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ABSTRACT

These lectures describe some recent researches by the

author and one of his graduate students at Oxford University on

ordinary nonlinear differential equations. The first lecture is

devoted to a search for a "superposition" principle for these non-

linear equations and it determines the class of nonlinear equations

for w ch a superposition principle exists.

remaining four lectures provide a rigorous, analytical

y of the technique invented by Lighthill (1949) for solving non-

linear differential equations with an "irregular" perturbation.

Such equations involve a small parameter a and such that the

coefficient of the highest derivative vanishes identically, or at

the "initial point", when a = 0.

The theory is developed from a number of simple examples

and given a rigorous form by means of the theory of "dominant

functions".
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A Superposition Principle for Ordinary, Non Linear Differential Equations

The purpose of this investigation was to advance the theory of the

systematic integration of ordinary, non-linear differential equations. It

must be admitted at once that, in this attack on the strongly held territory

of non-linear equations, the ground occupied and administered is of smaller

area than was hoped, and scarcely forms more than a modest bridge head.

Nevertheless the tactics of the operation form an elegant, simple and

interesting application of the theory of finite, continuous groups.

1. Motivation.

a. It is almost trivial to assert that the comparative simplicity

of linear differential equations is due to the existence of a principle of

superposition of solutions, and that the comparative difficulty of non-linear

differential equations is due to the non-existence of a similar principle.

This remark suggests at once that we should seek for a generalization of

the principle of superposition which shall be valid for non-linear equations,

or, at least, for a substantial class of non-linear equations. Such a general-

ization should be of considerable value in extending and organizing our methods

of solving non linear equations, by providing a process for the construction of

general solutions from a number of particular solutions.

b. Modern, high-speed, computing machinery, using methods based

on classical existence theories, has provided a means of rapidly calculating

particular solutions of non linear differential equations from given initial

conditions. But these computational methods can only approach the construction
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of general solutions by calculating the particular solutions which correspond

to a large number of different initial conditions. A generalization of the

principle of superposition should enable us to comoine a few particular

(numerical) solutions obtained by high- speed computation into a general

solution.

c. Finally the engineering problem of testing non linear mechanisms,

such as hydraulic servo-mechanisms, might well be simplified if any operation

of such a system could be treated as a combination of certain elementary

operations, each more easily examined than the general operation.

2. Formulation of the Problem.

In the case of a linear differential equation, or a system of simultaneous

linear differential equations, the totality of solutions forms a linear, vector

space. Thus, if yl(x), y2 (x) and y3 (x) are any particular solutions of the

equation

2d 2y + P(x) d + Q(x)y = R(n) = 0,

dx2  dx

the general solution is

y = Ay 1 + By2 + Cy 3

where A + B + C =1.

For, taking y 3 to be a "particular integral", the functions yl - Y3 and

Y2 Y3 are solutions of the "complementary equation", so that the general
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solution is

y = y 3 + A(y 1 - y 3 ) + B(y 2 - 3)

= Ay 1 + By 2 + (1 - A - B)y 3 .

The essential features of this particular method of superposition appear

to be that

a. The general solution y is expressed as a function F of a certain

number p of particular solutions

Yl Y2' --- Yp'

and of a certain number n of independent "constants of integration"

C1 =A, C2 = B.

In this example n is fixed by the order (2) of the differential equation, and

p = n + 1.

b. The form of the function F is the same no matter which particular

solutions are employed.

Now there are certain hon linear equations for which there is an

analogous theory. For example,

solutions of the Riccati equation

dy = P(x) + Q
dx

if Y1P Y2 Y3 are any three independent

(x). y + R(x). y2

then the general sohrtion y is given by the well known cross ratio formula,

y -Y1

y Y2

Y3- Y2

Y3 - Y1
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where C is the arbitrary constant of integration. Written more symmetrically

this formula is

X (yl Y2 +YY3 )+ 1j(Y Y3 + YY2 )+ ) (Yly +y 2 y3 ) = 0

where A + /I + v =0.

Here again where the general solution y expressed as a function

F(yl, Y2 , Y3 ; C) of 3 particular solutions and an arbitrary constant.

This example encourages us to construct a general theory for the

construction of general solutions of non linear equations from appropriate

numbers of particular solutions.

We note that at present we have no information about the number p

of particular solutions which may be required.

3. The Equation dy/dx = F(x, y).

To illustrate the general theory we start with a single equation of

the first degree in one independent and one dependent variable,

dy/dx = F(x, y), (2

We assume that the general solution of this equation, y(x), can be

expressed in the form

y = y(y 1 ' Y2 ' "" x a), (3

where y 1Y2 ... Yx are n independent particular solutions, and a is an

arbitrary constant.

This relation (2 constitutes a law of internal composition between

the elements of the set E of solutions of equation (2, and thereby determines

the algebraic structure of the set E. In the theory of rings, fields and groups

the fundamental law of composition involve only two elements of the corresponding

4
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sets E, where here the law of composition involves a number n, which,

although unknown a priori, is not necessarily equal to 2.

It seems at first that the composition law (3 will determine a new

species of algebraic structure - almost the reverse of the "co-groups" in

which two elements are compounded together to yield n elements. The usual

law of composition give an "application" F of E x E in E; the law of

composition for a co group gives an application F of E in E x E x E x .... xE;

the law of composition (2 gives an application of E x E x E x ... xE in E.

However although the structure given by the composition function F

of (3 is not a group, it is easy to see that it can be "embedded" in a group.

In fact we have only to form the set of equations

y k = F(yl Y2' " "' n; ak)' (4

k= 1, 2, ... , n,

which give n new solutions, y, y,, ... yn in terms of the n old solutions,

yl 2 ' y 2  ' Yn and p arbitrary constants al, a 2 , ... an. This set of equations

define a group, G.

The equations (4 transform any set of n solutions of

dy/dx = F(x, y)

into another set of n solutions. The transformation is therefore associative

Also, since by hypothesis any solution is given by (1, we can choose the

parameters ak so that when

Sak = ak, thenyk yk o

i. e. Yk = F(y Y 2 ' ° n Y; a k)



Thus there exists an identical transformation in the set (4. Lastly, for the

same reason, we can choose the parameters a so that when ak = then

n kYn 1= gYl' Y2 Yn; a)

Hence the equations (4 define a finite continuous group G with n variables y

and n parameters a .n

It was E. Vessiot (1893) who first had the happy idea of studying

these groups and of classifying the differential equations to which they refer.

This drew down upon him a rather severe reprimand from Marius Sophus Lie

(1893) whose heavy hand had lain upon group theory for many years.

Lie pointed out quite properly that Vessiot's theory was a special

case of Lie's own theory of "Fundamental solutions" of differential equations

(Lie, 1893). In Lie's theory it is supposed that there are n special or

fundamental solutions yl, Y2 ' Yn such that the general solution can be

expressed in the form

y = g(y ' Y2' "... Yn; a),

and there is no question of this relation forming a general law of composition.

In fact we may not know which particular solutions are fundamental; so that

Lie's general theory does not seem so useful as Vessiot's theory, which,

moreover, has the advantage of being expressed with great elegance and in

French.

4. Vessiot's Lemma on SimplyTransitive Groups.

by the

can be

The study of the "embedding" group (4 is considerably simplified

fact that in the set of equations (4 the roles of variables and parameters

interchanged to yield a group H which is the direct product of n groups,
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each of the form

b' =h(y, Y2, y n; b),

with one variable b and n parameters yl Y2' " "Yn'

The lemma on the interchange of variables and parameters depends

only on the fact that the group G is simply transitive, and is valid for any

group with this property.

Consider then any simply transitive group G in n variables xi and n

11
parameters ai, with the typical transformation

x 9 (X X x2 , xn; a,, a2,.a) (5S s n 2-n

Egs (x;a) s= 1, 2, ..0 , n

The associative law for a group is expressed by the conditions

x"= gs(x'; b)= gs (x; c) (6
s

then cs  s (a: b).

Take x, a, c as sets of independent variables, and x', b as sets of dependent

variables. Differentiate (4 with respect to at. Then

Cg (X'; b) x-g(x b) Ob

- 0 (7j x Oat C b 9ata ta t

(using the Einstein summation convention.)

By a fundamental theorem the necessary and sufficient conditions that

equation (5 Should define a group are that the functions gs(x , b) should be n

integrals of (7 which reduce to the variables xs when the parameter b1 - bn

xtake certain particular values x-take certaih particular values h b .Mcreover the determinant 11--g / -'bI n C.) I



must not vanish identically. And if the group is simply transitive the

9 gs/ D x' I must not vanish identically either.

It is immediately evident that there is complete symmetry as between

the set of variables x and the set of parameters at in the condition (5.

From (5 we can obtain the usual equations

(9 gs=

(x') APa (b),

and we could also obtain the similar equation

tOgs
s - 7 ( b) B (x')Jb sp pa

Hence we conclude at once that equation (5 also defines a semi-group

in the variables a with parameters x'. It only remains to establish the
S S

existence of the identical transformation. This is easily shown by making

a preliminary change of parameters in (4. We introduce the new parameters

BS defined by

Bs  gs ; a),

wherex. x x is some set of fixed value ofn - n .
1 2 n1 n

Then the transformation equation becomes

x'=gs (x; a) x = ys(x; ),

Bs s sn
5S

x' = 8 , i. e. we have the identical transformation.
ssS 5'

Therefore with any transitive group

G x's =gs(x; b) (variables x, pa
5

es x , then

rameter b )
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we can associate another transitive group

b s = gs(X; b ) (variables b, parameter x) (9

I have not come across this theorem elsewhere in a rapid perusual of

the literature. It is possible to give a direct proof without differentiating

equations (6.

To elucidate the general theory consider the group associated with the

Riccati equation (1

3k- Yl Y3 Yl

Y- Y2 = a k  Y2

Introduce new parameters Bk defined by the equations

'k- l J3 Jl
L) ak (J3 -J

Then

-YI Y3 Y 3 3  L2 Bn- L

Y- Y2  Y3 Y2  L'3  l Bn - W 2  (10

Bk3W
Skc

Bk - L 2

where c is a function only of yl Y2 Y3  2' 3" It is clear that these

equations (10 not only define a transformation from (yl, Y 2 ' Y3 ) to (y, y, y)

with parameters ( 11 B 2' B3), but also a transformation from ( B1 , B2 6 3 )

to (y, y, y1 ) with a parameter c depending on (yl, Y2 y 3 ). Also the trans-

formation of the second type clearly form a group. Thus the roles of the

variables ('y, Y2 ' Y3) and the parameter, ( B1, 2' B3 ) can be interchanged.



5. The Equations of the Type dy/dx = F(x, y) which are Soluble

by Comparison

To apply Vessiot's lemma to the group

Yx = gnl' Y2 ' ' ; ak) n = 1, ... n (4

we introduce the new parameters bk by means of the relation

bn = gk(Y 2' o' Yn ; ak)

and then obtain the group

bk = h(y, y n= 1, 2,... n,

which is clearly the direct product of n groups each of which has the form

b'= b(yl, y2''.. Y2 ; b),

i. e. with one variable and n parameters yl 2.. " Yn"

Now Lie has shown that when the number of variables is unity

the number of essential parameters can only be 1, 2, or 3 that by a suitable

change of variable and parameters these groups can be put in the forms

1) b7 =yb1

2) b' = ybl- Y2

3) b' = yb 1 Y2

yb 3 + 1

An easy calculation then shows that the corresponding differential equation

is of the form

dy/dx = Qy

dy/dx= P+ Qy

dy/dx P + Qy + Ry 2

10
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This is a somewhat disappointing result since it implies that the

only nonlinear equation in y and dy/dx soluble by rhe present method is the

Riccati eqn. We can however considerably extend the range of application,

but before doing so we shall consider the generalization of Vessiot's theory

to a system of equations of the form

dyk
= F (Y 2''' n, x) n= 1, 2,...n (11dx n 11y... y,

6. Guldberg's Theory

This generalization was given almost immediately by A. Guldberg

(1893). Let

y k y y"(x) n= 1- n

= 1-p

denote any p sets of particular solutions of (11. It is assumed that any

set of solutions, yk can be expressed in the form

yk , n(y; a) (12

where y stands for the set of pn functions y ) and a for a set of n constants
n

of integration, a1 , a 2 - an.

The structure defined by the law of composition (12 can be embedded

in a group

y V) k(y; aM )  (13k g

with pn variables yk() and p sets of n parameters

a (a 1  a 2  .. , an)

Just as before we introduce new parameters b defined by the equation
n

bn (y; a)

11
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when y denotes some fixed set of values of the pn variables y, and eliminate

the old parameter a. Thus we obtain a simply transitive group

yk = hk (y; b) (1

in pn variables and pn parameters.

By Vessiot's lemma the same equations define a group

bO ) = h (y; b)
n n

in which the variables are ba) and the parameters are y(.
n n

This group is the direct product of p groups each of the type

bk = hk (y ; bl b 2 , . , b n )

with n variables and pn parameters.

This group is p times transitive, thence by a theorem due to Lie

p < n + 2,

i.e. the possible values of p are 1, 2,..., n + 2. (When p = n + 2the

group is similar to the general projective group.)

It is now possible to drew up a systematic and complete catalogu

of the various types of systems of differential equations which can be solve

by the method of "composition."

7. Return to Equation dy/dx = p(x, y)

The extent of the domain of equations of the 1st degree in x, y

which are soluble by composition, can be considerably enlarged by writing

the basic differential equation in parametric form as

d X(x, y) dy= Y(x, y).dt ydt

e

d

4
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Guldberg's theory then establishes the existence of a group H in

1') (1) (2) (2)2variables bl, b2 and 2p parameters x ( 1 ), y (1), x (2), y . where p< 4.

This result considerably extends the possible field of application, but also

leads to the ineluerable conclusion that only a very few types of non linear

equations are soluble by composition.

A simple example is furnished by the Clairaut equation

2
y=px + p , p = dy/dx.

The general solution is, of course,

2
y= cx+c

and this can be expressed in terms of any particular solution

yl = kX +k 2

by means of the composition law

2x=ax1 , y = a yl.

8. Conclusion

The painstaking investigations of Lie have provided an exhaustive

classification of all transitive groups in 1, 2 and 3 variables, and this

analysis could be extended to more variables. We are therefore in a position

to give a complete list of all the types of non linear equations (or systems of

such equations) which are soluble by "composition. " It would be most

satisfactory if we could prove that any non linear equation (or system of

equations) is soluble by composition in terms of a finite number of particular

solutions. That this conjecture is false can however be shown at once by

reference to equations with a general solution of the form

iiillllYIImoll "~
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(y - y1) (y- y 2).... (y- yp) = constant, where ylY2 ... , yp

are given functions of n. Such equations have the form

PP- Pk
nl pY-Ypk =0,

n= 1 k

where pn = dyk/dx, and p = dy/dx. To construct the general solution we

need p particular solutions,

y = Yk, k = 1, 2... , p,

and we can make the number p arbitrarily large, and certainly in excess

of the maximum, p = 3, appropriate to equations soluble by composition.

We conclude therefore that the various types of differential equations

soluble by composition certainly does not exhaust all possible types, so that

the range of our results is definitely limited. It appears therefore that there

is no general analogue of the principle of superposition valid for non linear

equations; which implies that the problem of non linear equations is even more

difficult than we had anticipated.

9. Acknowledgements.

This work was carried out while the author was at the Institute

for Advanced Study at Princeton (under Contract No.

from the Office of Ordnance Research) and described in a lecture at the David

Taylor Model Basin at Washington.

i m .i ll ilI iil ii i

I II I 1 3 1-"111111~14111311111



References

Darboux, G. Bull. Sc. Math (2), 2, (1878). p. 72

Guldberg, A. Comptes Rendus de l'Academie des Sciences, Paris, 116, 1893,

p. 964.

Lie., M. S. Comptes Rendus de I'Academie des Sciences, Paris, 116, 1893,

p. 1233

Leipziger, Bexichte, 1893, p. 341

Math. Ann. 25, p. 71.

"Vorlesungen iiber Continuierliche Gruppen," 1893, Chap. 24

Vessiot, E. Annales de FEcole Normale Superieure,
I

(3), 10, 1893, p. 52

Comptes Rendus de l'Academie des Sciences, Paris, 116, 1893,

pp. 427, 959, 1112.



The "P- L- K" Method

1. Introduction.

The ooject of this investigation is to give a rigorous, analytical

theory of the technique invented by Lighthill (1949) for solving differential

equations with an irregular perturbation - the so-called "PLK" method.

The present theory has been developed by the author and by Mr. P. Lampitt,

one of his research students at Oxford.

The method adopted is to state the problem just for a single

equation of the first order and degree, and to illustrate the difficulties by

means of a number of elementary examples. We then describe Lighthill's

method of the auxiliary variable and the author's method of regularising the

differential equation. The formal proof of the validity of the method of

regularisation is then developed by means of the theory of dominant functions,

and a number of illustrative examples are given.

The method is then generalized for a system of differential

equations of the first order - or for a differential equation of arbitrary order.

2. Regular and Irregular Perturbations.

The standard form for an ordinary differential equation of the first

order and degree is

dy= F(x, y),

---"------------ -------------------------------- -..- --~--~--. I---~---~p_.,~ ~ ...



but in mathematical physics we are frequently interested in equations

which involve a "small" parameter a in the form

dy = F (x, y, a).
dx

We often think of the terms involving a as introducing a "perturbation"

into the equation

dY F(x, y, 0),dx

and this latter is often described as the "unperturbed" or "reduced"

The perturbation is said to be "regular" at a point (x, y)

function F (x, y, a) is analytic in the complex variable a, near the

origin a = 0, for the prescribed values of x and y, i. e., if F (x, y, 4

possesses a Taylor expansion

equation.

if the

F (x, y, a) = F(x, y, 0) + z
n = 1

an F (x, y),n

valid in some disc, I al _ A.

If the perturbation is regular at all points of a domain A of the

variables x and y then it is said to be regular in A.

If, however, the function F (x, y, a) is not analytic in a near

a = 0, for prescribed values of x and y, then the perturbation is said to be

"irregular" at this point.

There are two obvious techniques for searching for solutions

of perturbed differential equations.

In the case of equations with a perturbation regular in a domain

A we naturally look for solutions of the type

17



y Y 0 (x) + any n(x),
n=1

i.e., as a power series in the parameter a, reducing to a solution of the

reduced equation,

y = Yo(x),

when a -0.

In the case of equations with a perturbation which is irregular

at some point of A, our only hope seems to be to look for some transformation

which will reduce the equation to one with a regular perturbation in A.

Lighthill's achievement was to discover such a transformation. Our researches

are directed to the systematization and validation of Lighthill's discovery.

What makes this problem of particular interest in mathematical

physics is that the "reduced" equation is often (although not always) linear

and easily soluble, and that the perturbation is regular except at certain

points or along certain curves in the x, y - plane.

In order to clarify the situation and to simplify the analytic

theory it seems, however, advantageous to begin with the very simplest

example, namely the first problem discussed by Lighthill.

3. Typical Equations of the First Order and Degree.

All the characteristic features of the "PLK" method are

exemplified in the typical equation

du(x + au) + q(x)u = r(x),

studied by Lighthill (Phil. Mag. (7), Vol. 40, 1949, pp. 1179 - 1201)

IRVIN, I



,iiYIIiI. -ImuImII

and by Wasow (Journal of Rational Mechanics and Analysis, Vol. 4, 1955,

pp. 751 - 767). Here q(x) and r (x) are analytic near x = 0. The perturbation

is regular except at x = 0, and the reduced equation is
du

x + q(x)u = r(x).
dx

In fact it is almost sufficient to examine some trivial special-

izations of the Lighthull equation, e. g.

E1  (X + au) du
E (x + u) du = 0,1 dx

du
E 3 (x + au) u = 0,

duE (x + tau) d u=x
dx '

2 du
E (x + au) + 2xu= 1,

4 ii

with the initial conditions u = 1 at x = 1.

First of all we write down the exact solutions of the perturbed

and reduced equations in order to gain an appreciation of the nature of the

influence of the perturbation. Then we consider the techniques introduced

by Carrier (Advances in Applied Mechanics Vol. 3, 1953, pp. 1 - 19,

Communications on Pure and Applied Mathematics, Vol. 7, 1954, pp. 11 - 17),

Lighthill and Temple (Proc. Int. Congress of Mathematicians, Edinburgh, 1958.)

We list below the exact solutions of these equations and of the

reduced equations, together with the leading terms in the expression for

u near a = 0: -



1
ux + -

2
2

aru
1= )a,

ux = 1,

1
u=- +

x
a
2x

x = u + au log

+0 ((a = 0),
a

2x3

Jul

(a = 0),

u = x - Ox log + 0 (a 2x log Ix 2.

~1-B =
x + Bu +x

E 3 + 

u = x + x log

=x+ xlog lxI

x - Bu

1 -B

Ix (a = 0),

+ O (ax log 1x 2).

2 1 2
E4 x u + -au

u = 1/x, (a = 0),

x

1
x

x = U,

(a = B2 ),

1
= X+ 2a,

11, INN r I

1x



Uu 2 +11/2u- 1U\ a

\ u - -

\ Un

1x=-au \
2\

\ (1, 1)

x

E/ U=X

e/

u/

//

/ x

ux = 1
\, - u ='x

E\

E4

u=*X
/

/

//

1/ x

I 11 WINION I I I



The following general conclusions can be drawn from the

eqns. and Figures representing the solutions: -

1) It is impossible to express the solution of the perturbed

equation as a power series in the parameter a uniformly convergent

near a = 0.

2) The solution of the reduced equation is an asymptotic

approximation to the solution of the perturbed equation in cases E1 E 4

but not in case E2 0

3) The importance of the perturbation, as estimated by the

ratio au/x, calculated from the reduced solution, is

E 1  0(a/x 2

E 2  0 (a)

E3  0 (a log x)

f2 3
E 4 au/x = 0(a/x 3

Hence the perturbation cannot be neglected near the singular point x = 0 -

but we note that the rest is misleading in the case E 2 '

4) Carrier's method may or may not give information about

the perturbed solution.

4. Carrier's "Boundary Layer" Theory

Carrier (loc. cit.) has devised a "boundary layer" technique

which can be very effective in improving the reduced solution in the

neighborhood of a singular point. This technique however does not seem to

apply in cases E 2 or E4 where all indications given by the reduced solution

22
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are misleading.

In case E we can introduce a crude form of boundary layer theory

as follows: - The reduced solution

u = 1/x

may be assumed to approximate to the perturbed solution, except when

the perturbation term au is large, i. e., near the "boundary" x = 0. In

this region the dominant terms in the equation are, presumably,

duau + u=0,
dx'

with the solution au + x = a constant, c.

We choose the constant c so that this "boundary" solution joins

smoothly with the reduced solution xu = 1 or some point (xo, yo). We

easily find that

x =al/2 u =a- 1/2 c=2a1/2
o ' o ' '

so that the boundary layer solution is

au + x = 2a1/2

giving u = 2a-1/2 at x = 0, instead of the accurate value (2/a + 1)1/2giving u = 2a at x = 0, instead of the accurate value (2/a + 1)

YIIIYIIII -
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5. Lighthill's Method of the Auxiliary Variable.

The problem attacked by Lighthill was to express the solution

of a perturbed equation as a function of the parameter a in a form which

is uniformly convergent in the neighborhood of a = 0, and which converges

as a---i 0 to the reduced solution. Lighthill's method is to express both

the dependent variable u and the independent variable x as power series in

a with coefficients which are functions of a new auxiliary variable z. These

series are of the form

u = u (z ) +aul(z) +a u 2 (z) +...

2
x= z + ax 1 (z) +a x2 (z) +...,

and, as a - 0, this solution tends to

u=u 0(z), x = z,

so that u = uo (x) must be the solution of the reduced equation.

Thus, in the case of the equations discussed above, the exact

solutions of the perturbed equations can be parameterized as follows: -

1E u- ,1z

x= (1 + )z - 2z;

E u = z,

x= z + az log z;

1 1+6 1 1-B
E3  x= (1 +B )z + (1 - B)z

Bu= (1 + )z I +B - (I - 8) z ,

24 (a=WB).
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whence x = z + 0(a),

u =z + z log z + 0(a);

E 4  Put u - 1= m(x- 1)

1 2
A- (1+~am)

Then x =
2m

1 1 2 1
u = 1- m - -(1+ -am )-2A,

1 2 2 1 2
where A = - (1 +.m ) - 4m (am-z am )

1
and m - + O(a)z

whence x = z + 0(a),

1u =- + 0(a).
z

Of course Lighthill's method is designed to apply precisely when

the exact analytical form of the perturbed solution is unknown. In these

circumstances the series for u in powers of a are substituted directly into

the perturbed differential equation

d u
(x + u) a+ q(x)u = r(x),

and the coefficients of powers of a are equated to zero.

At each stage this procedure yields one equation for the two

unknown coefficients u (z) and x (z). This equation is then split into twon n

in such a way that the power series for u and z become uniformly convergent

in some region Ia I <A.

It is a tedious matter to carry out the calculation but Lighthill

25



has sketched a proof that it can be successfully carried through to yield the

desired result.

A more detailed proof on the same lines has been given by

Wasow (loc. cit.), and some notes on the apparent limitations of Lighthill's

method have been given by Carrier (loc. cit.).

The importance of Lighthill's technique makes it desirable to

provide a rigorous general theory which shall be applicable to as wide a

class as possible of both ordinary and partial differential equations. Such

a theory is developed in the following sections.

6. Temple's Method of Regularization.

In Lighthill's method the single power series for u,oo9

u = Z anf (x),
0

which cannot converge uniformly near x = 0, is replaced by two series

u = z u(z), x = z + anx (z),u un  n
0 1

which are both uniformly convergent near x = 0. The coefficients u and x
nn

are determined by splitting the equation deduced from the perturbed

differential equation by equating powers of a.

In Temple's method the original differential equation is split into

two equations, each of which has a regular perturbation. Thus the equations

for u and x are separated once for all at the very beginning of the calculation.

Thus we replace the original equation

(x + au) du + q(x)u = r(x),

by the pair of equations,

-- -- I IYIYIIYYIIIUII
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dx
-x + au

dt

duand = r(x) - q(x)u,dt

with the initial condition that t = 0 when x = 0. It is manifest that the

derivatives of x and of u with respect to t are now analytic functions of

a near a = 0, and physical intuition and mathematical analysis agree

in recognizing that such a pair of equations possess a solution in which

x and u are power series in a, provided that the functions r(x) and q(x)

are analytic in x near x = 0. The formal proofs will be given later after

we have studied a few examples in detail.

This method of "regularization" provides a systematic means

of parameterizing the exact solution of the perturbed equation.

The solution of the "regularized" equations is of the form
oo

x = anf (t) ,
n=0 n

u of Z ng(t).
= 0nn=0 n

In order to exhibit the relation of these solutions to the reduced solution

we make the change or variable

t = log z.

Then the regularized equations become

dx
dz - x + au,



du
and z -= r(x)

while their solution is of the form

n=0

u =

n=0

dx
0Z dz -Xo

Hence

n.ax (z),n

n

anu (z).
n

du

and z 0 - r(x) - q(x )u
dz 0 00

Thus x = Cz and u (Cz) is a solution of the reduced equation. There is
O 0

no loss of generality in taking C = 1, and then the solution of the regularised

equations is in Lighthill's form -

x =z + E
n= 1

u =u (z) +o

n
a x (z),

a nu (z).
- n

7. Examples of Regularization.

Before developing the general theory it is instructive to consider

the four simple examples introduced earlier. We therefore list the regularised

equations and their solutions for these four cases: -

dxE z
1 dz - X + au,

du
Z dzdz

28

q(x)u,
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1
Ix = z + (z

1
z

1
z

-x + ax

- u ,

x z + az 1ogz

x= z.

= x + auii

= U +X,

1+B
x+Bu = (1 + B)z 1+6

x- Bu= (1- B)z 1-

dx. 2 dx
4 dt dz

du 2du
dt dz

2-x + CI

- 1- 2xu

N. B. In this case we have used the transformation

t = - 1/z

instead of t = log z in order to ensure that the series for x begins with the

term x = z. We find that

02

dx =3d = a+ 2x ,
dt

dx
z

dz

du
Sdz

dx
dz

du
dz

(a = B2 )y

I ili WHOM
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dx2 2 4whence (2 = a +2ax+x 4dt

But 2= (x + 2  )

21212 1 2 1therefore ux +jM = + x.

8. Systems of Ordinary Differential Equations.

The method of regularization is easily extended to ordinary

differential equations of any order, or to systems of ordinary differential

equations. The standard form of such a system, involving an independent

variable x, n dependent variables ul, u2 , ... , un, and a parameter a is

du
m F(u u2, .. .u, U, x, a)

dx ml1 2 n

(m= 1, 2, ... , n)

For example an equation of the second order,

d2u =f d u

72dx'''dxu, x, a

can be expressed in this form by wi'iting

du
u = ul' dx - u2'

du1

Then d - u
dx 2

du2
= - (u2 , u 1 , x, a).

~-- --------~-c~.ll_ ~~__~________~________~__ ~_~~_~~ ~__ _~~~~_
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If each of the functions F is analytic in a, near a = 0, form

prescribed values of x, u 1, u2 , ... , u then the perturbation is said to' ' n

be regular for these prescribed values. Otherwise it is irregular.

We shall consider the case of an irregular perturbation in

which each function F is expressible in the form
m N

mF -
m D '

m

where N and D are each analytic in a.
m n

We then replace the perturbed equations by the regularised

equations
dum _ D1D2...D N D D .. D,
dt D 2 m- 1N m m+1 m+2 n

dx
d = DD D.

dt 1 2m  n

in which the right hand sides are manifestly analytic in a.
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9. Further examples of regularization.

The following examples are discussed by Lighthill (loc. cit.)

and it is of interest to see them handled by the method of regularization

(I) Given the equation

(x + au) du/dx+ (2 +x)u = 0

and the initial conditions

-1u=e at x=1,

to estimate the value of u at x = 0.

The regularized equations are

zdx/dz = x + acu,

zdu/dz = - (2 +x) u.

Hence

x
O0

To estimate the value of

given by the equations

-z -2
=z and u =e . z

O

u at x = 0 we need only the first approximation

x (z) + ax (z) = 0

u = u (z),

and x 1 (z) is needed only for values of z nea

for x1 can be approximated as

zdxl/dz = x +u ox
0with the solution

with the solution

1 1
x =- z 2

3z

r zero. Hence the equation

-2
+z o

_1

3z

32
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Therefore at x = 0

3a=- xo/x1 = 3z3

u= U =z
0

-2 1 -2/3= (-

1(II) (x+au)du/dx-u=12

with u=1 at x= -1.

This equation requires a preliminary transformation

before Lighthill's method can be applied.

dx
dz

duz-
dz

The regularized equations.

= x + au

1

Furnish the coefficients

x = ZY
u 2 + 1 1/2
o 3

2 1/2

u 8zz H

22

14 3
+ T5z

22
+ -z

2z,

8 2
3

74 1/2
T z

These differ from those obtained by Lighthill, so that presumably our

auxiliary variable z differs from his,

du
Pd

dx

21P =1- x

u
x

dv
=Q, = u,dx'

{1

t (y + 1)xu - (y - I)v -

+ (y - 1) (xu - v -

33
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with the boundary conditions

u(a) = a,

v(M) = 0,

u(M)= 2(M- M- )/(y + 1),

M > 1.

It is required to estimate the value of M in terms of the small parameter a.

We write

2M=

2
4a M 1

u(M) =

4-
+ (VM 2 + -

+ a 4 (4M 2
y + 1

- 2M 1) + ...

The regularised equations are

du
Qx,

dx
dt Px,

and, in order to facilitate comparison with Lighthill's solution, we write

2 4
u =u + au + au + .,-1 0 1

2 4
v v +av + av + ..-1 o 1

a 2
x=x +ax +

o 1
4

ax 2 +...

Then the initial conditions are

x= M x = 1, x = M
0 1 1'

x 2 = M,...

v1 = 0, vo = 0, v = 0 ...

u =0,
4M 1

U0 
Y

2
4M 2 - 2M

34
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We easily find that u_ 1 =.0 and v- 1 = 0,

dx
d x (1 - x 2 )

dt 0 0o'

2 1/2-t (1 - x o )

whence e =t
x

0

OIt is convenient to write t log and then
It is convenient to write t = - log 7, and then

x = (1 +
O

Also

whence

Now

so that

2 -1/2T )

du

dt o

U =e

dv
o

dx

V =
O0

= 7, andM 1 =0.

= UO,

ux
0O 0

x du
0o O

= (1+ 72 )- 1/ 2
- log{ + (1 +

The equation for x 1 is

dx/dt = x
2- 3
ol

whence 2 3/2

d7 r2 I

2+(Y + 1) u x
o 0

(1+ 72)1 / 2
- (y 1)1+ 7 23

35

2) 1/2
S

(1 + 7logJT +
I



10 I1 10uiffil I, ,

When 7 is small, we find that

d 1x.I 2 1
- -- (-r- 1) . 2

and x 1  ( + 1) + a constant.
2

Therefore x 1 -- 0 asT-* 0, and M1 =0,

in agreement with the result found above.

Now
du_ 2

d u 1 - (y- 1) (xou -u vo)
dt 1 00 00

whence

2 d(u 1/ ) 2
- 7 dT = 0(T)

and u = ( 7" ) for small 7 .

Therefore u - -  0 as--4 0 and M2 = 0.

This, unfortunately, disagrees with Lighthill's result, which

seems to proceed from a slip in his general theory. If the preceding analysis

is correct it is necessary to evaluate x2 and possibly u 2 in order to estimate

M3 - and we leave this task as an exercise for the reader.

(IV) One final example, cited by Carrier, as an instance of

the failure of Lighthill's method: -

2 du 3 2
(x + au) + u=2x +x

with u= 1 + e at x = 1.

It is required to estimate the value of u at x = 0.

36
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The appropriate regularized equations are

2 dx 2
z - x + au

z- = 2x 3 + x - udz X-

2 1/z
x =z, u =z + e

o o

x1=e /z + 2 z
x 1 = e - 1 + 2z

- 2z2
2 2- z+z +ez

Near z = 0 the dominant terms are

- 1l/zx- z-ae

Thence, at x = 0, e 1/z z

1 1-= log z + log-.
z a

The first approximate solution of this equation is

1 1- = log 1,
z o

and the second approximation is

1 1 1- = log - - log log-.
zTherefore the required estimate of u at x= is

Therefore the required estimate of u at x = 0 is

1/z 1u - e =exp log-

1=a-

- log log

(log ) -1
alg-

37
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10. The Existence Theorem.

In most physical problems we do not need any precise

information about the radius of convergence of the series for x and u

in terms of a. It is sufficient if we can be assured that there is some

radius p, such that the series converges if al < p . This rather

limited information can be easily and rigorously deduced by the method

of "dominant functions". In some cases we can also obtain estimates of

the error introduced by truncating the series for x and u after a few terms.

The method of dominant functions was invented by Cauchy,

rediscovered by Weierstrass, improved by Goursat and Sophie Kowalevsky,

and is conveniently accessible in Forsyth's 6-volume Treatise on

Differential Equations.

The relevant definitions are as follows: -

(1) If f(x 1, x 2 ,..., xn) and g(x 1 , x 2 , ... , xn ) are

analytic functions of the variables (x, x 2 ,..., xn) in the region

Ixi < R, (i= 1, 2, . . ., n), so that f and g are expressible as power

11series m nf Z La x mx n...
mn... 1 2 " '

g = b x x . . ,
mn. .. 1 2

and, if an.. . bmn . for all m1n1 ..

then g is said to be a dominant function for f..then g is said to be a dominant function for f.

__ ~ II__~ ___l_~_ls_~______________~~ __~_I___~__~ ~_I~_ I



(2) If, in the two systems of simultaneous differential equations,

F : dx./dt = f (x , x , .. , x t)

G 1 dx/dt = gix2 x2 n

G : dxi/dt =gi(xx,... xt),

gi is a dominant function for f.,
1

(i = 1, 2,..., n), then the system G is said

to dominate the system F.

The main theorem is the following: -

The solution of the dominant system G dominates the solution of

the system F, the same initial conditions being imposed in each case;

i.e. If x. = 2 a. t
1 in

(i= 1, 2,... n)

are formal power series satisfying F, and

x. = a.
1 10

at t = 0,

x. = L b. tn
1 in

is the solution of G, analytic in

and satisfying x. = a.
1 10

a Ka.
in

then

at t = 0,

b. 
In

Hence the formal power series solution of F is analytic in

tl < T.

The value of this theorem is largely due to the fact that there

is considerable flexibility in the choice of dominant functions.

useful types of dominant functions are the following: -

39
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If f(x r x 2,..., x ) is

and if f(xl' x 2,..., xn)

then f is dominated by

M(1 - x 1/R)-1 (1 -

analytic in Ix.

< M in Ixi

x2/R ) -1 ... (I -

or by

M 1 I- (xl+ x2 + ... +x n)/R -1

The choice of a dominant function is guided by two conditions: -

(1) It should be as close as possible to the original function, so that the

two systems of differential equations differ as little as possible, and

(2) It should be sufficiently simple to enable the system G to be integrated

and the radius of convergence of its power series solution to be determined.

In practice we are usually content with a compromise.

As an elementary illustration consider the equation for the

Jacobian elliptic function y = snx with modulus k, viz.

dy 21/2 2y2)1/2dy (1-y ) (1-k y ) , y = 0 atn = 0 .

The right hand side of this equation is analytic if I yl < 1, and its upper

bound in this region is

M =

Hence a dominant function is

M(1

and the solution of the dominant

Mx=

2(1 + k2) 1/2

Sy 2 - 1

equation is

13
3y .

K

x /R)-1n

=111111MI W11116111kildIIIIII& III MI
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This makes y an analytic function of x if

2 -1x< .

Hence we can be sure that the original equation also possesses a solution

analytic in x in the region I xI < 2(1 + k2) -1/2

In fact snx is analytic in a larger region IxI < K', in the usual notation.

This emphasizes the fact that the method of dominant functions yields only

a lower bound to the radius of convergence of the power series of a

differential equation.

11. The Proof of the Existence Theorem.

The regularized equations to which we intend to apply the

existence theorem are always "autonomous" systems, i. e. the independent

variable does not appear on the right hand side of the equations, which have

the form

F: dx i/dt = f i(x, x 2 , ... , xn) i= 1, 2,..., n,

with initial conditions

x. = a. at t = 0.
1 1

The functions f' are analytic functions of xl, x 2 ,..., xn in the region

1 n
I Ki R,

which includes the point x = a.. (i = 1, 2,..., n)
i 1

We suppose that the system F possesses a dominant system

G : dy i/dt= gi(Yi Y2 ,..., Yn ), i= 1, 2, ... , n,

yi= b. > 0,
1

41



with a solution

which is an analytic function of t, bl, ... ,

Iti < T,

bn in a regionn

Ib i <B.

Since the functions f. are analytic in
1

they can be expanded in power series

f.= a( a2, 2...,Y a)x
1 1 1' 'n 1

a I  a 2
x 2

a
.. n

n

uniformly convergent in this region, and we can obtain a formal solution

in the form

xi = 7L ci(p) tP/p:
p=0

by calculating the coefficients ci(p) from the equations

cdP) xi
dp- f

dtp - 1

t=0

The initial conditions determine the coefficients

c .i(o) = a..
1

The expression for c.(p + 1) has the form
1

c (p + 1) = 2 a.P.,
1 11

a. = a.(al, a 2 , . . . , a n ) ,1 1 1 , 2 , a

I ---

Yi i(t;bl, b2... bn)

where



P. = 1.(a 1, a 2 ... a )
1 1 2 n

xl
dP

dt
p

1  a 2x2 ... xan
n t=0

Now we can prove by induction that P is a polynomial in1

ci(q) for i = 1, 2, ... , n and q = 0, 1, 2, ... , p, with coefficients which

are positive integers.

Similar considerations apply to the dominant system G,

in which

gi = bi(al, a 2 ,..., an) y1

a a2 an" ..Y n

and

d.(p) = {dPx i/ tP }i t=0"

We find that

di(p + 1) = bi i'1 1

where Q is the same polynomial as P., except that the c.(q) are replaced
Sd 1

by d.(q).
1

Now c.(0) = a1 1

and

di(0) = b.,

< b.,
1

since the system G dominates the system F.

We can now prove by induction that c.(p) and d.(p) are
1 1

polynomials in a. and in b. respectively, and that
1 1

c .(p) ( d .(p) .

and

Iail
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Now by hypothesis the dominant system possesses a solution

which must have the form of power series,

yi= Ed (p)t P/p! ,

convergent in Itj < T. Hence the formal power series

x. = c.i(p) tP/p:

must also converge in tj < T. The formal power series is therefore a

solution of the system F and it defines functions x. (i= 1, 2,..., n) which
1

are analytic in t and in a1 , a 2 ,. . ., a in the region'n

Iti < T, Jail < B.

Corollary 1: - We can immediately extend this theorem to an autonomous

system.with a parameter a,

F:- dx./dt = f.(x 1 x 2 , ... , x, a)a 1 1x 1 nn
(i= l1, 2, . .. , n),

x. = a. at t = 0.
1 1

It is sufficient to consider the augmented system

F*:- dx./dt = f.(x, x,..., x , x )
i 1 2 n n+1

(i = 1, 2,. . , n)

dXn+1/dt = 0,

x. = a.,
} a att = 0.

Xn+ = a,S n+1 l

These two systems possess the same solution which is analytic

1E1IM11 . I dhl I Wfi d
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in t, a 1,a 2,..., a and a in a region,
n Itl < T, lai < B,

Corollary 2: - A further extension is to the system

FT : -0t dx./dt =
1

f.(xl, x ,..., x ; a)

(i = 1, 2,

with the initial conditions

xi =i(a) at t = 0,

where fi and i are analytic functions of x, x 2 , .. ., x n

ixil < R, ja < A.

and a in a region

F possesses

a in a region

The preceding argument shows that the system

a solution which is analytic in t and in 1, 2 .. n and

< B, a < A. But the functions i are analytic in a

< A. Hence the solution is analytic in t and a in a region

T,. Ial < A.

12. Application to Lighthill's Equation.

To construct a simple dominant system for the regularised

equations

dx
dt

du
dt

- x + au,

= r(x) - q(x)u,

r(x) - q(x)u

XI , lul

Ijai < A.

a < B.

< T,

in r

Itl <

let

when

and let

< M



Then r(x) - q(x)u is dominated by

M I - (x + u)/R - 1

In order to obtain an easily soluble set of dominant equations we dominate

x+ au by

N 1 -(x+ u)/R - 1

where N = R + AR.

In fact we go further and take the dominant system to be

G:~d = C I - (x + u) / R -1G:
du = C 1 - (x + u)/R -dt

where C = max (M, N).

The solution of this system, subject to the initial conditions

x = 0, u = a at t = 0,

is given by

u - x =a,

u + x v
U+ =V

-1/v a 2 4ct 1/ 2

1-- 1= + -- 1R
RR R'

and this solution is analytic in

4C t < R 1 2

Now in the region which we are considering

lul < R,

whence lal < R,

so that - 1)2 cannot vanish.
R A 0

_ _~



Hence the dominant equations have a solution which is

analytic in t and a in the region
2

ItI < K - 2a + R),

where K = min( R+RA
M' R + RA
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