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NOTATION

b Distance along beam from origin to point P

(El)n Flexural rigidity of beam at station n

Fp Force acting on beam at point P

- F Force acting on sprung mass

fn Natural mechanical frequencies of free vibration of
free-free beam in cpm, n = 1, 2, . . .

fn' Natural mechanical frequencies of free vibration of combined system

fna Additional natural mechanical frequency of a beam-sprung-mass
system in cpm

fo Natural mechanical frequency of free vibration of mass-spring system
alone in cpm

I Sectional area moment of inertia

K Spring constant

El

(KAG)n Shear rigidity of beam at station n

1 Length of beam

Mn  Bending moment acting on beam at station n

m Sprung mass

me Effective mass (equivalent of sprung mass, see Appendix A)

mn  Mass of beam element lumped at station n

mns Sprung mass at station n

t Time

Vn  Shearing force acting on beam; see Figure 9 for sign convention

X Longitudinal distance from left end of beam

X' Longitudinal distance from right end of beam to point z; see Figure 8

y Lateral deflection of beam

Ymrn Displacement of sprung mass in y-direction

yns  Displacement of sprung mass in y-direction at station n

ns  Velocity of sprung mass at station n

%ns  Acceleration of sprung mass at station n

yp Displacement of beam in y-direction at point P on beam
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(Ax)

(Ax)

(KAG)
KAG

Length of element,

Percent difference
analyzer values of
mass attached

between exact theoretical values and TMB network
natural frequencies of a beam without a sprung

Percent difference between exact theoretical values and TMB network
analyzer values of natural frequencies of a beam with a sprung mass
attached

n

m
n

Mass per unit length

Mass of beam element of length A x (including its virtual mass)

t
t"

Ax

(Ax)'

Forcing frequency on beam

Antiresonance frequency

Natural circular frequency of free vibration of free-free beam

Natural circular frequency of free vibration of combined system

Natural circular frequency of free vibration of mass-spring system alone

With the exception of frequency and x'electrical quantities analogous
to mechanical quantities are denoted by a primed exponent such as
Vn' corresponding to V

I Ax

on

n
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ABSTRACT

A study was made of the vibration characteristics of a beam with an

attached sprung mass. The purpose was to explore the possibility of a more

adequate representation of a ship hull as a mass-elastic system subject to vibra-

tion. Analytical and electrical-analog methods are devised to determine the

natural frequencies and mode shapes of a beam-sprung-mass system. These

methods are shown to give results that are reasonably accurate.

1. INTRODUCTION

On certain classes of ships, flexibly mounted masses such as machinery, rudders, cargo,

and superstructures affect hull vibrations. 1,2,3* It is therefore of value to investigate the

characteristics of a beam with an attached sprung mass, as a step toward achieving a more

adequate representation of a ship hull as a mass-elastic system subject to vibration.

The unusual mode shapes observed on SS GOPHER MARINER (Reference 1, Figure 19)

led to the consideration of local flexibility or the sprung-mass effect as a possible explana-

tion of the "unbeamlike" patterns. A study of the qualitative effects of a single sprung mass

on the vibration of a beam is given in Reference 4. An unsuccessful attempt to code the

problem of the nonuniform beam with sprung masses for solution on the UNIVAC computer led

to the present work, which is based on use of the David Taylor Model BasinNetwork Analyzer.**

This report discusses the effect of a flexibly attached mass on the natural frequencies

and modes of beam vibration. The specific objectives of the report are:

1. To substantiate and extend, by mathematical and electrical-analog methods, the quali-

tative theory of the vibration characteristics of a beam with an attached sprung mass, as

advanced by Kennard. 4 An analytical expression and electrical-analog methods are devised

to determine the natural frequencies of a uniform beam-sprung-mass system. The natural fre-

quencies obtained therefrom are shown to agree with the qualitative predictions of Kennard.

In addition, the effects of a sprung mass on the natural frequencies and mode shapes of the

nonuniform beam to which it is attached are shown by means of the electrical analog.

2. To determine the accuracy with which the natural frequencies of a beam-sprung-mass

system can be obtained with the TMB network analyzer by comparing the theoretical and

analog frequencies of a uniform beam.

3. To determine the accuracy with which the mode shapes of a beam-sprung-mass system

can be obtained with the TMB network analyzer.

4. To explain the unusual mode shapes observed on the SS GOPHER MARINER. 1 It is

*References are listed on page 38.

**The sprung-mass problem has recently been successfully coded for solution on the UNIVAC.
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shown that the local flexibility or sprung-mass effect could cause the "unbeamlike" patterns

obtained.

The report treats, in sequence, the effects of a sprung mass on the frequencies and on

the modes of vibration of the beam to which it is attached. General conclusions are given with

regard to these effects.

2. EFFECTS OF SPRUNG MASS ON FREQUENCIES

2.1. cUALITATIVE2 ASPECTS OF SPRU..G-MiASS ThIEO.,Y

The effect of local elasticities and masses on the natural frequencies of a ship can be

studied qualitatively by considering the idealized sprung mass attached to the free-free beam.

The effects of a sprung mass are discussed in Reference 4. However, for completeness of

this report, some relevant qualitative results of a beam-sprung-mass system will be given here.

Consider a mass m which is spring-mounted at a point P, as shown in Figure 1. Let I.'
denote the spring constant.

The oscillatory internal forces acting on the beam at P and on the mass and the dis-

placements during a free vibration of the combined system are shown in Figure 1. The arrows

indicate instantaneous directions. Note that, alternatively, the force Fp may be considered

the force maintaining a forced vibration of the beam.

The response ratio is plotted against co, the frequency of a sinusoidal applied force, 4

for both the free-free beam and sprung mass alone in Figdre 2. In Figure 2 the curve yp/Fp
for the sprung mass alone is drawn for four possible alternative positions labeled A, B, C,

and D.

The intersections of the two types of curves in Figure 2 give the natural frequencies of

of the combined beam-sprung-mass system. Inspection shows that all the natural frequencies

on which exist for the beam alone are "repelled" by the frequency oo= V7, the natural

circular frequency for free vibration of the mass-spring system alone when the point P is fixed.

Those frequencies for which coan < coo are replaced by lower frequencies for the system; those

for which on > &o are replaced by higher frequencies. Also a new mode of vibration of the

combined system is added because of the additional degree of freedom corresponding to the

added sprung mass. The new frequency will also lie between the two natural frequencies of

the beam alone which lie adjacent to the frequency coo of the sprung mass. If wo happens to

coincide with an antiresonance frequency coa, then the added natural frequency is ea. If Coo
coincides with a natural frequency con of the beam, then the added sprung mass will give rise

to two natural frequencies of the combined systems which lie on each side of Con.

It is interesting to observe that for a given Co and varied mass, a family of curves

passes through the point a = coo. The smaller the sprung mass, the steeper the curve. For

a given beam the added natural frequency corresponding to a sprung mass will deviate less

from ao0 for the smaller mass; the larger the sprung mass, the larger the deviation from o0 .
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Figure 1 - Beam with Attached Spring-Mass System
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Figure 2 - Response Ratio yp/Fp for a Beam

as a Function of Frequency

aA

and a Sprung Mass

on; )-1 ; W2; +1; .%n+2 and Coan; , n +1 are the circular resonance and antiresonance frequencies of

the beam alone.

0 A' 6'OB' WOC; OD are possible natural circular frequencies of the mass-spring system.

Primed symbols indicate the frequencies resulting when the mass-spring system is attached to the beam. For

curve B, con and oOB coincide and the altered values are designated and O n2
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For a given location of the sprung mass on the beam and a given 00, it is the magnitude of

the sprung mass alone which determines the degree to which the original natural frequencies

of the free-free beam are repelled.

It should also be noted that the shape of the curves of - versus c for the beam alone
F
p

is determined both by the physical parameters of the beam and by the location P of the applied
force (the sprung-mass location).

2.2. ANALYTICAL METHOD OF SOLUTION FOR NATURAL FREQUENCIES
OF UNIFORM BEAM WITH SPRUNG MASS ATTACHED

The free vibration of a free-free uniform beam with an attached sprung mass will be

treated on the assumptions that the beam has bending flexibility only and that the damping

forces are negligible. These assumptions permit an analytical determination of the natural

frequencies of the system for comparison with the values determined with the TMB network

analyzer as described in Section 2.3.

It is shown in Appendix A that the response ratio - at point P of the beam shown in
FFigure 1 is p

y 0o2 _ CJ2
p [1]

Fp m 0)2 O2

where wo =1 /-is the natural circular frequency for free vibration of the mass-spring system

alone when the point P is fixed and o. is the frequency of the force Fp applied to the beam.

For the case of an undamped, free-free, uniform beam with bending flexibility only,
Yp

the response ratio - of the beam at point P is also (see Appendix B)
FPp

Fcos k (1 - b) sinhk( - b) - sink(l - b) coshk( ( - b)
+ cos k (1 - b) cos kb sinh kl - sin kl cosh kb cosh k (l - b)

yp 1 L+ cos kb sinh kb - sin kb cosh kb
[21

Fp 2k 3 El 1 -cos kl cosh kl

where k = (, and

1 is the mass per unit length,

E is Young's modulus,

I is the sectional area moment of inertia,
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1 is the length of the beam, and

b is the distance along the beam from the origin to the point P in Figure 1.

Equating the right members of Equations [1] and [2] gives

cos k(l- b) sinhk(1-b)-sink(l-b)coshk(l-b)

+cos k (I - b) cos kb sinh kl - sin kl cosh kb cosh k (1 - b)

+ cos kb sinh kb - sin kb cosh kb
0 

131

m0o2 
C

2  2 k El 1 - cos kl cosh kl

Equation [3] may be solved for o by trial and error for particular values of (o, m, A, E, I, 1, b.

The values of eo'thus found are the natural frequencies of the combined beam-sprung-mass

systems. This numerical method is tedious. It is easier to determine the natural frequencies

and modes of vibration by use of the TMB network analyzer. However, the equation has been

solved for a particular uniform beam in order to obtain a comparison between the exact solu-

tion and the analog results. The beam parameters and the results of the computations are

given in the next section.

2.3. NATURAL FREQUENCIES OF UNIFORM BEAM WITH SPRUNG MASS
ATTACHED AS DETERMINED BY TMB NETWORK ANALYZER

The electrical circuit which represents lateral vibrations of a beam is given in

Reference 5. This circuit has been slightly modified to take account of the added sprung

mass; see Appendix C. For the calculations given in this report the beam was divided into

20 sections, each of length A z, and electrical measurements of the voltages which represent

the vibratory motions were made at 21 points along the beam.

Both analytical and analog procedures were applied to a uniform beam, every section of

which has the same mass per unit length and bending stiffness El as the midship section of

SS GOPHER MARINER. 1 The physical data are:

El = 1.50 x 1010 ton-ft 2

l = 525 ft

A x = 1/20 = 26.25 ft
A x/El = 1.75 x 10- 9 (ton-ft)- 1

b = 1/2 = 262.5 ft

S= 3.49 ton-sec 2 /ft 2

A x = 91.6 ton-sec 2 /ft

The sprung mass is taken as 50 percent of the effective ship mass* in a length

A x = 1/20 or as 45.81 ton-sec 2 /ft. Assume the natural frequency wo of the mass-spring system

*The effective ship mass is the mass of the hull plus its virtual mass.
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TABLE 1

Natural Frequencies of Uniform GOPHER MARINER Beam
with Bending Flexibility Only

TMB network analyzer results are for a beam subdivided into 20 sections.

Without Sprung Mass With Sprung Mass**

Frequency, cpm Frequency, cpm 2 2 -

Mode Free-Free Bar TMB Network Percent Mode Equation [3] TMB Network Percent Percent
Equation Analyzer Analyzer

1 2 3 4 5 6 7 8 9
1 50.85 51.6 -1.485 1 50 50.4 -0.99 +0.495
2 140 136.2 +2.82 2 140 136.2 +2.69 -0.13
3 274.5 264.6 +3.74 3 263 252 +4.16 +0.42

3a* 392.5 389.4 +0.88
4 454 418.8 +7.76 4 455 419.4 +7.65 -0.12
5 678.5 601.8 +11.6 5 685 612:6 +10.6 -1.0
6 953.5 810.6 +14.9 6 810.6

*The frequency corresponding to Mode 3a is the additional natural mechanical frequency of .ne beam-sprung-

mass system.

**A sprung mass of 45.81 ton-sec 2
/ft was attached at Station 10 on the beam. The frequency JO was 370 cpm.

*** E1 (without sprung mass)=

*** 2 (with sprung mass) =

nFree-Free Bar Network Analyzer 100 percent

fn Free-Free Bar

L 'Equation [3] - Network Analyzer

f E
n Equation [3]

alone to fall between the frequencies of the third and fourth modes of the free beam. Arbitrar-

ily choose wo = 7.28wJ, where 1 is the fundamental frequency of the free-free beam6 :

(4.73)2 /El rad

S 12 V sec

since & = 5.32 rad/sec,

No = 38.73 rad/sec, and

K = co 2 m = 68,715 ton/ft.
0

x 100 percent

11111 -1
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The natural frequencies wn of the free-free "classical" beam7 fall in the ratios

1: 2.756; 5.405: 8.93; 13.34: 18.74. The values offn corresponding to the exact solutions for

the free-free beam are given in Column 2 of Table 1, and the corresponding values obtained

with the network analyzer are given in Column 3. The values of fn'of the beam-sprung-mass

system computed from Equation [3] are given in Column 6, and the corresponding values obtain-

ed with the network analyzer are given in Column 7.

The errors shown in Table 1 are largely inherent in the lumping procedure (i.e., lumped

electrical parameters are used to represent a continuous physical system) and in the imperfect

components used in the network analyzer, and are not random. Since the analog representa-

tion used for the free-free beam was also incorporated in the analog of the beam-sprung-mass

system, it would be expected that the errors e2 and f 1, defined in Table 1, would be nearly

equal. The small values of 2 - e 1 verify this prediction, and suggest that the analyzer indi-

cates fairly accurately the effect of sprung masses on the natural frequencies of the beam.

The measured and theoretical values of the new frequency f3 , agree within 0.88 per-

cent, as shown in Table 1. This unusually good accuracy is explained in Appendix D.

In any mode for which fn < fo (i.e., n = 1, 2, 3 here) the frequency of the beam with

sprung mass is lower than the frequency of the beam without sprung mass. In any mode for

which fn > fo (i.e., n = 4, 5) the frequency of the beamn with sprung mass is higher than

the frequency of the beam without sprung mass. These results are in agreement with Refer-

ence 4.

A new frequency is added for the sprung-mass system because of the additional degree

of freedom introduced by the added sprung mass.

Since the sprung mass is relatively large, the added mode frequency f3 'a does not lie

very close to fo (as m grows smaller f-' f0
) ' 4 These observations are in accordance with

the theory as discussed in Section 2.1.

2.4 NATURAL FREQUENCIES OF NONUNIFORM BEAM WITH SPRUNG MASS
ATTACHED AS DETERMINED BY TMB NETWORK ANALYZER

The natural frequencies of a nonuniform beam (representing GOPHER MARINER) with

an attached sprung mass will now be determined. Both flexural and shear rigidity as well as

nonuniform mass distribution are considered. Damping forces are considered to be negligible.

The physical and electrical parameters defining the GOPHER MARINER are given in Appen-

dix E. The mass distribution used corresponds to the light ship condition. 1

The 20-section analog of the beam with and without an attached sprung mass was set

up on the TMB network analyzer in accordance with the circuit shown in Figure 14 of Appen-

dix E. Sprung masses equal to 10 percent and 50 percent of the total mass lumped at Sta-

tion 10 of the original nonuniform beam (without sprung mass) were used to demonstrate their

effects on the beam. For each sprung mass, fo was taken as 234 cpm, which is equal to the

natural frequency of the free-free GOPHER MARINER beam in the third mode. Table 2 gives

M I



TABLE 2

Natural Frequencies of Undamped Free-Free Nonuniform Beam
with Bending and Shearing Flexibility as

Obtained by TMB Network Analyzer

Measured electrical frequencies have been converted to cycles per minute (mechanical).

FrequencyFrequency Frequency with Frequency with
Mode without Mode 10-Percent Sprung Mass 50-Percent Sprung Mass

Sprung Mass

cpm cpm cpm

1 78 1 78 78

2 154.2 2 154.2 154.2

3 234.0 3a 227.4 209.4

3b 259.8 268.2

4 320.4 4 321.6 325.2

5 400.2 5 404.4 420.0

6 478.8

the natural frequencies of the several beam systems. Examination of Table 2 shows that the

introduction of the sprung mass yields results which agree with the theory discussed in Section

2.1. In particular, it may be observed that the original beam frequency f3 is replaced by two

new frequencies, f 3'a and fb' , either of which can be regarded as the new one since fo equals

/3.

A graphical method of determining, with reasonable accuracy, the added mode frequency

of a nonuniform or uniform beam with shear and bending flexibility is given in Appendix F.

It seems reasonable to assume that analog results for the natural frequencies of a uni-

form and nonuniform beam-sprung-mass system with shear and bending flexibility will be sub-

ject to errors of the same order of magnitude, provided that the nonuniformity is not too large.

The natural frequencies of a uniform beam with shear and bending flexibility can be computed 8

and compared with analog computations in order to determine the errors in the latter.

For larger nonuniformity the mode frequencies obtained with a digital computer such as

the UNIVAC for a beam comprised of 40 sections may be regarded as a standard to determine

analog errors.

By inference, the TMB network analyzer may be used also to determine the effect of

many sprung masses upon the natural frequencies and mode shapes of a free-free nonuniform

beam with shear and bending flexibility, rotary inertia, and damping. The system parameters

may be readily changed on the analyzer, and the effects of these changes can be explored

rapidly.

111 ~-
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3. EFFECTS OF SPRUNG MASS ON MODE SHAPES

The quantitative effects of a sprung mass upon the mode shapes of a beam, which have

been unknown so far, can be determined by use of electrical-analog methods.

Consider again the nonuniform beam (representing GOPHER MARINER) discussed in

Section 2.4. The mode shapes of the beam obtained on the TMB network analyzer are compared

with the corresponding mode shapes determined by the UNIVAC as shown in Figure 3. The

UNIVAC solution is considered accurate. The accuracy and the smoothness of the analog mode

shapes are evident. The greatest deviations of the analog results occur in the highest modes.

It seems reasonable to assume that analog results for the mode shapes of a nonuniform

beam with or without an attached sprung mass will be subject to errors of the same order of

magnitude.

The natural frequencies and normal modes of vibration of the nonuniform beam with and

without an attached sprung mass, determined on the TMB network analyzer, are given in Fig-

ures 4 and 5. The sprung masses are equal to 10 percent and 50 percent of the mass lumped

at Station 10 of the original beams (without sprung mass). Note that, for the beam with the

50-percent sprung mass, the natural frequencies f4'and fs'were measured although the corre-

sponding mode shapes were not determined; see Table 2.

Figures 4 and 5 also show two mode shapes with the same number of nodes for the beam-

sprung-mass system. This is contrary to the behavior of beams.

Inspection of the figures shows too that for the beam-sprung-mass system the mode with

a frequency adjacent to and greater than f0 changes curvature rapidly, i.e., dips, at Station 10

where the sprung mass is attached and the distance between the nodes adjacent to Station 10

lengthens. The greater the sprung mass, the greater the dip. On the other hand, the mode with

the frequency adjacent to but less than f0 has a somewhat sharper peak at Station 10, and

the distance between the nodes adjacent to Station 10 diminishes. The greater the sprung

mass, the greater this effect.

These modifications to the beamlike mode shapes are caused by the phase relationships

between the sprung mass and the beam proper. For mode frequencies greater than fo, the sprung

mass exerts a force which is out of phase with the beam displacement at its point of attach-

ment (i.e., when yp is positive, the spring is in compression). For mode frequencies lower than

fo, the sprung mass exerts a force which is in phase with the beam displacement at its point

of attachment (i.e., when yp is positive, the spring is in tension). The mathematical relation-

ship between the force acting on the beam at Station 10 and the natural frequencies of the com-

bined beam-sprung-mass system is derived in Appendix A. This force tends to cause the orig-

inal mode of the beam (without sprung mass), whose resonance frequency falls between the

same antiresonance frequencies asf 0 , to be replaced by two mode patterns of the beam-sprung-

mass system which have the same number of nodes. The modification of the beamlike modes

caused by this force is greatest for those modes which have natural frequencies nearest to f0o

III 1



Figure 3 - Modes of Vertical Vibration of GOPHER MARINER Determined by
TMB Network Analyzer and UNIVAC

The displacement was 18,674 tons corresponding to a condition of light load.
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Figure 4 - Modes of Vertical Vibration of GOPIHEP, MARINER with and without a 10-Percent
Sprung Mass Attached at Station 10 Determined by TMB Network Analyzer

The displacement was 18,674 tons corresponding to a condition of light load.

Wherever points and curves are not shown for the condition labeled
curve and points labeled "with sprung mass" apply.
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Figure 5c - 4-Noded Mode, 209.4 CPM
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Figure 5d - 41-Noded Mode, 268.2 CPM

Figure 5 - Modes of Vertical Vibration of GOPHER MARINER with and without a 50-Percent

Sprung Mass Attached at Station 10 Determined by TMB Network Analyzer

The displacement was 18,674 tons 'orresponding to a condition of light load.
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This mode is assumed to have 6 nodes.
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Figure 6 - Vertical-Amplitude Profiles of GOPHER MARINER Experimentally Obtained for
Light-Loading Condition at Vibration Generator Speeds of 165, 237, 285, 365, and 485 RPM

This figure is adapted from Figure 19 of Reference 1.
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4. APPLICATION OF SPRUNG-MASS THEORY
TO SS GOPHER MARINER

Inspection of Figure 6 shows that definite beamlike mode shapes could not be clearly

established experimentally beyond the 4-noded mode of vertical vibration of GOPHER MARINER.

From an analysis of these mode shapes it can be concluded that there are two with the same

number of nodes. The mode shapes shown in Figures 4 and 5 for the beam with sprung mass

also include two modes with the same number of nodes (6 nodes). Thus it is possible that the

unusual mode shapes observed on GOPHER MARINER are the results of the effects of sprung

masses.

5. CONCLUSIONS

The following conclusions may be drawn from the analysis given in this report:

1. The TMB network analyzer maybe used to explore accurately and quickly the effect

of a single sprung mass upon the natural frequencies of a free-free uniform beam with bending

flexibility only and negligible damping.

2. Analog results for the natural frequencies of uniform and shiplike nonuniform beam-

sprung-mass systems with shear and bending flexibility are expected to be subject to errors

of the same order of magnitude.

3. By inference the TMB network analyzer may be used also to determine the effects of

many sprung masses upon the natural frequencies and mode shapes of a free-free nonuniform

beam with shear and bending flexibility, rotary inertia, and damping. The system parameters

may be readily changed on the analyzer, and a rapid exploration of their effects can be made.

4. The quantitative results obtained for the effects on the natural frequencies of a sprung

mass on a beam are in accord with the qualitative theoretical predictions of Reference 4. Of

particular interest are the facts that:

a. The original beam frequencies less than fo are lowered by the addition of a

sprung mass to the beam.

b. The original beam frequencies greater than fo are raised by the addition of a

sprung mass.

c. The amount of repulsion of the original beam frequencies increases with the

magnitude of the sprung mass.

d. The original beam frequencies closest to fo are repelled the most by the addi-

tion of the sprung mass.

e. A new natural frequency of the combined system is added which approaches

fo when the sprung mass is small, and deviates from fo when the sprung mass is

large.

1111 ,



5. Analog results for the mode shapes of a nonuniform beam are fairly accurate; see

Figure 3.

6. In a beam-sprung-mass system the mode whose frequency is adjacent to and greater

than f0 changes curvature rapidly; i.e., dips, at the point where the sprung mass is attached

and the distance between the nodes adjacent to this point lengthens. For the mode whose

frequency is adjacent to but less than fo there is a peaking of the mode shape at the point

of attachment and a contraction of the distance between the nodes adjacent to this point.

The greater the sprung mass, the greater these effects.
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APPENDIX A

RELATIONSHIP BETWEEN FORCE FP ACTING ON BEAM
AND NATURAL FREQUENCIES OF COMBINED

SPRUNG-MASS SYSTEM

The differential equation of motion of the mass m of Figure 1 during a free vibration of

the combined system is 3

d2 Ym
m - = - FP m'o2 (Ym - Yp) [51

dt2

For steady free vibration of the combined system at circular frequency a,

d2 Ym
2- - Ym  [6]

dt
2

Substituting [6] in [5] gives

2

m = p 4 [a]
e 02 _ 2

0

or

Ym -pYp (o2_i2) [Tb]

0

Then

F= 2 02 [81
Fp = m o 0

2 p 2 _ 2

0

Equations [7] and [8] show that if o < wo, the spring is in tension for positive yp, and FP is

in phase with yP. If co > co, the spring is in compression for positive yp, and F is out of

phase with yp.

Equation [8] may be arranged in the form

[m ( ji2 ' y-me yp [9]

FP = () 0 W2 0 2 yp =e 02 y 9
0.

---- ---- -- N 11,l



where me is the effective mass which, when added to the beam at point P, will have the same
effect as the sprung mass m characterized by the circular frequency coo . Note that me is

positive for o < Oo and negative for a > oo.
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APPENDIX B

DERIVATION OF RESPONSE RATIO YP/F OF AN UNDAMPED
FREE-FREE UNIFORM BEAM WITHOUT SHEAR AND

WITH A SPRUNG MASS ATTACHED

Consider an undamped uniform beam without shear and with free ends (Figure 7). When

such a beam vibrates at any point free from external force, its differential equation of motion

is 9

2 y 4 y
f - + El - = 0 [10]

at 2  a X4

where y is the vertical deflection,

z is the distance from the origin of any point along the beam, and

t is time.

Let a vertical sinusoidal force F = Fp sin ot act on the beam at a point P which is at

a distance x = b from the free left end of the beam located at x = 0. Steady forced vibrations

only are considered. Then for x < b the solution of Equation [10] is

y=(B' sin k x + B1" cos kx +Bl" sinhk +B' cosh kx) sint [11

where B', B'" , B"', and B1 ' are constants determined from the boundary conditions, and

k JLCO 2 1/4

(El

Ignoring time variations and letting

y 02 y x 3x
Yx "= a Y Wxx 

=  ' Yxxx =  a -
ax Ox 2  OX3

then

y = B' sin k x + B1".cos kx + B1 "'sinh kx + B" cosh kx [12a]

Yx = k (B' coskx-B " sinkx+B 1 '".coshkx+B B sinh kx) [12b]

Yxx = k 2 (- Bl'sin kx- B1" cos kx + B'" sinh kx + B" cosh kx) [12c]

Yxxx = k 3 (- B'cos kx + B".sin kx + B"' cosh km + Bv sinh kx) [12d]

111



x K: I -

Figure 7 - Coordinate System with Origin at (0,0)

x X'= - X

II

Figure 8 - Coordinate System with Origin at (1, 0)

The boundary conditions at x = 0 are yxx = 0, yxxx = 0.

Hence B"= Bv; Bp- '"

For later use it is easily concluded that at x = b

= Bl'sinh kb + B" ' cosh kb

= B'sin kb + B" cos kb

= B'cosh kb + B1" sinh kb

Yx = B'cos kb - B "sin kb

!

Vxx+-
k2

Yxx)

k2-

k3

[13a]

[13b]

[13c]

[13d]
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Now consider the section of the beam to the right of x = b and let z'.= 1 - z. Thus '*.is the

distance from the right end of the beam to the point x as shown in Figure 7.

Now consider that the origin of x' exists at the right end of the beam, which is also free, and

that a positive z'axis extends to the left as shown in Figure 8.

Expressions similar to Equations [12] may be written for y, yx, Yxx, Yxxx in this new coordi-

nate system with B' = B "'"and B2" - BIv evaluated for the boundary conditions at x'= 0.
2 2 2 2

Thus

y = B-sin k (1 - z) + B2" cos k (1 - z) + B2'.sinh k (l - ) + B"cosh k (1 - x)

[14a]

Yx =k L- Bcos k ( - z) + B2" sin k (1 - z) - B-cosh k ( - ) - B2" sinh k (1 - z)]

[14b]

Yxx = k 2 [-B sin k (l - x)-B 2"cos k (I - z) + B'sinh k( - z) + B"'cosh k ([14-)]
[14c]

Yxxx = k 3 [B2' c o s k (1 - ) - B"'sink (1 - ) - B2 cosh k (I - ) - B" sinh k ( -) ]

[14d]

Atz= b or x'= 1-b

1 (Yxx

+(~YXX)" Y + 22 k

2 k P3-2 y- -1 x xP

= B2 sinh k (l - b) + B2" cosh k (1 - b)2Bsn 2 klb

= B' sin k (1 - b) + B2 '" cos k (1 - b)2

- B2.cosh k (l - b) - B2" sinh k (I - b)

= - B2'cos k (1 - b) + B2" sin k (1 - b)

The beam may now be regarded as two equivalent beams joined by an element of differ-

ential length da (see Figure 9) which finally is made to approach zero. We will then have the

actual beam. Figure 9 shows the momentary direction of the shearing forces V1 and V2 and the

moments M and M2 acting on the beam corresponding to a force F acting on the differential

element dx. The dotted line indicates the deflection curve at the particular instant when the

[15a]

[15b]

[15c]

[15d]
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V=O

M=O

V=O

Figure 9 - Sign Convention for Moments and Forces Acting on Beam

shearing forces and moments are as shown. With the deflection curve as shown, there are

bending moments producing compression in the upper fibers of the beam.

Figure 9 also shows the sign convention that has been adopted. Compression in the

upper fibers is regarded as positive. Also, an upward shearing force V1 acting on the beam to

the left of a cross section and a downward shearing force V1 acting on the beam to the right of

that cross section are regarded as positive and similarly for V2 . It is clear that according to

this sign convention the actual bending moments and shearing forces in Figure 9 are positive.

The quantity yxx is also positive. When dx -1 0

M 1 = El (xx)L 2 = El (yxx)R

(Yxx)L -* (Yxx)R

[16]

[171

It is clear that yxx is continuous.

Equilibrium of the forces on the dz element requires that

FP = V - V2 - El (Yxxx)L + El (Yxxx)R [18]

- y( x L
+ =F

k R k3 El

- LI IIII 11 I II III -- ~-~IIIII~-LUL~M

[191



st = sin kb;

c 1 = cos kb;

S = sinh kb;

C 1 = cosh kb;

s2 -sink(l-b)

C2 =cos k(l-b)

S2 =sinh k (1 - b)

C2 =cosh k(1 - b)

Now (
XXX)

P )
and ( Yxxx ) may be found from the difference in Equations [13c] and

k3 I

[13d] and [15c] and [15d], respectively.

Substitution of these differences into Equation [19] gives

- B;(C - Cj) - B"(S, + s,) - 2 - c2 ) - 8; (S2 + 2)=
k 3 El

1 fxx
Since y, yx, Yxx are continuous at x = b, then equations for y + -

2 k2

1
and - y

2

[20]

Yxx

are also continuous. The continuity of yx permits the sum of Equations [13c] and [13d] to be

equated to the sum of Equations [15c] and [15d]. The continuity of

permits Equations [13a] and [15a] and Equations [13b] and [15b] ,to be equated.

Thus

B; (C +cl) + B" S 1 - 81)= -B'(C 2 + C2) - B2 '(S 2 -2 2)

S, B '+ C, B" - B2'- C2 B2 ' = 0O

81 B'+ c B'- 8 B'.- c B2 = 0

[21]

[22]

[23]

Equations [20] and [21] may be added and subtracted to give the following simpler equations:

c, B - 8 B+ 2"- [24]s2 B2 2k 3 El

-F

C, + S B+ C2 2 + 2 0 El2k3 El

Let

-----~---r~llllllILloll

Yxxy + -
k2)

[251



Equations [22], [231, [24], and [25] are four linear algebraic equations which may be solved

for the four unknown constants B', B ", B', and B " by means of determinants. However, these

equations need be solved only for B1 and B" to find the response ratio yp/Fp since BI"'= B1v

and B1'= B"'. Then upon substitution of x = b in Equation [12a] we have

y = B'(S1 + 81) + B" (C1 + c1) [26]

For convenience, Equations [221], [23], [24], and [25] are regrouped

S, B'+C B -S B'-C B'- 01 1 11 2 2 2 2

s1 B1'+ c1B 1" -s2 B2-c 2B 2"= 0

F
cB '-8 B " + c2 B 2 =1 1 2 2k 3 El

-FPC B' + S B "+ C2 + SB 2 B2 " =-
2k 3 El

[22]

[23]

[24]

[25]

We solve for B1' and B1" by the method of determinants and obtain

- (1 C2 + c, 42) C2 (c1 C2 - 82) + C1 (8 + C2
2

- I +c (SS + C 2) -C1 2 - 2_ 82 (C S2 1 2
B ' ._ 2

2k 3 El 2 (1 - cos kl cosh kl)
[271

and

F
B" =

2k 3 El

2 (C 1 2 1 8 2  (2 8 1+C 18 2 +S (82)+S 8 2

+c2 C1 2  1C2  81 (C2 S2) -s (SS 2 + C1 2 )

2 (1- cos ki cosh k1)

Substitute B 'and B" in Equation [26] and equate to unity 82 + c2 and C 2 - 2 in Equations
1 1 2 2 2 2

[27] and [28]. Most terms cancel and the remainder, upon division by Fp, is the desired

response ratio:

cos k (I - b) sinh k (I - b)- sink (1 - b) cosh k (I - b)

+ cos k (I - b) cos kb sinh kl - sin kl cosh kb cosh k (1 - b)

Yp 1 L+ cos kb sinh kb - sin kb cosh kb [29]

Fp 2k 3 E (1- cos kl cosh kl)

[28]
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APPENDIX C

ELECTRICAL ANALOG OF A UNIFORM
BEAM-SPRUNG-MASS SYSTEM

The natural frequencies of an undamped free-free uniform beam without sprung mass

and with bending flexibility only may easily be computed by the network analyzer. 5 Figure 10

shows the 20-section analog of the uniform GOPHER MARINER beam. The conversion or

scaling factors 5 used in transforming mechanical parameters to electrical parameters

are a=3.4 x10 7 ,  = 5 x 10 4 , = x2x10 - 9 , '= 26.25, v= 100 where

El

(A x
KAGI
A3xAx

KAG)

n

Ax

x (Ax)'

El me \ ElM Ue\E 19 M- T- 2 is ' T 20

Figure 10 - Analog of Uniform GOPHER MARINER Beam with Bending
Flexibility only and without Sprung Mass

The analog used comprised 20 sections.

The electrical parameters are m "= 0.092 .f. m'= m2 = . . . = 0.183 if. m2 0 = 0.092 pf and

( - -. .( ) (- = 0.06 h. All transformer turn ratios = 1:1.
1 2 El) 19

Wild



For this beam the natural frequencies
s

s Y measured on the TMB network analyzer are given
in Table 1.

We now consider the addition of a sprung

mass to the analog of the uniform GOPHER

MARINER beam. For this beam the critical fre-
K quencies measured on the TMB network analyzer

are also given in Table 1.

| The derivation of an electrical analog sys-

Vn-  Vn+.2 tem equivalent to the sprung-mass system of Fig-
2 ure 11 may be obtained by using Newton's laws

Mn for the analysis of the sprung-mass system. The

Yn solution to the dynamics problem can then be

represented by an electrical mobility analog.

Figure 11 - Sprung-Mass System This analysis is now made for a free vibration.

In Figure 11 let Vn - and Vn + represent the

momentary direction of the shearing forces. Consider yn and yns as positive in the direction of

the increasing ordinate (upwards) with respect to the static equilibrium condition.

mn = Vn - Vn + + K( s yn )  [30]

Kjm, n n- r_ - ++ ( Nn) [311

K
vn +1/2 Vn- = - Yn + --- (n - n) [32]

mn Y = K (yn - yn) [33]

K
- ( n - ns[341

These equations may be represented by an electrical mobility analog which has been added

to Station 10 (n = 10) of Figure 10, as shown in Figure 12,

where n is represented by capacitance (m)'

K is represented by inductance (-)

ys is represented by time integral of voltage (yns ) '

L I III I I -- moila



(M , S )'T ins 

( K',

( n-L)' (0n/

n

Figure 12 - Sprung-Mass Mobility Analog Added at Station n = 10, to
20-Section Analog Shown in Figure 10

ns is represented by voltage (ns)

i is represented by derivative of voltage (jn)'

K
()oS)2 - or (a s)2 m, = K [35]

The relationship between electrical and mechanical parameters is given by Reference 5.

(mv)'.=X: mor m= [36]

~---------~---------~- IIYYYIIYYYII-~

T (.)'
2-V

KAG/n+



and

s) sOor (WO
(0)'-vc 0or w - [37]

Then, substituting [36] and [37] in [35], we find that

=- K [38]Xv 2

[(o) *12 (mns ) ,= Av2 K = K" [39]0 [39]

Dimensional homogeneity requires that kv 2 K = K' be an electrical quantity. The reciprocal

of K'-has been denoted in Figure 12 by () the electrical value of the spring constant.

The capacitance and inductance (m)")'and K'or are obtained from Equations

[36] and [39], respectively.
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APPENDIX D

ACCURACY OF FREQUENCY CORRESPONDING TO ADDED MODE
FOR UNDAMPED FREE-FREE UNIFORM BEAM WITH

SPRUNG MASS ATTACHED

For the undamped free-free uniform beam with bending flexibility only, the measured

and theoretical values of the additional frequency f3a agree closely, within 0.88 percent, as

shown in Table 1. The unusually good accuracy can be qualitatively understood from a con-

sideration of Figure 13, which shows the response ratio yP /FP plotted against f for both the

free-free beam and the sprung mass alone.

In Figure 13, Curve A is theoretically exact, and Curve B is obtained on the network

analyzer. An error in a resonance frequency determined on the analyzer appears as a horizon-

tal displacement of the response curves at the points of maximum response; i.e., at f4a and f4.
The response curve for the sprung mass represents both theoretical and experimental

values, since the analog for the sprung mass is precise. It crosses the horizontal axis at fo
The resonance frequencies for the combined system correspond to the frequencies at which

the curve for the sprung mass intersects the response curves for the beam. It is evident that

fa differs from ft but that, because of the vertical tilt of the curve for the spring-mass system,

the difference between the theoretical and experimental value is reduced. For a small sprung

mass the curve is very steep, and the difference would be very small.

Response Curve for
Sprung Mass

y I Bja A

F Experirnental---.j

I'
/0 TheoreticalII 71 3I 9/

ft=392.5 /

ft f f

4 = 3.74 percent - 776 percent

Figure 13 - Response Ratios for a Beam and a Sprung Mass as a Function of Frequency

ft is the theoretically exact value of f3ao

fa is the TMB network analyzer value of f3a'

f0 is the natural frequency of free vibration of the mass-spring system alone,

f t ft are theoretically exact values of frequencies adjacent to f0, and

fg ,4
afare TMB network analyzer values of frequencies adjacent to fO
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APPENDIX E

ELECTRICAL ANALOG OF NONUNIFORM BEAM-SPRUNG-MASS SYSTEM

The data used in obtaining a 20-section analog of the nonuniform GOPHER MARINER

beam are shown in Table 3. The corresponding analog of the beam with an attached sprung

mass is shown in Figure 14. The principal characteristics of the GOPHER MARINER are:

Length between perpendiculars 525 ft

Beam 76 ft

Depth 44 ft 6 in.

Design draft 27 ft

Design displacement 18,674 tons

TABLE 3

Data for Analog of 20-Section Nonuniform GOPHER MARINER Beam
with Bending and Shearing Flexibility

These data are for light loading vertical vibration condition.

mn Ax A x X106 m' /A x) Ax '
x X0 log 1

Station ton-sec 2 El KAG El KAG

ft (ton-ft)- 1 ft/ton pf h h

0 7.39 0.3160 0.015 0.177 0.568

1 12.26 0.5205 11.35 0.025 0.123 0.428

2 17.90 0.3615 8.56 0.036 0.098 0.359

3 31.43 0.2880 7.17 0.063 0.083 0.338

4 45.33 0.2455 6.75 0.091 0.074 0.286

5 61.31 0.2185 5.72 0.123 0.068 0.284

6 60.39 0.2005 5.67 0.121 0.064 0.304

7 68.38 0.1880 6.08 0.137 0.061 0.335

8 83.45 0.1800 6.70 0.167 0.060 0.362

9 89.96 0.1760 7.23 0.180 0.060 0.381

10 91.61 0.1750 7.62 0.183 0.060 0.387

11 69.03 0.1750 7.73 0.138 0.061 0.382

12 64.44 0.1790 7.63 0.129 0.064 0.369

13 57.39 0.1885 7.37 0.115 0.069 0.353

14 44.91 0.2040 7.05 0.090 0.079 0.337

15 33.10 0.2320 6.73 0.066 0.093 0.317

16 22.30 0.2740 6.33 0.045 0.111 0.299

17 21.15 0.3270 5.98 0.042 0.129 0.276

18 17.78 0.3805 5.52 0.036 0.179 0.253

19 14.72 0.5265 5.06 0.029 0.248

20 6.68 0.3240 4.96 0.013

1
Ax = - (Length of ship) = 26.25 ft

20
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( (ml)'

Figure 14 - Analog of 20-Section Nonuniform GOPHER MARINER Beam with Attached
Sprung Mass with Bending and Shearing Flexibility

1 

S

For 10 percent sprung mass (m)'= 0.0183 /f; = 9.099h; for 50 percent sprung mass (m )'= 0.0915 f; 1.82h.

Analog is for light loading, vertical vibration condition.

0*

-000

0 00



APPENDIX F

GRAPHICAL DETERMINATION OF ADDED MODE
FREQUENCY OF NONUNIFORM BEAM

Examination of Figure 13 shows that a reasonably accurate determination of ft can be

made by the following method.

1. Calculate f3 t and f4t on a digital computer such as the UNIVAC and construct vertical

asymptotes through these points. (It is assumed that f t and f4t lie on opposite sides of f0o.)

2. Measure f3a and f4a on the network analyzer and construct vertical asymptotes through

these points.

3. Calculate values e at the resonances adjacent to f0o.

4. By use of the network analyzer obtain the data necessary to plot Curve B, the TMB

network analyzer solution for the beam alone.

5. Draw Curve A, the UNIVAC solution for the beam alone, knowing the values of

at the resonances adjacent to f0 and assuming the value yP /FP at any point on Curve A is

displaced from the same value on Curve B by an error which is directly proportional to the

frequency.

6. Mark the known value of f0 on the f-axis, Figure 13.

7. Measure fa on the network analyzer.

8. Draw a straight line from (fo, 0) through f a, )on Curve B and extend this line to the
( P

point of intersection with Curve A. The abscissa of this point of intersection is an approxi-

mation of ft . (For greater accuracy use the curve of Equation [1] instead of a straight line.)
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