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ABSTRACT
These lectures describe some recent researches by the
author and one of his graduate students at Oxford University on
ordinary nonlinear differential equations. The first lecture is
devoted to a search for a '"superposition' principle for these non-

linear equations and it determines the class of nonlinear equations

for w, ch a superposition principle exists.
remaining four lectures provide a rigorous, analytical
y of the technique invented by Lighthill (1949) for solving non-
linear differential equations with an "irregular'' perturbation.
Such equations involve a small params=ter o and such that the
coefficient of the highest derivative vanishes identically, or at
the "initial point", when a = 0.

The theory is developed from a number of simple examples
and given a rigorous form by means of the theory of "dominant

functions"'.

ii



A Superposition Principle for Ordinary, Non Linear Differential Equations

The purpose of this investigation was to advance the theory of the
systematic integration of ordinary, non-linear differential equations. It
must be admitted at once that, in this attack on the strongly held territory
of non-linear equations, the ground occupied and administered is of smaller
area than was hoped, and scarcely forms more than a modest bridge head.
Nevertheless the tactics of the operation form an elegant, simple and
interesting application of the theory of finite, continuous groups.
1. Motivation. |

a. It is almost trivial to assert that the comparative simplicity
of linear differential equations is due to the existence of a principle of
superposition of solutions, and that the comparative difficulty of non-linear
differential equations is due to the non-existence of a similar principle.
This remark suggests at once that we should seek for a generalization of
the principle of superposition which shall be valid for non-linear equations,
or, at least, for a substantial class of non-linear equations. Such a general-
ization should be of considerable value in extending and organizing our methods
of solving non linear equations, by providing a process for the construction of .
general solutions from a number of particular solutions.

b. Modern, high-speed, computing machinery, using methods based
on classical existence thepories, has provided a means of rapidly calculating
particular solutions of non linear differential equations from given initial

conditions. But these computational methods can only approach the construction



of general solutions by calculating the particular solutions which correspond
to a large number of different initial conditions. A generalization of the
principle of superposition should enable us to compine a few particular
(numerical) solutions obtained by high- speed computation into a general
solution.

c. Finally the engineering problem of testing non linear mechanisms,
such as hydraulic servo-mechanisms, might well be simplified if any operation
of such a system could be treated as a combination of certain elementary
operations, each more easily examined than the general operation.

2. Formulation of the Problem.

In the case of a linear differential equation, or a system of simultaneous
linear differential equations, the totality of solutions forms a linear, vector
space. Thus, if yl(x), yz(x) and y3(x) are any particular solutions of the

equation

dy ., p(x)-g% + Q®)y =R * 0,

the general solution is

;
y =AyL + By, + Cygq

where A+B+C=1.
For, taking Y3 to be a "particular integral', the functions Yi- Y3 and

Vo - ¥g are solutions of the '""complementary equation', so that the general



solution is

y=yg+ Al - yg) + Bl, - v5)

=Ay1+By2+ (1-A- B)y3.
The essential features of this particular method of superposition appear
to be that
a. The general solution y is expressed as a function F of a certain

number p of particular solutions

yl’ Y2: == yp;

and of a certain number n of independent ''constants of integration"

C, = CZ=B.

1
In this example n is fixed by the order (2) of the differential equation, and
p=n+1.

b. The form of the function F is the same no matter which particular
solutions are employed.

Now there are certain hon linear equations for which there is an

analogous theory. For example, if Yi» ¥g» Ygare any three independent
solutions of the Riccati equation

& - p) + QW)Y + R)-52,

then the general sotution y is given by the well known cross ratio formula,

Y'yl Y3‘Y2
y-Yg "V¥3-V

= C, (1



where C is the arbitrary constant of integration. Written more symmetrically
this formula is

Ay yg +¥¥g) + (LG5 + ¥¥2) + VY +¥,y3) =0
where A+ L+ VY =0

Here again where the general solution y expressed as a function
F(yl, Ygr Vg5 C) of 3 particular solutions and an arbitrary constant.

This example encourages us to construct a general theory for the
construction of general solutions of non linear equations from appropriate
numbers of particular solutions.

We note that at present we have no information about the number p
of particular solutions which may be required.

3. The Equation dy/dx = F(x, y).

To illustrate the general theory we start with a single equation of -

the first degree in one independent and one dependent variable,
dy/dx = F(x, y), (2

We assume that the general solution of this equation, y(x), can be

expressed in the form

V=30 Vg «ves Yyo 2 @
where Y{¥g::- ¥y aren independent particular solutions, and a is an
arbitrary constant.

This relation (2 constitutes a law of internal composition between
the elements of the set E of solutions of equation (2, and thereby determines
the algebraic structure of the set E. In the theory of rings, fields and groups
the fundamental law of composition involve only two elements of the corresponding
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sets E, where here the law of composition involves a number n, which,
although unknown a priori, is not necessarily equal to 2.

It seems at first that the composition law (3 will determine a new
species of algebraic structure - almost the reverse of the ''co-groups' in
which two elements are compounded together to yield n elements. The usual
law of composition give an "application" F of E x E in E; the law of
composition for a co group gives an application Fof Ein ExXExXx Ex....xE;
the law of composition (2 gives an application of EXEXx Ex ...xXE in E.

However although the structure given by the composition function F
of (3 is not a group, it is easy to see that it can be "embedded' in a group.

In fact we have only to form the set of equations

Ve = FOp Ygreeer Y53, (4

which give n new solutions, yl', y2', ces yr;, in terms of the n old solutions,

o ¥y and n arbitrary constants ay, 8g,...2,. This set of equations

Yo Yoo -
define a group, G.
The equations (4 transform any set of n solutions of
dy/dx = F(x,y)

into another set of n solutions. The transformation is therefore associative

Also, since by hypothesis any solution is given by (1, we can choose the
parameters ak so that when

. = a ' =
ak a.k, then yk yko
i- e. yk = F(yl, y29 © o oy yn; ak)



Thus there exists an identical transformation in the set (4. Lastly, for the

same reason, we can choose the parameters a so that when = al; then
Vo = 804 Yoo o305 &)

Hence the equations (4 define a finite continuous group G with n variables Yo

and n parameters a .

It was E. Vessiot (1893) who first had the happy idea of studying
these groups and of classifying the differential equations to which they refer.
This drew down upon him a rather severe reprimand from Marius Sophus Lie
(1893) whose heavy hand had lain upon group theory for many years.

Lie pointed out quite properly that Vessiot's theory was a special
case of Lie's own theory of ""Fundamental solutions' of differential equations
(Lie, 1893). In Lie's theory it is supposed that there are n special or

fundamental solutions Yo Yo — VY, such that the general solution can be

expressed in the form

V=80 Yor--0s V52,

and there is no question of this relation forming a general law of composition.
In fact we may not know which particular solutions are fundamental; so that
Lie's general theory does not seem so useful as Vessiot's theory, which,
moreover, has the advantage of being expressed with great elegance and in
French.

4. Vessiot's Lemma on Simply Transitive Groups.

The study of the "embedding" group (4 is considerably simplified
by the fact that in the set of equations (4 the roles of variables and parameters

can be interchanged to yield a group H which is the direct product of n groups,



each of the form
L' =h(yl, Yé, R A% b),

with one variable band n parametez"‘svyl, \SYERES A%
The lemma on the interchanger of variables and parameters dépends
only on the fact that the group G is simply trénéitive, and is valid’ for any
group with this property,
Consider then any simply transitive group G in n variables X, and n
parameters a,i,, with the typical transformation
x; = ;S(xl', Xgpwoes X 58y Bgpeen an) 5

zgs(x;a) s=1,2, ..., n

The associative law for a graup is expressed by the conditions
1y _ 1. - .
x2 = g (' b)=g4(x; ) (6

then e, ® q)s(a: b).

Take x, a, c as sets of independent variables, and x', b as sets of dependent

variables. Differentiate (4 with respect to a. Then

~ P M 4 ! ) :.
Dgs(x . b) | Ox, 3gs(x . b) ¢ ba )
X T2 T IR TFa o0 (7
o R | T a S

(using the Einstein summation convention. )
By a fundamental theorem the necessary and sufficient conditions that
equation (5 should define a group are that the functions gs(x“, b) should be n

integrals of (7 which reduce tc the variables X when the parameter b, - bn

1

sg/ b

take certain particular values h)]{ - bﬁ . Mcreover the determinant !
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must not vanish identically. And if the group is simply transitive the
u TS S/ dx. | must not vanish identically either.
It is immediately evident that there is complete symmetry as between
the set of variables x;,and the set of parameters a_ in the condition (5.

t

From (5 we can obtain the usual equations

g

—— = €V Aqg (b)),
and we could also obtain the similar equation
2% (b) B . _ (x')
—— = X’
ob o n sP La

Hence we conclude at once that equation (5 also defines a semi-group
in the variables ag with parameters xS It only remains to establish the
existence of the identical transformation. This is easily shown by making
a preliminary change of parameters in (4. We introduce the new parameters

Bg defined by
8 =g &;a),
where ;i , )?2

Then the transformation equation becomes

x is some set of fixed value of n,-n.
n n

' - . Y — A .
x! = g(x; a) xi= v B),

B =g a)

and it is obvious that, when the parameters X take the values Es, then
xs' = BS, i.e. we have the identical transformation.
Therefore with any transitive group

G xé = gs(x; b) (variables x, parameter b ) (8



we can associate another transitive group

b; = gs(x; b) (variables b, parameter x) 9
I have not come across this theorem elsewhere in a rapid perusual of
the literature. It is possible to give a direct proof without differentiating
equations (6.
To elucidate the general theory consider the group associated with the

Riccati equation (1

% - Y1 Y33
T -v. & 7 -v.
¥-Vy K3V,

Introduce new parameters Bk defined by the equations

B - wy W~ Wq

Then
= - R (10

]
(¢]

where c is a function only of Vi Vo Vg Wo LJg: It is clear that these
equations (10 not only define a transformation from (yl, Yo y3) to (yl', yz', y?:)
with parameters ( Bl’ B 9 83), but also a transformation from ( Bl’ BZ’ BS)
to (yl', yz', y3') with a parameter ¢ depending on (yl, Yo y3). Also the trans-
formation of the second type clearly form a group. Thus the roles of the

variables (yl, pY y3) and the parameter, ( Bl’ Bz, 33) can be interchanged.

9



5. The Equations of the Type dy/dx = F(x, y) which are Soluble

by Comparison

To apply Vessiot's lemma to the group
yngn(yl’ Yz,ou;a-k)n= 1, 2,...n (4

we introduce the new parameters bk by means of the relation
b =g 0 Ypoos V53

and then obtain the group
bk=h(yl, yz’“"’yn;bk) n=1, 2,...n,
which is clearly the direct product of n groups each of which has the form

' - .
b b(yla y2’ ey y2’ b)’
i. e. with one variable and n parameters Yis Voo V-
Now Lie has shown that when the number of variables is unity

the number of essential parameters can only be 1, 2, or 3 that by a suitable

change of variable and parameters these groups can be put in the forms

1) b' =yb,

2) b' = y'bl" yZ
ybty

3) b’ :__._l‘_..z_
yb3+ 1

An easy calculation then shows that the corresponding differential equation
is of the form

dy/dx = Qy

dy/dx = P + Qy

dy/dx = P+ Qy + Ry2

10



This is a somewhat disappointing result since it implies that the
only nonlinear equation in y and dy/dx soluble by rhe present method is the
Riccati eqn. We can however considerably extend the range of application,
but before doing so we shall consider the generalization of Vessiot's theory

to a system of equations of the form

dyk
Tx—=Fn(y1’ Yorevrs Yy X) n=1, 2,...n (11

6. Guldberg's Theory

This generalization was given almost immediately by A. Guldberg

(1893). Let

Vy = yl(f)(X) n=1-n

[=1—p‘

denote any p sets of particular solutions of (11. It is assumed that any

set of solutions, yl'( can be expressed in the form

' — .
Vi = 8,05 2) (12
where y stands for the set of pn functions yr(lﬁ) and a for a set of n constants
of integration, ay, a a .

The structure defined by the law of composition (12 can be embedded

in a group

Yl({[) = g, a)) (13

with pn variables yg ) and p sets of n parameters

D _ o) 0 )
1 2 n
Just as before we introduce new parameters b1(1£) defined by the equation
0 _, @ .0
b~ =g ly;a™")

11



when y denotes some fixed set of values of the pn variables y, and eliminate
the old parameter a. Thus we obtain a simply transitive group

' b 5 b) (14
in pn variables and pn parameters.,

By Vessiot's lemma the same equations define a group
'

)" = 1_(s; b)

)

in which the variables are bn

¢)

and the parameters are At
This group is the direct product of p groups each of the type
bk = hk(y; bl’ b2, cees bn)

with n variables and pn parameters.

This group is p times transitive, thence by a theorem due to Lie

p<n+2,

i.e. the possible valuesof pare 1, 2,..., n+ 2. (When p =n + 2 the
group is similar to the general projective group.)

It is now possible to drew up a systematic and complete catalogue
of the various types of systems of differential equations which can be solved
by the method of ""composition. "

7. Return to Equation dy/dx = p(x, y)

The extent of the domain of equations of the 1st degree in x, y
which are soluble by composition, can be considerably enlarged by writing
the basic differential equation in parametric form as

dx

@ = X(x, y) dy =Y (x, y).

dt

12



' Guldberg's theory then establishes the existence of a group H in

(1 Q) (2)’ 7@

2 variables bl’ b2 and 2p parameters x'’/, y* '/, x . where p < 4.
This result considerably extends the possible field of application, but also
leads to the ineluerable conclusion that only a very few types of non linear
equations are soluble by composition.
A simple example is furnished by the Clairaut equation
y=px + p2, p = dy/dx.
The general solution is, of course,
y=cx+ c2
and this can be expressed in terms of any particular solution
2

VyThx tk

by means of the composition law

_ _ 2
x=ax,, y=avy,.

8. Conclusion
The painstaking investigations of Lie have provided an exhaustive

classification of all transitive groups in 1, 2 and 3 variables, and this
analysis could be extended to more variables. We are therefore in a position
to give a complete list of all the types of non linear equations (or systems of
such equations) which are soluble by ""composition. " It would be most
satisfactory if we could prove that any non linear equation (or system of
equations) is soluble by composition in terms of a finite number of particular
solutions. That this conjecture is false can however be shown at once by

reference to equations with a general solution of the form

13



- yl) v -yg)eo. - yp) = constant, where y,y,..., Yp

are given functions of n. Such equations have the form
i LA N
=1 Y-y, Yi
where pn = dyk/dx, and p = dy/dx. To construct the general solution we
need p particular solutions,
Y = Vo k=1, 2..., p,

and we can make the number p arbitrarily large, and certainly in excess
of the maximum, p = 3, appropriate to equations soluble by composition.

We conclude therefore that the various types of differential equations
soluble by composition certainly does not exhaust all possible types, so that
the range of our results is definitely limited. It appears therefore that there
is no general analogue of the principle of superposition valid for non linear
equations; which implies that the problem of non linear equations is even more
difficult than we had anticipated.
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The "P-L-K'" Method

1. Introduction.

The opject of this investigation is to give a rigorous, analytical
theory of the technique invented by Lighthill (1949) for solving differential
equations with an irregular perturbation - the so-called "PLK'" method.

The present theory has been developed by the author and by Mr. P. Lampitt,
one of his research students at Oxford.

The method adopted is to state the problem just for a single
equation of the first order and degree, and to illustrate the difficulties by
means of a number of elementary examples. We then describe Lighthill's
method of the auxiliary variable and the author's method of regularising the
differential equation. The formal proof of the validity of the method of
regularisation is then developed by means of the theory of dominant functions,
and a number of illustrative examples are given.

The method is then generalized for a system of differential

equations of the first order - or for a differential equation of arbitrary order.

2. Regular and Irregular Perturbations.

The standard form for an ordinary differential equation of the first

order and degree is

d
= = F, y),

16



but in mathematical physics we are frequently interested in equations

which involve a "small' parameter a in the form

d
2-F& 5, a.
We often think of the terms involving a as introducing a '"perturbation"

into the equation

Y-F v, 0),

and this latter is often described as the "unperturbed' or "reduced' equation.
The perturbation is said to be ''regular' at a point (x, y) if the

function F (%, y, @) is analytic in the complex variable a, near the

origin @ = 0, for the prescribed values of x and y, i.e., if F(x, y, a)

possesses a Taylor expansion

F(x, y, @)= F(x, y, 0) + @"F_(x y),

1

™13

n

valid in some disc, |a| < A.

If the perturbation is regular at all points of a domain A of the
variables x and y then it is said to be regular in A.

If, however, the function F (X, y, a) is not analytic in @ near
a = 0, for prescribed values of x and y, then the perturbation is said to be
"irregular'' at this point.

There are two obvious techniques for searching for solutions
of perturbed differential equations.

In the case of equations with a perturbation regular in a domain

A we naturally look for solutions of the type

17



y =y, ) + n; oy (),

i.e., as a power series in the parameter a, reducing to a solution of the
reduced equation,
y =y, &),

when @ — 0.

In the case of equations with a perturbation which is irregular
at some point of A, our only hope seems to be to look for some transformation
which will reduce the equation to one with a regular perturbation in A.
Lighthill's achievement was to discover such a transformation. Our researches
are directed to the systematization and validation of Lighthill's discovery.

What makes this problem of particular interest in mathematical
physics is that the "reduced’” equation is often (although not always) linear
and easily soluble, and that the perturbation is regular except at certain
points or along certain curves in the x, y — plane.

In order to clarify the situation and to simplify the analytic
theory it seems, however, advantageous to begin with the very simplest
example, namely the first problem discussed by Lighthill.

3. Typical Equations of the First Order and Degree.

All the characteristic features of the "PLK'" method are
exemplified in the typical equation
(x+au) 2 +q@u = r(x),
studied by Lighthill (Phil. Mag. (7), Vol. 40, 1949, pp. 1179 - 1201)

18



and by Wasow (Journal of Rational Mechanics and Analysis, Vol. 4, 1955,
pp. 751 - 767). Here q(x) and r (x) are analytic near x = 0. The perturbation

is regular except at x = 0, and the reduced equation is

du

&+ A& =r&).

X

In fact it is almost sufficient to examine some trivial special-
izations of the Lighthull equation, e.g.

E (x+au)-g—§-+i1=0,

du _
Ez (X"’au)a—}?-u—o,

d
E, (x+au)ax‘1—u=x,
2 du _
E4 x +au)-a§+2xu—1,

with the initial conditionsu =1 at x = 1.
First of all we write down the exact solutions of the perturbed
and reduced equations in order to gain an appreciation of the nature of the
influence of the perturbation. Then we consider the techniques introduced
by Carrier (Advances in Applied Mechanics Vol. 3, 1953, pp. 1 - 19,
Communications on Pure and Applied Mathematics, Vol. 7, 1954, pp. 11 - 17),
Lighthill and Temple (Proc. Int. Congress of Mathematicians, Edinburgh, 1958.)
We list below the exact solutions of these equations and of the
reduced equations, together with the leading terms in the expression for

unear a =0: -

19



E, X=u+oulog [ul ,

X =u, (a = 0),

u=x- axlog |X| +0(¢12xlog lxl\z).

B x+13uh"3 _ x-Bul 1+8 ( _BZ
3 1+Bj l-Bf ,  (a=8),
u=x +x log |x| , (a = 0),

u=x + xlog lx‘ + 0 (axlog lx[]z).
2 1.2 1
E4 xu+-2-au -x+§~a,

u= 1/, (a = 0),

20



21



The following general conclusions can be drawn from the
eqns. and Figures representing the solutions: -

1) It is impossible to express the solution of the perturbed
equation as a power series in the parameter a uniformly convergent
near a = 0.

2) The solution of the reduced equation is an asymptotic

approximation to the solution of the perturbed equation in cases E_, E

1" 4

but not in case Ezo

3) The importance of the perturbation, as estimated by the

ratio au/x, calculated from the reduced solution, is

E, 0(a/x?)

E2 0(a)

E3 O(a log x)

E, au/x2 = 0(a/x3)

Hence the perturbation cannot be neglected near the singular pointx =0 -
but we note that the rest is misleading in the case Ezo

4) Carrier's method may or may not give information about
the perturbed solution.

4. Carrier's "Boundary Layer' Theory

Carrier (loc. cit.) has devised a "boundary layer' technique
which can be very effective in improving the reduced solution in the

neighborhood of a singular point. This technique however does not seem to

apply in cases Ez or E 4 where all indications given by the reduced solution

22



are misleading.
In case E1 we can introduce a crude form of boundary layer theory
as follows: - The reduced solution
u=1/x
may be assumed to approximate to the perturbed solution, except when
the perturbation term cu is large, i.e., near the "boundary" x =0. In

this region the dominant terms in the equation are, presumably,

aug% + u=0,

with the solution ou + x = a constant, c.
We choose the constant ¢ so that this "boundary' solution joins
smoothly with the reduced solution xu = 1 or some point (xo, yo). We

easily find that

vz L V2
o 0]

so that the boundary layer solution is

azu+x=2a1/2,

1/2 /2

giving u = 2a at x = 0, instead of the accurate value (2/a + 1)1 .

23



5. Lighthill's Method of the Auxiliary Variable.

The problem attacked by Lighthill was to express the solution
of a perturbed equation as a function of the parameter @ in a form which
is uniformly convergent in the neighborhood of @ = 0, and which converges
as a— 0 to the reduced solution. Lighthill's method is to express both
the dependent variable u and the independent variable x as power series in
a with coefficients which are functions of a new auxiliary variable z. These
series are of the form

3 2
u—uo(z) +au1(z) + o uz(z) +...
2
x=z+ax1(z)+ax2(z)+...,

and, as @ — 0, this solution tends to
u = uo(z), X =z,
so that u = uo(x) must be the solution of the reduced equation.
Thus, in the case of the equations discussed above, the exact

solutions of the perturbed equations can be parameterized as follows: -

_1

El UT g
x=(1+la)z—£'
2 2z°

E2 u =z,

X =z + az log z;

1 1+8 1 1-8
E3 = 5(1 + B)Z + '5(1 - B)Z ,
(a= 82).
Bu = %(1 +B)z B _ %(1 -zt B

24



whence x = z + 0(a),

u=2z+2zlogz+0(a);

E4 Putu-1=m(x-1)
-A-(1+-;—am2)
Then x =
2m
_ 1 1.2 1
u—1-m-2(1+§am)-§A,
1/2
where A = - (1 +%am2)2- 4m (am-%amz) ,
1
and m—--i+0(a)
whence x =2z + 0(a),
u== +0(a)

Of course Lighthill's method is designed to apply precisely when
the exact analytical form of the perturbed solution is unknown. In these
circumstances the series for u in powers of @ are substituted directly into

the perturbed differential equation
x + au)gy— + qx)u = r(x)
dx ’

and the coefficients of powers of a are equated to zero.

At each stage this procedure yields one equation for the two
unknown coefficients un(z) and xn(z). This equation is then split into two
in such a way that the power series for u and z become uniformly convergent
in some region !a' < A.

It is a tedious matter to carry out the calculation but Lighthill

25



has sketched a proof that it can be successfully carried through to yield the
desired result.

A more detailed proof on the same lines has been given by
Wasow (loc. cit.), and some notes on the apparent limitations of Lighthill's
method have been given by Carrier (loc. cit.).

The importance of Lighthill's technique makes it desirable to
provide a rigorous general theory which shall be applicable to as wide a
class as possible of both ordinary and partial differential equations. Such
a theory is developed in the following sections.

6. Temple's Method of Regularization.

In Lighthill's method the single power series for u,
o0
u = Z "t (x),
0 n

which cannot converge uniformly near x = 0, is replaced by two series
o0

o0
u= 20: anun(z), X=2z+ ; anxn(z),

which are both uniformly convergent near x = 0. The coefficients u  and x
are determined by splitting the equation deduced from the perturbed
differential equation by equating powers of a.

In Temple's method the original differential equation is split into

two equations, each of which has a regular perturbation. Thus the equations

for u and x are separated once for all at the very beginning of the calculation.

Thus we replace the original equation

(x + u) & + a@u = T,

by the pair of equations,

26



dx

-a—t— =X + au,
du _
and g = '® - ax)y,

with the initial condition that t = 0 when x = 0. It is manifest that the
derivatives of x and of u with respect to t are now analytic functions of
a near a = 0, and physical intuition and mathematical analysis agree
in recognizing that such a pair of equations possess a solution in which
x and u are power series in a, provided that the functions r(x) and q(x)
are analytic in x near x = 0. The formal proofs will be given later after
we have studied a few examples in detail.

This method of "regularization' provides a systematic means
of parameterizing the exact solution of the perturbed equation.

The solution of the ""regularized' equations is of the form

[o¢]
_ n
X = Z afn(t),
n=0
>
n
u-= ag (t).
n=0 n

In order to exhibit the relation of these solutions to the reduced solution
we make the change or variable
t = log z.

Then the regularized equations become

zdx =X + au
dz ’
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du

and 24z - r(x) - qX)u,
while their solution is of the form
o0
_ n,
X = Z a xn(z),
n=20
o0
_ n
u= Z a un(z).,
n=0
Hence 7z 2 =x ,
dz o]
duO
and 2y T r(xo) - q(xo)uo.,

Thus X, = Cz and uO(Cz) is a solution of the reduced equation. There is
no loss of generality in taking C = 1, and then the solution of the regularised

equations is in Lighthill's form -

o0
X=2z+ Z a’x (z),
n=1
u=u (z) + Z au (z)
n=1

7. Examples of Regularization.

Before developing the general theory it is instructive to consider
the four simple examples introduced earlier. We therefore list the regularised

equations and their solutions for these four cases: -

dx _

E1 Z 3 X + au,
L
dz ’
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_ 1 1
x—z+§a(z-—z—),

dx
Z— =X+ ax,
dz

du

Z— =1
dz ’

x =z + az log|z,

X=2Z.

dx
Z— = X+ au
dz ’

8

b

X+ Bu = (1+B)z1+

Xx-Bu=(1- B)zl—B.

dx-_ 2dx _ 2
dZ_ + au

dt
du _ _2du_ _
e Z i 1- 2xu

t=-1/z

We find that

dzx

——-2— = a+2x3,
dt

29

N. B. In this case we have used the transformation

instead of t = log z in order to ensure that the series for x begins with the



=l 2 4
whence —_— =a +2a0X +X
dt
dx 2 9 2
But hanind =
U (dt) x" + au)”,
therefore ux2 + %au2 = %a + X.

8. Systems of Ordinary Differential Equations.

The method of regularization is easily extended to ordinary
differential equations of any order, or to systems of ordinary differential

equations. The standard form of such a system, involving an independent

variable x, n dependent variables ul’ u2, ceey un, and a parameter a is
dum
de—~ = Fm(ul, uz, ooy U.n, X, a)

(m=1, 2, ..., n)

For example an equation of the second order,

du:fgguxa)
b b )
dX2 dx

can be expressed in this form by writing

Uy ax 2
du1
Then T = u2
du
_2 - flu,, u,, X, a)
dx 2> 17 ’
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If each of the functions Fm is analytic in a, near a = 0, for
prescribed values of X, Uy Ugy ooy u then the perturbation is said to
be regular for these prescribed values. Otherwise it is irregular.

We shall consider the case of an irregular perturbation in

which each function Fm is expressible in the form

Nm
sz D ’
m

where Nm and Dn are each analytic in a.

We then replace the perturbed equations by the regularised

equations
dum
T = D1D2. P Dm-l Nm Dm+1 Dm+2o o Dn ,
ax  _
Fra = D1D2° .. Dn'

in which the right hand sides are manifestly analytic in a.
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9. Further examples of regularization.

The following examples are discussed by Lighthill (loc. cit.)
and it is of interest to see them handled by the method of regularization
(I) Given the equation
x+au)du/dx + 2 +x)u = 0
and the initial conditions
u=e at x-=1,
to estimate the value of u at x = 0.

The regularized equations are

z dx/dz

X + au,

]

zdu/dz - (2 +x)u.

Hence
- _ .~z -2
X =z and u =e ", z
o o
To estimate the value of u at x = 0 we need only the first approximation
given by the equations
xo(z) + axl(z) =0
u = uO(Z),

and xl(z) is needed only for values of z near zero. Hence the equation

for x, can be approximated as

1
zZ dxl/dz = X tu SX 4 Z—20
with the solution
x1 = %z - 1—2 = - ——1—2— .
3z 3z



Therefore at x =0

a-—xo/x1-3z ,
1 .1/3
Ga) ",
and u= u0=z.2=(-;—¢)t)-2/3
1 2
(II1) x+au)du/dx - su= 1+x",
with u=1 at x= - 1,

This equation requires a preliminary transformation

before Lighthill's method can be applied. The regularized equations.

Z-d—z' = X+ ou
du _ 1
zaz U+ 1+2z
Furnish the coefficients
- 1.1/2 2 2
X, =2 u—-2+§z §z,
| 3 3 z,

u, = 8z - éz3/2 + -1—4z3 §z2 - 1‘Ezl/2
1 3 15 -3 15

These differ from those obtained by Lighthill, so that presumably our

auxiliary variable z differs from his.
du

o v _
(m) P-d—X-Q’a—X_-u’
P=1-x2+(y+1)xu-(y-I)v-%(y+1)u2,
Q=-§{1+(7-1)(xu-V-%u2)} :

33



with the boundary conditions
)= @ u) = 20M- M /G + 1),
v(M) = 0, M > 1.
It is required to estimate the value of M in terms of the small parameter a.
We write

M=1+02M1+a4M2+-~e,

2 4 2
4a M1+a (4M2-2M1)+,..

y+1

whence u(M) =

The regularised equations are

du _ dx _
’&-—Qx, a{‘ PX7

and, in order to facilitate comparison with Lighthill's solution, we write

u=u , + 2 + 4 +
prau tau ..,

V=YV +(12V +a4v +
-1 o 1 oo sy

X=X +'a2 + b+
o Xptaxy+...,

~

Then the initial conditions are

0 1 ) A 2’
v_1=0, v0=0, V1=0,

4M aM, - 2M2
w, =0, u =—2% u = 2 1
-1 o 17 71 y+1
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We easily find that u_y =.0 and VT 0,
dx
0 _ 2
@ XX
" a - X(2))1/2
whence e =T ——-»n—
X
0
It is convenient to write t = - log T, and then
x, =+ THVE
0
duo
Also —dt— = - uo,
whence u = et - T, and M, =0.
Now
dvo
ax o’
so that V. = uXx jxdu
o 00 0 o
2.-1/ 2.1/2|
— -1/2 1/2
- Ta+ T -1og{r+(1+ 7')/}
The equation for Xy is
dx, /dt = x_ - 3x2x +(y+1u xz- (y-Dxv
1 1 o1 0o o0
whence ( p) 3/2 /
1+ 7)Y %x 2.1/2 2
d 1 . _o 1+ T o1+ T 2
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When 7T is small, we find that
X

d (__1_ N TS U

a7 {72 r2 T WT U
and *1 o r+1) + a constant.

—_— = T

T
Therefore X — 0 asT— 0, and M1 =0,

in agreement with the result found above.

Now
gl—l-l- =-u, -(r-1 (xou(z) -uv)
whence
_ 72 d(u}j/r’r) - o7}
and u, = 0(T) for small T .
Therefore u,— 0 asT— 0 and M2=0,

This, unfortunately, disagrees with Lighthill's result, which
seems to proceed from a slip in his general theory. If the preceding analysis

is correct it is necessary to evaluate x, and possibly u, in order to estimate

2 2

M3 ——— and we leave this task as an exercise for the reader.

(IV) One final example, cited by Carrier, as an instance of

the failure of Lighthill's method: -

(x2+au)g§ + u=2x3+x2,
with u=1+e at x=1.

It is required to estimate the value of u at x = 0.
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The appropriate regularized equations are

2 dx _ 2
Z — = X +au
dz
2 du 3 2
— = 2 -
z 4 X +X u,
whence X =2z u =z2+e1/z.
o o

x1= el/Z {—1+2z-222} -z+z2+ez2

Near z = 0 the dominant terms are

1/z

X = z-ae’",

Thence, at x =0, el/Z =

RIN

or l=10 z+lo1
z & ga'

The first approximate solution of this equation is
1 _ 1
z - log o’
and the second approximation is
1 _ 1 1
z - loga - log log e

Therefore the required estimate of u at x =0 is

. 1/z 1 1
u, = e —exp{loga logloga}

1 1,-1
a (loga) .
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10. The Existence Theorem.

In most physical problems we do not need any precise
information about the radius of convergence of the series for x and u
in terms of a@. It is sufficient if we can be assured that there is some
radius O, such that the series converges if ]al < p . This rather
limited information can be easily and rigorously deduced by the method
of "dominant functions'. In some cases we can also obtain estimates of
the error introduced by truncating the series for x and u after a few terms.
The method of dominant functions was invented by Cauchy,
rediscovered by Weierstrass, improved by Goursat and Sophie Kowalevsky,
and is conveniently accessible in Forsyth's 6-volume Treatise on
Differential Equations.

The relevant definitions are as follows: -

(1) 1If f(xl, Xpyeons xn) and g(xl, Koy vy xn) are
analytic functions of the variables (xl, Xgs oot xn) in the region
lxil < R, (i=1, 2, ..., n), so that f and g are expressible as power
series
_ m _n
f=2a x1 Xg ooy
_ m_n
g_zbmn., X1x2""
and, if - ‘ < bmng N for all mn,...,

then g is said to be a dominant function for f.
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(2) H, in the two systems of simultaneous differential equations,

. /qt =
Foodx/dt = £, %y, ..., X 1)
G: dxi/dt = gi(xl’XZ’ ceny xnt),

g; is a dominant function for fi, (i=1, 2,..., n), then the system G is said
to dominate the system F.

The main theorem is the following: -

The solution of the dominant system G dominates the solution of
the system F, the same initial conditions being imposed in each case;

i.e. Ifxi=21aintn (i=1, 2,... n)

are formal power series satisfying F, and

X

.=a, att=0,
1 10

and if X,

n .
i Ebint i=1, 2,..., n)

is the solution of G, analytic in

it] < T
and satisfying X =a, att =0,
then |am~ < by

"Hence the formal power series solution of F is analytic in
it} < T.
The value of this theorem is largely due to the fact that there
is considerable flexibility in the choice of dominant functions. Thus two

useful types of dominant functions are the following: -
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If f(xl, L SVRRRY xn) is analytic in |xil <R,
and if |f(x1,x2,..., x“)l < M in x4 < R,
then f is dominated by

M(1 - xl/R)'1 (1- xZ/R)'1 v (1 - xn/R)'l,
or by
M { 1- (R +xy+... +xn)/R} -1

The choice of a dominant function is guided by two conditions: -
(1) it should be as close as possible to the original function, so that the
two systems of differential equations differ as little as possible, and
(2) It should be sufficiently simple to enable the system G to be integrated
and the radius of convergence of its power series solution to be determined.
In practice we are usually content with a compromise.

As an elementary illustration consider the equation for the
Jacobian elliptic function y = snx with modulus k, viz.
Y- q-y32 - A2, y=oatn-o.
The right hand side of this equation is analytic if |y| <1, and its upper
bound in this region is

M = [2(1 N kz)J 1/2.
Hence a dominant function is
M-y,

and the solution of the dominant equation is

1.3
Mx=y-§y .
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This makes y an analytic function of x if
1

% < gM
Hence we can be sure that the original equation also possesses a solution
analytic in x in the region |x| < g [2(1 + kz)] -1/2
In fact snx is analytic in a larger region lx] < K!, in the usual notation.
This emphasizes the fact that the method of dominant functions yields only
a lower bound to the radius of convergence of the power series of a

differential equation.

11. The Proof of the Existence Theorem.

The regularized equations to which we intend to apply the
existence theorem are always '"autonomous' systems, i.e. the independent
variable does not appear on the right hand side of the equations, which have
the form

F: dxi/dt= fi(xl,xz,..., xn), i=1, 2,..., n,

with initial conditions

X, = a, at t=0.
i i

The functions fi are analytic functions of Xy Xgyenes xn in the region
|x.| < R,
i
which includes the point xi =a,. i=1, 2,..., n)

We suppose that the system F possesses a dominant system

G: dy/dt= g,55--5 V), i=1 2 n
2 ? * ]

y.= b, > 0,

1 1
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with a solution
y. = t; b,,b,,..., b))
i~ Wi Pphy n
which is an analytic function of t, bl’ cee bn in a region

It] < T, o] < B.
Since the functions fi are analytic in lxi, < R,

they can be expanded in power series

fi= Zai(al,az,..., an)x1 Xg "o X ,

uniformly convergent in this region, and we can obtain a formal solution
in the form
i} p
X, = 5 ci(p) t°/p!
p=0
by calculating the coefficients ci(p) from the equations

[dpxi aP” 1fi
@) - ldtp T
t=0

t=0
The initial conditions determine the coefficients
ci(o) =a,.
The expression for ci(p + 1) has the form
ci(p +1)=2 aiPi,

where a, = afla,,a,, ..., @
1 1( 1) 2’ b n) )
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and P1 = Pi(al’ Qg - - an)
&P @ % "n}
= — Xl X2 . Xn .
dt? t=0

Now we can prove by induction that P1 is a polynomial in

ci(q) for i=1, 2, ..., nand q=0, 1, 2, ..., p, with coefficients which

are positive integers.

Similar considerations apply to the dominant system G,

in which
a, a, @
gi=2bi(a1’02’”°’an)y1 Yo ooV
and
_ )b, .p
di(p) {d xi/ t }t -0
We find that

di(p +1)=2 biQi’

where Qi is the same polynomial as Pi’ except that the ci(q) are replaced
by d.(q).

Now ci(O) =a, di(O) = b,

and ,a.
since the system G dominates the system F.

We can now prove by induction that ci(p) and di(p) are
polynomials in a, and in bi respectively, and that

< dp).
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Now by hypothesis the dominant system possesses a solution

which must have the form of power series,
y;= Z di(p)tp/pf,
convergent in \t‘ < T. Hence the formal power series
x. = % c.(p) tp!

must also converge in |t‘ < T. The formal power series is therefore a
solution of the system F and it defines functions X, i=1, 2,..., n) which

are analytic int and in a RN in the region

1) a’2’ °
It < T, 2] < B
Corollary 1: - We can immediately extend this theorem to an autonomous

system with a parameter a,

Fa:- dxi/dt = fi(xl’XZ’ vee, X, @)

n
i=1, 2, ..., n),

X.=a, at t=0.
i i

It is sufficient to consider the augmented system

ke _ =
F¥: dxi/dt fi(xl, Xopeees X

dxn+1/dt =0,
X =2,

1 att =0.
Xn+1 = (!,

These two systems possess the same solution which is analytic
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int, a_,a , a and a in a region, |t| < T, |a.

grrres B 1l<B, a < B.

1’

Corollary 2: - A further extension is to the system
T, - :
F,: dxi/dt fi(xl, Kooy X5 a)
i=1, 2 ..., n)

with the initial conditions

X, = §i(a) at t=0,

where fi and § ; are analytic functions of x co oy xn and a in a region

1 ¥
‘xil < R, ]a| < A.
The preceding argument shows that the system FL possesses
a solution which is analytic in t and in §1, §2, oo ey §n and a in a region
[t|] < T, l§1| < B, |a| < A. But the functions §i are analytic in &
in |a‘ < A. Hence the solution is analytic in t and a in a region

[t| < T, |a < A.

12. Application to Lighthill's Equation.

To construct a simple dominant system for the regularised

equations

O,

E = re) - gy,
let |r(x) - q(x)u| <M
when x|, lul > R,
and let la] < A.
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Then r(x) - q(xX)u is dominated by
M {1 - (x+ u),/R}-l
In order to obtain an easily soluble set of dominant equations we dominate
X + au by
N{l -(x+ u)/R}_l,
where N =R+ AR.

In fact we go further and take the dominant system to be

dx _ C{l - (x +u)/R}—1

dt
G: .
du _ Y
Fralie C{l - x +u)/R}
where C = max (M, N).

The solution of this system, subject to the initial conditions

x=0,u=a at t=0,

R

Now in the region which we are considering

is given by
u-x-=a,
u+x=v,
R -1l R ) R ?
and this solution is analytic in
sclt| < r[Z-112
|

|u| < R,
whence |a| < R,

so that (;i - 1)2 cannot vanish.
R 46



Hence the dominant equations have a solution which is
analytic in t and @ in the region
2
1
t] < ZK(‘% - 2a +R),

.1 1
where K = min ('ﬁ, m—)
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