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FOREWORD

These lecture notes were prepared by Professor Francis D.
Murnaghan for use in a series of nineteen leciures on the Laplace
Transformation given by him during the spring of 1959 at the
Applied Mathematics Laboratory, David Taylor Model Basin.
The lectures were well alttended by the technical staff of the
David Taylor Model Basin laboratories as well as by scientists
throughout the Washington community. It was an inspiring
experience to all who had the opportunity to be present.

The Applied Mathematics Laboratory is proud to present
these lecture notes in report form. Although the warm humor
and the pedagogical skill of the delivery are missing from the
notes, these lectures constitute an unusually clear and complete
presentation of the theory and application of the Laplace
Transformation which will remain of permanent value in the
instruction of applied mathematics.

Hay s %T%Ca kel

Harry Polachek
Technical Director
Applied Mathematics Laboratory
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ABSTRACT

These lectures on applied mathematics are devoted to the

Laplace Transformation and its application to linear ordinary
differential equations with variable coefficients, to linear partial
differential equations, with two independent variables and constant
coefficients, and to the determination of asymptotic series. The
treatment of the Laplace Transformation is based on the Fourier
Integral Theorem and the ordinary differential equations selected
for detailed treatment are those of Laguerre and Bessel. The
partial differential equation governing the motion of a tightly
stretched vibrating string and a generalization of this equation

o o]
are fully treated. Asymptotic series for the integral exp(—zz)dz
p

arg p ‘ < g, are obtained

and for modified Bessel function %(p),
by means of the Laplace Transformation and, finally, asymptotic
series useful in the calculation of the ordinary Bessel functions
Jn(t) are treated.

Care has been taken to make the treatment self-contained
and details of the proofs of the basic mathematical theorems are

given.






Lectures on Applied Mathematics
Lecture 1

Absolutely Integrable Piecewise Continuous Functions

Let f(t) be a complex-valued function of the unrestricted real
variable t, -oo <t < oo , it being understood that real-valued functions
of t are included in the class of complex-valued functions of t, a
real-valued function being a complex-valued function whose imaginary
part is identically zero. The class of continuous functions is too
restricted for our purpose and we shall merely suppose that the number
of points of discontinuity of f(t), if any such exist, in any finite interval
is finite. This will be the case if the number of points of discontinuity
of f(t) is finite but this sufficient condition is not necessary; for example,
f(t) may be discontinuous for all integral values of t or it may be a
periodic function, of period T, with a finite number of points of
discontinuity in the interval 0 <t < T. When f(t) possesses not more than
a finite number of points of discontinuity in any finite interval we shall
say that is possesses Property 1 and we shall term any function £(t)

which possesses Property 1 a piecewise continuous function.

In enlarging the class of functions which we propose to consider
from continuous to piecewise continuous functions we lose some of the
most convenient properties of the class of continuous functions. For

example, every continuous function is bounded over every finite interval



but this is not true for piecewise continuous functions. For example,
the function f(t) which is equal to -1 if t#0 and which is assigned any
value at t=0 (the particular value assigned to it at t=0 being
immaterial) is piecewise continuous, since it has only one point of
discontinuity, but it is not bounded over any interval which contains
the point t=0. Furthermore, every continuous function is integrable,
in the sense of Riemann, over any closed interval a <t < b but this

is not necessarily true for a piecewise continuous function if the
interval contains a point of discontinuity of the function at which the
function is unbounded. If ¢ is such a point of discontinuity of f(t)

in the interval a <t <b and if f(t) is continuous at all other points of
this interval we say that f(t) is improperly integrable, in the sense

of Riemann, over the interval a <t < b if the function F( (51, 62) of
the two non-negative variables 61 and 62 which is furnished by

the sum of the integrals of £(t) over the intervals a <t <ec- (S 1 and

c + éz_gtg b, where 61 < c-aand (523 b-c, possesses a limit
as (S 1 and (5 9 tend, independently of each other, to zero and we
term this limit the improper integral of f(t) over the interval

a<t<b. Note. We assume that the non-negative variables 61 and 62
are actually positive unless c=a, in which case 61=0 and 62 is
positive, or c=b, in which case (5 2=0 and 6 1 is positive. There is no
lack of generality in assuming that f(t) has only one point of discontinuity,
at which it is unbounded, in the interval a <t <b since the number of
its points of discontinuity in this interval is, by hypothesis, finite and
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if it has more than one point of discontinuity at which it is unbounded
in the interval a <t < b we can break this interval down into a number
of sub-intervals each containing only one point of discontinuity of £(t),
at which it is unbounded, and define the improper integral of f(t) over
the interval a <t < b as the sum of the improper integrals of f(t) over
the sub-intervals, assuming that each of these improper integrals
exists. If any single one of these improper integrals fails to exist
the improper integral of f(t) over the interval a <t < b fails to exist.
The function f(t) of the unrestricted real variable t which is
0ift <0 andist1/2ift >0, the value assigned to £(t) at t=0 being
immaterial, is improperly integrable over any interval a <t <b which
contains the point t=0. For example, the improper integral of f(t) over
the interval 0 <t <b is 2b1/ 20 On the other hand, the function f(t)
which is 0 if t <0 and is t~1 if t > 0, the value assigned to f(t) at t=0
being, again, immaterial, is not improperly integrable over any
interval which contains the point t=0. In general the point t=0 is a point
of discontinuity of f(t) =t%, t > 0, a reaLf(t) =0, t <0, at which £(t)
is unbounded,if @« < 0. If @ > -1 this piecewise continuous function is
improperly integrable over any interval a <t <b which contains the
point t = 0 and, if o < -1, f(t) is not improperly integrable over any
such interval.
If £(t) is a piecewise continuous function so also is l f(t) |
and it is easy to see that if | f(t)l is improperly integrable over an
an interval a <t < b which contains a single point ¢ of discontinuity
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of f(t) at which f(t) is unbounded then f(t) 1s also improperiy integrabie

over the interval a <t <b. Indeed to prove this we must show that

(5/ (-"'6

f(t) dt and [ "2 f()dt_ where
/ o
2
! !
0< (Sl< 61 and 0 < (52 < 629 may be made arbitrarily small

each of the two integrals J'

by making 61 and 6 97 respectively, sufficiently small. The moduli

of these mtegrals are dommated by, i.e., are not greater than,
f (5 f(t), dt and f £(t)

that f(t) is absolutely integrable (i.e., that l f(t)l is integrable) over

dt, respectively, and our hypothesis

a <t < b assures us that each of these two dominating numbers may

be made arbitrarily small by merely making 61 and 62,, respectively,
sufficiently small. We shall assume that our piecewise continuous
functions f{t) are such that !f(t) ‘ is improperly integrable over any
finite interval a <t < b which implies, as we have just seen, that f(t)

is improperly integrable over any finite interval a <t <b. Note. If

the interval a <t < b does not contain a point of discontinuity of f(t)

at which f(t) is unbounded both f(t) and |f{t) | are properly integrable
over the interval a <t < b since they are bounded over this interval and
continuous save, possibly, for a finite number of points.

We now make a final assumption concerning the class of
complex-valued functions of the unrestricted real variable t which we
propose to consider. We assume that not only is I f(t)t integrable,
properly or improperly, over every finite interval a <t < b but that
the function F(a, b) = jbl f(t)l dt of the two real variables a and b

a
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possesses a finite limit as a and b tend, indevendently, to -oo and
+ oo , respectively. When this is the case we say that f (t) is
absolutely integrable over - co <t < o0 and we term the limit of
F(a, b), as a—>- o0 and b— oo, the integral of I f(t) | from
- oo to oo, this integral being denoted by the symbol f If(t) | dt.
When a complex-valued function f(t) of the unrestricted real variable
t is such that it is absolutely integrable over - c© <t < o we say that
it possesses Property 2. The functions f(t) which we propose to consider
are those which possess both Property 1 and Property 2; in other words,
they are piecewise continuous functions which are absolutely integrable
over - 0 <t < o0,
It is clear that if f(t) possesses Properties 1 and 2 then the function
J IOf(t) dt of the two real variables a and b possesses a finite limit as
a :.nd b tend, independently, to - oo and + oo, f'espectively. Indeed,
in order to prove this we have to show that j °

b
where b' > b and a' < a, may be made arbltrarily small by making

f *1) at

a'
dominated by f lf(t)l dt andjr lf(t)‘dt respectively,

a
£(t) dt and j £(t) dt,
a'

b and -a sufficiently large. However ' j f(t) dt|and are

and each of these dominating numbers may be made arbitrarily
small by making b and -a, respectively, sufficiently large
(since f(t) is, by hypothesis, absolutely integrable over

B

- o0t <o), Thus J f(t) dt exists. The converse of this
200

o0 o
result is not true; f f(t) dt may well exist without [ lf(t)l dt existing.
o0 -0



An example is furnished by the everywhere continuous function

s
f(t) = f{t» is an even function and so it suffices
o ] sin t ) i
to consider f —t—-dtu Ifnr <b<(n+l)m, n=0, 1, 2, ..., we have
-0
b . T 27 . nw .
[Pontg . ((entg, [Temty o f _SItit_dHf sinty
‘0t 0 t T t (n-1)7
(b sin t
e T A kb i
T
where I, f S“”clt>o I, f Smtdt>0andsoon On
0 o

T .
writing t = u+r in the formula for I2 we have I2 = f SIY gy
0 u+7m

so that I, < I;. Similarly I3 < 12, I4 < 13 and, generally,
L <I,,n=1, 2,3, ... . Inorder to appraise the integral
b .
j sin t 4t we use the second theorem of the mean of integral
t
nnm

1 . .
calculus which tells us that, since T is monotone decreasing over

b
n7 < t < b and continuous at t = n7, f sin tg - 1 f sin t dt

l1171'

b .
= cos nm cos ¢ , DT __<_ ¢ _<__b. Thusv S::n t dt g. _2- and this may

nm nw
nm
be made arbitrarily small, no matter what is the value of b > n7, by merely

making n sufficiently large. In particular In+1 may be made arbitrarily
small by making n sufficiently large so that the alternating infinite

series I1 - I2 + 13 - ... is convergent, its sum being the infinite integral

f Oosin t
dt.
0
just proven, lies between I1 - I2 and Il' A simple application of

It follows that this infinite integral, whose existence we have

Simpson's Rule shows that Il =1. 86, I2 = 0. 44, approximately,



so that f Sltn tdt lies between 1. 42 (approximately) and
0

1. 86 (approximately) and this implies that the integral of sin t

over -0 <t < o exists and lies between 2. 84 (approximately)
(o)
SNt - g,

and 3. 72 (approximately). We shall shortly see that f

P

sin t
That —¢ is not absolutely integrable over - ©° <t < ©o° is clear

b sin t
since f [Sin tldt =1, +I,+... +1 + [ | l dt and
0 t 1 2 n nm t

I

1 (7 2 1 (7 2
> —j sintdt= -, I, > — j sin u du = — and, generally,
17 7y r 27 21 J, 21

I

bi.:
t
> 2 sothat | 20Ug s 2,1, 1y o2
n n

nmw 0 t T 2

Thus, since the partial sums of the infinite series 1 + ; + % + ... are

unbounded, j |sin tl dt may be -made arbitrarily large by making b
sin
sufficiently l.a.rge and the infinite integral | | t f
. 0
This implies that ls-‘t’l—ti is not integrable over - oo <t < 0o |

dt does not exist.

Exercise. Show that if (/ is any real number the infinite integral
[ —s-l—n—(*—!-t—dt exists,its value being C , 0, - C according as

L/ > 0, /=0, (UKO, respectively, where C is the value of the

infinite integral j Sin t dt.




Lectures on Applied Mathematics
Lecture 2
The Fourier Transform of an Absolutely Integrable Piecewise
Continuous Function
If £(t) is 2 complex-valued function of the unrestricted real

variable t which possesses Properties 1 and 2, so that it is
piecewise continuous and absolutely integrable over -oco {t < oo,
it does not lose these properties on multiplication by exp(-ilJt),
(/ any real number. Indeed exp(-ilJ/t) is everywhere continuous
so that f(t) exp (-iLst) is piecewise continuous and | exp (-iL/t)| = 1
so that | £(t) exp (-ilJt) |=|£(t)]. Since f(t) exp (-ilJt) is absolutely
integrable over - oo <t < oo, the infinite integral f <Mf(t) exp (-il/t)dt
exists for each value of /. Introducing, for our —1:fer convenience,
the numerical factor (211)'1/2 we set

-1/2(°°

g(l) = (2m) f(t) exp (-ilst) dt

-—

and we term g((/) the Fourier Transform of f(t). Since

b
dt = fa
[o2e] o0
we haveJ f £(t) exp(-iLst) dt ‘g f 1f(t)ldt so that
- -0
2 f |cf>a:)|dt.

Thus g((,/) is bounded over - o0 < (J < oo. It is easy to see that

b
f f(t) exp (-ilJt)dt

! (%)
) f(t)'dt < _[)o |f(t)|dt

< f ° ‘f(t) exp(-il/t)
a

g(L/) l <

(2m) !

f b f(t) exp(-il/t) dt is an everywhere continuous function of (/, no
a

matter what is the interval a <t <b. To prove this we first consider



the case wherel f(t) l is bounded, say <M, over a <t < b (so that
b
the integral f f(t) exp (-i(t) dt is a proper Riemann integral).
a
If (/and W+ A(J are any two real numbers we have

‘ A f %H©) exp(cilt) at . -

b
I 1(t) exp(-il/t) {exp(-iAbJ. t) -1 } dt‘
a a

b
<M f {exp(-iA W.t) - 1}
a

Since the function exp z of the complex variable z is continuous at

dt.

z = 0, where it has the value 1, we can make ‘ exp(-iAW/t) - 1’

arbitrarily small, say < &/M(b-a), by making ‘ -iA(J.t | sufficiently small,
say < é, € being an arbitrarily assigned positive number. Denoting, for

a moment; by a the greater of the two numbers |a| and |b |, |- ia Lu/,tl <O
over the intervala <t <b if l—iAbja‘< (5, i.e, if lAU/‘<6( ; hence,

I Afb f(t) exp(-iw/t) dt ’ < €if ‘Au/l <Y so that fbf(t) exp(-ilJ/t)dt

is anaeverywhere continuous function of (/. If £(t) isanot bounded over

a <t < b it suffices to consider the case where f(t) has a single point of
discontinuity ¢, at which it is unbounded, in the intervala <t <b. We

b c-
write ] f(t) exp(-il/t) dt in the form j f(t,) exp (-ilJ/t) dt
a

+

a
C+é2 b
f f(t) exp (-ilut) dt + [ f(t) exp (-iLJt) dt where (S/ and (52
c- c
are anslz two positive numbers which are less than c-a and b-c, respectively,
save when ¢ = a, in which case 6/ =0 and 62 is any positive number:
< b-a, or when ¢ =b, in which case62= 0, and(S/ is any positive number

< b-a. It suffices to consider the first case, where a <c <b, the

argument in the other two cases being precisely the same. The integrals



C-(S/ b
j f(t) exp(-il/t) dt and f f(t) exp(-ilJt) dt are everywhere
a C+ 2

continuous functions of (/, since f(t) is continuous, by hypothesis,
over the intervals a <t < c-(S, and c+ 62g t <b and so we have
merely to consider the integral f o (}(t) exp(-ilW/t) dt. The modulus
of this integral, being dominatec(; b-y /f o %(t) "dt, may be made
arbitrarily small, say < € , since f(tc) possesses Property 2, by making
(S/ and62 sufficiently small, the choice of (S/ and(Sg being independent
of (/. Once this choice of 6/ and(52 has been made it follows that
the modulus of A f o 2f(t) exp(-ilJt) dt is less than 2€ , no matter
what are the vahlesc;ssligned to(/and AL/ . Hence ‘ Afbf(t) exp(-th)dtl
may be made arbitrarily small, no matter what is the valie of W , by
making \ AU‘ sufficiently small so that f ° £(t) exp(-iLJt) dt is
an everywhere continuous function of W .a This implies, in view of the
fact that f(t) is, by hypothesis, absolutely integrable over - co<t < o0,
that the infinite integral __L > f(t) exp (-ilwt)dt is an everywhere continuous
function of (/ ; indeed, the modulus of the difference between

<><f3(t) exp(-iL/t) dt and [ bf(t) exp(-i/t)dt is dominated by the sum of
oo ara oo
the two infinite integrals f lf(t) |dt, L If(t)ldt and this sum may be
made arbitrarily small, sa‘yoo < € , by making a negative and b positive
and choosing -a and b sufficiently large, the choice of a and b being
independent of (/. Once this choice of a and b has been made, it

a oQ
follows that the modulus of A{ j f(t) exp(-il/t)dt + j f(t) exp(-i(,dt)dt}
200 b

is less that 2€ no matter what are the values assigned to &/ and (J+ A (J.

10



[o 0]
Hence | Af fit) exp i-i Wtidt lmav be made arbitrarily small, no
<00
matter what is the value of &/, by making I Al , sufficiently small, so
(o o]
thatf f(t) exp (-i(/t)dt is an everywhere continuous function
— 00

of (J. This, combined with the boundedness of g( (/) over

-oo< W< oo js our first result which may be stated as follows:
-1/ &0
The Fourier Transform g( /) = (21) f(t) exp(-i Wt)dt
200

of any piecewise continuous complex-valued function f(t) of the unrestricted
real variable t which is absolutely integrable over - <t < °°is an
everywhere continuous function of the unrestricted real variable (W
moreover, g( /) is bounded over - oo< (W< o0,

Example 1. Let f(t) =0 if t <b and if t > b, where b is any positive

real number, and let f(t) = 1 if -b <t <b, the values assigned to

f(t) when t = -b and when t = b being immaterial. Then

1/2 _. 9 1/2
g(U)=(—:—) ﬂn—&i, if W #£o, Whileg(O)=H b.

Note. This Example shows that, while the Fourier Transform operation

is a smoothing, or strengtheningsone as far as Property 1 is concerned
(g( W) being everywhere continuous and bounded over - oo< (J< 09
while f(t) may be only piecewise continuous and may not be bounded
over ~oco<t <°<9i.t is a roughening, or weakening, one as far as
Property 2 is concerned: g( (/) may not be absolutely integrable

over - o< W< oo, In the present example g( (/) is integrable,in

the Riemann sense, over - oo< (U< oobut the following Example shows
that g((/) may not be integrable over -0 < W<oo,

Example 2. Let fit) =0 if t <0 and = exp(izt), where z = X+iy is any

complex number whose imaginary part y is positive, if t > 0, the

value assigned to f(t) at t = 0 being immaterial. f(t) possesses
11



Property 1, since its only point of discontinuity is t = 0, and it
possesses Property 2, i.e.,. it is absolutely integrable over

- oo t < 09, since‘ f(t)'= 0if t <0 and | f(t)l - exp(-yt) if t > 0

and t2 exp(-yt) is arbitrarily small, say < 1, if t is sufficiently large
since y is, by hypothesis, positive. The Fourier Transform of f(t) is

W) =en [ exp [-i(w-2n] at = G
Bl = xR - 2t]dt = GO,

and, since |W/-z|< .(,J|+|z‘_<_2 i'(,J'I , if'(,J' >Iz

1
> , it (W] >z

, we havel g((,J)l

, SO thatl g(L/) | is not integrable

over - oo, /< &0, Also, since log((/ -z) is unbounded at (/ = - &°
and at (J =20 , g({/) is not integrable over - >/ < oo,

Note. W= shall see shortly that if f(t), in addition to possessing

Properties 1 and 2, is such that its real and imaginary parts are
monotone over sufficiently small intervals to the right and to the left

of t = 0, or if f(t) possesses a right-hand and a left-hand derivative
a
at t = 0, then the Cauchy principal value, lim f g( W) dW

"‘)OO.-a
of the integral of g({/) over -o° < (/< ©° exists, despite the fact
that the integral of g((l/) over - o< (/< ©< may not exist. We shall
denote this Cauchy principal v%cl;ége of the integral of g( (/) over
- oo L W< oo py the symbolj g((/)d(l/ . Thus in the present
Example we have f g(W)dl/ = 172, lim =
(=)

i gooo g W-2
o 1/2
L8

12

—1-1/2 lim log (W/ -z)
(211) i a—0c0



a -2
since the argument of —;—_— tends to 7 as a—oowhile the

—2-2 tendstolas a—oo.

-a-z

modulus of

13



Lectures on Applied Mathematics
Lecture 3

The Fourier Integral Theorem

Let f(t) = f(t) + ifz(t) be a complex-valued function, whose real and
imaginary parts are fl(t) and fz(t), respectively. of the unrestricted real
variable t and let f(t) possess Properties 1 and 2. At any point t at which
f(t) is continuous the two limits

£(t+0) = lim £(t+(5), &§ >0
AH—0
£(t-0) = lim f(t- ), § >0
H—0
exist and are equal, their common value being f(t) (this being the definition
of the concept of continuity). At a point t where £f(t) fails to be continuous
the limits f(t+0), f(t-0) need not exist, and, if they do exist, they need not
be f(t). However, these limits will exist, by hypothesis, if f(t) possesses
a right-hand derivative and a left-hand derivative at t, the definition of

f(t - f(t+0
the right-hand derivative, for example, being lim (t+ 6 )6 (t+0) R (S > 0;

S0
they will exist also if the real and imaginary parts, f(t) and f5(t),

respectively, of f(t) are monctone and bounded over sufficiently small intervals
to the right and to the left of t, f(t+0), for example, being f 1(t+0) + i.fz(t+0)
where fl(t+0), for example, is the greatest lower bound, or least upper

bound, of fl(t+ (5 ), 6 > 0 and sufficiently small, according as f{(t) is
monotone non-decreasing, or monotone non-increasing, over a sufficiently

small interval to the right of t. The values assigned to f(t) at its points of

14



discontinuity are immaterial, as far as the definition of the Fourier
Transform g( (/) of £(t) is concerned, but for the purposes of the
Fourier Integral Theorem, which we now propose to study, it is
convenient to assign to f(t) at any of its points of discontinuity at
which both the limits f(t+0) and f(t-0) exist the mean of these two limits;
i.e., we set

f(t) = i {f(t+0) + f(t-O)}
For example, if f(t) =0, t <0, and f(t) = exp(izt), t > 0, where the
imaginary part y of z = x + yi is positive, we have f(0-0) = 0,
£(0+0) = 1 and so we set £(0) = % . We have seen that, for this
particular function,jbO)g((.J) dl/ = E) 12 so that (271)'1/2 [(W)g((.\/ )alJ 1

(o0 2 (-00) 2
= £(0). This result is not an accident, peculiar to this particular function;

if f(t) is any complex-valued function of the unrestricted real variable t,
which possesses Properties 1 and 2, and which, in addition, is such that
its real and imaginary parts are monotone and bounded over sufficiently
small intervals to the right and to the left of t = 0, or such that it
possesses a right-hand and a left-hand derivative at t = 0, then

(217)'1/ 2 f (oj)g( (W/)d (W exists, its value being £(0), on the understanding
that £(0) (i.giieﬁned as the mean of the two limits £(0+0), £(0-0). The
Fourier Integral Theorem is merely the extension of this result from

t = 0 to an arbitrary value t =7 of the unrestricted real variable t. To

make this extension we must multiply g((/) by exp(i (./t) before taking

the Cauchy principal value of the integral over - co< (/< oo . Thus

15



the Fourier Integral Theorem (in the form in which we propose to prove
it and which is satisfactory for our purposes) may be stated as follows:
Let f(t) be any complex-valued piecewise continuous function of the

unrestricted real variable t which is absolutely integrable over

-00o <t <00 and let T be any value of t at which f(t) possesses either
of the two properties
a) The real and imaginary parts of f(t) are monotone and bounded over
sufficiently small intervals to the right and to the left of T
b) f(t) possesses a right-hand and a left-hand derivative at T. Then
(2r)~1/2 f e g((/) exp(i WT )dl/ exists with the value £(7)
(on the mde;;:.;ding that f(7 ) is defined as the mean of the two limits
£(T +0), £(T -0)).
Note . Pay attention to the fact that g( (/) is multiplied by exp(il/T)
and not by exp(-i WT ) while, in the definition of g((/), f(t) was
multiplied by exp(-i(l/t) and not by exp(i (/t). Furthermore,note that
mere continuity of f(t) att =7 does not suffice for the validity of the
Fourier Integral Theorem. When f(t) is continuous at t =T both the
limits £(7 +0) and f( 7 -0) exist and are equal, their common value
being £(7 ), but our proof of the Fourier Integral Theorem requires
either Property a) or Property b) above and these are not guaranteed
by mere continuity of f(t) at t =7. If f(t), in addition to being continuous

att =T, is differentiable at t =7 it possesses Property b), with the

added equality of the right-hand and left-hand derivatives, and the
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Fourier Integral Theorem is validatt =T .

We begin the proof of the Fourier Integral Theorem by writing
/2 [°
en /2 |

£(t) exp(-i /1) dt = gP(L/) so that | g(L) - & (W)
a
may be made arbitrarily small, say < € , by choosing the positive numbers
-a and b to be sufficiently large, the choice of a and b being independent

of .. If T is any real number and « any positive real number we denote

a
(211)'1/2 J' g(l/) exp(i T W )AL/, which exists since g( (/) is

-0

everywhere continuous, by Fa(T ) so that

P (T) - ny /2

-Q

a

(L) exp(iTu)du,=
a

a
(277)-1/2 l f—a [g(LJ) - gg (U)J exp(i T() dCJI
<en™/? fa | g(L/) - gb(u)ldh/ < @m)7 Y2 20€
-a a

on the understanding that -a and b have been chosen sufficiently large

to ensure that | g(l)) - gz (L) I <€, (J arbitrary. Thus the difference
between F (T ) and (211)'1/2 fa gZ((J) exp(iT (W )d(/ may be made
arbitrarily small, once the pos-i(’five number « is given, by making -a and
b sufficiently large. The integral (21:’)'1/Z * g (LJ) exp(i T W/ )d L

is the repeated integral (217)'1 ja {fb f(t) ;:p(-aih/t) dt§ exp(i 7L/)d{/
and we consider the associated d(-)tcfbleaintegral of (277)'1 f/(t) exp[—i(,J(t-T)]
over the rectangle a <t <b, - a <(/< a. If f(t) is continuous over the

interval a <t <D, the integrand of this double integral is a continuous

function of the variables (t, (/) over the rectangle of integration and the

17



order of integration in the repeated integral may be changed. This
change of order is also valid when f(t) is not continuous over
a <t <b by virtue of the fact that f(t) is, by hypothesis, piecewise
continuous and absolutely integrable over a <t <b. To see this it is
sufficient to consider the case where f(t) has a single point ¢ of
discontinuity in the interval a <t <D, c being an interior point of this
interval. Writing j b f(t) exp(-i(/t)dt in the form
c-(S, : c+(§ b

f £(t) exp(-i(J t)dt + j TEE (1) exp(-ilJ tdt + j £(t) exp(-il/ t)dt,

a c-0 c+ :
where (51 and 6 9 are any positive numbers which are less than
c-a and b-c, respectively, we have to consider three repeated integrals
whose associated double integrals are extended over the rectangles
a<t<e- (51, -a < W<aj e- 51_<_t_§c+ 62, -o <W< a;
C + (S 9 <t<b, - a <(W< a, respectively, and, since
(217)'1 f(t) exp [-i(.J (t - T)] is a continuous function of the two
variables (t, (/) over the first and third of these rectangles, the order
of integration in the first and third of these repeated integrals may be
changed. The modulus of the second of our repeated integrals may,
since f(t) is absolutely integrable over a <t < b, be made arbitrarily

small, say <€, by taking (S and 6 sufficiently small. Thus the

2
difference between (27)~ lf exp(i T u){[ f(t) exp(- 1Ut)dt}d(d
-a

and the sum of the two repeated integrals

(Zw)'lf f(t){ exp 1(.J(t —T)l dw}dt and

(2m)” f {f exp[ it -T )] db)}dt

18



may be made arbitrarily small by choosing (S 1 and 62 to be

sufficiently small. Furthermore, since f exp [-iU(t-T )] |= 1, so that

a
Ij exp [-i(,J t-7) J d(./l_<_ 2a, the product of
-a

o

f exp [-i(.J(t -7) ] d(/ by f(t) is integrable over the intervals
-a

a <t <candc <t<b and the differences between

(Zﬂ)_lfc f(t){[a exp [-i(.J(t -T) } d(/}dt and
a -a

(27) lf f(t){f exp l—-i wit-T )] d(,./}dt and between

b
(217)-1 j f(t){ja exp [-i(d(t -7')] dw}dt and
c

-

(27) -1 j' f(t){f exp-i W/ (t -T) db./}dt may be made
2 -a
arbitrarily small by choosing (51 and (52, respectively, to be
sufficiently small. Thus the difference between
@)1 f exp (i TW ){fb £(t) exp (-ilJ/t) dt}duand the sum of
the two repeated integrals (27) j f(t){ [a exp[ -i G/ (t- T) dL%dt
-1 o T
and (27) f f(t){ f exp-i(/ (t -T ) dw} dt may be made arbitrarily
small by choosing (5 aand (5 to be sufficiently small. Since this

difference is independent of (51 and (52 it must be zero and so
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b
f(t) exp (-i (J/ t) dt} dl/

(217)-1 —[Ol exp (iTLJ){f
-a a
c a
= -1 f g "'(A/ 'T w}
(2m) fa t) J_a exp[-i Wt -T) ] al} at

b a
-1 f { S (=T dLJE
+ (27) jc (t) j-a exp[ il/(t -7 )] dt
-1 (P @ ro. —~ }
= (2 f(t -i LUt - dl/ (d
e | ()ij_a exp [ -1 Lt -T)] t

which proves the legitimacy of the interchange of the order of

integration in the repeated integral
b

(217)_1 ja exp(iT()j){ [ f(t) exp (-il/t) dt E al/
-a

,/a
even when f(t) is not continuous over the interval a <t <b. We have,

then, proved that the difference between F (7 ) and
b

o
(ZW)-lj f(t){f exp [-1@/ t -7 )J d(.g/} dt may be made
a -
arbitrarily small, once the positive real number « is given, by

choosing the numbers -a and b to be positive and sufficiently large.

oo o
In other words, the infinite integral (277)'1 f f(t){ f exp-iL/(t-T )dw}dt
“o0 -a
exists, no matter what is the positive number «, its value being

a

F,(T). Since j exp [-i&./(t -T )} dl/
-a

may be stated as follows:

() oSin @ t-T)
t-T

this result

oo
The infinite integral f Sin o (t ) dt exists, no matter

what is the positive number o, 1ts value bemg

a
FT) =G Y? [ W) e T L) al

-
This is the first, and most crucial,step in the proof of the Fourier

Integral Theorem. In our next lecture we shall complete the proof of
20



this theorem by showing that, if f(t) is either a) such that its real
and imaginary parts are monotone and bounded over sufficiently
small intervals to the right and to the left of 7 or b) such that is
possesses a right-hand and a left-hand derivative at T , then
limoo Fa(T ) exists with the value f(7 ), it being understood that,
a-

if 7 is a point of discontinuity of f(t), the value assigned to f{t)

at t =7 is the mean of the two limits £(7 + 0) and £(T - 0).
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Lectures on Applied Mathematics

Lecture 4

Completion of The Proof of The Fourier Integral Theorem. The
Laplace Version of The Fourier Integral Theorem.

We now examine the behavior of the infinite integral

1 o i T
L f(t) Smf‘ (t’[: )_ dt as a-—— oo . f(t) is a complex-valued
R -
function fl(t) + if2(t) of the unrestricted real variable t and so this

infinite integral is the sum of the two infinite integrals
f () Sine (t " )_dt and - j ty(t) S (t-T) g,
-0 L -0 t - T
it suffices to treat the fir st of these 1wo infinite integrais, the treiiment

: : L1 [e° sin a(t-T )
of the second being precisely the same. We write o fl(t) ———=—~7:—-- dt
oo =

as the sum of the two infinite integrals

_lj f(t)’ma(t’)dt=

[e 8]
1 1(7"-u)§EOlu du; u=7T -t
T % u
=_1_f Sma(t—T) dt =
T T I-T
—1—[ f(T )m—smavdv;v:t-T
T o

and it again suffices to treat the first of these two infinite integrals, the
treatment of the second being precisely the same. We write I as the

sum of the three integrals

a i .
3 =_1_ f(T—u)Smaudu;
1 T 1

o

u
Jz=_—f f(T smau du,
[0 ] sin o u
g L [Pr (T I
b

22



where a and b are any two positive numbers which are such that a <b.

1 (2]
It is clear that|J3|_§ﬂij ]fl( T - u) ldu =

1 T'b 1 (ore]
Y L !fl(t)l at < - [ |f1(t)|dt so that | J3| may be
- Zoo

made arbitrarily small, say <€ , by choosing b sufficiently large,
the choice of b being independent of a. If fl(t) is monotone and
bounded over a sufficiently small interval to the left of t =7, f 1(T-0)

exists and

a
3. - f1(T -0) f sin @ u gy =
1 —F— 0 u

m
1 a sin
= j {fI(T -u) - f( T-O)}———-—a-idu
m 0 1 u
If a is sufficiently small the function fl( T-u)- fl(T -0)ofu is
monotone over the interval 0 < u < a, being either positive and
non-decreasing (when f;(t) is monatone non-increasing to the
left of t =T ) or negative and non-increasing (when fl(t) is monotone

non-decreasing to the left of t =7 ). Hence we may apply the second

Theorem of the Mean of integral calculus to obtain

3, - (7T -0) * sinau g, o
1 i O u

a .
1 )t (T-a+0)-£,(T-0) Smau g
T 1 a' u

sin ¢ u
e — du

a
where a' is some positive number < a. The integral f
u
a'

a o aa _.
sSinadu
———du = J' sint g

is the difference of the two integrals f i
0 0
a'_. aa'_.
t = qu, and j _s_1_r:1_a_g_du = f 51tn ¢ dt and each of these integrals
0 0
is dominated,no matter what are the values of the positive numbers a',

23



. fﬂ’ ,
a and o by the number %Lt- dt. Hence

0
a .
f sin @ u g,
a' u

of the existence of the limit fy ( T - 0), that

T
<2 I SN 4t and this assures us, in view
0

3 _fl(T-O)l J‘faﬁinau du
1 - Jo T
say < €, by choosing a sufficiently small, the checice of a being

may be made arbitrarily small,

independent of @. If f1(t) possesses a left-hand derivative, d, say,

att=7, | T - “)u' 10T =9 4 | is arbitearily smali, say

< 1, over the interval 0 <u < a, if a is sufficiently small and so

f1( T-u) - £1(T - 0) Sldl+ 1 over 0 < u < a if a is sufficiently
u

small, the choice of a being independent of @. Hence

| ,a .
H'() {fl(T-u)-fl(T-O)} Smff.“ du | < {d+1) a, if a is

foT La .
sufficiently small, so that |J1 -4 In 9) J sinau o
0 u

may be made arbitrarily small, sav < €, by choosing a
sufficiently small, the choice of a being, again, independent of «.
Supposing, then, that a and b are so chosen that, for all values of -
the positive real number «,

1)|J3‘ <€

.a .
s, - 170 JO snau g, ‘< 3

- a .
we have, for every a > 0,|J, +Jg - ,ji - 0); f SM AU Gul<2€ .
. P 0 u
A oa _.
The integ: alf smad du = f sy dv, v = qu, and as a—) oo,
0 u o Vv
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®Osin v

a remaining fixed, this tends to dv whose value we

denote for the moment, by C. Thus

v
£1(T - 0) fa sinau,
(4 0 u

£1( T -0) ¢ | may be made arbitrarily small, say < € , by choosing
T

a sufficiently large so that 'Jl +Jg __f_1_(__77_:_-(L C ' < 3€ ifais
1

sufficiently large.

b .
1
It remains to investigate the behavior of J, = -— f f1( T-u)SII:laudu
a

as a— oo, If fl( T - u) is bounded over a < u < b so also is

fl( T -u)/u which we denote, for a moment, by h(u) so that h(u) is
bounded and, hence, since it is piecewise continuous, properly integrable
over the interval a <u <b. If, then, € isan arbitrarily given

positive number we may construct a net of points a = uy <u;y<... <un=b
on the interval a <u < b with the following property: Let h*(u) be the
function defined by setting, over any open cell U <u< uj +10

j=0, ..., n-1, of the net, h*(u) equal to the greatest lower bound

mj of h(u) over the corresponding closed cell Uy <uK Uj41 and setting;

at the points a, Uy oee b of the net,h*(u) equal to the greatest

u
* “n-1°

lower bound of h(u) over a < u < b. Then h(u) - h*(u) > 0 over

a <u <Db and the net a, Uy, woey Uy g, b can be so chosen that

-
i

0< b %h(u)-h*(u)}du_g € . Sinc;elsinauggl, it
Ja

b
follows thatU {h(u) - h*(u)} sin {aqu) dul < €’ and it is easy to see that
a

b
f h*(u) sin (au) du | may be made arbitrarily small, say

a

< €, by choosing the positive number a sufficiently large.
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b
Indeed f h*(u) sin (au) du is the sum of n terms of the form
a

Y1 Y .
m, f ) sin(au) du = mj cos(ay;) cos(atbﬂ) so that
a

b
j h*(u) sin(qu) du
a

n-
Z ‘ m, l . Hence

R I

< 2€' if a is sufficiently large. This result

j b h(u) sin(au) du
re?nains valid even when { 1( T -u) fails to be bounded over

a < u < b; to show thig it suffices to consider the case where

f ( T - u) is unbounded at a single interior point % of the interval
c-

a <u<b., Writing f h(u) sin (au) du = f ! h(u)sin(au)du +

a
c+05

f h(u) sin(au) du + [b h(u) sin(au) du the first and
thlr-d of the integrals on the rlghg may be made arbitrarily small
by choosing a sufficiently large, since h(u) is properly integrable
over the intervals a<u<c -(5/ , C+ (523 u <b. The modulus of
the second integral on the right is dominated by f o 2 ‘h(u) | du
and this is again dominated by (S / o 2 1( T -u)l du which may

be made arbitrarily small by choosing 6, and (5 sufficiently small,

2
the choice of (51 and 62 being independent of «. Thus |J Zl may be made
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arbitrarily small, say < € , by choosing o sufficiently large and,
since I =J1 +J2 +Jg, it follows that | I - _fl(_T_'_O)_ C l< 4¢
m

1
if @ is sufficiently large. Similarly, | I, - £ (T +0) C |< 4€
T

if a is sufficiently large and, since

1 f > ¢ ,® S_HLOLT__) dt = I +1,, this implies that

1

1 sina(t -7 ) 4 _  2f (T)
- fo(t) =——_ " 2dt 1 8
f U;o 1( ) t-T7 T C'< ¢

if @ is sufficiently large (it being understood that, at any point T of
discontinuity of fl(t) at which the limits fl(T + 0) and fl(T -0) exist,

fl(T) is defined as the mean of these two limits). Thus

°° sma(t-l ) 2C
11m ——j P dt = — fl(T)

and similarly for fz(t) so that

lim = [ @) sina(t-T) g = 2C g(7)
a0 T oo t-1 T

(00
which implies that (217)'1/2([,0) g( W) exp(i7TW/)dlW/ = f(T)o
The constant C is independent of the function f(t) and, to determine
it, we choose the function f(t) which is 0 if t < 0 and = exp (izt),
where the imaginary part y of z is positive, if t > 0. Setting
©)
T = 0 and using the already proved fact that (Zw)'l/zjoo) g( W) dJ = £(0)
&
we see that C =- . Thus
2 [
@) -1 l g( /) exp(i T W) dl/ =£(T)

which completes the proof of the Fourier Integral Theorem.
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The Fourier Integral Theorem is one of the most useful
theorems of applied mathematics but, in the form in which we have
stated it, it suffers from a serious disadvantage. The class of
complex-valued functions of the unrestricted real variable t which
possess Property 2 is too restricted. For example, the Heaviside
unit-function u(t) which is defined as follows:

ut) =0if t <0; u(t) =1ift >0; u(0) = %
while possessing Property 1 (since it is continuous save at t = 0) does
not possess Property 2. To remove this disadvantage we intrcduce
a complex variable p = ¢ + ilJ whose real part ¢ is not, necessarily,

zero. Then (J =i(c-p) and the Fourier Integral Theorem may

be written in the form

gli(c-p) ] exp[ T (p-c)] dp

the integration in the complex p-plane being along the line p = ¢

which is parallel to the (J - axis and the Cauchy principal value of the

/2

integral being taken. On multiplying by (271’,)_1 exp(cT ) and

setting (277)—1/2 exp(cT) (D =hn), g [i(c—p)] = k(p) we obtain

1 (c+i o0)
h(t) =571 {c_iw) k{p) exp(7 p) dp

where k(p) = g(LJ) = (2r)"1/2 j “ H(t) exp(-i Wt) dt =
jooh(t) exp(-pt) dt.

200
k(p) is termed the Laplace Transform of the complex-valued function

h(t) of the unrestricted real variable t and the relation
1 (c+i o)
h(7) =51 f k(p) exp (T p) dp is the Laplace version of the
(c-i o)
28



Fourier Integral Theorem. The great advantage of this version is that
h(t) is not required, as is f(t)., to be absolutely integrable over
- oot < oo, It suffices that there exist a real number ¢ such that
exp(-ct) h(t) is absolutely integrable over - o<t < oo, Thus,
for example, if h(t) is zero when t < 0, h(t) may be furnished,
if ¢ > 0, for positive values of t,by any polynomial function of t.
In particular, the Heaviside unit function u(t) possesses, if
c > 0, the Laplace Transform[ooexp(-pt) dt = —113- and
o)

the Laplace version of the Fourier Integral Theorem tells us that

(c+ioo) — 1
2-111—1 exp(TP) dp, ¢ >0, is1if T>0, 5 i T=0
(c-i o) p
and 0 if 7 < 0.
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Lectures on Applied Mathematics
Lecture 5

The Laplace Transform of a Right-sided Function

The function h(t) which appears in the Laplace version of the
Fourier Integral Theorem is connected with the function f(t) which
appeared in the original version by the relation

h(t) = (27)"1/2 exp(ct) £(t)
Since exp(ct) is everywhere continuoas. h{t) possesses, like f(t),
Property 1, i.e., it is piecewise continuous. Since f(t) possesses, by
hypothesis, Property 2, h(t), which need not possess this property,
must be such that there exists a real number ¢ such that exp(-ct)h(t)
possesses Property 2, i.e. is absolutely integrable over
-oo <t <oo, For example, h(t) may be the Heaviside unit-function
u(t) which is defined as follows:

u(t) =0, t <O0; u(t) =1, t > 0; u(0) =%
since, if ¢ is any positive real number, exp(-ct) u(t) is absolutely
integrable over - co<t <oco, the value of the infinite integral

o< oo 1
f Iexp(—ct) u(t) l dt = fo exp(-ct)dt being ¢ - The product of
an-)??:omplex-valued function of the unrestricted real variable t by
u(t) is zero if t < 0 and we term any piecewise continuous complex-valued
function of t which is zero if t < 0 a right-sided function, Similarly,
we term any piecewise continuous complex-valued function of t which
is zero if t > 0 a left-sided function; for example, the product of any

piecewise continuous complex-valued function of t by u(-t) is a
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left-sided function. The Laplace Transform, Lh, of a right-sided

function h(t) is defined by the formula

o0
Lh = f h(t) exp(-pt)dt
where p is any comp?ex number for which the infinite integral on
the right exists (it being not required that this infinite integral
converge absqlutely, i.e., that the infinite integral
foo |h (t)lexp(-ct)dt, where c is the real part of p, exist). Let
us now suppose that Lh exists at some point ¢, of the real axis of the
complex p-plane. We propose to prove that this implies the
existence of Lh at any point p of the complex p-plare whose real
part ¢ is > cy; not only this, but also that Lh is an analytic function
of the complex variable p over the half-plane ¢ > Cq-
Since h(t) exp(-ct) is integrable, by hypothesis, over -co <t {o©
it is integrable over the interval 0 <t < T, where T is any positive

real number, and we denote by H_ _(T) the integral

€1

-
fT h(t) exp(-c lt) dt so that H, (T) is everywhere continuous and,

1
:1?( every point of continuity of h(t), differentiable with the derivative
h(T) exp(-cyT). In view of the continuity of Hc{(T), Hcl(T) is
bounded over any interval 0 < T < b. where b is any positive number,
and this implies, since the infinite integral j’ooh(t) exp(—clt)dt exists,
by hypothesis, that H01(T) is bounded over 02 T < oo ; in other words,
there exists a positive number M which dominates ! H. 1(T) ‘ ., T any
non-negative real number. On writing Lh = jo ~ h(t) exp(-pt)dt in the

o0
form f h(t) exp(-cqt) exp [—(p-cl)t] dt we obtain, on integration
o)

by parts,
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o0

Lh = He, () exp[-(p-c)t | | + (p—cl)[:;lcl(t)exp [—(p-cl)t} dt

0
[ )

= (p-cy) L Hcl(t) exp [-(p-cl)t]dt

provided that the real part ¢ of p >cy. Since

[He, ®) exp [-(p-c1)t]| <M exp[-(e-cq)t] the infinite integral

j;ooHcl(t) exp[-(p—cl) t] dt exists over the half-plane ¢ >cq,

its convergence being absolute. Thus, although the convergence of
the infinite integral Looh(t) exp(-pt)dt which defines Lh need not

be absolute at p = cy, nor at points of the half-plane ¢ >cj;, Lh
exists over this half-plane and may be expressed, over this
half-plane, as the product of p-c; by an infinite integral

j = Hcl(t) exp [-(p-cl)t }dt which converges absolutely over the
hac1>f-p1ane. Let, now, T be any positive real number and let us
consider the integral ¢(p) = LT Hcl(t) exp [—(p-cl) t] dt. Since
Hcl(t) is bounded over the interval 0 <t < T, ¢T(p) is a differentiable
function, i.e, an analytic function, of the complex variable p, its
derivative being - f T HCI(t) exp{ —(p-cl)t] dt no matter what

is the value of p. Zssigning to T, in turn, the values 1, 2, 3,...,
we obtain a sequence of functions¢q(p), ¢5(p), ..., of the complex
variable p which are analytic over the entire finite complex p-plane.
At any point of the half-plane ¢ > ¢4 this sequence converges to
joo Hcl(t) exp [-(p-cl)t] dt = ¢(p), say, and it is easy to see that
th(; convergence is uniform over the half-plane cy + (S < c, where

(3 is any positive number. Indeed, the modulus of
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¢(p) - ¢n(p) = foo He,(t) exp[ -(p-cq)t |dt - ¢,(p) =
O

o

fn Hcl(t) exp[—(p—cl)t]dt is dominated, over the half-plane
cq+ 65 c, by MLM exp[ -(c-cl)t] dt which is, in turn, dominated
by M J:o exp(- (5 t)dt = %I— exp(-n (3 ), which is arbitrarily
small if n is sufficiently large, the choice of n being independent of c.
Since ¢n(p) is analytic over the half-plane ¢ > cq the integral
J C ¢, (p)dp, where C is any simple closed curve of finite length which
is covered by this half-plane, is zero. Since the points of C constitute
a closed set their distances from the line ¢ = ¢ possess a positive
lower bound so that C is covered by a half-plane ¢y + (53 c, if (S

is sufficiently small, and so c ¢(p) dp, which is the same as

-~

[C {gb(p) - ¢n(p)} dp is dominated by %exp(-n 6 ) 1. where 1 is the
length of C. Since C ¢(p)dp is'independent of n it follows that

j c ¢(p) dp = 0 and this implies that ¢(p) is an analytic function of
the complex variable p over the half-plane ¢ >c;. Hence

Lh = (p-c1) ¢(p) is an analytic function of the complex variable p
over the half-plane c > Cq-

Example 1.  h(t) = u(t)

> 1
Here Lh =j exp(-pt)dt = ey c>0
o]

Note Lh does not exist at p = 0, but is exists at ¢ = ¢4 where
cy is any positive number and, if ¢ > 0, there exists a positive
number ¢y, %c for example, such that ¢ >cy.

Example 2. h(t) = exp(at) u(t), @ an arbitrary complex number.
Here Lh = foooexp[—(p-a)t ] dt = —:ia—l_fa , ¢ >real part o of o
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Note Similarly, if, for any right-sided function h(t), Lh = ¢(p), ¢ > cq,

and h'(t) = exp(at) h(t), then Lh' = ¢(p-a), ¢ > ¢y + . This useful

property of the Laplace Transform of a right-sided function is known

as the Translation Theorem.

Example 3. h(t) =t%® u(t), @ a complex number a, + ia;.
The complex power, t®, of a positive real number t is defined

by the relation t® = exp(a log t) so that ‘ta ’: exp(a,. log t) = to%r, where

o0
@, is the real part of @. In order that Lh = t® exp(-pt) dt exist

(o
at the point p = ¢ of the real axis in the complex p-plane we must
have a, > -1 (to take care of the small values of t) and €y >0
(to take care of the large valuesof t). This the Laplace Transform
of t% u(t), where the real part o, of o is > -1, exists, and is an
analytic function of the complex variable p, over the half-plane
¢ > 0, c being the real part of p. On setting pt = s in the infinite

o0
integral t? exp (-pt)dt which furnishes this Laplace Transform
o

oo
I—)—&—'f'—l— j s® exp(—s)ds,
@)

the integration being along the ray from o to oo in the complex p-plane

this infinite integral appears as

which passes through the point p. If R and 6 are the modulus and
argument, respectively, of any point s in the complex p-plane,
s® = exp (a log s) = exp { (ap log R - @i 0) +i (0, 8 + @j log R)}
so that | sa| =exp (ap logR - a; 6) = rROT exp(-a;0) and, since
| exp (-s) | = exp (-R cos 0), we have ‘ s® exp (-s) |=

RYr exp (-aei 0) exp (- R cos 0). Denoting, for a moment, byﬂ
the argument of p, so that —% < ﬂ <% , it follows that along the

arc of the circle s = R exp(0i) in the complex p-plane from 6 = 0 to
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6 = [3, this arclying in the first quadrant if 3> 0 and in the

fourth quadrant ifﬂ <0, ‘ s® exp(-s) i < ror exp( | @, /8 | )exp(-Rcos/G)
and this implies, since Rar+1 exp (- R cos ,G ) tends to zero as

R— oo , that the integral of s exp(-s) along this arc of the circle

s = R exp(6i) tends to zero as R—— oo, or, equivalently, that the

integral of s® exp(-s) along the ray of argument ﬂ from 0 to oo

in the complex p-plane is the same as the integral of s%exp(-s) along

the ray of argument zero from 0 to ©© in the complex p-plane.

This integral, éoota exp(-t)dt, is the Gamma Function, [ (a+1), of

argument o + 1 and so:

The Laplace Transform of t% u(t), where the real part of

M (a+l1)

e , over the half-plane ¢ > 0.
p

ais > -1, is
A simple integration by parts shows that if the real part of o
is not only > -1 but also > 0, then| (a+l) = al” (a) and, since
M@= fooexp(—t)dt = 1, it follows that, if @ is a positive integer,
P (a+1)0= a!. The Laplace version of the Fourier Integral Theorem

tells us that

(c +io9)
1
(c-i o0)

real part of @ > -1; ¢ >0 and inparticular, on setting t = 1, that

1) [ (c+ioo)
1= E_ﬂﬁt_) exp (b) dp; real part of a>-1; ¢>0

i a+1
27i (€-i o0) p
Thus F (a+1) is never zero over the half-plane a,. > -1, where o, is
the real part of a, for which the Laplace Transform of t® u(t) is defined.

If ¢ is real and > -1, [’ (a+1) is real and, since it is continuous and never
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zero, one-signed. Since[ (1) =1 is positive it follows that
[ (a+1) is positive for every real value of a > -1.
Exercise 1. Show that the Laplace Transform operator
Lh =[°o h(t) exp(-pt)dt is linear, i.e., L(h1 +hy) =
Lhy _+°;':h2, L(ah) = aLh, a any complex number. and use this
property to determine the Laplace Transforms of the right-sided
functions sinm t)u(t), cos COt)u(t), /8 any complex number,
indicating in each case the half-planes over which the Laplace
Transforms are analytic functions of the complex variable p.
Exercise 2. Show that if the Laplace Transform,Lh,of a right-sided
function h(t) exists at a point Py =Cq+ il/q of the complex p-plane
then Lh exists, and is an analytic function of the complex variable p,
over the half-plane ¢ > Cy-

Hint. The Laplace Transform of h(t) at Py is the same as
the Laplace Transform of h(t) exp(-i (/;t) at ¢ and the
Laplace Transform of h(t) exp(-i L/4t) at p -i Ul is the same
as the Laplace Transform of h(t) at p.

An important consequence of the Laplace version of the
Fourier Integral Theorem is the following uniqueness theorem:
If two piecewise continuous right-sided functions hy(t), hy(t), possess
Laplace Transforms at a point ¢ of the real axis in the complex p-plane
and if their Laplace Transfarms coincide over the half-plane
¢ >cy, then hz(t) coincides with hq(t) at all points t which are not

discontinuity points of either hl(t) or hz(t). To prove this, we

36



observe that the relation Lh = (p-cl) Lm Hcl(t) exp [-(p-cl)t]dt,
c > cPtells us that the Laplace Transform, over the half-plane
c>cq, of Hcl(t) exp (cqt) is (Lh)/(p-cl)o Since the convergence
of the infinite integral j:oo Hcl(t) exp [-(c-cl)t]dt, c>cyq, is
absolute we may apply tﬂe Laplace version of the Fourier Integral
Theorem to obtain

—— exp(pt)dp

He, (t) exp (cqt) =g
c-io0)  PCy

2mi

(c+i o)
J( Lh

this equality being valid at any continuity point of h(t), since
Hcl(t) exp (c lt) is differentiable at any such continuity point.

Thus Hcl(t) is unambiguously determined, at any continuity point
of h(t), by the values of Lh at the points of the complex p-plane
whose real parts have any common value ¢ > c¢q or, equivalently,
by the values of Lh over the half-plane ¢ > cy. Since the
derivative of HCI(t), at any continuity point of h(t), is h(t) exp(-cqt)
it follows that h(t) is unambiguously determined at any point where
it is continuous by the values of Lh over the half-plane ¢ >c;. In
particular, if Lh = 0 over the half-plane ¢ > cq then h(t) =0

at all its continuity points.

Note. It is not necessary, for the validity of this uniqueness theorem,

that the Laplace Transforms, at the point p = ¢y, of hy(t) and hy(t)

be absolutely convergent.
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Lectures on Applied Mathematics
Lecture 6

The Laplace Transform of exp(-tz)

We have seen that if the Laplace Transform, Lh, of a piecewise
continuous right-sided function h(t) exists at a point ¢y of the real
axis of the complex p-plane then Lh exists, and is an analytic function
of the complex variable p, over the half-plane ¢ > cy, So that Lh
possesses a derivative with respect to p over this half-piane. If

(v}
h(t) is left-sided, instead of right-sided, Lh = f h(t)exp(-pt) dt =

oo
o0 o0
f h(-t') exp (pt') dt', t' = f h(-t') exp(-p't') dt',
o0
= -p, j h(-t) exp (-p t)dt and h(-t) is a right-sided function
of t so that, if Lh exists at p'= c1 = -Cy it exists, and is an analytic

function of the complex variable p', over the half-plane ¢' > cy
which is the same thing as saying that if Lh exists at p = cq it
exists, and is an analytic function of the complex variable p,

over the half-plane, ¢ < cq- If h(t) is neither right-sided nor
left-sided we may write it, since u(t) + u(-t) is the constant
function 1, as the sum of a right-sided and a left-sided function as
follows: h(t) = h(t) u(t) + h(t) u(-t). If, then, the Laplace Transform
of the piecewise continuous right-sided function h(t) u(t) exists at a
point p = ¢4 of the real axis in the complex p-plane and if the
Laplace Transform of the piecewise continuous left-sided function
h(t) u(-t) exists at a point p = ¢y Of this real axis, and if ¢, > {5

Lh exists, and is an analytic function of the complex variable p,
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over the strip ¢y <c <cg parallel to the imaginary axis in the
complex p-plane. For example, exp(-tz) is the sum of the right-
sided function exp(-t2) u(t) and the left-sided function exp(-t2) u(-t)
and each of these functions possesses a Laplace Transform at any
point ¢y of the real axis in the complex p-plane. Indeed,

2 C% €1
exp (-t¢) exp(-cqt) =exp _- exp (-vz), v=t+ 5
4

and so both of the infinite integrals
o0 c] oo
f exp(-t2) exp(-cqt)dt = exp 2 exp(-v2)dv
(o]
2 )
\ @Vz @}2

° 2 1 2
exp(-t°) exp(—clt)dt =exp| — ) f exp(-v4) dv
loo 4 Joo

exist, exp(-v2) being dominated by (1+v2)'1 no matter what is the

value of the real variable v. Thus the Laplace Transform of
exp(—tz) exists, and is an analytic function of the complex variable
p, over any strip cq < ¢ < ¢y parallel to the imaginary axis in the
p-plane; in other words, the Laplace Transform of exp(-tz) is

an analytic function of p over the entire finite complex p-plane.

At any point cq of the real axis in the complgx p-plane this

c
Laplace Transform has the value A exp (_1 where

A= j(clyz exp (-v2) dv + _[ exp(-v2) dv = fooexp(-Vz)dV-
). i -

In order to evaluate this infinite integral we observe that, if

(r, 6) are plane polar coordinates, the double integral of

exp(-r2) over the circle of radius R with center at the origin is
f exp(-r2) rdrd6 = 7 {1 - exp(-Rz)} and that the double integral

of exp(-r2) over the square of side 2b with center at the origin and

39



with sides parallel to the coordinate axes is, since r2 = x2+y2,

the square of the integral j ' exp(-tz)dta Since this square of

side 2b is covered by the ci_:)cle of radius R, if R is large enough,

we know that the square of fb exp(-tz)dt < {1_exp(_q2)} ,

if R is large enough, and so-:)he square of j bexp(—tz) dt is less

than 7, no matter what is the value of b. I-I_elx)lce the infinite integral
j c><)exp(-tz)dt exists with a value < 171/ 2 On the other hand, the

;:mre of side 2b covers the circle of radius R, if b is large enough,

and this leads to the opposite inequality f ooexp( tz)dt > 71/2, Thus
fooexp tz')dt = 1r1/2 so that the Laplace Transform of exp(-t2)

assumes the value 7r1/2 exp ((;1 ) at any point cq of the real axis

in the complex p-plane. Hence it coincides with the analytic function

2
711/2 exp —p‘—l—— on the real axis in the complex p-plane and this implies/
since it is analytic over the entire finite complex p-plane, that it
2
is 111/ 2 exp p4 over the entire finite complex p-plane:
2

=— ], p arbitrary.

f exp(-t2) exp(-pt)dt = 7l/2 exp
(%)

On setting t = k1/2 t', p= k'l/zp' where Kk is any positive real

12
number, we obtainf exp(- kt'z) exp-(p't')dt' = ( ) exp I;_)
=00
2 2
so that the Laplace Transform of exp(- ktz), k>0, 1s( ) exp fl)k)
1
In particular, on setting k = 5 the Laplace Transform of

exp is (217)1/2 exp

_¢2 p2
2 5 ) ’

On evaluating the Laplace Transform of exp(-kt2), k > 0, at
any point p = i/ of the imaginary axis of the complex p-plane, we

2
obtainf exp(-kt?) exp(-ilJ t)dt-( ) expa-;{/ ) and it
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follows, on multiplication by (21r)'1/ 2 that the Fourier Transform

of exp(-ktz) is (2k)‘1/ 2 exp [——— In particular, on setting

k = 35 the Fourier Transform of exp(-% t2) is exp(- %wz);
this result is expressed by the statement that exp(- %tz) is its
own Fourier Transform.

The Laplace Transform of the one-sided functions
exp(-ktz) u(t), exp(-ktz) u(-t), k > 0, are not as simple as the

Laplace Transform of their sum exp(-ktz). For example, the

Laplace Transform of exp(-ktz)u(t), k >0, is

2
’: :exp(-ktz) exp(-pt)dt = exp %k_) [‘Xéxp [-k(t+ ZII)«':) 2] dt =
O
(o]

2 & D
k~1/2 exp (f_k) f exp(-z2) dz, z = k1/2(t + 2k )» the
P
2k172

integration in the complex z-plane being along the ray of argument

p -
zero from 2——1{172 toco. Slmlzlarly, thepLaplace Transform of
—‘%—) Ek172 exp(—zz)dz,the

exp(-kt2) u(-t) is k-1/2 exp

integration being along the ray of argument zero from

1
-oco=00 exp(ir) to 251 5 . In particular, when k = 2’ the

t2 9 o
Laplace Transform of exp (-T) u(t) is 2 exp(p%) L exp(-z2)dz

2 p
and the Laplace Transform of exp(-t—4 ) u(-t) is 2 exp(pz) f exp(-zz)dzo
200
If we are certain that it is permissible to differentiate with
respect to k, under the sign of integration, the infinite integral

o0
f exp(-ktz) exp(-pt) dt which furnishes the Laplace Transform,

-

(51/2 exp

, of exp(—ktz)9 k > 0, we may obtain the relation
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-k -pt)dt = (- XP |-
f t* exp(-kt?) exp(-pt)dt = (--)/ % exp |7 ) | oo+

which furnishes us with the Laplace Transform of tzexp(-ktz) and,

continuing this process, we may obtain the Laplace Transform of the
product of exp(-ktz) by any even power of t (always provided that
the differentiation of the infinite integral involved with respect to
k, under the integral sign, is legitimate). Similarly, if we are
certain that it is legitimate to differentiate, under the integral sign,
the infinite integral <>;xaexp(-ktz) exp(-pt)dt with respect to p or,
equivalently, with r;spect to the real part ¢ of p, we may obtain
the relation

j:t exp(—kt‘?‘) exp(-pt)dt = ( %)1/2 221«: exp %22
which furnishes us with the Laplace Transform of t exp(~kt2), k>0,
and continuing this process we may obtain, always under the same
proviso, the Laplace Transform of the product of exp(-ktz) by any
positive integral power, odd or even, of t. In order to formulate,
in as convenient a manner as possible, conditions which guarantee
the validity of this differentiation of an infinite integral under the
integral sign we shall consider the case where we propose to
differentiate the infinite integral o?‘l(t) exp(-pt)dt, which furnishes
the Laplace Transform of h(t), “;1(:; respect to the real part c of
the complex variable p =c +i (J . The integrand,h(t) exp(-pt), of
this infinite integral is a function F(t, c) of the two real variables
(t, c), the imaginary part (/ of p being supposed held constant,

and the derivative, F,(t,c), of F(t,c) with respect to ¢, being

-t h(t) exp(-pt), is since h(t) is, by hypothesis, a piecewise
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continuous function of the unrestricted real variable t, either

a continuous function of the two variables (t, c) over any strip
-0t <oo, ¢y < ¢ < ¢y parallel to the t-axis in the (t, c)-plane,
or else its points of discontinuity in any rectangle a <t <b,

Cyq <c <Lc,, where a and b are any two real numbers which are

97
such that a <b and ¢y, ¢y are any two real numbers which are
such that cq < ¢y, lie on a finite number of lines parallel to the
c-axis. We make now the following two additional hypotheses
concerning the function F(t, c) of the two real variables (t,c):

1) Fc(t, c) is absolutely integrable with respect to t, for
every value of ¢ in a given closed interval ¢y <c¢ < Cy»
over -oco<t <oo .,

o0
2) The convergence of the infinite integral Fc(t, c) dt is

o0
uniform with respect to c over the interval ¢y <c < cg

and a single hypothesis concerning F(t, c):
00
3) The infinite integral f F(t, cq)dt exists
=00
and we shall show in the following paragraph that these three hypotheses are

sufficient to guarantee the following three facts:

o0
1') The infinite integral f F(t, c) dt exists for each value

of ¢ in the intervalcy <c _<_czo

o0
2") F(t, c) dt is a differentiable function of ¢ over the
E{e o]

interval cq <c<K Cye
o
3') The derivative of j F(t, c) dt with respect to ¢, where
o

cQ
c1 <c < cgy, is furnished by the formula (L F(t,c)dt), =
oo =
Fe (t, C) dt.
Zoo
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In other words, differentiation of the infinite integral

oo
j F(t, c) dt, with respect to ¢, under the integral sign is
-00
legitimate.

OO
Writing (t ¢) dt in the form (t c) dt +

=0

R (c), a <b, we know from 2), that

'2 (c) l may be made
arbltrarlly small, say <€ , for every c in the interval
q <c < Coy by making -a and b positive and sufficiently
large, the choice of a and b being independent of c. If,

then, a and b are so chosen that Rg(c) ] <€ ,cp<c<ecy,

and ¢ and ¢ + A c are any two values of ¢ in the interval

Af F.(t, c) dt l Af Fo(t, c)dt
where A[ F,(t, c)dt denotes {jolg (t, c+Ac)dt f clt c)dt}

and similarly for A f F,(t,c)dt. If F(t, c) is a continuous function

c; <c <cgy we have +2€

of the two variables (t, c) over the rectangle a<t <b, c1 <c < cy,

it is a uniformly continuous function of the two variables (t, c)

over this rectangle and so‘ A Fc(t9 c) Fo(t, c+ A c) - Fc(t, c)

may be made arbitrarily small, say < b€ , by making
-a

‘Ac ‘ sufficiently small, the choice of AL being 1ndependent of

Aj olt c)dtl =

either t or ¢. Supposing Ac so chosen, we have

U AFc(t,c)dti_gf

a

AF,(t,clt < € which implies that

oo b
Af F (t,c)dt | <3€ . Thusthe two integralsj F (t,c)dt,
Joo C a c

o0
j Fc(t, c)dt and, hence, their difference R:(c), are continuous
-0
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functions of ¢ over the interval 4 < c<cy. This conclusion
remains true, by virtue of 1), when Fc(t, c) fails to be continuous
over the rectangle a <t <b, ¢y <c < Cos since, by hypothesis,
its points of discontinuity in this rectangle lie on a finite number
of lines parallel to the c-axis in the (t,c)-plane. To prove this it
suffices to treat the case where the points of discontinuity lie on
b
a single line t = d, where a <d <b. We writef Fc(t, c)dt
d-0 d+ a b
in the formf F(t,c)dt + f 2 F,(t,c)dt + f F (t,c)dt,
c
a d-6 d+

1 2
where (S 1 and (S 9 are positive numbers which are less than
d-a and b-d, respectively. The first and third of these three
integrals are continuous function of ¢ over the interval
¢y L c<Lcy, since Fc(t, ¢) is a continuous function of the two
variables (t, c) over the rectangles a <t <d- 61, c1Lc<Lcy
and d + (5 9 <t<h, cy <c<L Cgy» and we direct our attention
to the second. The modulus of this second integral may be
made arbitrarily small, say < € , by choosing 61 and 62
sufficiently small, the choice of (5 1 and (52 being, by virtue
of 2), indepenc(lsent of c. Supposing 61 and 62 so chosen, we

d+
A f 2 F (t,c)dt
d- 0 c

have < 2€ and it follows that, if ¢

1 6
d-
is chosen so small that‘Af 1 Fc(t,c)dt <€ and

a

b b
Af F,(t,c)dtc€ that Af Fc(t,c)dtl<4€ which implies
d+(S2 a
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(o o]
that IA f F.(t,c)dt l < 6 € proving the continuity of the two
fo%e] b 0o
integralsf Fc(t,c)dt, f Fc(t,c)dt and, hence, of their
a Zoo

difference Rg(c), over the interval ¢y <c < c,. Hence the three

a
a
integrable over the interval ¢ 1 <c<L Coy and, if ¢' is any point of

b >° b
functionsf F,(t,c)dt, f F (t,c)dt and &K° (c) of ¢ are
Zoo Cc

this interval, we have the relation

j ¢ {EoFc(t,c)dt} dec = j ¢ { jb Fc(t,c)dt} dc +
= c a

¢/

c'
j Rb (c)dc.
c/ a

IfF c(t,c) is a continuous function of the two variables (t,c) over the
rectangle a <t <b, clg c < Cqs the order of integration may be
changed in the repeated integral on the right and the same argument
as before shows that this remains true, by virtue of 1) and 2), when
F.(t,c) fails to be continuous over the rectangle a <t <b,

cy <c<c, Hence

c' [ege) b c'
fc {LFc(t,C)dt} dc = fa {jc Fc(t,c)dc} dt +

1
c' b
f Ra (c) dc so that

fc'g fo;‘c(t,c)dt} de - fbg'/'c' Fc(t,c)dc} dt
=00 a d,

€l
46
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=00

' o
c{f Fc(t,c)dt } dc. Since
Zoo

c'
f F (t,c)dc = F(t,c') - F(t, cl) it follows, by virtue of 3), that
c/ ¢
o0
the infinite integral f F(t,c') dt exists, for every point ¢’ of the
oo

oo, C
proving the existence of the infinite integral f j F c(t,c)dc? dt
¢/

with the value f
c

c'|{ roo
interval ¢, <c¢' <c_, its value being F (t,c)dt ) dc +
= 2 ¢/ Ldoo ¢

Loo F(t, cl)dt. The first of these two terms is a differentiable
f;mction of ¢', since _Lo - F c(t,c)dt is a continuous function of c,
and the second is a constant function of ¢'. Hence the infinite
integral j e F(t,c')dt is a differentiable function of c' over the
interval ;T_g ¢' <cy, its derivative being j = Fc(t, c')dt. This
completes the proof of the legitimacy of diff-erentiating the infinite
integral j > F(t, c)dt with respect to c under the sign of integration,
o0

when Fc(t, c) satisfies conditions 1) and 2) and F(t,c) satisfies

condition 3).
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Lectures on Applied Mathematics

Lecture 7
The Laplace Transform of the Product of a Right-sided Function by_t
and of the Integral of a Right-sided Function over the Interval [O,t]

We have seen that if a piecewise continuous right-sided function
h(t) possesses a Laplace Transform Lh, which need not be absolutely
convergent, at a point ¢4 of the real axis in the complex p-plane then
Lh may be written, over the half-plane ¢ > cq in the form .

Lh = (p-cl) wacl(t) exp [—(p-cl)t] dt where Hcl(t)=j;) h(s)exp(-cs)ds,
the convergence ;f the infinite integral which multiplies p-c; being
absolute over this half-plane. The integrand, Hcl(t) exp [-(p-c l)t} ,
of this infinite integral is a function F(t,c), of the ‘two real variables (t,c),
where c is the real part of p, it being understood that the imaginary part

(J of p is held constant, and the derivative of this function with
respect to ¢, being the same as its derivative with respect to p, exists

at every point p of the finite complex p-plane, with the value

1
Cz-c ’

'tHcl(t) exp[—(p-cl)t ] . Since 0 <t exp [-(cz—c)t]<
if g >candt >0, tH, (t) exp [ -(cg-eq)t] =
tHcl(t) exp[ -(cz-c)t] exp [-(c-cl)t] y g <c<cy, is absolutely
integrable over 0 <t < oo (since Hcl(t) exp [-c-cl)t] , ¢ <c <cy, is
absolutely integrable over 0 <t <o0). Thus the infinite integral

Loo Fc(t,c)dt converges absolutely over the half-plane ¢ > Cy-
Moreover, the convergence of this infinite integral is uniform over the

half-plane ¢ ch + (S, where (S is any positive number, since, over

this half-plane,

exp {-(p-cl)t] = exp [—(c—cl)t] <exp (-0 t),and

so it is permissible to differentiate with respect to ¢ or, equivalently,
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with respect to p, under the sign of integration, the infinite integral
fooHcl(t) exp [ -(p-cl)t ] dt, p being any point of the half-plane

c >Oc1; indeed, if ¢ > ¢4, we may set (S = % (c-c4) and

ensure that ¢ > cy+ (S Thus

o0 [ege)
(Lh), = | He (®) exp[ -(p-cq)t ] dt - (p-cq) | tHe,(®exp[-(p-cpt]dt, e>ey
(¢] (e]

(o )
= l Hcl(t) { t exp[—(p-cl)t]}t dt, ¢ > ¢y
and the right-hand side of this equation reduces, on integration by parts,
since H, (o) exists and since t exp -(c-cl)t tends to zero as t—# oo, to
-foo t h(t) exp (-pt)dt. Thus we have the following useful result:

° If the piecewise continuous right-sided function h(t) possesses, at a
point cy of the real axis in the complex p-plane, a Laplace Transform,
whose convergence need not be absolute, then the product, th(t) of h(t)
by t possesses, over the half-plane ¢ > Cy the Laplace Transform
-(Lh),,

We express this result by the statement that multiplication of a
piecewise continuous right-sided function by t is reflected, in the
domain of Laplace Transforms, by differentiation with respect to p

followed by a change of sign.

Example. exp( at) u(t) possesses, over the half-plane ¢ > ., where

@, is the real part of a, the Laplace Transform D - Hence
t exp(at) u(t) possesses, over the half-plane ¢ > o, the Laplace
Transform _(._1_)2_ Continuing this process we see that, if n is

p-a

any positive integer, t exp(at) u(t) possesses, over the half-plane

n!
¢ > o, the Laplace Transform p-a)irl -
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Note. This is a special case of the result that t8 exp (at) u(t),

where B is any complex number whose real part is > -1, possesses,
[ (8+1)

b
(p-a)B+1
which result is an immediate consequence of an application of the

over the half-plane ¢ > ., the Laplace Transform

Transldion Theorem to the result that tB u(t) possesses, over the

half-plane ¢ > 0, the Laplace Transform -EB+—(1I3+—1)- .
p
Let us now consider a piecewise continuous right-sided function
t
h(t) which is such that the integral f h(s)ds = HO(t), which we
0

shall denote simply by H(t), exists over 0 <t <oo., We do not assume
the existence of H(o©), i.e., that h(t) possessesatp =0 a

Laplace Transform, but we do assume the existence of a positive

real number cq such that h(t) possesses at p = cya Laplace Transform
which need not be absolutely convergent. H(t) is an everywhere
continuous right-sided function, which is, in addition, differentiable,
with derivative h(t), at the points of continuity of h(t). The function
o(t) = f t H(v) exp (-c,v) dv exists, since H(t) is everywhere continuous,
over 0 got < o0 and is an everywhere differentiable function, its
derivative being H(t) exp (-c lt)n Since H (0) = 0, we obtain, on
integration by parts,

¢(t)=_H(t) ixp (cext) 1

t
) H fo h(v) exp (-clv) dv
t
sotha ¢(t) exp (clt) = - -I:cm—)— + M f h(v) exp (-cqv) dv,
0

C
1 1
Hence, at the points of continuity of h(t), {qb(t) exp (c 1t)}t

h(t)
-2

1
and this implies, since the derivative of ¢(t) is continuous over 0 <t <o,

t t
+ exp(clt) L h(v) exp(-clv)dv +2—(;—)=exp(c1t)J; h(v)exp(-clv)dv

t
that g o(t) exp (clt)} ¢ = €xp (clt) j; h(v) exp (-clv) dv over 0 <t < oo, Since
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h(t) possesses, by hypothesis, a Laplace Transform at p = ¢y, it
follows that the quotient of {¢(t) exp (c 1t)} ¢ by exp (c 1t) e

{ (-:IT exp (clt) }t has, att =0, the limit (Lh)p=c1’ and we

shall show in the next paragraph that this implies that the quotient of
¢(t) exp (cqt) by E% exp (c 1t) has, at t =00, the same limit,
(Lh)pzcl‘ Assuming this, for tthe moment, it follows that

cq o(t) = - H(t) exp (-clt) + fo h(v) exp (-clv) dv has, att =00,

the limit (Lh)p=cl and, since the second term on the right has,

at t =oo, the limit (Lh)p=cl’ this implies that H(t) exp (-ct)

has at t =00, the limit zero. The existence of the limit, att =oo,
of ¢(t) = j ‘ H(V) exp (-clv) dv assures us that H(t) possesses, at
p=cypa La(:)lace Transform and this implies that the Laplace Transform

of H(t) exists, and is an analytic function of the complex variable p,

over the half-plane ¢ > cq. Since the limit, at t =00, of ¢(t)

t
- H(t) exp ('C]_t) + cl j h(V) exp(-CIV) dv is

o0
1 j h(v) exp (-cv) dv we see that (LH) _ . = 1 (Lh)
€1 o p=C1 ¢y

p=cy’
The number c, may be replaced throughout the entire preceding
argument by any real number > ¢4, and so the value of (LH) at any
point p = ¢ of the real axis in the complex p-plane which lies to the
right of the point p = 4 is the quotient of the value of Lh at p = ¢ by c.
Since both —I;)E and LH are analytic functions of the complex variable
p over the half-plane ¢ > Cy it follows that LH = % (Lh) over this

half-plane. We express this result, which is the central one in the
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theory of Laplace Transforms, as follows:

Integration with respect to t, over the interval[O, t] , of a
right-sided function is reflected, in the domain of Laplace Transforms,
by division of p.

To complete the proof of this fundamental theorem let us denote
o(t) exp (c 1t) by £(t) and exp (c 1t) by g(t). Since g(t) is monotone

increasing and unbounded at t =00, we may associate with any positive

real number t a real number T >t such that, if t' > T,

) 1< ¢; |8l €
g(t') g(t’) - g(®) l <

where € is an arbitrary positive number. Applying the Theorem of

the Mean of differential calculus to the function
f(t') - £(t)
g(t') - g(t)
function vanishes when s =t and when s =t, we see that

) 1) - 1) ={f(t‘) _ ) } g(t')
gt(t") g(t') - g(t) gt')  gt) 1 gt) - gt)

f(s) - £(t) - {g(s) - g(t)} of the real variable s, which

where t'" is some real number between t andt'. As t— o0 so also

f (41
do t' and t" and so tt") is of the form /{ + 2/1, where l V) |is
gt(tn)
arbitrarily small, say < ¢ , if t is sufficiently large, 4 being the
fi(t t' t
limit, at t =oo, of —L | Also S0l _;, &®
gt(t) g(t)-g(t) glt") - g(t)
f(t)
1+ VUV, where |V |<€ for everyt, and —— = 1/_, where
2 2 g(t") 3

() o, o A+ U / Vi-L Y

[ —_ AT
g(t') 3 1+U:2 1+ U2

i Vs i < € for everyt, and so
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f(t') /

so that
g(t')

is arbitrarily small if t' > T is sufficiently large.

Hence % has, at t = oo, the limit /.

The theorem which states that integration of piecewise continuous
right-sided functions over the interval [O,t] is reflected, in the domain
of Laplace Transforms, by division by p may be presented in a
different form which is useful in the application of the Laplace Transformation
to differential equations. Let us suppose that the right-sided function
h(t) is continuous over 0 <t <°°, without being, necessarily,
continuous at t = 0, so that h(+0) may be different from zero, and that
h(t) possesses over 0 <t < oo a piecewise continuous derivative
ht(t). Writing fot ht(s) ds = h(t) - h(+0), h(t) - h(+0) plays the role
of H(t), and so the mere assumption that L(ht) exists at a point ¢
of the positive part of the real axis in the complex p-plane guarantees
that L {h(t) - h(+0)} exists, and is an analytic function of the complex
variable p,over the half-plane ¢ > ¢y and, furthermore, that

L {h(t) ; h(+0)}= Lib)

over the half-plane ¢ > 0, it follows that

h(+0)

over this half-plane. Since L {h(+0)§=

L(ht)=pLh-h(+0) ; €>cq>0
We express this result by the statement that differentiation of a
right-sided function h(t) is reflected, in the domain of Laplace

Transforms, by multiplication by p followed by subtraction of h(+0).
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Similarly, if h_is continuous over 0 <t < o© and hy is

t
piecewise continuous and possesses a Laplace Transform at p = cq1 >0,
then

L(hy) = p L(h,) - h(+0) = p2 Lh - ph(+0) - h, (+0),

and so on.
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Lectures on Applied Mathematics
Lecture 8

Functions of Exponential Type

The right-sided function exp(a t) u(t), where a is any

complex number, possesses, over the half-plane ¢ > a,., where
1

p-a

Laplace Transform is not only an analytic function of the complex

a,. is the real part of @, the Laplace Transform This
variable p over the half-plane ¢ > a,,, but it possesses, in
addition, the following two properties:
a) It is zero at p =oo
b) It is analytic over the neighborhood lpl > \a | of p=o0
It follows that any finite linear combination, C; exp (alt) u(t) +
Cy exp(agt) u(t) + ... +Cj exp (a,t) u(t), where Cy,..., C, are
any complex constants, of right-sided functions of the form
exp (at) u(t) possesses the two additional properties a) and b).
We term any piecewise continuous right-sided function h(t) a
function of exponential type if it shares with any such finite linear
combination of right-sided functions of the form exp(at) u(t) the
following three properties:
1) Lh exists at some point ¢4 of the real axis in the complex
p-plane;
2) The analytic function, f(p), of the complex variable p which is
f urnished, over the half-plane ¢ > Cy by Lh is zero at p =00
3) f(p) is analytic over some neighborhood |p| >R>0o0f p=oo
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and we proceed to investigate what properties of a given piecewise
continuous right-sided function h(t) are sufficient to ensure that h(t)

. . . ao aj
is of exponential type. On denoting by 3 + o7 + ... 4+ p_n_+1 + e

the power series development of f(p) over the neighborhood
l p‘ > R of p =oo this infinite series converges absolutely at p = R+(S
where (S is any positive number, and it may also converge (not,

necessarily, absolutely) at p = R. For example, if f(p) = (1+p2)'1/ 2 -
-1

1 1 1 1 1.3 .

ol 1+T == (1- + - ... , a_is zero when

n is odd while ag =1, a9 = —-;-, ay = Lf’_, «es - Thus

/2 /2 om

a9y = (-1)™m 2 J' cos2M § d6 and Ef cos 6 de is an
T Jo 0

monotone decreasing function of m which has the limit zero at
m = oo(since it is dominated by g[(5+ (cos o) )zm ( % -0 )] where 6
T

1
is any positive number < -121) so that the infinite series 1 - 5t ;——i—' -

being alternating, is convergent. Thus the infinite series
1_1 1.3

= —_— +

over the neighborhoodj pl > 1 of p =c0, also converges at p = 1.

5 ~«-+ Which converges, with the sum (1+p2)-1/2,

On the other hand, if f(p) = (1-p2)'1/2, the corresponding infinite

series %- + 1 T+ 1.3 + ..., which also converges, but with

2p 2. 4p5

the sum (1-p2)'1/2, over the neighborhood |p | > 1 of p = o0, fails to
1.3...(2m-1) > 2.4...2m-2) _ 1

converge at p = 1; indeed

. 2m 2.4...2m 2m
P . 1 1.3
so that the infinite series 1 + 5t 5 4 + ... does not converge.
We use the symbol r to denote R, if the infinite series 20 + a—zl + ...
p p

converges at p = R, and to denote R + 6, where 6 is an
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arbitrarily small positive number, otherwise. Thus the infinite
a
series 39_ T converges and this implies that '_I_l_l
r r2 rn+l

is arbitrarily small, say < €, if n is sufficiently large, say > N.
If, then, M is any positive number which dominates each of the

a,
N + 1 numbers |ag]|, |a1| , . |aN-1|, €r, we have ]_n_‘ <M,
r rN-l ri
n=0, 1, 2, ..., and this implies that the two infinite power

series in the complex variable z:

2, ,°%-1 ,n-1 |ag| 2

ag + a(z + z% 4+ .. 207+ ... lapg| + |aq] z+ L& 29 4 L
0*21%+ =3 -1)! |20 lll 21
+ | aﬂ"1| 2l converge over the ‘entire finite complex

(n-1)!

z-plane, their sums at any point z of this plane being each dominated
by M exp (r |z|). Assigning real values to z we obtain two functions

k(t), k*(t) of the unrestricted real variable t, where

- an -
+ an 1 tn-l I n ll

(n-1)! (n-1)!
and we know that both |k(t)| and I k*(t)l <M exp(r It ). For example,
t2 4

when f(p) = (1+p2)'1/2, k(t) =1 - -7 * LI ... and k*(t) =

2 4 24 22 42
1+ 52 +2—§-—-2 + ... . In this case k(t) is known as the Bessel Function,

-4

tn-1, .

k(t) = ag -alt oo +...k*(t) = |a0| + |a1| t+.. .+

Jo(t), of the first kind, of index zero, and k*(t) is known as the modified
Bessel Function, Io(t) = Jo(it), of the first kind, of index zero, and
since r = 1 and we can take M = 1, we know that both JO(t) and I (t)

are dominated, over - o<t <0, by exp |t l . We shall study the
functions J 0(t) and Iy(t) in detail and shall see that the inequality

!Jo(t)| < exp[t | is very crude for large values oflt] , it being possible

to replace this inequality by the inequalityl Jo(t) | < 1, but we cannot
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thus improve on the inequality IIO(t) ’ < exp|t| . The inequality
‘Jo(t)\ <1 assures us that the right-sided function hy(t) = J4(t) u(t)
possesses, over the half-plane ¢ > 0, a Laplace Transform and we
shall see that this Laplace Transform is (1+p2)~1/2. Similarly the
right-sided function ho*(t) = Ip(t) u(t) possesses, over the half-plane

1/2 The fact that

¢ > 1, the Laplace Transform (1-p2)”
ho(t) =J O(t) u(t) possesses a Laplace Transform over the half-plane
¢ > 0, as contrasted with ho*(t) = Io(t) u(t) which does not possess
a Laplace Transform over the half-plane ¢ > cq if ¢y <1, is due

to the fact that (1+p2)'1/ 2 does not have a singular point in the
half-plane ¢ > 0 while p = 1 is a singular point of (1—p2)'1/2 .

Since the two functions

n-1 p-1
m-n1t

k(t)=a0+a1t+... + . k*(t):laol-p'al‘t.‘.,,,

|2n-1| -1,
(n-1)!

. of the unrestricted real variable t are dominated,

over - o< t < oo, by M exp(r | t|) the two right-sided functions
h'(t) = k(t) u(t) ; h*(t) = k*(t) u(t)
the latter of which is a non-negative real-valued function of t,
possess Laplace Transforms whichare analytic functions of the complex
variable p over the half-plane ¢ > r or, equivalently, since 6 , if it is

not zero, is arbitrarily small, over the half-plane ¢ > R. If we
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denote by h'y(t) and h‘2(t) the real and imaginary parts, respectively,

of h'(t) both h' 1(t) and h'z(t), being dominated by ! h'(t) | , also

possess Laplace Transforms which are analytic functions of the
complex variable p over the half-plane ¢ > R and this implies that

each of the following four non-negative real-valued right-sided
functions of the unrestricted real variable t, h*(t) ih'l(t)’ h*(t) + h'2(t),
whose non-negativeness follows from the inequality |h'(t)| < h*(t),
possesses a Laplace Transform which is an analytic function of the

complex variable p over the half-plane ¢ > R. Denoting by
Ap-1
(n-1)!
series whose sum is k*(t) + kl(t), for example, where kl(t) is the

A0 +At+... tn-1 . . the everywhere convergent infinite
real part of k(t), the coefficients Ap A1, ... of this series are all
non-negative real numbers, since ‘ a1 \+ the real part of a,_j,
n=1, 2, ..., is a non-negative real number, and we propose to
show that the Laplace Transform,over the half-plane ¢ > R, of

h*(t) + h'l(t) is furnished by the sum of the infinite series,

éO_ + fi + ..., the non-negativeness of the real numbers Ag, Agy- -
priayingp :zm essential role in our proof. A similar result holds for

the other three non-negative real-valued right-sided functions

h*(t) - h'l(t), h*(t) + h'z(t), h*(t) - h'z(t) and, since h'.(t) is the linear
combination é { h*(t) + h'l(t)} - %{h*(t) - h'l(t)} + '1?: {h*(t) + h'z(t)}

i
-3 {h*(t) - h'z(t)} of the four non-negative real-valued right-sided
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functions h*(t) + h'l(t)_g h*(t) + h'z(t)9 it follows that the
Laplace Transform, over the half-plane ¢ > R, of h'(t) is the

a a
sam of the infinite power series 20 ¢ 21 + ... . In other

2

words, the two right-sided functioﬁs h(t§) and h'(t) possess,
over the half-plane ¢ > R, coincident Laplace Transforms, and
this implies that h(t) coincides with h'(t) at any point t which is a
continuity point of both h(t) and h'(t). h'(t) is everywhere continuous,
save, possibly, att = 0 and so h(t) coincides with h'(t) at every
continuity point save, possibly, t = 0 of h(t). Hence h(t+0) and
h(t-0) exist, with the common value h'(t), at any discontinuity
point, if one exists, of h(t) and, since we have agreed to set
h(t) = °21- {h(t+0) + h(t-O)}at any discontinuity point of h(t) where
both h(t+0) and h(t-0) exist, it follows that h(t) is coincident with
h'(t) = k(t) u(t).

Once, then, we shall have proved that the Laplace Transform,
over the half-plane ¢ > R, of h*(t) + h'{(t) is f-Q— + A1

2
p p
we shall know that h(t) is of the form k(t) u(t) where k(t) is the

+ .o

sum of an everywhere convergent power series in t, this power

series being such that both |k(z)| and | k*(z)|, where z is an

arbitrary complex number and k*(z) is the sum of the power series

a
obtained from the power series ag+ayz+ 2 2
2!

sum isk(z) by replacing each of its coefficients by its absolute value,

+ ... whose

are dominated, over the entire finite complex z-plane, by a constant

times exp r |z |, r being = R if the power series a0 % T
R R
converges and being = R + (S , Where (5 is an arbitrary positive number,
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otherwise. For example, the function of exponential type whose
Laplace Transform, over the half-plane ¢ > 1, is (1+p2)'1/2p is
J,(t) u(t) and the function of exponential type whose Laplace Transform,
over the half-plane ¢ > 1, is (1 - p?-)'l/2 is J*O(t) u(t) = Io(t)u(t)
and J O(z) is dominated, over the entire finite complex z-plane, by
a constant (actually 1) times exp |z | while Iy(z) is dominated , over
the entire finite complex z-plane, by a constant times
exp (1+(5 ) lzl, 6 any positive number. Actually, since Io(z) =
J O(iz), I5(z) is dominated, over the entire finite complex z-plane,
by exp|z|. We shall prove in our next lecture that the Laplace
Transform, over the half-plane ¢ > R, of h*(t) + h'{(t) is
A0 4 Al , ... and, furthermore, that if h(t) is the product of
ul()t) byptzhe sum, k(t), of an everywhere convergent infinite series
ag+agt+ 242, ... which is such that k(z) = ag + a; z + 2 3., ...
2! 2!

is dominated, over the entire finite complex z-plane, by a constant
times exp (r ‘z \), where r is a positive real number, then h(t) is
of exponential type. In other words, this property of right-sided
functions is characteristic of functions of exponential type; every
function of -exponential type possesses it and every right-sided function
which possesses it is of exponential type.

We conclude with the observation that the convergence of the
Laplace Transform, over the half-plane ¢ > R, of a function h(t) of

exponential type is absolute, since l h(t) {_g h*(t) and h*(t) possesses,

a
over the half-plane ¢ > R, the Laplace Transform I_QI + Iil_l + 0.
p p2
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Lectures on Applied Mathematics
Lecture 9

The Characterization of Functions of Exponential Type

Our first task is to show that, if the product of u(t) by

the sum of an everywhere convergent infinite series

t An-l n-1 . . . s
Ao + A1 + ...+ m-1)! t + ... with non-negative coefficients,

AO, Ay, ..., possesses, over a half-planec> R >0, a

Laplace Transform, this Laplace Transform is the sum of the

Ao A1 An-1
+?_+...

oo

we observe that the infinite integral f {AO +Apt+..0 4+
n-1 ©

Ap-y t + ... § exp (-ct) dt which furnishes, at the point

(n-1)!
p = ¢ > R of the positive real axis in the complex p-plane, the
o0 oo n
Laplace Transform in question is the sum by columns Z 2w
m=0 n=0

of the double series of non-negative terms which is defined by the

infinite series +... . Todo this

formula

n m+1 A n

u,.. = f Nt exp (-ct)dt; m=0, 1, 2, ...,n=0,1,2,...
m n!

(the sum of the infinite series which is furnished by the (m+1)st column

of the co X oo matrix which has umn as the element in its

m+1 tn—l

Ap-1
(n-1)!

(m+1)st column and (n+1)st row being ]
m

{AO+A1t+. cot
exp (—ct)dﬁ, Denoting by s this sum by columns of the non-negative double
.
series we write J. = %) z unr:, i=0,1, 2, ..., so that the
m=0 n=0
sequence o} s of R GZ’ ... is monotone non-decreasing and dj is
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dominated by s, no matter what is the value of j. Thus the monotone

sequence O/O’ dl’ ... has a limit , its least upper bound, and
a <s. Fro-m the definition of s we know that the non-negative
number s - g_,‘ OZ)O ur:: may be made arbitrarily small, say
<€, by choérsl,i:r?g jn;gfficiently large and, once j has been so chosen,
each of the j+1 non-negative numbers %o ul- z ol ,

n=0 © np=0 M
m=0, 1, ..., j, may be made arbitrarily small, say

€

< , by choosing k sufficiently large. Hence the non-negative
j+1 j k
number s - % T  ul isless than 2€ if j and k are large
m=0 n=0

enough so that, in particular, on denoting by p the larger of the
two numbers j and k, the non-negative number s- Up is less than
2¢ if p is sufficiently large, proving that 0 =s. Turning now

to the rows of our oo x oo matrix we observe that any partial

]
sum X2 T of the infinite series furnished by the elements in the
m=0 M
(n+1) st row of this matrix is dominated by o} p where p is the greater
]
of the two integers n and j and this implies that Z umn is
m=0
dominated by O = s no matter what are the integers n and j so that
oo
the infinite series % umn is convergent, with sum < s, no matter
m=0
what is the value of n =0, 1, 2,... . The argument given above tells
k oo n k j n
us that the non-negative number Z z u_ -z Z u is
n=0 m=0 n=0 m=0

arbitrarily small if j is large enough and, since the two finite sums
j k Kk j
n
> £ u_and T T u®are equal, it follows that the
m=0 n=0 n=0 m=0 ™
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k o0 n
difference between sand X Z u__ is arbitrarily small if k is

n=0 m=0 ™ oo oo
sufficiently large. In other words, the sum by rows Z z ul ,
n=0 m=0 ™

of the non-negative double series urg} exists with the same
(0]

value, s, as its sum by columns Z z ur;1 . Since
n m+l m=0 n=0
u_ = f N {1 exp(-ct)dt, the sum of the infinite series
m n!
o0

n . P Ap n :
z u ., ,being the infinite integral — t" exp(-ct)dt, is
0 n!

m=0
!

pn+1

fl (the Laplace Transform of t® u(t) being ) and so we have
cn+1

A,
proved that the Laplace Transform of { Ag+Ajt+...+ “n-1 in-1

(n-1)!
is furnished, over the part of the positive real axis in the complex

p-plane which is covered by the half-plane ¢ > R > 0, by the sum

Ap-
of the convergent infinite series A0 + Azl + ...+ znl + ..
Cc C
An-1
Since both the Laplace Transform of (Ay+ Ajt+... + (2_1), n-1
A A '
and the sum of the infinite series —9. + 1 4+... + An-1 +... are
p p2 pht

analytic functions of the complex variable p over the half-plane ¢ > R it

follows that the Laplace Transform of {AO + A1 t+...

(-1
is furnished, over the half-plane ¢ > R, by the sum of the convergent
A A A
infinite series =0 4+ ~1 4 .. 4+ n-1 . | For example,
4 n
p p p
t2 4
once we are assured that Io(t) =14+ —2“2 + ‘2‘2".‘42 + ... possesses a
Laplace Transform over the half-plane ¢ > 1, the result we have just
1 1 1.3
roved tells us that this Laplace Transformis —+ —% + o, = + ...
Y ’ o2 | 2490
= (1-p?)
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We have now completed the proof of the theorem stated
in our last lecture, namely, that, if a piecewise continuous right-sided
function h(t) is of exponential type i.e., if it possesses a Laplace

Transform which is zero at p =°° and is an analytic function

a9 3
f(p) = i)— NCELERE of the complex variable p over a neighborhood
P
i p l >R of p =oo, then h(t) is the product of u(t) by the sum of
the everywhere convergent infinite series agp + 2, t+... + 31:1-_1 i -1y,

We now propose to show, conversely, that if the sum k(z) =
fn-1 -1,
(n-1)!

power series in a complex variable z is such that l k(z)‘g M exp(R |zI ),

agtagz+... + . of an everywhere convergent

where M and R are positive real constants, then the right-sided function
h(t) = k(t) u(t), -oo<t <oo, is of exponential type. Since k(z) is
analytic over the entire finite complex z-plane the integral of

k(z) / 2" 1 around the circle lz '= b in the positive sense, b being

a

any positive number, is 27i —? and, since 'k(z)lg_ M exp(RDb) at
- n! M exp (Rb)

bn

no matter what is the positive number b. Setting b =n / R we obtain

n! M exp(n) Rh
‘an‘ < n or, equivalently, log ‘an‘ <log(n!) +log M +
n

n+nlog R -nlogn. To appraise the expression on the right-hand side

all points of the circle !z |= b, we have lan |_<_

of this inequality we consider the curve y = log x, x > 0. Since
b
dx . 1 1
[ — =logb-1loga, 0<a<hb, ands1nce—<; over the
X X
a log b - log a
b-a

of the curve y = log X, which passes through the two points Pa: (a, log a),

1
interval a < x < b, we have < 5 S that the secant

Pp: (b, log b), is less steep than the tangent at P, to the curve and,
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similarly, this secant is steeper than the tangent at Pb to the
curve. If follows that the secant in question does not intersect the
curve in more than two points; for, if Pa’ Py,, Pc’ where

a <b <c, were three collinear points of the curve y = log x the secant
Pa P, would be at once steeper than, and less steep than, the
tangent to the curve at P,. Over the interval a <x <b the
ordinate of the curve y = log x is > the ordinate of the secant

Py Pb, tht()e equality holding only at the end points of the interval,
and so [ (log x) dx > % (log a + log b) (b-a) or, equivalently,

b log b -ab -aloga+a> ‘:; (log a + log b) (b-a). Setting b = a+1
and then assigning to a, in turn, the values 1, ..., n we obtain the

following n inequalities, n being any positive integer,
1
2log 2 - 1>3log 2

310g3—2log2—1>%10g2+%10g3

......................

1 1
(n+1) log(n+1) - nlog n-i > 3 log n + 5 log (n+1)

and these yield, on addition, the inequality (n+1) log(n +1)-n > log(n!)

1 1
+ 5 log (n+l) or, equivalently, (n+ 5) log (n+1) - n >log(n!). Hence

1
log tanl< (n+ %) log(n+1) + log M +n log R - n log n so that log( I anl /n)

1
2n

1
sufficiently large, llog (|an| / n) -log R | is arbitrarily small, say

1 1
< log (n+1) + log (1+ H) +log R+ —log M. If, then, n is
n
< log (1+ € ), where € is an arbitrary positive number, so that
l an l < {R(l+ € )}n if n is sufficiently large. Thus there exists
a positive number M' such that the quotient of \an‘ by {R(1+ € )} n

is less than M' for all non-negative integral values 0, 1, 2, ... of n
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and this implies that the sum, k*(z), of the everywhere convergent
infinite series |a0 | + .all Z + I%ZTJ, z2 + ... is dominated over

the entire finite complex z-plane.by M' exp [R(1+ €)= | ]

Hence, by the argument of the preceding paragraph, h(t) = k(t) u(t)
possesses, over the half-plane ¢ > R, the Laplace Transform

20 . j’:% + ... which is zero at p =o0and also, by virtue of the
igequa[iity 'an\ <M’ {R (1+ € )§n’ an analytic function of the complex
variable p over the neighborhood ‘pl >R of p =00, In other words,
h(t) is of exponential type.

If the coefficient aj of i in the expansion, over the
neighborhood l pl >R of p =00, of f(p) as a power series in -:—)
is zero we may integrate f(p) from any point p for which Ipl >R top =09,

: N A a] a2 a3 :
obtaining the new function £ f(q) dq = T+ p2 + 3p3 + ... which

is the Laplace Transform, over the half-plane ¢ > R, of the product

_ ag a3 .2
of k(t)/t =ajp + —2-!—t * 57 t“ + ... Dby u(t) where k(t) u(t)
a
=(agt+ 2—!2— t2 4 ... ) u(t) is the right-sided function whose Laplace
a a
Transform, over the half-plane ¢ > R, is f(p) = —% + —i +... . Thus,
p P

when a function of exponential type is zero at t = 0 its quotient by t is
also of exponential type and division by t is reflected, in the domain of
Laplace Transforms, by integration from the point p whose real

part c is > R to p =co. For instance, (sin t) u(t) is a function of
exponential type which is zero at t = 0, its Laplace Transform, over
2)—1

the half-plane ¢ > 0, being (1+p which is an analytic function of
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the complex variable p over the neighborhood' p | >1of p=oo,

sin t
Hence the Laplace Transform of —3 u(t), over the half-plane

1

oo d p

c>1,isj —92 =f/ ds ,s=1
p 0

1
1+q a,= arc tan 5

sint
t

exists at p = 0 with the value % and so the Laplace Transform of

u(t) exists, and is an analytic function of the complex variable p,

We have already seen that the Laplace Transform of u(t)

sint
t

1
over the half-plane ¢ > 0. Since arc tan p is also an analytic function

of p over the half-plane ¢ > 0 it follows that the Laplace Transform

sin t . 1
u(t), over the half-plane ¢ > 0, is arc tan —.

t P
Exercise. Show that, if the real part a, of o is positive, the Laplace

of

Transform of

-1
E&t(ﬂ— u(t), over the half-plane ¢ > a,, is

- log (1- % ). Show , also, that the Laplace Transform of
exp (at) -1 - @t y(t), over the half-plane ¢ > a., is

t2 a
a - (a-p) log (1- 7).

41
p2
analytic over the neighborhood [p ’ > R of p = o< and which is

ER which is

a
Denoting by f(p) the function —(L +

furnished by the Laplace Transform of a function (ag + aj t + a;L'tzh <) u(t)
= k(t) u(t) of exponential type let us consider the integral .

%(p) exp(pt) dp, where C is any simple closed curve, of finite length 1,

all of whose points lie in the region I pl > R of the complex p-plane

and which encircles the circle Ip |= R and, hence, all the singular points

a a
of f(p). The infinite series -2 + 1 + ... converges uniformly
p P2

along C and so it may be integrated along C, after multiplication by
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t n
exp(pt), term -by-term. Since 9§ e ) g o
C pn+1 n!
follows that —1—— é f(p) exp(pt)dp = ag +ay t+ a_z_' t2 4+ ... =k(t).
2mi C 2!

We already know, from the Laplace version of the Fourier Integral

1 (c+i o0)
Theorem, that - f f(p) exp(pt) dp = k(t) u(t), ¢c >R,
the convergence of the infinite integral which furnishes, over the

half-plane ¢ > R, the Laplace Transform of k(t) u(t) being absolute,

1
and so = times the integral of f(p) exp(pt) around the circle
. pl =r >R in the positive sense from ¢ + i(r2 - c2) 1/2 to
c-i (r2 - cz) 1/2, where R < ¢ < r, has the limit k(t) - k(t)u(t) = k(t)u(-t)
as r—)oco. Indeed, the integral of f(p) exp(pt) around the circle
‘p‘: r in the positive sense from ¢ - i (r2 - cz) 1/2 to

9 1/2 (C+i 00)
c+i(r - cz) has the limit f f(p) exp(pt)dt = 27i k(t)u(t)

(c-i00)

as r—) oo, this integral being the same as the integral of f(p) exp(pt)
along the segment of the straight line:real part of p = c}from

1/2
c-i(rz-cz) ] toc+i(r2-c2)1/2 .
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Lectures on Applied Mathematics
Lecture 10

The Polynomials of Laguerre

We are now ready to study the application of Laplace
Transforms to ordinary linear differential equations with variable
coefficients and we begin with the equation

txtt + (l-t)xt + Ax =0; A areal constant
which occurs in the wave-mechanical treatment of the hydrogen atom.
We assume that there exists a right-sided function h(t) which
satisfies this differential equation save, possibly, att = 0, where
h(t) may not be differentiable. Furthermore, we assume that
L(htt) exists at a point p = Cy of the positive real axis of the
complex p-plane. Then all three of the right-sided functions
By By

functions of the complex variable p over the half-plane ¢ > ¢ 1

and h possess Laplace Transforms which are analytic

and L(hy) = p Lh - h(+0), L(hy) = p2Lh - ph(+0) - h(+0). We denote

Lh simply by f and observe that L(tht) = - {L(ht)E o= -f - pfp, L(thyt)

= - 2pf - p2fp + h(+0), over the half-plane ¢ > cy Since, by hypothesis,
thtt + (1-t) ht + Ah = 0, save, possibly, at t = 0, it follows that {
satisfies, over the half-plane ¢ > c4, the first-order linear differential

equation

p(p-1)f, + (p-1-M)f = 0

f
Writing this equation in the form —E = A N R 5
f  p(p-1) p p-1 P
A 1 1
we see that f is a constant times (p-1)"/ A+1 = o (1- ‘6 )" so that f is

p
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zero at p =o° and is an analytic function of the complex variable p

over the neighborhood l p' >1of p=00., Thus h(t) is a function of

exponential type which is dominated over 0 <t < ¢° by a constant

times exp [(1+ (5 )t] , Where 6 is an arbitrary positive number.

The power series development of % (1- % )A, over the neighborhood
A AA-1)  A(A-1)(A-2)

1
>lofp=0°,is _ -—9 + ... and
®) ’ P p2 " z21p° 31 pa ¥

so h(t) is a constant times the product of u(t) by the sum kh(t) of the

everywhere convergent infinite series

1 -2t + i(k_'é_)_ t2 _ A(x-1) (r-2) 3,

(21) (31)2
It is now easy to justify our hypotheses concerning the existence of

h(t) by verifying that k}t(t) u(t) satisfies these hypotheses with ¢
any number > 1. Since each term of kx(t) is dominated by a
constant times the corresponding term of exp [(1+ (5 )t] and since

a power series may be differentiated term-by-term the second
derivative of k, (t) is dominated, over 0 <t < oo, by a constant
times exp [(1+ (3 )t] (the constant being the product of the previous
constant by (1+ 6 )z)so that ’kx(t) u(t)}tt possesses a Laplace
Transform atp= 1 + 6/ , (S/ > 6 . It remains only to verify
that x = k)\(t) u(t) satisfies, for every value of t # 0, the differential
equation txtt + (1-t) xt +Ax = 0. To do this we avail ourselves of the
relations L(txtt) = -2pf - pzfp + x(+0), L(Xt) = pf - x(+0), L(t Xt) =
-f - pfp which are valid, over the half-plane ¢ > 1, since Lx =f{

over this half-plane. It follows, since p(p-l)fp + (p-1-A)f = 0, that
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the Laplace Transform of tx, + (l-t.)xt + AX, over the half-plane

c > 1, is zero and this implies that tx;, + (IL--t)xt +Ax=0, - co < t <oo,

In particular, t (kf)\)t,t + (1-t) (k)\)t + Ak}\ =0, 0 <t <°°, and,since

the left-hand side of this equation is the sum of an everywhere convergent
power series. in t, it follows that this equation is valid over the extended
range - > < t <oo, Indeed, if we replace t, in the power series

whose sum if k)\(t)’ by an arbitrary complex number z, we obtain a

. Ar-1) o .
function kx(z) =1-2z+ — z°- ... of the complex variable

2
z which is analytic over th(e2 L)rltire finite complex z-plane and we
know that z §k)\(z)}zz + (1-2z) {kﬁz)?z + Akh(z) is zero over the
positive part of the real axis in the complex z-plane. However, this
implies that it is zero over the entire finite complex z-plane and,
in particular, over the part - <t < 0 of the real axis in the
complex z-plane. Thus X = kk(t) is a solution, over - oo<t <o, of
the differential equation tx; + (l—t)xt + Ax = 0 and we know that x is
dominated, over - o0<t < °°, by a constant times exp [(1+ 5 )ltl].
We now raise the following question: For what values of A, if any,
is x dominated, over - &<t < oo, by a constant times exp(a|t|) where
a is any positive number less than 1. For this to be the case kh(t)u(t)
must possess, over the half-plane ¢ > @, and not merely over the
half-plane ¢ > 1, a Laplace Transform and so% (1- E)A can have no
singularities in the half-plane ¢ > @. Hence A must be a non-negative
integer for, if not, p = 1 would be a singular point of i%(l- %1)_))\0 For

1
example, if A = -1, p=1is apoleof —(1- l))\ while, if
Y p
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(SRR

1 1
A= , p =1is a branch point of 5 (1- ; )7‘, the function

1, L1172
p(1 p)

neighborhood of p = 1. When A is a non-negative integer

of the complex variable p not being uniform over any

n=0,1, 2 ..., the power series whose sum is k, (t) is a constant
times the polynomial function of t, of degreen, 1 - nt + -E(izn—!-)l?) t2 ..,
n

t
+ (-1)n - Choosing the, as yet undetermined, multiplicative

constant to be n!, so that the coefficient of t® in this polynomial

function become s (-1)", we obtain the following sequence of

polynomial functions of t:

2(n_112(n_9\2
L,(t) = (-1)P {tn-nztn’l . 113%112_ -2 _ 0o ;)! (-2% 53

PR +(-1)nn!}, n=0,1, 2, ...

For example, Lo(t) =1, Lq(t) = - (t-1), Lg(t) = t2 - 4t + 2

Lg(t) = -(t3 -9t2 + 18t - 6)

Ly(t) = t4 - 16t3 4+ 72t2 - 96t + 24
and so on. These polynomials are known as the polynomials of Laguerre
and the differential equation tx,, + (1-t)x, + nx = 0 is known as Laguerre's
differential equation of index n. The Laplace Transform, over the
half-plane ¢ > 0, of L (t) u(t) is _npl (1- % ). The restriction of A to the
non-negative integers 0, 1, 2,..., which is imposed by the
requirement that e-alt| k)(t), 0 <@ <1, be bounded over - o<t <eo,

furnishes the quantisation of the radial coordinate in the wave-mechanical

theory of the hydrogen atom.
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It is easy to show, cn availing ourselves of the fact that the

Laplace Transform of Ln(t) u(t), over the half-plane
. nl 1.n .

c >0, is -3—(1— > )" that the function x = L, (t) of the
unrestricted real variable t satisfies the linear second-order
difference equation

X1t (t-vZn'-l))%1 + nzxn_,l =0, n=1, 2, 3, ...
Indeed the Laplace Transform of tL(t) u(t), over the half-plane
n(n!) (1-

ps

c>0, is _nalz_ (1- % » - % )n'1 and this appears, on

11 1} 1 1{ L1 12}
writing —9 = — (1 - (1- = , 3 = —(1-2(1--)+(1-< )
g 2 p{ 1-3) B T 1-5)+(1-3)

(n+1)! (2n+1) (n!)

P

1 1
in the form - 1 - 5)n«i—l + - 5 )n

_ 12 @-11 - ;1;)“'1 which is the Laplace Transform, over
the hai-plane c>0, of - Ln+1(t) u(t) + (2n+1) L (t) u(t) - nan_l(t) u(t).
Hence, by virtue of the uniqueness theorem,tL (t) u(t) = - Ln+1(t) u(t)
+ (2n+1) L_(t) u(t) - n2L, _4(t) u(t) or, equivalently,
tL, (t) = - Ly41(t) + (2n41) L () - n2L, (1), 0 <t <oo. Since
this equation connecting polynomials is valid for more than a finite
number of values of t it must be an identity so that, on collecting
terms,

L, ,q(t) + (-20-1) L (t) + n2L_4(t) = 0, - oo<t <00
Similarly, we can show that Ln(t) is the product of the nth derivative,
p? [tn exp(—t)] , of tN exp(-t) by exp t. Indeed the Laplace Transform,

1
over the half-plane ¢ > -1, of exp(-t) u(t) is pil and so the Laplace
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n!
Transform, over the half-plane ¢ > -1, of t* exp(-t) u(t) is (p+1)0+1

Since t® exp(-t) is zero, together with its derivatives up to the

order n - 1, inclusive, at t =0, if follows that the Laplace Transform,
n!ph

(p+1)n+1

by virtue of the Translation Theorem, the Laplace Transform,

over the half-plane ¢ > -1, of D" [tn exp(—t)] u(t) is so that,

over the half-plane ¢ > 0, of exp(t) Dn[tn exp(-t)] u(t) is

n!(p-l)n = nl .- 1 Y Hence exp(t) N[tn exp(—t)] = L,(t),
pn+1 P p

0 <t <oo, which implies, since both sides of the equation are
polynomial functions of t, that

L, (t) = exp(t) DM t! exp(-t) , - o<t < oo

Let us denote by L*, (t) the polynomial function of t, of
degree n, obtained by replacing each coefficient of Ln(t) by its
absolute value. For example,

L; (=1, L () =t + 1, Ly (t) =t2 + 442

L) =t3 + 9t% + 18t + 6
and so on, L"‘n (t) being L (-t), n =0, 1, 2, ... Then the Laplace
Transform of L*,(t) u(t), over the haif-plane ¢ > 0, being obtained
from the Laplace Transform of Ly (t) u(t) by replacing each

coefficient in the development of this latter as a power series in %

n!
p

= L*,(t) satisfies the differential equation

1
by its absolute value, is (1+ o . Since L*n(t) = L, (-t), X*n

t(x*))i¢ + (141) (x*n)t -nx* =0
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which we term the modified Laguerre differential equation of index n.
Similarly x*n satisfies the linear second order difference equation

2
* - * * =
x* 1 (t+2n+1)xn+n x*¥ _1=0

and
L* (t) = exp(-t) D" (t" expt), n=0, 1, 2, ...
Let X be any non-negative real number less than 1 and let

us consider the non-negative double series (u].k) where

k k. tl xK
u, =\, ) —/———
i (J) il

Then thecox oomatrix which has ujk as the element in its

,0<t<oo, 0<x<1,j=0,1,2,...,k=0,1, 2,...

(k+1)st row and (j+1)st column is triangular with zeros above the
diagonal, the binomial coefficient (;( ) being zero if k <j. The sum

of the elements in the (k+1)st row of this ©© x oo triangular matrix

k
is % L*k(t) while the sum of the elements in the (j+1)st column
 td { e (+2) (j+1) o t xi
18 i1 + (j+1) x + 91 X + =—_j I(1-x)i+1° Hence

the sum by columns of the non-negative double series (ukj) exists

1

with the value 1 - x exp -tlz{-— and this implies that the sum by
oo k -X

rows, namely, ) 1};—,— Lk*(t), exists with the same value. Thus
k=0 :

X * tx
kz:O Tl Lk (t) = 1-x exp————l_x , 0<x<1, 0<t<o0

If we multiply uk, by (=-1)j we obtain a new double series

k (—t)j xK

%), where v = () §=0,1,2 ...,k=0,1,2, ...,
j i1 g

This double series is no longer non-negative over 0 <t <o< but each
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k
of the two double series (u  + vjk) is non-negative and the sum
i -

by columns of each of these two non-negative double series exists.
k 1 k k
Since v k_ —12- (uyk + vj ) - —(u - v )it follows that, despite
J )
the fact that the double series (v_ ) is not non-negative, its sum

by rows exists and has the same value as its sum by columns.

Thus

°Z° K
X 1 -tx
k=0 Tl Lk(t) T 1x P T

which is the same thing as saying that the previous relation

1 tx
k * = —— el
K 0 %1— L k(t) 1-x €xp 1-x

is valid over the entire t - axis, - co<t <oo. The same argument

shows that we may change the sign of x and so

(o ]

v X 1 tx
k=0 k1 L ¥ = T exp o, - 1<x <A1, moot <
or, equivalently,
(o ]
x* 1 -tx

Ke0 Kl Lk(t) = Tx XP 7. -1 <x< -1, - o< t <00,

We conclude with the remark that Laguerre's differential
equation t x;, + (l-t)xt + nx = 0 possesses a second solution, linearly
independent of Ln(t), but this solution does not have as much
importance as L n(t) in applications to physical problems since it
possesses a logarithmic singularity at t = 0. For example, when

n = 0, this second solution may b e taken to be the indefinite integral

expt
j 2 L , of tp . If this second solution is required it
S
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may be obtained by writing x = yLn(t) in Laguerre's differential
eguation; on doing this we find that A is a constant times the

quotient of exp t by t an(t)o
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Lectures on Applied Mathematics
Lecture 11

Bessel's Differential Equation

As a second application of the Laplace Transformation to
ordinary linear differential equations with variable coefficients
we consider the second-order linear differential equation

2 , 2 2y _
t xtt+txt+(t -n“)x=0

which is known as Bessel's differential equation, of index n,
n=0,1, 2, ..., being a non-negative integer. It is not difficult
m
to see that x,(t) = %T f cos (t sin 6 - nB) d6 is a solution of
0

this differential equation. Indeed,

1 ™
{Xn(t)} t= - 7 f sin (t sin © - nB) (sin 6) dO
0

1 (7 . 5
{xn(t)} tt =7 fo cos(t sin 6 - n@) (sin“< 6) d6

T
SO thatgxn(t)} (Tt x,(t) = % [ cos (tsin® - nB) (cos26)de. A
0

simple integration by parts yields

T 1 i

- = f cos(t sin 8-n8)(cosB)tcosB-n)de
0

1
jxn(t)§t == sin(t sin 6-n6) cosO o 7

)

N

T T
= 'Ft f cos(t sin 8-n8)(cos26)de + % j cos(tsin6-nB){cps€)d6
0 0

so that
i

t {xn(t)}tt + {xn(t)} ¢t t x,(t) =% j;) cos(t sin 6-n0) (cos 6) d6
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T
=0

T
Now, f {cos(t sin® - ne)} (t cos 8 - n)dd® = sin(tsin® - n6)
0 0

T m
and so tf {cos(t sin® - nﬂ)} (cos 08)de = nj {cos(t sin e—ne)}d():mr x,(t),
0 0

so that

2 {xn} o t{xn(t)§ + 2 x,(0) = n2 x, (1)
which proves that x,(t) is a solution of Bessel's equation of index
n. We denote this solution by J,(t) and observe that |Jn(t) lg 1,
' an(t)§t .g 1, ‘ {Jn(t)}tt |g 1 so that the right-sided function
hn(t) = J,(t) u(t) is a solution, save, possibly, att =0, where
hn(t) may not be differentiable, of Bessel's differential equation
of index n, this solution being such that the three piecewise
continuous right-sided functions h,(t), { hn(t)} K {hn(t)§ " all
possess Laplace Transforms which are analytic functions of the
complex variable p over the half-plane ¢ > 0. On denoting the
Laplace Transform of hn(t), over the half-plane ¢ > 0, by f we
have l f Ig jwexp(—ct)dt = é , € >0, so that|f|tends to zero
as c—oo, F?urthermore, L[ hn(t) t] = pf-hn(+0),
L[ {hn(t) LJ = p’f-phy (+0) - {hn}t(+o)’ L(th)) = -1,
L(tzhn) =t L[ti hn(t)}t] =-f-pf, L[t %hn }tt]
- -pzfp - 2pf + b (+0), L t? h_(t) tt] - pzfpp + 4pt_ + 2, all

these equations being valid over the half-plane ¢ > 0. Since

2 2 2 _ .
t {hn(t) }tt + t{hn(t)}t + (t4-n“) hn(t) =0, t #0, it follows that,
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over the half-plane ¢ > 0,

(1 + pz)fpp + 3pfp + (l—nz) f=0
This homogeneous second-order linear differential equation is
readily solved by setting p = sinhz so that f = (cosh z)fp,
f,, = (coshzz)fpp + (sinhz)fp. Thus fp =(sechz)f,,, (1+p2)fpp
=f,, - (tanhz)f,, so that f_ + 2(tanhz)f, + (1-n2)f=0. Writing,
finally, (coshz)f =f', we have (coshz)fZ + (sinhz) f = f'z,
(coshz) fzz + 2(sinhz)fZ + (coshz) f = f'zz SO that f'zz = nz(coshz)fr-n?‘f',
If, then, n=1, 2, 3, ..., ' is a linear combination, with
constant coefficients, of exp nz and exp(-nz). If x and y are
the real and imaginary parts, respectively, of z,
¢ = sinhx cosy and so, if - %<.y < % , C— 00 as Xx—090,
Furthermore, the quotient of exp(nx) by coshx—2 as x—oc0,
ifn=1, and — o0 , as x—o0, ifn =2, 3, ..., while
the quotient of exp(-nx) by cosh x—— 0 as x——oco ,
n=1, 2,3, ... Sincef =f'/coshz tends to zero as c—3 o0 it
follows that the coefficient of exp(nz) in the linear combination
of exp(nz) and exp(-nz) which furnishes f' must be zero. Thus,
ifn=1, 2, 3, ..., f(p) is a constant times exp(-nz) divided by

1/2
coshz, i.e., a constant times (coshz - sinh z)n = {(1+p2) / -p n

divided by (1+p2)1/2 On the other hand, if n =0, f'is a linear
a+bz
function of z so that f is of the form —(:T‘;EH where a and b are

constants. Hence at any point ¢ = sinh x of the positive real axis
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c(a+b x)

coshx - tanh x (a + bx) and this

in the complex p—plane} cf =
is not bounded at x =oounless b = 0 (since tanhx—>1 as x—+09).
Thus, for all non-negative integral values, 0, 1, 2, ..., of

n, f is a constant times exp(-nz) divided by coshz, i.e., a constant,
C, times { (1+p2) 1/2 - p}n / (1+p2) 1/2., Since this function of the
complex variable p is zero at p = ©© and analytic over the

neighborhood |p|> 1 of p =oo, its development as a power series

1/2
( (1+p2) / - p being

in 1 starting out with
on pn+1
-2.1/2
p(1+p 2) / -p= EI; +.0l) hn(t) is a function of exponential type,
namely, the product of u(t) by an everywhere convergent power series

n
in t which starts out with the term C-t_ . Thus Jn(t) vanishes,
20 . n!

together with its derivatives up-to the (n-1)st, inclusive, att =0,

while the nth derivative of Jn(t) does not vanish at t = 0.
1 T
The nth derivative of J\(t) = l cos(tsin 6 - n6)de, att =0,
(-1K
m

1)K m
(G2 f cos(nB) sin0d0 is n = 2k is even. In the first case,

s
0 n
sin@ = (2i)'niexp(ie) - exp(—ie)} is a linear combination of sihes of odd

T
is f sin(n®) sin™® d6, if n = 2k+1 is odd, and

Q

integral multiples of 0, the coefficient of sinn® in this linear
-1k
combination being (2i)™0+1 = -(ﬁ while, in the second case,
on -
sin™0 is a linear combination of cosines of even integral multiples

of 8, the coefficient of cos n0 in this linear combination being

(-1)k 1
2(2i)™n = . Now - (sin nB) (sin mB)de = 0, if the
on-1 0 1 .
odd numbers m and n are unequal, and / (cos nB)(cos m6)dd =0,
0
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if the even numbers m and n are unequal, while both

T Ui
1 f {sin ne}2 @4, n=1,3,5, ... and lf {cos ne§2 de,
m 20 1 "o

n =2, 4, ... have the common value 5" Hence, if n is any

positive integer, the nth derivative of Jn(t) has, at t =0, the
1

value ol and this is also true when n = 0, the value of

1 T
Jot) = T fo cos(tsin@)de at t = 0 being 1. Thus the

multiplicative constant C is 1 and

exp(-nz)
L{ I, (t) u(t) ——c-c;s—h—;— ,p=sinhz, n=0,1,2, ...,c>0

f 1/2 }
_ )(+p?) 2o
(s eh V2 .
In particular, L{Jo(t) u(t)}= Lp)l/2 > { (t) u(t)} (1+ (13p2)1/25 ¢>0-

,¢c>0

Since J,(0) = 0, it follows that L{t J_(t) u(t)} = _P

1

(1+p (Lap2)3/2”
half-plane ¢ > 0, of t"J (t) u(t) is simpler, when n > 0, than that

¢ > 0. In general, the Laplace Transform, over the

of J,(t) u(t). To obtain this Laplace Transform we first set up the
differential eqﬁation which is satisfied by y = t"x, where x = Jn(t).

Thus x = t Ty, x =ty, - nt-n-1y X = t™ Ny, - 2nt'n'1yt+n(n+1)t'n'2y
and, since tzxtt + tx, + (’c2 - n2) x = 0, it follows that tytt-(Zn-l)yt+ty=O.
Denoting L{y u(t)§ by g and noting that y(0) = 0, since n > 0, we

have LBy u(t)}t} = pg, Ry u(t)} t} 2g yt(O), so that

L[t{y u(t)§tt} = -ngp - 2pg and, since L{t y u(t)} = -gp, we obtain

(1+p2)gp + (2n+1)pg = 0 so that g is a constant times (1+p2)'n’(1/2)
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and, since the power series development of .y starts out with the
t2n o _ (2n)!
on(n 1)’ the multiplying constant is n(n 1)

n _ (2n-1)@2n-3)... 3.1 _
Lit Jn(t) u(t)}— (1+p2)n+(1/2) , C> 0, n= O, 1, 2...

term = (2n-1)(2n-3)...3.1:

(it being understood that, whenn =0, (2n-1)... 3.1 is replaced
(2n-1) ... 3.1

9

(1+p2)n+(1/...)

by 1). Since the development of as a power

1 3
n+ f + (l'l+ :?‘-)(n+‘2‘)

oo 1
series in is (2n-1) --- 3.1 §p2n+1 ;2_11_;3_

P

21 p2n+d

the development of t? J_(t) as a power series in t is

(2n-1) . 3 lgﬁ ) (n+ %_) t2n+2 . (n+ % )(n.,.g ) t2n+4- E
7 e

(2n+2)! (2n+4) 121!

and so the development of J (t) as a power series in t is

(1) ! t 0+4 1 ¢ \M*
t s - ¢t .
(n+1)! "2 (n+2)121 2 (n+3)131 2

For example, Jo(t) =1 - EE +22_.42 - m U

1,t\n 1
!(5)

L
I =3 "224 * 2.6

so that J l(t) is the negative of the derivative of J 0(t) with respect to

t; this result could have been predicted, without computation, from

the fact that L {J l(t) u(t)} , namely 1 - (1—+§23172 , is the negative
{

of p L{Jo(t) u(t) Z— JO(O).

Exercise. Show that the product of u(t) by Jn(’c)/tn is a function

of exponential type whose Laplace Transform, over the half-plane
~ (cosh z)zn':l
¢c >0, is
on-1(n-1)1

oQ Zn ) )
(sech v)  dv, p = sinh z, and, in
Z
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particular, that the Laplace Transform, over the half-plane

Ji(t 1/2
1( ) u(t) is coshz - sinhz = ( 1+p2) / - p.

Hint. The differential equation satisfied by w = t™ x, where

¢ >0, of

1
X = Jn(t), is twy + (2n+1)w; +tw = 0 and it follows, since w(0) = om.n!

that the differential equation satisfied by L(w u(t)) = g' is

(1+pz)g'p - (2n-1)pg' = - in—fl_(_n YR The solution of this

1
n-=
differential equation which is zero at p =oois g' = (1+p2) 2
1

S,

n+ =
where (1+p2) *3 sp = - 2r11-1, (n-1)! and s is zero at p =09 .
Thus s = 1 °° _dq N S f <><(>sech v)2ndy
on-1 (n-1)! o (1+g2)" 1/2 on-1 (n-1)! 7 ’

q = sinh v, p = sinh z.

If we replace each coefficient of the everywhere convergent
power series in t whose sum is Jn(t) by its absolute value we obtain
a new everywhere-convergent power series in t whose sum,
Jn*(t), is the product of J,(it) by (-i)™. Jn*(t) is termed the
modified Bessel function, of the first kind, of index n and is
usually denoted by In(t) but we shall use, for the present, the
notation J n*(t) to recall the manner in which the modified Bessel
function, Jn*(t) or In(t), is derived from Jn(t)., The expansion,
over the neighborhood |p| > 1 of p =00, of the Laplace Transform
of Jn*(t) u(t) as apower series in i is obtained from the
corresponding expansion of the Laplace Transform of Jn(t) u(t) by

replacing each coefficient of the latter expansion by its absolute value.
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Now the expansion of the Laplace Transform of Jn(t) u(t)

1 an
as a power series in is of the form f (p) = niT +

2n+2 4 ®n+4 | | where a = 1 and the coefficients
pi+d  n+b 2n
ay, a9, ... are alternately positive and negative. Hence
a
f(ip)=(-j+l1 /20 _ 2n+2 44 -
n(iP) = (1) {pn‘*’l ph+3 ph+5

(-i)n+1 [2n | + 2n+2| T } so that f_'(p), the sum,
pn+1 pn+3 n

|ap | + Ian+2| ...

over |p| > 1, of the power sc:;;es pT+1 onr3 ., is
in+1 §(1-p2) - ip}n
i £ tip) = 102172 { : v&;mt}ng (1-p%) " =
- _ 2—1 n
i(pz-l)l/2 this takes the form p-(p )1/2 , Which is
(P2 - 1)
exp (-nz¥) where cosh z* = p. Thus, side by side with
sinh z*
the result
exp(-nz) ‘
L{Jn(t) u(t)) = “eoshz  P=sinhz, c> 0
we have the result
exp(-nz¥*)
L%J *(t) u(t))= = _——— , p=coshz* c >0.
) n sinh z*

* *
Exercise 1. Show that x, = Iy (t) = In(t) satisfies the modified
. . * * *
Bessel equation, of index n, tz(}gl )it + t(xn )t- (t2 + n2) X, = 0

Hint. Denoting J n(t) by x,(t), x,(z), where z is a complex

variable, satisfies the differential equation zz(xn)ZZ +z(x,), +
(z2- n2) x, = 0. Thus along the imaginary axis z =iy in the

complex z-plane, along which (x;)y = i(xn)z , (%) — iz(Xn)zz,
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we have y2 (xn)yy

a constant times xn*(y) it follows that yz(xn*)yy + y(xn"‘)y -

+ Y(’ﬁl)y - (y2 + n2) x, =0 and, since x(iy) is

(Y2+n2) Xn* =0, -0y <00,

*
Exercise 2. Showthatifn =1, 2, ... both |Jn(z) | and lJn (z)| are
dominated over the entire complex z-plane by a constant times

|z | T exp [(1+ 6 ) |z|] where O is an arbitrary positive number.

) ny (2n-1) ... 3.1 the devel ¢
Hint.  L(t"J (t) u(t)) = (1+p2)n#1/2) and the developmen
2 -n - — . . 1 6

of (1+p%) 2 as a power series in p converges atp=1+0 .

Note. If we substitute p = 1 in this series we obtain a series

whose terms steadily increase in numerical value and which,
therefore, fails to converge.

Exercise 3. Show that both ‘JO(Z) Land |J0*(z)

Io(z)l are
dominated, over the entire complex z-plane by exp |z | .
9. -1/2 N
) as a power series in —
1.3 P

1
reduces, whenp =1, tol - 3§ + 57~ - ... which converges;

Hint. The development of (1+p

furthermore each of its terms is numerically < 1.
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Lectures on Applied Mathematics
Lecture 12

The Recurrence, and other, Relations Connecting
Bessel Functions

The Laplace Transforms, over the half-plane ¢ > 0,
n 1/2
of the two right-sided functions t*2 J (2t ' )u(t), each

of which is of exponential type, are particularly simple.

1/2
To obtain them we set 2t / =s, t >0, and we denote

-1/2
Jn(s) by x(s) and write x(s) = y(t). Then Yy = Xg t S0
/2 1 1. .1 1
- _ = . = 12 _1 .

that Xg = t Vi = 3 Sy, and Xy = 3 Vi + 2 5% Vit 2 Yt + tytté Since
szxSS + 88X + (s2 - nz) x = 0 it follows that tzytt + tyt + (t- % )y=0.

n _n _no
We next sety =t ~ o that y, =t th-%t 2 v,

9vs
n -n-1
2

-+ 9 _ n,n .
Vg =t 2 vy -nt vt+2-(2+1)vandf1ndthatv

satisfies the differential equation tvtt

three of the right-sided functions v(t) u(t), vt(t) u(t), vtt(t)u(t)

+ (l—n)vt +v=0. All

possess Laplace Transforms over the half-plane ¢ > 0 and,
on denoting by g the first of these three Laplace Transforms,
we have L [vt(t) u(t)] = pg-v(0), L[ vtt(t) u(t)] = ng - pv(0) - vt(O)
where v(0) =0ifn=1, 2, 3, ..., while v(0) =1if n = 0. Since
L[tvtt(t) u(t)] = -2pg - ng\p + v(0), g satisfies the differential
equation ngp + z(n+1) p-l(\ g - nv(0) = 0 or, equivalently,

L

sincenv(O) =0, n=0, 19 2, ..., ng +§(n+1) p'l}g =0,
p

Thus g is a constant times exp(- % )/p"*1 and, since the
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n

1/2
development of t 2 Jn(Zt / ) as a power series in t starts

out with the term ;1; | tn, the multiplying constant is 1. Thus

gy e

1
L[ t%/2 Jn(2t1/2) u(t)] = exel-p) 0,n=0,1, 2
pn+1

From this we obtain the Laplace Transform, over the

- I 1/2
half-plane ¢ > 0, of L[t 2 g (2t / ) u(t)] by integrating

-n/2 1/2
n times, with respect to p, from p tooo(t Jn(2t )
1/2
being the quotient of tn/ 2 J (2t / ) by t?). Writing
exp( - 2)
p _ 1 . + 4 - ..
pn+1 pn+1 pn+2 9 Ipn+3
. 1 1 o
we obtain .., which is the

- — + Q - .
nlp (n+1)1p2  (n+2)1p°
part involving negative powers of p in the Laurent development

of (-1)® pi-1 exp(- %) over 0 < Iz |< oo, i.e., the finite

complex z-plane punctured at the origin:

-n/2 11 N 1 )
" nlp (n+1)1p2 * (me2)lpd "’

1/2
L[t g @Y%) u)
c>0,n=0,1, 2, ...
e n/2 1/2
Thus, multiplication of the Laplace Transform of t J(2t7 %) u(t),
n=1, 2, 3,..., by p is equivalent to replacing n by n - 1 while

1/

n
- 2
multiplication of the Laplace Transform of t ~ 2 Jn(Zt Ju(t),

1
n=0,1, 2, ..., by p, followed by subtraction of T the
- 1/2 '
value of t © J n(Zt / ) at t = 0, is equivalent to replacing

n by n+1 and changing the sign of the Laplace Transform.

This implies, by virtue of the uniqueness theorem, that
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/

3,2tY?), n >0, with

)

a) The derivative of t n/2
n-1
respecttotist g Jn_1(2t1/2

and

1/

n
b) The derivative of t 2 J (2t %) n >0, with

n+1

-— 1/2

respecttotis -t 2 Jn+1(2t / ).
Since differentiation with respect to t is the same as
differentiation with respect to s = 2t1/ 2

-1/2
multiplication by t / = % , these results can be

followed by

expressed as follows:
a') The derivative of (g)n Jn(s), n=1 2,3, ...,
. . ¢ S\
with respect to s, is (E) Jn-l(s)
b') The derivative of (g)'n Jn(s), n=0,1, 2, ..., with
(s).

These results have been proven only for non-negative values

ttos, is - )™
respect to s, is (2) Jn+1
of s but they remain valid if s is replaced by an arbitrary
complex number z since each side of each of the resulting
equations is an analytic function of the complex variable z over
the entire finite complex z-plane. In this way we obtain the
following two sequences of relations

z{Jn(z)} . an(z) =z Jn-l(z)’ n=1, 2, 3, ...

z)J,(z) _s In(2) =-27J

; 2 arbitrary
n+ls n =0, 1, 2, cee
and these yield, on addition and subtraction, the sequences of

relations,
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2§J (z)} =J (z2)-J_4(2),n=1,2 3, ...
n~jz “n-1 n+1 ‘g R ; z arbitrary.
2n Jn(z) = z{(Jn_l(z) + Jn+1(z) ,n=1 2,3, ...
The second of these two sequences of relations furnishes what
are known as the recurrence relations connecting the
sequence Jo(z), Jl(z), J2(z), ... of Bessel functions of the
first kind. These recurrence relations express the fact that
Jn(z) is a solution of the linear second-order difference equation
2 .
Jn+1(z) - —ZE Jn(z) + Jn_l(z) =0;n=1, 2, 3, ...; z arbitrary.
Exercise 1. Show that the sequence of modified Bessel functions
L(z) = Jn*(z), satisfies the two sequences of relations
2 In(z)}z = n-l(z) + In+1(z), 2nl,(z) = z{ln_l(z) - In+1(z)} ,
n=1, 2,3, ...

Exercise 2. Show that the Laplace Transforms, over the
- n/2_ . 1/2
2t™7)

half-plane ¢ > 1, of t 21 @tY2) u(t) and t - L u(t)
1,,n+l 1 1 1
are exp( =)/ and + + Foeu
= p P nlp (n+1)1p2  (n+2)!p3 ’

respectively.

We have seen that the Laplace Transform, over the
half-plane ¢ > 1, of J_*(t) u(t) = I_(t) u(t) is exp(-nz*)/sinhz",
where p = coshz*. On taking the real and imaginary parts of
the equation p = coshz*, we obtain ¢ = (cosh x*)cosy*,

W = (sinhx)siny* where ¢, [/ are the real and imaginary
parts, respectively, of p and x*, y* are the real and

imaginary parts, respectively, of z”. Thus the relation

91



T
p= coshz® maps the strip - 3 <y* < -g— in the complex
z*-plane onto the half-plane ¢ > 0, the points of this
strip in the complex z*-pla.ne for which x* has any given

value other than zero mapping into the points of the ellipse

2 2
c L/ ;

+ = 1 in the complex p-plane, and the
(coshx*)2 (sinhx"‘)2 ’

points of the strip for which x*=0 mapping into the line

segment 0 <c <1, l/=0. Thus the relation p = coshz”
furnishes a one-to-one mapping of the positive half,

x* > 0, of the strip -—72[ < y* < 27-7— onto the half-plane

¢ > 0 with the line-segment 0 <c <1, /=0, removed.
Over the positive half, x* > 0, of the strip

-T_<y< % , lexp(-z*)l = exp(-x") is < 1 and so, 6 being
2
any real number, ‘ exp [-(z*—ie)] ‘< 1 so that the infinite

series 1 + 2 exp [-2(2*-19)J + 2 exp[-4(z*-ie)] + 2 exp [-6(z*-16)} ...

2 exp [-2(z*-ie) _ cosh(z*-i8)
1-exp [-2(z*—i6)] sinh(z*-i8)
z* = x¥ is real and positive it follows, on taking the real

converges, its sum being 1 +

parts of the terms of the infinite series, that

_ 1 jcosh(x*-i@)
1 + 2(cos26) exp(-2x%) + 2(c0s46) exp(-4x*)+ ... = isinh(x_*-—ie)

+ cosh(x*+i6) | - sinh.2x*
sinh(x*+i0) 2 {sinhzx*cosze +cosh2x*sin79}

_ sinh x* cosh x*
cosh2 x* - cos26

When z = x* is real and positive, p = ¢ is real and > 1 and
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exp(-nx¥)/sinhx* is the value at p = ¢ of the Laplace Transform,
fn*(p), of Jn*(t) u(t) and so we find, on division by sinh x*,

that

c

3
fy () + 2(cos 20) fz*(c) +2(cos48)fy () +... = ~ 3
cé-cos<0

In particular, when 6 =0,

*
fo*(c) + 26, (c) + 26, () + ... = =

The coefficients of the development of fn*(c) as a power series

in 1 are non-negative real numbers and we construct the

c
non-negative double series (ukj) where ukj, j=0,1,2, ...,

k=0, 1, 2, ... is the term involving in

. c2i+1
6kf2k (c), (Sk being 2 if k =1, 2, ... while 60 =1.

k]. as the element in its

The o0 X 0o matrix which has u
(j+1)st column and (k+1)st row is triangular, with zeros below
the diagonal, since ka*(c) starts out with the :;TJI_ term.
The sum of the elements in the (k+1)st row of the matrix is

O Kk fZI: (c) and so we know that the sum by rows of the
non-negative double series (ukj) exists with the value
__C€  and this implies that the sum by columns exists with
’(r.:l?e- 1same value. The sum by columns is a power series in%
whose sum, over the part ¢ > 1 of the real axis in the complex

p-plane, is 1 + 1 + ... and so the sum of the elements
3

c
in the (j+1)st column is —21— . Let us now consider the
c2i+l
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42
non-negative double series (vkj), where vk, = c2i+l (t?';! ukj,
]
t any real number; the sum of the elements in the (j+1)st

k

column of the oo x o0 matrix which has v j as the element

in its (j+1) st column and (k+1)st row, j =0, 1, 2, ...;
k=0,1, 2, ...;is (;—?;Y so that the sum by columns of
the non-negative double series (vk].) exists with the value
cosh t and this implies that the sum by rows of the non-negative
double series (vkj) exists with the value cosh t. The sum of
the elements in the (k+1)st row is (Sk J2; (t) and so
we have the relation

J*) +23% M) +237 @ +... =cosht, - co<t < 00
which implies, in particular, that J *O(t) < cosh t over
- 00 <<t <oo ., We may now apply the argument just given,
which depended only on the non-negativeness of (Sk,
k=0,1, 2, ..., to the two series

fo*(c) + (1 +(cosZG)}f2*(c) +§1 +(cos46)} f4*(c) +ee

1 -(c’os26)§f2*(c) +{1 -(cos46)}f4*(c) + e

whose sums arelg ¢ + ¢ } and * { c - L },
2 ) e21 c2-co0s26 2 { ¢2-1  c2-cos20

respectively. We find that the two series

* g * { } *
Jo (t)+£1+(cos26) Jg (t) +)1 + (cos46) J4 ) +...

{1 - (cosZG)% JZ*(t) + {1 - (cos46)}J4*(t) +...
converge over -oo <t < oo, their sums being

) 7 ¢
1 {cosh t+ cosh(tcose)z and .21. 1 cosh t - cosh (tcose)\é , respectively,
2
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the Laplace Transform of cosh(tcos®) u(t), atp=c > 1,

. c .
being. —— . Hence, on subtraction
2 b )
c4-cos“0

Jo (1) + 2(cos28) 3, "(t) + 2(cos46) I *(t) + ...
= cosh(tcosh), -co<t <00, -0 0 <0
Exercise 3. Show that (cos8) J 1*(t) + (cos36) J3*(t) +.u
= ;;_ sinh(tcosf), - o<t <oo, -0<0 <00,

Hint. The infinite series, exp[-(x*-iﬁ)] + exp [-3(x*-i9)] + e,
1

* 2 sinh(x*-i6)
The facts that Jo. (t), k =0, 1, 2, ..., is a non-negative

is convergent, with the sum , if x* > 0.
continuous function of the unrestricted real variable t and that
the sum, cosht, of the everywhere convergent infinite series
JO*(t) +2J 2*(t) + ... is everywhere continuous assure us that
the convergence of this infinite series is uniform over the
closed interval 0 <t < T, where T is an arbitrary positive
number. Indeed, the remainder, R (t), after n terms of this
infinite series possesses the following two properties:

1) It is continuous over the interval 0 <t < T

2) 0 < Rp(t) <Rpft), -co<t <oo, n' >n
By virtue of 1) Rn(t) assumes its maximum value, over the
interval 0 <t < T, at some point, t say, of this interval
and the infinite sequence of numbers tl, ty, ... possesses
at least one accumulation point, t say, in the interval

0<t<T. Since Ry(t), n=1, 2, ..., is continuous at't
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we know that| R (t) - Rn(f)| is arbitrarily small, say

< €, if |t - t|is sufficiently small, say < 6n' Since

the infinite series JO*(t) + 2J2*(t) + ... is convergent at

t, 0<R (t) < € if n is sufficiently large and we denote

by N any such sufficiently large value of n so that 0 < RN(T) <€.
Then 0 < Ry (t) <2€ if |t - | < Oy and this implies that
0<R,() <2€ ifn>Nand|t-T[< (. There exists,

since t is an accumulation point of the sequence of numbers

ty, tg, ..., ann, say n', >N such that l thr -1 !< (SN

and so 0 < Rn,(tn.) < 2€ which implies, by virtue of the
definition of to that 0 <R (t) <2€ , 0 <t < T, and,

hence, that 0 < R, (t) <2€ over 0 <t < Tifn >n', the

choice of n' being independent of t. In other words, the convergence,
over the interval 0 <t < T, of the infinite series J 0*(t) + 2J2*(t)

+ 2 J4*(t) + ... is uniform. I« z is any complex number,

J2k*(z), k=0, 1, 2, ..., is dominated by J2k* (1z|) and,

so the infinite series JO*(Z) + 2(cos0) Jz*(z) + 2(cos46) J4*(z) +en,
being dominated by the infinite series JO* (1z]) +2 Jz* (1z]) +...
converges uniformly over the disc, 0 < |z] <T, with center

at the origin, in the complex z-plane. Each term of this

infinite series is an analytic function of the complex variable

z over the disc and so the sum of the infinite series is an

analytic function of z over the disc as is also cosh(z cos 6).
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Since these two analytic functions of z coincide over the
diameter - T <t < T of the disc they coincide over the entire
disc and this implies, since the positive number T is arbitrary,
that they coincide over the entire finite complex z-plane. Thus
JO*(z) + 2(cos 20) J;(z) + 2(cos 48) J4*(z) + ... = cosh(zcos8),
z arbitrary, - < 8 <oco. Assigning purely imaginary values
it to z we obtain

Jo(t) - 2(cos 26) Jo(t) + 2(cos 46) J4(t) - ... =cos(t cos 6),

-0t <o, o< B <o
and,in particular, on setting 6=0,

Jo(t) - 2 Jg(t) + 2 J4(t) - ... =cost, ;00<t <oo,

On setting 0 = g. in the relation J,*(t) + 2(cos 26)J5™(t)
+... = cosh(tcosB) we obtain Jo*(t) - Jo*(t) - J4*(t) + 205*(t) - . ..
= cosh (%) and, on combining this relation with the relation
JO*(t) +2 Jz*(t) + ... =cosh t, we obtain

Jo*(t) + 2J6*(t) + 2J12*(t) +... = % {cosh t + 2 cosh( % )}, -oot< oo
Thus %gcosh t +2 cosh (23)} is an upper bound, over
-0t Koo, for JO*(t), the excess of this upper bound over Jo*(t)

being twice the sum of the infinite series J6*(t) + le*(t) e

* - _1. tom 1 t ns2
If [t|{<5andn>6, J "(t) = n!(2) t D] (%)
1
§— (1 )n+4+.__ is less than
(n+2)12! 2
1t 1 tw, 1 t \4 =1_tn\/1__1__t__2}—1
;!(2) {1+ n+1(2) + (n+1)2 (’é‘) +°"§ n! ('2—) i n+1( 2) .
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For example, when t =1, JG*(l) < (2.3)1075, le*(l) <6.10713,
and so on, .so that % cosh 1 + 2 cosh 1 is greater than JO*(I),
the excess being less than(4. 7)10-9. Actually, 3317 { cosh 1+2 cosh %}
= 1.26611, J, (1) = 1.26607, both to 5 decimals.
On replacing 6 by 6 - g in the relation J (t) + 2(cos28) Jy*(t)+. ..
= cosh(t cos 8), we obtain JO*(t) - 2(cos28) Jg*(t) + 2(cos 46) J4*(t)-. ..
= cosh (tsin@8) and on setting, in turn,® = 0 and 6 =% in this relation
we obtain the two relations

Jo ) - 23,%t) + 23,50 - ... =1 "
377 %

Jo () + 3g*(t) - I4*) - 2357(t) - ... =cosh ( )

On combining these two relations we obtain
1 1/2
* * * 3 t
Ja ) -2J, () +2J,, (t) -... == (1 +2cosh (——)
0 6 12 3 . 2
*
Now it follows from the recurrence relation 2n Jn*(t) = t{Jn-l t)-J, +1(t)}
* *

n=1, 2, 3, ..., that J,-1 () >J,,1(t), the equality holding only when
* * *
n>1landt=0. Thus Jt) >Jg (t) >J19 (t) > I3 (t) >..., so that

the sum of the infinite selr/izes J6*(t) - le*(t) + ... is non-negative.
3

Hence % 1+ 2 cosh (- )§ is a lower bound, over - ec<t <09,
for Jp*(t), the numerical value of the difference between J 0*(t) and this

lower bound being twice the sum of the infinite series J6*(t) - Jq9*(t) + ...

We have, then, obtained an upper and a lower bound, over - oot <o,

for JO*(t) and we know that the mean of these two bounds, namely,
1 {1 + cosh t 1/2
2

+ cosh (% ) + cosh ( )§ is an upper bound, over

3
%k
- o<t <o, for J, (t), the excess of this upper bound aver JO*(t)

being twice the sum of the infinite series J12*(t) + J'24*(t) + ...
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On combining the two relations JO*(t) + 2(cos20) J2*(t) +o.

= cosh(tcos6), JO*(t) - 2(cos260) Jz*(t) + ... = cosh(tsinf), we obtain
the relation
1) {
JO*(t) + 2(cos48) J4*(t) +..o0 =3 icosh(tcose) + cosh(tsine)}
j 1/2,

and from this we deduce that -;— icosh(tcos 112) + cosh(tsin 1112) + cosh(2”
is a lower bound, over - o<t <2<, for JO*(t), the difference between

*
J o (t) and this lower bound being twice the sum of the infinite series

le*(t) - J24*(t) +... . Hence l{kc_:_g_s_l_l_t

n

T T
, + cosh(tcos 1—2) + cosh(tsin 1—2)
) + cosh(2"1/2t) } is an upper bound, over

+ cosh( %) + cosh(
- oo t <00, for JO*(t) the excess of this upper bound over JO*(t)
being twice the sum of the infinite series J 24*(t)+J 48*(t) +ou

If |t |_§_ 9 this excess is less than 1077, Continuing this process one

1}
s tep further we see that 13 /l Eﬁ%ﬂ_ + cosh(tcos—727—4) + cosh(tsin %4 ) +

cosh(tcosi"lz) + cosh(tsin %2) + cosh (tcos %) + cosh(tsin § ) + cosh( Ez-)

1/2

+ cosh( ) + cosh(tcos g%) + cosh(tsin %) + cosh(2'1/2t) }

is an upper bound, over -°°<t <co, for JO*(t) the excess of this

upper bound over J 0*(t) being twice the sum of the infinite series

J48*(t) + J96*(t) +... . If|t] < 10 this excess is less than 1.2 x 10-28,
The same argument may be applied to J O(t), the hyperbolic

c osines being replaced by ordinary cosines, the only difference being

that we cannot say, since J 2k(t), k=1, 2, ..., may assume negative

values, that our approximations are upper, or lower, bounds as the

>3 2
over - oo< t <09, to Jy(t), the difference % {cos t +2 cos( %)} - Jo(t)
99
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being the product of the sum of the infinite series J6(t) - J9t) + ...

by -2. Since )Jn(t) |_<_\J ¥ , n=0, 1, 2, ..., the approximations
tod 0(t) which we obtain in this way are at least as good as the
approximations we have obtained to J 0*(t). When t = gthe
approximation to Jo(t) which is furnished by 1 {cos t +2 cos( %)}

3
is l 172 = 0.4714, to 4 decimals, while JO(%) = 0.4720, to 4

3
decimals. When't = -E , the approximation to JO(-%) is 0. 85162,

to 5 decimals, while JO(%) = 0.85163, to 5 decimals.

*
Exercise 4. Show that J *(t) + (cos46) [JB*(t) +J5 (t)]
1
1
+(cos80) [J7*(t) + Jg*(t)] tae =5 {cos 0 sinh(tcosB) + sin® sinh(tsine)}

and deduce that

inht
I8 + [0 + I3 ®] +[T5¥) + a5 0] + ... = % | Sl;
1/2 1/2,
+ g/ s:i.nh(3 )+ 1s1nh( )]

3170 - (31170 + 33570 + 3550 + 3557 0)] -

[(cos 12) sinh(tcos 12) + (sm )smh(tsm 12) +2° 1/2 sinh(2'1/2t)]

wlb—‘

Exercise 5. Show that -

31/2 ‘ 31/2t
+ 2— Slnh(

1 [ sinht T . T T, . T
+ (cos—) sinh(tcos — sin - ) sinh(tsin —
|57+ + (cos ;) sinhtcos 7 ) + (sin f;) sinh(tsin )

[=>]

1 - -
) + E sinh(%) +2 1/2 sinh(2 1/Zt)] is an
upper bound, over 0 <t <oo, for Jl*(t), the excess of this upper

bound over J 1*(t) being the sum of the infinite series

52570 +335°6] +[347°0 345”0
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Exercise 8. Show that —16 [(cos % ) sinh(t cos T ) + (sm ) sinh(t sin £4)

57
+ (cos E) sinh(t cos % ) (sin = ) sinh(t sin = ) + (cos —Z) sinh(t cos EZ)
+ (sin -ZZ ) sinh (t sm — )]15 a lower bound, over 0 <t<oo,

*
for J_* t), the numerical value of the difference between J 1 (t) and

1 (

this lower bound being the sum of the infinite series

[J23*(t) + J25*(t)} - [J47*(t) + J49*(t)] +

Exercise 7. Show that the mean of the upper and lower bounds for
J 1*(t), given in Exercises 5 and 6, respectively, is an upper bound,
over 0 < t<oo, forJ 1*(t) the excess of this upper bound over

*
J 1 (t) being the sum of the infinite series

(94770 + 349" 0)] +[39570) + 397" ®)] +

Exercise 8. Write down approximations to J 1(t) analogous to the

approximations to Jl*(t) which are furnished by Exercises 5,. 6, and 7.
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Lectures on Applied Mathematics
Lecture 13

The Problem of the Vibrating String

We shall discuss in this lecture the application of the
Laplace Transformation to the problem of a vibrating string,
of length 1, with fixed end-points. This is one of the simplest
instances of what is known as a boundary-value and initial-
condition problem. In the first place, the transverse displacement
d=d(x, t), 0 <x<1, 0<t<oo, must satisfy the linear second-
order partial differential equation with constant coefficients:

D: a2dg, -dy=00<x<L 0<Lt<oo, a>0
In the second place the boundary values of d, i.e., the values
of d when x = 0 and when x =1, are specified as follows:

B: d(0, t)y=0; d(1, t) =0, 0 <t < oo
Finally, d must satisfy the following initial conditions:

I d(x, 0) = ¢(x); di(x, 0) =v(x), 0 <x<1
¢(x) and v(x) being given continuous functions of x over the
interval 0 < x <1. We assume that this boundary-value and
initial-condition problem possesses a solution d(x, t) with the
following properties:

1) dtt is piecewise continuous, for all values of x in the

interval 0 <x <1, over 0 <t <oo and the Laplace Transform of
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dyy u(t) exists at a point p = ¢ 1 of the positive real axis in the
complex p-plane.
>0

2) The infinite integral f d(x, t) exp(-pt)dt which
furnishes, over the half-plane c0> cq, the Laplace Transform
f = f(x, p) of d(x, t) u(t) is twice differentiable with respect to
x under the integral sign so that d . (x, t) u(t) possesses, over
the half-plane ¢ > Cys the Laplace Transform fxx.,
since L [d,(x, t) u(t)] = pf - ¢, L| dyy(x, t) ut)] = 0% - pg - v, ¢ >y,
and since azdxx -dit =0, 0 <t <oo, f must satisfy the
non-homogeneous second-order ordinary linear differential
equation

D: a2l -pYf=-pp-v; 0<x<1
p playing the role of a constant parameter. Furthermore, the
boundary values f(G, p) and f(1, p) are zero for all points p in
the half-plane ¢ > cy:

B': (0, p)=0; £(1, p)=0; c>cy.
Thus the boundary-value and initial-condition problem D, B, I,
is replaced by the boundary-value problem D', B'. We shall solve
this simpler problem and shall then determine a function d(x, t)
which is such that the Laplace Transform of d(x, t) u(t), over some
half-plane ¢ > cq > 0, is the solution, f = f(x, p), of the boundary-
value problem D', B' which we have obtained. All that remains,

then, is to verify that d(x, t) is a solution of the boundary-value and
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initial- condition problem D, B, I, and to show that this problem
does not possess any other solution.

Our first step in solving the boundary-value problem
D', B', is to consider the associated homogeneous boundary-value
problem D", B', where D" is the homogeneous second-order
linear differential equation, with constant coefficients,
a2 Koy - p2k= 0. D" does not have, no matter what is the value

of ¢, > 0, a non-trivial solution, i.e., a solution which does not

1
vanish identically, which satisfies the boundary conditions B'.

Indeed sinh(g x) and sinh[ q (l-x)] , q =§ , are two linearly
independent solutions of D' so that the general solution of D"

is A sinh (q X) + A’ sinh{q(lmx)} where A and A' are undetermined
constants; for this to be zero at x = 0 we must have A' = 0, since
sinh (q1)#0, and A sinh(q 1) is not zero if A is not zero. In order

to avoid this dilemma of the non-existence of a non-trivial solution
of the homogeneous boundary-value problem D", B' we lighten

our requirements on the function k(x, p) as follows: we do not insist
that k satisfy D'' at all points of the interval 0 < x <1; we

require merely that, in addition to satisfying the boundary conditions
B', it satisfy D'" at all the points of this interval save one, s say,

at which it does not possess a second derivative, s being an interior
point of the interval; so that 0 <s <1. We do require that k be

continuous at x = s and that it possess both a right-hand derivative,
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kx(s+©) and a left-hand derivative, kx(s-O). In order to completely
determine this function k of x, which depends on the parameter
s and which we denote by l—‘( ), we prescribe the difference
k,(s-0) - k (s+0) = r ( S;O ) to be 12 , the reciprocal of the
value at s of the coefficient of kxx in D" (this coefficient being
actually, in the particular problem we are discussing, independent
of s).

Over the interval 0 <x < s, P (*) is a linear combination,
Aq sinh(q x) + Al sinh[ q(l-x)] , with coistant coefficients, of the
two linearly independent solutions sinh(q x), sinh[q(l-x)‘] of D", and
we denote this linear combination by ‘l—'l( : ). Similarly, over the
interval s <x <1, r]( : ) is of the form rz ( }s{) = A, sinh(gx) +
A'2 sinh ~q(1-x)] . Since I—'l( 2 ) =0, A'1 =0, and, since

—_— 1 ) . - /8 .
! 9 ( < ) =0, Ay =0 and finally, since | 1( < )= r—é ( : ), Alsmh(qs) =

Al sinhr (l—s)]. . Thus l 1( X) =A sinh[ (l—s)}sinh q X,

r 2 s ) = A sinh (g s) sinh [ (1- x)l where A is an undetermined

function of s. Then l x [{ r (% S ) j = Aq sinh [q(l—s)]cosh(qs)

X=8
and, similarly, l—\x( Sgo) = - Aq sinh (gs) cosh(q(l—s)] so that
Aq{ sinh [q(l-s)] cosh(gs) + sinh(gs) cosh [ q(l-s)] , i.e., Aq sinh gl,

= -12— . Thus A = (azq sinh ql)'1 and
a

r x  _ sinh g(l-s) sinh(gx) | r‘ X, _ sinh (gs) sinh g(1-x)
(%) = Tyd) -
a2q sinh(ql) a2q sinh gl

0<x<L 0<s<L Wedefiner(:)whens=0ands=1bythe
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requirement that r ) be a continuous functicn of s at s =0
and s = 1; thusr( 0 ) = rz () =0 and, similarly, r (1 ) =

I_ i ( X ) =0. We observe that lﬂz ( * ) may be obtained from
rl ) by merely interchanging x and s and this implies that
r ( s ) = I x), i.e., that r( ’S‘ ) is a symmetric function of
the two real variables (x, s) over the square 0 <x<1, 0 <s<L
Indeed, it x<s, [ (3) =1, (5) wnite [ (D)= [ ()5
similarly, if x > s, r“<§>= r“1<§>and B (§)= F (

2°s )-
The function r ( : ) of the two real variables (x, s) is the second

X
S
X

of two functions known as the Green's functions of the boundary-value
problem D', B'; the first of these two Green's functions, with which
we shall not be concerned since p # 0, is the function G( : ) to which

r_'( ) reduces when p = 0:

. _(1-s)x |
G( *)=6G (s)— 21 ;0<x<s
X - X - S(I-X) -
G(s)—Gz(S)—————“121 , s<x<1

We now turn to the non-homogeneous differential equation
D: a?f_-p¥=-pp-v,0<x<1
On combining this with the homogeneous equation
D" azrxx=p2r=0; X#£s
. in such a way as to eliminate the undifferentiated functions f and l
we obtain
a2[|“<’s‘)fxx—f<x)§ |‘(’s‘)§ xx] == o[ (5000 - [ () v,

X # s.
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Now [ (%) )%rkﬁ)}m=[r< )f-f&)wﬂ(:)§xlg

X # s, and so the 1ntegra1 of | (%) fox - 1(x): F X )1 over the

oLy XX
interval 0 < x <11is [r(s)f -f(X){I (:)}x}

S

0

- x < | 11
+ | (g)f, -1x) r () , it being necessary to break

X S "y x g
the interval of integration into the two parts 0 <x <s, s <x <1,
f o : - X
since 2F ( is dlscontmuoas at x = s. Regarding ‘ ( S )as an
X

integral operator we denote j r ( h(s) ds, where

h(x) is any function Wh1ch is 1ntegrable over 0 < x <1, simply

by [_' h. Then f r‘( ¢(x) dx, being the same as
j' r( ¢(x) dx, is the value of r ¢ at x = s and, similarly,
@
. N r
J l ( S ) v(x) dx is the value of v at x = s. Since both
0
[ and f are zero at x = 0 and at x = 1 the expression
s 1 s-0
(I f -fr) +(r'f -t [ ) reducesto-fr
X X X X X
0 S s+0

= - f(s)/a2 and so
f(s) =p([" ¢) (s) + (I v) (s);

it was to obtain this simple expression that the particular value —12—
s-0

of the discontinuity in the first derivative of r

Is+0
at x = s was prescribed. Since s is any point of the open interval

0 < s <1 we may write the result just obtained in the form f(x) =
pl ¢+ [v, 0<x<1, and, since f(x), [" ¢, and [ v are all
continuous at x = 0 and at x =1, we have

f—pr¢+ v0<x<1
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What we have proved so far is a uniqueness theorem; granting

the existence of a solution of the boundary-value problem D', B',
this solution is unambiguously determined by the formula

f=p r o+ r\ v. We must now remove the existence hypothesis

by verifying that p P ¢+ F v is actually a solution of the
boundary-value problem D', B'. To do this we first observe that
the continuity of ¢(x) and of v(x) over the interval 0 < x <1 assures
us that f = p [ ¢ + r v is twice differentiable over this interval.
Indeed on writing | ¢, for example, as [ r ( )¢(s)ds +

f r 1 )¢(s)ds we see that F ¢ is d1fferent1able over the

mterval 0 < x <1, its derivative, ([" ¢)y, being furnished by

X Iy .
jogl“z(;‘)}xms)du j {l 1<§>}x¢<s>ds+{l v<§>-ﬂ<§)}¢<x)

which reduces to j {r\z (s )} o(s) ds +f 5|_‘1 } ¢(s) ds
since [ ( x) = P ( x ), by virtue of the contmuxty of F(

x =s. Hence ([~ ¢)X is differentiable over 0 < x <1, its derlvatlve,

. . I x
( |—‘ ¢)x,Peing furnished by jo l 9 ( s ) } x ¢(s)ds

1 3 - {
-, X X
i Jx { ! l(s)}qu)(s)dsJ'H‘ 2(}5{)} x-{ lHl(s)fx]sdc(b(x)

1 2
=, X S 1 P r" 1
= s) ds - X) = - — 9.
j@ {] () ¥ ds - =0t = 25 o= —— o
Applying this result to the function f = p [ ¢ + -["v we see that f is
twice differentiable over the interval 0 < x <1, its second derivative,

f__, being furnished by the formula
XX
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2
f. =2 [T¢-L2 ¢+ [Tyl
22 3

AN
= .p__ - _P - l_ v, 0<x<1
32 52-_¢ a2 ’ — —
Thus azfxX - p2f = - p¢-v so that f satisfies the differential equation D'.

That f = p r¢ + r v satisfies the boundary conditions B' is evident
0 — 1
since| () =0, | ' (,)=0, 0<s<1so that, if h(x) is any
function which is integrable over 0 <x <1, r‘ his zeroatx =0
and at x = 1. Thus we have the following definitive result:
The unambiguously determinate solution, f = f(x, p), of the
boundary-value problem
n 2 - D2f = -pd -
D' a fxx péf = -pp - v
B': (0, p) =0; (1, p) =0
is

f=pr¢+ rv

where

I—-(:S()_ sinh ¢(1-s) sinh gx L q=P, 0<x<s
a2 q sinh gl a

- sinh gs sinh g(1-x) s <x<L
a2 q sinh gl
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Lectures on Applied Mathematics

Lecture 14

The Solution of the Problem of the Vibrating String

We have seen that the unambiguously determinate solution of
the boundary-value problem:

D': azfxx—pzfz-pq)-v;OSxil

B': (0, p)=0; f(1, p) =0
isf =p["¢ + " v, where the integral operator [ is furnished by the
formulas

o :) ) [—' >S< sinh q(l-s) sinh(g x) g

1 (s)= azq sinh (q1) > 4=

,OSXSS

[‘: (IS() _ l—:“ ()s() _ sinhz(qs.) sinh g (l—x), s<x<1I
< a“q sinh (ql)

and our first task now is the determination of a function d(x, t) which
is such that the product of d(x, t) by u(t) has, over some half-plane
c>cy, the Laplace Transform p[ ¢ + ['v. If we regard x as fixed,
[_'( : ) is a function of s and p which is analytic save at the points
nra;

1 i, n=0, +1, +2, ..., onthe imaginary axis in the complex

7
p-plane, at which sinh ql = sinh —2'1 is zero, and so ¢y > 0. If

.

d(x, t) is, for each value of x in the interval 0 < x <1, bounded
over 0 <t <eo, d(x,t) u(t) possesses a Laplace Transform over
the half-plane ¢ > 0 and we set Cq = 0. We first examine in detail

the first term
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X 1
ple=v [ MySis@asse [ [0
X

= 1 | r* sinh[q(l-x)] sinh(gs)¢(s)ds
B

a sinh ql

1
+ j sinh (gx) sinh{q(l-s)]q)(s) ds}

X
of f =p[ ¢+ rjv° On writing sinh q(1-x) =% exp(ql) {exp(-qx)-exp-q(Zl-x)},
sinh(gs) = l exp(qs) - exp( -gs)), and so on, we obtain

oo = expla p[-a(x-5)] - exp-a(x+s)] - exp|-q(2l-x-s)
4asinh(al) i f i + exp[-q(Zl-x+S)])§ ¢(s)ds

+J {exp[-q(s-{{)] - exp[ -q§s+x)} - exp[-q(Zl—s-x)]
% +exp !.'Q(ZI'S'*X)] %cp(s). ds

= %g%) U’ x iexp[ -q(x-s)] + exp[ -q(21-x+s)] }(b(s)ds

iex ’_ q(x-rs)] + exp[ -q(21-x- s)] o(s) ds

7 \’—\/—\J

j )l -q(s- x)] + exp[ q(21-s+x)] }q)(s) ds
X

This complicated expression takes a simpler appearance if we extend
the range of definition of ¢(x) from the interval 0 < x <1 to the entire
X - axis, -oo< x < oo, by saying that ¢(x) is an odd periodic function
of period 21, it being permissible to do this since ¢(0) = 0 and ¢(1) = 0
The oddness of ¢(x) furnishes the values of ¢(x) over the interval

-1 <x <0, since its values over the interval 0 < x <1 are known,
and the periodicity, with period 21, of ¢(x) furnishes the values of

¢(x) over - =< x < ®° since its values over the interval -1 <x <1
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are known. In the various integrals which appear in the expression
furnishing p r’ ¢ we make changes, of the type s = a +/3t, of the
variable of integration from s to t in such a way that the exponential
factor in each of the transformed integrals is exp(-pt) = exp(-aqt).

X ,
For example, in the integral f exp {-q(x-s)‘ ¢(s)ds we write
0 rx/a )

s = X - at so that it appears as a f exp(-pt) ¢(x-at)dt; in the
X 0
integral j ezé [—q(21—x+s)] ¢(s)ds we writezs1 = x - 21 +at so that
0 kel
it appears as f a exp (-pt) ¢ (x-21+at)dt = a exp(-pt)p(x+at)dt;
21-x
L2 21-x
a a

1
in the integral f exp | —q(x+s)_; ¢(s)ds we write s = -x + at so that
0 l+x l+x
2 exp(-pt)¢(x-at)dt,

it appears as [ a  exp(-pt)¢(at - x)dt = -
4
X

a

o |2 —

and so on. Continuing in this way we obtain

~

21
pl o= EZTPIE%%I) j ‘a {q)(x—at) + q(x+at)§ exp(-pt)dt

, exp(a)
2sinh(gl)

q = p/a is positive, this may be written as the sum of the convergent

= { 1- exp(quI)} -1 and, since the real part of

infinite series 1 + exp(-2ql) + exp(-4ql) + ... . The product of
21

a
j ggb(x-at) + ¢(x+at)}exp(-pt)dt by exp(-2kql), k=1, 2, ...,

0 1
appears, on writingt =s - 2k 3 as f 1 Z¢(x-as+2k1)
2k = ¢
a

+ p(x+as+2Kkl) } exp(-ps)ds and this is the same, since ¢(x) is
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2(k+1) & Y

periodic with period 21, as f

x-at) + ¢(x+at)} exp(-pt)dt
2k

:ﬂl"‘

Since {‘p(x-at) + ¢(x+at)§ exp(-pt), being continuous, is bounded over the
interval 0 <t < _Za_l the infinite series obtained by multiplying
each term of the infinite series 1 + exp(-2ql) + exp(-4ql) + ...
by {gb(x-at) + ¢(x+at)} exp(-pt) is uniformly convergent over the
21

interval 0 <'t i: and so term-by-term integration over the interval

is legitimate. Hence

pf"¢=§ Z

k+1) =
%gb(x—at) + ¢(x+at)}exp(-pt)dt

2k—
1 joo )

= 5 A {q&(x-at) + ¢(x+at)? exp(-pt)dt.
so that the Laplace Transform, over the half-plane ¢ > 0, of
%{q&(x-at) + ¢(x+at)} uft) is p [_‘ ¢. Similarly the Laplace Transform,
over the half-plane ¢ >0, of 5 1 {v(x -at) + v(x+at)} u(t) is prv it
being understood that v(x) is an odd periodic function, with period
21, of the unrestricted real variable x, and this implies that the
Laplace Transform, over the half-plane ¢ > 0, of ['21‘ L t {v(x-as)
+ v(x+as)}ds] u(t) is r'v., Hence the Laplace Transform, over the
half;plane ¢ > 0, of the product of u(t) by -;- [¢(x—at) + ¢(x+at)
+f {v(x-as) + v(x+as) } ds] isp[ o+[v.

0
We now proceed to show that the function

1 t
d(x, t) = 3 [(b(x-at) + ¢(x+at) +j0 {v(x—as) + v(x+as)} ds] ,

0 <x<1, -oo<t <,is a solution of the boundary-value and
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initial-condition problem D, B, I and that this problem possesses
no other solution. On introducing the variables § = x - at,

T

= x+at, D takes the formfg 7= 0 and d(x,t) becomes

1 [ ¢(§)+¢(7’)+}- f( v(o’)d(j} sothatdg is a

2 a

function of § alone; hence d(x, t) is a solution of the differential
equation D. That d(0,t) is 0 over 0 <t <o¢ and, indeed, over
-00< t <oo , is an immediate consequence of the fact that ¢(t)

and v(t) are, after their range of definition has been extended, odd
functions of the unrestricted real variable t. Similarly, since

¢(t) and v(t) are not only odd but also periodic functions, with
period 21, d(1, t) = 0 over -o0 <t <oo; indeed, ¢(l-at) = ¢(-1-at)

= -¢(l+at) and v(1-as) = -v(l+as). Thus d(x,t) satisfies the boundary
conditions B. Finally, d(x,0) = ¢(x) and dt(x, 0) = % I>—a¢x(x) + a¢x(x)
+ 2V(X)‘] = v(x) so that d(x, t) satisfies the initial cond-itions I. Thus
d(x, t) is a solution of the boundary-value and initial-condition problem
D, B, I. If this problem pcssessed two different solutions their
difference A(x,t) would be a solution of the associated homogeneous
problem D, B, I' where

I': d(x, 0) = 0; dt(x, 0)

Being a solution of the differential equation D,which appears, when
written in terms of the variables g , T, as dg T =0, ax, 1)

is of the form F( § ) + G( T ) and the initial conditions I' yield

F(x) + G(x) =0, Fx(x) - Gy(x) = 0. On differentiating the first of
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these two relations and combining the result with the second
we see that F and G are constant functions of their arguments
so that A(x, t) is a constant function of the two variables (x, t).
Being zero when t = 0 it is identically zero. Thus we have the
following result:
The unambiguously determinate solution of the problem of
, 1t
the vibrating string is d(x. t) = % j o(x-at) + ¢(x+at)z+ 5 f {v(x—as)
1 1 x+at 0
+ v(x+as)} ds = — %q;(x-at) + ¢(x+at)< + [ v( d)dd .
2 { 2a Jx-at
X
If we denote f v(s) ds by V(x) it is clear that V(x) is an

0
even periodic function, with period 21, of the unrestricted real

X
variable x. Indeed V(x) - V(-x) = j v(s) ds is zero by virtue
-X x+21 1
of the oddness of v(x) and V(x+21) - V(x) =f v(s) ds =f v(s)ds
X

X
1

xX+21 X 1
+J’ v(s)ds =[ v(s)ds +Jf v( 0 )ad , (O=s-21, =f v(s)ds=0.
1 X -1 -1
The unambiguously determinate solution, d(x,t), of the boundary-value
and initial-condition problem may be written as the sum of the

following two functions of x - at = § andx +at =1 , respectively,

dl(x9 t) = ~;— ¢ ( x-at) - V(x-at)

1

— 'V t
5 (x+at)

dz(x9 t) = 1 ¢ (x+at) +

2
and we observe that dy(-x, t) = -dy(x, t), dz(l-x, t) = -d1(1+x, t).
dl(x—at) is constant so long as x-at remains constant and we say

that it represents a wave travelling, in the direction of the positive

x-axis, with velocity a. When x attains the value 1 and begins to
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assume values > 1 we must replace d1(1+x, t) by -dz(l—x, t) which
represents a wave travelling, in the direction of the negative x-axis

H

with velocity a. When x, in the expression d,(x, t), attains the

1
value 21 and begins to assume values > 21, 1-x, in the expression
dz(l-x, t), attains the value 0 and begins to assume negative values
and we must replace dz(l-x, t) by d;(x-1, t) and so on. We express
this result by the statement that the solution of the problem of the
vibrating string is the sum of two waves, one travelling with
velocity a in the direction of the positive x-axis and the other with
velocity a in the direction of the negative x-axis, these waves being
subjected to continual reflections at the ends of the string.

The level curves of the functions f =x-at, T=x+ at play
a dominant role in the theory of the partial differential equation

D:  a%d_ -dy =0
and they are kncwn as the characteristics of this differential equation.
Let us suppose that the values of the two first-order derivatives,
dx and dt’ of d(x, t) are assigned, as continuously differentiable
functions of a parameter o, along some smooth curve x = x(a),
t = t(a) in the (x, t)-plane. Then(dx)a = dxx X, + dxt ta’ (dt)a
= dtX X, + dtt ta along this curve and these relations, together
with the relations azdxx - dtt =0, dtx =d - enable us to unambiguously

determine the three second-order derivatives, d,, dxt’ dtt’ of d(x, t)
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along the curve at any point of the curve at which the 3 x 3 matrix

X, t o 0
0 Xy ta is non-singular. Since the determinant of this
a2 0 -1

matrix is az(to[)2 - (xa!)2 = (ata-xa) (ata+xa) we see that

dxx’ dxt’ dtt are unambiguously determinate at any point of

the curve x = x(a@), t = t(a), at which this curve is not tangent to

any characteristic of the differential equation D, i.e., to any
member of either of the two families of straight lines x - at = const,

X + at = constant.
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Lectures on Applied Mathematics
Lecture 15

The Generalized Vibrating String Problem

The simplest generalization of the partial differential equation
azdxx -dy = 0, which occurs in the theory of the vibrating string,
is the partial differential equation azdxx - diy + pdy +qdg + rd =0,
where a > 0 and p, q, r are given constants. Setting d = d'exp(ax+8t),
where o and B are undetermined constants, we have
d = (clx' + ad') exp(ax+Bt); de = (dt' + Rd') exp(ax + Bt)
d, = (dey +2ad, +a2d’) explax + Bt); dyy = (g + Zﬁd; + B2d")exp(ax+Bt)
so that d' satisfies the partial differential equation

azd};X - dt't + (2a2a+p) d}; + (q—ZB)d; + (azoz2 . pa +qB + r)d' =0

Setting @ = -p/2a2, B = q/2 the terms involving the first-order
derivatives of d' disappear so that d =d [exp ( PEZ - %t)] is a

2a
solution of the partial differential equation

2 2
2 ] ' p“ q '
ad, _-d, +({r-— +==)d =0
1 p2
Ifr = 2 ( "—5 - qz) this is the partial differential equation which we
a
have already met in the theory of the vibrating string. Assuming
2 2
that r - i—z- + %— is not zero we denote its absolute value by
a
-2 : , = = k2
k %, k>0, and we write x = kx', t =kt', so that d'x, =k d'X, d;c'x' =k d'xx
. i i > ' = 2 ' ¢ 2 'g - ' ' -
and, similarly, dt' i = k dtt' Thus a dx X dtti d =0, the
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2 2

upper, or lower, sign being used according as r - |- + L

2 4

is positive, or negative, respectively. Dropping th4eaprimes
attached to x, t and d we are confronted by one or other of the
two partial differential equations azdxx - dtt +d =0 and we first
consider the equation

D: azdxx'dtt+d=0
We take the boundary and initial conditions to be the same as in
the problem of the vibrating string, namely,

B: d(0, t) = 0; dl, t) =0, 0 <t < o0

I: d(x, 0) = ¢(x); dt(x, 0) =v(x); 0 <x<1
and we term the boundary-value and initial condition problem
D, B, I, the generalized vibrating string problem.

Proceeding as in the case of the vibrating string problem

we encounter the second-order ordinary differential equation

azfxx - (pz-l) f = -p¢-v, rather than azfxx - p2f = -p¢-v and we
set q =7:{ (pznl)l/ 2, rather than q =§ . Thus the boundary-value

problem D', B' has the same formal appearance as in the case
of the vibrating string problem, the difference between the two
problems lying entirely in the definition of q as a function of p.

X
The integral operator | =[ (s ) which we encounter is, then, the
same function of q as before but this implies thatit is a different

function of p. Its singularities, instead of lying on the imaginary

27252

axis in the complex p-plane, are the points p for which pz-l = - 12
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n=0,1, 2, ..., sothat p=1, corresponding ton =0, is a
singular point of [ . Thus the half-plane over which d(x, t) u(t)
possesses, we assume, a Laplace Transform f cannot be, as it
was in the problem of the vibrating string, the half-plane ¢ > 0;
since r does not possess any singularities in the half-plane

¢ > 1 we assume that d(x, t) u(t) possesses, over the half-plane
c > 1, a Laplace Transform f. The same argument as in the
problem of the vibrating string shows that aq I"‘ ¢ = % j(; ?;(x—at)
+ ¢(x+at)} exp(-aqt)dt provided that the real part of q is > 0 and
that the range of definition of ¢(x) has been extended from the
interval 0 < x <1 to the entire x-axis by the statement that o(x) is
an odd periodic function, with period 21, of x. Since aq is no
longer p, the integral f °<D§<1>(x—at)+qt)(x+at)§ exp(-aqt)dt is no
longer the Laplace Tranosform of {q)(x-at) +<p(x+at)§ u(t) and we

proceed as follows. Writing
>0 exp(-aqt
(¢ = 1 f o(x-at) + ¢(x+at)} exp(-aqt) dt
2a 0 q

} exp(-sq)
q

ds; s = at

21 o -
= zaz fo {qb(x S) + ¢(x+s)

t
we try to determine an integral operator, K = K( g ), which is
such that K( g ) u(t), s any non-negative constant, possesses, over/
2 1\1/2
- -1
the half-plane ¢ > 1, the Laplace Transform _e_x_p{l_sq) , g4 = @717 .
a

Once we have determined K we may write [ ¢ in the form
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m,%;i j ([¢(x-s)+¢(x+S)]§ f K(;)exp(-pt)dt})ds
(0]

o
and, provided that the order of integration in this repeated

infinite integral may be changed, it follows that

o<
|_'¢ { f ¢(x s) + ¢(x+s)] ds} exp(-pt)dt

t
We shall see, when we determine K, that K( ¢ ) is zero if s > at

so that r ¢ is the Laplace Transform, over the half-plane ¢ > 1,
r at
of _1__2. Jf K( ; ) {gb(x-s) + ¢(x+s)] ds and this implies
2a o
that the Laplace Transform, over the half-plane ¢ > 1, of
1 t at
K(

7 1 ¢
2a at-O) S:p(x-at) + 9l x+at)} t 5a2 | K(s) [¢(x-s)+ ¢(x+s)]ds

is p[ '¢.
We turn, now, to the determination of the integral operator K.

1
Setting, in the relation q = 2 (p2-1)1/ 2, p = cosh z*, we have

q =1 sinh z* =— [p - exp(-z*)] and so
a a

exp(-sq) = exp(- = p) exp [ > exp(-z¥)]

2

s s
= exp(- N p)[l + '; exp(-z*) + 2? 5 exp(-2z*) + .. ]
a

Now exp(-nz*)/sinh z* = fn*(p) is the Laplace Transform, over the

half-plane ¢ > 1, of Jn*(t) u(t) = In(t) u(t) and, since the coefficients
2
* S % S *
e . 5 o
of the infinite series f (p) + 2 5 (p) + 2122 f2 (p) + are

all non-negative, s being, by hypothesis, non-negative, it follows
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that the Laplace Transform, over the half-plane ¢ > 1, of the

product of the sum of the everywhere convergent infinite series
Io(t) + 1(t) + 52 (t) +... by u(t) is exp[ exp(-z )] /sinh z*.
We shall show in the next paragraph that the sum of this infinite
series is [IO 1+ —-)1/ 2 ] admitting this, for the moment,

exp(-sq)/q is, over the half-plane ¢ > 1, the product of the

2
Laplace Transform of al [(1+ ts 1/2 ] t| u(t) by exp(- E p):

exp(-sq)/q = a exp(- ~ p) j Ip[ 1+ f )1/2 t| exp(-pt)dt

o0 3
ca [T [T explp TaaT, Tetid

S

a

1/2]

t
In other words, K(g) =a Io !:(t2 2 ) u(t - —S-) so that, in

particular, K( g ) =0if s >at. Since the derivative of Io(t) with

) t at 1/2 s
respect to t is I,(t), K( ) = 2.2 L - 2 )] utt - a)
t a?
and so, since K(at—O ) = a,the Laplace Transform, over the
1
half-plane ¢ > 1, of 3 [gb(x—at) + ¢(x+at)]

1 at 9
% EE 11[<t2-§§>1/2]{¢<x-s>+¢(x+s)}ds is
"2

+

P r’¢. Thus the solution of the boundary-value and initial condition
problem D, B, I which is suggested by the application of the

Laplace transformation is
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d(x,t) = % [#(x-at) + p(x+at) ]
1 at t 9 52 1/2 {
a2
at 2
+ —2-1; f IO [(t2 - S—z )l/z]gv(x—s) + v(x+s)} ds.
0 a

We must, before verifying that the function d(x,t) furnished
by this formula is a solution of the boundary-value and initial
condition problem D, B, I, justify the statement, made in the

preceding paragraph, that the sum of the everywhere convergent
2

infinite series Io(t) + 1(t) ) Iz(t) +... sl [(1 + ———)1/2 ]

To do this we recall that the Laplace Transform, over the

1/2

half-plane ¢ > 0, of t 2’In(zt u(t), n=0, 1, 2, ..., is

1 ' '
exp( 0 )/pn+1. On replacing t by (1+a)t and p by p /(1+a), where a

1
is any positive real number, in the relation T exp( 1 )
oo 1 p p
= j t 2 In(2t1/2) exp(-pt)dt, ¢ > 0, and then dropping the primes
()

we obtain

n oo

pn+1

¢ > 0,so that the Laplace Transform, over the half-plane ¢ >0, of
n

2 1 1+
(1+a) 2 tn/ In[2(1+a)1/2t1/2] u(t) is 77 exp _pa
P

1 1 a (12
=“—‘—‘pn+1 exp(;) + +2!2+ }
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Since the coefficients of the infinite series on the right-hand
side are all non-negative, a being, bf' hypothesis, non-negative the
n+

9 o+
infinite series t”/2 1 (2t1/2) 4 at 2 1, (2t1/2)
n

2 n+2
+a_t21(2t1/2) i h rgent and
91 n+2 + ... is everywhere convergent an
the product of its sum by u(t) has, over the half-plane ¢ > 0,
1 l+a
the Laplace Transform nel  €XP T . Hence, by the uniqueness
p
theorem,
/2. ..1/2 ot /oy a? 1/2
n 2 1/2 e 2
t In(2t )+at In+1(2t ) + a1 t In+2(2t )
n n
+...=(l+a) 2t 2 L [2(1+a)1/2t1/2] 0<t<oo,
0<a<oo

2 1
On dividing through by t*2 and writing 2t/2 = t', and then
dropping the prime, we obtain

t 1
LO+5 1 O+ o (‘;—t)2 RO

n
= (1+a)-2 In [(1+0£)1/2 t] , 0<t<oo, 0<a<>®

For any given value of t > 0 the left-hand side of this equation
is a power series in o which converges for every positive value
of a and so, if we regard @ as a complex, rather than a real,
variable the sum of this power series is an analytic function of
a over the entire finite complex a-plane. The right-hand side,

/2

(1+oz)_n In[(1+oz)1/2 t] , of our equation is also, being the sum
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of an everywhere convergent power series in (1+a), an analytic
function of a over the entire finite complex o-plane and, since
these two analytic functions of o coincide over the non-negative
real axis in the complex a-plane, they coincide over the entire
finite complex a-plane. In the same way we see that,
a being any given complex number, In(z) + ? In+1(z)

l! ( QZE )2 In+2(z) + ... is an analytic function of the complex
variable z wrllﬁch coincides over the entire finite complex z-plane

= 1/2
with (1+a) 2 1 ((1+a) ). Thus
az 2

ln(z) + 5 In+1( z) + 5, —) L+2(2) + -

n
-5 1/2
= (l+a) 2 In [(1+a) z]
where a and z are arbitrary complex numbers. On setting
z =iz and then dropping the prime we see that this relation
is equivalent to the relation

3,0 - 3@ 5 (ERa e

n
= (1+a) 2 J [(1+0£)1/2 ]

n+2

2s
On settingn =0, z =t, ¢ =a_ , we obtain

1
I(t) +§Il(t) + 9] izlz(t) e =Io[(1+—a—)

which is the relation we wished to prove.
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. z 1 2z
Exercise 1. Show that In(z) -3 In+1 (z) + 51 ( 5 1 _(2) -...

n+2
20
n_ o M= 0, 1, 2, ..., z an arbitrary complex number.
Hint. Set a = -1. .
. _ z -
Exercise 2. Show that Jn(z) = In(z) zZ In+1(z) + Py In+2(z) ce., N =

0,1, 2, ..., =z an arbitrary complex number, and deduce

.z
that In(z) = Jn(z) + an+1(z) +35] Jn+2(z) +...,n=0,1 2,...,
z an arbitrary complex number.

Hint., Set a = -2.

2

. 1/2_\ _ _ Z_
Exercise 3.3 Show that JO(3 z) = Jo(z) le(z) + o1 Jz(z)
- % J 3(z) +... , 2z an arbitrary complex number

1/zz)-uz) —J<z>+ <—)J<z)-

Exercise 4. Show that J0(2

3 2"%2) = 2/ Z{J @) - 23, + 3, (2 1,0)-.

z

1/2 1 z029
55@Y%) - z{J2<z) -3 3@+, ()@
and so on, z an arbitrary complex number.

In our next lecture we shall verify that the function d(x,t) which
we have obtained in this lecture is a solution of the boundary
value problem D, B, I and shall show that this boundary value

problem does not possess any other solution.
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Lectures on Applied Mathematics
Lecture 16

The Solution of the Generalized Vibrating String Problem

The solution, d(x, t), of the generalized vibrating string
problem which has been suggested by applying the Laplace trans-

formation may be written in the form d,(x,t) + dz(x, t) where

at
dl(x, t) = i‘ {(b(x-at) + ¢(X+at)} + zLa fo Il(ia) {(P(X'S)
+ ¢(x+s)} ds
L o] PR
dz(x, t) = oa jo Io(a) v(x-8) + v(x+s)}ds, a = (t¢ - a2 )

In order to verify that d(x,t) is a solution of the partial differential
equation azdxx - diy + d =0 it is sufficient to verify that d2(x, t) is

a solution of this differential equation. Indeed, dl(x, t) is the

2a
and if dy(x,t) is a solution of the differential equation ad  -dy+d=0

1 at
derivative with respect tot of 7~ f Io(a) {gb(x—s) + ¢(x+s)} ds
0

1 at
so also is 2— f IO( a) {cp(x-s) + ¢(x+s)}ds and this implies that the
a Jo

derivative of this expression with respect to t, namely dl(x, t), isa

solution of the differential equation azdxx - dit + d = 0. On making the
at
substitution s = x-s' in the integralf Io(a) v(x-s)ds, and the
\ 0 _at
substitution s = s -x in the integral f Io(a) v(x+s)ds, and then
0

dropping the prime dz(x, t) appears in the form
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x+at Ry 1/2
dy(x,t) = zia f i 1,(8) v(s)ds; B ={t2 - (—xi}

x-at a2
Upon introducing as new independent variables the two functions
§= x-at, 7 =x+at of x and t whose level curves are the

characteristics of the differential equation

D: azdxx -4 +d=0
D appears in the form

D*: 4a2'd§,r +d=0
and we have to verify that

Y &) = g 1o vis) ds; B =(T-5)"/% (s- £ )1/%/a
is a solution of the partial differential equation D*. Since 8 = 0

whens =T,

1 T 1/2 1/2
-1 o ® (T (s- £ )77 v(s)ds + v(T)
WT 2a §

where the prime attached to Io denotes differentiation with respect

to its argument B. On differentiating ’)[/7- with respect to § we obtain
ng - 4a2 f§ {r' (8) +al' (B) (T - s)1/2 (s &y }v(s)ds

{ (B) + % I (B)} v(s)ds

1
and it follows, since I O(B) + =1 (B) I (B), that w_r- 2 W
which proves that W § T)isa solutlon of the partlal d1fferentlal
equation D*. This completes the proof of the fact that d(x,t) =

dl(x, t) + dz(x, t) is a solution of the partial differential equation D.
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That d(x,t) satisfies the boundary conditions B and the initial
conditions is proved in the same way as in the problem of the
vibrating string. Thus d 1(O, t) = 0, since ¢(x) is an odd function
of the unrestricted real variable x and dz(O,t) = 0 since v(x) is also
an odd function of the unrestricted real variable x; similarly d(1,t) =0,
dz(l,t) = 0 since ¢(x) and v(x) are not only odd functions of x but
are also periodic with period 21. dl(x, 0) is evidently ¢(x) and dz(x, 0)
is evidently 0 so that d(x, 0)=¢(x). Finally, [dl(x, t)] . is zero when
t =0 and [dz(x, t)] ¢ is v(x) when t = 0 so that dt(x, 0) = v(x). This
completes the proof of the fact that d(x, t) is a solution of the generalized
vibrating string boundary-value and initial condition problem.

The proof that the generalized vibrating string boundary-value
and initial-condition problem does not possess a solution differing
from d(x, t) is not as simple as the proof of the corresponding uniqueness
theorem for the vibrating string boundary-value and initial-condition
problem. We first observe that, if ( § X Tl) is any point in the
( §, T ) - plane, the function w = 10(6)’ where
O =( § - §1)1/2 (T- Tl)l/z/aJof the two variables ( £ , T ) satisfies
the differential equation 4a 2w§7~ +w = 0. Indeed, on denoting

differentiation with respect to (S by a prime,

_1lo -1/2 1/2 1
w§_2a10(§-§1) (T- TPV weg = =, 1

R -1/2 -2 L gy 1p (1. 1
+4a10(§-§1) (T-Tp / " 4a2 {IO+6IO}_4a210_4a2W°
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On combining the two differential equations 4a2d £T +d=0,

422 (,Jg,r + w = 0 in such a way as to eliminate the undifferentiated
functions d and w we obtain wd §T - dng = 0 or, equivalently,
(wd§ )T = (dWT )§ . If, then, C is any piecewise smooth closed
curve in the ( § ,T )-plane the integral of wd ¢ with respect to f
around C is the negative of the integral of d(jjT with respect to T
around C, both integrals being taken in the positive sense. Now
w = 1 when 6=0, i.e.l, when§ = §1 or T = Tl and

wr = 5o Toté- &z (T-Tp72
so, if C consists partly of segments of the lines § = § 1 and T="7 1

is zero when § = §1 and
and, if we denote the remainder of C by [, we have

P

are the points where the lines 7= Tl and § = §1,

P P
d(Pl)-d(fl, T1)+f 2 Wd§ d§ + 11; 2 dwTdT =0
1

where P1 and P2

respectively, intersect the curve r and both the integrals from

P, to P, are taken along the curve r Thus d( § 1’ Tl) is

1
unambiguously determined by the values of d and of d 5 along the

curve r . If the curve f_ is a segment of the line § : T = 0, which
corresponds tot =0, d and dé\ = ;?1- (dy - i dt) = % (9, - i V) are

given along I—‘ and we see that d( $ 1’ Tl) is unambiguously determinate.
Ii the curveF is not a segment of the line § -T =0 we have to deal

with the phenomenon of reflection at the ends x = 0 and x =1 and it

is not hard to see that dg is known along the lines § + T=0and
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§ +T = 21 which correspond to x = 0 and x = 1, respectively.
It will suffice to consider the first reflection at the end x =0
for which r consists of a segment, lying in the second quadrant
and ending at the origin, of the line § +T=0anda segment,
lying in the first quadrant and beginning at the origin, of the line

§ -T=0. We take §1 to be in the interval 0 < § <1 and move
the point ( § v Tl) towards the point Py along the line £ = § 1-
Observing that d§ = -dT along the line f + T = 0 we obtain

d(Pl) + dT (Pl) - d§ (Pl) - dT(PZ) + W(Pl) dg (Pl) - d(Pl)wT (P1)=0

In our boundary-value and initial-condition problem d(x, t) is identically
zero when x = 0 and so both d and dt =i (dT' d§ ) are zero along
the line §+ T =0. Hence w(Pl) dg (Pl) = dT(PZ) and since w is
zero only at ( § 12 Tl) which is distinct from P X the S -coordinate

of P, being negative, it follows that d § (Pl) is the quotient of

1
d—(P 1 j d (P 1 P.) -1 1 b

Ty =5 | 4P+~ d(Py)) =5 (900 + = V() by w(Py).
Thus d § is known alongP and the solution of our boundary-value and
initial-condition problem which is furnished by an application of the
Laplace transformation is the only one which exists.

The modifications necessary to deal with the differential

equation azd.xX - 4y - d = 0, rather than azdxx - diy +d =0, the
boundary and initial conditions being the same as before, are minor.

2,1/2

1
Setting q = — (1+p , instead of % (l—pz)l/2 as before, the boundary-
a

value problem D', B, which we encounter has the same formal
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appearance as before, the difference between the two problems
residing entirely in the different definitions of q as a function of p.

All the singularities of sinh ql, regarded as a function of p, being

n2172 3.2

furnished by the formula, p2 =-1- 12 ,n=0,1, 2, ..., lie

on the imaginary axis in the complex p-plane, and so the half-plane
over which dtt u(t) is supposed to possess a Laplace Transform is
the half-plane ¢ > 0, rather than the half-plane ¢ > 1 as before. In
t

order to find the integral operator K = K( g), s > 0, which is such
that the Laplace Transform, over the half-plane ¢ > 0, of K ( ts ) u(t)
is exp(-qs)/q we set p = sinh z so that aq = cosh z = p + exp(-z)

Sp s g2
and exp(-qs) =exp(- — ) {1 - — exp(-z) + — 9 exp(-2z) - ...

a a 2la
Since exp(-nz)/coshz, n =0, 1, 2, ..., is the Laplace Transform,

over the half-plane ¢ > 0, of Jn(t) u(t) it follows that exp(-gs)/q

is the product of the Laplace Transform, over the half-plane ¢ > 0,

2

J s 5% s

of lJo(t) -3 Ty + 2 1a2 I,(t) s }u(t) bszr a exp ( ap)- The
s

sum of the infinite series Jo(t) - a Jl(t) + —-2 122 J2(t) -...1is

Jq [(1 + z—f)l/ 2 t] and it follows that
al

/

t 2 1/2
K(s)=aJ0(t2-§§) ut-2), >0

and, since the derivative of J o(t) with respect to t is -J l(t)’ this

implies that the Laplace Transform, over the half-plane c > 0,

1 t at 1 s2 1/ {
of E [¢(X'at) + ¢(x+at)] - E; j; (tz- % )1/2 J]_ [(tz_ ;_2_ ) ] ¢(X-S)
a

+ ¢(x+s) }ds
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isp r ¢. Thus the solution of our boundary-value and initial-condition
problem which is suggested by the application of the Laplace

Transformation is

1 to® 1 9 s21/2
d, 1) = [9lx-at) + glxrat)] - = | . I 1[e2- = ]
a
at
{gb(x-s) + ¢(x+s)}ds + 2—2 ‘[0 J0 [(t2 - % )1/2]{v(x—s)
a

+ v(x+s)}ds
it being understood that the range of definition of ¢(x) and v(x) is
extended by the statement that both ¢(x) and v(x) are odd periodic
functions, with period 21, of the unrestricted real variable x.

The verification that this function of x and t actually is a
solution of our boundary-value and initial-condition problem and the
proof of the fact that this problem does not possess more than
one solution are the same as before (the function J 0( 6 ),

6 = ( §- §1)1/2 (T- Tl)l/z/a, playing, in the proof of the

uniqueness theorem, the role previously played by Io( 6 ).
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Lectures on Applied Mathematics
Lecture 17

OO
The Asymptotic Series for _[ exp(-zz)dz
|Y

Let h(t) be a piecewise continuous right-sided function which
is zero over the interval 0 <t < (5 , Where (5 is any positive number,
and let h(t) possess a Laplace Transform at a point p = cq >0
of the positive real axis in the complex p-plane. We suppose,
further, that H(t) = f th(s)ds is defined over 0 <t < oo but we
do not assume the exis(,::ence of the infinite integral f ooh(s)dso
We have seen that H(t) exp(-clt) has the limit 0 at t =go and this
implies, since H(t) exp(-c 1t) is everywhere continuous, that
H(t) exp(-clt) is bounded over 0 <t < oo, i.e., that there exists
a positive constant M such that |H(t)| exp(-clt) < M for every
non-negative value of t. Thus H(t) possesses, over the half-plane
c>c¢ 1> an absolutely convergent Laplace Transform and

Lh = p(LH), ¢ >c,. Since H(t) is, like h(t), zero over the

1
interval 0 <t < O we have
o0 o0
LH =f H(t) exp(-pt)dt =% H(t) exp(-clt) exp [-(p-cl)t] dt

so that

8o M
|LHI§MI(S exp [-(c-c)t] dt =c_c1

exp | -(c-¢;)0 |
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: , . 2M
and the right-hand side of this inequality _<_—cf= exp [—(c-cl)é]

ife >2c On denoting arg p by 6, so that lp| = c(sec 8), it

X
follows that |L(h)| < 2M(sec 9) exp[-(c=cl)(5] or, equivalently,
that

ILhI exp(c (5 ) < 2M (sec 8) exp(c;16 )
so that |Lh| exp(c (S) is bounded as p— oo along the ray 0— p.
If p lies in the sector -g +ﬁgeg§ - B, 0<B<Zr‘, sec 8 <sec B
andl Lh| exp(c (S) is bounded over the part of the half-plane ¢ > ¢y

i

which is covered by the sector - = + 8 <6 <o -B. Nowthe

2
product of any positive power of g by exp(-c 6 ) tends to zero as
P— oo along any curve which lies in the sector - g +8<06 _<_127- - B,
the convergence to zero being uniform over the sector, and so
we have the following result:

The product of Lh by any positive power of p tends to zero as
p—— oo along any curve which lies in the sector - % +8 < Ogg - B,
the convergence to zero being uniform over this sector.

We next consider a piecewise-continuous right-sided function
h(t) which possesses a Laplace Transform at p = cq1 and which,
while not zero over any interval 0 <t < o , can be written, if 0
is sufficiently small, in the form t% {A + € (t)} where
1) a is a constant whose real part @, is > -1 and A is any constant

2) € (t) is continuous over 0 <t < (S and arbitrarily small, say

lewl <€, if 0 is sufficiently small, say ‘(S_<_ & 1-
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The right-sided function h 1(t) which = t% {A + € (t)§ over the

interval 0 <t < O,and =0if t > O | Possesses, over the

1
half-plane ¢ > 0, the Laplace Transform f /ta {A + € (t)} exp(-pt)dt
oo “0
and we may write this in theéorm A [ ta@ exp(-pt)dt
oo 0
-A t® exp(-pt)dt + f ! t® € (t) exp(-pt)dt = M
) 0 pOL+1
+ I, +1I3, say. I2 is the Laplace Transform of a piecewise

2
continuous right-sided function which is zero over the interval
0<t< (51 and so the product of | 12| by any positive power of p

tends to zeroc as p— oo along any curve which lies in the
sector —% +BSO§% - B.
6/ a oo a
|I3‘ <€ t T exp(-ct)dt < € t r exp(-ct)dt
0 0
=€ L(ﬁl_‘il_)_. and, since p"”“1 = exp [(a+1) log p] so that
c%r + 1
ap+1 T
I D 0f+1| = exp{(ar + 1) log |p| - oy 6} < (c sec B) r exp( | ail g ),

it follows that pa+1 I, is arbitrarily small if 61 is sufficiently

3
small. Since both h(t) and hl(t) possess Laplace Transforms at
p=c, SO also does their difference hz(t) = h(t) - hy(t) and, since
hz(t) is zero over the interval 0 <t < (51, the product of Lh, by
any positive power of p tends to zero as p—— oo along any curve
which lies in the sector - % +B < 65% - B. Since Lh = Lhy + Lh,
it follows that p@*! (Lh) - A[™ (a+1) is arbitrarily small it 1) O is

sufficiently small and 2) c¢ is sufficiently large. Since pa+1(Lh)-A|—'(oz+1)
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is independent of (S 1 the proviso 1) may be omitted and so we
have the following important result:
pa+1(Lh) - A[ '(a+1) tends to zero as p— oo along any
curve which lies in the sector - T4+8 <6< _72[ - B, the convergence

2
to zero being uniform over this sector.

2
The right-sided function h(t) = exp ( - %) u(t) possesses, at any
point p of the complex p-plane,the Laplace Transform
o0
2 exp(pz) j exp(-zz) dz, the integral being extended along the
Y

ray, from p to oo in the complex z-plane, whose angle is zero.

We denote by sn(t) the sum of the first n terms of the power

2
series development of exp (- 34—) near t = 0:
ta 1 't n-1 1 t 2n-2
s (t)=1-(35 — (=) -... -1 — (T
a® =1 (57 + o= () FEDT o ()

and observe that sn(t) u(t) possesses, over the half-plane ¢ > 0,

the Laplace Transform

1 1 1.3 _11.3...(2n-3
L(s () u(t) == - —35 + — - + (-1)n-1 (zm 1)
P 2p° 22p gn-1 y2n-

2

t
The right-sided function hn(t) = {exp (- I ) - sn(t)} u(t) is of
(-»?

2n
nl2
any interval 0 <t < 6 and, furthermore, I €(t) I is arbitrarily small

the form t2R { + € (t))u(t) where € (t) is continuous over

if (5 is sufficiently small, by virtue of the continuity, at t = 0, of
2

t
exp ( - ? ) - sn(t) and the fact that the value, att =0, of
t n (2n)!
n! 22n
tends to zero as p——>oo along any curve which lies in the

exp (- 4—) - sn(t) is 0. Hence p2n+1 L(hn(t)) - (-1)
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2 (o}
over the half-plane ¢ > 0, of h (t) is 2 exp(pz) f exp(-z2)dz

1
_{1_ 3 +1235__“+(1)n1 1.3.. (2n3)}
p 2p 2%p 2n12n1

sector - 12’_ +B8<L6 < - -8, 0<8 < — . The Laplace Transform,

and so the product of

oo 1 1 1.3
Ay = 2 (ex0 D7) f exp(-z%)dz -g— -—3 ¢+ 5
P P 2p 22p
T 1.3...(zn-1)}
on p2n+1

by p2n+1 tends to zero as p—— oo along any curve which lies

in the sector - % +B< 6_<_§ - B. We express this result by the

1
statement that the infinite series — - 1 3 12 3 _ L3.5 + e,
which fails to converge at any point p of the finite complex

T

p-plane, is an asymptotic series, over the sector - —g— <argp< 7,
o

for the function 2 exp(pz) f exp(-zz)dz of the complex variable p

and we write

oo 1 1 1.3
2 exp(pz)f exp(-zz)dzm—- - T3t 5 T
p p 2p 2%p

T i
A r T
2<agp<2

The sector over which this asymptotic series is valid may be

37

37
enlarged to - " <argp < ‘Z . To see this, let a be any

T
number in the interval 0 < « <Z and set t = v exp(-ia) in the
o) 2
infinite integral f exp ( - t ) exp(-pt) dt which defines
£ 2 0 4,2
L(exp(- _Z) u(t)); then L(exp( - ”y ) u(t)) appears in the form
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exp(-ia) J’°° exp [- X; exp(—Zia)] exp[-p exp(-ia)v]dv, the
integral bging along the ray from 0 to oo in the complex v-plane
whose angle is a. The modulus of the integrand of this

integral, at any point v whose modulus and argument are R and ¢,
respectively, is exp -[f—{; cos 2(a-¢) + |le cos(a-¢-6)] ,

where 6 is the argument of p, and, if 0 < ¢ < a, so that

cos 2(a-¢) is positive, the product of this modulus by R tends to
zero as R—— oo , the convergence being uniform with respect

to ¢. Hence the integral of exp [- yf exp(-Zia)] exp [-p exp(-ia) v]
along the arc of the circle ]v |= R from v = R to v = R exp(ia) tends
to zero as R——oo and this implies that the integral of

2

exp[- V? exp(-2ia)] exp [-p exp(-ia)v] along the ray from

0 to oo, in the complex v-plane, whose angle is a is the same as
the integral of the same integrand along the positive real axis

in the complex v-plane. Thus 2 exp(pz) f = exp(—zz)dz, which
is the Laplace Transform of exp (- %12- ) u(t), may be written in

the form exp(—ia)f exp[- 7y exp(-2ia)] exp [-p exp( -ia)t] dt
0

where 0 < a < % and the same argument shows that it may be
written in this same form if - -Z- < a < 0 so that
00
2 expe?) | exp(-22)dz -
P
oo £ 2
= exp(-ia) f exp[- — exp(-2ia)] exp [-p exp(-ia)t] dt;
0 4

T LS
2 <a <4
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On denoting by s'n(t) the sum of the first n terms of the power
2
series development of exp[— t? exp(-Zia)] near t = 0:

Svn(t) =1 - exp(-2ia) (EZ- )2 4+ exp(-4ia) (E_ )4 -

21 2
+ (-1)n-1 exp-(2n-2)o (t_ y2n-2
(n-1)! 2
and denoting p exp(-ia) by p' we have
o0 3 1 _9a;
exp(-ia) f & (1) exp(-pdt _exp(-ia) : exp(-8ia) =~
0 v (@3
-1 1.3...(2n-3 -(2n-1 1 1
+(_1)n1 (2n-3)exp-(2n-1)a ol
on-1 (p')zn-l P 2p
-1 1.3...2n-3
+ (-l)n 1 1.9...a0n-9
2n_1 p2n-1
provided that - % <argp' < % or, equivalently, that

m
- % +a<argp< 5 ta. Since a may be assigned any value

in the interval - u <a< % it follows, by a repetition of the

4
argument already given in the case o = 0, that the asymptotic
1 1 1.3 oo
series — - 3 + 5 -~ ... for 2 exp(pz)f exp(-zz)dz
|y zp 2 P T 371' P
is valid over the sector - — <argp < —;‘ .

3 5w
In order to deal with the sector —f < arg p < — of the complex
[ o}
p-plane we set z = -z' in the infinite integral f exp(—zz)dz and
p

then drop the prime:
o0 -p 9 o0
jp exp(-—zz)dz = f exp(-z°)dz = f exp(—zz)dz

-00 -0

oo 2
- f exp(-z~)dz
-p
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Nowf exp(- zz) dz = exp(y ) J'oo exp(—x ) exp(-2iyx)dx,
z = x+iy, and f exp(-xz) exp(-21y;;dx, being the Laplace
Transform at ;?Ziy of exp(-tz)) is 71/2 exp(-yz) so that
foo exp(-zz)dz =1r1/2. When -3?” <Largp< '5'3 ,
-00

n and so we may use the asymptotic series we

- T<arg(-p) <%
4 0o 5
have already obtained for 2 exp(-p)2 f exp(-z“)dz: to obtain

the result
1
2 exp(pz) fm exp(-zz)dzm 21r1/2 exp(pz) -[— - g *ee }
p -p  2(-p)
1/2 2, 1 1 1.3 L 51
=27 ex + - + -. — <Lar < .
p(p”) o 208 ' 325 ; SMEPST

N 37 .. bm w
Wemayuseth1str1ck1f§_<_argp<70r1f—~z<argp_<_-—

[\L)

and so we obtain two different asymptotic expressions for

2 exp(pz) j e exp(-zz)dz over these sectors, the difference being
that one of the asymptotic expressions contains the additive term
2711/ 2 exp(pz). When p lies in either of these two sectors the real
part of p2 is negative and so the product of exp(pz) by any
positive power of p tends to zero as p——>©© along any curve
which lies in the sector. Thus we see that we may use, for the
function 2 exp(pz) j > exp(-zz)dz, the asymptotic series

P
1.1 1.3 1/2

= - - .., with or without the additive term 2 2,
3 .

exp(p

T 3n 37 T_ .
over the sectors 7z <argp<-— -, - _4—1- <argp< - 2 while over the
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sector i} <argp< 5—: the additive term must be used and
over the sector - % <argp< T it must not be used. The fact
that 2 exp(pz) f = exp(-zz)dz has different asymptotic
expressions ovgr different sectors of the complex p-plane is
an instance of what is known as Stokes' phenomenon.

In order to appraise, when - T< arg p < —;— , the difference
between 2 exp(pz) f > exp(-zz)dz and the sum of the

P

An+1
1 1.3

first n+1 terms of the asymptotic series 1. —g t —F e
P 2p 22p
we observe that, if T is any real number, expT=1+7T
Tz Tn Tn+1
+ — +... — +exp(6T)
21 n} (n+1)!
2
0 varying with T . Setting T = - t_ e obtain
CEyra b, Lty apl (L
exp(-—)=1-(=)"+ —(=)*-... +(-1)" = (-
P 4 2 21 "o nl 2
ot2

t
ol e (70t ne2 oy A, Which is the
(n+1)!

Laplace Transform, over the half-plane ¢ > 0, of

2
[exp (-% ) —{1 - (%)z+... + (-1)P _nl_l (%)2n}u(t) may be

where 0 <6 <1,

- n+1 o0 etz
written as NG i exp(-—4") {2n+2 exp(-pt)dt.
92042 (n41)1 0
: ot2 :
Since 0<6<1, 0<exp(——4—)_§_1, no matter what is the

1 o0
value of t, andso| A .| < —— t2n+2 exp(-ct)dt
’ n+l’ = 92m42 (nu9)1 o
o L.3....02n+1) . Thus A is dominated by the first term
ol+1,2n+3 n+l
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omitted of the asymptotic series. Furthermore, if p=c >0

is real, A has the sign of this first term omitted since

n+l
2
0 exp (-—e‘-;f— )t2n+2 exp(-ct)dt is positive. For example,
e 1 1
2 exp(cz) f exp(-tz)dt, ¢ >0, lies between — and 1. 53
c c c 2c

exp(-c2)

so that if we use as an approximation to

L) c
f exp(-tz)dt, c > 0, this approximation is in excess by less

¢ 100 1 1
than —— per cent; if we use exp(-c2 {—— - - } as an

21" I xp(-c4) 2c 203
approximation to j; exp(-tz)dt, ¢ > 0, this approximation
150
per cent and soon. Ifc =1,

2 o2
cf(2es-1), 1.3

the term of the asymptotic series c " 9¢3 + 22c5

is too small by less than

T s e WhOSG

numerical value is least is the second term and the asymptotic
series cannot guarantee a better approximation than that given

by its first term; if ¢ = 2, the term whose numerical value is

least is the fifth and the asymptotic series cannot guarantee a
better approximation than that given by the sum of its first 4 terms.
In general, if ¢ is an integer, the asymptotic series cannot
guarantee a better approximation than that given by the sum of its

2

first ¢“ terms.
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Lectures on Applied Mathematics
Lecture 18
The Asymptotic Series for (27p) 1/2 exp(-p) I_(p),|arg p |< T
The Hankel Functions n 2
If p is any complex number, the infinite series Io(p)
+ 2(cos 6) Iz(p) + 2(cos 46) 14(p) + ... converges, with the sum
cosh(p cos 0), and, since this infinite series is dominated by the
infinite series IO(|pI) +2 Iz(lpl) + ... which converges, with the
sum cosh| pI , the convergence is uniform over any closed interval.
Hence the infinite series may be integrated term-by-term, after
multiplication by cos 2m6, m =0, 1, 2, ..., over the interval
0 <6< 7 so that

1 m
Im(p) = - j; cosh(p cos 0) (cos 2m6) dg, m =0, 1, 2, ...

If, then, {(6) is any linear combination, ¢y + ¢y cos 20 + ... +c, cos 2n8,
of the functions cos 2m6, m =0, 1, ..., n, we have
T
1 [ cosh (p cos 8) £(8) d8 = cq Ig(p) + c1 Io(p) + ...
U 0
+cp I (p)

1
Now, (-1)n 22n-1 gjp2ng = =~ {exp(ie) - exp(-ig)} 2“, n=1, 2, ...,
2
is such a linear combination, the coefficients ¢, ¢, _1, ..., cq
being the first n coefficients of the binomial expansion

(1-x)2D = 1-2nx + ( 2;) x2 - ... and
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2n
Co = (-1)n % ( n ) being one-half the (n+1)st term of this binomial
expansion. For example, whenn =1, -2 sin2@ = cos 20-1; when
n =2, 23 sin 8 = cos 46 - 4 cos 26 + 3, and so on. Hence

1 n 22n-1 T
(-1) f cosh(p cos ) sin2n@ d8 =c I, (p)
T 0 nen

e 4 12n_2(p) ... 4+ colo(p)

wherec , ..., C 1 are the first n coefficients of the binomial
n

expansion of (l—x)2n and o is one-half the (n+1)st coefficient of

this expansion. Setting n =1, we obtain

2 T .9 2
- ; fo cosh(p cos 0) (sin“0) d6 = Iz(p) - Io(p) = - 0 Il(p)

so that

I_(p)

1 4 .2
= cosh(p cos 6) (sin“6) d6 = 1
0

§
Setting n = 2, we obtain

23

m

T |

T
f cosh(p cos 6) (sin49) de = 14(p) -4 Iz(p) +3 Io(p)
0

6 6 4
Now, 1,) = 1,(8) - 3 1) = 1,0) - ; {16 - 5 1,0

2
- 15(8) + 3] 1) - Too) 2 1,0
so that 14(p) -4 Iz(p) + 3IO(p) -2 Iz(p), Hence

p2

f
3
1 cosh (p cos 6) (sin49) de = — I, (p).
m -0 p2 2
These two results are special cases, corresponding ton =1 and

n = 2, of the general formula
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1 4 . 2n A
- cosh(p cos 6) (sin“'08) d6 = — I (p)
T /9 ph n
where An =1.3.5...(2n-1), n=1, 2, ... . Setting AO =1 this

formula covers the case n = 0 so that

T A
1 f cosh(p cos 6) (sinzne) dd=_" 1(p),n=0,1,2, ...
T J0 n N

P
This general formula may be easily verified by multiplying the
infinite series Io(p) + 2(cos 26) Iz(p) + ..., whose sum is cosh(p cos B)J
by sinzne and integrating term-by-term. We prefer, however, to

derive it by an extension of the method by which we proved it in the

case n = 2 since we obtain in this way a useful generalization of the
2(n-1)

recurrence relation, In(p) =1 _5(0) - I l(p)’ n=2, 3, ...

n-
Replacing n by n-1 in this relation we obtain I 1(p) =1 _a(p)
- -

_ 2(n'2) In-z(p), n= 3, 4’ «esy SO that

- 22(n-1)(n-2
L@ -1 e -2 1 e (“pz’(“ L1 ), 03, 4, ...
2(n-3)
P

and since In_3(-p) = In_4(p) - In_z(p), n=4, 5, ..., the right-

hand side of the relation just derived may be replaced, whenn =4, 5, ...

-1 22(n-1)(n-2
by T,_y(e) - {In-4(p> . xn_2<p)}+ & p;‘“ L ). Thus
n-2 n-1 22(n-1)(n-2)
In(p) -2 n-3 In_z(p) + n-3 Il’l-4(p) = 9 In_2(p)9 n=4,5,...

This is our first extension of the recurrence relation In(p) -1 2(p)
n—
2(n-1
- (n-1) In-l(p)’ n=2, 3, 3, it yields, when n = 4, the relation
29,3
I,(p) - 4 Iy(p) + 3 I,(p) = TZ 1, (p)
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. 2(n-3) . .
On setting In_z(p) = In— 4(p) - > In_3(p) on the right-hand side

of this extension of the recurrence relation and using the fact that

n-4 n-3 22(n-3)(n-4)
Lo@-2— 1 )+ 1 )= 02 I _4®), n=6,7,...,
we obtain

n-2 n-1 (n-1)(n-2)
-2— T — 1 = (1
Lo -222 1 @2 e e e
n-4 n-3 28(n-1)(n-2)(n+3)
-2 I _4)+ s In_6(p)§- 3 I 5P
or, equivalently,
3(n-2) 3(n-1) (n-1)(n- 2)
I (p) T L @+ =1 ,0)- @-0)(a5) I _¢®
3
-- 13)3,; (-1)(n-2)n-3)L__,(0), n=6, 7, 8,

This is our second extension of the recurrence relation In(p) - n-2(p)

n-1
= - 2— I _l(p); it yields, when n = 6, the relation

5
L) - 6 1,2) + 15 L(e) - 10 1,0) = - 2—:’;,—5 1 (p)

2n-1
On setting n = 3 in the relation (-1)? f cosh(p cos 0) (sinzne) de
T <0
=c, Izn(p) +... +Cp Io(p) we obtain
1 m 6 3.5 A3
e cosh (p cos 8) (sin”9) d6 = 3 I,(p) = I (p)
T 0 3 p3 3

Proceeding in this way, we obtain the followmg generalized
recurrence relation whose validity may be verified by an induction

proof:
1

n
In@ -nae 1 @) +(y) ozlz1 I 0@ -+ 1P aﬁ I 5 )

2(m-1)(m-2). .. (m-n)

— (-1
=(-1) o L ..®

n=1,2, ..., m=2n, 2n+l,... . The coefficient, ag , of
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n
(-1)¥ ( k) Im 21{(p) on the left-hand side of this relation is a
fraction whose denominator is (m-n-1) ... (m-n-k) and whose

numerator is independent of n, this numerator being determined by
k _ (m-1)... (m-k+1)
k  (m-k-1)...(m-2k+1)

- -1)(m-2). .. (m-k+1)(m-
O!1=1. Thus a1=m2 andozk=(m )(m-2). . . (m-k+1)(m Zk),

1 n  m-n-1 " (m-n-1)... (m-n-k)

the fact that o ifk =2, 3, ..., while

k=2,3, ..., n. When m = 2n, this generalized recurrence formula
yields the relation
2n nl 2n
L@ -201, o) +( )L @) -...+(1)"5 ()

2n-1
n
= (1 T A L)

and this implies that% foﬂ cosh (p cos 6)(sin2n6)c110 = %— I (),
n=0,1,2, ... . Onreplacing cosh (p cos 0) by 3 {exp(p cos 0)
+ exp(-p cos 6)} and observing that f " exp(p cos 6)(sin2n9) de
= fon exp(-p cos 0') (sin 21 9') do", 0'0= 7-0, we obtain

m A, P71 (p)

T
f (sinzne) exp(-p cos 0) do
0

1
f (1-v2)n'(1/2e)xp(-pv)dv, v =cos 6
-1

2
= (exp p) f tn'a/zzz-t)n'(l/zgxp(—pt)dt, t = v+l
0
so that 7 An p™™ exp(-p) In(p) is the Laplace Transform, over the
entire finite complex p-plane, of the right-sided function which

-1/2)
= tn'(l/Z)(Z—t)n (/over the interval 0 <t < 2 and which =0, if t > 2.

148



If n = 0, this right-sided function is unbounded at t =0 and t = 2.

n-0/2 1-0/2

Over the interval 0 <t < 2, t (2 t) may be written in the form

n-{/2n-0/2 1t @-2)a-2) 2
2 T t-m-g) 5 ¢ 22 2 (.;) -
1 2k-3 2!
(n-a)...(n—'———2 ) ¢

+ -1k ‘ 2 )“'1]
(k 1)1 :

2k-1
k“(”?“ 2) (TS

n+k -0/2
+t (—1)

is continuous over 0 <t < 2 and is arbitrarily small over

+€(t)] where €(t)

0<t<@, if O is sufficiently small. Hence, if the real part
cof pis positive, the product of 7 A p exp(-p)In(p)
3

n'(l/z)[r'(n +§) (n -5 2) [h+3)
/2 2pn/2) T

1 2k-1 1
K (n-g)...(n- 7 ) |"‘(n+k+2) } bypn+k+(1/2)

2K k1 pnk/2)

tends to zero as p— oo along the ray 0— p, the convergence being

+(-1)

f f
uniform over the sector - -z‘ + B<argp < — -8, where B is any

m
positive number less than"‘. Since [ (n +")—(n-—) [_(n -"
=... =(n -"')(n-“) 1/2-2nA ﬂl/zltfollows, on

multiplication by 21/ 2 " 1/ 2 nl pma/ 2), that the product of

4n2-1  (an2-1)(4n2-32)
+
8p 2 !(8p)2

- k (4n-1)(4n®-3%). .. {4 -(2k-1) ]]
el 1 (e

By = @) el 1,0 - [1-
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k

by p" tends to zero as p—— o< along any curve which is

covered by the sector - % +B8<argp < L B so that the
4n?-1 . (n?-1(an?32)

8p 21(8p)?
to converge at any point of the finite complex p-plane, is an

infinite series 1 - ., which fails
asymptotic series, over the sector - 12'. +B<argp< g - B,
for the function (pr)'l/ 2 exp(-p) In(p) of the complex variable p.
The asymptotic series which we have just obtained for
(Zvrp)ml/2 exp(-p) In(p) is not valid when p = it is a pure imaginary
and so it fails to provide an asymptotic series for J n(t)° To obtain
an asymptotic series useful in the calculation of J n(t) we proceed as follows.
Let v be a complex variable and let the complex v-plane be cut along the

2072 R

segment 0 < v < 2 of its real axis so as to make v
uniform over the two-sheeted Riemann surface so obtained, the value
of this function at any point of the lower sheet of this Riemann surface
being the negative of its value at the corresponding point of the
upper sheet. Let us consider the closed curve C on this two-sheeted
Riemann surface which consists of the following four parts:

1) The line segment from the point 2 -() in the lower sheet
to the point 6 in the lower sheet, 0 < (S <1

2) The circumference | v| = O from the point ) in the lower
sheet to the point (S in the upper sheet.

3) The line segment from the point (S in the upper sheet to

the point 2 —6 in the upper sheet.
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4) The circumference | v - 2 | = O trom the point
2 - (5 in the upper sheet to the point 2 - (5 in the lower sheet.
) n-(1/2? n-(1/2) (S
The integral of v 2-v) exp(-pv) along C is independent of
and as (5‘——9 0 the contributions from the parts 2) and 4) of C
tend to 0 while the contributions from the parts 1) and 3) of C tend

2 ,a -(1/2
to f t? /2(2 -t)n A/ <)exp(-pt)dt so that the integral of
0

-(1 n-(1/2
vn ( /%%-v) ( /e)xp(-pv) along C has the value ZwAnp'n exp(-p)ln(p)°

We next consider the closed curve C' on our two-sheeted Riemann
surface which consists of the following five parts:

1') The line segment from the point R exp(ia) in the lower sheet
to the point 6 in the lower sheet where R is any positive number,
@ is any number which is such that|a + arg p |< % and O is any
positive number less than 1

2') The circumference|v|= O from the point $ in the lower
sheet to the point 6 in the upper sheet.

3') The line segment from the point (S in the upper sheet to
the point 2 - 6 in the upper sheet

4') The circumference |v - 2 I= O from the point 2 - 6 in the
upper sheet to the point 2 - 5 in the lower sheet

5') The line segment from the point 2 -6 in the lower sheet

to the point R exp(ia) in the lower sheet
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n-(1/2) n-(1/2)
(-

The integral of v V) exp(-v) along C' is the same

as the integral of the same integrand along C and is independent
of R, a and (5 . As 6——)0 the contributions to this integral

from the parts 2') and 4') of C' tend to 0 while the contribution

2 tn-(l/ﬂ_t)n-(l/Z)

from the part 3') of C' tends to [ exp(-pt)dt

0
= 7rAnp"n exp(-p) ln(p). As R— %9 the contribution from the

' -(1/2 n-(1/2

part 1') of C' tends to vn 1/2) (2-v) (1/2) exp(-pv)dv, the integral
0

being extended along the ray of angle a from 0 to ©° (this infinite

T
integral existing since | a + arg p|< =) and the contribution from

o2 - 22 n-(1/2
the part 5') of C' tends to - f vlrl b 2-v) ( /e)xp(-pv)dv,

2
the integral being extended along the ray of angle a from 2 to o<,

Thus

[ooexpia , _ -(1/2)
1A p™" exp(-p) I,(p) = | v a/z)(z_v)n exp(-pv)av
0

2

7
If ESargp<1rwe set a =-5 and, if-1r<argp_§--g- we set
T .

a =E. Treating the first case, we set v = it in Il’ and 7 = 2-it in

12 so that. in each of the two integrals, 0 <t <oco. I, appears

N 2n-(l/z()_ i)n+(1/2) fo t“'“/z& . i_;_)n‘(l/z)

[

exp(-p't)dt, where
p' = -ip so that the real part of p' is positive, and I2 appears as

-(1/2) >° n-(1/2) it n-(1/2
Zn in+(1/ )[ tn ( /()1 - }é')n ( /e)xp(—p't)dt times exp(-2p).

-~

<

0
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On multiplying through by exp p we obtain 1rA (ip)™1 (1p )

n-(1/2) it -
T A (P Tt -

n- it n-(1/2
n0/2 n+G/Z)xp( ip') f £ (1/2() 3 ) ( e)xp( p't)dt

or, equivalently, since i n I(>ip') =J () ), we have 2J (p )
1/2
+( )'1 A, o) exp (i (n+ ) 2)] j ol 21 5 &/xp( -p't)dt

+ 2 Ao exp [-i(pr-aed AR AR B Tl
10y 450 )
n n

where H(:l) (p') is the first member, and H(i) (p') is the second member,
on the right-hand side and 0 < arg p' < % . H(l)(p') and H(Izl)(p') are

n
known as Hankel Functions. A similar argument shows that the

relation 2 Jn(p') = H(l)(p') + H(Izl)(p') remains valid when
n
T

-E<argp'<0, inwhichcase-n<argp<-§ andweseta=—2-.
2

We shall derive in our next lecture, from this representation of
(1)

n
a formula furnishing Jn(t), wnen t is real and positive, as the sum

Jn(p') as the mean of the two Hankel functions, H' '(p') and H(i)(p'),

of two asymptotic series, each of which has the convenient property

that the error made in stopping at any term has the same sign as the

next term and is dominated by this term.
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Lectures on Applied Mathematics
Lecture 19

The Asymptotic Series for Pn(c) and Qn(c)

If p is any complex number whose real part ¢ is positive

the Hankel Function H( )(p) is defined by the formula

n-(1/2) it n-(1/2)

o
A p exp[l(p (n+ —)—) f (1+7) exp( pt)dt

1 +(1/2) -1
H, V(o) = 2 )

In particular, when p = c is real and positive, we have, on making the

substitution t = t'/c and then dropping the prime,

Hfll)(c) s Z)Tr'lA;IC"l/ Zexpfi(c-(n+> )")] j e 'li)n ! to(-t)ct

Similarly,

oo 1/2
HS) (c) = 2n+(1/2)7r'1Ar-11c’1/ 2exp[ i(c- (n+—)ZT-)U’ - (1/2) ;tc)n - /})ip( -t)dt
so that

1/2
Jn(c) { ()(c) H(Z)(c)} G {Pn(c)cos[c-(m%) %]

- Qn(c) Sin[c-(n+%) Zrz‘]}

where

®° n-(1/2 n-(1/2) i+ n-(1/2
P(c}' 1/2 f i ){( +‘i£) ( +(1-2%) )}exp(-t)dt

=0, 1, 2,
° n-(1/2) { it n-(1/2) 1t n-(l/ )
Qn(c) N 1f ago P §exp<-t>dt
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1

2 [ 1q
In=12,..., Jn_l(c) = ( s )2 {-Pn_1(<:)s1nLc-(n+2 2]

1
- Qn_l(c)cos[c-(n+§) %]? and, ifn=0,1,2,...,

1 -
Jn+1(c) = (—7?25— )1/2 {pml(c) sin[c-(n+§)%1 + le(c)coslc-(m%)%J

o s

Zn
and it follows, since Jn_l(c) - Jn+1(c) = Je),n=1, 2,..., that

2n Zn
P 4)-P ) =-7 Q) Q.- 4)=7 P (c)
n=1,2,... We shall obtain asymptotic series for Po(c),
Qo(c), Pl(c), Ql(c) and shall deduce from these, by means of the
recurrence relations just derived, asymptotic series for
Pn(c) and Q,(c), n =2,3,...
In order to obtain asymptotic series for Po(c) and Qo(c)

we observe that, if v is any non-real complex number,

_ /2
(1-v) 1/2 2 j g

= . Indeed
T % 1-v sin2¢ ’

2 4 5 2d T 48

0 1-v sin?¢p 7 2-v+v cos 2¢ 0 2-v+v cos 6

=1f” de
2

-m 2-v+v cos 6

dz 1 m de
Setting exp i6 =z, sothatdé =~ , © [
2 Jdp 2-vivcos ®
-2 é _—g-—dz where C is the circumference |z| =1
v Je Z2+2(V - 1)z+1 )
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The two zeros, z, and Zg, of the quadratic polynomial

1
2
z2 + 2 (; - 1)z+1 are such that Zy 29 = 1 and, since their

sum, 2( 1 - v ), is not real, neither can be a complex number

of unit modulus for, if |z | = 1, for example, the reciprccal Zg

|
of zq would be its conjugate, 21, and zy +2, would be real.
2 2 1/2

Writingz; =1 -3 +35(1-v)  we see that, when |v|<1,

zq = - i—v + ... tends to zero with v. Hence| z1| <1lif|v]is
sufficiently small and this implies, since |z1l is never 1, that
|z1| < 1 no matter what is the non-real complex number v and
this implies that lzzj > 1 no matter what is the non-real complex

2
number v so that z, is the only zero of 22 + 2( v - 1) z+1 which

1
lies inside C. The coefficient of z_z in the development of
41

c-1
_r as an infinite series of the type +C,
(z-2)(z-23) Z2-21
1 v -
+c,(z-z;) +... is = — (1-v) 1/zandso
1 1 Zy-2Z, 4

dz _ imv (1 V)-l/z . -1/2

= =~ (1- , proving that (1-v)
C 2z2+2( 2 1)z+1 2
v

m

2 —
= = 2 _ﬂj"_z . The usefulness of this result lies in the
T 0 1-v sin“¢
fact that is provides us with a convenient expression for the remainder

12 Writing (1- v sinZg)~]

vém gin4m ¢

in the binomial expansion of (1-v)~

=14+ vsin2¢ oo + vzm'lsin4m'2¢ + ,ym=1,2,...,

1- vsin2¢
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1.3 -
we cbtain (l-v)'l/z =1 +—v+_v2 +... 4 1-3.-.(4m 3) yam-1

/2 4m
+ = f M On changing the sign of v we obtain,

T 1-vsinZ¢
by add1t10n and subtraction, the relations

1 -1/2 -1/2} L3 4 3...(4m-5) 9m-2
- 1- 1 = 1 oo e
. {( V) + (1+v) + 5 4 Ve + + 2.4... (4m-4) v

2 T/2 . 4m
+_.v2m f sin*™ ¢ do
T 0 l-vzsin4¢

13.(4m3) J2m-1

- 1- 1 = e s 0

z{( D7 - ) } 2V 206" " ..(4m-2
2 /2 . 4m+2
ol lf sin"" "¢ 4
ta -vzsm4¢

it
Setting v = ¢’ , 0 <t <oo, we obtain

i 2
it |- 1.3 t
{(1- c) 1/2 (1+_5) 1/2§=1__ "
2 ¢ 21 (4c)
+( l)m -11. 3-...(4m 5) th"Z
(2m-2)! (4c)2m-2
T
b (R 2 (L2 f 2 s g
" 0 1,t2 sinb
402
1 2 14 Iy ¢ L35
21(-—)2-( )2 =TI @t
+ (_1)m—1 1.3...(4m-3) th-l
(2m-1)1 (4c)2m-1
4 (-1)m 2 t)2m+l f /2 sndmeZy
ﬁ 1
“ 0 1+£2¥ Sin4¢
402

157



T
2 T «indm
2
Since 1 + Lzsin4¢ > 1, the integral 2 f S—mz—‘i’— d¢, which
4c T 20 1.2 sin4¢
- 4c2
2 = 1.3...(4m-1
is positive, is dominated by — f 2 sin4m¢d¢ = (m-1) and,
T 0 2.4...(4m)
T . 4m+2
2 —
similarly, the integral = f 2 S‘—nz-———‘l d¢, which is also
T 70 1.t sin%g
4c2
1.3...(4m+1
positive, is dominated by (m+ ). On denoting by 6(t) any

2.4...(4m+2)
positive function of t which is dominated by 1 we have the

following two equations which we shall refer to as the equations AO:

1

1{ it -1/2 it -_} 1.3 2
=41 - — —- =1 -
210wy g -1

_2? (4c)z+...

m-11.3...(4m-5)  2m-2
' (_1) (2m-2)! (40)2m‘2
+ (-1)M 1.3...(4m-1) t2m (6
. (2m)! (40)2111
AO.
3

1 it \-1/2 it \-1/2] t 1.3.5
2 1 2 B 1 9¢ N Y
2i {( 25 1+ ” ) w3l @’
+ (_,1)m-1 1.3...(4m-3) t2m-1

(2m-1)1  (4c)2m-1
& (-1)m 1.3...(4m+1) t2m+l 8(t)

(2m+1)! (4c)2m+1

where the positive function 6(t) which appears on the right-hand side
of each of these two equations is not the same in the two equations.

Upon integrating the equations A, over the interval [0,t{ and using the
0
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fact that the integral of t2™(t) over this interval is positive and

is dominated by t
2m+1

shall refer to as the equations A

we obtain the following two equations which we
1

1 it 11/2 it \1/2] t L3t
Zi{(1+2c) -(d-5) } 3T L

2m-1
_pym-11.3...(4m-5) t
+ 0 (@m-1)I  (4c)2m-1

1.5...(4m-1) t2m+l o)
(2m+1)! (4c)2m+1

+ ()™

A1:

- —— — + -0

it it a1/2]_ 0 1 2 1.3.5 t4
{(1+2c) +( Zc) }- T a (4c)2 4] (4c)4

1
2

m-11.3...(4m-3) t2™

+(-1)
(2m)! (4c)2m

o (cym L3 (4m#1) ¢ 2m+2
(2m+2)!  (4c)2m+2

where the positive function 6(t) which appears on the right-hand
side of each of the equations A, is not the same in each of the two
equations nor the same as the positive function 6(t) which appeared
on the right-hand side of the equations Ag-

Upon multiplying the equations Ay by the non-negative function

t” 1/ 2exp(-t) and integrating over the positive real axis we obtain,

159



on denoting by 6 any positive number which is dominated by 1,

5
1 1.3 -

Po(c)= 172[[-.(%)' 2] E..(__Z_)_"‘---
” (4c)?

+ (-1m-11.3... (4m-5) [((2m - %)

(2m-2)! (4c)2m-2
 pym Ledes(mel) [ (m +3) e]= B
(2m)! (4c)2m 21(8c)?
s ()1 12.3% . (m-5)2 12.32. .. (4m-1)°
(2m-2) 1(8c)2 ™2 (2m)! (8c)2™
3 7
1 M(5) 13.5 (5)
-- A'z) L3573y
Qo(c) 17_172{ 4c 31 (4c)3 + oo
 (pyo-l i3 (med) [C2m - )
(2m-1)! (4c)2m-1
1 2 2
 (qym LB (4me) ["(2m +73) ]=_1_ B £.5
(2m+1)! (40)2m+1 8c 3 1(80)3
2 32 -3)2 2 32 2
o eym 8 ._..(4m23) L+ (1t 2.32... (4m+1)
(2m-1)1(8c)“M" (2m+1)1(8c)?m+1

where the positive number 8 which appears on the right-hand side of
each of these two equations is not the same in the two equations.

Neither of the two infinite series
12,32 12, 32,5272 1 12,3252 2. % .72 92

™ ewoe - + - +ee

- + 4 ’ 5
21(8c)2  4!(8c) 8c  31(8¢)3  5!(8c)

1

converges for any finite value of ¢ but the first of these two infinite
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series is an asymptotic series for Pg(c) and the second is an
asymptotic series for Qo(c)., Each of these two asymptotic series
possesses the property that the error made in stopping at any term
has the sign of the next term and is dominated by this term.

Upon multiplying the equations Al by the non-negative function

tl/ 2exp(-t) and integrating over the interval [O,t] we obtain,

Similarlg” 34.5.7 1 32. - (4m'5)2(4m-3)(4m-1)
© =55~ iggeys * oo MDY (2m-1)! (8c)Zm-1
+ (-1 32... (4m-1)2(4m+’1)(4m+3) 0
(2m+1)1 (8c)2m+1
(-1 32,52, .. (4m+1)2(4m+3)(4m+5) 6

(2m+2) 1 (8¢c)2 0+

where, again, the positive number 6 which appears on the right-hand
side of these equations is not the same in each of the two equations.

Thus the two infinite series

3.5 32,52,7.9 32,52 72 92 11.13
1+ 9~ 4 + 6 -
21(8c) 41(8c) 6!(8c)
3 3%5.7 3%5h7fo.11

+
gc 31(8c)3 51(8c)?

each of which fails to converge for any finite value of ¢, are
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asymptotic series for Pl(c) and Ql(c), respectively. The asymptotic
series for Ql(c) is alternating while the asymptotic series for

Pl(c) is alternating if we remove its first term. The asymptotic
series for Ql(c) possesses the same property as the asymptotic
series for Po(c) and Qo(c): The error made in stopping at any term
has the sign of the next term and is dominated by this next term.

On the other hand, the asymptotic series for Pl(c) does not,
necessarily, possess this property if we stop at the first term;

for this asymptotic series all we can claim is that: The error made

in stopping at any term, after the first, has the sign of the next term

and is dominated by this next term.
The asymptotic series which we have obtained for Po(c) and
Pl(c) are special cases, correspondington =0 andn =1,

respectively, of the series
_ (an?-1%)(n?-3%) . (4n2-12)(4n2-3%)(4n-52)(4n2-72)
21(8c)? 41(8c)4

and the asymptotic series which we have obtained for Qo(c) and Ql(c)
are special cases, corresponding ton =0 and n = 1, respectively,
of the series

(4n2-12) _ (4n%-1%)(4n®-3%)(4n?-52)

8c 31(8c)3
We proceed to show that these series are asymptotic series for

+..0

P, (c) and Qu(c), respectively, and, furthermore, that, if n = 2k

is even, these asymptotic series possess the property that the error
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made in stopping at any term after the kth has the sign of the

next term and is dominated by this next term; if n = 2k + 1 is

odd the error made in stopping at any term after the (k + 1)st of the
asymptotic series for Pn(c), and at any term after the kth of the
asymptotic series for Qn(c), has the sign of the next term and is
dominated by this term. We have shown that these statements

are true when n = 0 and when n = 1 and, assuming that they are
true for any two consecutive values, j-1 and j, of n we proceed

to show that this assumption implies that they are true for the

next consecutive value, j+1, of n. Thus we assume that

(4n2-1%)(4n2-3%) eyt @n2-12). .. {4n®-(4m-5)?}

P (c)=1- ..
n() a1(8e)2 (2m-2) 1(8c) 22

4n2-1%). .. {4n° -(4m 1J

+ (-n™
(2m)1 (80)
if n = j-1 and m is sufficiently large and that
© (4n?-12) Cm (4n2-12). .. {4n2-(4m-7)2}
=" =...+(-
Qn ¢ 8c 2m-3

(2m-3)!(8¢)

m+1 (4n2-1%)... $4n®-(4m-3)% o
(2m-1)1(8¢c)2m-1

+(-1)

if n = j and m is sufficiently large, both the positive numbers 6
and ' being dominated by 1. The coefficient of (-1)F {(Zr) 1(8¢)2r '1,

r=0, 1, ..., m=1, in the asymptotic series for Pj-l(c) is the
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product (2j-4r-1)...(2j+4r-3) of all the odd integers, not
necessarily positive, beginning with 2j-4r-1 and ending with 2j+4r-3
and the coefficient of (-1)T {(Zr) !(8c)2r} 'l,r =1, ..., m-1, in the
product of the asymptotic series for Qj (c) by - 2% is 32jr times

the product (2j-4r+3) ... (2j+4r-3) of all the odd integers

beginning with 2j-4r+3 and ending with 2j+4r-3. Since
(2j-4r-1)(2j-4r+1) + 32jr = (2j+4r-1)(2j+4r+1) the coefficient of
(-1)F {(Zr)! (80)21'} AR I m-1, in the result of

subtracting —CJ— times the asymptotic series for Qj(c) from the
asymptotic series for Pj_l(c) is the product, (2j-4r+3)...(2j+4r+1),
of all the odd integers beginning with 2j-4r+3 and ending with
(2j+4r+1) and this product is the value, when n = j+1, of

(4n2-12). .. {4112-(41«-1)2} . Since P, ,(c) =P, ,(c) - i—l Q)

I+ J
it follows that, when n = j+1, Pn(c) is

. (n?-1%)(an?-3%) vt (epym-l (4n2-12). .. {4n2-(4m-5)2}
21(8c)2 o (2m-2) 1(8c)2™"2

plus a remainder term, this remainder term being (-1)M (2m)!(80)2m} -1
times the product of (2j-4m-1)(2j-4m+1) 6 + 32jm 6' by the product,
(2j-4m+3). . . (2j+4m-3), of all the odd integers beginning with

2j-4m+3 and ending with 2j+4m-3. Since (2j-4m-1)(2j-4m+1) + 32jm

= (2j+4m-1)(2j+4m+1), (2j-4m-1)(2j-4m+1) 6 + 32jm 0' is of the

form (2j+4m-1)(2j+4m+1) 6' where 8" is positive and dominated by 1
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provided that m is large enough to make 2j-4m+1 negative (so that

(2j-4m-1)(2j-4m+1) is positive). Thus the remainder term is the

2_12 2 2
value, when n = j+1l of (-1)m (4n®-19). .. {411 -(4m-1) }
(2m) 1(8c)?m

0" which

proves the validity, when n = j+1, of the statement made concerning
the asymptotic series for Pn(c). In the same way we prove the
validity, when n = j+1, of the statement made concerning the
asymptotic series for Qn(c). This completes the proof, by
mathematical induction, of the validity, for all non-negative integral
values of n, of the statements made concerning the asymptotic
series for Pn(c) and Q,(c).

Now the product of any term, say the rth, of the asymptotic
series for Qj (c) by - Zc_] becomes, by virtue of the relation Pj +l(c)
= j_l(c) - gc]—QJ (c), part of the (r+1)st term of the asymptotic
series for Pj+1(c) while the product of the rth term of the asymptotic
series for P, (c) becomes, by virtue of the relation

2j .

Qj+1(c) = Qj-l(c) t Pj (c) part of the rth term of the asymptotic
series for Qj+1(c). Thus, in order to be assured that the error
made in stopping at any term of the asymptotic series in question
has the sign of the next term and is dominated by this next term
we must take

1) more than 1 term of the asymptotic series for Pz(c),

Q,(c) and Qs(c)
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2) more than 2 terms of the asymptotic series for
Pg(c), Pylc), Q,(c) and Qz(c)
and so on. In general, if n = 2k is even, we must take more
than k terms of the asymptotic series for Pn(c) and Qn(c) while,
if n = 2k+1 is odd,we must take more than k+1 terms of the
asymptotic series for Pn(c) and more than k terms of the

asymptotic series for Qn(c).
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