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NOTATION

Distance along beam from origin to point P
Flexural rigidity of beam at station n
Force acting on beam at point P

Force acting on sprung mass

Natural mechanical frequencies of free vibration of
free-free beam in cpm, n =1, 2, . ..

Natural mechanical frequencies of free vibration of combined system

Additional natural mechanical frequency of a beam-sprung-mass
system in cpm

Natural mechanical frequency of free vibration of mass-spring system
alone in cpm

Sectional area moment of inertia

Spring constant

o\ %

(&)

Shear rigidity of beam at station n

Length of beam

Bending moment acting on beam at station n

Sprung mass

Effective mass (equivalent of sprung mass, see Appendix A)
Mass of beam element lumped at station n

Sprung mass at station n

Time

Shearing force acting on beam; see Figure 9 for sign convention
Longitudinal distance from left end of beam

Longitudinal distance from right end of beam to point z; see Figure 8
Lateral deflection of beam

Displacement of sprung mass in y-direction

Displacement of sprung mass in y-direction at station n
Velocity of sprung mass at station n

Acceleration of sprung mass at station n

Displacement of beam in y-direction at point P on beam
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l
Length of element, —
20

Percent difference between exact theoretical values and TMB ngtwork
analyzer values of natural frequencies of a beam without a sprung
mass attached

Percent difference between exact theoretical values and TMB network
analyzer values of natural frequencies of a beam with a sprung mass
attached

Mass per unit length
Mass of beam element of length Az (including its virtual mass)

¢

tl

Az
(Az)’

Forcing frequency on beam

Antiresonance frequency

Natural circular frequency of free vibration of free-free beam
Natural circular frequency of free vibration of combined system
Natural circular frequency of free vibration of mass-spring system alone
With the exception of frequency and z’ electrical quantities analogous

to mechanical quantities are denoted by a primed exponent such as
V. corresponding to V.






ABSTRACT

A study was made of the vibration characteristics of a beam with an
attached sprung mass. The purpose was to explore the possibility of a more
adequate representation of a ship hull as a mass-elastic system subject to vibra-
tion. Analytical and electrical-analog methods are devised to determine the
natural frequencies and mode shapes of a beam-sprung-mass system. These

methods are shown to give results that are reasonably accurate.

I. INTRODUCTION

On certain classes of ships, flexibly mounted masses such as machinery, rudders, cargo,
and superstructures affect hull vibrations.!:2:3* It is therefore of value to investigate the
characteristics of a beam with an attached sprung mass, as a step toward achieving a more
adequate representation of a ship hull as a mass-elastic system subject to vibration.

The unusual mode shapes observed on SS GOPFER MARINER (Reference 1, Figure 19)
led to the consideration of local flexibility or the sprung-mass effect as a possible explana-
tion of the ‘‘unbeamlike’’ patterns. A study of the qualitative effects of a single sprung mass
on the vibration of a beam is given in Reference 4. An unsuccessful attempt to code the
problem of the nonuniform beam with sprung masses for solution on the UNIVAC computer led
to the present work, which is based on use of the David Taylor Model Basin Network Analyzer.**

This report discusses the effect of a flexibly attached mass on the natural frequencies
and modes of beam vibration. The specific objectives of the report are:

1. To substantiate and extend, by mathematical and electrical-analog methods, the quali-
tative theory of the vibration characteristics of a beam with an attached sprung mass, as
advanced by Kennard.# An analytical expression and electrical-analog methods are devised
to determine the natural frequencies of a wniform beam-sprung-mass system. The natural fre-
quencies obtained therefrom are shown to agree with the qualitative predictions of Kennard.
In addition, the effects of a sprung mass on the natural frequencies and mode shapes of the

nonuniform beam to which it is attached are shown by means of the electrical analog.

2. To determine the accuracy with which the natural frequencies of a beam-sprung-mass
system can be obtained with the TMB network analyzer by comparing the theoretical and
analog frequencies of a uniform beam.

3. To determine the accuracy with which the mode shapes of a beam-sprung-mass system

can be obtained with the TMB network analyzer.

4. To explain the unusual mode shapes observed on the SS GOPHER MARINER.! It is

*References are listed on page 38.

**The sprung-mass problem has recently been successfully coded for solution on the UNIVAC.



shown that the local flexibility or sprung-mass effect could cause the ‘‘unbeamlike’’ patterns
obtained.

The report treats, in sequence, the effects of a sprung mass on the frequencies and on
the modes of vibration of the beam to which it is attached. General conclusions are given with
regard to these effects.

2. EFFECTS OF SPRUNG MASS ON FREQUENCIES
2.1. JUALITATIVE ASPECTS OF SPRUNG-1MASS THSCA

The effect of local elasticities and masses on the natural frequencies of a ship can be
studied qualitatively by considering the idealized sprung mass attached to the free-free beam,
The effects of a sprung mass are discussed in Reference 4. However, for completeness of
this report, some relevant qualitative results of a beam-sprung-mass system will be given here.

Consider a mass m which is spring-mounted at a point P, as shown in Figure 1. Let/’
denote the spring constant.

The oscillatory internal forces acting on the beam at P and on the mass and the dis-
placements during a free vibration of the combined system are shown in Figure 1. The arrows
indicate instantaneous directions. Note that, alternatively, the force Fp may be considered
the force maintaining a forced vibration of the beam.

The response ratio is plotted against w, the frequency of a sinusoidal applied force,*
for both the free-free beam and sprung mass alone in Figire 2. In Figure 2 the curve yp/Fp
for the sprung mass alone is drawn for four possible alternative positions labeled A, B, C,
and D.

The intersections of the two types of curves in Figure 2 give the natural frequencies of
of the combined beam-sprung-mass system. Inspection shows that all the natural frequencies

‘ /K
o, which exist for the beam alone are ‘‘repelled”’ by the frequency wo =Y the natural

circular frequency for free vibration of the mass-spring system alone when the point P is fixed.
Those frequencies for which w, < w are replaced by lower frequencies for the system; those
for which w, > w, are replaced by higher frequencies. Also a new mode of vibration of the
combined system is added because of the additional degree of freedom corresponding to the
added sprung mass. The new frequency will also lie between the two natural frequencies of
the beam alone which lie adjacent to the frequency @, of the sprung mass. If o, happens to
coincide with an antiresonance frequency w ,, then the added natural frequency is w,. If @,
coincides with a natural frequency w, of the beam, then the added sprung mass will give rise
to two natural frequencies of the combined systems which lie on each side of w,.

It is interesting to observe that for a given @, and varied mass, a family of curves
passes through the point ¢ = wq- The smaller the sprung mass, the steeper the curve. For
a given beam the added natural frequency corresponding to a sprung mass will deviate less

from W, for the smaller mass; the larger the sprung mass, the larger the deviation from ¢ o

2



Figure 1 — Beam with Attached Spring-Mass System

!
Figure 2 — Response Ratio g/p/F’p for a Beam and a Sprung Mass

as a Function of Frequency

and a)a HES) are the circular resonance and antiresonance frequencies of
’

Bps @y _ s @ 9i @p 4y ,wn +2 n’ “a,n+l
the beam alone.

Woy’ a)OB; a)oc; Wqp are possible natural circular frequencies of the mass-spring system.

Primed symbols indicate the frequencies resulting when the mass-spring system is attached to the beam. For
curve B, ®, and Wop coincide and the altered values are designated mn'l and wn'2 .



For a given location of the sprung mass on the beam and a given @ it is the magnitude of

the sprung mass alone which determines the degree to which the original natural frequencies
of the free-free beam are repelled. v,
It should also be noted that the shape of the curves of — versus « for the beam alone

P
is determined both by the physical parameters of the beam and by the location P of the applied

force (the sprung-mass location).

2.2. ANALYTICAL 4ETHOD OF SOLUTION FOR NATURAL FREQUENCIES
OF UNIFORM BEAM WITH SPRUNG MASS ATTACHED

The free vibration of a free-free uniform beam with an attached sprung mass will be
treated on the assumptions that the beam has bending flexibility only and that the damping
forces are negligible. These assumptions permit an analytical determination of the natural
frequencies of the system for comparison with the values determined with the TMB network
analyzer as described in Section 2.3. y
It is shown in Appendix A that the response ratio £ at point P of the beam shown in

Figure 1 is P

2
?/p—wo—w [l]
F 2 2

p mwo @

‘ /K . .
where w, = |/— is the natural circular frequency for free vibration of the mass-spring system
m

alone when the point P is fixed and o is the frequency of the force F, applied to the beam.

For the case of an undamped, free-free, uniform beam with bending flexibility only,

the response ratio i;?— of the beam at point P is also (see Appendix B)
p
cos k (! - b) sinh k(! -~ 3) - sink (I - B) cosh% (I - )
+cos k (I - b) cos kb sinh kI - sin &I cosh kb cosh k& (I - b)
Yp 1 + oS kb sinh kb - sin kb cosh kb o]
Fo 2k3EI 1 - cos kI cosh &l

Y
2
(5)

p is the mass per unit length,

where k

E is Young's modulus,

! is the sectional area moment of inertia,



! is the length of the beam, and
b is the distance along the beam from the origin to the point P in Figure 1.

Equating the right members of Equations [1] and [2] gives

cos k(! -b)sinh k(I -~ 3)-sink (I - b)cosh k(I -10)
+cos k£ (I - b) cos kb sinh kI - sin kI cosh kb cosh & (I - b)

2 2 + cos kb sinh kb — sin kb cosh kb
wy — w7 1

= [3]
2 2 3
noy o 2k EI 1 - cos k! cosh k!

Equation [3] may be solved for w by trial and error for particular values of wg, m, u, E, I, {, b.
The values of , thus found are the natural frequencies of the combined beam-sprung-mass
systems. This numerical method is tedious. It.is easier to determine the natural frequencies
and modes of vibration by use of the TMB network analyzer. However, the equation has been
solved for a particular uniform beam in order to obtain a comparison between the exact solu-
tion and the analog results. The beam parameters and the results of the computations are
given in the next section.

2.3. NATURAL FREQUENCIES OF UNIFORM BEAM WITH SPRUNG MASS
ATTACHED AS DETERMINED BY TMB NETWORK ANALYZER

The electrical circuit which represents lateral vibrations of a beam is given in
Reference 5. This circuit has been slightly modified to take account of the added sprung
mass; see Appendix C. For the calculations given in this report the beam was divided into
20 sections, each of length Az, and electrical measurements of the voltages which represent
the vibratory motions were made at 21 points along the beam.

Both analytical and analog procedures were applied to a uniform beam, every section of
which has the same mass per unit length and bending stiffness E/ as the midship section of
SS GOPHER MARINER.! The physical data are:

EI =1.50 x 10'° ton-ft?
i =525 ft
Az =1/20=26.25ft
Az/El =175 x 1079 (ton-ft)~ 1
b =1/2=262.5ft
B =38.49 ton-sec2/ft2
pAz =91.6 ton-sec?/ft

The sprung mass is taken as 50 percent of the effective ship mass* in a length

Az =1/20 or as 45.81 ton-sec?/ft. Assume the natural frequency @, of the mass-spring system

*The effective ship mass is the mass of the hull plus its virtual mass.



TABLE 1

Natural Frequencies of Uniform GOPHER MARINER Beam
with Bending Flexibility Only

TMB network analyzer results are for a beam subdivided into 20 sections.

Without Sprung Mass With Sprung Mass**
Frequency, cpm € vor Frequency, cpm e | eg- €
Mode Free-Frge Bar | TMB Network Percent | Mode | Equation[3] [ TMB Network Percent | Percent
Equation Analyzer Analyzer
1 2 3 4 5 6 7 8 9
1 50.85 51.6 ~1.485 1 50 50.4 -0.99 +0.495
2 140 136.2 +2:82 2 140 136.2 +2.69 -0.13
3 274.5 264.6 +3.14 3 263 252 +4.16 +0.42
3a* 392.5 389.4 +0.88
4 454 418.8 +1.76 4 455 419.4 +7.65 -0.12
5 678.5 601.8 +11.6 5 685 6126 +10.6 -1.0
953.5 810.6 +14.9 6 810.6

*The frequency corresponding to Mode 3a is the additional natural mechanical frequency of .he beam-sprung-
mass system.

**A sprung mass of 45,81 ton-sec2/ft was attached at Station 10 on the beam. The frequency fo was 370 cpm.

f
[["Free-Free Bar " Network Analyzer
**% € 1 (without sprung mass) = X 100 percent

® Free-Free Bar

f 4 - f d
n Equation [3] " Network Analyzer

**% €, (with sprung mass) = p X 100 percent

n Equation [3]

alone to fall between the frequencies of the third and fourth modes of the free beam. Arbitrar-

ily choose o, = 728w, where ©, is the fundamental frequency of the free-free beam®:

0

_ (4.73)% [EI rad

12 p sec

since w; =5.32 rad/sec,
w, = 38.73 rad/sec, and

K =wgm = 68,715 ton/ft.



The natural frequencies w, of the free-free ‘‘classical” beam? fall in the ratios
1: 2.756; 5.405: 8.93; 13.34: 18.74. The values of f, corresponding to the exact solutions for
the free-free beam are given in Column 2 of Table 1, and the corresponding values obtained
with the network analyzer are given in Column 3. The values of f,’of the beam-sprung-mass
system computed from Equation [3] are given in Column 6, and the corresponding values obtain-
ed with the network analyzer are given in Column 7.

The errors shown in Table 1 are largely inherent in the lumping procedure (i.e., lumped
electrical parameters are used to represent a continuous physical system) and in the imperfect
components used in the network analyzer, and are not random. Since the analog representa-
tion used for the free-free beam was also incorporated in the analog of the beam-sprung-mass

system, it would be expected that the errors ¢, and €, defined in Table 1, would be nearly

2

equal. The small values of €, — €, verify this prediction, and suggest that the analyzer indi-

cates fairly accurately the effect oflsprung masses on the natural freuencies of the bheam.

The measured and theoretical values of the new frequency f, agree within (.88 per-
cent, as shown in Table 1. This unusually good accuracy is explained in Appendix D.

In any mode for which f, < f, (i.e., n = 1, 2, 8 here) the frequency of the beam with
sprung mass is lower than the frequency of the beam without sprung mass. In any mode for
which f_ > f, (i.e., n = 4, 5) the frequency of the bean, with sprung mass is higher than
the frequency of the beam without sprung mass. These results are in agreement with Refer-
ence 4,

A new frequency is added for the sprung-mass system because of the additional degree
of freedom introduced by the added sprung mass.

Since the sprung mass is relatively large, the added mode frequency fs,a does not lie
very close to f, (as m grows smaller fs'é" fo).4 These observations are in accordance with
the theory as discussed in Section 2.1.

2.4 NATURAL FREQUENCIES OF NONUNIFORM BEAM WITH SPRUNG MASS
ATTACHED AS DETERMINED BY TMB NETWORK ANALYZER

The natural frequencies of a nonuniform beam (representing GOPHER MARINER) with
an attached sprung mass will now be determined. Both flexural and shear rigidity as well as
nonuniform mass distribution are considered. Damping forces are considered to be negligible.
The physical and electrical parameters defining the GOPHER MARINER are given in Appen-
dix E. The mass distribution used corresponds to the light ship condition.!

The 20-section analog of the beam with and without an attached sprung mass was set
up on the TMB network analyzer in accordance with the circuit shown in Figure 14 of Appen-
dix E. Sprung masses equal to 10 percent and 50 percent of the total mass lumped at Sta-
tion 10 of the original nonuniform beam (without sprung mass) were used to demonstrate their
effects on the beam. For each sprung mass, f, was taken as 234 cpm, which is equal to the
natural frequency of the free-free GOPHER MARINER beam in the third mode. Table 2 gives



TABLE 2

Natural Frequencies of Undamped Free-Free Nonuniform Beam
with Bending and Shearing Flexibility as
Obtained by TMB Network Analyzer

Measured electrical frequencies have been converted to cycles per minute (mechanical).

F‘,’ﬁ?:::tcy Frequency with Frequency with
Mode Sprung Mass Mode | 10.percent Sprung Mass | 50-Percent Sprung Mass
cpm cpm cpm
1 78 1 78 78
2 154.2 2 154.2 154.2
3 234.0 3a 2214 209.4
3b 259.8 268.2
4 320.4 4 321.6 325.2
400.2 5 404.4 420.0
6 478.8

the natural frequencies of the several beam systems. Examination of Table 2 shows that the
introduction of the sprung mass yields results which agree with the theory discussed in Section
2.1. In particular, it may be observed that the original beam frequency f4 is replaced by two
new frequencies, f3, 2nd £y, either of which can be regarded as the new one since f, equals
f5

A graphical method of determining, with reasonable accuracy, the added mode frequency
of a nonuniform or uniform beam with shear and bending flexibility is given in Appendix F.

It seems reasonable to assume that analog results for the natural frequencies of a uni-
form and nonuniform beam-sprung-mass system with shear and bending flexibility will be sub-
ject to errors of the same order of magnitude, provided that the nonuniformity is not too large.
The natural frequencies of a uniform beam with shear and bending flexibility can be computed®
and compared with analog computations in order to determine the errors in the latter.

For larger nonuniformity the mode frequencies obtained with a digital computer such as
the UNIVAC for a beam comprised of 40 sections may be regarded as a standard to determine
analog errors.

By inference, the TMB network analyzer may be used also to determine the effect of
many sprung masses upon the natural frequencies and mode shapes of a free-free nonuniform
beam with shear and bending flexibility, rotary inertia, and damping. The system parameters
may be readily changed on the analyzer, and the effects of these changes can be explored
rapidly.



3. EFFECTS OF SPRUNG MASS ON MODE SHAPES

The quantitative effects of a sprung mass upon the mode shapes of a beam, which have
been unknown so far, can be determined by use of electrical-analog methods.

Consider again the nonuniform beam (representing GOPHER MARINER) discussed in
Section 2.4. The mode shapes of the beam obtained on the TMB network analyzer are compared
with the corresponding mode shapes determined by the UNIVAC as shown in Figure 3. The
UNIVAC solution is considered accurate. The accuracy and the smoothness of the analog mode
shapes are evident. The greatestdeviations of the analog results occur in the highest modes.

It seems reasonable to assume that analog results for the mode shapes of a nonuniform
beam with or without an attached sprung mass will be subject to errors of the same order of
magnitude,

The natural frequencies and normal modes of vibration of the nonuniform beam with and
without an attached sprung mass, determined on the TMB network analyzer, are given in Fig-
ures 4 and 5. The sprung masses are equal to 10 percent and 50 percent of the mass lumped
at Station 10 of the original beams (without sprung mass). Note that, for the beam with the
50-percent sprung mass, the natural frequencies f 4’ and fs’ were measured although the corre-
sponding mode shapes were not determined; see Table 2. .

Figures 4 and 5 also show two mode shapes with the same number of nodes for the beam-
sprung-mass system. This is contrary to the behavior of beams.

Inspection of the figures shows too that for the beam-sprung-mass system the mode with
a frequency adjacent to and greater than f, changes curvature rapidly, i.e., dips, at Station 10
where the sprung mass is attached and the distance between the nodes adjacent to Station 10
lengthens. The greater the sprung mass, the greater the dip. On the other hand, the mode with
the frequency adjacent to but less than f, has a somewhat sharper peak at Station 10, and
the distance between the nodes adjacent to Station 10 diminishes. The greater the sprung
mass, the greater this effect.

These modifications to the beamlike mode shapes are caused by the phase relationships
between the sprung mass and the beam proper. For mode frequencies greater than fy> the sprung
mass exerts a force which is out of phase with the beam displacement at its point of attach-
ment (i.e., when Yp is positive, the spring is in compression). For mode frequencies lower than
fy» the sprung mass exerts a force which is in phase with the beam displacement at its point
of attachment (i.e., when Yp is positive, the spring is in tension). The mathematical relation-
ship between the force acting on the beam at Station 10 and the natural frequencies of the com-
bined beam-sprung-mass system is derived in Appendix A. This force tends to cause the orig-
inal mode of the beam (without sprung mass), whose resonance frequency falls between the
same antiresonance frequencies asfo, to be replaced by two mode patterns of the beam-sprung-
mass system which have the same number of nodes. The modification of the beamlike modes

caused by this force is greatest for those modes which have natural frequencies nearest to f,,.



Figure 3 — Modes of Vertical Vibration of GOPHER MARINER Determined by
TMB Network Analyzer and UNIVAC

The displacement was 18,674 tons corresponding to a condition of light load.
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Figure 4 — Modes of Vertical Vibration of GOPHEF. MARINER with and without a 10-Percent

Sprung Mass Attached at Station 10 Determined by TMB Network Analyzer

The displacement was 18,674 tons corresponding to a condition of light load.

Wherever points and curves are not shown for the condition labeled ‘‘without sprung mass,’’ the
curve and points labeled ‘‘with sprung mass’’ apply.
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Figure 4d —~ 4-Noded Mode, 259.8 CPM
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Figure 4f — 6-Noded Mode, 404.4 CPM
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Figure 5b — 3-Noded Mode, 154.2 CPM
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Figure 5d — 4~-Noded Mode, 268.2 CPM

Figure 5 — Modes of Vertical Vibration of GOPHER MARINER with and without a 50-Percent

Sprung Mass Attached at Station 10 Determined by TMB Network Analyzer

The displacement was 18,674 tons ~orresponding to a condition of light load.
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Figure 6 — Vertical-Amplitude Profiles of GOPHER MARINER Experimentally Obtained for
Light-Loading Condition at Vibration Generator Speeds of 165,237, 285, 365,and 485 RPM

This figure is adapted from Figure 19 of Reference 1.
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4. APPLICATION OF SPRUNG-MASS THEORY
TO SS GOPHER MARINER

Inspection of Figure 6 shows that definite beamlike mode shapes could not be clearly
established experimentally beyond the 4-noded mode of vertical vibration of GOPHER MARINER.
From an analysis of these mode shapes it can be concluded that there are two with the same
number of nodes. The mode shapes shown in Figures 4 and 5 for the beam with sprung mass
also include two modes with the same number of nodes (6 nodes). Thus it is possible that the
unusual mode shapes observed on GOPHE R MARINER are the results of the effects of sprung

masses.

5. CONCLUSIONS

The following conclusions may be drawn from the analysis given in this report:

1. The TMB network analyzer maybe used to explore accurately and quickly the effect
of a single sprung mass upon the natural frequencies of a free-free uniform beam with bending
flexibility only and negligible damping.

2. Analog results for the natural frequencies of uniform and shiplike nonuniform beam-

sprung-mass systems with shear and bending flexibility are expected to be subject to errors
of the same order of magnitude.

3. By inference the TMB network analyzer may be used also to determine the effects of
many sprung masses upon the natural frequencies and mode shapes of a free-free nonuniform
beam with shear and bending flexibility, rotary inertia, and damping. The system parameters
may be readily changed on the analyzer, and a rapid exploration of their effects can be made.

4. The quantitative results obtained for the effects on the natural frequencies of a sprung
mass on a beam are in accord with the qualitative theoretical predictions of Reference 4. Of

particular interest are the facts that:

a. The original beam frequencies less than £, are lowered by the addition of a

-

sprung mass to the beam.

b. The original beam frequencies greater than f, are raised by the addition of a
sprung mass.

¢. The amount of repulsion of the original beam frequencies increases with the
magnitude of the sprung mass.

d. The original beam frequencies closest to f, are repelled the most by the addi-
tion of the sprung mass.

e. A new natural frequency of the combined system is added which approaches
f, when the sprung mass is small, and deviates from f, when the sprung mass is
large.
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5. Analog results for the mode shapes of a nonuniform beam are fairly accurate; see

Figure 3.

6. In a beam-sprung-mass system the mode whose frequency is adjacent to and greater
than f, changes curvature rapidly; i.e., dips, at the point where the sprung mass is attached
and the distance between the nodes adjacent to this point lengthens. For the mode whose
frequency is adjacent to but less than f there is a peaking of the mode shape at the point
of attachment and a contraction of the distance between the nodes adjacent to this point.

The greater the sprung mass, the greater these effects.
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APPENDIX A

RELATIONSHIP BETWEEN FORCE F, ACTING ON BEAM
AND NATURAL FREQUENCIES OF COMBINED
SPRUNG-MASS SYSTEM

The differential equation of motion of the mass m of Figure 1 during a free vibration of
the combined system is3

d%y,
m

— =—Fp=-mm(¥(ym—yp) (5]
3

For steady free vibration of the combined system at circular frequency o,

d? Ym )
— = - ym [6]
dt?
Substituting [8] in [5] gives
@
)
Yn=% —— [7a]
0y -
or
2
W
Ym =% =Y (—-—-—-) [7b]
mTR TR\ 22
Then
2
F=mody, (——) [s]
P P 02 - o2
0

Equations [7] and [8] show that if w < w, the spring is in tension for positive Yo and Fy is
in phase with Yo If o > w,, the spring is in compression for positive Yps and Fp is out of
phase with Yp-

Equation [8] may be arranged in the form

“o 2 2
(l)o"'(l.)
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where m, is the effective mass which, when added to the beam at point P, will have the same
effect as the sprung mass m characterized by the circular frequency w,- Note that m is

positive for » < w, and negative for w > ©ye
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APPENDIX 8

DERIVATION OF RESPONSE RATIO y,/F, OF AN UNDAMPED

FREE-FREE UNIFORM BEAM WITHOUT SHEAR AND
WITH A SPRUNG MASS ATTACHED

Consider an undamped uniform beam without shear and with free ends (Figure 7). When
such a beam vibrates at any point free from external force, its differential equation of motion
ig9
is

92 94
LNy} A S [10]
dt2 dzt

where y is the vertical deflection,
z is the distance from the origin of any point along the beam, and

t is time.

Let a vertical sinusoidal force F = Fp sin ot act on the beam at a point P which is at
a distance z = b from the free left end of the beam located at # = 0. Steady forced vibrations
only are considered. Then for z < b the solution of Equation [10] is

y =(B/sin kz + B cos kz + B” sinh kz + Bliv cosh kz) sin wt (11]

where B/, B/, B/, and B:" are constants determined from the boundary conditions, and

k= (_“.“_’3) b
El

Ignoring time variations and letting

_ 9y _ 0%y 3y
Y = 9% ’yxx__ajz' ' Ypnx = 93
then
Yy = Bl' sin kz + Bl"vcos kx + B, ***sinh kz + Bli" cosh kz [12a]
Y« =k (B] cos kz - B/ sin k& + B, " cosh kz + B," sinh kz) [12b]
Yyy =K% (~B{sin kz - B’ cos kz + B/ sinh kz + B}" cosh kz) [12¢]
Vix = k3 (- B/ cos kz + Bl”-sin kz + Bl'" cosh kz + B:" sinh kz) [12d]
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l x':l—x
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|

Figure 7 — Coordinate System with Origin at (0,0)

tf £

t X x':l—x
1

1

Y
| .

The boundary conditions at z = 0 are y, =0

Figure 8 — Coordinate System with Origin at (I, 0)

? yxxx

ve _ piv, ’_ rer
Hence Bl = B1 H B1 = B1

For later use it is easily concluded that at 2 = %

1 Yux .
= (y b —_ ) = B/sinh kb + B[ cosh kb

1 yxx I d : rs
._2_ y- .—_Bl-smkb«uBl cos kb

) = Bl'-cosh kb + 31" sinh kb

1 /Y% Yxxx , P
.é..(-— - = B1 .cos kb - Bl sin kb
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Now consider the section of the beam to the right of z = b and let #’= ! — 2. Thus 2’is the
distance from the right end of the beam to the point 2 as shown in Figure 7.

Now consider that the origin of z” exists at the right end of the beam, which is also free, and

that a positive z’axis extends to the left as shown in Figure 8.

Expressions similar to Equations [12] may be written for y, v, , in this new coordi-

Yuxr Ynxx
nate system with B = 82”’ and B2" = 821" evaluated for the boundary conditions at z” = (.

Thus

y =Bsink(l-z)+B/ cosk(l~-z)+B/sinhk(l~z)+ B/ coshk(l-g2)

[14a]
Yy =kl-Bjcosk(l-2)+B; sink(l-z)-B,coshk(l-z)-B,’sinhk(l-2z)]

[14b]
Yux =Kk2[-B/sink(l-2)~B) cos k(I ~2)+ B)sinh k(I ~z)+ B, cosh k (I ~z)]

[14c]

Yynn = k3 [B)cos k (I -2) - B)"sin k (! - 2) -~ B) cosh k (I -~ z) - B,”sinh k (I ~ 2) ]

[14d]
Atz=bora’=1l-0%

1 Yux , . ’r

n (y+ ” ) = B, sinh £ (I - b) + B,” cosh k (I - b) [15a]

1 Yax b .

5 (y__kz_) = B;sin k (I - b) + B, cos k (I - b) [15b]
5 (7 =)= -Bjcosh k(1= - B sinh k (1~ ) [15¢]

1 yx yxxx , 1 7

_2-(7:—- s )-—-—B2~cos k(l-b)+ B, sin k (I - b) (15d]

The beam may now be regarded as two equivalent beams joined by an element of differ-
ential length dz (see Figure 9) which finally is made to approach zero. We will then have the
actual beam. Figure 9 shows the momentary direction of the shearing forces V,and V, and the
moments M, and M, acting on the beam corresponding to a force Fp acting on the differential
element dz. The dotted line indicates the deflection curve at the particular instant when the
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Figure 9 — Sign Convention for Moments and Forces Acting on Beam

shearing forces and moments are as shown. With the deflection curve as shown, there are
bending moments producing compression in the upper fibers of the beam.

Figure 9 also shows the sign convention that has been adopted. Compression in the
upper fibers is regarded as positive. Also, an upward shearing force v, acting on the beam to
the left of a cross section and a downward shearing force V| acting on the beam to the right of
that cross section are regarded as positive and similarly for V,. It is clear that according to
this sign convention the actual bending moments and shearing forces in Figure 9 are positive.

The quantity y__ is also positive. When dz -0
My=E1(y,), » My = BT (v,,) [16]
or

It is clear that y, _ is continuous.

Equilibrium of the forces on the dz element requires that

Fp = V1 - V2 =~ El (yxxx)L +EI (yxxx)R (18]
or
“Yuxx Yexx FP
( ) . ( ) - [19]
%3 L k3 R k3EI
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Let

s, =sin kb;

1
¢y =cos kb;
Sl = sinh kb;

C, = cosh kb;

1

s, =sink (I -10)

2

¢, =cos k (I-1)
8, =sinh k (1 - b)
C, =cosh k (I - b)

yxxx yxxx N . .
Now ( ) and ( ) may be found from the difference in Equations [13c] and
L R

k3 k3
{18d] and [15¢c] and [15d], respectively.

Substitution of these differences into Equation [19] gives

- Bl’(Ol -c) - Bl"~(S1 +8) - 82'(02 -c) -~ 32” (82 + 32)=

Since y, Yoo Yux

. . 1 Yux 1 Yux
are continuous at 2 = b, then equations for r Y+ —) and — (y - )

Fp

[20]

E3EI

%2 2 k2

are also continuous. The continuity of y, permits the sum of Equations [13c] and [13d] to be
equated to the sum of Equations [15c] and [15d]. The continuity of

1? ( y* %z—x-) permits Equations [18a] and [15a] and Equations [18b] and [15b] to be equated.
Thus
B/(Cy +¢)+B (8 ~8)==Bj(Cy+c,)) =B (8,-38,) [21]
8, Bl'~+ C, 81” -5, Bz'- C, 32” =0 [22]
8B + ¢ B/’ 8,B/~¢c,B,’=0 [23]

Equations [20] and [21] may be added and subtracted to give the following simpler equations:

c, B’ - 8 Bl"-+ 0282"-- s, B’ =

171

0l Bl'-+ S, Bl"~+ 02 Bz' + 32 B/ =

F
B 4 [24]
k3 EI
-F
5 : [25]
k3 El

27



Equations [22], [28], [24], and [25] are four linear algebraic equations which may be solved
for the four unknown constants B, Bl”, 82', and BZ” by means of determinants. However, these
equations need be solved only for B"and B/ to find the response ratio Y%/ Fp since B/ = Bli"
and Bl’= Bl'". Then upon substitution of # = b in Equation [12a] we have

Yp = B/ (8; + 8)+ B/ (C, + ¢c) [26]

For convenience, Equations {22], [28], [24], and [25] are regrouped

8,B/+C B/'~-8,B/~C,B]"=0 [22]
8,B/+¢;B/"~-8,5/-¢,B)"=0 [23]
By
¢B/-8 B +c¢cB ~s,B = [24]
' 2 ok3EI
-F,
C,B’+S,B”+C,B/+8B,"” = [25]
121 715 27 2
: 2 adEl
We solve for B/ and B by the method of determinants and obtain
-8, (86 +¢,8) - C,(c,c, -8 &)+ C (sF+c2)
2
Bre Fp | #6585+ 6, C) - (CF=8) -9, (C,5,+5,0)) (o7
kS EI 2 (1 - cos kI cosh kl)
and
l‘:}'z (¢, 0 — 8 8) —Cy(cy8,+¢,8,)+ 8, (7 + ¢ :I
2 _ g2
- Fp tc, (0182+S102)‘81 (C'2 -Sz)—82(8182+0102) (28]
YookEr 5 (1- cos 4l cosh Al)

Substitute B and B, in Equation [26] and equate to unity s + ¢? and C7 - §2 in Equations
{27] and [28]. Most terms cancel and the remainder, upon division by F, is the desired
response ratio:
cos k (! - b) sinh k (I - b) — sin & ({ ~ b) cosh k (I - )
+ cos k (I - b) cos kb sinh kI — sin k! cosh kb cosh & (I - b)
Y 1 |+ cos kb sinh kb — sin kb cosh &b

P
F,  ow3Er (1-cos kl cosh £7)

[29]
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APPENDIX C

ELECTRICAL ANALOG OF A UNIFORM
BEAM-SPRUNG-MASS SYSTEM

The natural frequencies of an undamped free-free uniform beam without sprung mass
and with bending flexibility only may easily be computed by the network analyzer.5 Figure 10
shows the 20-section analog of the uniform GOPHER MARINER beam. The conversion or

scaling factors> used in transforming mechanical parameters to electrical parameters

are a=3.4x107, B =5x10% A=2x10"9, T=26.25, v = 100 where

o=
Az
()
(i0)
_ KAG
B = (Am
KAG)
m/
A=
My
Az
T = ————
(Az)’
ﬂssz———\QQQfT———-———-——\ 000 —
lel ' [
m' _L_ -—-r-“I ml 4 e I'| —-—rn;Q | ' .

(&) (&) (2 (&)

Figure 10 — Analog of Uniform GOPHER MARINER Beam with Bending
Flexibility only and without Sprung Mass

The analog used comprised 20 sections.

The electrical parameters are mg = 0,092 jf. m1’= m2'= ceemio =0.183 pf. my, = 0,092 pf and

Ax ’ Ax ’ Ax ’
"E]" . = E- , =eee “ET' o = 0,06 h. All transformer turn ratios = 1:1.
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For this beam the natural frequencies
measured on the TMB network analyzer are given
in Table 1.

We now consider the addition of a sprung
mass to the analog of the uniform GOPHER
MARINER beam. For this beam the critical fre-
K quencies measured on the TMB network analyzer

are also given in Table 1.

The derivation of an electrical analog sys-

n4.E tem enquivalent to the sprung-mass system of Fig-
ure 11 may be obtained by using Newton’s laws
for the analysis of the sprung-mass system. The
Yn solution to the dynamics problem can then be

represented by an electrical mobility analog.
Figure 11 — Sprung-Mass System This analysis is now made for a free vibration.
In Figure 11 let Vo—y and V,  ,, represent the
momentary direction of the shearing forces. Consider y, and y° as positive in the direction of

the increasing ordinate (upwards) with respect to the static equilibrium condition.

mnflin=Vn—Vz—Vn+%+K(yrgs—yn) {30]
o N S
](‘)mnyn=Vn—%_pn+1/z +}-Z (yn —:’/n) {31}
R S
Vn+%-Vn—%=—]wmnyn+j:(yn-yn) [32}
m Y = K (4 = %) (33]
id s.s K . ‘s
Jom; Y =7; %, ~ %) [84]

These equations may be represented by an electrical mobility analog which has been added
to Station 10 (n = 10) of Figure 10, as shown in Figure 12,

where m? is represented by capacitance (m;)’

1 ’
K is represented by inductance (T)

Y, is represented by time integral of voltage %)’
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Figure 12 — Sprung-Mass Mobility Analog Added at Station n = 10, to
20-Section Analog Shown in Figure 10

y$ is represented by voltage (37)”

y* is represented by derivative of voltage (37)”

(05)? = -K—s- o (wg)2 my = K (35]
My

The relationship between electrical and mechanical parameters is given by Reference 5.

(m3)’

A

[36]

(m$)"= A ox mg =

31



and

(@g)”
(wg) = Vo or wg = (371
14
Then, substituting [36] and [37] in [35], we find that
[(wg) 1% (mS)*
=K [38]
v
[(wg) 12 (M) = \2K =K’ [39]

Dimensional homogeneity requires that Av2 K = K’ be an electrical quantity. The reciprocal

1
of K”has been denoted in Figure 12 by (l?\) , the electrical value of the spring constant.

. . 1\~ . .
The capacitance and inductance (m%)“and K *or (_K_j are obtained from Equations

[36] and [39], respectively.
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APPENDIX D

ACCURACY OF FREQUENCY CORRESPONDING TO ADDED MODE
FOR UNDAMPED FREE-FREE UNIFORM BEAM WITH
SPRUNG MASS ATTACHED

For the undamped free-free uniform beam with bending flexibility only, the measured
and theoretical values of the additional frequency f, agree closely, within 0.88 percent, as
shown in Table 1. The unusually good accuracy can be qualitatively understood from a con-
sideration of Figure 18, which shows the response ratio yp/ Fp plotted against f for both the
free-free beam and the sprung mass alone.

In Figure 13, Curve 4 is theoretically exact, and Curve B isobtained con the network
analyzer. An error in a resonance frequency determined on the analyzer appears as a horizon-
tal displacement of the response curves at the points of maximum response; i.e., at f4“ and f4‘.

The response curve for the sprung mass represents both theoretical and experimental
values, since the analog for the sprung mass is precise. It crosses the horizontal axis at £.
The resonance frequencies for the combined system correspond to the frequencies at which
the curve for the sprung mass intersects the response curves for the beam. It is evident that
/¢ differs from f* but that, because of the vertical tilt of the curve for the spring-mass system,
the difference between the theoretical and experimental value is reduced. For a small sprung

mass the curve is very steep, and the difference would be very small.

Response Curve for
Sprung Mass

B'Il A

|
Experimental —ej|

/—Theoreﬁcal

! |

_’t €= 3.74 percent b lnks 7.76 percent

Figure 13 — Response Ratios for a Beam and a Sprung Mass as a Function of Frequency

f b is the theoretically exact value of f3a’

f% is the TMB network analyzer value of f3a’
fO is the natural frequency of free vibration of the mass-spring system alone,

3 :
f 3? f 4t are theoretically exact values of frequencies adjacent to fo, and

a
f3 [ 4a are TMB network analyzer values of frequencies adjacent to fo.
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APPENDIX E
ELECTRICAL ANALOG OF NONUNIFORM BEAM-SPRUNG-MASS SYSTEM

The data used in obtaining a 20-section analog of the nonuniform GOPHER MARINER
beam are shown in Table 3. The corresponding analog of the beam with an attached sprung
mass is shown in Figure 14. The principal characteristics of the GOPHER MARINER are:

Length between perpendiculars 525 ft

Beam 76 ft

Depth 44 ft 6 in.

Design draft 27 ft

Design displacement 18,674 tons
TABLE 3

Data for Analog of 20-Section Nonuniform GOPHER MARINER Beam
with Bending and Shearing Flexibility

These data are for light loading vertical vibration condition.

I L INTYY AT R (-‘}—z)( M)'
Station | ton-sec?| £/ KAG El/,|\KAG/,
it (ton-fty— 1]  ft/ton puf h h
0 739 | 0.3160 0.015| 0.177 | 0.568
1 | 1226 | 05205 1135 [0.025| 0.123 | 0.428
2 | 1790 | 0.3615 8.56 |0.036| 0.098 | 0.359
3 | 3143 | 02880 717 |0.063| 0.083 | 0.338
4 | 4533 | 0.2455 6.75 |0.091} 0.074 | 0.286
5 | 6131 | 0.2185 572 |0.123] 0.068 | 0.284
6 | 6039 | 0.2005 567 [0121] 0.064 | 0.304
7 | 68.38 | 0.1880 6.08 |0.137| 0.061 | 0.335
8 | 83.45 | 0.1800 6.70 |0.167| 0.060 | 0.362
9 | 89.96 | 0.1760 7.23  |0.180] 0.060 | 0.381
10 | 9161 | 0.1750 762 |0.183| 0.060 | 0.387
11 | 69.03 | 0.1750 773 [0.138| 0.061 { 0.382
12 | 6444 | 01790 7.63  |0.129] 0.064 | 0.369
13 | 57.39 | 0.1885 737 |0.115] 0.069 | 0.353
14 | 4491 | 0.2040 705 |0.090| 0.079 | 0.337
15 | 3310 | 02320 6.73 10.066| 0.093 | 0.317
16 | 2230 | 0.2740 6.33  |0.045]| 0.111 | 0.299
17 | 2115 | 03270 5.98 |0.042] 0.129 | 0.276
18 | 172.78 | 0.3805 5.52 [0.036 0179 | 0.283
19 | 1472 | 0.5265 5.06 |0.029 0.248
20 6.68 | 0.3240 496 10.013
1 .
Az = m (Length of ship) = 26.25 ft
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Figure 14 — Analog of 20-Section Nonuniform GOPHER MARINER Beam with Attached
Sprung Mass with Bending and Shearing Flexibility

’

rd
1 1
For 10 percent sprung mass (m:)'= 0.0183 p.f; (F) = 9.099h; for 50 percent sprung mass (m:)'c 0.0915 i f'(K_> = 1.82h,

Analog is for light loading, vertical vibration condition.



APPENDIX F

GRAPHICAL DETERMINATION OF ADDED MODE
FREQUENCY OF NONUNIFORM BEAM

Examination of Figure 13 shows that a reasonably accurate determination of f* can be
made by the following method.

1. Calculate f3‘ and f4‘ on a digital computer such as the UNIVAC and construct vertical
asymptotes through these points. (It is assumed that f3‘ and f4‘ lie on opposite sides of f.)

2. Measure /3" and f4" on the network analyzer and construct vertical asymptotes through
these points.

3. Calculate values €, at the resonances adjacent to f.

4. By use of the network analyzer obtain the data necessary to plot Curve B, the TMB
network analyzer solution for the beam alone.

5. Draw Curve A, the UNIVAC solution for the beam alone, knowing the values of €
at the resonances adjacent to f) and assuming the value yp/Fp at any point on Curve 4 is
displaced from the same value on Curve B by an error which is directly proportional to the
frequency.

6. Mark the known value of f; on the f-axis, Figure 13.
7. Measure f? on the network analyzer.
Y
8. Draw a straight line from (f), 0) through ( fe, ;P—) on Curve B and extend this line to the

P
point of intersection with Curve A. The abscissa of this point of intersection is an approxi-

mation of f%. (For greater accuracy use the curve of Equation [ 1] instead of a straight line.)
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