing paths or “characteristics” are shown, each corresponding
to a different value of the propagated quantity, the particular value being the value of

RR? /2 at the instant at which the path “left” the wall of the cavity. The slope of
the line representing each such outgoing characteristic represents, at each point in
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Figure 9. Sketch illustrating the method of calculating the sound pressure radiated by a collapsing
vapor cavity according to theory of Gilmore.

the diagram, the value of (¢ + u) at the corresponding radial coordinate and instant
of time. Outside the immediate vicinity of the cavity, the theory is nearly exact: the

value of the propagated quantity gives the value of rq;, and hence, at large values of

the radial coordinate r, the acoustic pressure p, (since p, = p&;). In order to construct
the outgoing paths, it is necessary to determine the value of (¢ + u) at each radial
coordinate and instant of time, information itself partly dependent upon the result of
the calculation, so that it is necessary to employ either iterative methods or an adequate
analytic approximation to the required velocity field. The calculation is further compli-
cated by the development of a shock, whose path of propagation must be computed
by separate considerations. The development of the shock also is indicated qualitatively
in the diagram, which shows how larger values of the propagated quantity “overtake”
smaller values which “left” the wall of the cavity at an earlier instant. The entire
diagram is only crudely qualitative; it is impossible to detail the actual situation in
undistorted form suitable for ready visualization.

255



5 T
!
)
% ,’,
4+ Rz= R| [Po/p cs] II
=10t/
Rz /
A /
\\\\ )/
31 >\\) S/
4 =
$ Nuo 'O\\ // s l" R
o o (] \\\ /// \
a 10 NN L7 \
2T \\\\\ >< C \ 4
S T \
R \ |
,,,,,, - ~ \ ]
——————— \\ \
by ™ /
) /
0 , !
-15 -10 -5 0
Co (t-10) -1
R,

Figure 10. Pressures and shocks radiated by a vapor cavity collapsing in @ compressible liquid.
(Values according to Mellen [30]1.)

Mellen [30] has made the indicated calculations, taking approximate values for
(¢ + u), with the result shown in Figure 10. Each solid line exhibiting a vertical

rise shows the value of r¢ (very nearly equal to rp,/p) as a function of time for one
selected value of a parameter involving the radial coordinate. In the case of the col-
lapse of a cavity in water with external pressure P, equal to one atmosphere, the three
radial distances indicated would be approximately 3.6, 360, and 36000 R,. The peak
pressures at the “shock” front are, for the same case, 59, 0.42, and 0.0035 atmospheres.
Mellen also obtained estimates of the peak pressures experimentally and found good
agreement with the calculations.

From the pressures shown in Figure 10 as functions of the time, the corre-
sponding frequency spectra might be corhputed. The spectrum shown in Figure 6
could be corrected, at high frequencies, for the compressive effects neglected in its
original derivation. In view of the somewhat limited accuracy of the values shown
and of a number of idealizations made tacitly in the brief treatment presented above,
it is sufficient merely to indicate the high-frequency asymptote corresponding to the
discontinuity in the sound pressure. The resulting computed spectra (Figure 11)
do show a fair resemblance to observed spectra of cavitation noise. It appears,
however, that the computed magnitude of the sudden rise in pressure at the shock
front, relative to the parts of the wave which determine the low-frequency part of the
spectrum, is higher than is really the case. This is not surprising. The computations
assume no loss of energy in the propagated wave except that inherent in the Hugoniot
conditions, whereas, in fact, other losses do occur in the propagation of the high-
frequency components of sound waves. It is possible, also, that small amounts of

256



10 A

rrS
RRIR

L~

/3
3

N3

o SN
=10,/ \\ W10
S NS
\ \X 10*

00l v\ v\
o} 10 0 , 100 1000

iR, [-&

Figure 11. Spectrum of sound radiated by a growing and collapsing vapor cavity in a compressible
liquid. The dash lines show the asymptotes corresponding to the shocks indicated in Fig. 10.

gas in the cavity affect the amplitude of the shock. A calculation would be necessary
to ascertain the effect in a specific case.* A more important reason for the discrepancy,
however, is the fdact that real cavities may not collapse as spheres. Ample evidence,
both theoretical and experimental, indicates that collapsing cavities undergo radical
distortions in shape and may even break up into clouds of smaller bubbles. The
cavities which produce the noise represented in Figure 8 resemble those shown in
Figure 12 which is taken from Ref. [31]. A quantitative description of the motion and,
especially, of the development of the shock for any case other than that of spherical
symmetry would be very difficult, however. All that can be said is that, despite the
uncertainties concerning details, the main features of the sound generated by cavita-
tion seem to be accounted for.

IV. SURFACE DISTURBANCES

The airborne sound which accompanies the splash made by a droplet or a
solid object falling onto the surface of water is well known. It is rather to be expected
that concomitant sounds exist in the water below the surface and, indeed, such is
the case. This is not to say that there is any resemblance or necessary relation between
the two sound fields—only that disturbances of the surface which make sounds in air
generally produce other sounds in the water.

* Dr. T. Brooke Benjamin has indicated that theoretical work on a related question,
the development of the pressures about a collapsing cavity containing a significant amount
of gas, is underway at King's College, Cambridge. Results indicate that a shock will develop
in the vicinity of a gas-filled collapsing cavity if the pressure at maximum compression exceeds
a value of about 2000 atmospheres. This pressure is slightly greater than that reached at the
first collapse of the gas bubble formed by an underwater explosion.
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|
Figure 14. Sketch illustrating surface disturbance caused by an entering body.

due to a system of axially symmetric multipole sources located at the origin of the
disturbance.* The time-varying strengths of the multipole sources are such as to
describe the actual flow velocities outside the immediate vicinity of the disturbance. At
some specified stage of the entry, the strength of any such multipole, say of order m,
must, from consideration of dimensions, be proportional to ULm+2. But the sound
pressure associated with a multipole source of order m is proportional to the (m + 1)th
time derivative of the strength of the source. These, with appropriate further dimen-
sional considerations, allow the sound pressure to be expressed in the form

o0

pU2L U\~ U r
(r,0t) = —— — ) A, 6-{t—- (17
=R (-]

m=

The free-surface condition requires that A4, (corresponding to a simple source) be
zero, so that for small values of the Mach number (U/c) the dipole term (m = 1)
can be expected to predominate. The dependence of the functions 4,, upon the polar
angle # can be expressed very simply: In particular,

A(6,7) = Z(r) cos 6, (18)

* The condition for which such a procedure is valid may be stated as follows: (1)
all flow velocities involved are very small in comparison with the velocity of sound; and
(2) the wavelength of the highest sound frequency of interest is large in comparison with
the linear dimensions of the disturbance. Ordinarily this means simply: (U/c) €1; (fL/c)<1.
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But even this seemingly extensive list really includes only a few of the more obvious
parameters. Eq. (20) is presented, therefore, not as a complete statement of the form
of the relation involved but merely as an indication of its complexity.

An experimental investigation of the sound produced by the vertical entry of
objects of just one shape and density (say, steel spheres) into water at ordinary condi-
tions would require the empirical determination of a function involving at least three
independent arguments. Moreover, even the most complete determinations might
describe the actual sound only stochastically, since the details of the motions which
result in sound are not necessarily reproducible. It is not surprising, therefore, that such
data do not exist.

However, Franz [36] has shown experimentally that an important part of the
sound produced by the impingement of water droplets and small solid objects is
produced by the impact, so that only the density and compressibility of the water
are involved. The term “impact” here refers not merely to the sudden contact of the
surfaces but rather to the entire initial regime during the entry of a blunt or pointed
object in which inertial reactions predominate. Fig. 16 shows his experimentally
determined spectral distribution of the underwater sound energy radiated at the
vertical impingement of water droplets. The size and velocity of the droplets were
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Figure 16. Spectral distribution of underwater sound energy produced by the vertical impact of
water droplets. (Figs. 16, 17, and 18 from Franz [361.)

E, Sound energy in half octave;

varied over wide ranges. Nevertheless, the ‘data define a single function when reduced
according to the analysis leading to eq. (19). It is not feasible to distinguish each
combination of droplet size and velocity in the plot, but the data show very little
systematic dependence upon either variable. Figure 17, traced from an oscillograph
record, shows the universal function describing the sound pressure. It will be observed
that the major part of the sound energy is generated: immediately after the initial
contact and during an interval of time smaller than that required for the droplet to
travel a distance equal to its own radius.

In addition to the sound of impact, droplets of certain combinations of size
and velocity occasionally produced a damped sinusoidal pulse of sound pressure similar
to that produced by the formation of an air bubble at a nozzle. The sound, when
it occurs, is caused by a tiny air bubble trapped beneath the surface by the splash.
Such a bubble is visible in the sequence of photographs in Fig. 18. This sequence is
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Figure 17. Pressure pulse produced by the impact of a water droplet.

part of a high-speed motion picture which Franz made prior to his investigation; the
appended oscillographic record does not correspond to the particular splash appearing
in the photographs but shows, nevertheless, the considerable time interval between the
impact sound and the bubble sound. Attention is directed to the fact that no measur-
able sound is produced during the greater part of the interval in which the fascinatingly
varied undulations of the surface occur.

Franz also measured the underwater noise generated by steady showers of
water droplets falling on an extended area. The results agreed with the measurements
of the sound made by solitary droplets and, so far as available meteorological data
permit comparison, with underwater noise levels measured during rainfall. (The
sounds from a continuous succession of randomly spaced impacts add incoherently
so that the total energy in each band of frequencies is conserved).

Similar, though less extensive, data were obtained for the entry of solid objects
of various shapes. An intriguing theoretical problem is that of relating the time-
dependent doublet strength, and hence the sound field, to the shape and motion of
the entering body, or to its shape, mass, and entering velocity. It does not appear
likely that the answer will be obtained in any simple form. A special case is the entry
of a massive solid body having a conical nose. Here, considerations of similarity indi-
cate that the sound pressure pulse must begin as a “ramp function”, i.e. must begin as
zero and increase linearly with the time.

The preceding discussion has emphasized the gaps in available concrete informa-
tion concerning sound produced by surface disturbances. Perhaps, however, its pres-
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analogous situation in water, since the mechanisms involved are fundamentally the
same. However, because of the greater density and lower speeds encountered in water,
the relative importance of various phenomena can be different. The present brief
review will be limited to those aspects of the problem of greatest interest in connection
with flowing water.

Recognition of the association of certain sounds with unsteady flow goes back:
to the nineteenth century. Rayleigh, for example, attributed the “aeolian tones” made
by wind streaming past a wire to the vortex wake behind the wire; and the “jet-edge
tones” of whistles were also believed to result from fluctuations in the jet. Richard-
son [39] has described the early investigations of these sounds. These investigations
were concerned primarily with the frequency of the sound. No serious attempt seems
to have been made to understand the factors controlling the intensity of the sound.

A theoretical basis for investigating the magnitude of the sound pressure asso-
ciated with unsteady motion was provided by Lighthill [40] in 1950. He discarded
the classical form of the acoustic wave equation, which is admittedly only a small-
amplitude approximation, and rederived an exact wave equation from the exact equa-
tions of fluid motion. This exact wave equation is inhomogeneous and contains terms
which represent sources of sound associated with fluctuating velocities. For a liquid,
the essential terms in Lighthill’s equation are

1 62p az(u,-u;)

V2 —_————— = - p_—'—',
c? at? Oz;0z;

where p is the pressure, ¢ the velocity of sound, u; the i-th component of particle
velocity, x; the i-th space coordinate, v? = 9%/0x;0x; and a repeated index indicates
summation in accordance with tensor notation. If the velocity components are suffi-
ciently small, i.e., if pu;u; <p,, then the right side of the equation is negligible and
the classical homogeneous wave equation results. If, however, the velocities- are not
negligible, the right side represents sources of sound.

The fluctuating pressure in an unbounded fluid can be related to the fluctuating
velocities by a volume integral over all space of the right side of Eq. (21). Thus

pe(zt) = — (4m) [ (1/r)q(a"t) AV, (22)

where p,(x,t) is the instantaneous sound pressure at time ¢ and position x in space
(x without subscript indicates the three coordinates x,, x,, x;). In the integral, r is
the distance between the point x and the volume element dV at position x/, and g(x’, ¢’')
is the value of the right side of Eq. (21) at position x’ and earlier time ¢ = t-r/c.
In the application of this solution, the fluctuating velocities constituting g(x, t) are
considered to be independent variables whose values are given as part of the descrip-
tion of the flow.

In the usual unsteady flow, the fluctuating component of the velocity differs
significantly from zero in only a limited portion of the unbounded space. The asso-
ciated pressure fluctuations are then very much larger directly within the unsteady
region than outside it.

At a point within the unsteady region, the fluctuating pressure depends primarily
on the values of ¢ at points in the immediate vicinity, corresponding to small values
of r. In this vicinity, the difference r/c between the time ¢ and earlier time ¢ is negli-
gible. Since the sound velocity ¢ does not appear in Eq. (22) in any other way, the
pressure fluctuations are independent of the sound velocity. This implies that the
fluctuations inside the unsteady region do not depend on the compressibility of the
medium.

Far from the unsteady region, at distances large compared with the dimensions
of the region, the situation is different. If the compressibility of the fluid is neglected
in the calculation for these distances also, the magnitude of the pressure fluctuations is
found to decrease very rapidly with increasing distance, as r-3. If the difference between
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t and ¢ is taken into account in the evaluation of the integral, however, a term results
which is proportional to (p/rc?). The pressure fluctuations associated with this term
vary inversely as the distance in the manner of ordinary spherical waves of sound.
Indeed, these fluctuations correspond to the sound energy radiated by the flow, and
this distant region is accordingly called the “radiation field.”

At intermediate distances, neither far away nor directly within the unsteady
region, the dependence or independence of the pressure fluctuations on the compressi-
bility of the fluid is determined by the frequency of the fluctuations. At low frequencies,
associated with sound of wavelength ¢/f much larger than the distance, the fluctuations
do not depend on the compressibility. When it is desired to distinguish the essentially-
incompressive pressure fluctuations existing within a wavelength of the unsteady region
from the compressive fluctuations in the radiation field, the close-up distances are called
the “near field.” In the near field, the magnitude of the pressure fluctuations increases
more rapidly with decreasing distance than in the radiation field.

Because the pressure fluctuations within and near the region of unsteady flow
do not involve the compressibility of the medium, these fluctuations have been called
“pseudosound” by Blokintzev. [41] However, a pressure-sensitive hydrophone responds
to the pseudosound just as it responds to any sound pressure; the fact that these fluctua-
tions do not involve propagated sound energy makes no difference.

Fluctuations within the unsteady region.—An estimate of the magnitude of the
pressure fluctuations within an unsteady flow was made by Taylor [42] in 1936. He
related the pressure to the fluctuating velocity by an expression like Eq. (21) but with
the time-derivative term omitted; the omission is equivalent to the assumption that the
fluid is incompressible. To obtain a tractable velocity field which nevertheless dupli-
cated some of the characteristics of isotropic turbulence, the velocities were assumed
to be distributed in space like standing waves of sound in a box. For this synthetic
model of isotropic turbulence, the fluctuating pressure and velocity are related by
P = 1.6pu,?, where u, is one component of the fluctuating velocity and the tilde (~)
indicates rms values of the fluctuations.

More recently, calculations of the fluctuating pressure in isotropic turbulence
were made independently by Heisenberg, [43] by Obukhov, [44] and by Batchelor. [45]
Their calculations all involve equivalent assumptions concerning the statistical charac-
teristics of the distribution function for the velocities. These more fundamental calcula-
tions lead to the result p = 0.6pu,2% the coefficient being lower than Taylor’s original
estimate. According to Uberoi, [46] however, the value of the numerical coefficient is
quite sensitive to the exact-form of the statistical distribution function of the velocities.

Batchelor also obtained a relation between the space correlation function of the
fluctuating pressure and the correlation function of the velocity. For the specific case
of a velocity correlation of the Heisenberg type, the calculated pressure correlation
falls to zero more rapidly than the velocity correlation, and the longitudinal integral
scale of the pressure is about half that of the velocity.

Ogura and Miyakoda [47] used Batchelor’s relations to calculate the spectral
density of the fluctuating pressure from simplified spectral functions for the fluctuating
velocity. These calculations indicate that the spectral density of the pressure falls more
rapidly with frequency, in the high-frequency region, than does the spectral density
of the velocity.

The first attempt to measure the fluctuating pressure in an unsteady flow seems
to have been reported by Rouse. [48] Within a turbulent jet of air discharging into
free space, the fluctuating pressure and velocity were found to be related by p = 1.1pu,2..
Strasberg and Cooper [49] attempted some measurements of the fluctuating pressure
in the turbulent wake behind a cylinder. At a point 24 cylinder diameters downstream,
P = 1.7pu1,%. They also determined the spectral densities of the fluctuating pressure
and velocity. The spectra measured 24 diameters downstream are shown on Fig. 19,
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Figure 19. The spectral densities of the fluctuating pressure and the fluctuating velocity in the wake
of a cylinder, at a downstream distance of 24 di ters. The ts were de in air.

where the normalized dimensionless spectral densities* of both the pressure and the
velocity are plotted against the Strouhal number (fD/U,), based on cylinder diameter
D and free-stream velocity U,. The two sets of points indicate that the measured spectra
of the pressure are essentially the same as those of the velocity. This is an unexpected
result, not at all what would be anticipated from the theoretical relations for isotropic
turbulence.

However, any comparison between measured values of fluctuating pressure and
the theoretical predictions based on isotropic turbulence is subject to two uncertainties:

1. The validity of the measurements is in some question. There is no con-
clusive evidence that the probes used to measure the pressure do actually indicate the
fluctuating pressure that would have existed in the absence of the probe.

2. The measurements were performed in flows which were not isotropic. In
this connection, Kraichnan [50] has estimated the pressure fluctuations in several simpli-

* The spectral density of a quantity is defined so that the integral of the spectral
density on frequency is equal to the mean-square of the fluctuating component of the quantity.
In particular, for the spectral density G,(f) of the fluctuating pressure, (o*G,(f)df = (p.)?
= <ps">as. Also, if G,(f) is normalized by division by (p,)> and non-dimensionalized by
multiplication by (U./D), the integral on Strouhal number is then unity.
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fied models of anisotropic flow. For the case of a steady mean shear (oU,/0x,) with
superimposed isotropic turbulent fluctuations of rms value # and correlation scale
L, p, « piiL(3U,/0x,). This anisotropic model is probably closer than is isotropic
turbulence alone to the actual flows in a turbulent jet or in the wake of a cylinder.

Mention should be made of the periodic fluctuations in pressure, of very large
amplitude, existing in the wake close to a cylinder shedding vortices. Blokhintzev [41]
has calculated the magnitude of these fluctuations, by assuming that the wake is a
steady K4rmén vortex street. The calculated pressure fluctuation along the centerline
of the wake is given by p = 0.07pU,?; along this line the fluctuation is primarily at
twice the shedding frequency. The calculated value agrees quite well with the value
measured by Strasberg and Cooper [49] at this frequency for distances within 3 cylinder
diameters of the cylinder. At the shedding frequency, the fluctuations are even larger;
close to the cylinder, values were observed as large as p = 0.3pU,%. Further down-
stream, the measured values decrease as the periodic fluctuations degenerate into
random turbulence.

The pressure fluctuations in a free turbulent region is a topic worthy of con-
siderable additional attention. The practical importance of these pressure fluctuations
can be indicated by an example of their magnitude. In the wake of a cylinder in water
at a speed of 5 meters/sec (10 knots), the rms pressure fluctuation 24 cylinder diam-
eters downstream is ‘estimated to be about 5 x 10* dyne/cm?2. This pressure corresponds
to a level more than 70 decibels above the ambient noise in the sea at sea state 2.

Pressure in the near field—The fluctuating pressures outside a turbulent region
are much smaller than those mentioned above. In the near field close to a turbulent
region, however, their magnitudes can be significant. Jorgensen [21] has measured the
pressure fluctuation outside a free turbulent jet of water. The spectral density of the
pressure, measured 4 jet diameters off the axis and 4 diameters downstream from the
mouth of the jet, is shown in Fig. 20. The bottom and left scales are non-dimensional,
but dimensional scales have been put along the top and right side for a jet diameter
of 0.6 inch at a speed of 30 knots. For these specific conditions, the fluctuations at
500 cy/sec are some 30 db above the ambient noise at sea state 2.

Radiated pressure fluctuations.—In the radiation field far from an unbounded
region of unsteady flow, the pressure fluctuations are even smaller than in the near
field. The sound radiated by an unsteady flow has received perhaps more attention
than any other form of flow noise, because of its importance in connection with high-
speed jet aircraft. At the speeds encountered in water, however, the radiated pressure
fluctuations are completely negligible.

The negligible values of the sound pressure radiated by turbulence in water
are illustrated by the case of the turbulent jet. Fitzpatrick and Lee’s [51] measurements
with air jets give for the rms sound pressure, in the direction of average intensity,

Br = 2X10-%U(U/)x(D/7), 23)

where D is the diameter of the orifice, and U the mean efflux velocity. At a speed of
15 meters/sec (30 knots) and a distance of 100 jet diameters, the rms sound pressure
is only about 0.005 dyne/cm?; at least 40 decibels below the ambient noise in sea
state 2.

The influence of boundaries—The discussion to this point has been concerned
with flows in an unbounded space. If boundaries are present, the sound field is of
course modified by the boundaries. If the boundaries are within the unsteady region,
sound radiation can be associated directly with the boundaries, and this boundary
radiation can be much stronger than the radiation from the unsteady motion itself.

The complete relations describing the sound field generated by an unsteady
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Figure 20. The spectral density of the fluctuating pressure in the near-field of a free jet of water.
(From Jorgensen [211.)

flow in the presence of boundaries were developed by Curle [52] in 1955. If the
boundaries are directly within the unsteady region, their principle contribution to the
radiated sound pressure is given by a surface integral over the boundaries, of the pres-
sure and the boundary acceleration, viz.,

e [ u 190 [p
ps(at) = —— | —cos 0;dS + —— | — cos 6, dS. (24)
4z r dr 0z; ) r

Here r is the distance between the point x and the surface element dS; p’ is the pres-

sure and u;’ the component of acceleration in the x; direction, at the surface element
dS at earlier time #-r/c; and §; is the angle between the x; direction and the surface
normal out of the fluid. It is of interest that the equation is of the same form as the
classical solution of the homogeneous wave equation in terms of the pressure and
acceleration at the boundary (cf. Lamb [6] §290); the same terms appear in Curle’s
result even when the motion near the boundaries is so large that the homogeneous wave
equation is no longer applicable.

If the boundary is contained within a region small compared with the wave-
length of the sound at the frequency of interest, the integrals in Eq. (24) may be
evaluated without reference to the shape of the boundary. In the radiation field far
from the boundary, the sound pressure is then given by the simple relation

1 VU F
ps(t) = —| pV 4+ ——cos 8, + —cos br |, (25)

d7r c c
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where V is the instantaneous volume enclosed by the boundary; U the velocity of the
centroid of the enclosed volume; F the total force exerted on the fluid by the boundary;
and ¢, and @, the angles between the radius vector toward x, and the directions of

U and F respectively. The dots indicate time derivatives. In this equation, the terms

on the right have their values at earlier time (t-r/c). The 14 term in the equation
corresponds to the ordinary simple source associated with volume pulsation (cf. Eq.
(4) of Section 2). The other two terms have a dipole-like directionality and are asso-
ciated with translational oscillation of the boundary and with oscillating forces on the
fluid. *

Even if the boundary is rigid and does not vibrate, sound can nevertheless result
from oscillating forces acting on the fluid. Thus, the aeolian tones radiated by a cylin-
der have been explained in terms of the oscillating force, between the fluid and the
cylinder, associated with periodic shedding of vortices. To calculate the magnitude of
the sound, Etkin, Korbacher and Keefe [53] assume that the transverse oscillating force
on the fluid is given by

F = 0.90 (%pU,) LD sin (2xft), (26)

where U, is the free-stream velocity, D and L are here the diameter and length of the
cylinder, and f, is the frequency of vortex shedding given by f, = 0.2U,/D. Substi-
tuting Eq. (26) into (25), and assuming that the cylinder is rigid, the sound pressure
is calculated as

p:() = 0.18(%pU %) (Uo/c)(L/7)(cos 2wfat) cos 6, (27)

f being the angle between the radius vector and the flow direction. The equation indi-
cates that the sound pressure is proportional to the cube of the velocity.** This relation
was verified by their experimental data, some of which are shown in Fig. 21.

Similar calculations and measurements are reported by Phillips. [54] He calcu-
lates the fluctuating force from measured values of the fluctuating velocity in the wake
of the cylinder and obtains a coefficient 0.76 instead of the 0.9 in Eq. (26). The
measured sound pressures of both Etkin et al and Phillips are lower than the value
given by Eq. (27) by constant factors. The difference is explained by the fact that the
vortex shedding is not correlated along the entire length of the cylinder, so that the
phase of the oscillating force varies axially. If the correlation length is assumed to
equal the cylinder diameter times a factor b, then the quantity (bDL)/2 should be
substituted for L in Eq. (27). Phillips estimates that b is about 17 for the range of
Reynolds number U,D/v from 80 to 160, and about 3 for Reynolds numbers above
300; whereas Etkins estimates b as about 8.

The intensity of aeolian sounds has also been measured by Gerrard [55] over
a wide range of Reynolds numbers. His data can be interpreted as indicating that the
sound pressure varies with the cube of velocity, as required by Eq. (27), but that the
numerical constant is larger by a factor of about 4 for Reynolds numbers below 300.
This higher value may be due to the fact that, at low Reynolds numbers, the vortex
shedding is correlated all along the cylinder axis.

Both Phillips and Etkin et al assume that the vibration of the cylinder does not
radiate any significant sound. The latter, in fact, report measurements showing that
the sound is independent of the elastic properties of the cylinder. However, it is well
known that the intensity of the aeolian tones increases when the cylinder vibrates in
resonance at the shedding frequency; this phenomenon was observed by Strouhal him-
self. Phillips’ explanation is that the vibration of the cylinder “locks-in” or correlates

* High-order terms, with higher negative powers of ¢, have been omitted from Eq.(25);
such terms are associated with higher moments of the boundary vibration and pressure dis-
tribution.

** Eq. (27), without the numerical coefficient, was predicted by Blokhintzev, ibid.
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Figure 21. The sound pressure radiated by a cylinder shedding vorticces in air, as a function of
speed. (From Etkin et al [531.)

the vortex shedding along its entire length, causing the sound pressure to increase by
a factor (L/bD)/2.

Although the sound generated by the vibration itself is neglected by both Etkin
and Phillips, it should be noted that in a relatively dense liquid such as water, the
amplitude of the sound may be increased by the vibration even in the absence of any
modification of the pattern of vortex shedding. To indicate the magnitude of the
sound that may result from vibration, consider a rigid cylinder held by compliant sup-
ports so that the cylinder vibrates transversely, when immersed in water, in free oscilla-
tion at a frequency f, with logarithmic decrement =§. Assume, as a first approximation,
that the amplitude of vibration is so small that the gross motion of the fluid is not at
all affected. The cylinder vibration will result from a reaction to the force exerted by
the cylinder on the fluid. In terms of the force exerted by a fixed cylinder, e.g., the

force F given by Eq. (26), the reaction force acting on the cylinder is — (F + Mal}),
with M, being the added mass due to the water. If the force and vibration are sinus-
oidal with frequency f, equal to the shedding frequency, so that F = Fve27i/.¢ and

U = Ucermil,t, the amplitudes F° and U/° are related by
U() = [Fo/(Ma + Mc)] : [(fr/fl)2 -1+ 1‘5]—1, (28)
M, being the mass of the cylinder. The sound pressure amplitude p, is then given by

Eq. (25), with U and F replaced by 27if,U° and 2qif,(F° + M,U°), respectively,

and p,(¢) by p,.
At resonance, f, = f,; the sound pressure amplitude is then given by

leo[ M.V }
(2 .

Mo+ M.)
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The right term inside the brackets represents the direct contribution of the vibration
to the radiated sound; if the displaced mass pV is of the same order as the cylinder
mass, the contribution can be considerable, especially since § is often smaller than 0.01
for ordinary mechanical systems. The vibration can thus cause a large increase in the
sound pressure in liquids, independently of any influence on the vortex shedding or
other aspects of the gross flow. The vibration will, in fact, modify the gross flow and
the associated fluctuating force. This interaction has not been studied in any detail.

These aeolian sounds are associated with fluctuations at a predominant fre-
quency. However, the fluctuations usually contain a random component. In the flow
past a cylinder, the fluctuations become almost completely turbulent at high Reynolds
number, above about 105. The radiated sound is then also random. The spectral dis-
tributions of the random force and vibration are related by an expression similar to
Eq. (28); if the vibration contributes to the sound, the sound spectrum will be peaked
around the resonant frequency of the system.

The foregoing discussion indicates that there is a satisfactory understanding of
the sound generated by flow about a cylinder. However, this case is only the simplest
example of the acoustic interaction of a surface with an unsteady flow. A more compli-
cated situation involves the sound associated with a turbulent boundary layer. This
is of practical interest in connection with sound generated at the skin of an aircraft
or at the hull of a ship.

Noise from a boundary layer.—The sound generated by the fluctuations in the
boundary layer on a rigid bounding surface have been investigated theoretically by
Phillips. [S6] His results indicate that the sound from a plane boundary layer is small,
except perhaps near the transition region. The radiated sound pressure is proportional
to pU,2(U,/c) if the flow maintains similarity. Accordingly, it is likely that only
negligible sound will be radiated at the speeds encountered in water.

If the boundary surface is relatively flexible, however, flexural vibration of the
surface can result in significant sound. This surface vibration is excited by the local
pressure fluctuations within the boundary layer; the resulting sound pressure can be
much larger than that radiated by the pressure fluctuations themselves. The vibrating
boundary acts like a sounding board and substitutes a simple source with no (U, /c)
dependence for the dipole-like source of a rigid boundary.

A calculation of the radiated sound can be made with the following sequence
of steps:

1. The pressure fluctuations at the boundary are estimated from a knowledge
of the flow.

2. The flexural vibration of the boundary in response to the pressure fluctua-
tions is determined.

3. The radiated sound pressure associated with the vibrating surface is calculated.

This procedure assumes that the motion resulting from the vibration is too small
to modify the grosser flow, so that the pressure fluctuations at the boundary can be
treated as an independent variable.

Once the boundary pressure is known, steps (2) and (3) involve the application
of well-known acoustical equations which give the sound pressure radiated by a mem-
brane or a plate in terms of an arbitrary distribution of pressure on its surface. Because
the fluctuations in the boundary layer are random in both time and space, the calcula-
tions are relatively complicated, but no essential difficulty is introduced by the random-
ness. It is necessary to know the statistics of the fluctuations, viz., the special density
and the space correlation of the pressure fluctuations. The evaluation of these quanti-
ties, however, which is essentially the first step listed above, has not been accomplished
in a completely satisfactory manner as of this writing. A theoretical estimate of the
characteristics of the pressure fluctuations can be attemnted by following the procedure
outlined by Batchelor and already discussed in connection with the local fluctuations
within a turbulent region. However, too little is known about the fluctuations within
the boundary layer to permit the calculation to be carried out with any rigour.
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Some preliminary measurements of the fluctuating pressure in a turbulent
boundary layer at the bottom of an open channel have been described by Einstein
and Li. [57] Willmarth [58] has reported some measurements of the fluctuating pres-

sure at the boundary of a pipe. He estimates that p = 3.5x 10-3(% pU,?), where U,

is the free-stream velocity, but the measurements may be in error because the fluctua-
tions may not be correlated over the entire area of the pressure-sensing device. Cer-
tainly, additional measurements are required to make possible an estimate of the space
correlation and the spectral density of the pressure fluctuations, as required by step
(1) above.

Theoretical calculations of the boundary-layer noise have been attempted by
Ribner, [59] and more recently by Corcos and Liepmann, {60] and by Kraichnan, [61]
all using certain assumed characteristics of the pressure fluctuations in the layer. The
first two of these papers deal primarily with a boundary surface which is “floating”
i.e., unconstrained. Kraichnan, on the other hand, treats a square plate constrained at
its periphery; he also goes into greater detail concerning the character of the fluctua-
tions in the boundary layer. Which of these calculations is closer to the actual situation
cannot be determined until some measurements have been made of this form of noise.

Other unsteady flows.—Before this section is concluded, mention should be
made of several other types of sound associated with unsteady flow which have received
some attention in recent years:

(1) “Jet-edge tones,” which are generated when a jet impinges on a thin plate
or wedge. The sound contains a predominant frequency determined by a periodic
undulation of the jet, the frequency depending primarily on the velocity of the jet
and the separation between the mouth of the jet and the edge. Richardson [39, 62]
has described his own and several other investigations of the phenomenon. Other dis-
cussions have been published by Curle, [63] by Powell, [64] and by Bouyoucos and
Nyborg. [65] Two alternative mechanisms have been suggested. Richardson and Curle
believe the undulations are caused by instability of the flow itself, whereas the others
believe that the sound reacts on the jet and “triggers” the instability. In either case,
the sound is presumably generated by a fluctuating lift force on the edge.

(2) “Orifice-pipe tones,” generated when a fluid discharges through a sharp-
edged orifice at the end of a tube. The frequency of the sound has been determined
for a wide range of conditions by Anderson. [66] The sound, in this case, is probably
a simple source associated with periodic fluctuation in the rate of efflux from the
orifice.

(3) Resonant cavities excited by external flow past the mouth of the cavity.
The frequency of these sounds has been investigated by Blokhintzev [67] and by
Harrington. [68] There seems to be some interaction between the cavity and the un-
steady flow past the mouth, because the predominant frequency of the sound may
differ somewhat from the frequency at which the cavity resonates in the absence of
flow. The sound can be considered to be a simple source associated with alternating
flow in the mouth of the cavity.

The investigations of jet-edge tones, orifice tones, and resonant cavities have
been concerned primarily with the frequency of the sounds, without any attempt to
determine their amplitudes. Accordingly, it is not possible to say whether any of them
are significant sources of underwater noise. However, the uncertainty results from the
lack of adequate descriptions of these flows. Once suitable descriptions of the flows
become available, the associated sound pressure can be calculated by the methods
described in this section.
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DISCUSSION
S. Byard

I would just like to describe in a very few words the results of some simple
laboratory experiments which have been carried out by Mr. Hey at the Admiralty
Research Laboratory, and which seem to illustrate some of the characteristics of pro-
peller cavitation noise.

These experiments have been made with quite small hydrofoils, the smallest
being less than one inch by one inch, either mounted in a miniature water tunnel with
transparent sides, or mounted at the periphery of a disc which is rotated under water.
By suitably orienting the foil, a tip vortex cavity can be formed at the trailing edge,
or alternatively blade cavitation induced at the leading edge, and the noise spectra of
the two forms of cavitation are markedly different.

In these model tests the noise spectrum associated with the tip vortex cavity is
localized around 2 to 3 kilocycles/second, whereas the spectrum of the noise due to
blade cavitation is more generally distributed, extending to the higher frequencies.

In the case of a ship’s propeller, where cavitation is well established, both forms
of cavitation are normally present and give rise to a continuous noise spectrum with a
marked peak.

Some simple scaling experiments in which the effect of doubling the size of the
hydrofoil was observed, showed an approximate doubling of the diameter of the tip
vortex, and a lowering of the frequency of the peak in the noise spectrum. It was also
possible to show experimentally that the source of the noise associated with the tip
vortices is located close to the hydrofoil, and does not extend along the vortices.

It is thought that experiments along these lines, which can be regarded as
supplementing and extending the work on the single collapsing cavity which has been
carried out by Kendrick some time ago at the Admiralty Research Laboratory, can
help us understand the mechanism of propeller cavitation noise.

G. K. Batchelor

1 should like to ask a question of Mr. Fitzpatrick. He remarked that, in his
experiments, no noise generated by the turbulence in jets could be detected. Such noise
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would presumably vary as the 8th power of Mach number, and I think a few rough
calculations suggest that the level would be so small that one couldn’t expect to be able
to detect it. I should like to ask if he has done any experiments in which there was
a lifting surface somewhere in the flow. There is a connection between the fluctuations
in the lift on a solid body, and the amount of surface noise generated. The intensity
of the surface noise varies as the 6th power of the Mach number, and might therefore
be greater than that of the volume noise at low Mach numbers.

I suppose the most favorable circumstances for generation of surface noise
might be some kind of flat plate edge-on to a stream.

H. M. Fitzpatrick

I know of no such experiments involving a jet and lifting surface except, of
course, the “jet-edge” studies mentioned.

M. Strasberg

When you try to do such an experiment you run into a complication. If you
put a plate in a jet—you are, I presume, thinking of a rigid plate which would not
oscillate in the jet, so that the radiation would be the kind which is associated with
the lift forces on the plate. What happens in practice when you try to do that is that
the plate itself cannot be made infinitely rigid, and begins to oscillate and respond to
local pressures the jet exerts. As a result of the oscillation of the plate, sound will be
radiated, which very much complicates any analysis of the experimental results.

That sound which is radiated by a vibrating plate, excited into vibration by the
fluctuations of pressure on it, is a very important type of sound. A theoretical analysis
has been given by Dr. Kraichnan, who is, I see, a couple of rows behind you there.

M. J. Lighthill

I could make comments on this point. But I would like to say first how much,
how very much I enjoyed Dr. Fitzpatrick’s lecture. He tried to say some things I would
disagree with, but he wasn’t able to. I find myself in complete agreement with every-
thing he said. I think it was extremely desirable that a survey of that kind should
have been made.

On the question raised by Dr. Batchelor, whether hydrodynamic sound of a
one-phase character (involving no bubbles of any kind) could be detectable, I suppose
that the dipole radiation due to moving a circular cylinder about in a fluid is one of
the most promising kinds. A lot of information about the sound radiated in this case
is available. Phillips (J. Fluid Mech. 1 (1956), p. 607) has recently correlated exten-
sive measurements by Holle and Gerrard in the range of Reynolds numbers from 400
to 40000, by means of a formula which gives

pUsld
P = 0.006 ——
a3
where P is the total acoustic power radiated, p the density, U the velocity of the
cylinder, ! and d its length and diameter, and a the velocity of sound; and he gives
reasons why the constant should be independent of Reynolds number in the range in
which the wake is irregular but the boundary layer is laminar at separation.
In water, if U = 30 knots, I = 10 ft. and d = %% in., then the Reynolds number
is in this range (it is about 10%), and the formula gives P = 10-3 watt.

C. A. Gongwer

I concur, of course, the aeolian tone will be generated, but it only occurs in
the fairly narrow range of Reynolds number associated with the Karman vortex street.
I noticed Dr. Fitzpatrick’s curve of the sound from the underwater jets, which
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~vere made so carefully, that the sound peaks at the Strouhal number, which is usually
associated with the vortex street. This suggests some kind of regular pattern of vortices
associated with submerged jets, the value .18 or .2, suggests the vortex street.

The purely hydrodynamic noise is, of course, hard to find, unless you go to
a submerged hydrodynamic oscillator in which there may be no free interfaces what-
soever. In this case one can generate pure hydrodynamic noise by exciting a resonant
system in relatively incompressible liquid.

There are old cases of controversies of this type, about whether you should
streamline hydrophones, where people have said that there is no hydrodynamic noise
of significance, but experimental tests have shown some anomalies. For example, point-
ing directional hydrophones at submerged bumps on objects, one will get a noise coming
from this bump, under conditions in which cavitation really could not exist at all.
There is a real mystery there, and if one can throw some light on this subject, it would
be well worth while.

There may be the question of compound interferences from roughness, and so
forth, putting the interface into the system somewhere, or tiny bubbles, but in the
absence of the interface, it is really hard to explain some of these noises.

M. Strasberg

Dr. Gongwer’s comment about one of our spectrum curves indicates that the
curve requires some clarification. I believe he stated that our curve of the spectrum
of the radiated sound from a jet had a peak at a Strouhal number of about 0.2, sug-
gesting that some regular vortex pattern might be associated with the jet. However,
on the curve referred to we did not use the Strouhal number, but rather a dimension-
less frequency based on the sound velocity.

We use two types of dimensionless frequency. For the sound close to the jet,
where the behavior is the same as in an incompressible fluid, we do use the Strouhal
number, frequency times diameter divided by flow velocity, as the dimensionless fre-
quency parameter. On the other hand, for the sound radiated far from the jet, we
think it is more appropriate to use a dimensionless frequency based on the sound
velocity, that is, frequency times diameter divided by sound velocity.

There is some question whether either frequency parameter by itself is adequate.
Actually, both parameters may influence the radiated sound. But we think that the
radiated sound depends more on the parameter fD /c than on /D /U,,.

So it was just an accident that the peak occurred at a value of 0.2, the same
as the Strouhal number for vortex shedding.

T. B. Benjamin

1 wish only to emphasize the importance of one aspect of underwater noise
touched upon in Strasberg and Fitzpatrick’s excellent survey. This is the formation of
real shock waves, akin to underwater blast waves, by collapsing cavitation bubbles.
To call to mind this effect, it may be remembered that the pressure pulse produced at
a distance by a cavitation collapse can have an effective duration of about 10 micro-
seconds; but under some circumstances the pulse may develop a shock front whose
transit past a fixed station may occupy considerably less than one microsecond, that is,
very much less than that of the whole pressure wave.

There appear to be two respects in which the presence of shocks may be
specially important, the first being their role in cavitation damage. In writings on this
subject the term “shock wave” is used extensively, and the importance of the brief
duration of cavitation pressures is fully appreciated; however, the distinction between
very short yet continuous pulses, such as would always occur if water were strictly
incompressible, and real shock waves is not always recognized. Nevertheless, one is
naturally led to give weight to this distinction, since it is known that the stresses devel-
oped in a solid boundary by the incidence of shock waves are much greater than those
due to continuous pressure pulses of the same amplitude. Some experiments done at
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Cambridge have revealed great difficulties in trying to detect whether or not shock
waves are present in cavitation pressure fluctuations, but left no doubt that they do
arise at least sometimes. It does not seem untimely to express a hope that in the hands
of able experimenters such as Professor Knapp and Dr. Ellis, this aspect of cavitation
damage will soon be fully elucidated.

The second reason justifying attention to the matter of shock waves concerns
the cavitation noise spectrum, as is found by making frequency analyses of hydrophone
outputs. It has been pointed out before now that if a finite pulse possesses a dis-
continuity of the sort represented by the mathematical property f(t*) — f(¢+7) £ 0 (i.e,
a finite “jump” as at a shock front), its energy spectrum is asymptotically proportional
to the inverse square of frequency; in other words, it decreases at a rate of 6 decibels
per octave. Moreover, no other kind of pulse has a spectrum with this asymptotic
property. This fact may possibly have a bearing on some experimental measurements
of noise spectra; but a probably more useful consideration is as follows. If a pulse
having the property described above is applied to a resonant system, the frequency
response decreases asymptotically (i.e., well above the resonance frequency) as the
inverse fourth power of frequency. Again, no other kind of pulse produces this response.
Thus the response at very high frequencies from a practical hydrophone, which is
bound to be affected by self-resonances at a number of frequencies, should be sus-
tained at a slope of —12 decibels per octave if shocks are present.

The theoretical problem of shock formation by collapsing bubbles is clearly a
very difficult one. The allied but evidently simpler problem where a spherical shock
arises as the result of conditions prescribed over a spherical boundary, such as Sir
Geoffrey Taylor, Dr. Whitham and many others have treated, seems formidable enough;
but the cavitation problem presents the great additional difficulty that the motion of
the inner boundary (the bubble surface) is not initially known. Dr. Gilmore, for
instance, has made an important contribution towards the understanding of bubble
motion in compressible fluids, and his method of treatment was the first to give useful
results for cases where the fluid velocities are of the order of the sound velocity; but
apparently much remains to be done to clear up the question of strong cavitation where
a shock wave probably forms very close to the bubble surface and has a profound
effect on the bubble motion.

I understand that Mr. Fitzpatrick has made some calculations, not mentioned
explicitly during his talk, which enabled him to estimate the least severe conditions of
cavitation which should give rise to shock waves, and independently I have also
attempted this. My own work stopped short after considering a weak shock formed
far from the cavity centre, but I hope eventually to hear that Mr. Fitzpatrick has pro-
ceeded closer to the “heart of the matter.”

These remarks are intended only to reaffirm the desirability of regarding water
as a compressible fluid as far as cavitation collapse is concerned, and so to commend
compressibility effects in cavitation as an interesting and useful field of study. Recog-
nition of the theoretical difficulties need not reflect a pessimistic view of progress in
this subject, for the signs are that a great deal will be achieved towards a complete
solution within the next few years.

F. R. Gilmore

The authors have given a very interesting and well organized review of the
problem of hydrodynamic noise. I wish to comment only on the section dealing with
the noise produced by a collapsing cavity. According to the theoretical work of Lord
Rayleigh, as a spherical bubble in an incompressible liquid collapses to infinitesimal
size, velocities and pressures in the neighborhood of the bubble approach infinity,
provided that the pressure of any vapor or gas in the bubble either remains constant
or at least does not rise rapidly enough to prevent complete collapse. Recent
theoretical work yields similar results even when the compressibility of the liquid is
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taken into account (see my comments on M. S. Plesset’s paper). For actual cavita-
tion bubbles, however, there must be a point in the collapse after which these simple
theories no longer apply, either because the bubble is no longer spherical, or because
the pressure of the vapor inside starts to increase rapidly as the collapse becomes too
rapid to permit vapor pressure equilibrium, or for any of a number of other possible
reasons. Such complicating factors, which are very difficult to treat theoretically,
provide an effective “cut-off” to the infinite pressure peak given by theory. However,
if one is interested in the pressure pulse propagated to some finite distance from the
bubble, there is another cut-off which may be more amenable to theoretical treatment.
This arises from the well-known tendency of finite compression waves to become
steeper as they propagate. In a compression wave having a sharp peak the peak will
move faster than the rest of the wave, until a vertical front (shock wave) is formed.
Thereafter, the peak will gradually advance into the shock wave and be effectively
“lost.” The height of the pressure peak is thus significantly reduced as it propagates
(in addition to the geometric reduction in the spherical situation), and the pulse at
some distance from the bubble may be independent of the very last stages of the
bubble collapse. This possibility deserves careful theoretical investigation, using perhaps
the methods developed for underwater explosion shocks during World War II. Since
1 am presently occupied with Air Force instead of Naval problems, I would particu-
larly like to encourage someone else with the appropriate theoretical background to
undertake such an analysis.
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ADDENDUM

We should like to take advantage of this reissue to remedy an omission in Section V on
Unsteady Flow.

In the discussion of sounds associated with oscillating hydrodynamic forces, our Eq.
[24] et seq., we neglected to mention what is probably the first application of the theoretical
relation between surface forces and sound, namely, the explanation by Gutin [69] of the periodic
rotation sound from a propeller. The sound results from the hydrodynamic forces which develop
the thrust and torque of the propeller. These forces are steady relative to the rotating blades
but, relative to a coordinate system fixed in the fluid, their points of application oscillate and
a force vector associated with the torque rotates in direction at shaft frequency.

The rotating vector associated with the torque may be synthesized from two perpendic-
ular vectors each fixed in direction but oscillating sinusoidally in amplitude at shaft frequency
with 90-degree phase difference. Accordingly, each blade constitutes two dipole sources of
sound at shaft frequency. The dipole contributions from the several blades just cancel each
other, however, corresponding to the fact that there is no net sideward force, and only higher-
order poles remain at harmonics of shaft frequency.

The thrust force on a single rotating blade constitutes a quadrupole source of sound,
but again this cancels out among the blades and only higher-order poles remain.

The amplitude p, of the component of radiated sound pressure at the n-¢4 multiple of
blade frequency and at a distance r from the propeller is given by

Zn
2Q T cos G(fnRe\) fnRe1 (7 sin 6) zn
Pn = OnrR 2 R c c _| (2n)!
e

e

Here f, is the sound frequency corresponding to the n-zk harmonic of blade frequency (f, = zn
x shaft frequency); z is the number of blades; and 6 is the angle between the radius vector and
the shaft axis. The sense of the torque @ and thrust T are such that their respective sound
pressures tend to reinforce each other in the region behind the plane of the propeller disc and
to cancel in the region forward. This equation holds only for tip speeds much below the velocity
of sound; the effect of high speed has been investigated [70] but is of no concern for marine
propellers.

The radius R, is a mean or ‘‘effective’’ radius at which the torque and thrust forces may
be assumed to be concentrated. For aircraft propellers, which have relatively narrow blades,
R, may reasonably be taken as about 0.8 times the tip radius, at least for the first few harmonics
(e.g., 2n < 24). For marine propellers with wide blades a somewhat less simplified accounting
of the distributed blade forces is necessary, especially for harmonics of frequency greater than
blade frequency.
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It should be noted that sound can also be associated with the centripetal acceleration
of the volume of each rotating propeller blade (cf. the second term in Eq. [25] ). This term
seems not to have been considered in previous discussions of rotation sound. For marine
propellers with large blade widths, the associated sound may not be completely negligible
though generally it is of smaller magnitude than that associated with the torque and thrust.

We also take this opportunity to site several new references which have come to our

attention since the paper was prepared [74-77].
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