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NOTATION

a, b, c, d

ao , bo

B

fN

G

h

I

k

KL

KL1

K 2

KR

K 1

KR
1

m es

m p

m

M1, Al, M3

PM0

RI, R2 , R 3

zo' #1' #2' X3

Y, yi'

Yi, Yi

Lengths; see Figures 1 and 2

Lengths; see Figure 2

El of shaft

Fundamental forward whirling frequency of
shaft-disk system in cpm

r d (1 -kh), an effective inertia

&/O1N, dimensionless ratio of angular velocity of shaft
to the whirling circular frequency (the "order" of
the vibration is 1/h)

Area moment of inertia

.'P/rd - 2 for propellers in air

Linear stiffness obtained by combining K 1 and K2

Total linear stiffness of bearing staves

Total linear stiffness of flexible mounting ring

Rotatory stiffness obtained by combining KR1 ,
K 2, and K3

Effective rotatory stiffness of bearing staves

Effective rotatory stiffness of flexible mounting ring

Effective rotatory stiffness of barrel support

Length; see Figure 2

Effective mass of shaft

Mass of propeller, including virtual mass of water
when appropriate

Mass of shaft of length I

Moments; see Figure 1

Unit static moment applied at the propeller

Unit static load applied at the propeller

Bearing reactions; see Figure 1

Lengths; see Figures 1 and 2

Linear displacements (further defined in text)

Angular displacements (further defined in text)
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8i Yi + Yi

81 Y +Yl "

Al Transverse displacement of propeller due to a unit
static moment applied at the propeller

SP Transverse displacement of propeller due to a unit
static load applied at the propeller

ci yi+YiP

01 Y +Y1"

0 Rotation of propeller about a transverse axis due to

a unit static moment applied at the propeller

OP  Rotation of propeller about a transverse axis due to
a unit static load applied at the propeller

Mass of shaft per unit length including virtual mass of
water when appropriate

rd Mass moment of inertia of the propeller about a diameter
including allowance for water when applicable

7- Mass moment of inertia of the propeller about a polar axis
including allowance for water when applicable

61 Angular velocity of shaft

N Whirling circular frequency of shaft
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ABSTRACT

Formulas developed at the David Taylor Model Basin for computing the

critical frequencies of whirling vibration of propeller shafting systems require

the deterrmination of influence coefficients in their application. This report

describes methods for determining the necessary influence coefficients for use

with these formulas and tabulates, for purposes of comparison, computed and

experimentally determined natural frequencies.

INTRODUCTION

In Taylor Model Basin Reports 8271 and 8902 theoretical methods were derived for

computing the natural frequencies of whirling vibration of shaft-disk systems. The general

formula, Equation [5] of Reference 1, for the case of a massless shaft with a single disk

contains four influence coefficients, sP, 0P 3N, and 0M. A method is given in this report by

which these influence coefficients can be determined. Since their determination is, in general,

a lengthy procedure, a simplified form of the general formula was derived in Reference 2 which

contains only the influence coefficient 8P. Hence 8P has been chosen for the sample calcula-

tion which is given in this report to illustrate the method. Computed natural frequencies and

experimentally determined natural frequencies are tabulated for purposes of comparison.

GENERAL CONSIDERATIONS

The general formula, Equation [5] of Reference 1, is

N 2  (pa P + OMG) ± (p P+ OMG)2 - 4mp G (8P 0M - 8M OP )

2 2m G (8P oM - M0 P)

where ON is the natural whirling frequency of the symmetrical shaft-disk system consisting
of a massless shaft with a single disk, in radians per second,

mp is the mass of the propeller,*

8P is the transverse displacement of the propeller due to a unit static load applied
at the propeller,

8'M is the transverse displacement of the propeller due to a unit static moment
applied at the propeller,

OP is the rotation of the propeller about a transverse axis due to a unit static load
applied at the propeller,

1 References are listed on page 13.

*Estimates of allowance for the virtual mass effect of the entrained water are given in Reference 2.
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0 M is the rotation of the propeller about a transverse axis due to a unit static
moment applied at the propeller,

G is an effective inertia equal to 'rd (1 - kh),

rd is the mass moment of inertia of the propeller about a diameter,*

k = T/ rd
r is the mass moment of inertia of the propeller about the polar axis,* and

p

h is equal to the angular spin velocity co of the shaft divided by the angular
whirling velocity ON of the shaft.

The influence coefficients are 8P , 0P , aM and 0
M .

The two values of G obtained from the general formula give the natural frequencies

for the two lowest modes of vibration corresponding to a given value of h. The lowest fre-

quency is obtained when the minus sign in front of the radical is used, but this would require

taking the difference of numbers of which the first few significant figures might be identical.

Therefore, when the minus sign is to be used, multiply both the numerator and denominator

of the general equation by the conjugate of the numerator. When this is done, the equation

for the lowest mode frequency of vibration takes the form

2

(Mp' + OMG) + (m Pab' + OMG) 2 -4m pG(8P M - M oP)

When, in Formula [1], G is taken equal to zero

N = [2]
P

Setting G equal to zero is equivalent to the assumption that the propeller acts as if it were

a point mass, that is, rd = 0. From another point of view, it would be equivalent to consider-

ing the propeller as a thin disk (k = 2), which is whirling at twice the shaft rpm, that is,

h = -6 _ 1. Formula [2] gives an underestimate of the first-order forward whirl, which will be
N 2

on the side of safety.

The influence of the mass of the shaft on the critical frequency may be approximated

by adding an effective mass mes to the mass of the propeller. Equation [2] would then take

the form2

1
= [3]

S(ap + mes) 3

*Estimates of allowance for the virtual mass effect of the entrained water are given in Reference 2.
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The effective mass of the shaft, mres, is a mass, which, if assumed to vibrate with the center
of gravity of the propeller, will have a maximum kinetic energy equal to the maximum kinetic

energy of the shaft when it is vibrating in the particular mode under consideration. Estimates

of mes, determined by the use of the lowest mode shapes found for several propeller-shaft

systems, both by experiment and by computation, have fallen within the range 0.10 m s < mes
< 0.40 ms for the lowest mode of vibration.

GENERAL METHOD FOR DETERMINING INFLUENCE COEFFICIENTS
FOR OVERHANGING PROPELLERS

Figure 1 represents a propeller-shaft system with the propeller located at x = z 0 . The
influence coefficients P 8, M O, and 0 M represent linear and angular displacements at

S= Xo for an application at x = x0 of a unit static load Po = 1 and a unit moment M = 1,
respectively.

The method used for determining the influence coefficients will be to treat the shaft as
a cantilever beam and replace the shaft supports, except for the built-in end of the cantilever,
with equivalent reactions. The procedure will then be to evaluate the displacements at

S= zo' Xl1 ,2 and x3 due to Po and Mo, and the displacements at x = xo, a, 2, and 3 due
to the reactions at the three flexible supports. This may be conveniently done by use of the

formulas for cantilever beams given in handbooks such as Reference 3. Next, the equations

of equilibrium are applied at each flexible support, i.e., the sum of the displacements due to

the external loads and to the spring reactions are equal to the displacements at that support,
which, in turn, must be equal to the reaction divided by the spring constant. In this way, six

equations in the six unknown reactions R 1 , R2 3, M1, M2, and M3 are obtained. With the
reactions known, the displacements, and thus the influence coefficients, can be determined

directly.

P0

+ 0(
o KR1 B =El + Kz

K K K
KL1 2 3 +

+R+2 
+Y

I +.Al 21 +M2 3 +M3

Sa b 0

r X2
! 3

Figure 1 - Schematic Sketch of Propeller-Shaft System for Determining
Influence Coefficients



Let yj be the linear displacement at a = xi due to Po and Mo that would exist if there

were no bearing reactions,

Sbe the angular displacement at ax = x due to Po and Mo that would exist if there

were no bearing reactions,
n n

yi'-be the linear displacement at z = xi due only to the reactions I R + Z M ,and
1=1 =1

n n
y"'be the angular displacement at ax = xi due only to the reactions I R + I M .1=1 j= 1

The total linear displacement at x, is yi + yi'= 8i . The total angular displacement at xi is

Yi + yi '= Oi Then, with B = El,

By 0  M0 2 +1 p0 0
3 [4]

2 3 0 x.

By 1 Mo + p1 (2 o + a) [5]

S1Mx2 + 1 pX (2x + a+ b) [6

By 2  2 2 2 0

By3  M0 x2+ IPox2 (2 xO + a + b + c) [7]B' 3 2 0 3 603 0

and

Byo'= - 1

2
- 1

+ M

By = 3

+_
2

By 2
61

+.I
2

x2 (x+a) -- 1 x 22( x 2 + a+ b)
R1 2  3 1  2 2 2 2

Sx3 2 3 +a +b+c +Mx (-1 1 +a)

2 X2 ( j 2 -+ b) +M 3x 3 ( x3 +a+ b+ c

Ix 13 2 2 2 2 + b - 3R 32 1 3 + b

M 1x1
2 + 2f 2 x 2 +b)+M 3 x 3 .( x3 +b+c

1 x22 + b) - R 2 x23 _ 3 32 (1'3+
3 2 33 33

11 x 2 2 +I 12 x 2
2 + M 3a' 1

22

4

By' R 2 (21x + b + c) - R2 32  2 + c) - R3x32
3 6 1 3 1 6 32

+ 1 M x32 + -1 M x2 + I 2 M x2
2 1 3 2 2 3 2 3

[8]

[91

[10]

[11]
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By an analogous process, equations for the Yi's and yi"s can be derived.

At xK

K L 1

and 1 = 1
KR1

where KL1 is the combined linear stiffness for the entire bearing and KR1 is the combined

rotatory stiffness. Since 8 1 = yl + yl- we obtain, by combining Equations [51 and [9],

BR 1

KL 1

Mo12 + 12 (2 xo + a)- R,3 - R22 2
01 6 (

- I R3z 3
2

+ M3X3 x

x3 + b + c ) + 1 M x2 +1 22 1 1 22 2 2 + b )

+ b)

[12]

+ b + c)

By a similar process it can be shown that

BM1

KR1
-±I .. 4I 21I

M2 2 + M 3 + 1 P0o (ao2 - a 2 )

S 2 1 2 22 2 3

At x = x2, by combining Equations [6] and [10], we obtain

BR 2BR2 1 M0 2 +1 P02 2 (2 xo + a + b) - -R 2 (2 + b) -lR X3
6 6

2

[13]

[14]

- R 3 3221
3 ) + M 22 " X2 + M2 3 3 +

By a similar process it can be shown that

BM2

-KR= 0 2 1+2 2 M33 0 [X02 - (a + b)2]

2

2 1 1 2 2 22 3 3

At x = 3, we obtain by combining Equations [7] and [11]

BR 1 p2(2
K = Mo3 1 32 (2o + a + b + c)- JX 32 (2,

1 R 2 3
2 (2 2 + c) - R 3 + M 32 + 1 M 2 +  M32

3 3 2 132

[151

+ b + c)

[16]

I _ I11



and similarly,

BM 3

- = MoI 3KR
3

M+ x M2 x+ M3 3 + Po [0 2 - (a + ++ c) 2 ]- [1 2 - (b + c) 2 - ( 2 c 2) - -1 2

After terms are collected, Equations [12] through [17] may, for the sake of convenience, be written in the following form:

+ 
2

2

+ R2 )

+ R2  2

22 32x+c

C) + R23 2 (2 2 + C)
6

R3 X32 2 3 + b +

+ 32 3
+ 3 3 2

2 3 +

2

+ 3 33

+ 3 (4 3+

R+

2

- 1 + -
1

M x
2

2

M1X2

2

MIY
3

- M2x 2 (X2 + b)
2

M2 2

2

- M2  2

M2x 3
2

2

- M2 X3

S 3 (2 + b + c
M~x X2 P x 2

- Mo + p0 1_ (2xo +a)
2 6

= AOx 1 + P (X0
2 - a 2 )

2

3 03 _+ 02

3 2 2
+ 02 (2z o +a+b)

6

= Mox 2 + Re [ - (a + b)2 1

2

M 33 2

2

3 ( 3 +

o032
2

P 2
+ 0 3 (2x + a + b + c)

6

r0x3  + 02 - (a + b + c)2]
2

[17]

R KL 1

R 22 (2x + b)
6

R (XI2 - b2 )
2

R1z32 (2 1 + b +
6

R2 22 2

2 3

M2 2 M3 
3



The unknown reactions Ri and Mi, found by solving this set of simultaneous equations,

are then used to determine the deflections 8o and 00 at x = xo. For example,

B8 = B (yo +yo ) +12 + 0 3
1 1 + a)

SRX2 (2 a 3+b X2 2 3x+a+b+c

+ M z + a)+M X X2 + a + b

[18]

+ M 3 X3  X3 + a + b +c

and similarly,

BOO = B (yo + Yo) = Me + M1 l + M2 z2
+ M3 + 0 X 02

[191

S2 1 2 221-7 l 1 2 2 22 2- 3 3

To obtainSP = 8 , let Mo =0, Po = 1 in Equation [18]. To obtain 0oP = OP, letMo = 0 , Po =

in Equation [19]. To obtain 80M = 8M, let Mo = 1, Po = 0 in Equation [18]. To obtain 0 oM = 0 M

let Mo = 1, Po = 0 in Equation [19]. Conservation of energy requires that 8M = OP

PROCEDURE FOR DETERMINING INFLUENCE COEFFICIENTS FOR A SPECIFIC
PROPELLER-SHAFT SYSTEM FOR USE WITH FORMULA [3]

The method for determining influence coefficients just presented is applied here to the

propeller-shaft system shown in Figure 2. In the present application only 8P will be deter-

mined for use with Formula [3]. The frequency obtained will be the lowest-mode second-order

forward whirling frequency, G = 0, which would be an underestimate, that is, an estimate on

the side of safety, of the first-order forward whirling frequency.

1. Evaluate the following elements:

an + + ; a12 = + -2 g + ;
L 2 ( 2 a

a 21 2
c2 1 =+l2

6

C1  =+ -- (2 x 0 . + a);
6

22 22

a 32 = + 123 2

C2 +1- (X0
2 - a 2 );

a- 2a 13 =-1--X12

= 1

a33 X22
2

c 3  + - 2 (2x 0 + a + b)
6

iull



It so

S=1 =a+b+c

Figure 2 - Schematic Sketch of a Propeller-Shaft System in Which Flexibilities
in the After Bearing Only Are Considered

b0

0 = - for self-aligning, articulated bearings, such as types A and C, as shown in Figure 4.
2
b

a 0 for standard stave bearings, such as type B, as shown in Figure 4.
3

2. Evaluate R1, R2, and M1 from the following determinants:*

R1D=

MID =

a12

a 22

a 3 2

al I a12

a 21 a 2 2

a 3 1 a 3 2

R 2D =

, where D =

a 11

a 21

a 3 1

all

a 2 1

a 3 1

3. Evaluate

S= ~ 0o - R -x2 1 +a

Substitution of this

was the procedure used in

Table 2.

b + M !x + a)]

influence coefficient into Formula [3] gives the frequency. This

calculating the frequencies listed in Table 1 and at the bottom of

*In this case the reactions are due only to P 0 since the constants are evaluated for M10 taken equal to zero.

For the middle bearing KL = 00, KR2 = 0.

a I I I r

2 2 2 2+a+



-- _~milli

INFLUENCE COEFFICIENTS FOR SEVERAL IDEALIZED
PROPELLER-SHAFT SYSTEMS

The method of deriving influence coefficients given on page 3 was also applied to

several simple, equivalent, propeller-shaft systems. Sketches of these systems and the corre-

sponding formulas for their influence coefficients are given in Figure 3. Also given, for com-

pleteness only, is a pinned-pinned arrangement which was derived by a variation of the method.

The flexibility of the aftermost shaft support is one of the most important factors which affect

the natural whirling frequencies. The Appendix contains illustrations of several types of

bearing supports and indicates methods which may be used in determining the effective stiff-

nesses for each type of support.

COMPARISON OF COMPUTED AND EXPERIMENTALLY DETERMINED
NATURAL WHIRLING FREQUENCIES

Table 1 lists frequencies obtained experimentally, by means of an electrical analogi

and the UNIVAC computer, 1 and by Formula [3]. The propeller-shaft arrangement utilized in

evaluating 8P for use in Formula [3] is shown in Figure 2. The constants used in the compu-

tation of frequencies by Formula [3] are listed in Table 2.

TABLE 1

Computed and Experimental First-Mode Natural Whirling

Frequencies of Five Ships

Shafting of the CVA 59 and the DL-1 was made of Alloy 4 steel.

Frequencies in cpm

Ship Nonrotating Shaft in Air, h= 0 Formula [3]

Experimental* Electrical Analog UNIVAC Computer (G=0 in Air)t

CVA 59** 325 260 275 262

BB 61tt 460 480 378

SSK 241 7904 645 641

SSK 243 6304 500 539 555

DL-1 447 344 410

*Horizontal vibration in air, excited by means of a vibration generator.

jThe equivalent shaft system used is shown in Figure 2 (includes mes).

**Inboard propeller shaft.

joutboard propeller shaft

1 i I1 .



KL =

KR 0

al b i

KL = o0 KL =o

KR = 0 K = 0

a b

a b
a: + b 

P a2 (a +
El \3 4/'

0P = aM = a
2 E

P- a 2 
(a + b)

3 El

S_(a + b)
El ( 4

(a +A
l 2)

Om= 1 a +
El \

S 8 M = (3 a + 2 b)
6 El

1 b4 / 3 (

K,

3
KL

F2
.2

b4

2

P 1

El-
El

SaMoP _1
El

b4

KL =

KR =0

b c

a+b+c=l

m=
El b+ c_ + El

9 12 3KL b

b +c=k

) k2 + El c
12 4K L 2

2

1 2

b+ c El __2 6
9 12 3 KL b2

1

b + 1+ EL
9 12 3K L b2

k2 +
2 (-6-

+ 2ab c +
9 6

+ + Elc(21+a+b)
12) 12 KL b2 I

Figure 3 - Schematic Sketches of Several Idealized Propeller-Shaft Systems and Their
Corresponding Influence Coefficient Formulas

b

b

2 3 )3 El+ )
KL

P 1 13

El 3
b2 +2 Elc (21+a+b)2

27 54 18 3 6 KL b 2

%I II II IIII I I I --

r--I
0 a

P =8 12
El 2



TABLE 2

Constants Used in Computation of Natural Whirling Frequencies
of Several Propeller-Shaft Systems

CVA59 BB61 SSK241 SSK243 DL-1

Item Definition Units Inboard Outboard
of Terms Shaft Shaft Wooden Self-Aligning Rubber Bearing

Self-Aligning Wooden Bearing Rubber Bearing
Rubber Bearing Bearing

Type of See Figure 4 A B B C B

Bearing

B=El Bending Rigidity lb in.2  249x109  426x109  8.73x109  8.73x109  133x109

mp Mass of Propeller Ib sec 2/in. 181.35 105.6 7.876 7.876 106.2

a See Figure 2 in. 96 97 28.75 35.75 61

b See Figure 2 in. 595 562 249.5 242.5 529.6

c= 2  See Figure 2 in. 720 413 209.5 209.5 576

b+c=x See Figure 2 in. 1315 975 459 452 1105.6

1 = zo See Figure 2 in. 1411 1072 487.75 487.75 1166.6

A See Notation lb sec2/in2  0.154 0.197 0.0358 0.0358 0.116

ms  mS = U lIb sec 2/in. 217.3 211.2 17.45 17.45 135.326

KL See Figures 2,4 Ib/in. 1.195x106 0.921x106 0.141x106 0.073x106  0.858x106

KR See Figures 2,4 Ib in./radian 1.3066x109  1.18x109 12.252x 106 1.053x106 0.592x109

ao See Figure 2 in. 60 58 14 19 13/16 32

bo  See Figure 2 in. 120 174 42 39 5/8 96

S See Notation in/Ib 5.541x10-  4.574x10-6 16.122x10-6 30.818x10 6  4.482x10"

mes See Notation Ib sec2/in. 0.27 ms  0.16 ms  0.338 m, 0.10 ms 0.11m s

[N See Notation radians/sec 27.43 39.6 67.1 58.1 42.9

fN See Notation cycles/min 262 378 641 555 410



Type A - CVA59

Strut Arm and Barrel

K 3
R

Bearing Staves
KL, K'-\

Shaft Sleeve -

B arrel

Type B - BB 61, SSK 241, DL-1

I

3 Strut Arm and Barrel
KR

K2 , K 2 - Flexible Mounting Ring

KL, KR Bearing Staves
I"-|

Shaft Sleeve

Barrel

Type C - SSK 243

Figure 4 - Schematic Sketches of Main Bearing Assemblies

See Notation for the definition of the symbols denoting stiffnesses.
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APPENDIX

DETERMINATION OF EFFECTIVE STIFFNESS OF BEARING SUPPORTS

Figure 4 shows three types of main strut bearing assemblies for which the resultant

linear and rotational stiffnesses have been computed. These stiffnesses are listed in Table

2; the methods used for their computation are given in Reference 2.

Illustrated in Figure 4 are the main strut bearing assemblies of the USS FORRESTAL

(CVA 59), USS IOWA (BB 61), USS BASHAW (SSK 241), USS BREAM (SSK 243), and the USS

NORFOLK (DL-1). The stiffnesses indicated in the sketches are those which must be con-

sidered when computing the resultant stiffnesses KR and KL. For bearings Types A and C

1_ 1 1 1 1+ 1+
KL K KL 2 KR KR KR2  KR3

and for Type B bearings

K =K . 1 + 1
L L' KR KR1 KR3

Approximate formulas for component stiffnesses are given in Reference 2. Table 2

lists the bearing materials used on each ship, the length of the bearing, and the resultant

stiffnesses.
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