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FOREWORD

These lecture notes were prepared by Professor Francis D.

Murnaghan for use in a series of nineteen lectures on the Laplace

Transformation given by him during the spring of 1959 at the

Applied Mathematics Laboratory, David Taylor Model Basin.

The lectures were well aLtended by the technical staff of the

David Taylor Model Basin laboratories as well as by scientists

throughout the Washington community. It was an inspiring

experience to all who had the opportunity to be present.

The Applied Mathematics Laboratory is proud to present

these lecture notes in report form. Although the warm humor

and the pedagogical skill of the delivery are missing from the

notes, these lectures constitute an unusually clear and complete

presentation of the theory and application of the Laplace

Transformation which will remain of permanent value in the

instruction of applied mathematics.

Harry Polachek
Technical Director
Applied Mathematics Laboratory
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ABSTRACT

These lectures on applied mathematics are devoted to the

Laplace Transformation and its application to linear ordinary

differential equations with variable coefficients, to linear partial

differential equations, with two independent variables and constant

coefficients, and to the determination of asymptotic series. The

treatment of the Laplace Transformation is based on the Fourier

Integral Theorem and the ordinary differential equations selected

for detailed treatment are those of Laguerre and Bessel. The

partial differential equation governing the motion of a tightly

stretched vibrating string and a generalization of this equation

are fully treated. Asymptotic series for the integral f exp(-z2)dz
p

and for modified Bessel function In(p), arg p < 2L, are obtained

by means of the Laplace Transformation and, finally, asymptotic

series useful in the calculation of the ordinary Bessel functions

Jn(t) are treated.

Care has been taken to make the treatment self-contained

and details of the proofs of the basic mathematical theorems are

given.
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Lectures on Applied Mathematics

Lecture 1

Absolutely Integrable Piecewise Continuous Functions

Let f(t) be a complex-valued function of the unrestricted real

variable t, -oo < t < oo , it being understood that real-valued functions

of t are included in the class of complex-valued functions of t, a

real-valued function being a complex-valued function whose imaginary

part is identically zero. The class of continuous functions is too

restricted for our purpose and we shall merely suppose that the number

of points of discontinuity of f(t), if any such exist, in any finite interval

is finite. This will be the case if the number of points of discontinuity

of f(t) is finite but this sufficient condition is not necessary; for example,

f(t) may be discontinuous for all integral values of t or it may be a

periodic function, of period T, with a finite number of points of

discontinuity in the interval 0 < t < T. When f(t) possesses not more than

a finite number of points of discontinuity in any finite interval we shall

say that is possesses Property 1 and we shall term any function f(t)

which possesses Property 1 a piecewise continuous function.

In enlarging the class of functions wh ich we propose to consider

from continuous to piecewise continuous functions we lose some of the

most convenient properties of the class of continuous functions. For

example, every continuous function is bounded over every finite interval
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but this is not true for piecewise continuous functions. For example,

the function f(t) which is equal to t - 1 if tI0 and which is assigned any

value at t=O (the particular value assigned to it at t=O being

immaterial) is piecewise continuous, since it has only one point of

discontinuity, but it is not bounded over any interval which contains

the point t=O. Furthermore, every continuous function is integrable,

in the sense of Riemann, over any closed interval a < t < b but this

is not necessarily true for a piecewise continuous function if the

interval contains a point of discontinuity of the function at which the

function is unbounded. If c is such a point of discontinuity of f(t)

in the interval a < t < b and if f(t) is continuous at all other points of

this interval we say that f(t) is improperly integrable, in the sense

of Riemann, over the interval a < t < b if the function F( 6, 62) of

the two non-negative variables 61 and 62 which is furnished by

the sum of the integrals of f(t) over the intervals a t < c- 61 and

c + 62 <tb, where 61 Kc-aand 62 < b-c, possesses a limit

as 6 1 and 62 tend, independently of each other, to zero and we

term this limit the improper integral of f(t) over the interval

a <t K b. Note. We assume that the non-negative variables 61 and 62
are actually positive unless c=a, in which case 61=0 and 62 is

positive, or c=b, in which case 6 2=0 and 61 is positive. There is no

lack of generality in assuming that f(t) has only one point of discontinuity,

at which it is unbounded, in the interval a < t < b since the number of

its points of discontinuity in this interval is, by hypothesis, finite and

2
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if it has more than one point of discontinuity at which it is unbounded

in the interval a < t < b we can break this interval down into a number

of sub-intervals each containing only one point of discontinuity of f(t),

at which it is unbounded, and define the improper integral of f(t) over

the interval a <t < b as the sum of the improper integrals of f(t) over

the sub-intervals, assuming that each of these improper integrals

exists. If any single one of these improper integrals fails to exist

the improper integral of, f(t) over the interval a < t < b fails to exist.

The function f(t) of the unrestricted real variable t which is

0 if t < 0 and is t - 1 / 2 if t > 0, the value assigned to f(t) at t=O being

immaterial, is improperly integrable over any interval a <t <b which

contains the point t=0. For example, the improper integral of f(t) over

the interval 0 < t < b is 2b1/ 2 , On the other hand, the function f(t)

which is 0 if t < 0 and is t - 1 if t > 0, the value assigned to f(t) at t=O

being, again, immaterial, is not improperly integrable over any

interval which contains the point t=0. In general the point t=O is a point

of discontinuity of f(t) = to, t > 0, a realf(t) = 0, t < 0, at which f(t)

is unbounded, if a < 0. If a > -1 this piecewise continuous function is

improperly integrable over any interval a < t < b which contains the

point t = 0 and, if a < -1, f(t) is not improperly integrable over any

such interval.

If f(t) is a piecewise continuous function so also is f(t)

and it is easy to see that if I f(t) is improperly integrable over an

an interval a < t < b which contains a single point c of discontinuity



of f(t) at which f(t) is unbounded then f(t) is also improperly inegrable

over the interval a < t < b, Indeed to prove this we must show tha

each of the two integrals f / f(t) dt and f,, 2 f(t)dt where

6 2

S< 6'< 51 and 0 < 6 2  2 may be made arbitrarily small

by making 1 and 2 respectively, sufficiently small. The moduli

of these integrals are dominated by, i. e., are not greater than,
c- f 2

f (t) dt and 2 f(t) dt, respectively, and our hypothesis

1 +2

that f(t) is absolutely integrable (i, e , that I f(t) is integrable) over

a t < b assures us that each of these two dominating numbers may

be made arbitrarily small by merely making 51 and 62, respectively,

sufficiently small. We shall assume that our piecewise continuous

functions f(t) are such that f(t) is improperly integrable over any

finite interval a I t b which implies, as we have just seen, that f(t)

is improperly integrable over any finite interval a t K b. Note. If

the interval a ; t _ b does not contain a point of discontinuity of f(t)

at which f(t) is unbounded both f(t) and I f(t) I are properly integrable

over the interval a < t < b since they are bounded over this interval and

continuous save, possibly, for a finite number of points.

We now make a final assumption concerning the class of

complex-valued functions of the unrestricted real variable t which we

propose to consider. We assume that not only is I f(t) integrable,

properly or improperly, over every finite interval a < t < b but that
b

the function F(a, b) = J I f(t)I dt of the two real variables a and b

4
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possesses a finite limit as a and b tend, inde-pendently, to - o and

+ Co , respectively. When this is the case we say that f (t) is

absolutely integrable over - >o < t < oo and we term the limit of

F(a, b), as a - o and b oo, the integral of I f(t) from

- o to oo , this integral being denoted by the symbol f(t) dt.
0'0

When a complex-valued function f(t) of the unrestricted real variable

t is such that it is absolutely integrable over - " < t < o0 we say that

it possesses Property 2. The functions f(t) which we propose to consider

are those which possess both Property 1 and Property 2; in other words,

they are piecewise continuous functions which are absolutely integrable

over - oo <t < o.

It is clear that if f(t) possesses Properties 1 and 2 then the function
rb

ff(t) dt of the two real variables a and b possesses a finite limit as
a

a and b tend, independently, to - oc and + o , respectively. Indeed,
b' a

in order to prove this we have to show that f(t) dt and faf (t) dt,

where b' > b and a' < a, may be made arbitrarily small by making

b and -a sufficiently large. However ' f(t) dt and f(t) dt are
b b' fa tb a d

dominated by If (t) dt and f(t) dt, respectively,
b a

and each of these dominating numbers may be made arbitrarily

small by making b and -a, respectively, sufficiently large

(since f(t) is, by hypothesis, absolutely integrable over

- 00 <t < 0). Thus f(t) dt exists. The converse of this

result is not true; f(t) dt may well exist without f(t) dt existing.
r-00



An example is furnished by the everywhere continuous function

sin t
f(t) = t , t 5 0, f(0) = 1.

to consider

Sb
'0

sin t
-dt
t

sin tdt =

t

sin t
dt +

t

f(tf is an even function and so it suffices

If nw < b ( (n+lj, n = 0, 1, 2, ... , we have

sin t
dt +t

t

n7

n-1

sin t +
dt +

b sin t--- dt
t

rb

nr

where I F sin t dt
whr 1 =J0

> 0, I2

sin t

t

-f 2 sin t dt
7 t

dt

> 0 and so on.

writing t = u+ in the formula for 12 we have 12 =

so that 12 < I 1 .
Similarly 13 < I2, 14 < 13 and, generally,

In+ 1 < In, n = 1, 2, 3, ... . In order to appraise the integral

sin t dt we use the second theorem of the mean of integral

1
calculus which tells us that, since - is monotone decreasing over

t

n7 < t < b and continuous at t = n, b sin tdt c sin t dt
n t nn7

cos niT - cos c
= , n< < b.n -

Thus dt < 2 and this may
nr t nr(na

be made arbitrarily small, no matter what is the value of b > n7, by merely

making n sufficiently large. In particular In+1 may be made arbitrarily

small by making n sufficiently large so that the alternating infinite

series 11 - 12 + 13 - ... is convergent, its sum being the infinite integral

in dt. It follows that this infinite integral, whose existence we haveJo t

just proven, lies between I1 - 12 and II. A simple application of

Simpson's Rule shows that 11 = 1. 86 12 = 0. 44, approximately,Simpson'1 '2esos eh

On

sin u

I b
n7T

- II II I I I I ii I I -- """
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so that sin tdt lies between 1. 42 (approximately) and
sin t

1. 86 (approximately) and this implies that the integral of
t

over - c < < < D exists and lies between 2. 84 (approximately)

sin t
and 3. 72 (approximately). We shall shortly see that t dt = T.

sin t
That is not absolutely integrable over - oo < t < oo is clear

b Isin t dt b sin t Idt andsince Jt dt= I +I2 + +I n +  and

i1l 2 1 fO. 2
- sin t dt = - I2 > -  sin u du - 2 and, generally,

2 sin t 2 1 1
n so that si dt > 7(1 + +... +), n = , 2, ....

1
Thus, since the partial sums of the infinite series 1 +

unbounded, |sin tI dt may be -made arbitrarily large
S t oo

sufficiently large and the infinite integral J sin dt
tThisimplies

This implies that is not integrable over - o < t

1S+ 5... are

by making b

does not exist.

< o00 .

Exercise. Show that if W is any real number the infinite integral

f 0 0sin t dt exists, its value being C , 0, - C according as
t

-00

W > 0, W = 0, C< 0, respectively, where C is the value of the

infinite integral sin t dt.
-0t



The Fourier

Lectures on Applied Mathematics

Lecture 2

Transform of an Absolutely Integrable Piecewise
Continuous Function

If f(t) is a complex-valued function of the unrestricted real

variable t which possesses Properties 1 and 2, so that it is

piecewise continuous and absolutely integrable over - oo < t < co ,

it does not lose these properties on multiplication by exp(-iLt),

W any real number. Indeed exp(-iLJt) is everywhere continuous

so that f(t) exp (-iwt) is piecewise continuous and I exp (-iWt) I = 1

so that l f(t) exp (-iJt) = f (t) . Since f(t) exp (-iWt) is absolutely

integrable over - oo < t < c, the infinite integral f (t) exp (-iUt)dt

exists for each value of CJ. Introducing, for our later convenience,

the numerical factor (2) - 1/2 we set

g(W) = (2)-1/2j f (t) exp (-ilt) dt
-00

and we term g(W) the Fourier Transform of f(t). Since

-000f (t) exp (-iWt)dt f f(t) exp(-ilt) dt = f(t) dt f(t) la a a -oowe have f(t) exp(-i t) dt < f(t) dt so that g(j) <

It

-1 2 %-.O .
(27) j Ifi(t) dt.

Thus g(W) is bounded over

Jab f(t) exp(-iCJt) dt is an

- oo < W < oo. It is easy to see that

everywhere continuous function of Uj, no

matter what is the interval a < t < b. To prove this we first consider

I
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the case where f(t) I is bounded, say < M, over a < t < b (so that

the integral f (t) exp (-iWt) dt is a proper Riemann integral).
a

If W and LJ + A W are any two real numbers we have

b b
A f (t) exp(-iCJt) dt = f (t) exp(-iLt) exp(-iAL Wt) - 1 dt

a a

M a exp(-iA W. t) - 1 dt.

Since the function exp z of the complex variable z is continuous at

z = 0, where it has the value 1, we can make I exp(-iC.t) - 1I

arbitrarily small, say < E/M(b-a), by making I -iALJ. t sufficiently small,

say < 6, E being an arbitrarily assigned positive number. Denoting, for

a moment; by a the greater of the two numbers I a ) and I b , - iA u t < 6

over the interval a < t < b if I -iA Wca < 6, i. e, if I A ; hence,

A f(t) exp(-iut) dt < E if AJ < so that f(t) exp(-i Jt)dt

is an everywhere continuous function of UL. If f(t) is not bounded over

a < t < b it suffices to consider the case where f(t) has a single point of

discontinuity c, at which it is unbounded, in the interval a < t < b. We
Sb c -6,

write f(t) exp(-iLJt) dt in the form f (t) exp (-iJt) dt
a -a

+ fc+6 2 f (t) exp (-i(t) dt + f(t) exp (-iLJt) dt where 61 and 62

are any two positive numbers which are less than c-a and b-c, respectively,

save when c = a, in which case / = 0 and 2 is any positive number-

< b-a, or when c = b, in which case 6
2 = 0, and/ is any positive number

< b-a. It suffices to consider the first case, where a < c < b, the

argument in the other two cases being precisely the same. The integrals



f(t) exp(-iL/t) dt and f(t) exp(-iLJt) dt are everywhere

continuous functions of W , since f(t) is continuous, by hypothesis,

over the intervals a < t < c- 6 and c+ 2 < t < b and so we have

merely to consider the integral f (t) exp(-iUt) dt. The modulus
c -6, c +6

of this integral, being dominated by f (t) dt, may be made

arbitrarily small, say < E , since f(t) possesses Property 2, by making

61 and 6
2 sufficiently small, the choice of 6/ and 6

2 being independent

of W . Once this choice of 61 and 6
2 has been made it follows that

the modulus of A f(t) exp(-iCJt) dt is less than 2E , no matter
c-6/ b

what are the values assigned to and A . Hence A f(t) exp(-iWt)dt
a

may be made arbitrarily small, no matter what is the value of U , by
b

making I A sufficiently small so that f f(t) exp(-iLJt) dt is

an everywhere continuous function of J . This implies, in view of the

fact that f(t) is, by hypothesis, absolutely integrable over - 0o< t < oo ,

that the infinite integral I f(t) exp (-iUt)dt is an everywhere continuous

function of W ; indeed, the modulus of the difference between

f (t) exp(-iLt)dt and f (t) exp(-i UJt)dt is dominated by the sum of

the two infinite integrals f(t) dt, (t) dt and this sum may be

made arbitrarily small, say < C , by making a negative and b positive

and choosing -a and b sufficiently large, the choice of a and b being

independent of U. Once this choice of a and b has been made, ita  coo
follows that the modulus of 4 f(t) exp(-iWt)dt + f(t) exp(-iGJt)dt

is less that 2 no matter what are the values assigned to and+
is less that 2C no matter what are the values assigned to CJ and W+ A J.

- __ IIIIA l I
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Hence Afft) exp -i Qtdt Imav be made arbitrarily small, no

matter what is the value of , by making AlI sufficiently small, so

thatJ f(t) exp (-iJ t)dt is an everywhere continuous function

of (J. This, combined with the boundedness of g( U) over

- COO< J< &C, is our first result which may be stated as follows:

The Fourier Transform g( U) = (2r) 1,2 (t) exp(-i Wt)dt

of any piecewise continuous complex-valued function f(t) of the unrestricted

real variable t which is absolutely integrable over - o< t < '0 is an

everywhere continuous function of the unrestricted real variable U;

moreover, g( U) is bounded over - o-< U < po.

Example 1. Let f(t) = 0 if t <-b and if t > b, where b is any positive

real number, and let f(t) = 1 if -b < t < b, the values assigned to

f(t) when t = -b and when t = b being immaterial. Then
( sin b 1/2

g () 1/2 sin b , if ( f 0, while g(0) = 1/2 b.g(L))=W M

Note. This Example shows that, while the Fourier Transform operation

is a smoothing, or strengtheningeone as far as Property 1 is concerned

(g( Li) being everywhere continuous and bounded over - oo< (< 0"

while f(t) may be only piecewise continuous and may not be bounded

over -o < t < co)it is a roughening, or weakening, one as far as

Property 2 is concerned: g( W) may not be absolutely integrable

over - oo< W< co. In the present example g( U) is integrable,in

the Riemann sense, over - ca< < cobut the following Example shows

that g(W L) may not be integrable over - o< U< co .

Example 2. Let f(t) = 0 if t < 0 and = exp(izt), where z = x+iy is any

complex number whose imaginary part y is positive, if t > 0, the

value assigned to f(t) at t = 0 being immaterial. f(t) possesses



Property 1, since its only point of discontinuity is t = 0, and it

possesses Property 2, i. e., it is absolutely integrable over

- co< t < o, since f(t) = 0 if t<O and f(t)l =exp(-yt) if t > 0

and t 2 exp(-yt) is arbitrarily small, say < 1, if t is sufficiently large

since y is, by hypothesis, positive. The Fourier Transform of f(t) is

- 1/2 oc 1
g(W) = (2d) exp -i(i- z)t dt = (2)1/ 2 i(W-z)

and, since I W-z< C +Iz <2 IWI , if > z , we have g(UW)

>1 if i >I z , so that g(W) is not integrable
(27T) / 12 2 ICJJ

over - oo< /)< o0. Also, since log(W -z) is unbounded at L = -oO

and at L)= oo , g(Cj) is not integrable over - < W < oo.

Note. W_ shall see shortly that if f(t), in addition to possessing

Properties 1 and 2, is such that its real and imaginary parts are

monotone over sufficiently small intervals to the right and to the left

of t = 0, or if f(t) possesses a right-hand and a left-hand derivative

at t = 0, then the Cauchy principal value, lim g( C) d dJ

of the integral of g(W ) over -oo < L< ca exists, despite the fact

that the integral of g( ) over - oo< W< 0- may not exist. We shall

denote this Cauchy principal value of the integral of g( C) over

Oc < < co by the symbolf g(U)dW . Thus in the present
(oo) (- ) 1 0 d

Example we have g( () d -lim
C2,2 -o01

1 a 1/2
1/2 lim log (C -z) =f 

d1/

(27T) j :t--o0 0 (

IIIIILIIIIII III II I a



since the argument of
a -Z
-a - z tends to 7 as a-4oowhile the

modulus of a - z tends to 1 as a--oo.



Lectures on Applied Mathematics

Lecture 3

The Fourier Integral Theorem

Let f(t) = fl(t) + if2 (t) be a complex-valued function, whose real and

imaginary parts are fl(t) and f2 (t), respectively. of the unrestricted real

variable t and let f(t) possess Properties 1 and 2. At any point t at which

f(t) is continuous the two limits

f(t+O) = lim f(t+6 ), 6 >0

f(t-0) = lim f(t- 6), ( > o0
6--W

exist and are equal, their common value being f(t) (this being the definition

of the concept of continuity). At a point t where f(t) fails to be continuous

the limits f(t+0), f(t-0) need not exist, and, if they do exist, they need not

be f(t). However, these limits will exist, by hypothesis, if f(t) possesses

a right-hand derivative and a left-hand derivative at t, the definition of

the right-hand derivative, for example, being lim , t) > o;
6-to 6

they will exist also if the real and imaginary parts, fl(t) and f2(t),

respectively, of f(t) are monotone and bounded over sufficiently small intervals

to the right and to the left of t, f(t+0), for example, being fl(t+0) + if2 (t+0)

where fl(t+0), for example, is the greatest lower bound, or least upper

bound, of fl(t+ 6), 6 > 0 and sufficiently small, according as fl(t) is

monotone non-decreasing, or monotone non-increasing, over a sufficiently

small interval to the right of t. The values assigned to f(t) at its points of

I __ _1 _ ~~~ -1_-111__ _ __1 I----I_~_~- I ^
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discontinuity are immaterial, as far as the definition of the Fourier

Transform g( W) of f(t) is concerned, but for the purposes of the

Fourier Integral Theorem, which we now propose to study, it is

convenient to assign to f(t) at any of its points of discontinuity at

which both the limits f(t+O) and f(t-0) exist the mean of these two limits;

i. e., we set

f(t) = f(t+O) + f(t -0)

For example, if f(t) = 0, t < 0, and f(t) = exp(izt), t > 0, where the

imaginary part y of z = x + yi is positive, we have f(0-0) = 0,
1

f(0+0) = 1 and so we set f(O) = . We have seen that, for this

particular function, Jg(W) dW so that (27T) g(L )dW

= f(0). This result is not an accident, peculiar to this particular function;

if f(t) is any complex-valued function of. the unrestricted real variable t,

which possesses Properties 1 and 2, and which, in addition, is such that

its real and imaginary parts are monotone and bounded over sufficiently

small intervals to the right and to the left of t = 0, or such that it

possesses a right-hand and a left-hand derivative at t = 0, then

(2T) - 1/2 )g( W)d W exists, its value being f(0), on the understanding

that f(0) is defined as the mean of the two limits f(0+0), f(0-0). The

Fourier Integral Theorem is merely the extension of this result from

t = 0 to an arbitrary value t = Tof the unrestricted real variable t. To

make this extension we must multiply g(j W) by exp(i W t) before taking

the Cauchy principal value of the integral over - oo < (W < . Thus



the Fourier Integral Theorem (in the form in which we propose to prove

it and which is satisfactory for our purposes) may be stated as follows:

Let f(t) be any complex-valued piecewise continuous function of the

unrestricted real variable t which is absolutely integrable over

- M < t < 0o and let 7 be any value of t at which f(t) possesses either

of the two prop erties

a) The real and imaginary parts of f(t) are monotone and bounded over

sufficiently small intervals to the right and to the left of 7

b) f(t) possesses a right-hand and a left-hand derivative at 7. Then

(2T)- 1/2 ) g( W) exp(i T7 ) dW exists with the value f( 7T)

(on the understanding that f( T) is defined as the mean of the two limits

f(7T +O), f(T -0)).

Note . Pay attention to the fact that g( U) is multiplied by exp(iLJT)

and not by exp(-i UT) while, in the definition of g( W), f(t) was

multiplied by exp(-iJW t) and not by exp(i UJt). Furthermore, note that

mere continuity of f(t) at t = T does not suffice for the validity of the

Fourier Integral Theorem. When f(t) is continuous at t =T both the

limits f( T +0) and f( T -0) exist and are equal, their common value

being f( T), but our proof of the Fourier Integral Theorem requires

either Property a) or Property b) above and these are not guaranteed

by mere continuity of f(t) at t =7T. If f(t), in addition to being continuous

at t = 7, is differentiable at t =T it possesses Property b), with the

added equality of the right-hand and left-hand derivatives, and the
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Fourier Integral Theorem is valid at t =T.

We begin the proof of the Fourier Integral Theorem by writing
b

(2)-1/2  f(t) exp(-iJ t) dt = gb( ) so that g(W) - gb (W)
a a

may be made arbitrarily small,

-a and b to be sufficiently large,

of L . If 7 is any real number

(2r) - 1/ 2 f g(U) exp(i T CJ
f-00,

say < C , by choosing the positive numbers

the choice of a and b being independent

and a any positive real number we denote

)dW , which exists since g( W) is

everywhere continuous, by F (T) so that

F(T) - (27) - 1 / 2  a b(W) exp(i TC)dC =

<(2) -1/)2 - gb( ) dJ (27) - 1 / 2 2aE
-a a

on the understanding that -a and b have been chosen sufficiently large

to ensure that I g(L) - gb (() I <E, ( arbitrary. Thus the difference
I a

between Fa(T) and (2n)- 1 /2 a gb(W) exp(iT 7 )dW may be made
-a. a

arbitrarily small, once the positive number a is given, by making -a and

b sufficiently large. The integral (2n)-1/ 2  a gb (W) exp(i T )dW

is the repeated integral (2n)-1 _ b f (t) exp(-iJt) dt exp(i J)d/

and we consider the associated double integral of (2r) - 1 f(t) exp[-i(J(t-7)

over the rectangle a < t < b, - a <U a. If f(t) is continuous over the

interval a < t < b, the integrand of this double integral is a continuous

function of the variables (t, L) over the rectangle of integration and the



order of integration in the repeated integral may be changed. This

change of order is also valid when f(t) is not continuous over

a < t < b by virtue of the fact that f(t) is, by hypothesis, piecewise

continuous and absolutely integrable over a < t < b. To see this it is

sufficient to consider the case where f(t) has a single point c of

discontinuity in the interval a < t < b, c being an interior point of this

interval. Writing b f(t) exp(-iWt)dt in the form

fc- (t) exp(-it)dt + f(t) exp(-iW t)dt + bf(t) exp(-iU t)dt,
a c-b, c +62

where 61 and 62 are any positive numbers which are less than

c-a and b-c, respectively, we have to consider three repeated integrals

whose associated double integrals are extended over the rectangles

a<t<c-6 1, -a < 0<a; C- t < c+ 62, -a<W <ca;

c + 6 2 < t < b, - a < W< a, respectively, and, since

(2T) - 1 f(t) exp [-iW L(t - 7)] is a continuous function of the two

variables (t, CW) over the first and third of these rectangles, the order

of integration in the first and third of these repeated integrals may be

changed. The modulus of the second of our repeated integrals may,

since f(t) is absolutely integrable over a < t < b, be made arbitrarily

small, say < , by taking 61 and 62 sufficiently small. Thus the

difference between (2T)- 1 a exp(i TJ) b f(t) exp(-i CJt)dt d J

and the sum of the two repeated integrals

(2T) - 1  c-6 f(t)f exp [-i L(t- T) dW dt and
af a

(2T) -1 fb-c(t)- exp[-i (t -T)] d'dt
C+ ~

Nwi



may be made arbitrarily small by choosing 6 1 and 62 to be

sufficiently small. Furthermore, since I exp [-iW(t-T )] I= 1, so that

a exp [-iW (t-T)] dLJ< 2a, the product of
-a/

J~a exp [-iW(t -7 ) ] dL by f(t) is integrable over the intervals
-a

a < t < c and c < t < b and the differences between

(2v)- 1f f '(t. exp [-iW(t - ) ]dLdt and1 c - 0, +
(2 7 T) ff(t){f 1 exp -i (t -T )] dW dt and between

a -a

(2T) 1fb f(t){fa exp [-iW (t - ) dL dt and

(27)- b 6 f (t) exp-i (t -T) d dt may be made
C+6 - a

arbitrarily small by choosing 61 and 62, respectively, to be

sufficiently small. Thus the difference between
a b

(2)1 J exp (i TL/ f(t) exp (-i Wt) dt d Land the sum of

the two repeated integrals (2r)-fC f(t) exp[-iW-(t-T ) dL.d

and (2r)-1 f (t)f exp-i ( (t -T) d(j dt may be made arbitrar

small by choosing 1 and 6 2 to be sufficiently small. Since this

difference is independent of 6 and 6 it must be zero and so
1 2

t

ily



n) exp (i j) f (t) exp (-i t) dt d
-aa

C ~a
=(27)- 1 f(t) exp[ -i L (t -7 ) dW dt

a -a

+ (2-)-Y f (t)j exp[-i(t -7)] dLj dt

=(2)- 1  f (t) a exp -iW (t - )] dL dt
a-a

which proves the legitimacy of the interchange of the order of

integration in the repeated integral

(2 7- a - exp(iTWJ) f(t) exp (-iL t) dt d
- -.a

even when f(t) is not continuous over the interval a < t < b. We have,

then, proved that the difference between Fa( 7) and
( - b a

(2)- 1 f(t) exp -iw (t - ) d dt may be made
a -a

arbitrarily small, once the positive real number a is given, by

choosing the numbers -a and b to be positive and sufficiently large.

In other words, the infinite integral (2n)-1 f f(t){ exp-iW(t-T)dL}dt

exists, no matter what is the positive number a, its value being

F (T). Since exp [-iW.(t -7 ) dW=2sin a (t-) this result! L t -T

may be stated as follows:
1 't sin a (t-T)dt

The infinite integral - f(t) dt exists, no matter
t -T

what is the positive number a, its value being

F () = (27 )i-/ 2 f g(J) exp(i 7TW) dW
-a

This is the first, and most crucialstep in the proof of the Fourier

Integral Theorem. In our next lecture we shall complete the proof of
20
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this theorem by showing that, if f(t) is either a) such that its real

and imaginary parts are monotone and bounded over sufficiently

small intervals to the right and to the left of 7 or b) such that is

possesses a right-hand and a left-hand derivative at T , then

lim F (7) exists with the value f(T), it being understood that,

if T is a point of discontinuity of f(t), the value assigned to f(t)

at t = T is the mean of the two limits f(T + 0) and f(7- 0).



Lectures on Applied Mathematics

Lecture 4
Completion of The Proof of The Fourier Integral Theor em. The

Laplace Version of The Fourier Integr al Theor em,

We now examine the behavior of the infinite integral

L f(t) sin a (t-T) dt as a---- -co . f(t) is a complex-valued
rr t-T

function fl(t) + if2 (t) of the unrestricted real variable t and so this

infinite integral is the sum of the two infinite integrals

1fc
f1(t ) sin a (t-T ) dt and

f t-

- f2(t) sin a (t -7) dt;
S2 t-t7

it suffices to treat the fii st of these iwo infinite integrals, bthe t. e tment

of the second being precisely the same. We write fl1 (t) sin a(t- dt_s -ot 7
as the sum of the two infinite integ 41s

1 7I1

1 0
if ° <

o

1
I2= -)7

1 fo

T-

f sina (t-T) dt =
(t)t

sin a u
f 1(T - u) sin du; u = T - t

sin a (t -7t )
f1(t) t- T dt =

sin a vY T+ v) dv; v = t -T

and it again suffices to treat the first of these two infinite integrals, the

treatment of the second being precisely the same. We write I 1 as the

sum of the three integrals

S1 fa ) sinau .,d
Su) du;ar u

1 b sinau du;
J2 J f 1(T - u) u du;a

1 ofo s in auJ3 Jbf1 ( T - u) du



where a and b are any two positive numbers which are such that a < b.

It is clear thatlJ 3 1l < rb (T-u) du-

SfT-b f(t) dt < f 1(t) dt so that J 3 may be-00 7-b 00

made arbitrarily small, say <K, by choosing b sufficiently large,

the choice of b being independent of a. If fl(t) is monotone and

bounded over a sufficiently small interval to the left of t = 7 f( T -0)

exists and

- f1(T-0) sainua u du =

a f 1( - u) - f ( T- 0) sin au du

If a is sufficiently small the function fl( 7 - u) - fl(7 - 0) of u is

monotone over the interval 0 < u < a, being either positive and

non-decreasing (when fl(t) is monotone non-increasing to the

left of t = T ) or negative and non-increasing (when fl(t) is monotone

non-decreasing to the left of t =T). Hence we may apply the second

Theorem of the Mean of integral calculus to obtain

fl( T -0) sin a u du =
J1 7r u

1 1(fl T- a + 0) - f, ( -0) sin a du
a

where a' is some positive number < a. The integral sin a u du

sin ou sin t
is the difference of the two integrals f u du t dt,

0

a' . aa'
t = au, and sin udu sin t dt and each of these integralsu t

is dominated,no matter what are the values of the positive numbers a',

23



a and a by the number
sin ts t dt. Hence

<2
f0

sin .St dt and this
t

of the existence of the limit fl ( 7 - 0), that

f l(7 - 0)
iT

assur es us in view

a sin a u du may be made arbitrarily small,
O0 u

say < E, by choosing a sufficiently small, the choice of a being

independent of a. If fl(t) possesses a left-hand derivative, d, say,

at t = , f ( 7 )-f(7- 0) -d is arbitrarily small, say
-u

< 1, over the interval 0 < u < a, if a is sufficiently small and so

fl( T- u) -fl( - 0) < d + 1 over 0 < u< a if a is sufficiently
u

small, the choice of a being independent of a. Hence

I (a - u) -fl ( - ) sin au du < dk l) a, if ais
7 - 0) a sin au

sufficiently small, so that J1 u du

may be made arbit arily small, say < E, by choosing a

sufficiently small, the choice of a being, again, independent of a.

Supposing, then, that a and b are so chosen that, for all values of

the positive real number a,

1) J 1 < -

2) J1 -f 0)

we have, for

a

every > 0, J 1

fCa sin a u du
The integi al J =

u

sin a u
u

du < E

J - fl( T- 0) foa
10

f aa sin v
dv, vO v

sin u du < 27.
u

au, and as a -) c,

24
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a remaining fixed, this tends to jc -sin v dv whose value we
Sfl(7 -0) a sinau u

denote for the moment, by C. Thus f -0)s u du-

fl( T -0) C may be made arbitrarily small, say < E , by choosing
7T f -0)

a sufficiently large so that J1 3- C < 3 E if a is

sufficiently large.

1 b sinau
It remains to investigate the behavior of J2 f1 ( T-u) u du

a
as a -- o. If fl( T- u) is bounded over a K u < b so also is

fl( - -u)/u which we denote, for a moment, by h(u) so that h(u) is

bounded and, hence, since it, is piecewise continuous, properly integrable

over the interval a < u < b. If, then E' is an arbitrarily given

positive number we may construct a net of points a = u0 < ul<... <un=b

on the interval a K u < b with the following property: Let h*(u) be the

function defined by setting, over any open cell uj < u < uj+l,

j - 0, ... , n - 1, of the net, h*(u) equal to the greatest lower bound

mj of h(u) over the corresponding closed cell u < u < uj+ 1 and setting,

at the points a, ul, ... , Unl' b of the net,h*(u) equal to the greatest

lower bound of h(u) over a < u < b. Then h(u) - h*(u) > 0 over

a < u < b and the net a, u 1 , ... , Un-1 b can be so chosen that

0 ab _h(u) - h*(u) du < ' . Since sin au < i, it

follows that_/ h(u) - h*(u) sin (au) du < E' and it is easy to see that

b h*(u) sin (au) du may be made arbitrarily small, say

< E' , by choosing the positive number a sufficiently large.

25



b

Indeed h*(u) sin (au) du is the sum of n terms of the form

m. j+1 sin(au) du = m cos(aj) - cos(auj+l) so that
J -J at

h*(u) sin(au) du < 2n- m. . Hence
a a j=0

Ja h(u) sin(au) du < 2C' if a is sufficiently large. This result

remains valid even when fl( T -u) fails to be bounded over

a < u < b; to show thig it suffices to consider the case where

fl ( T - u) is unbounded at a single interior point c of the interval

a < u < b. Writing h(u) sin (u) du = -6 h(u)sin(au)du +
a a

C+f h(u) sin(au) du + b h(u) sin(au) du the first and
c -6, ci+( 2

third of the integrals on the righfmay be made arbitrarily small

by choosing a sufficiently large, since h(u) is properly integrable

over the intervals a < u < c -6/ , c+ 6 2  u < b. The modulus of
c+62

the second integral on the right is dominated by 1 2 h(u) du

and this is again dominated by e 61c- 6 ,_ 1 ( T -u) du which may

be made arbitrarily small by choosing 61 and 6 sufficiently small,

the choice of 61 and 2 being independent of a. Thus 1J21 may be made

26
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arbitrarily small, say < C , by choosing a sufficiently large and,

since 11 =J1 +J 2 +J 3 , it follows that I I- f (T -0) C < 4
.7r

if a is sufficiently large. Similarly, 12 - f1 ( T + 0) C < 4C

if a is sufficiently large and, since

1 f 1(t) sina(t-7) dt = I1I 2, this implies that

1 (i f(t) sina(t -T )dt 2fl(T) C< 8E

if a is sufficiently large (it being understood that, at any point T of

discontinuity of fl(t) at which the limits f 1(T + 0) and fl(T -0) exist,

f l (7T) is defined as the mean of these two limits). Thus

lim 1 f( sina(t-T) dt 2Clim fl (t) dt = -f (T )a--c 1 t-T 1

and similarly for f2(t) so that

lim 1 " f(t) sina(t-7 ) dt 2C f(7)

(oo)
which implies that (27r)-1/2 g( ) exp(i T ) d - 2C f(7)

The constant C is independent of the function f(t) and, to determine

it, we choose the function f(t) which is 0 if t < 0 and = exp (izt),

where the imaginary part y of z is positive, if t > 0. Setting

7= 0 and using the already proved fact that (27)-1/2 g( ) dW = f(0)

we see that C = . Thus

(2iT) -1/2 J(C) g( W) exp(i T W) dW = f(T)

which completes the proof of the Fourier Integral Theorem.

27



The Fourier Integral Theor em is one of the most useful

theorems of applied mathematics but, in the form in which we have

stated it, it suffers from a serious disadvantage. The class of

complex-valued functions of the unrestricted real variable t which

possess Property 2 is too restricted. For example, the Heaviside

unit-function u(t) which is defined as follows:

1
u(t) = 0 if t < 0; u(t) = 1 if t > 0; u (0) =

while possessing Property 1 (since it is continuous save at t = 0) does

not possess Property 2. To remove this disadvantage we introduce

a complex variable p = c + iW whose real part c is not, necessarily,

zero. Then U = i(c-p) and the Fourier Integral Theorem may

be written in the form

f(() - 1/2 (C g[i(c-p) exp[7(p-c) dp
i (c-i )

the integration in the complex p-plane being along the line p = c

which is parallel to the U - axis and the Cauchy principal value of the

integral being taken. On multiplying by (27)-1/2 exp(c7 ) and

setting (2T)-1/2 exp (c 7) f(T) = h(r), g [i(c-p)] = k(p) we obtain

h(t) =1 f (c+i c) k(p) exp(7 p) dp
c -i o0)

where k(p) = g(L) = (2T)-1/2 fo f(t) exp(-i Ut) dt =

h(t) exp(-pt) dt.

k(p) is termed the Laplace Transform of the complex-valued function

h(t) of the unrestricted real variable t and the relation

h(T)-(c+i c) k(p) exp (Tp) dp is the Laplace version of the
(c -i 0C)

28
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Fourier Integral Theorem. The great advantage of this version is that

h(t) is not required, as is f(t), to be absolutely integrable over

- oo< t < oo. It suffices that there exist a real number c such that

exp(-ct) h(t) is absolutely integrable over - o< t < oo. Thus,

for example, if h(t) is zero when t < 0, h(t) may be furnished,

if c > 0, for positive values of t,by any polynomial function of t.

In particular, the Heaviside unit function u(t) possesses, if

c > 0, the Laplace Transform exp(-pt) dt - and
0 p

the Laplace version of the Fourier Integral Theorem tells us that

(c+i o)1Ic+io) exp(7 p) dp, c > 0, is 1 if > 0, ifT=0
2Ti (c-i oo) P

and 0 if 7 < 0.



Lectures on Applied Mathematics

Lecture 5

The Laplace Transform of a Right-sided Function

The function h(t) which appears in the Laplace version of the

Fourier Integral Theorem is connected with the function f(t) which

appeared in the original version by the relation

h(t) = (2r) - 1/ 2 exp(ct) f(t)

Since exp(ct) is everywhere continuous. h(t) possesses, like f(t),

Property 1, i. e., it is piecewise continuous. Since f(t) possesses, by

hypothesis, Property 2, h(t), which need not possess this property,

must be such that there exists a real number c such that exp(-ct)h(t)

possesses Property 2, i. e, is absolutely integrable over

-00o < t <00. For example, h(t) may be the Heaviside unit-function

u(t) which is defined as follows:
1

u(t) = 0, t < 0; u(t) = 1, t > 0; u(0) =

since, if c is any positive real number, exp(-ct) u(t) is absolutely

integrable over - oo< t <oc, the value of the infinite integral

exp(-ct) u(t) dt = exp(-ct)dt being - The product of

any complex-valued function of the unrestricted real variable t by

u(t) is zero if t < 0 and we term any piecewise continuous complex-valued

function of t which is zero if t < 0 a right-sided function. Similarly,

we term any piecewise continuous complex-valued function of t which

is zero if t > 0 a left-sided function; for example, the product of any

piecewise continuous complex-valued function of t by u(-t) is a

30
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left-sided function. The Laplace Transform, Lh, of a right-sided

function h(t) is defined by the formula

Lh = h(t) exp(-pt)dt

where p is any complex number for which the infinite integral on

the right exists (it being not required that this infinite integral

converge absolutely, i. e., that the infinite integral

h (t) exp(-ct)dt, where c is the real part of p, exist). Let

O
us now suppose that Lh exists at some point c 1 of the real axis of the

complex p-plane. We propose to prove that this implies the

existence of Lh at any point p of the complex p-plane whose real

part c is > cl; not only this, but also that Lh is an analytic function

of the complex variable p over the half-plane c > clo

Since h(t) exp(-ct) is integrable, by hypothesis, over - < t < oo

it is integrable over the interval 0 < t < T, where T is any positive

real number, and we denote by HC 1 (T) the integral

FT h(t) exp(-c 1 t) dt so that H l(T) is everywhere continuous and,

at every point of continuity of h(t), differentiable with the derivative

h(T) exp(-clT). In view of the continuity of Hcl(T), Hcl(T) is

bounded over any interval 0 < T < b, where b is any positive number,

and this implies, since the infinite integral h(t) exp(-clt)dt exists,

by hypothesis, that Hel(T) is bounded over 0 < T < co ; in other words,

there exists a positive number, M which dominates He l (T) , T any

non-negative real number. On writing Lh = h(t) exp(-pt)dt in the

form Jf h(t) exp(-clt) exp [-(p-c)t] dt we obtain, on integration

by parts,



Lh = HC1(t) exp[-(P-cl)t + (p-cl) Hel(t)exp -(p-cl)t dt

= (P-cl) C Hc1 (t) exp [-(p-cl)t]dt

provided that the real part c of p > cl. Since

IHcl(t) exp [-(p-cl)t] I M exp 1-(c-cl)tj the infinite integral

f"Hc1 (t) exp -(p-c 1 ) t dt exists over the half-plane c > c1 ,

its convergence being absolute. Thus, although the convergence of

the infinite integral h(t) exp(-pt)dt which defines Lh need not

be absolute at. p = c 1, nor at points of the half-plane c > c1, L h

exists over this half-plane and may be expressed, over this

half-plane, as the product of p-c 1 by an infinite, integral

J' Hcl1 (t) exp [-(p-cl)t ]dt which converges absolutely over the

half-plane. Let, now, T be any positive real number and let us

consider the integral OT(p) =T Hcl(t) exp [-(p-cl) t] dt. Since

Hcl(t) is bounded over the interval 0 < t < T, OT(p) is a differentiable

function, i. e, an analytic function, of the complex variable p, its

derivative being -oT t Hl (t) exp[ -(p-cl)t] dt no matter what

is the value of p. Assigning to T, in turn , the values 1, 2, 3, .... ,

we obtain a sequence of functionst 1(p), 02 (p), ... , of the complex

variable p which are analytic over the entire finite complex p-plane.

At any point of the half-plane c > c 1 this sequence converges to

I Hel(t) exp -(p-cl)t] dt = O(p), say, and it is easy to see that

the convergence is uniform over the half-plane c 1 + 6 < c, where

6 is any positive number. Indeed, the modulus of
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0(p) - on(p) = fO Hcl(t) exp[-(p-cl)t ]dt - On(P)
0

n Hel(t) exp[-(p-cl)t]dt is dominated, over the half-plane

C1 +6< c, by M I  exp[-(c-cl)t] dt which is, in turn, dominated

by M f exp(- t)dt= exp(-n 0) ), which is arbitrarily

small if n is sufficiently large, the choice of n being independent of c.

Since On(P) is analytic over the half-plane c > c 1 the integral

JC n(p)dp, where C is any simple closed curve of finite length which

is covered by this half-plane, is zero. Since the points of C constitute

a closed set their distances from the line c = cl possess a positive

lower bound so that C is covered by a half-plane c 1 + 6 c, if 6
is sufficiently small, and so C O(p) dp, which is the same as

1C/ O(p) - On(p) dp is dominated by M exp(-n ) 1, where 1 is the

length of C. Since JC 0(p)dp is'independent of n it follows that

fC O(p) dp = 0 and this implies that O(p) is an analytic function of

the complex variable p over the half-plane c > c 1. Hence

Lh = (p-cl) O(p) is an analytic function of the complex variable p

over the half-plane c > c.

Example 1. h(t) = u(t)

(o 1
Here Lh = exp(-pt)dt - > 0

=0 p

Note Lh does not exist at p = 0, but is exists at c = cl where

c 1 is any positive number and, if c > 00, there exists a positive

number c 1, 1 c for example, such that c > cl1
2

Example 2. h(t) = exp(at) u(t), a an arbitrary complex number.

Here Lh = J0 exp -(p-a)t] dt = - , > real part ar of a



Note Similarly, if, for any right-sided function h(t), Lh = 0(p), c > cl,

and h'(t) = exp(at) h(t), then Lh' = 0(p-a), c > c 1 + ar. This useful

property of the Laplace Transform of a right-sided function is known

as the Translation Theorem.

Example 3. h(t) = to u(t), o a complex number a r + iai

The complex power, taO, of a positive real number t is defined

by the relation ta = exp(a log t) so that to = exp(ar log t) = tar, where

ar is the real part of a. In order that Lh = ta exp(-pt) dt exist

at the point p = cl of the real axis in the complex p-plane we must

have Or > -1 (to take care of the small values of t) and c 1 > o

(to take care of the large values of t). Thius the Laplace Transform

of toa u(t), where the real part or of a is > -1, exists, and is an

analytic function of the complex variable p, over the half-plane

c > 0, c being the real part of p. On setting pt = s in the infinite

integral fto exp (-pt)dt which furnishes this Laplace Transform

1 
this infinite integral appears as s exp(-s)ds,

pa + 1 0
the integration being along the ray from o to oo in the complex p-plane

which passes through the point p. If R and 6 are the modulus and

argument, respectively, of any point s in the complex p-plane,

s o = exp (a log s) = exp (ar log R - ai 0) + i (ar + ai logR)

so that so - exp (ar log R - ai 0) = R O r exp(-ai0) and, since

I exp (-s) = exp (-R cos ), we have sa exp (-s) =

Rar exp (-ai 0) exp (- R cos 0). Denoting, for a moment, by/I

the argument of p, so that -2 < R,it follows that along the

arc of the circle s = R exp(Oi) in the complex p-plane from 0 = 0 to
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0 = P, this arc lying in the first quadrant if / > 0 and in the

fourth quadrant if 0 < 0, so exp(-s) < Rar exp(I a i F I )exp(-Rcos )

and this implies, since Rar+l exp (- R cos P ) tends to zero as

R ---- co , that the integral of sa exp(-s) along this arc of the circle

s = R exp(Oi) tends to zero as R-coo, or, equivalently, that the

integral of so exp(-s) along the ray of argument P from 0 to oo

in the complex p-plane is the same as the integral of saexp(-s) along

the ray of argument zero from 0 to oo in the complex p-plane.

This integral, f ta exp(-t)dt, is the Gamma Function, F (a+l), of

argument a + 1 and so:

The Laplace Transform of ta u(t), where the real part of

a is > -1, is P (a+) , over the half-plane c > 0.
pa+1

A simple integration by parts shows that if the real part of a

is not only > -1 but also > 0, then' (a+1) = aL (a) and, since

V (1) = exp(-t)dt = 1, it follows that, if a is a positive integer,

7 (a+l) = a !. The Laplace version of the Fourier Integral Theorem

tells us that

at (a+1) ( +i co) exp (pt)
ta u(t) 2 a + 1 dp;

2ni p
(c- i O)

real part of a > -1; c > 0 and in particular, on setting t = 1, that

1= [ (a+1) (c+i C) exp (p) dp; real part of a>-1; c>0
2 i (c-i ) pa+1

Thus F (a+l) is never zero over the half-plane ar > -1, where ar is

the real part of a, for which the Laplace Transform of ta u(t) is defined.

If a is real and > -1, F (a+1) is real and, since it is continuous and never
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zero, one-signed. Since (1) = 1 is positive it follows that

r (a+1) is positive for every real value of a > -1.

Exercise 1. Show that the Laplace Transform operator

Lh f h(t) exp(-pt)dt is linear, i. e., L(h I + h2 )
-00

Lh1 + Lh 2 , L(ah) = aLh, a any complex number, and use this

property to determine the Laplace Transforms of the right-sided

functions sin( t)u(t), cos (pt)u(t), Lany complex number,

indicating in each case the half-planes over which the Laplace

Transforms are analytic functions of the complex variable p.

Exercise 2. Show that if the Laplace Transform,Lh,of a right-sided

function h(t) exists at a point pl = cl + iW 1 of the complex p-plane

then Lh exists, and is an analytic function of the complex variable p,

over the half-plane c > c 1.

Hint. The Laplace Transform of h(t) at p1 is the same as

the Laplace Transform of h(t) exp(-i Ult) at c1 and the

Laplace Transform of h(t) exp(-i Ult) at p -i U1 is the same

as the Laplace Transform of h(t) at p.

An important consequence of the Laplace version of the

Fourier Integral Theorem is the following uniqueness theorem:

If two piecewise continuous right-sided functions hl(t), h 2 (t), possess

Laplace Transforms at a point c 1 of the real axis in the complex p-plane

and if their Laplace Transforms coincide over the half-plane

c > cl, then h2 (t) coincides with h 1(t) at all points t which are not

discontinuity points of either hl(t) or h2 (t). To prove this, we
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observe that the relation Lh = (p-c 1 ) f Hel(t) exp[-(p-cl)t]dt,

c > c. tells us that the Laplace Transform, over the half-plane

c > c 1 , of Hcl(t) exp (c 1 t) is (Lh)/(p-cl). Since the convergence

of the infinite integral Jco Hcl(t) exp [-(c-cl)t]dt, c > c 1 , is

absolute we may apply the Laplace version of the Fourier Integral

Theorem to obtain
(c+i bO)

Hc (t) exp (clt) 21= 1 (ci ) exp(pt)dp
2ini (c-i co) p-c 1

this equality being valid at any continuity point of h(t), since

Hcl(t) exp (c 1t) is differentiable at any such continuity point.

Thus Hcl(t) is unambiguously determined, at any continuity point

of h(t), by the values of Lh at the points of the complex p-plane

whose real parts have any common value c > c 1 or, equivalently,

by the values of Lh over the half-plane c > cl. Since the

derivative of Hcl(t), at any continuity point of h(t), is h(t) exp(-clt)

it follows that h(t) is unambiguously determined at any point where

it is continuous by the values of Lh over the half-plane c > c 1 . In

particular, if Lh = 0 over the half-plane c > c 1 then h(t) = 0

at all its continuity points.

Note. It is not necessary, for the validity of this uniqueness theorem,

that the Laplace Transforms, at the point p = cl, of h 1 (t) and h2 (t)

be absolutely convergent.
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Lectures on Applied Mathematics

Lecture 6

The Laplace Transform of exp(-t 2 )

We have seen that if the Laplace Transform, Lh, of a piecewise

continuous right-sided function h(t) exists at a point c 1 of the real

axis of the complex p-plane then Lh exists, and is an analytic function

of the complex variable p, over the half-plane c > c 1 , so that Lh

possesses a derivative with respect to p over this half-plane. If

h(t) is left-sided, instead of right-sided, Lh = h(t)exp(-pt) dt =

h(-t') exp (pt') dt', t' = -t, = h(-t') exp(-p't') dt',

p' = -p, = h(-t) exp (-p t)dt and h(-t) is a right-sided function

of t so that, if Lh exists at p'= c1 = -c 1 it exists, and is an analytic

function of the complex variable p', over the half-plane c' > c@

which is the same thing as saying that if Lh exists at p = c 1 it

exists, and is an analytic function of the complex variable p,

over the half-plane, c < cl. If h(t) is neither right-sided nor

left-sided we may write it, since u(t) + u(-t) is the constant

function 1, as the sum of a right-sided and a left-sided function as

follows: h(t) = h(t) u(t) + h(t) u(-t). If, then, the Laplace Transform

of the piecewise continuous right-sided function h(t) u(t) exists at a

point p = c 1 of the real axis in the complex p-plane and if the

Laplace Transform of the piecewise continuous left-sided function

h(t) u(-t) exists at a point p = c 2 of this real axis, and if c 2 > cl,

Lh exists, and is an analytic function of the complex variable p,
38
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over the strip cl < c < c 2 parallel to the imaginary axis in the

complex p-plane. For example, exp(-t 2 ) is the sum of the right-

sided function exp(-t 2 ) u(t) and the left-sided function exp(-t 2 ) u(-t)

and each of these functions possesses a Laplace Transform at any

point c 1 of the real axis in the complex p-plane. Indeed,
2 ci

exp (-t 2 ) exp(-clt) = exp c1  exp (-v 2 ), v= t + c l

4 2
and so both of the infinite integrals

exp(-t2) exp(-c 1 t)dt = exp c exp(-v2)dv

exp(-t 2 ) exp(-c 1 t)dt = exp ( i xp(-v 2 ) dv

exist, exp(-v 2 ) being dominated by (1+v2) - 1 no matter what is the

value of the real variable v. Thus the Laplace Transform of

exp(-t 2 ) exists, and is an analytic function of the complex variable

p, over any strip c 1 < c < c 2 parallel to the imaginary axis in the

p-plane; in other words, the Laplace Transform of exp(-t 2 ) is

an analytic function of p over the entire finite complex p-plane.

At any point cl of the real axis in the complex p-plane this

Laplace Transform has the value A exp ( where

,A = 2 exp (-v 2 ) dv + exp(-v 2 ) dv = efoxp(-v2)dv.
_ (c 1/2 -

In order to evaluate this infinite integral we observe that, if

(r, 6) are plane polar coordinates, the double integral of

exp(-r 2 ) over the circle of radius R with center at the origin is

f exp(-r 2 ) rdrd = T 1 - exp(-R2)} and that the double integral

of exp(-r 2 ) over the square of side 2b with center at the origin and
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with sides parallel to the coordinate axes is, since r2 = x2 +y2 ,
-b

the square of the integral J exp(-t 2 )dt. Since this square of

side 2b is covered by the circle of radius R, if Rt is large enough,

we know that the square of fb exp(-t 2 )dt < T 1-exp(-R2) }
-b b e

if R is large enough, and so the square of exp(-t2) dt is less
-b

than 7T, no matter what is the value of b. Hence the infinite integral

exp(-t2)dt exists with a value < 71/2. On the other hand, the

square of side 2b covers the circle of radius R, if b is large enough,

and this leads to the opposite inequality exp(-t2)dt > 1/2. Thus

J0 °exp(-t2)dt = f1/2 so that the Laplace Transform of exp(-t 2 )

assumes the value r1/ 2 exp k at any point c 1 of the real axis

in the complex p-plane. Hence it coincides with the analytic function

7T1/ 2 exp 2 ) on the real axis in the complex p-plane and this implies,

since it is analytic over the entire finite complex p-plane, that it

is ex1/2 exp over the entire finite complex p-plane:

exp(-t2) exp(-pt)dt = 71/2 exp j, p arbitrary.

On setting t = kl/2 t', p = k-1/2p ' , where k is any positive real

number, we obtain f exp(-kt'2) exp-(p't')dt' =() 1/2 exp p2

e ) k 1/2 4k 2

so that the Laplace Transform of exp(-kt2), k>0, is 1/2 exp
k 4k

1
In particular, on setting k = 2 , the Laplace Transform of

exp- 2  is (2r)1/2 exp P2

On evaluating the Laplace Transform of exp(-kt2), k > 0, at

any point p = i(J of the imaginary axis of the complex p-plane, we

obtain ex 1/2 - 2 and itobtain exp(-kt2) exp(-i(J t)dt = -)  exp and it
404k
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follows, on multiplication by (2T)-1/2, that the Fourier Transform

of exp(-kt 2 ) is (2k) - 1/2 exp ( 2 ) In particular, on setting
4k

k = - the Fourier Transform of exp(- 1 t2 ) is exp(- 1 2);2 2
this result is expressed by the statement that exp(- 1 t 2 ) is its

2
own Fourier Transform.

The Laplace Transform of the one-sided functions

exp(-kt 2 ) u(t), exp(-kt 2 ) u(-t), k > 0, are not as simple as the

Laplace Transform of their sum exp(-kt 2 ). For example, the

Laplace Transform of exp(-kt 2 )u(t), k > 0, is

exp(-kt 2 ) exp(-pt)dt = exp - xp -k(t+ ) 2dt

p2 x [kt 2 dtf

k- 1 /2 exp ( exp(-z 2 ) dz, z = kl/2(t + ), the

2kI/Z
integration in the complex z-plane being along the ray of argument

zero from 2 2 too. Similarly, the Laplace Transform of

exp(-kt 2 ) u(-t) is k-1/2 exp _ /2 exp(-z2)dz,the
4ke

integration being along the ray of argument zero from

P 1- co= co exp(iw) to 2kp/2 In particular, when k = - the

4Laplace Transform of exp (- -- ) u(t) is 2 exp(p 2 ) exp(-z 2 )dz

and the Laplace Transform of exp(- ) u(-t) is 2 exp(p2 )  exp(-z2)dz.

If we are certain that it is permissible to differentiate with

respect to k, under the sign of integration, the infinite integral

f.exp(-kt2) exp(-pt) dt which furnishes the Laplace Transform,

( /2 exp , of exp(-kt 2 ), k > 0, we may obtain the relation
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f t 2 exp(-kt 2 ) exp(-pt)dt = ( )1/2 exp 2k p2
000 k 4k 2k W4~

which furnishes us with the Laplace Transform of t 2 exp(-kt 2 ) and,

continuing this process, we may obtain the Laplace Transform of the

product of exp(-kt 2 ) by any even power of t (always provided that

the differentiation of the infinite integral involved with respect to

k, under the integral sign, is legitimate). Similarly, if we are

certain that it is legitimate to differentiate, under the integral sign,

the infinite integral exp(-kt2) exp(-pt)dt with respect to p or,

equivalently, with respect to the real part c of p, we may obtain

the relation

)1/2 p2
ft exp(-kt 2 ) exp(-pt)dt = ( k 2k exp2

which furnishes us with the Laplace Transform of t exp(-kt2), k > 0,

and continuing this process we may obtain, always under the same

proviso, the Laplace Transform of the product of exp(-kt 2 ) by any

positive integral power, odd or even, of t. In order to formulate,

in as convenient a manner as possible, conditions which guarantee

the validity of this differentiation of an infinite integral under the

integral sign we shall consider the case where we propose to

differentiate the infinite integral h(t) exp(-pt)dt, which furnishes

the Laplace Transform of h(t), with respect to the real part c of

the complex variable p = c + i W . The integrand,h(t) exp(-pt),of

this infinite integral is a function F(t, c) of the two real variables

(t, c), the imaginary part W of p being supposed held constant,

and the derivative, Fc(t, c), of F(t, c) with respect to c, being

-t h(t) exp(-pt), is since h(t) is, by hypothesis, a piecewise
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continuous function of the unrestricted real variable t, either

a continuous function of the two variables (t, c) over any strip

-00< t < oo, c 1 < c < c 2 parallel to the t-axis in the (t, c)-plane,

or else its points of discontinuity in any rectangle a < t < b,

c1 _< c < c 2 , where a and b are any two real numbers which are

such that a < b and cl, c2 are any two real numbers which are

such that c1 < c2, lie on a finite number of lines parallel to the

c-axis. We make now the following two additional hypotheses

concerning the function Fc(t, c) of the two real variables (t, c):

1) Fc(t, c) is absolutely integrable with respect to t, for

every value of c in a given closed interval cl < c < c 2 ,

over - oo< t <00

2) The convergence of the infinite integral Fc(t, c) dt is

uniform with respect to c over the interval c -< c < c2

and a single hypothesis concerning F(t, c):

3) The infinite integral F(t, cl)dt exists

and we shall show in the following paragraph that these three hypotheses are

sufficient to guarantee the following three facts:
00

1') The infinite integral F(t, c) dt exists for each value

of c in the interval c, < c < c2o

2') JF(t, c) dt is a differentiable function of c over the

interval c 1 < c < c 2 .

3') The derivative of F(t, c) dt with respect to c, where

cl < c < c 2 , is furnished by the formula ( F(t, c)dt)c

Fc (t, c) dt. 43
-oo 43
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In other words, differentiation of the infinite integral

F(t, c) dt, with respect to c, under the integral sign is

legitimate.
roo b

Writing F (t, c) dt in the form Fe(t, c) dt +

Rb (c), a < b, we know from 2), that b (c) may be made
a 

a

arbitrarily small, say <C , for every c in the interval

C1 < c < c 2 by making -a and b positive and sufficiently

large, the choice of a and b being independent of c. If,

then, a and b are so chosen that IRb(c) < 6 , cl <c c 2 9

and c and c + A c are any two values of c in the interval

cl < c < c2 we have j Fc(t, c) dt < Fc(t,c)dt + 2E
-O a

where A F c(t, c)dt denotes Fc (t, c+ c)dt - F (t, c)dt
0 b .-O

and similarly forAj Fc(t, c)dt. If Fc(t, c) is a continuous function

of the two variables (t, c) over the rectangle a t < b, ci < c < c 2 ,

it is a uniformly continuous function of the two variables (t, c)

over this rectangle and so A Fc(t, c) = Fc(t, c+Ac) - F (t, c)

may be made arbitrarily small, say < , by making
b-a

/Ac sufficiently small, the choice of A c being independent of
b

either t or c. Supposing A c so chosen, we have A F(t, c)dt

S F (t, c)dt < b Fc(t, c dt. < which implies that
a a

F (t, c) dt <3 Thus the two integrals F (t, c)dt,
co a c

F (t, c)dt and, hence, their difference Rb(c), are continuous
c 44
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functions of c over the interval C1 < c < c 2 . This conclusion

remains true, by virtue of 1), when F (t, c) fails to be continuous

over the rectangle a < t < b, c 1 < c < c 2 , since, by hypothesis,

its points of discontinuity in this rectangle lie on a finite number

of lines parallel to the c-axis in the (t, c)-plane. To prove this it

suffices to treat the case where the points of discontinuity lie on
b

a single line t = d, where a < d < b. We write F Fc(t, c)dt
d6 mf d+6 -a b

in the form F1 c(t, c)dt + 2 Fc(t, c)dt + rb Fc(t, c)dt,
A - t d+ C

"1 2

where 6 1 and 6 2 are positive numbers which are less than

d-a and b-d, respectively. The first and third of these three

integrals are continuous function of c over the interval

c 1 c < c 2 , since Fc(t , c) is a continuous function of the two

variables (t, c) over the rectangles a < t <d- 61, cl < c < c2

and d +6 < t < b, c 1 <c < c2 , and we direct our attention

to the second. The modulus of this second integral may be

made arbitrarily small, say < E , by choosing 61 and 62

sufficiently small, the choice of 61 and 62 being, by virtue

of 2), independent of c. Supposing 61 and 62 so chosen, we
r d+ 62

have Af 6 2 F(t, c)dt < 2 C and it follows that, if Ac
d 1 d-61

is chosen so small that F c ( t , c ) d t < E and

S F (t , c)dt ethat ) Fc(t , c)dt < 4 C which implies



that IA J Fc(t, c)dt < 6 E proving the continuity of the two
-cO bo

integralsf Fc(t, c)dt, F F (t, c)dt and, hence, of their
a so

difference Rb(c), over the interval c 1 < c < c 2  Hence the three
a 2

functions b Fc(t, c)dt, F (t,c)dt and Rb (c) of c are
Ja J c a

integrable over the interval c 1 < c < c 2 and, if c' is any point of

this interval, we have the relation

;C' cFc (t, c)dt dc = c b Fc(t , c)dt dc +

c' b
f Rb (c)dc.

!f a

If F (t, c) is a continuous function of the two variables (t, c) over the

rectangle a < t< b, c 1 < c < c 2 , the order of integration may be

changed in the repeated integral on the right and the same argument

as before shows that this remains true, by virtue of 1) and 2), when

Fc (t, c) fails to be continuous over the rectangle a < t < b,

1 <c < c 2. Hence

c{ {CF (t,c)dt d = f cl F c(t, c)dc dt +

c b

CR (c) dc so that
Sa t d F

c' cS bSc'
Fc (t, c)dt dc - F c(t, c)dc dt < C(c'-c 1)< C(c2-c 1)

Sa C
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c  I
proving the existence of the infinite integral C' Fc(t, c)dc dt

with the value f jc F (t, c)dt de. Since

C'F c(t, c)de = F(t, c') - F(t, cl) it follows, by virtue of 3), that

the infinite integral F(t, c')dt exists, for every point c' of the
-0

interval c < c' < c2 , its value being { f F (t , c)dt de +

;bo F(t, cl)dt. The first of these two terms is a differentiable

function of c', sincefo Fc(t , c)dt is a continuous function of c,

and the second is a constant function of c'. Hence the infinite

integral o F(t, c')dt is a differentiable function of c' over the

interval c < c' < c2 , its derivative being J Fc(t , c')dt. This

completes the proof of the legitimacy of differentiating the infinite

integral F(t, c)dt with respect to c under the sign of integration,
-o

when Fc(t, c) satisfies conditions 1) and 2) and F(t, c) satisfies

condition 3).



Lectures on Applied Mathematics
Lecture 7

The Laplace Transform of the Product of a Right-sided Function by t
and of the Integral of a Right-sided Function over the Interval [0, t]

We have seen that if a piecewise continuous right-sided function

h(t) possesses a Laplace Transform Lh, which need not be absolutely

convergent, at a point c 1 of the real axis in the.complex p-plane then

Lh may be written, over the half-plane c > c 1 in the form

Lh = (p-c 1 ) Hc1(t) exp [-(p-cl)t] dt where Hc 1(t)=f h(s)exp(-cls)ds ,

the convergence of the infinite integral which multiplies p-cl being

absolute over this half-plane. The integrand, Hcl(t) exp [-(P-cl)t]

of this infinite integral is a function F(t, c), of the two real variables (t, c),

where c is the real part of p, it being understood that the imaginary part

J of p is held constant, and the derivative of this function with

respect to c, being the same as its derivative with respect to p, exists

at every point p of the finite complex p-plane, with the value

-tHC1(t) exp[-(p-cl)t . Since 0 <t exp[-(c 2 -c)t]< c 2  c ,

if c 2 > c and t 0, tHcl(t) exp [ -(c 2 -cl)t]

tHc1 (t) exp[ -(c 2 -c)t] exp [-(c-cl)t] , c 1 <c <c 2, is absolutely

integrable over 0 <t < o (since Hcl(t) exp [-c-cl)t], c 1 < c < c 2 , is

absolutely integrable over 0 < t <oo.). Thus the infinite integral

Fc(t, c)dt converges absolutely over the half-plane c > cl.

Moreover, the convergence of this infinite integral is uniform over the

half-plane c > c1 + 6, where 6 is any positive number, since, over

this half-plane, exp [-(P-cl)t] = exp [-(c-cl)t] < exp (-6 t),and

so it is permissible to differentiate with respect to c or, equivalently,
48
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with respect to p, under the sign of integration, the infinite integral

Hcl(t) exp[ -(p-c )t ]dt, p being any point of the half-plane

c > c 1 ; indeed, if c > cl, we may set 6 =1 (c-cl) and

ensure that c > c 1 + 6. Thus

(Lh)p = Hccl(t) exp -(p-c )t] dt - (p-cl) tHcl(t)exp[-(p-cl)t]dt, c>c1
0 0

=oo HCl(t) I t exp[ -(p-cl)] t dt, c > C1

and the right-hand side of this equation reduces, on integration by parts,

since Hcl(oo) exists and since t exp -(c-cl)t tends to zero as t---4o, to

- t h(t) exp (-pt)dt. Thus we have the following useful result:

If the piecewise continuous right-sided function h(t) possesses, at a

point c 1 of the real axis in the complex p-plane, a Laplace Transform,

whose convergence need not be absolute, then the product, th(t) of h(t)

by t possesses, over the half-plane c > cl, the Laplace Transform

-(Lh)p

We express this result by the statement that multiplication of a

piecewise continuous right-sided function by t is reflected, in the

domain of Laplace Transforms,by differentiation with respect to p

followed by a change of sign.

Example. exp( at) u(t) possesses, over the half-plane c > ar, where

1
a is the real part of a, the Laplace Transform . Hence

r p-a

t exp(at) u(t) possesses, over the half-plane c > ar, the Laplace

Transform . Continuing this process we see that, if n is
(p-a)2

any positive integer, tn exp(at) u(t) possesses, over the half-plane

n!
c > ar , the Laplace Transform (pa)n+l
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Note. This is a special case of the result that t B exp (at) u(t),

where 1 is any complex number whose real part is > -1, possesses,

over the half-plane c > ar, the Laplace Transform (B+1)
(pa)1 +1

which result is an immediate consequence of an application of the

Translaion Theorem to the result that tPu(t) possesses, over the

half-plane c > 0, the Laplace Transform (
pB+1

Let us now consider a piecewise continuous right-sided function

h(t) which is such that the integral J h(s)ds = HO(t), which we

shall denote simply by H(t), exists over 0 < t < c. We do not assume

the existence of H(oo), i. e., that h(t) possesses at p = 0 a

Laplace Transform, but we do assume the existence of a positive

real number c 1 such that h(t) possesses at p = c 1 a Laplace Transform

which need not be absolutely convergent. H(t) is an everywhere

continuous right-sided function, which is, in addition, differentiable,

with derivative h(t), at the points of continuity of h(t). The function

(t) = H(v) exp (-c 1 v) dv exists, since H(t) is everywhere continuous,

over 0 t < co and is an everywhere differentiable function, its

derivative being H(t) exp (-c 1t). Since H (0) = 0, we obtain, on

integration by parts,

H(t) exp (-c It) 1 rt
(t) H(t) ex (- + h(v) exp (-c1 v) dv

1 1 0

so th (t) exp (c1t) = -(t) + exp (ct) h(v) exp (-cv) dv.

Hence, at the points of continuity of h(t), {(t) exp (clt)

-h(t)+ exp(c 1 t) h(v) exp(-c 1 v)dv + h=exp(c h(v)exp(-c 1v)dvC 1 1-1 1 h(

and this implies, since the derivative of p(t) is continuous over 0 < t <oo,

that 0(t) exp (clt) t = exp (c 1 t) J h(v) exp (-cE1 ) dv over 0 < t < oo. Since
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h(t) possesses, by hypothesis, a Laplace Transform at p = cl, it

follows that the quotient of { (t) exp (c 1t) t by exp (c 1t) =

{ 1 exp(ct)}t has, at t =00 , the limit (Lh)p_c1 and we

shall show in the next paragraph that this implies that the quotient of

(t) exp (ct) by exp (c t) has, at t =oo, the same limit,9(t) exp (clt) byp 1

(Lh) Assuming this, for the moment, it follows that
p=c 1  t

c (t) = - H(t) exp (-clt) + f h(v) exp (-C1 ) dv has, at t = o,

the limit (Lh)pc1 and, since the second term on the right has,

at t =oo, the limit (Lh)p=cl, this implies that H(t) exp (-clt)

has at t =oo, the limit zero. The existence of the limit, at t =o.o,

of (t) = f H(v) exp (-clV) dv assures us that H(t) possesses, at

p = c1, a Laplace Transform and this implies that the Laplace Transform

of H(t) exists, and is an analytic function of the complex variable p,

over the half-plane c > cl. Since the limit, at t =00, of 4(t)

H(t) exp (-clt) 1 0= - (ct) + h(v) exp(-clv) dv is
1_ I 1 0

1" 1
f 0 h(v) exp (-c 1v) dv we see that (LH) (Lh)1

Cl -p=c1 C1 p=c1

The number c 1 may be replaced throughout the entire preceding

argument by any real number > cl, and so the value of (LH) at any

point p = c of the real axis in the complex p-plane which lies to the

right of the point p = c 1 is the quotient of the value of Lh at p = c by c.

Lh
Since both -h and LH are analytic functions of the complex variable

p

p over the half-plane c > cl, it follows that LH - (Lh) over this
p

half-plane. We express this result, which is the central one in the
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theory of Laplace Transforms, as follows:

Integration with respect to t, over the interval[0, t] , of a

right-sided function is reflected, in the domain of Laplace Transforms,

by division of p.

To complete the proof of this fundamental theorem let us denote

4(t) exp (c 1t) by f(t) and exp (c 1 t) by g(t). Since g(t) is monotone

increasing and unbounded at t =oo, we may associate with any positive

real number t a real number T > t such that, if t' > T,

f(t) < C g(t) <
g(t') g(t') - g(t)

where ( is an arbitrary positive number. Applying the Theorem of

the Mean of differential calculus to the function

f(s) - f(t) - (t)g( g(s) - g(t) of the real variable s, which

function vanishes when s = t and when s = t, we see that

ft(t") f(t') - f(t) k f(t') f (t) i g(t')

gt(t") g(t') - g(t) tg(t') g(t') g(t') - g(t)

where t" is some real number between t and t'. As too-+c so also

do t' and t" and so ft(t") is of the form + , where is

gt(t")

arbitrarily small, say < C , if t is sufficiently large, /being the

ft(t) g(t') g(t)limit, at t =oo, of . Also =g(t) 1 + g(t)
gt(t) g(t')-g(t) g(t') - g(t)

1+ 2)2, where )2 < C for every t, and f(t) - 3' where22 g(t?) 3

7J < for every t, and so f(t') = V, +_
3 g(t') 3 1 + 1+2 2
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so that f(t') i is arbitrarily small if t' > T is sufficiently large.
g(t')

Hencef(t) has, at t = oo, the limit.
g(t)

The theorem which states that integration of piecewise continuous

right-sided functions over the interval [0, t] is reflected, in the domain

of Laplace Transforms, by division by p may be presented in a

different form which is useful in the application of the Laplace Transformation

to differential equations. Let us suppose that the right-sided function

h(t) is continuous over 0 < t < 0o, without being, necessarily,

continuous at t = 0, so that h(+O) may be different from zero, and that

h(t) possesses over 0 < t < oo a piecewise continuous derivative

ht(t). Writing f ht(s) ds = h(t) - h(+O), h(t) - h(+O) plays the role

of H(t), and so the mere assumption that L(ht) exists at a point c 1

of the positive part of the real axis in the complex p-plane guarantees

that L h(t) - h(+0) exists, and is an analytic function of the complex

variable pover the half-plane c > c 1 and, furthermore, that

L h(t) - h(+0) L(ht) over this half-plane. Since L h(+O= h(+O)

over the half-plane c > 0, it follows that

L(ht) = p Lh - h(+O) ;c >c 1 >0

We express this result by the statement that differentiation of a

right-sided function h(t) is reflected, in the domain of Laplace

Transforms, by multiplication by p followed by subtraction of h(+O).



Similarly, if ht is continuous over 0 < t < 00 and htt is

piecewise continuous and possesses a Laplace Transform at p = cl > 0,

then

L(htt) = p L(ht) - ht(+0) = p2 Lh - ph(+0) - ht (+0),

and so on.
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Lectures on Applied Mathematics

Lecture 8

Functions of Exponential Type

The right-sided function exp( a t) u(t), where a is any

complex number, possesses, over the half-plane c > ar, where

1
a r is the real part of a, the Laplace Transform This

p-a

Laplace Transform is not only an analytic function of the complex

variable p over the half-plane c > ar, but it possesses, in

addition, the following two properties:

a) It is zero at p = c

b) It is analytic over the neighborhood p > la of p = o

It follows that any finite linear combination, C 1 exp (a lt) u(t) +

C2 exp(a 2 t) u(t) + ... + Cn exp (ant) u(t), where Cl,..., Cn are

any complex constants, of right-sided functions of the form

exp (at) u(t) possesses the two additional properties a) and b).

We term any piecewise continuous right-sided function h(t) a

function of exponential type if it shares with any such finite linear

combination of right-sided functions of the form exp(at) u(t) the

following three properties:

1) Lh exists at some point c 1 of the real axis in the complex

p-plane;

2) The analytic function, f(p), of the complex variable p which is

f urnished, over the half-plane c > c 1 , by Lh is zero at p =coo

3) f(p) is analytic over some neighborhood Ipi > R > 0 of p = co
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and we proceed to investigate what properties of a given piecewise

continuous right-sided function h(t) are sufficient to ensure that h(t)

is of exponential type. On denoting by a0 al + + an
p p2 pn+1

the power series development of f(p) over the neighborhood

pI > R of p =co this infinite series converges absolutely at p = R+ 6

where 6 is any positive number, and it may also converge (not,

necessarily, absolutely) at p = R. For example, if f(p) = (1+p2)- 1/2

1 1 -1/21 1 1.3
- (1+ 1) = (1 - + 2.4 ) an is zero when

n is odd while a0 = 1, a2  , a4 .. . Thus
2 2.4

am _m 2. r0 /2 c mde 2d0 <2 2ma2m (-1)m /2 cos 2m  d 8 and /2 cos 2m d9 is an

monotone decreasing function of m which has the limit zero at

m = c o(since it is dominated by [6+ (cos )2m ( 2 -6)] where

IT 1 1. 3
is any positive number < -) so that the infinite series 1 - + -2 2 2.4 "'

being alternating, is convergent. Thus the infinite series

1 1 + 1.3 ... which converges, with the sum (1+p2) - 1/2

p 2p 3  2.4p5

over the neighborhood] p > 1 of p = <>, also converges at p = 1.

On the other hand, if f(p) = (1-p2)-1/2, the corresponding infinite

1 1 1.3
series -- + + 4 .. , which also converges, but with

P 2p 2. 4p

the sum (1-p2) - 1 / 2 , over the neighborhood p > 1 of p = oo, fails to

1. 3...(2m-1) 2. 4...(2m-2) _ 1converge at p = 1; indeed >
2.4... 2m 2. 4... 2m 2m

1 1.3
so that the infinite series 1 + - + + ... does not converge.

2 2.4
a0 al

We use the symbol r to denote R, if the infinite series -+ - + ...

converges at p = R, and to denote R + 6, where 6is an P p
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arbitrarily small positive number, otherwise. Thus the infinite

series a0  + ... converges and this implies that In I
r r2 rn+l

is arbitrarily small, say < E , if n is sufficiently large, say > N.

If, then, M is any positive number which dominates each of the

N + 1 numbers ao, , . IaN- 1  E r, we have i an < M,
r rN-i rn

n = 0, 1, 2, ... , and this implies that the two infinite power

series in the complex variable z:

a2  2 an-1 n-1 2
a 0 +a l z + z +... + z +...; a0 + al z+ z +...

2! (n - 1) 2!

+ I an-1 zn - 1 + ... converge over the entire finite complex
(n-l) !

z-plane, their sums at any point z of this plane being each dominated

by M exp (r I z I). Assigning real values to z we obtain two functions

k(t), k*(t) of the unrestricted real variable t, where
itn- i an-il

k(t) = a0 alt an-1tn-l+.. .;k*(t) = a0 + all t+... + an-1n-+...
(n-l)! (n-l)!

and we know that both I k(t) I and I k*(t)l < M exp(r It I). For example,

t2  t 4

when f(p) = (1+p2)-1/ 2 , k(t) = 1 + - ... and k*(t) =
t 2  t 4  2 22. 42

+ -2 + 2242 +  . In this case k(t) is known as the Bessel Function,

J0(t), of the first kind, of index zero, and k*(t) is known as the modified

Bessel Function, I(t) J 0 (it), of the first kind, of index zero, and

since r = 1 and we can take M = 1, we know that both JO(t) and Io(t)

are dominated, over - co< t < O, by exp t I. We shall study the

functions Jo(t) and 10(t ) in detail and shall see that the inequality

lJO(t) I exp t I is very crude for large values of tj, it being possible

to replace this inequality by the inequality I JO(t) I< 1, but we cannot
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thus improve on the inequality 10 (t) I- expl t . The inequality

JO(t)I < 1 assures us that the right-sided function h 0 (t) = JO(t) u(t)

possesses, over the half-plane c > 0, a Laplace Transform and we

shall see that this Laplace Transform is (i+p2)-1/2. Similarly the

right-sided function h0 *(t) = I0 (t) u(t) possesses, over the half-plane

c > 1, the Laplace Transform (1-p2) - 1/2 . The fact that

h0 (t) = J 0 (t) u(t) possesses a Laplace Transform over the half-plane

c > 0, as contrasted with hO*(t) = I0(t) u(t) which does not possess

a Laplace Transform over the half-plane c > c 1 if cl < 1, is due

to the fact that (1+p2 )- 1/2 does not have a singular point in the

half-plane c > 0 while p = 1 is a singular point of (1-p2)-1/2

Since the two functions
an- 1 tn-i

k(t) =a 0 + a l t +... + (n-1) +'!' ;k*(t)=!ao1+jalt +

I an- tn- + . . . of the unrestricted real variable t are dominated,
(n-l) !

over - co< t < oo, by M exp(r I ti) the two right-sided functions

h'(t) = k(t) u(t) ; h*(t) = k*(t) u(t)

the latter of which is a non-negative real-valued function of t,

possess Laplace Transforms which are analytic functions of the complex

variable p over the half-plane c > r or, equivalently, since 6, if it is

not zero, is arbitrarily small, over the half-plane c > R. If we
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denote by h' 1 (t) and h' 2 (t) the real and imaginary parts, respectively,

of h'(t) both h' (t) and h' 2 (t), being dominated by h'(t) , also

possess Laplace Transforms which are analytic functions of the

complex variable p over the half-plane c > R and this implies that

each of the following four non-negative real-valued right-sided

functions of the unrestricted real variable t, h*(t) + h'l(t), h*(t) + h' (t),

whose non-negativeness follows from the inequality Ih'(t) K h*(t),

possesses a Laplace Transform which is an analytic function of the

complex variable p over the half-plane c > R. Denoting by

An-1
A0 + Alt+ . An-l tn- + . . . the everywhere convergent infinite

(n-1) !
series whose sum is k*(t) + kl(t), for example, where kl(t) is the

real part of k(t), the coefficients A 0 , A 1 , ... of this series are all

non-negative real numbers, since an-1 + the real part of an-1,

n = 1, 2, ... , is a non-negative real number, and we propose to

show that the Laplace Transform,over the half-plane c > R, of

h*(t) + h'l(t) is furnished by the sum of the infinite series,

AO + Al +..., the non-negativeness of the real numbers A 0 , A1,...
P p2

playing an essential role in our proof. A similar result holds for

the other three non-negative real-valued right-sided functions

h*(t) - h'l1 (t), h*(t) + h' 2 (t), h*(t) - h' 2 (t) and, since h'(t) is the linear

combination I h*(t) + h'(t)- -h*(t)-h'(t ) + h*(t)+ h'(t )

- h*(t) - h'2(t) of the four non-negative real-valued right-sided
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functions h*(t) + h' (t), h*(t) + h' 2 (t), it follows that the

Laplace Transform, over the half-plane c > R, of h'(t) is the

a0 a 1sam of the infinite power series - + + .... In other
p p2

words, the two right-sided functions h(t) and h'(t) possess,

over the half-plane c > R, coincident Laplace Transforms, and

this implies that h(t) coincides with h'(t) at any point t which is a

continuity point of both h(t) and h'(t). h'(t) is everywhere continuous,

save, possibly, at t = 0 and so h(t) coincides with h'(t) at every

continuity point save, possibly, t = 0 of h(t). Hence h(t+0) and

h(t-0) exist, with the common value h'(t), at any discontinuity

point, if one exists, of h(t) and, since we have agreed to set

h(t) = 1 h(t+O) + h(t-0) at any discontinuity point of h(t) where

both h(t+O) and h(t-0) exist, it follows that h(t) is coincident with

h'(t) = k(t) u(t).

Once, then, we shall have proved that the Laplace Transform,
A0 A,

over the half-plane c > R, of h*(t) + h' 1 (t) is - + - +
p p2

we shall know that h(t) is of the form k(t) u(t) where k(t) is the

sum of an everywhere convergent power series in t, this power

series being such that both Ik(z) I and I k*(z) , where z is an

arbitrary complex number and k*(z) is the sum of the power series

obtained from the power series a 0 + a1 z + a 2 z2 + whose
2!

sum is k(z) by replacing each of its coefficients by its absolute value,

are dominated, over the entire finite complex z-plane, by a constant

times exp r z I r being = R if the power series a al +
R R2

converges and being = R + 6, where 6 is an arbitrary positive number,
60
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otherwise. For example, the function of exponential type whose

Laplace Transform, over the half-plane c > 1, is (1+p2)-1/ 2 , is

Jo(t) u(t) and the function of exponential type whose Laplace Transform,

over the half-plane c > 1, is (1 - p2 )-1/ 2 is J* 0 (t) u(t) = Io(t)u(t)

and JO(z) is dominated, over the entire finite complex z-plane, by

a constant (actually 1) times exp z Iwhile IO(z) is dominated , over

the entire finite complex z-plane, by a constant times

exp (1+6 ) lzl, 6 any positive number. Actually, since IO(z) =

J 0 (iz), IO(z) is dominated, over the entire finite complex z-plane,

by exp z I . We shall prove in our next lecture that the Laplace

Transform, over the half-plane c > R, of h*(t) + h' 1l(t) is

A0 + Al + ... and, furthermore, that if h(t) is the product of

P p2

u(t) by the sum, k(t), of an everywhere convergent infinite series

a2 ta2 2
a 0 + a t + t2 + ... which is such that k(z) = a0 + a 1 z + 2 z+

is dominated, over the entire finite complex z-plane, by a constant

times exp (r Iz ), where r is a positive real number, then h(t) is

of exponential type. In other words, this property of right-sided

functions is characteristic of functions of exponential type; every

function of-exponential type possesses it and every right-sided function

which possesses it is of exponential type.

We conclude with the observation that the convergence of the

Laplace Transform, over the half-plane c > R, of a function h(t) of

exponential type is absolute, since h(t) I h*(t) and h*(t) possesses,

over the half-plane c > R, the Laplace Transform La0 + tal +

61 p p2



Lectures on Applied Mathematics

Lecture 9

The Characterization of Functions of Exponential Type

Our first task is to show that, if the product of u(t) by

the sum of an everywhere convergent infinite series
An-i n- 1

A0 + A1 t + + (n-l)! t + . with non-negative coefficients,

A0 , A1, ... , possesses, over a half-plane c > R > 0, a

Laplace Transform, this Laplace Transform is the sum of the
AO Al An-1

infinite series - + 2- + ... + - .. To do this
p p pn

we observe that the infinite integral AO + A t +... +
S tn-1 0

An-1 + ... exp (-ct) dt which furnishes, at the point

(n-l)!
p = c > R of the positive real axis in the complex p-plane, the

Laplace Transform in question is the sum by columns 2; um
m=0 n=0

of the double series of non-negative terms which is defined by the

formula
m+l

um f An tn exp (-ct)dt; m=0, 1, 2, ... ,n=0, 1, 2,...
m n!

(the sum of the infinite series which is furnished by the (m+l)st column

n
of the oo x co matrix which has um as the element in its

m+l AnI tn-I
(m+l)st column and (n+l)st row being Ao+A1 t+...+ (n

m (n-i) !

exp (-ct)dtj Denoting by s this sum by columns of the non-negative double

J n
series we write F = un, j = 0, 1, 2, ... , so that the

J m=O n=O
sequence 0, G', ( 2 .... is monotone non-decreasing and is
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dominated by s, no matter what is the value of j. Thus the monotone

sequence 0' Cr1, ... has a limit ( , its least upper bound, and

' s. From the definition of s we know that the non-negative
n

number s - Z F u may be made arbitrarily small, say
m=0 n=O

< , by choosing j sufficiently large and, once j has been so chosen,
oo kn n

each of the j+1 non-negative numbers Z u - E u ,m mn=0 n=0
m = 0, 1, o.., j, may be made arbitrarily small, say

< , by choosing k sufficiently large. Hence the non-negative
j+1 j k n

number s - Z 2 u is less than 2 E if j and k are large
m

m=O n=O
enough so that, in particular, on denoting by p the larger of the

two numbers j and k, the non-negative number s- Cr is less than
p

26 if p is sufficiently large, proving that C = s. Turning now

to the rows of our oc x co matrix we observe that any partial

J n
sum E u of the infinite series furnished by the elements in the

m=0 m
(n+1) st row of this matrix is dominated by 0' where p is the greater

Sn
of the two integers n and j and this implies that Z um is

m=0
dominated by C-= s no matter what are the integers n and j so that

0 n
the infinite series Z u is convergent, with sum < s, no matter

m=0
what is the value of n = 0, 1, 2,.... The argument given above tells

k oo n k j n
us that the non-negative number Z F u - E E u is

n=O m=O n=O m=O

arbitrarily small if j is large enough and, since the two finite sums
j k k jn n
E E u and k Z u are equal, it follows that the
m=0 n=O n=O m=O
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k co n
difference between s and Z L u is arbitrarily small if k is

n=O m=O 0m0 oo
sufficiently large. In other words, the sum by rows Z ~ un

n=0 m=0 m
of the non-negative double series u n exists with the samem 0o n

value, s, as its sum by columns Z E um . Since
m+ A m=O n=0

u mn An tn exp(-ct)dt, the sum of the infinite series
m n.

oo n An
2; um / being the infinite integral tn exp(-ct)dt, is
m=O n!

nI
An (the Laplace Transform of tn u(t) being n ) and so we have
cn+l pn+ An Atn + .

proved that the Laplace Transform of A0 + + ... - n+.. u(t)
(n-i)!

is furnished, over the part of the positive real axis in the complex

p-plane which is covered by the half-plane c > R > 0, by the sum

A0 Al An-1of the convergent infinite series A + ... + -+ .
c c 2  cn

Since both the Laplace Transform of A0 + A t +... + An- tn-+... u(t)

AO Al A- 1and the sum of the infinite series A0 + + ... + ... are
p p2  pn

analytic functions of the complex variable p over the half-plane c > R it

follows that the Laplace Transform of Ao + A t + An-1 tn-+. (t)
A 1(n-1) !

is furnished, over the half-plane c > R, by the sum of the convergent

infinite series A0  An-i + For example,
p p pn

t 2  
t4

once we are assured that I (t) = 1 + - + 22 42 + .. possesses a

Laplace Transform over the half-plane c > 1, the result we have just

1 1 1.3
proved tells us that this Laplace Transform is p + 2p 3 + 2. 4p5 +

= (1-p2)
- 1/2
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We have now completed the proof of the theorem stated

in our last lecture, namely, that, if a piecewise continuous right-sided

function h(t) is of exponential type i. e., if it possesses a Laplace

Transform which is zero at p = 00 and is an analytic function

a0  a1
f(p) + + .. + of the complex variable p over a neighborhood

p > R of p =oo, then h(t) is the product of u(t) by the sum of

the everywhere convergent infinite series a 0 + a 1 t + ... + (n-)1 n-1.

We now propose to show, conversely, that if the sum k(z) =

a + z + n- zn -1 + ... of an everywhere convergent
(n-1)!

power series in a complex variable z is such that k(z) <_ M exp(R I z ),

where M and R are positive real constants, then the right-sided function

h(t) = k(t) u(t), - co < t < oo, is of exponential type. Since k(z) is

analytic over the entire finite complex z-plane the integral of

k(z) / zn+l around the circle z = b in the positive sense, b being

an
any positive number, is 27rri - and, since k(z) M exp(Rb)at

all points of the circle Iz I = b, we have a M ep (Rb)

no matter what is the positive number b. Setting b = n / R we obtain

n! M exp(n) Rn
Sa< exp(n)Rn or, equivalently, log a < log(n!) + log M +

n + n log R - n log n. To appraise the expression on the right-hand side

of this inequality we consider the curve y = log x, x > 0. Since

x log b - log a, 0 < a < b, and since - < - over the
a x 1 x a

a x log b - log a 1 x a
interval a < x < b, we have < - so that the secant

b-a a

of the curve y = log x, which passes through the two points Pa: (a, log a),

Pb: (b, log b), is less steep than the tangent at Pa to the curve and,
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similarly, this secant is steeper than the tangent at Pb to the

curve. If follows that the secant in question does not intersect the

curve in more than two points; for, if Pa' lbq Pc, where

a < b < c, were three collinear points of the curve y = log x the secant

Pa Pc would be at once steeper than, and less steep than, the

tangent to the curve at Pb. Over the interval a < x < b the

ordinate of the curve y = log x is > the ordinate of the secant

Pa Pb, the equality holding only at the end points of the interval,
b 1

and sofa (log x) dx > 2 (log a + log b) (b-a) or, equivalently,

a 1
b log b - b - a log a + a > a (log a + log b) (b-a). Setting b = a+1

and then assigning to a, in turn, the values 1, ... , n we obtain the

following n inequalities, n being any positive integer,

12 log 2 - 1 > log 2

1 13 log 3 - 2 log 2 - 1 > log 2 + 2 log 3

...... .... ................

1 1(n+1) log(n+1) - nlog n-i > 1 log n + 2 log (n+1)

and these yield, on addition, the inequality (n+1) log(n +1)-n > log(n 1)
1 1

+ 2 log (n+1) or, equivalently, (n+ 2 ) log (n+1) - n > log(n ). Hencel 1 
/n

log lann< (n+ ) log(n+1) + log M + n log R - n log n so that log( an )
1 1

< 1 log (n+1) + log (1+-) + log R+ -log M. If, then, n is2n n 1

sufficiently large, log (an 1 n)- log R is arbitrarily small, say

< log (1+ C ), where 6 is an arbitrary positive number, so that

an I < R(1+ C ) n if n is sufficiently large. Thus there exists

a positive number M' such that the quotient of anby R(1+ E ) n

is less than M' for all non-negative integral values 0, 1, 2, ... of n
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and this implies that the sumk*(z), of the everywhere convergent

infinite series a0 + lall z + Ia2 I 2 +... is dominated over
2!

the entire finite complex z-plane by M' exp [R(1+ E ) z

Hence, by the argument of the preceding paragraph, h(t) = k(t) u(t)

possesses, over the half-plane c > R, the Laplace Transform

a0 + al ... which is zero at p =co and also, by virtue of the
p p 2  

n
inequality an < M R (1+ E ) n, an analytic function of the complex

variable p over the neighborhood I p > R of p = o. In other words,

h(t) is of exponential type.

1
If the coefficient a 0 of - in the expansion, over the

P 1
neighborhood I p > R of p = o, of f(p) as a power series in -

p
is zero we may integrate f(p) from any point p for which Ip > R to p = o

r, al a2 a3
obtaining the new function J f(q) d q= ~ +... which

is the Laplace Transform, over the half-plane c > R, of the product

Sa2 a3 t 2
of k(t) t = a+ t + ... by u(t) where k(t) u(t)

a2 t2

= (a 1 t + t2 +... ) u(t) is the right-sided function whose Laplace
al a 2

Transform, over the half-plane c > R, is f(p) - + - + ... . Thus,
p2 3

when a function of exponential type is zero at t = 0 its quotient by t is

also of exponential type and division by t is reflected, in the domain of

Laplace Transforms, by integration from the point p whose real

part c is > R to p =oo. For instance, (sin t) u(t) is a function of

exponential type which is zero at t = 0, its Laplace Transform, over

the half-plane c > 0, being (1+p2 )-1 which is an analytic function of
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the complex variable p over the neighborhood p > 1 of p = 0o.

sin t
Hence the Laplace Transform of t u(t), over the half-plane

dq1p ds 1 1c > 1, is 1+q2 = l +s2 , arc tan .
q P

sin t
We have already seen that the Laplace Transform of t u(t)

7T
exists at p = 0 with the value - and so the Laplace Transform of

2
sin t u(t) exists, and is an analytic function of the complex variable p,t

1
over the half-plane c > 0. Since arc tan - is also an analytic function

p

of p over the half-plane c > 0 it follows that the Laplace Transform

sin t 1
of u(t), over the half-plane c > 0, is arc tan -.

t p

Exercise. Show that, if the real part ar of a is positive, the Laplace

exp (at) -1Transform of u(t), over the half-plane c > ar, is

- log (1- a ). Show, also, that the Laplace Transform of
p

exp (at) -1 - at u(t), over the half-plane c > ar, is

t a
a - (a-p) log (1- p ).

Denoting by f(p) the function a  + a . . which is
P p2

analytic over the neighborhood p > R of p = oc and which is

furnished by the Laplace Transform of a function (aO + a1 t + a 2 t2+ . )u(t)
21

= k(t) u(t) of exponential type let us consider the integral

fC(p) exp(pt) dp, where C is any simple closed curve, of finite length 1,

all of whose points lie in the region p > R of the complex p-plane

and which encircles the circle Ip I= R and, hence, all the singular points

of f(p). The infinite series a o + + ... converges uniformly
p p

along C and so it may be integrated along C, after multiplication by

68

~1~ 1 111 111 , I -- r i ~I I-""anr~lllrrmanmanan

oill IIIII I i iii 'I ol lo 1 o lol uimllws sfil



exp(pt), term -by-term. Since exp (pt) dp = 2i it
fC Pn+1 n!

follows that 1 f (p) exp(pt)dp = a0 + al t + 2  . = k(t).

We already know, from the Laplace version of the Fourier Integral

1 r (c+i co)
Theorem, that 1 (c f(p) exp(pt) dp = k(t) u(t), c > R,2n i (c-i oo)
the convergence of the infinite integral which furnishes, over the

half-plane c > R, the Laplace Transform of k(t) u(t) being absolute,
1

and so-- times the integral of f(p) exp(pt) around the circle

p = r > R in the positive sense from c + i(r 2 - c2 ) 1/2 to

c - i (r 2 - c 2 ) 1/2, where R < c < r, has the limit k(t) - k(t)u(t) = k(t)u(-t)

as r---oo. Indeed, the integral of f(p) exp(pt) around the circle

Sp= r in the positive sense from c- i (r 2 - c 2) 1/2 to
2 1/2 [(c+i co)

c + (r2 _ 2 ) has the limit f (p) exp(pt)dt = 27ri k(t)u(t)
(c-io )

as r-- oo, this integral being the same as the integral of f(p) exp(pt)

along the segment of the straight line:real part of p = c from

c-i(r 2  c2 ) 12toc+i(r2 _ c2)1/2

MIT COMPLATION CENTER
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Lectures on Applied Mathematics

Lecture 10

The Polynomials of Laguerre

We are now ready to study the application of Laplace

Transforms to ordinary linear differential equations with variable

coefficients and we begin with the equation

txtt + (1-t)xt + Xx = 0; X a real constant

which occurs in the wave-mechanical treatment of the hydrogen atom.

We assume that there exists a right-sided function h(t) which

satisfies this differential equation save, possibly, at t = 0, where

h(t) may not be differentiable. Furthermore, we assume that

L(htt) exists at a point p = c 1 of the positive real axis of the

complex p-plane. Then all three of the right-sided functions

htt, ht and h possess Laplace Transforms which are analytic

functions of the complex variable p over the half-plane c > c 1

and L(ht) = p Lh - h(+0), L(htt) p 2 Lh - ph(+0) - ht(+0). We denote

Lh simply by f and observe that L(tht) = - L(ht)} = -f - fp L(thtt)

= - 2pf - p 2 fp + h(+0), over the half-plane c > c 1. Since, by hypothesis,

thtt + (1-t) ht + Xh = 0, save, possibly, at t = 0, it follows that f

satisfies, over the half-plane c > c 1 , the first-order linear differential

equation

p(p-1)fp + (p-1-X)f = 0

fp 1 _ _ +1
Writing this equation in the form f- -

f p(p-1) p p - 1 p

1 1 )
we see that f is a constant times (p-1)/ X+1 = p (1- ) so that f is

p P
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zero at p = oo and is an analytic function of the complex variable p

over the neighborhood Ip > 1 of p = coo. Thus h(t) is a function of

exponential type which is dominated over 0_ < t < 00 by a constant

times exp [(1+ 6 )t], where 6 is an arbitrary positive number.
1 1 )

The power series development of j (1- j , over the neighborhood
1 X x(X-1) (X-1)(-2)

p 1> ofp =co, is p- 2 +2!p3 3 p4 +... and

so h(t) is a constant times the product of u(t) by the sum k,(t) of the

everywhere convergent infinite series

(- 1) t2 - X(X-1) (X-2) +1 - At + t t +...
(2!) 7 (31 )2

It is now easy to justify our hypotheses concerning the existence of

h(t) by verifying that k (t) u(t) satisfies these hypotheses with cl

any number > 1. Since each term of k,(t) is dominated by a

constant times the corresponding term of exp [(1+ 6 )t] and since

a power series may be differentiated term-by-term the second

derivative of kx(t) is dominated, over 0 < t < co, by a constant

times exp [(1+ 6 )t] (the constant being the product of the previous

constant by (1+6 )2)so that ikx(t) u(t) tt possesses a Laplace

Transform at p = 1 + , ' > 5 . It remains only to verify

that x = k,(t) u(t) satisfies, for every value of t / 0, the differential

equation txtt + (1-t) xt + Xx = 0. To do this we avail ourselves of the

relations L(txtt) = -2pf - p2fp + x(+O), L(xt) = pf - x(+0), L(txt) =

-f - pfp which are valid, over the half-plane c > 1, since Lx = f

over this half-plane. It follows, since p(p-1)fp + (p-l-X)f = 0, that
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the Laplace Transform of txtt - (1-t)xt + Ax, over the half-plane

c > 1, is zero and this implies that txtt + (I-t)xt + Ax=0, - 0 < t <o .

In particular, t (kX)tt + (I-t) (k )t + AkX = 0, O <t <C , andsince

the left-hand side of this equation is the sum of an everywhere convergent

power series. in t, it follows that this equation is valid over the extended

range - o < t <oo. Indeed, if we replace t, in the power series

whose sum if k (t), by an arbitrary complex number z, we obtain a

A(A-1) 2
function k (z) = 1 - Az + z - ... of the complex variable

(21)2
z which is analytic over the entire finite complex z-plane and we

know that z kx(z) zz + (1-z) kX(z) Z + Ak() is zero over the

positive part of the real axis in the complex z-plane. However, this

implies that it is zero over the entire finite complex z-plane and,

in particular, over the part - 0 < t < 0 of the real axis in the

complex z-plane. Thus x = k (t) is a solution, over - co< t <Po, of

the differential equation txtt + (1-t)xt + Ax = 0 and we know that x is

dominated, over - co< t < 0, by a constant times exp [(1+ 6 )lti].

We now raise the following question: For what values of A, if any,

is x dominated, over -co < t < o, by a constant times exp(altl) where

a is any positive number less than 1. For this to be the case k (t)u(t)

must possess, over the half-plane c > a, and not merely over the

half-plane c > 1, a Laplace Transform and so - (1- ) can have no
p p

singularities in the half-plane c > a. Hence A must be a non-negative

integer for, if not, p = I would be a singular point of (1- -) . For
1 A p

example, if A = -1, p = 1 is a pole of - (1 - -) while, if
P P
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1 1 1
= , p = 1 is a branch point of -(1 - ) , the function

2 p p

-(1 - ) of the complex variable p not being uniform over any
P P
neighborhood of p = 1. When X is a non-negative integer

n = 0, 1, 2, ... , the power series whose sum is kx(t) is a constant

n(n-1) 2
times the polynomial function of t, of degree n, 1 - nt + n(n1) t -

(21)2tn
+ (-1) n  . Choosing the, as yet undetermined, multiplicative

n!

constant to be n 1, so that the coefficient of tn in this polynomial

function become s (-1)n, we obtain the following sequence of

polynomial functions of t:

Ln(t) )n n2tn-1 + n 2(n-1)2 t-2_ n2(n-1)2(n-2) 2 tn-3
2! 31

+ .. +(-1)nn! , n = 0, 1, 2, ...

For example, L0 (t) = 1, L1 (t) = - (t-1), L 2 (t) = t 2 - 4t + 2

L3 (t) = -(t 3 -9t 2 + 18t - 6)

L4 (t) = t 4 - 16t 3 + 72t 2 - 96t + 24

and so on. These polynomials are known as the polynomials of Laguerre

and the differehtial equation txtt + (1-t)xt + n x = 0 is known as Laguerre's

differential equation of index n. The Laplace Transform, over the
ni 1

half-plane c > 0, of Ln(t) u(t) is p (1- )n The restriction of X to the

non-negative integers 0, 1, 2,..., which is imposed by the

requirement that e-aIt l k (t), 0 < a < 1, be bounded over - et < t <c,

furnishes the quantisation of the radial coordinate in the wave-mechanical

theory of the hydrogen atom.
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It is easy to show, on availing ourselves of the fact that the

Laplace Transform of L (t) u(t), over the half-plane
n

c > 0, is (1- 1 )n that the function xn = Ln(t) of the
p p

unrestricted real variable t satisfies the linear second-order

difference equation

Xn+1 + (t -
2n- 1 )xn + n 2 xn 1 = 0, n = 1, 2, 3, ...

Indeed the Laplace Transform of tLn(t) u(t), over the half-plane

c > 1 )n n(n) (I- 1 )n-1 and this appears, on
c >0, is p- (1- p3 p

writing 2 I 1- (1-)1 p3 -

p p P p p P

(n+1) ! 1 (2n+1) (n !) 1
in the form - (1 - -)n+1 + (1 - )

p p p P

- n2 (n-1) (1- 1 )n-1 which is the Laplace Transform, over
p P

the half-plane c > 0, of - Ln+1(t) u(t) + (2n+1) Ln(t) u(t) - n 2 Ln-1(t) u(t).

Hence, by virtue of the uniqueness theoremitLn(t) u(t) = - Ln+l(t) u(t)

+ (2n+1) Ln(t) u(t) - n 2 Ln-l(t) u(t) or, equivalently,

tLn(t) = - Ln+l(t) + (2n+1) Ln(t) - n 2 Ln _1 (t), 0 < t <oo. Since

this equation connecting polynomials is valid for more than a finite

number of values of t it must be an identity so that, on collecting

terms,

Ln+(t) + (t-2n-1) Ln(t) + n2Ln_l(t) = 0, - oo< t <oo

Similarly, we can show that Ln(t) is the product of the nth derivative,

Dn [tn exp(-t)] , of tn exp(-t) by exp t. Indeed the Laplace Transform,

1
over the half-plane c > -1, of exp(-t) u(t) is p+- and so the Laplace
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n!
Transform, over the half-plane c > -1, of tn exp(-t) u(t) is (p+l)n+l

Since tn exp(-t) is zero, together with its derivatives up to the

order n - 1, inclusive, at t = 0, if follows that the Laplace Transform,
n pn

over the half-plane c > -1, of Dn t n exp(-t )] u(t) is (p)n+ so that,

by virtue of the Translation Theorem, the Laplace Transform,

over the half-plane c > 0, of exp(t) Dn [tn exp(-t)] u(t) is

n!(p-1)n = n (1 - 1 )n. Hence exp(t) D i tn exp(-t)] = Ln(t),

pn+1 P P

0 <t <ca, which implies, since both sides of the equation are

polynomial functions of t, that

Ln(t) = exp(t) Dn tn exp(-t) , - oo< t < oo

Let us denote by L*n (t) the polynomial function of t, of

degree n, obtained by replacing each coefficient of Ln(t) by its

absolute value. For example,

LO (t) = 1, L(t) = t + 1 L 2 (t) t2 + 4t+2

L*3 (t) = t 3 +9t 2 + 18t + 6

and so on, L*n (t) being Ln(-t), n = 0, 1, 2, ... Then the Laplace

Transform of L*n(t) u(t), over the half -plane c > 0, being obtained

from the Laplace Transform of Ln(t) u(t) by replacing each
1

coefficient in the development of this latter as a power series in -

by its absolute value, is -(1 + )n Since L*n(t) = Ln(-t), x n

= L*n(t) satisfies the differential equation

t(x*n)tt + (1+t) (x*n)t - n x*n = 0

IfiII _ II



which we term the modified Laguerre differential equation of index n.

Similarly x*n satisfies the linear second order difference equation
n

x* - (t + 2n + 1) x* + n 2 X*n- = 0

and

L* (t) = exp(-t) Dn (tn expt), n = 0, 1, 2, ...

Let x be any non-negative real number less than 1 and let

us consider the non-negative double series (uj ) where

k k tij xk

u. =() , <t <o, O < x < , j = 0, 1, 2,..., k = 0, 1, 2,...
3 j j! -

k
Then the oo x oo matrix which has u. as the element in its

(k+l)st row and (j+1)st column is triangular with zeros above the

diagonal, the binomial coefficient (k ) being zero if k < j. The sum
j

of the elements in the (k+l)st row of this coo x coo triangular matrix

xk
isk! L*k(t) while the sum of the elements in the (j+l)st column

tJxJ (j+2) (j+1) 2 tJ xJ
is 1 + (j+1) x + (x +. (1-x )J +1  Hence

the sum by columns of the non-negative double series (uk ) exists

1 tx
with the value exp and this implies that the sum by

1 - x 1-x

rows, namely, 1 -x-T Lk*(t), exists with the same value. Thus
k=O

OO xk  L k(t) = exp txx < 1, O< t <E k 1- 1-x Ox<1 o<t<
k=0

If we multiply uk. by (-1) j we obtain a new double series

k k k (-t)J xk
(v ), where v = () , j= 0, 1,2, ..., k=0, 1, 2,o

This double series is no longer non-negative over 0 <t <oa but each
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k k
of the two double series (u + v ) is non-negative and the sum

j 3
by columns of each of these two non-negative double series exists.

k 1 k k 1 k k
Since v (u, + v ) - (u - v ) it follows that, despite

j 2 j j 2 j j
the fact that the double series (v. ) is not non-negative, its sum

by rows exists and has the same value as its sum by columns.

Thus

Z xk 1 -tx
k=O Lk 1- 1-x

kl

which is the same thing as saying that the previous relation

oo 1 txZ xk L* (t) - x exp T-
k- kF

is valid over the entire t - axis, - oo< t <oa. The same argument

shows that we may change the sign of x and so

oo
Sxk 1 tx

k=O k!I Lk*(t) = 1-x exp -x, < x < -1, -COO< t < o

or, equivalently,

xk 1 -tx
k= kI Lk(t)- 1-x exp 1-x , -1 < x < -1, - oo< t <oo,

We conclude with the remark that Laguerre's differential

equation t xtt + (1-t)xt + nx = 0 possesses a second solution, linearly

independent of Ln(t), but this solution does not have as much

importance as Ln(t) in applications to physical problems since it

possesses a logarithmic singularity at t = 0. For example, when

n = O, this second solution may be taken to be the indefinite integral

exps ds , of exp If this second solution is required it
s t
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may be obtained by writing x = yLn(t) in Laguerre's differential

equation; on doing this we find that yt is a constant times the

quotient of exp t by t Ln2 (t)o
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Lectures on Applied Mathematics

Lecture 11

Bessel's Differential Equation

As a second application of the Laplace Transformation to

ordinary linear differential equations with variable coefficients

we consider the second-order linear differential equation

t 2 x +tx + (t 2  n2) x = 0
xtt +

which is known as Bessel's differential equation, of index n,

n = 0, 1, 2, ... , being a non-negative integer. It is not difficult
1 f 7

to see that xn(t) = cos (t sin6- nO) dO is a solution of

this differential equation. Indeed,

n(t) = - 1 sin(tsin-n n) (sin ) dO

xn(t)tt - cos(t sin 6 - nO) (sin2 0) dO

so that xn( tt + xn (t) = cos (t sin 8 - nO) (cos 2 0)dO. A

simple integration by parts yields

t = sin(t sin -n) cosO - f cos(t sin 8-nO)(cosOXtcos-n)d

= - cos(t sin O-nO)(cos26)dO + f cos(tsinO-nQ)(cos6)d6
T0

so that

t xn(t)} + xn( t + t xn(t) = n f cos(t sin E-nO) (cos 0) dO



Now, o cos(t sin 9 - ne) (t cos 0 - n)d@ - sin(t sin E - n) = 0

and so t {cos(t sin 6 - ne) (cos 6)dO = n cos(t sin 6-n8) dO=nr xn(t),

so that

t 2 xn tt.+ t xn(t) t + t 2 xn(t) = n2 xn(t)

which proves that xn(t) is a solution of Bessel's equation of index

n. We denote this solution by Jn(t) and observe that IJn(t) < 1,

I Jn(t)t I 1, Jn(t) tt < 1 so that the right-sided function

hn(t) = Jn(t) u(t) is a solution, save, possibly, at t = 0, where

hn(t) may not be differentiable, of Bessel's differential equation

of index n, this solution being such that the three piecewise

continuous right-sided functions hn(t), { hn(t)} , hn(t) all

possess Laplace Transforms which are analytic functions of the

complex variable p over the half-plane c > 0. On denoting the

Laplace Transform of hn(t), over the half-plane c > 0, by f we

have If f exp(-ct)dt = -, c > 0, so that I f tends to zero

as c-4-~ . Furthermore, L[ h (t) t] = pf-hn(+0),

L[ {hn(t)] = p2 f -phn(+0) - hnt (+0) L(thn) = - f
L(t 2 hn) =fpp, L[thn(t) = - f - pf , L[t ,hn tt]

-= p2 f - 2pf + h(+0), L t2 hn(t)} = p2fp + 4pf + 2f, all

these equations being valid over the half-plane c > 0. Since

t 2 h (t) +tt h n (t )  +(t2-n2) h (t) =0, t t / 0, it follows that,Ln >tt n~t t n2 )h
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over the half-plane c > 0,

(1 + p2) fpp + 3pfp + (1-n 2 ) f = 0

This homogeneous second-order linear differential equation is

readily solved by setting p = sinhz so that fz = (cosh z)fp,

fzz = (cosh2 z)fpp + (sinhz)fp. Thus fp =(sechz)fz, (l+p 2 )fpp

= fzz - (tanhz)fz, so that f zz + 2(tanhz)f z + (1-n 2 )f=0. Writing,

finally, (coshz)f = f', we have (coshz)fz + (sinhz) f = f'z)

(coshz) fzz + 2(sinhz)f + (coshz) f = f ' so that f'Z = n2 (coshz)f=n2 f '

If, then, n = 1, 2, 3, ... , f' is a linear combination, with

constant coefficients, of exp nz and exp(-nz). If x and y are

the real and imaginary parts, respectively, of z,

c = sinhx cosy and so, if - <.y < , c-4 oo as x o .

Furthermore, the quotient of exp(nx) by coshx---2 as x---)o,

if n = 1, and -- co , as x---c , if n = 2, 3, ... , while

the quotient of exp(-nx) by cosh x - o as x----co ,

n = 1, 2, 3, ... Since f = f'/cosh z tends to zero as c---oo it

follows that the coefficient of exp(nz) in the linear combination

of exp(nz) and exp(-nz) which furnishes f' must be zero. Thus,

if n = 1, 2, 3, ... , f(p) is a constant times exp(-nz) divided by

coshz, i. e., a constant times (coshz - sinhz)n {(+ 2) 1/ 2 _ n

divided by (+p) 1 /2 . On the other hand, if n = 0, f' is a linear

a+bz
function of z so that f is of the form coshz where a and b are

constants. Hence at any point c = sinhx of the positive real axis



c(a+bx)
in the complex p-plane cf = cosh x= tanh x (a + b x) and this

is not bounded at x =oounless b = 0 (since tanhx---l as x-+oo).

Thus, for all non-negative integral values, 0, 1, 2, ... , of

n, f is a constant times exp(-nz) divided by coshz, i. e., a constant,

C, times (1+p 2 ) 1/2 _ p}n / (1+p2 ) 1/2. Since this function of the

complex variable p is zero at p = 00 and analytic over the

neighborhood Ipl> 1 of p = oo, its development as a power series

1 C 1/2
in - starting out with ( ( 1+p2 ) - p being

p 2n pn+1
p(l-2 1/2 1

(1+p - p = + ... ) hn(t) is a function of exponential type,

namely, the product of u(t) by an everywhere convergent power series

in t which starts out with the term C - . Thus J (t) vanishes,
2n.n! n

together with its derivatives up-to the (n-1)st, inclusive, at t = 0,

while the nth derivative of J (t) does not vanish at t = 0.
n

The nth derivative of Jn(t) = f cos(tsin 6 - nO)d6, at t =0,
(- 1)k r

is r sin(n6) sinnO d6, if n = 2k+1 is odd, and

(_) k  7T cos(n6) sinn6 d@ is n = 2k is even. In the first case,

sinne = (2i)-n exp(iG) - exp(-iO) is a linear combination of sines of odd

integral multiples of 6, the coefficient of sinne in this linear

combination being (2i)- n+1 - ( 1 k while, in the second case,
2n-1

sinn6 is a linear combination of cosines of even integral multiples

of 0, the coefficient of cos nO in this linear combination being

2(2i)-n = (-1)k . Now - (sin nO) (sin me)de = 0, if the
2n-1 0 1 7

odd numbers m and n are unequal, and - (cos n6)(cos mO)d} = 0,o0 o
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if the even numbers m and n are unequal, while both

1 sin nO2 de, n = I, 3, 5, ... and f cos

n = 2, 4, ... have the common value - Hence, if n
2

positive integer, the nth derivative of Jn(t) has, at t =

1
value 2- and this is also true when n = 0, the value of

1"

J 0 (t) = I cos(tsinG)dG at t = 0 being 1. Thus the

multiplicative constant C is 1 and

L Jn(t) u(t) = oshz p = sinh z, n = 0, 1,

(l+p2) 1/2p c>0

(1 + p2) 1/2

In particular, L Jo(t) u(t) = (1+p2)1/2 , L Jl(t)u(t)

n912 dO,

is any

0, the

2, ... c >0

= 1- (+p 2 )1/2, c>0.

Since J 1(0)= 0 it follows that L{t J 1 (t) u(t) = +p2 ) 1 / 2

= (1+p2) 3 /2 , c > 0. In general, the Laplace Transform, over the
(1+p23/2

half-plane c > 0, of tnJn(t) u(t) is simpler, when n > 0, than that

of Jn(t) u(t). To obtain this Laplace Transform we first set up the

differential equation which is satisfied by y = tnx, where x = Jn(t).

Thus x = t-ny, xt = t-nYt - nt-n- 1 y, xtt = t-nytt - 2nt-n-yt+n(n+)t-n- 2 y

and, since t 2 xtt + tx t + (t2 - n2 ) x = 0, it follows that tytt-( 2 n-l)yt+ty=0.

Denoting Ljy u(t)1 by g and noting that y(O) = 0, since n > 0, we

have Ly u(t) t = pg L y u(t) tt] = p2 g _ Yt(0), so that

L[ t Y u(t) tt -p2g - 2pg and, since L t y u(t) = -gp, we obtain

(1+p2 )gp + (2n+l)pg = 0 so that g is a constant times (l+p2)-n-(1/2)
p



and, since the power series development of y starts out with the

t2n  (2n)!
teem 2nn the multiplying constant is 2nn!

2n(n !) 2n( I)

L tn JnWtu (t) (2n-1)(2n-3).
n (1+p2)n+

(it being understood that, when n = 0,

3. 1
1/2)

(2n-1)..

= (2n-1)(2n-3)... 3. 1:

, c >0, n = 0, 1, 2...

3. 1 is replaced

by 1). Since the development of
(2n - 1) ...

(1+02 )n+(/2)

series in is (2n-1) ...
1p2+

3.1 p2n+l

3. 1

1
n+

p2n+3

as a power

1 3
(n+ )(n)+ 2! n+
2 ! p2n+5

the development

(2n-1) ...

of tn

1 t 2 n
3. 1

2(2n)!

n (t) as a power series in t is

(n+ 1) t 2 n +2  +1 )(n+ 3 ) 2n+4
- + 2n+2

(2n+2)1 (2n+4)!2

and so the development of J (t) as a power series in t is
n

1 t
(n+1)! 2

For example, JO(t) = 1 -

1

(n+2)!2!

t2  t 4

22+ 22. 42

t n+

t 6

- 22.42. 62

1

(n+3)!3!

n+6
)

J (t) =1
t t3  t 5

2 22.4 + 22. 42.6

so that J 1 (t) is the negative of the derivative of J 0 (t) with respect to

t; this result could have been predicted, without computation, from

the fact that
pi (t)u(t), namely 1- )172 , is the negative

LN~)ut ,nml (l+p 2
of p LiJo(t) u(t)i- JO(0).

Exercise. Show that the product of u(t) by Jn(t)/tn is a function

of exponential type whose Laplace Transform, over the half-plane

(cosh z)2n-1  co" 2n
c > O, is (sech v) dv, p = sinh z, and, in

1 tn )
ni 2

II I I I I

. .

i
n+2



particular, that the Laplace Transform, over the half-plane

J1(t) 1/2
c > O, of u(t) is coshz - sinhz = (1+p2 ) 1/2

Hint. The differential equation satisfied by w = t-n x, where
1

x = Jn(t), is twtt + (2n+l)wt + tw = 0 and it follows, since w(O) = 2 n. n I

that the differential equation satisfied by L(w u(t)) = g' is

(l+p2)gp- (2n-)pg' = - 1 The solution of thisp 2n-I. (n-i)! 1
2n-

differential equation which is zero at p =o is g' = (1+p 2 ) 2 s,
1n+ 1

where (1+p2 ) 2 s = - and s is zero at p =
P 2n-1. (n-1)! o

Thus s = dq (sech v)2nd,Thus s 2n - (n-) (+q 2 )n 1/2 2n-. (n-)! (sechv)2 dv,

q = sinh v, p = sinh z.

If we replace each coefficient of the everywhere convergent

power series in t whose sum is Jn(t) by its absolute value we obtain

a new everywhere-convergent power series in t whose sum,

Jn *(t), is the product of Jn(it) by (-i)n. Jn*(t) is termed the

modified Bessel function, of the first kind, of index n and is

usually denoted by In(t) but we shall use, for the present, the

notation J (t) to recall the manner in which the modified Bessel

function, Jn *(t) or In(t) , is derived from Jn(t). The expansion,

over the neighborhood jpl > 1 of p =co, of the Laplace Transform
1

of Jn*(t) u(t) as a power series in - is obtained from the

corresponding expansion of the Laplace Transform of Jn(t) u(t) by

replacing each coefficient of the latter expansion by its absolute value.



Now the expansion of the Laplace Transform of Jn(t) u(t)
1

as a power series in -
P

+ an+4

pn+5

an
is of the form fn(p) =pn+l

+ ... where an
1

2n
and the coefficients

an, an+2, ... are alternately positive and negative.

an

pn+1fn (ip) = (-i)n+l
an+2

pn+3

an +4

pn+5

(-i)n+l lan I+
pn+1

lan+2
pn+

3

over p > 1, of the

.series

series

so that f *(p), the sum,

+ lan+2
pn+3

in+l
in+1 f (ip)n

this takes the form

exp (-nz*)

sinh z*
the result

where cosh z* = p.

+..., is

(1-p
2 ) 1/2

, which is

Thus, side by side with

exp(-nz)

cosh z , p = sinh z, c > 0L Jn(t) u(t)

we have the result
exp(-nz*)

sinh z*
,p = cosh z*, c > 0.

Exercise 1. Show that xn " Jn (t) = In(t) satisfies the modified

Bessel equation, of index n, t 2 (xn )tt + t(xn *)t- (t 2 + n2 ) xn = 0

Hint. Denoting J (t) by xn(t), xn(z), where z is a complex

variable, satisfies the differential equation z 2 (xn)zz + z(xn)z +

(z 2 - n 2 ) xn = 0. Thus along the imaginary axis z = iy in the

complex z-plane, along which (xn)y = i(xn) ,z (x) yy= i2 (xn)zz,

an+2

pn+3

Hence

L Jn*(t) u(t) =

I -- -----c- ----------- _ I II ICZ

. 0-

i(p2_-1)
1 / 2



we have y2 ()yy + Y(xn)y - (y2 + n2 ) xn = 0 and, since xn(iy) is

a constant times xn*(y) it follows that y2(xn*)yy + y(n*)y

(y2+n2) xn = 0, - oc< y <oo.

Exercise 2. Show that if n =, , ... both IJn(z) and Jn*(z)I are

dominated over the entire complex z-plane by a constant times

Iz -n exp [(1+ 6)1z] where 6 is an arbitrary positive number.
Hint. L n (2n-1) ... 3. 1

SLtnJ(t) u(t) ( 2)n(1/2) and the development

1
2 -n - 1 1

of (1+p2 ) 2 as a power series in - converges at p = 1 + 5

Note. If we substitute p = 1 in this series we obtain a series

whose terms steadily increase in numerical value and which,

therefore, fails to converge.

Exercise 3. Show that both IJO(z) [and JO *(Z) = Io(z) are

dominated, over the entire complex z-plane by exp I z I.

Hint. The development of (l+p2 ) -1/2as a power series in -

1 1.3
reduces, when p = 1, to 1 - I + 2. 4 -... which converges;

furthermore each of its terms is numerically < 1.
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Lectures on Applied Mathematics

Lecture 12

The Recurrence, and other, Relations Connecting
Bessel Functions

The Laplace Transforms, over the half-plane c > 0,

n 1/2
of the two right-sided functions t + 2 Jn(2t )u(t), each

of which is of exponential type, are particularly simple.

To obtain them we set 2t1/ 2 = s, t 0, and we denote
-1/2

Jn(s) by x(s) and write x(s) = y(t). Then yt = xs t so

1/2 1 1 1 2 1
that x =t t 2 Yt and Xss 2 Yt +  Ytt = 2 t + tYtt. Since

t
2X 

2 4 Ytt2 n2
s2xss + sx s + ( 2 - n2 ) x = 0 it follows that t2 + ty t + (t- 4 )y=0.

n n n - 1
We next set y = t 2 v so that yt = t Z vt - it 2 v,

n n-1
ytt = t  tt-nt2 vt + + 1)v and find that v

satisfies the differential equation tvtt + (1-n)vt + v = 0. All

three of the right-sided functions v(t) u(t), vt(t) u(t), vtt(t)u(t)

possess Laplace Transforms over the half-plane c > 0 and,

on denoting by g the first of these three Laplace Transforms,

we have L [vt(t) u(t)] = pg-v(0), L[ vtt(t) u(t) = p2 g - pv(0) - vt(0)

where v(0) = 0 if n = 1, 2, 3, ... , while v(0) = 1if n = 0. Since

L[tvtt(t) u(t) = -2pg - p2 gp + v(0), g satisfies the differential

equation p2g + (n+1) p-1 g - nv(0) = 0 or, equivalently,

since nv(0) = 0, n = 0, 1, 2, ... , p2g + (n+1) p-1 g = 0.

Thus g is a constant times exp(- ! )/pn+l and, since the

88
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n
development of t Jn(2t /2) as a power series in t starts

out with the term 1 t n , the multiplying constant is 1. Thus
nI

1
L[ tn/2 Jn(2t 1/ 2 ) u(t) = xp( c > 0, n = 0, 1, 2, ..

pn+l

From this we obtain the Laplace Transform, over the
n 1/2

half-plane c > 0, of Lt n(2t 1/2) u(t) by integrating

n times, with respect to p, from p to oo (t J n2 Jn(2 t )

being the quotient of tn / 2 Jn(2t l / 2) by tn). Writing
1exp( - 1) 1 1 1

pn+I pn+1 pn+2 2 Ip +3

1 1 1
we obtain + - . which is the

n!p (n+l)!p 2  (n+2)!p 3  '''

part involving negative powers of p in the Laurent development

of (-1)n pn - 1 exp(- 1 ) over 0 < z I<co, i.e., the finite
p

complex z-plane punctured at the origin:
1 1 1

L[t -n /  Jn(2t/2) u(t) - (n+l)p 2 + (n+)p - ""J I (n+1) Ip (n+2) Ip3

c >0, n =0, 1, 2, ...

Thus, multiplication of the Laplace Transform of tn / 2 Jn(2t 1/2) u(t),

n = 1, 2, 3,..., by p is equivalent to replacing n by n -1 while

n 1/2multiplication of the Laplace Transform of t Jn(2t )u(t),
1n = 0, 1, 2, ... , by p, followed by subtraction of , the
n!

value of t - Jn(2t 1 / 2 ) at t = 0, is equivalent to replacing

n by n+1 and changing the sign of the Laplace Transform.

This implies, by virtue of the uniqueness theorem, that



a) The derivative of t n/2 n( 2 t /2), n > 0, with
n-1 1/2

respect to t is t 2 Jn-( 2 t )

and
Sn 1/2

b) The derivative of t Jn(2t ), n > 0, with
n+l- 1n+1/2

respect to t is -t -2 Jn+1(2t ).

Since differentiation with respect to t is the same as

differentiation with respect to s = 2t 1/ 2 followed by

-1/2 2
multiplication by t -1 2, these results can be

expressed as follows:

a') The derivative of ( )n j (s), n = 1, 2, 3, ... ,
2 n

with respect to s, is ( s)n J (s)
2 n-1

b') The derivative of ( s)-n Jn(s), n = 0, 1, 2, ... , with
2

respect to s, is - (-n J n+(s).
2 n+1

These results have been proven only for non-negative values

of s but they remain valid if s is replaced by an arbitrary

complex number z since each side of each of the resulting

equations is an analytic function of the complex variable z over

the entire finite complex z-plane. In this way we obtain the

following two sequences of relations

z Jn(Z) + nJn(z) = zJn 1(z), n = 1, 2, 3, z ar

z Jn(z) z - n Jn(z) = -z Jn+1, n = 0, 1, 2, ...

and these yield, on addition and subtraction, the sequences of

relations,

bitrary
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2 J (Z)z =JJ n (z) - Jn+(z), n = 1, 2, 3, ..

T ; z arbitrary.
2n Jn(Z) = Zi J (z) + J ()), n = 1, 2, 3, ...

The second of these two sequences of relations furnishes what

are known as the recurrence relations connecting the

sequence JO(z), J 1(z), J2(z), . . . of Bessel functions of the

first kind. These recurrence relations express the fact that

Jn(z) is a solution of the linear second-order difference equation

Jn+l(z) - Jn(Z) + Jn-l(Z) = 0; n = 1, 2, 3, ... ; z arbitrary.

Exercise 1. Show that the sequence of modified Bessel functions

I(z) = Jn* (z), satisfies the two sequences of relations

2 In(z) z = 1(z) + In+1(z), 2 nIn(z) = z I n-(z) - In+(z) ,

n = 1, 2, 3, ... .

Exercise 2. Show that the Laplace Transforms, over the
n 1/2 -n/2 1(t/2u(t)

half-plane c > 1, of t In (2t u(t) and t In(2t )u(t)

are exp( 1 )/pn+1 and + 1 + 1
p nlp (n+1) Ip2  (n+2) Ip3

respectively.

We have seen that the Laplace Transform, over the

half-plane c > 1, of J * (t) u(t) = In(t) u(t) is exp(-nz*)/sinhz*,

where p = coshz*. On taking the real and imaginary parts of

the equation p = coshz*, we obtain c = (cosh x*)cosy *,

W = (sinhx*)siny* where c, J are the real and imaginary

parts, respectively, of p and x , y are the real and

imaginary parts, respectively, of z*. Thus the relation



p = coshz maps the strip - I < y* < 2 in the complex

z *-plane onto the half-plane c > 0, the points of this

strip in the complex z -plane for which x* has any given

value other than zero mapping into the points of the ellipse

c2 2 + ( 2 = 1 in the complex p-plane, and the
(coshx*) (sinhx*)

points of the strip for which x* = 0 mapping into the line

segment 0 < c < 1, L) = 0. Thus the relation p = coshz*

furnishes a one-to-one mapping of the positive half,

x > 0, of the strip -- < y* < onto the half-plane

c > 0 with the line-segment 0 < c < 1, LJ= 0, removed.

Over the positive half, x* > 0, of the strip

-_ <y < , exp(-z*) = exp(-x*) is < 1 and so, 6 being
2 2 I

any real number, exp [-(z*-ie)] < 1 so that the infinite

series 1 + 2 exp [-2(z*-ig)] + 2 exp -4(z*-i6)] + 2 exp I-6(z*-i0)] +...

2 exp L-2(z*-iO)] cosh(z-i)converges, its sum being 1 + = cosh(z*-i). If
1-exp [-2(z*-i8)] sinh(z*-iE)

z* = x* is real and positive it follows, on taking the real

parts of the terms of the infinite series, that

1 Icosh(x*-iS)1 + 2(cos28) exp(- 2 x*) + 2(cos4e) exp(-4x*)+ ... = h(x*-i)
2 sinh(x*-i@)

cosh(x*+ie) = sinh 2x*
sinh(x*+ie) 2 {sinh2 x*cos20 +cosh2x*sin2 l

sinh x* cosh x*

cosh2 x* - cos 2 8

When z = x* is real and positive, p= c is real and > 1 and
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exp(-nx*)/sinhx* is the value at p = c of the Laplace Transform,

fn*(p), of Jn*(t) u(t) and so we find, on division by sinh x*,

that

f0*(c) + 2(cos 20) f2*(c) + 2(cos 40) f4 *(c) + .. c

c 2 -cos 2 0

In particular, when 0 = 0,

f*(c) + 2f2 c) + 2f4 *(c) +...
c 2 -1

The coefficients of the development of fn*(c) as a power series

in 1 are non-negative real numbers and we construct the
c

non-negative double series (uk.) where uk., j = 0, 1, 2, ... ,

k = 0, 1, 2, ... is the term involving 1 in
c2j+1

6 k 2k*(c), 6 being2 if k= 1, 2,... while 60 =1.

The oox oo matrix which has uk. as the element in its

(j+1)st column and (k+l)st row is triangular, with zeros below

S1 term
the diagonal, since f2k (c) starts out with the 1 term.

2 k( c 2 k+l

The sum of the elements in the (k+l)st row of the matrix is

k 2k (c) and so we know that the sum by rows of the

k
non-negative double series (u k) exists with the value

c and this implies that the sum by columns exists with

c 2 - 1 1
the same value. The sum by columns is a power series in -

c

whose sum, over the part c > 1 of the real axis in the complex

.1 1
p-plane, is + 13 + . . . and so the sum of the elements

c c

in the (j+l)st column is . Let us now consider the
c2j+1

----- 111111 11



non-negative double series (vk), where vk = 2j+1 t2j k
n (2j)I J

t any real number; the sum of the elements in the (j+l)st

column of the oo x oo matrix which has vk. as the element

in its (j+1) st column and (k+l)st row, j = 0, 1, 2, ... ;

t2j
k =0, 1, 2, ... ; is - so that the sum by columns of

(2j)!
the non-negative double series (vk) exists with the value

cosh t and this implies that the sum by rows of the non-negative

double series (vkj ) exists with the value cosh t. The sum of

the elements in the (k+l)st row is 6 k J 2k (t) and so

we have the relation

J* 0 (t) + 2 J* 2 (t) + 2 J* 4 (t) +... = cosh t, - oo < t <( o

which implies, in particular, that J *(t) < cosh t over

- oo < t < 00 . We may now apply the argument just given,

which depended only on the non-negativeness of 6 k'

k = 0, 1, 2, ... , to the two series

f0 * (c) + 1 +(cos2O) f2 *(c) + 1 +(cos46) f 4 (c) +

1 -(cos2) f2 (c) + 1 -(cos40) f4 (c)+ ...

whose sums are c + cand - s2
2 1 c2-cos2 2 21 c2cos2

respectively. We find that the two series

Jo*(t) + + (cos26) J2 (t) + 1 + (cos4) J 4 (t) +...

1 cosh t + cosh(tcos6) and i cosh t - cosh (tcos), respectively,
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the Laplace Transform of cosh(tcose) u(t), at p = c > 1,

being. . Hence, on subtraction,
c 2 -cos 2 9

JO *(t) + 2(cos2e) J 2 *(t) + 2(cos4O) J 4 *(t) + .

= cosh(tcose), - co < t < oo, - 0o < e <oc

Exercise 3. Show that (cosO) J 1 (t) + (cos3O) J 3 *(t) + *

1 sinh(tcose), - oc< t <oo, -eo< <o.
2

Hint. The infinite series, exp [-(x*-i6)] + exp [-3(x*-i9)] + ... ,

is convergent, with the sum 1 , if x* > 0.
2 sinh(x*-iO)

The facts that J2k *(t), k = 0, 1, 2, ... , is a non-negative

continuous function of the unrestricted real variable t and that

the sum, cosht, of the everywhere convergent infinite series

JO *(t) + 2J 2 *(t) +... is everywhere continuous assure us that

the convergence of this infinite series is uniform over the

closed interval 0 < t < T, where T is an arbitrary positive

number. Indeed, the remainder, Rn(t), after n terms of this

infinite series possesses the following two properties:

1) It is continuous over the interval 0 < t <T

2) 0< Rn, (t) < Rn(t), - coo< t < -o, n' > n

By virtue of 1) Rn(t) assumes its maximum value, over the

interval 0 < t < T, at some point, tn say, of this interval

and the infinite sequence of numbers tl, t2 , ... possesses

at least one accumulation point, t say, in the interval

0 < t < T. Since Rn(t), n = 1, 2, ... , is continuous att



we know that I Rn(t) - n(f)l is arbitrarily small, say

< E , if It - t is sufficiently small, say < 6n. Since

the infinite series JO*(t) + 2J 2 *(t) + ... is convergent at

t, 0( R(t) < C if n is sufficiently large and we denote

by N any such sufficiently large value of n so that 0 RN(t) <

Then 0 < RN (t) < 2E if It --t <6 N and this implies that

0 <Rn(t) < 2E if n > N and t -t < 6 N . There exists,

since t is an accumulation point of the sequence of numbers

tl' t 2 , ... , an n, say n', > N such that tn -t< 6N

and so 0 < R , (t ,) < 2 which implies, by virtue of the

definition of t ,, that 0 < Rn (t) < 2E , 0 < t < Tand,

hence, that 0 < Rn(t) < 2 E over 0 < t < T if n >n', the

choice of n' being independent of t. In other words, the convergence,

over the interval 0 < t < T, of the infinite series J0 *(t) + 2J 2 *(t)

+ 2 J 4 * (t) + ... is uniform. If z is any complex number,

J 2 k*(z), k = 0, 1, 2, ... , is dominated by J 2 k (Izi) and,

so the infinite series JO*(z) + 2(cosO) J 2 *(z) + 2(cos4E) J 4 *(z) +...,

being dominated by the infinite series JO ( z ) + 2 J 2 (Iz) + ...

converges uniformly over the disc, 0 < Iz < T, with center

at the origin, in the complex z-plane. Each term of this

infinite series is an analytic function of the complex variable

z over the disc and so the sum of the infinite series is an

analytic function of z over the disc as is also cosh(z cos 6).
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Since these two analytic functions of z coincide over the

diameter - T < t < T of the disc they coincide over the entire

disc and this implies, since the positive number T is arbitrary,

that they coincide over the entire finite complex z-plane. Thus

JO*(z) + 2(cos 20) J2(z) + 2(cos 49) J 4 *(z) + ... = cosh(zcosO),

z arbitrary, c-o < 9 <oo. Assigning purely imaginary values

it to z we obtain

J0 (t) - 2(cos 26) J 2 (t) + 2(cos 49) J 4 (t) - = cos(t cos 9),

-co< t <C-, -o00 < 0 <co

and in particular, on setting 0 = 0,

JO(t) - 2 J 2 (t) + 2 J 4 (t) - ... = cost, -oo< t <co.

On setting = - in the relation JO*(t) + 2(cos 20)J2 (t)

+ ... = cosh(tcosg) we obtain JO*(t) - J2*(t) - J4*(t) + 2J 6 *(t) - ...

= cosh (7) and, on combining this relation with the relation

JO*(t) + 2 J 2 *(t) + ... = cosh t, we obtain

JO *(t) + 2J 6 *(t) + 2J 1 2 *(t) +... = - cosh t + 2 cosh( ) , -OO<t<oS

Thus 1cosh t + 2 cosh ()} is an upper bound, over

- < t <c, for JO*(t), the excess of this upper bound over JO*(t)

being twice the sum of the infinite series J 6 *(t) + J 1 2 *(t) + ...

If I t< 5 and n > 6, Jn*(t) = 1 t )n 1 t )n+2
n-- nI 2 (n+1) 1 2

+ t ) +4 + . . . is less than
(n+2)12 ! 2

1 tn 1 t 2 +1 t 4 n 1 t 2 -1
n! ( 2 n+1 2 (n+l)2 ! (2 n+1 2
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For example, when t = 1, J 6 (1) < (2. 3)10 - 5 , J 1 2 *(1) < 6. 10 - 1 3

and so on, so that 1 cosh 1 + 2 cosh is greater than JO3 2 0

the excess being less than(4. 7)10 - 5 . Actually, { cosh 1+2 cosh 1

= 1. 26611, JO (1) = 1. 26607, both to 5 decimals.

On replacing E by 6 - 2 in the relation JO (t) + 2(cos28) J2*(t)+...

= cosh(t cos 9), we obtain JO*(t) - 2 (cos26) J 2 *(t) + 2(cos 40) J 4 *(t)-...

= cosh (tsinO) and on setting, in turn, E = 0 and 0 =~ in this relation
3

we obtain the two relations

JO *(t) - 2 J2*(t) + 2 J4*(t) - ... = 1
1/2

JO (t) + J2 *(t ) - -2 Jd(t) - ... = cosh (3 t

On combining these two relations we obtain

JO *(t)- 2 J6*(t) + 2 J12 *(t)- 1 + +2 cosh ( )

Now it follows from the recurrence relation 2n Jn*(t) = t Jn-1 (t)-Jn+l(t) I
* *

n = 1, 2, 3, ... , that Jn-1 (t) > Jn+1(t), the equality holding only when
* *t *

n> andt = 0. Thus J(t) > J 8  > J 1(t) J 1(t) > J 1 2 (t) >..., so that

the sum of the infinite seres J 6 *(t) - J 1 2 *(t) + .. . is non-negative.

Hence 1 + 2 cosh ( t ) is a lower bound, over - *-< t <co,

for JO*(t), the numerical value of the difference between JO*(t) and this

lower bound being twice the sum of the infinite series J 6 *(t) - J 1 2 "*(t) + ...

We have, then, obtained an upper and a lower bound, over - co< t <c,

for J 0 *(t) and we know that the mean of these two bounds, namely,
S_ + cosh t 3 1 /2t-+ cosh ( ) + cosh ( 2 is an upper bound, over

3 2 2 2
- co< t < oo, for J 0(t), the excess of this upper bound .aver J0 *(t)

being twice the sum of the infinite series J 1 2 *(t) + J24*(t) + ...
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On combining the two relations J 0*(t) + 2(cos2) J 2 *(t) + ...

= cosh(tcos6), J 0 *(t) - 2(cos29) J 2 *(t) + ... = cosh(tsinO), we obtain

the relation

JO*(t) + 2(cos46) J 4 *(t) +... = cosh(tcosO) + cosh(tsin8)

and from this we deduce that cosh(tcos ) + cosh(tsin 2) + cosh(2

is a lower bound, over - M< t <co, for JO*(t), the difference between

J0 (t) and this lower bound being twice the sum of the infinite series

J12 24(t) + Hence 1+cosht + cosh(tcos 7i) + cosh(tsin i2)

t 3 1/2t 0 2
+ cosh( t) + cosh( 32) + cosh(2-1/2t) I is an upper bound, over

2 2

- -o< t <oo, for JO*(t) the excess of this upper bound over JO*(t)

being twice the sum of the infinite series J 2 4 *(t)+J4 8 *(t) + ....

If It I< 9 this excess is less than 10-7. Continuing this process one

1 cosh t+l 
step further we see that o 2 + cosh(tcos--) + cosh(tsin 4 )+

2 24 24

cosh(tcos 7T + cosh(tsin - ) + cosh (tcos 7) + cosh(tsin 7) + cosh( -)
i2) 12 8 8 2

+ 31/2t 5 5r -1 /2t }

+ cosh( ) + cosh(tcos -) + cosh(tsin -) + cosh(2 t)
2 24 24

is an upper bound, over - coo< t <oo, for J 0 *(t) the excess of this

upper bound over JO*(t) being twice the sum of the infinite series

J48(t) + J6*(t) + ... . If ItI < 10 this excess is less than 1.2 x 10- 28.

The same argument may be applied to JO(t), the hyperbolic

c osines being replaced by ordinary cosines, the only difference being

that we cannot say, since J 2 k(t), k = 1, 2, ..., may assume negative

values, that our approximations are upper, or lower, bounds as the

case may be. For example, 1 cos t + 2 cos( ) is an approximation,

over - o-< t <co, to J 0 (t), the difference cost 42 cos( ) J 0 (t)
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being the product of the sum of the infinite series J 6 (t) - J 1 2 (t) + ...

by -2. Since IJn(t) j< IJn*(t) , n = 0, 1, 2, ... , the approximations

to Jo(t) which we obtain in this way are at least as good as the

approximations we have obtained to JO (t). When t = 7 the

approximation to JO(t) which is furnished by 1 cos t + 2 cos( t

1 1/2is . 21/2 = 0. 4714, to 4 decimals, while JO( -) = 0. 4720, to 4
32

7T T .
decimals. When t = , the approximation to J 0

( ) is 0. 85162,

to 5 decimals, while JO( A) = 0. 85163, to 5 decimals.

Exercise 4. Show that J *(t) + (cos46) [J 3 *(t) + J 5 (t)]

+(os80) [J7*(t) + J 9 *(t)] + . = cos 6 sinh(tcos6) + sinO sinh(tsinO)

and deduce that

* 1 [ sinht
J1*(t)+ J11*(t) + J13*(t)] +[J

2 3 (t ) + J25*(t)]+ 1 snh3 2

31/2 3 1/2t 1 ti
+ - sinh( - - - - - ) + sinh()

2 2 2 2

J1*(t)- J1*(t)+ J1*(t + 23*(t)+ J25*(t)]

S[(cos~2) sinh(tcos -2) + (sin- )sinh(tsin 2) + 2-1/2sinh(2-1/2t)
3

1 sinh t + 7 7
Exercise 5. Show that + (cos ) sinh(tcos - ) + (sin )sinh(tsin -)

6 2 12 12 12 12
1/2 /2 t 1/2 1/2t) is an

+ - sinh( t + - sinh( t) +2- sinh(2-1/2t) is an
2 2 2 2

upper bound, over 0 < t < &, for J 1*(t), the excess of this upper

bound over J 1*(t) being the sum of the infinite series

[J23*(t) + J25*(t)] + [J47*(t) + J49*(t)] +
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Exercise 6. Show that (cos sinh(t cos + (sin sinh(t sin
6 24 24 24 24

a7 - 57r 57T
+ (cos ) sinh(t cos ) + (sin ) sinh(t sin 7 ) + (cos ) sinh(t cos

+ (sin 5) sinh (t sin 5 )]is a lower bound, over 0 < t < co,
24 24

for J *(t), the numerical value of the difference between J 1*(t) and

this lower bound being the sum of the infinite series

[J23*(t) + J25*(t)]- [J47*(t) + J49*(t)] +

Exercise 7. Show that the mean of the upper and lower bounds for

J1 *(t), given in Exercises 5 and 6, respectively, is an upper bound,

over O< t < o, for J *(t) the excess of this upper bound over

J (t) being the sum of the infinite series
1

[J47*(t) + J 4 9 *(t)] +[J 9 5 *(t) + J97*(t)] +

Exercise 8. Write down approximations to J1 (t) analogous to the

approximations to J 1 *(t) which are furnished by Exercises 5,. 6, and 7.
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Lectures on Applied Mathematics

Lecture 13

The Problem of the Vibrating String

We shall discuss in this lecture the application of the

Laplace Transformation to the problem of a vibrating string,

of length 1, with fixed end-points. This is one of the simplest

instances of what is known as a boundary-value and initial-

condition problem. In the first place, the transverse displacement

d = d(x, t), 0 < x < 1, 0 < t <oe, must satisfy the linear second-

order partial differential equation with constant coefficients:

D: a2 dxx - dtt = 0; 0 < x < 1, 0t <0o , a > 0

In the second place the boundary values of d, i. e., the values

of d when x = 0 and when x = 1, are specified as follows:

B: d(0, t) = 0; d (1, t) = 0, < t < o

Finally, d must satisfy the following initial conditions:

I: d(x, 0) = p(x); dt(x, 0) = v(x), 0 < x < 1

O(x) and v(x) being given continuous functions of x over the

interval 0 < x < 1. We assume that this boundary-value and

initial-condition problem possesses a solution d(x, t) with the

following properties:

1) dtt is piecewise continuous, for all values of x in the

interval 0 < x < 1, over 0 < t < oo and the Laplace Transform of
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dtt u(t) exists at a point p = c1 of the positive real axis in the

complex p-plane.

2) The infinite integral f d(x, t) exp(-pt)dt which

furnishes, over the half-plane c > c 1 , the Laplace Transform

f = f(x, p) of d(x, t) u(t) is twice differentiable with respect to

x under the integral sign so that dxx (x, t) u(t) possesses, over

the half-plane c > c the Laplace Transform fxx

Since L [dt(x, t) u(t)] = pf - 4, LLdtt(x, t) u(t)]= p 2 f -p - v, c > l,

and since a 2 dxx - dtt = 0, 0< t <oo, f must satisfy the

non-homogeneous second-order ordinary linear differential

equation

D': a 2 f _ 2 f= -p - v; 0 < x < 1

p playing the role of a constant parameter. Furthermore, the

boundary values f( , p) and f(l, p) are zero for all points p in

the half-plane c > c 1 :

B': f(0, p) = 0; f(1, p) = 0; c > C1 .

Thus the boundary-value and initial-condition problem D, B, I,

is replaced by the boundary-value problem D', B'. We shall solve

this simpler problem and shall then determine a function d(x, t)

which is such that the Laplace Transform of d(x, t) u(t), over some

half-plane c > c 1 > 0, is the solution, f = f(x, p), of the boundary-

value problem D', B' which we have obtained. All that remains,

then, is to verify that d(x, t) is a solution of the boundary-value and
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initial- condition problem D, B, I, and to show that this problem

does not possess any other solution.

Our first step in solving the boundary-value problem

D', B', is to consider the associated homogeneous boundary-value

problem D", B', where D" is the homogeneous second-order

linear differential equation, with constant coefficients,

a2 kx - p2 k= 0. D" does not have, no matter what is the value

of c 1 > 0, a non-trivial solution, i. e., a solution which does not

vanish identically, which satisfies the boundary conditions B'.

Indeed sinh(q x) and sinh[ q (l-x)], q = P, are two linearly
a

independent solutions of D" so that the general solution of D"

is A sinh (q x) + A' sinh[ q(1-x)] where A and A' are undetermined

constants; for this to be zero at x = 0 we must have A' = 0, since

sinh (ql)/O, and A sinh(q 1) is not zero if A is not zero. In order

to avoid this dilemma of the non-existence of a non-trivial solution

of the homogeneous boundary-value problem D", B' we lighten

our requirements on the function k(x, p) as follows: we do not insist

that k satisfy D" at all points of the interval 0 < x < 1; we

require merely that, in addition to satisfying the boundary conditions

B', it satisfy D" at all the points of this interval save one, s say,

at which it does not possess a second derivative, s being an interior

point of the interval, so that 0 < s < 1. We do require that k be

continuous at x = s and that it possess both a right-hand derivative,
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kx(s+O) and a left-hand derivative, kx(s-0 ) . In order to completely

determine this function k of x, which depends on the parameter

s and which we denote by r( ), we prescribe the difference

s-0 s+0 1
kx(s-0) - kx(S+0) = -x( s0 ) -x( s )tobe I2, the reciprocal of the

value at s of the coefficient of kx in D" (this coefficient being

actually, in the particular problem we are discussing, independent

of s).

Over the interval 0 <x < s, (x ) is a linear combination,
s

Al sinh(q x) + A' 1 sinh[ q(l-x)], with constant coefficients, of the

two linearly independent solutions sinh(q x), sinh [q(l-x)] of D", and

x
we denote this linear combination by 1 s ). Similarly, over the

interval s < x < 1, ( ) is of the form () = A sinh(q x) +
s 2 2 2

A'2 sinh[q(l-x)] . Since I-1(  ) = 0 A'1 =0, and, since
1 '

2 s ) = 0, A 2 =0 and,finally, since I1 
s ) ( ), A1sinh(qs)

A'2 sinh q(l-s) . Thus I s) = A sinh [q(l-s)]sinh q x,

72 (s) = A sinh (q s) sinh [q(l-x) , where A is an undetermined

function of s. Then I ( s x ) x' j = Aq sinh [q(1-s)cosh(qs)X 5 1 x X=s

and, similarly, s+Os = - Aq sinh (qs) cosh q(l-s)] so that

Aq sinh [q(l-s)] cosh(qs) + sinh(qs) cosh [ q(l-s) , i. e., Aq sinh ql,

S . Thus A = (a2q sinh ql)-1 and
a

(x sinh q(l-s) sinh(qx) - sinh (qs) sinh q(1-x)
1 s a2q sinh(ql) 2 a2q sinh ql

0 <x<l; 0 <s <1. We define (X) when s = Oands =lbythe
S
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requirement that ( x ) be a continuous function of s at s = 0

and s = 1; thus 0 ) = 2 ) = 0and, similarly, (~) =

1 1 ) = 0. We observe that 1 ( X ) may be obtained from

S(x ) by merely interchanging x and s and this implies that

(s) (s ) i. e., that ( x ) is a symmetric function of

the two real variables (x, s) over the square 0 < x < 1, 0 < s < 1.

s x x
Indeed, ifx<s, F(x) = (), while F( x) x (x S x s s
similarly, if x > s, ( s s ) and ( x x )

x x s 2 s
The function ( s ) of the two real variables (x, s) is the second

of two functions known as the Green's functions of the boundary-value

problem D", B'; the first of these two Green's functions, with which

we shall not be concerned since p # 0, is the function G( x ) to which
5

( x ) reduces when p = 0:

G x G x (1-s) x)=G ( )= ;(l-s)<x<s
s s a 21

x x s(1-x)
G( s)=G G2 ( )= , s<x<l

a 2 1
We now turn to the non-homogeneous differential equation

D': a2 f - p2 f = -p - v, < x < 1l

On combining this with the homogeneous equation

D": a 2  x p2F =0; x / s

in such a way as to eliminate the undifferentiated functions f and

we obtain

2[1x) x ( ) (x) - ( ((x),
s x s xx s )(x) sV(X)

x s.
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Now ( x ) -f(x) (x) Ix (x)f -f(x) ( xs xx xx s x sr x x
x s, and so the integral of (X)f - f,(x) ; (x)} over the

interval < x <1 is [7( )f -f(x) -(x )
e x s x

+ s( ) f -f(x) ( ) 1 , it being necessary to break
x S x s

the interval of integration into the two parts 0 <x < s, s < x 1,

since ( X) is discontinuous at x = s. Regarding ( ) as an
x 1 s

integral operator we denote f( x ) h(s) ds, where
S

h(x) is any function which is integrable over 0 < x < 1, simply

by -h. Then F ( ) O(x) dx, being the same as

f1 s) (x) dx, is the value of at x = s and, similarly,
O x

JJ x ) v(x)dxisthevalueof Fvatx=s. Since both

F and f are zero at x = 0 and at x = 1 the expression
s 1 s-O

( f x-fF) I + ( x f -F x) reduces to -f Fxx x 0 x x s I s+O

= - f(s)/a 2 and so

f(s) = p(F 0) (s) + (I v) (s);
1

it was to obtain this simple expression that the particular value -Z-
s-O a

of the discontinuity F in the first derivative of F
s+0

at x = s was prescribed. Since s is any point of the open interval

G < s < 1 we may write the result just obtained in the form f(x) =

p 0 + Jv, O<x<L, and, sincef(x), FO, and Fvareall

continuous at x = 0 and at x = 1, we have

f =p + F v, 0<x<1
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What we have proved so far is a uniqueness theorem; granting

the existence of a solution of the boundary-value problem D', B',

this solution is unambiguously determined by the formula

f = p o + F v. We must now remove the existence hypothesis

by verifying that p I 0 + F v is actually a solution of the

boundary-value problem D', B'. To do this we first observe that

the continuity of O(x) and of v(x) over the interval 00 < x < 1 assures

us that f = p F 0 + F v is twice differentiable over this interval.
x

Indeed, on writing F 0, for example, as 2  )4(s)ds +

S1 ( )(s)ds we see that F 0 is differentiable over the
x

interval 0 < x < 1, its derivative, (' )x, being furnished by

2 s x )(s)ds + 1 s x (s)ds + 2 1 x (x )

which reduces2 x (s) ds + 1 ( 1s x 0(s) dswhich reduces to J IS )X

since (x) = x ), by virtue of the continuity of F( ) at
2 S

x = s. Hence ( F )x is differentiable over 0 < x < 1, its derivative,
x x (s)ds

(7 )xxbeing furnished by ( s (s)ds

+ (x) ( (s)ds + 2 x ) _F,( x ) (x)
x s xx Is x s s=x

= s )x (s) ds - O (x) a2 a2
Sxx a a 2

Applying this result to the function f = p 1 + . [v we see that f is

twice differentiable over the interval 0 < x < 1, its second derivative,

fx, being furnished by the formula
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- 2p2 v xp3  o--V - va2 a2  a2  a2

p2  1
a2 f- a 2 v, 0x l

Thus a 2 fxx - 2 f = - p -v so that f satisfies the differential equation D'.

That f = p 0 + V v satisfies the boundary conditions B' is evident

since ( ) =  (s) = 0)=, O <s<lsothat, if h(x) is any

function which is integrable over 0 < x < 1, h is zero at x =

and at x = 1. Thus we have the following definitive result:

The unambiguously determinate solution, f = f(x, p), of the

boundary-value problem

D: a2f -x p2 f = -p v

B': f(0, p) = 0; f(1, p) = 0

is

f=p 0+ Fv
where

x sinh q(l-s) sinh qx q p

a2 q sinh ql a

sinh qs sinh q(l-x) , s< x < 1.
a2 q sinh ql
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Lectures on Applied Mathematics

Lecture 14

The Solution of the Problem of the Vibrating String

We have seen that the unambiguously determinate solution of

the boundary-value problem:

D': a 2 f _ p2f = -pO - v; 0 < x <l

B': f(O, p) = 0; f(, p) = 0

is f = p 7" + F v, where the integral operator r is furnished by the

formulas

x - x sinh q(l-s) sinh(qx) P
(s1 ( ) 2 . q= , <x<

a q sih (ql)

sinh (qs) sinh q (l-x)

a2q sinh (ql)

and our first task now is the determination of a function d(x, t) which

is such that the product of d(x, t) by u(t) has, over some half-plane

c > c 1 , the Laplace Transform pf' + Fv. If we regard x as fixed,

7( ) is a function of s and p which is analytic save at the points

n7ai, n = 0, + 1, + 2, ... , on the imaginary axis in the complex
1

p-plane, at which sinh ql = sinh p is zero, and so c > 0. Ifa . If

d(x, t) is, for each value of x in the interval 0 < x < 1, bounded

over 0 < t < coo, d(x, t) u(t) possesses a Laplace Transform over

the half-plane c > 0 and we set c 1 = 0. We first examine in detail

the first term
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x  x
P 4 =P f 2 s

= 1 O r
1

+x sinh (qx)

sinh(qs) = exp(qs) - exp(

4 = exp(ql) I X

4asinh(ql) L o

x

exp(ql)
4asinh(ql)

) (s) ds +p x
x

( s ) O(s) ds

sinh[q(l-x)] sinh(qs)o(s)ds

sinhfq(1-s)]O(s) ds

g sinh q(-x) = exp(ql) exp(-qx)-exp-q(21-x

-qs) , and so on, we obtain

exp-q(x-s)- exp q(x+s)] - exp[-q(21-x-s)]

1 + exp -q(21-x+s)]_ o(s)ds

1 exp -q(s-x) - exp[ -q(s+x)] - exp[-q(21-s-x)]j

+exp -q(21-s+x)] (s), ds
x exp[ -q(x-s)] + exp [-q(21-x+s)] O(s) ds

- { exp [-q(x+s) + exp [-q(21-x-s) (s) ds

1d (o(s) ds
+f exp -q(s-x)] + exp -q(21-s+x)] O(s) ds

x

This complicated expression takes a simpler appearance if we extend

the range of definition of O(x) from the interval 0 < x < 1 to the entire

x - axis, -oo< x < so, by saying that O(x) is an odd periodic function

of period 21, it being permissible to do this since o(O) = 0 and 0(1) = 0.

The oddness of O(x) furnishes the values of O(x) over the interval

- 1 < x < 0, since its values over the interval 0 < x < 1 are known,

and the periodicity, with period 21, of O(x) furnishes the values of

O(x) over - sco< x < 0' since its values over the interval -1 < x < 1
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are known. In the various integrals which appear in the expression

furnishing p r we make changes, of the type s = a +/jt, of the

variable of integration from s to t in such a way that the exponential

factor in each of the transformed integrals is exp(-pt) = exp(-aqt).
X

For example, in the integral f exp -q(x-s)l (s)ds we write
0 x/a

s = x - at so that it appears as a exp(-pt) O(x-at)dt; in the
x 0

integral ex1 [-q(21-x+s) 4(s)ds we write2sl = x - 21 +at so that

it appears as N exp (-pt) 0 (x-21+at)dt =fa exp(-pt) (x+at)dt;
J 21-x 21-x

a a

in the integral 1 exp r -q(x+s)j 4(s)ds we Write s = -x + at so that

l+x l+x

it appears as a exp(-pt)O(at - x)dt = - a exp(-pt)4(x-at)dt,
x x
a a

and so on. Continuing in this way we obtain

exp(ql) 21
S= 4snh( a (x-at) + q(x+at) exp(-pt)dt

-0

Now epsinh(ql) 1 - exp(-2ql) -1 and, since the real part of
2sinh(ql)

q = p/a is positive, this may be written as the sum of the convergent

infinite series 1 + exp(-2ql) + exp(-4ql) + .... The product of

21

f (x-at) + (x+at) exp(-pt)dt by exp(-2kql), k = 1, 2, ... ,
0 1

2(k+l)1 (
appears, on writing t = s - 2k as 1a s , 1 (x-as+2kl)

2k+

+ 4(xas+2k) }exp(-ps)ds and this is the same, since 4(x) is
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1
2(k+1) ~-

periodic with period 21, as f 1 )(x-at) + O(x+at) exp(-pt)dt
2k a

Since {,(x-at) + (x+at)} exp(-pt), being continuous, is bounded over the

interval 0 < t < - the infinite series obtained by multiplying
a

each term of the infinite series 1 + exp(-2ql) + exp(-4ql) +...

by O{(x-at) + O(x+at)} exp(-pt) is uniformly convergent over the
21

interval 0 < t < and so term-by-term integration over the interval

is legitimate. Hence 1
0102 (k+1) -

p = O 1  (x-at) + O(x+at) exp(-pt)dt

= (x-at) + 4(x+at) exp(-pt)dt.
2 0

so that the Laplace Transform, over the half-plane c > 0, of

1 {O(x-at) + (x+at)} u(t) is p . Similarly the Laplace Transform,

over the half-plane c > 0, of 2v(x-at) + v(x+at)}u(t) is pv, it

being understood that v(x) is an odd periodic function, with period

21, of the unrestricted real variable x, and this implies that the

Laplace Transform, over the half-plane c > 0, of 2 v(x-as)

+ v(x+as) ds u(t) is v. Hence the Laplace Transform, over the

half-plane c > 0, of the product of u(t) by ! [(x-at) + 4(x+at)

+ v(x-as) + v(x+as) ds is p +

We now proceed to show that the function

d(x, t) = (x-at) + (x+at) + v(x-as) + v(x+as) d ,

0 < x < 1, - oo< t < cois a solution of the boundary-value and
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initial-condition problem D, B9 I and that this problem possesses

no other solution. On introducing the variables = x- at,

7 = x+at, D takes the form d t 7 = 0 and d(x, t) becomes

2 a( 1 v()d sothatd isa
function of alone; hence d(x, t) is a solution of the differential

equation D. That d(0, t) is 0 over 0 < t <oo and, indeed, over

- oa < t < c> , is an immediate consequence of the fact that 0(t)

and v(t) are, after their range of definition has been extended, odd

functions of the unrestricted real variable t. Similarly, since

0(t) and v(t) are not only odd but also periodic functions, with

period 21, d(l, t) = 0 over - oo<t < o; indeed, 0(l-at) = 4(-l-at)

= -0(l+at) and v(1-as) = -v(l+as). Thus d(x, t) satisfies the boundary

conditions B. Finally, d(x, 0)' = O(x) and d (x, 0) = [-a1x(x) + aox(x)

+ 2v(x)J = v(x) so that d(x, t) satisfies the initial conditions I. Thus

d(x, t) is a solution of the boundary-value and initial-condition problem

D, B, I. If this problem possessed two different solutions their

difference A(x, t) would be a solution of the associated homogeneous

problem D, B, I' where

I': d(x, 0) = 0; dt(x, 0)

Being a solution of the differential equation D,which appears, when

written in terms of the variables $, T, as d T = 0, A(x,, t)

is of the form F( ) + G( T ) and the initial conditions I' yield

F(x) + G(x) = 0, Fx(x) - Gx(x) = 0. On differentiating the first of
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these two relations and combining the result with the second

we see that F and G are constant functions of their arguments

so that A(x, t) is a constant function of the two variables (x, t).

Being zero when t = 0 it is identically zero. Thus we have the

following result:

The unambiguously determinate solution of the problem of
-! 1 l-a i ! rt{

the vibrating string is d(x, t) = + (x+at) + 2 v(x-as)
1 2 x+t

+ v(x+as) ds -1 (x-at) + (x+at) + 1 v( O)d .
2 2a x - atx

If we denote f v(s) ds by V(x) it is clear that V(x) is an

even periodic function, with period 21, of the unrestricted real
x

variable x. Indeed V(x) - V(-x) = v(s) ds is zero by virtue
x x+21 1

of the oddness of v(x) and V(x+21) - V(x) = v(s) ds = v(s)ds
x x

x+21 v(s)ds = fl v(s)ds + v( ( )d(f , = s-21, = v(s)ds=0.

1 Jx J-1 -
The unambiguously determinate solution, d(x, t), of the boundary-value

and initial-condition problem may be written as the sum of the

following two functions of x - at = g and x + at = 7 , respectively,
1 1

dl(x, t) = - (x-at) - V(x-at)
1 2 2a

d2 (x, t) = 1 (x+at) + 1- V(x+at)
2 2a

and we observe that d2 (-x, t) = -dl(x, t), d2 (1-x, t) = -dl(l+x, t).

dl(x-at) is constant so long as x-at remains constant and we say

that it represents a wave travelling, in the direction of the positive

x-axis, with velocity a. When x attains the value 1 and begins to
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assume values > 1 we must replace dl(l+x, t) by -d 2 (1-x, t) which

represents a wave travelling, in the direction of the negative x-axis,

with velocity a. When x, in the expression d l (x, t), attains the

value 21 and begins to assume values > 21, l-x, in the expression

d2 (1-x, t), attains the value 0 and begins to assume negative values

and we must replace d2 (1-x, t) by dl(x-1, t) and so on. We express

this result by the statement that the solution of the problem of the

vibrating string is the sum of two waves, one travelling with

velocity a in the direction of the positive x-axis and the other with

velocity a in the direction of the negative x-axis, these waves being

subjected to continual reflections at the ends of the string.

The level curves of the functions = x-at, T= x + at play

a dominant role in the theory of the partial differential equation

D: a 2 d - dtt = 0

and they are known as the characteristics of this differential equation.

Let us suppose that the values of the two first-order derivatives,

d and d , of d(x, t) are assigned, as continuously differentiable
x t

functions of a parameter a, along some smooth curve x = x(a),

t = t(o) in the (x, t)-plane. Then(dx)a = dx xa + dxt t , (dt)a

= dtx x + d t along this curve and these relations, together

with the relations a2 dxx - dtt = 0, dtx = dxt enable us to unambiguously

determine the three second-order derivatives, dxx, dxt, dtt, of d(x, t)
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along the curve at any point of the curve at which the 3 x 3 matrix

x t 0

0 x t is non-singular. Since the determinant of this

a 2  0 -1

matrix is a2 (t )2 - (x )2 = (at a-xa) (at a+x ) we see that

d xx, dxt , dtt are unambiguously determinate at any point of

the curve x = x(Ca), t = t(a), at which this curve is not tangent to

any characteristic of the differential equation D, i. e., to any

member of either of the two families of straight lines x - at - const,

x + at = constant.
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Lectures on Applied Mathematics

Lecture 15

The Generalized Vibrating String Problem

The simplest generalization of the partial differential equation

a2dxx dtt = 0, which occurs in the theory of the vibrating string,

is the partial differential equation a 2 dxx - dtt + pd x + qd t + rd = 0,

where a > 0 and p, q, r are given constants. Setting d = d'exp(ax+Bt),

where a and B are undetermined constants, we have

d = (dx' + ad') exp(ax+Bt); dt = (dt' + Bd') exp(ax + Bt)

dx = (dxx + 2adx + a 2 d') exp(ax + Bt); dtt=(dtt + 2Bd t + B2 d')exp(ax+Bt)

so that d satisfies the partial differential equation

a 2 d' - dtt + (2a2a +p) d' + (q-2B)d + (a2 a 2 _- 2 + pa + qB + r)d'=O
xx tt x t

Setting a = -p/2a 2 , B = q/2 the terms involving the first-order

derivatives of d' disappear so that d' = d [exp ( p2a2 q t) is a
2a 2  2

solution of the partial differential equation
2' 2 2

a2d -d + (r- + ) d =0
xx tt -4a2  4

2
If r = 4 2 - q2 ) this is the partial differential equation which we

have already met in the theory of the vibrating string. Assuming
2 2

that r - + - is not zero we denote its absolute value by
4a 2  4k-2=tht =kd d' k ,

k-2, k > 0, and we write x =kx', t = kt', so that d' , =k d' d' k2 d'
x x' x'x xx

and, similarly, d ,  k, 
= kd Thus a 2 d' - d -d =0, the

t tt xx tt -
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2 2
upper, or lower, sign being used according as r - +

4a 2  4
is positive, or negative, respectively. Dropping the primes

attached to x, t and d we are confronted by one or other of the

two partial differential equations a2 dx - dtt + d = 0 and we first

consider the equation

D: ad xx dtt + d = 0

We take the boundary and initial conditions to be the same as in

the problem of the vibrating string, namely,

B: d(O, t) = 0; d(1, t) = 0; O < t < co

I: d(x, 0) = d(x); dt(x, 0) = v(x); 0 < x < 1

and we term the boundary-value and initial condition problem

D, B, I, the generalized vibrating string problem.

Proceeding as in the case of the vibrating string problem

we encounter the second-order ordinary differential equation

a 2 fxx - (p2 1) f = -pO-v, rather than a 2 fxx - p2 f = -pp-v and we1 -12 = -I.xx p

set q =1 p2 rather than q = . Thus the boundary-value
a a

problem D', B' has the same formal appearance as in the case

of the vibrating string problem, the difference between the two

problems lying entirely in the definition of q as a function of p.

X
The integral operator = K( s ) which we encounter is, then, the

same function of q as before but this implies that it is a different

function of p. Its singularities, instead of lying on the imaginary

n2 r2 a2

axis in the complex p-plane, are the points p for which p2 -1 = - 1212

119

_ ~ __ __I_ uIIItNIIIYnIYYImlMM 11 milk



n =0, 1, 2, ... , so that p = 1, corresponding to n = 0, is a

singular point of 7. Thus the half-plane over which d(x, t) u(t)

possesses, we assume, a Laplace Transform f cannot be, as it

was in the problem of the vibrating string, the half-plane c > 0;

since 7 does not possess any singularities in the half-plane

c > 1 we assume that d(x, t) u(t) possesses, over the half-plane

c > 1, a Laplace Transform f. The same argument as in the

problem of the vibrating string shows that aq F 4 = 1 (x-at)

+ (x+at) exp(-aqt)dt provided that the real part of q is > 0 and

that the range of definition of O(x) has been extended from the

interval 0 < x < 1 to the entire x-axis by the statement that O(x) is

an odd periodic function, with period 21, of x. Since aq is no

longer p, the integral f {4(x-at)+(x+at) exp(-aqt)dt is no

longer the Laplace Transform of {4(x-at) +O(x+at)} u(t) and we

proceed as follows. Writing

1 exp(-aqt)F f (x-at) + O(x+at) exp(aqt) dt
2a o q

S 2  (xs) + (x+s) exp(-q) ds; s = at

t
we try to determine an integral operator, K = K( t ), which is

t
such that K( ) u(t), s any non-negative constant, possesses, over

exp(-sq) (P2 1)/2
the half-plane c > 1, the Laplace Transform , q =

q a

Once we have determined K we may write 7 in the form
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1 00

2 2  o
2a o

([(x-s) + (x+s)] { foo
0

K(s ) exp(-pt)dt )ds

and, provided that the order of integration in this repeated

infinite integral may be changed, it follows that

1

= 2a 2
K( ) [(x-s) + O(x+s)] ds exp(-pt)dts(

We shall see, when we determine K, that K( s ) is zero if s > at

so that f' is the Laplace Transform, over the half-plane c > 1,

of 1
2a

r at
K( ) [(x-s) + O(x+s) ds and this implies

that the Laplace Transform, over the half-plane c > 1, of

1 K(t )
2a at-O

+ 2a 2 fat
0

Kt( t ) (X-s) + (x+s)ds

is pF .
We turn, now, to the determination of the integral operator K.

Setting, in the relation q =1 (p2 _ 1)/ 2 , p = cosh z*, we have
a

1 1 )]
q = -sinh z*- p - exp(-z* and so

exp(-sq) = exp(- a p) exp[ a exp(-z*)

= exp(- - p ) 1 + - exp(-z*) + 2 exp(-2z*) +
aeIl a 21a

Now exp(-nz*)/sinh z* = f *(p) is the Laplace Transform, over the

n
half-plane c > 1, of Jn *(t) u(t) = In(t) u(t) and, since the coefficients

of the infinite series f0 *(p) + -f
2

) + 2 * (p ) + ... are
2 1a2 2

all non-negative, s being, by hypothesis, non-negative it follows
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that the Laplace Transform, over the half-plane c > 1, of the

product of the sum of the everywhere convergent infinite series
2

Io(t) + a I l (t) +a 12 (t) + ... by u(t) is exp[a exp(-z*)] /sinh z*

We shall show in the next paragraph that the sum of this infinite

series is [I 0 (1 + 2 s)1/2 t] ; admitting this, for the moment,

exp(-sq)/q is, over the half-plane c > 1, the product of the

Laplace Transform of aI0 [(1+ at )1/2 u(t) by exp(- p):

exp(-sq)/q = a exp(- s p) I0 [(1+ 2s )1/2 t exp(-pt)dt
0

0 [7 s 2 1/2
= a I 0 [( 72 - ) ] exp(-p T)d T, =t a

a

t 2 s2 1/2 s
In other words, K() a I [(t ) u(t -) so that, ins a I 0 a a

t
particular, K(s ) = 0 if s > at. Since the derivative of 10 (t) with

t at 2 s1/2 s
respect to t is I(t), Kt( a 2 _ 2)1/2 1 u(t - a

t
and so, since K( ) = athe Laplace Transform, over the

at-0

half-plane c > 1, of 1 [2(x-at) + (x+at)]

+ 1 at s 2 1/2 2 1/2 5 (x-s) + (x+s) ds is
2a o (t2 _ -  ) 1 a2

a
p [7 . Thus the solution of the boundary-value and initial condition

problem D, B, I which is suggested by the application of the

Laplace transformation is
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d(x, t) =1 [2(x-at) + O(x+at)1

at 2

a t2  s 2 _ 1/2(x-s)+(x+s ds

0 (t _- )a2
1 fo at  s2 2 1/2 a

+ 2a 0 [(t2 2 )  ]v(x-s) + v(x+s) ds.

We must, before verifying that the function d(x, t) furnished

by this formula is a solution of the boundary-value and initial

condition problem D, B, I, justify the statement, made in the

preceding paragraph, that the sum of the everywhere convergent
2

infinite series 10 (t) + a I(t) + a2 2(t) + . is I0 [(1 + )1/ t].

To do this we recall that the Laplace Transform, over the

half -plane c > 0, of t (2t ) u(t), n 0, 1 2 is

exp( 1 )/pn+1. On replacing t by (1+a)t' and p by p'/(1+a), where a
1 1

is any positive real number, in the relation +1 exp( -)
n pn+ p

= f t 2 In( 2 tl/2 ) exp(-pt)dt, c > 0, and then dropping the primes

O

we obtain
n c o o n 1 / 2 1 / 2

(l+a) 2 exp ( 1+a) = t n [2(1+a)1/2tl / 2 exp(-pt)dt,
pn+1 p o

c > 0, so that the Laplace Transform, over the half-plane c > 0, of
n

2 n/2 r 1/2 1/2 1 1I+a
(1+a) t I [2(1+a) t u(t) is n+1 exp p

n p p

1 ' 2
= n+1 exp ( P 1- + 2p2+
p
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Since the coefficients of the infinite series on the right-hand

side are all non-negative, a being, by hypothesis, non-negative the
n / 2  n+1

infinite series tn/2 (2tl/2) + a t 2 I (2t 1 /2)
n n+l

2 n+2
a(2 1/2+ 21 t 2 n+2 (2t ) + ... is everywhere convergent and

the product of its sum by u(t) has, over the half-plane c > 0,
1 1+a

the Laplace Transform pn+1 exp . Hence, by the uniqueness

theorem,
n+l 2 n2

tn/ 2
I (2tl/2)+at 2 In(2t1/2 + t 2 I (2tl / 2
n In+1 2 ! n+2

n n

+... = (1+a) -2 t 2 1 [2(1+a)1/2t / 2 0 < t < co,

On dividing through by tn/ 2 and writing 2t = t , and then

dropping the prime, we obtain

at 1 at 2
In(t) + I (t) + - (-) I +

2 n+l 2! 2 n+2
n

=(1+a) 2 In [(+a)/2t] , 0 t < o, O < a < o

For any given value of t > 0 the left-hand side of this equation

is a power series in a which converges for every positive value

of a and so, if we regard a as a complex, rather than a real,

variable the sum of this power series is an analytic function of

a over the entire finite complex a-plane. The right-hand side,

(l+a) - n / 2 n[(l+a) 1 / 2 t , of our equation is also, being the sum
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of an everywhere convergent power series in (1+a), an analytic

function of a over the entire finite complex a-plane and, since

these two analytic functions of a coincide over the non-negative

real axis in the complex a-plane, they coincide over the entire

finite complex a-plane. In the same way we see that,

az
a being any given complex number, I (Z) + In+l(z)

1 az 2
+ ( In+2(z) + ... is an analytic function of the complex

variable z which coincides over the entire finite complex z-plane

n 1/2
with (1+a) 2 I ((l+a) z). Thus

In(z) +  +(Z ) + (2) (z) + ) 2 .2(Z)

naz 1 a2
= (l+a)- 2 1n [(l+a)1 / 2 zi

where a and z are arbitrary complex numbers. On setting

z = iz and then dropping the prime we see that this relation

is equivalent to the relation

az 1 az 2
Jn(z) - 2 Jn+l(z) + ( ~) J+ 2 (z)-...

n+1 21 2 n+2
n

= (1+a) 2 n[ (1+)1/2 z

2s
On setting n = 0, z = t, a= , we obtain

s 1 2s 1/2
10(t) 1 h! a2 I2 (t) +... = I0 (1+-- t

which is the relation we wished to prove.
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Exercise 1. Show that I (z)n

nz

S2 n n I ' n =0, 1, 2, ... ,

Hint.

Exercise 2.

z

2 In+1 (z) +n+1
z )2
2

I n+2 (z) - ...
n+2

z an arbitrary complex number.

Set a = -1.

Show that J (z)n = I n(Z) - z In+l(Z) +

0, , 2, ... , z anarbitra

that I (z) =Jn (z) + ZJn+1(Z)

ry complex number, and deduce

z2
+21 Jn+2 (z) +..., n = 0, 1, 2,...,

z an arbitrary complex number.

Hint.

Exercise 3.
3

z

31

Exercise 4.

Set a = -2.

Show that JO(31/2z) = JO(z)

J3(z) + ...

Show that .

2
- zJ(z ) + -

2!

, z an arbitrary complex number.

10(21/2z )
z

=J (z) --
0 2

1
Jl(Z) +

2!

J1(21/2z) =
1

21/2 J 1 (z)
z

2

1
J 2(z) + 2!

)2 3 (z)-

J 2 (21/2z) = 2 J 2 (z)

and so on, z an arbitrary complex number.

In our next lecture we shall verify that the function d(x, t) which

we have obtained in this lecture is a solution of the boundary

value problem D, B, I and shall show that this boundary value

problem does not possess any other solution.
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Lectures on Applied Mathematics

Lecture 16

The Solution of the Generalized Vibrating String Problem

The solution, d(x, t), of the generalized vibrating string

problem which has been suggested by applying the Laplace trans-

formation may be written in the form dl(x, t) + d2 (x, t) where

1 t at 1()
dl(x, t) = 1 (x-at) + (x+at) + (x-s)

2 aa J 0

+ O(x+s)1 ds

d2 (x,t) 2a I(a ) v(x-s) + v(x+s) ds; a = (t 2 - 2 )

2a 0  a

In order to verify that d(x, t) is a solution of the partial differential

equation a2 dxx - dtt + d = 0 it is sufficient to verify that d2 (x, t) is

a solution of this differential equation. Indeed, dl(x, t) is the

derivative with respect to t of 2a t Io(a) ((x-s) + O(x+s) ds

and if d2 (x, t) is a solution of the differential equation a 2dx - dtt + d = 0

so also is f 10( a) (x-s) + (x+s ds and this implies that the
2a 0

derivative of this expression with respect to t, namely dl(x, t), is a

solution of the differential equation a 2 dxx - dtt + d = O0. On making the
at

substitution s = x-s' in the integral Io(a) v(x-s)ds, and the
t xat

substitution s = s -x in the integral f0 I0 (a) v(x+s)ds, and then

dropping the prime d2 (x, t) appears in the form
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d2(xt) x+at I(B) v(s)ds; B = t 2  (x-s)2  1/2
2a x-at a

Upon introducing as new independent variables the two functions

= x-at, T= x+at of x and t whose level curves are the

characteristics of the differential equation

D: a 2 dxx - dtt + d = 0

D appears in the form

D*: 4a 2 d + d = 0

and we have to verify that

7 (ST) = 10 (B) v(s) ds; B = (7 -s)1/2 (s- )1/2/a

is a solution of the partial differential equation D*. Since B = 0

when s = 7,

= f T1 0 (B) (T'-s) -1/2 (s- )1/2 v(s)ds + v(T)
2a 0

where the prime attached to I0 denotes differentiation with respect

to its argument B. On differentiating 7fT with respect to we obtain

= - I4a2 0(B) + af 0 (B) (T-s)-l/ 2 (s- 1)-1/2 v(s)ds

4a 2  (B) + - I 0 (B) v(s)ds

1 1
and it follows, since I 0(B) + f 0(B) 0 I(B), that - 4 2

which proves that J( , T) is a solution of the partial differential

equation D*. This completes the proof of the fact that d(x, t) =

dl(x, t) + d2 (x, t) is a solution of the partial differential equation D.

128

,NMI= NIIN 1111111111

xslllll~e~llllll~ I I I I I II I I



That d(x, t) satisfies the boundary conditions B and the initial

conditions is proved in the same way as in the problem of the

vibrating string. Thus d (0, t) = 0, since O(x) is an odd function

of the unrestricted real variable x and d2(0, t) = 0 since v(x) is also

an odd function of the unrestricted real variable x; similarly dl(1l, t) =,0,

d2 (1,t) = 0 since O(x) and v(x) are not only odd functions of x but

are also periodic with period 21. dl(x, 0) is evidently O(x) and d2 (x, 0)

is evidently 0 so that d(x, 0)= (x). Finally, [dl(x, t)]t is zero when

t = 0 and [d 2 (x, t)] t is v(x) when t = 0 so that dt(x, 0) = v(x). This

completes the proof of the fact that d(x, t) is a solution of the generalized

vibrating string boundary-value and initial condition problem.

The proof that the generalized vibrating string boundary-value

and initial-condition problem does not possess a solution differing

from d(x, t) is not as simple as the proof of the corresponding uniqueness

theorem for the vibrating string boundary-value and initial-condition

problem. We first observe that, if ( il1 T 1 ) is any point in the

( ., T ) - plane, the function w = IO(6), where

6 = ( - ,1 )1/2 (T- T1)/2/aof the two variables (, T)satisfies

the differential equation 4a 2w 7 + w = 0. Indeed, on denoting

differentiation with respect to 6 by a prime,

w -2a 0 -- 1 - 2  0

S = 41/2 0

4a U 1 4a 060J.a 2 4a 2~
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On combining the two differential equations 4a 2 d5 T + d = 0,

4a 2 W + w = 0 in such a way as to eliminate the undifferentiated

functions d and w we obtain wd 7 - dw T = 0 or, equivalently,

(wd ) = (dw ) . If, then, C is any piecewise smooth closed

curve in the (. ,T )-plane the integral of wdp with respect to

around C is the negative of the integral of dWJ- with respect to T

around C, both integrals being taken in the positive sense. Now

w = 1 when 6 = , i. e., when. = 1 or T = T 1 and
1 11/2

w" 1 - 1)2 (T- ) 1 /2 is zero when .= 1 and

so, if C consists partly of segments of the lines = 5 1 and T= 7

and, if we denote the remainder of C by F, we have

d(P 1 ) - d( 1 T 1) + f2 wd + dw d = 0
-1 

1

where P1 and P 2 are the points where the lines T= 1 and = 1'

respectively, intersect the curve ' and both the integrals from

P 1 to P 2 are taken along the curve 7. Thus d( 1, -1') is

unambiguously determined by the values of d and of d along the

curve 7. If the curve F is a segment of the line -7 = 0, which

1 1 1 1
corresponds to t = 0, d and d- = (dx -a dt) = 2(x - v) are

given along and we see that d( 1 1' T 1) is unambiguously determinate.

Ii the curve is not a segment of the line . - 7 = 0 we have to deal

with the phenomenon of reflection at the ends x = 0 and x = 1 and it

is not hard to see that dt is known along the lines . + T = 0 and
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$ +7= 21 which correspond to x = 0 and x = 1, respectively.

It will suffice to consider the first reflection at the end x = 0

for which F consists of a segment, lying in the second quadrant

and ending at the origin, of the line + 7 = 0 and a segment,

lying in the first quadrant and beginning at the origin, of the line

S-7= o. We take E1 to be in the interval 0 < <1 and move

the point ( 1 T1) towards the point P 2 along the line = 1

Observing that d = -d7' along the line + 7 = 0 we obtain

d(P 1 ) + dT (Pl) - d (P 1) - d (P 2 ) + w(P 1) d (P ) - d(P 1)w7 (P 1 )=0

In our boundary-value and initial-condition problem d(x, t) is identically

1
zero when x = 0 and so both d and dt a (dp- d$ ) are zero along

the line + 7 = 0. Hence w(P 1 ) d" (P 1 ) = d 7 (P 2 ) and since w is

zero only at ( .1, T1) which is distinct from P 1 , the -coordinate

of P 1 being negative, it follows that d , (P 1 ) is the quotient of

d (P 2 ) 2 dx(P 2 ) +- dt(P) =2 x(x) + a v(x) by w(P 1 ).

Thus d is known alongf and the solution of our boundary-value and

initial-condition problem which is furnished by an application of the

Laplace transformation is the only one which exists.

The modifications necessary to deal with the differential

equation a2dxx - dtt - d = 0, rather than a2dxx - dtt + d = 0, the

boundary and initial conditions being the same as before, are minor.

Setting q = 1 (l+p2 1/2, instead of 1 (1-p2)1/2 as before, the boundary-
a a

value problem D', B, which we encounter has the same formal
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appearance as before, the difference between the two problems

residing entirely in the different definitions of q as a function of p.

All the singularities of sinh ql, regarded as a function of p, being

n2,2a2
12furnished by the formula, p2 =- 1- 12 , n =0, 1, 2, ... , lie

on the imaginary axis in the complex p-plane, and so the half-plane

over which dtt u(t) is supposed to possess a Laplace Transform is

the half-plane c > 0, rather than the half-plane c > 1 as before. In
t

order to find the integral operator K = K( s), s > 0, which is such

t
that the Laplace Transform, over the half-plane c > 0, of K ( ) u(t)s

is exp(-qs)/q we set p = sinh z so that aq = cosh z = p + exp(-z)

and exp(-qs) = exp(- a ) 1 - - exp(-z) + 2 exp(-2z) - .... -a a 2a2

Since exp(-nz)/cosh z, n = 0, 1, 2, ... , is the Laplace Transform,

over the half-plane c > 0, of Jn (t) u(t) it follows that exp(-qs)/q

is the product of the Laplace Transform, over the half-plane c > 0,

Of ( J1 (t) 2 2 (t) - . u(t) by a exp (- a p). The
SJ0 (t) a 21a 2  "2 a

s s
sum of the infinite series JO(t) - a J 1 (t) + J2 (t) - . is

22s !a2

(1+ 2sat t and it follows that

t 2 2 1/2 s
K( ) = a J ( u(t - -), s > 0

and, since the derivative of JO(t) with respect to t is -J (t), this

implies that the Laplace Transform, over the half-plane c > 0,

of - [O(x-at) + (x+at) - ta s2 1/2 1 (t2  2 1/2 O(x-s)

+ O(x+s)I ds a
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is p 4). Thus the solution of our boundary-value and initial-condition

problem which is suggested by the application of the Laplace

Transformation is
- Oat 1 1[(t2 s2)1/

d(x, t) =) + O(x+at)] - 2a ,
22a ,+2 - s 2 1/2 a

a2a

(x-s) + (x+s) ds + 2
IOat 0 2 [(t 2  )1/2 v(xs)

a2

+ v(x+s) ds

it being understood that the range of definition of O(x) and v(x) is

extended by the statement that both O(x) and v (x) are odd periodic

functions, with period 21, of the unrestricted real variable x.

The verification that this function of x and t actually is a

solution of our boundary-value and initial-condition problem and the

proof of the fact that this problem does not possess more than

one solution are the same as before (the function JO( 6),
6 = ( - 1) 1/2 (7- T1)1/2/a, playing, in the proof of the

uniqueness theorem, the role previously played by Io( 6).
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Lectures on Applied Mathematics

Lecture 17

The Asymptotic Series for exp(-z2)dz
P

Let h(t) be a piecewise continuous right-sided function which

is zero over the interval 0 <t < 6, where 6 is any positive number,

and let h(t) possess a Laplace Transform at a point p = c 1 > 0

of the positive real axis in the complex p-plane. We suppose,

further, that H(t) = h(s)ds is defined over 0 < t < oo but we0o 00
do not assume the existence of the infinite integral f h(s)ds.

0
We have seen that H(t) exp(-c 1 t) has the limit 0 at t =oo and this

implies, since H(t) exp(-c 1t) is everywhere continuous, that

H(t) exp(-clt) is bounded over 0 < t < oo, i. e., that there exists

a positive constant M such that IH(t) I exp(-c t) M for every

non-negative value of t. Thus H(t) possesses, over the half-plane

c > C1 , an absolutely convergent Laplace Transform and

Lh = p(LH), c > c 1 . Since H(t) is, like h(t), zero over the

interval 0 < t < 6 we have

LH = H(t) exp(-pt)dt = H(t) exp(-clt) exp [-(p-cl)t] dt

so that

LH IM exp [-(c-cl)t dt M exp[-(c-c 1)6]6c-c1
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2M
and the right-hand side of this inequality < - exp [-(c-c ) 6Sc 1

if c > 2c . On denoting arg p by 6, so that pl = c(sec 8), it
-1

follows that IL(h) _< 2M(see 0) exp[-(c-Cl)6] or, equivalently,

that

ILh I exp(c 6 ) 2M (see 0) exp(c 1
6 )

so that ILhI exp(c 6) is bounded as p--9oo along the ray 0--p.

If p lies in the sector - +< < - < < , see < see
-2 2 2+B< -B,<Bsec<secB

andI Lh exp(c 6) is bounded over the part of the half-plane c > c 1

7T K7
which is covered by the sector - + < 6 < - 1. Now the

2 2

product of any positive power of p by exp(-c 6 ) tends to zero as

p- coo along any curve which lies in the sector - - + B < 6 < -
2 2

the convergence to zero being uniform over the sector, and so

we have the following result:

The product of Lh by any positive power of p tends to zero as

p- oo along any curve which lies in the sector - - + B < < - - B,
2 -2

the convergence to zero being uniform over this sector.

We next consider a piecewise-continuous right-sided function

h(t) which possesses a Laplace Transform at p = c 1 and which,

while not zero over any interval 0 < t < 6, can be written, if 6

is sufficiently small, in the form tO A + E (t) where

1) a is a constant whose real part ar is > -1 and A is any constant

2) (t) is coatinuous over 0 < t < 6 and arbitrarily small, say

I (t)I < C , if 6 is sufficiently small, say 6 < 6 1-
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The right-sided function h 1 (t) which= toa A + C (t) over the

interval 0 < t < 6 1 and = 0 if t > 6
1Possesses, over the

half-plane c > 0, the Laplace Transform / t A + E (t) exp(-pt)dt

and we may write this in the form A f tO exp(-pt)dt
oo a 0 A(+)

- A ta exp(-pt)dt + t E (t) exp(-pt)dt (a+1+a++

+ 12 + 3, say. 12 is thLaplae Transform of a piecewise

continuous right-sided function which is zero over the interval

0 < t < 61 and so the product of 121 by any positive power of p

tends to zero as p---oo along any curve which lies in the

IT I
sector -- +B < 6 < -

2 2

113I < Ef i tar exp(-ct)dt < Cf" tar exp(-ct)dt
0 0

= (ar+1) and, since pa+1 = exp [(a+1) log p] so that

car + 1

Sa+1 =ex (ar + 1) log Ip - ai 0 <(c secB)ar + 1 exp( ai 2 a

it follows that pa+1 3 is arbitrarily small if 61 is sufficiently

small . Since both h(t) and h 1 (t) possess Laplace Transforms at

p = c1 so also does their difference h2(t) = h(t) - hl(t) and, since

h2 (t) is zero over the interval 0 < t < 61, the product of Lh2 by

any positive power of p tends to zero as p -- oo along any curve

which lies in the sector - - + 1 < E < - 13. Since Lh = Lh1 + Lh2
2 - -2

it follows that pa+1 (Lh) - A' (a+l) is arbitrarily small if 1) 6 1 is

sufficiently small and 2) c is sufficiently large. Since pa+1(Lh)-AF(aI+1)
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is independent of 6 1 the proviso 1) may be omitted and so we

have the following important result:

pa+I(Lh) -AF (a+1) tends to zero as p- oo along any

curve which lies in the sector - - + B < 6 <- - 13, the convergence
2 2

to zero being uniform over this sector.
2

The right-sided function h(t) = exp (- -) u(t) possesses, at any
4

point p of the complex p-plane,the Laplace Transform

2 exp(p2) f exp(-z 2) dz, the integral being extended along the
p

ray, from p to oo in the complex z-plane, whose angle is zero.

We denote by s (t) the sum of the first n terms of the power
n 2

series development of exp (- - ) near t = 0:
4

t )2 1 t 4 n-1 1 t 2n-2sn(t) = 1 - (-) + 21 2) -... + (-1)  (-)

2 21 2 (n - 1)1 2

and observe that Sn(t) u(t) possesses, over the half-plane c > 0,

the Laplace Transform

L(sn(t) u(t)) +1 ... +(-1)L(s (t) u(t)) =- - + 5 -.. + (1)n_ 1.3...(2n-3)
p 2p3  22p5 2n-1 p2n-1

The right-sided function hn (t) = exp ( - ) - sn (t) u(t) is of

the form t2n + C (t)} u(t) where ~ (t) is continuous over

any interval 0 < t <6 and, furthermore, j (t) is arbitrarily small

if 6 is sufficiently small, by virtue of the continuity, at t = 0, of
2

exp ( - ) - sn(t) and the fact that the value, at t = 0, of

exp (- -) - s (t) is 0. Hence p2n+l L(h (t)) - ( 1)n (2n) I
4 n n! 22n

tends to zero as p- oo along any curve which lies in the
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sector-- + 13 < - -
2 2

over the half-plane c > 0,

-p 2p 3  2 5

and so the product of

Sn+1 = 2 (exp p2) f

83, 0 < 1 < The Laplace Transform,2 re
of hn (t) is 2 exp(p2 ) Jp exp(-z 2 )dz

+(l)n-1 1.3... (2n-8)

2n-1 2n-1

exp(-z 2 )dz -
1

-213
2p

1.3

22p 5

(_1 )n 1. 3.. (2n- 1)

2n. p2n+1

by p2n+l tends to zero as p---- oo along any curve which lies

in the sector - - + B < 6- - 1. We express this result by the
2 -- 2 2 2 1 1 1.3 1.3.5

statement that the infinite series - + - - + . .,
P 2p 3  22 p 5 23 p7

which fails to converge at any point p of the finite complex

p-plane, is an asymptotic series, over the sector - 7 < arg p < T

for the function 2 exp(p 2 ) exp(-z 2)dz of the complex variable p

p
and we write

2 expp 2 ) f exp(z2)dzav 1 1 1.3

p p 2p 3  22 p 5

- - < arg p < -
2 2

The sector over which this asymptotic series is valid may be

3g 37T
enlarged to - 4 < arg p <  4 To see this, let a be any

Ir
number in the interval 0 < a < - and set t = v exp(-ia) in the

St24

infinite integral exp ( - ) exp(-pt) dt which defines
t2 f0 4 2

L(exp(- -) u(t)); then L(exp( - - ) u(t)) appears in the form
4 4
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exp(-ia) J exp -I- exp(-2ia)] exp[-p exp(-ia) v]dv, the

integral being along the ray from 0 to o in the complex v-plane

whose angle is a. The modulus of the integrand of this

integral, at any point v whose modulus and argument are R and 4,
2

respectively, is exp -[ 4 cos 2(a-) + Ip[R cos(a--6)],

where 6 is the argument of p, and, if 0 < < a, so that

cos 2(a-4) is positive, the product of this modulus by R tends to

zero as R---- oo , the convergence being uniform with respect
v2

to 4. Hence the integral of exp I- 2 exp(-2ia)] exp [-p exp(-ia)

along the are of the circle j v I= R from v = R to v = R exp(ia) tends

to zero as R---oo and this implies that the integral of

exp [-v exp(-2ia)] exp [-p exp(-ia)vj along the ray from

0 to oo, in the complex v-plane, whose angle is a is the same as

the integral of the same integrand along the positive real axis

in the complex v-plane. Thus 2 exp(p2 ) f exp(-z 2 )dz, which

t 2  p
is the Laplace Transform of exp (- - ) u(t), may be written in

the form exp(-ia) exp - t exp(-2ia)] exp p e (-ia)t dt

where 0 < a < - and the same argument shows that it may be
4

written in this same form if - < a < 0 so that

2 exp(p2) exp(-z 2 )dz
p

= exp(-ia) J exp[- - exp(-2ia)] exp -p exp(-ia) t dt;
0 4

4 4 <
4 4
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On denoting by s' (t) the sum of the first n terms of the power
n

series development of expl- exp(-2ia)I near t = 0:

t exp(-4ia) t 4
s' (t) = 1 - exp(-2ia) ( )2 + ) -

n 2 21 2

+ 1 exp-(2n-2)a t )2n-2

(n-1) ! 2
and denoting p exp(-ia) by p' we have

exp(-ia) 1 exp(-3ia)
exp(-ia) s' (t) exp(-p't)dt = +..

0 n p' (p')3

)n-1 1.3... (2n-3)exp-(2n-1)a 1 1

2 n - 1 (p?)2n-1 P 2p 3

+ 1 n-1 1.3...2n-3

2 n-1 p2n-1

provided that - < arg p' < or, equivalently, that
2 2

- + a < arg p < + a. Since a may be assigned any value

in the interval - < a < it follows, by a repetition of the
4 4

argument already given in the case a = 0, that the asymptotic

series 1 1- 1 for 2 exp(p2  exp(-z 2 )dz
p 2p 3  22p 5  .. 3

is valid over the sector - - <arg p < .

3x 5x
In order to deal with the sector -- < arg p < -of the complex

4 4

p-plane we set z = -z' in the infinite integral f exp(-z 2 )dz and
p

then drop the prime:

f exp(-z 2 )dz = exp(-z 2 )dz = exp(-z2)dz
p - r -000

- e:
-p

xp(-z )dz
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Now f exp(-z 2 ) dz = exp(y2 ) exp(-x 2 ) exp(-2iyx)dx,
o -oo

z = x+iy, and exp(-x 2 ) exp(-2iyx)dx, being the Laplace

Transform at p = 2iy of exp(-t 2 ))is T1/ 2 exp(_y2) so that
Poo 37 57TJ exp(-z 2 )dz = 71/2 . When < arg p < ,

-" < arg(-p) < and so we may use the asymptotic series we
4- 4

have already obtained for 2 exp(-p) 2 J exp(-z 2 )dz: to obtain
-p

the result

2 exp(p2 ) p exp(-z 2 )dzv,- 1/2 exp(p2 ) 1 [3 1
p - 2 (-p) " "]

1/2 2 1 1.3 31r 5r
= 271/2 exp(p 2 ) + 1 - 1+ - ... ,- < argp<-.

p 2p 3  22 p5  4 4

. 3i 5 " "
We may use this trick if < argp< - or if -- < arg p < --

2 4 4 2

and so we obtain two different asymptotic expressions for

2 exp(p2 ) exp(-z )dz over these sectors, the difference being

that one of the asymptotic expressions contains the additive term

271/2 exp(p2 ). When p lies in either of these two sectors the real

part of p2 is negative and so the product of exp(p2 ) by any

positive power of p tends to zero as p----oo along any curve

which lies in the sector. Thus we see that we may use, for the

function 2 exp(p2 ) fo exp(-z 2 )dz, the asymptotic series

1 1. 3 P 1/2exp+- 1 1 .. , with or without the additive term 2 1 / exp(p 2 )
p 2p 3  22 p3

over the sectors 4 < arg p < , p< - while over the
4 4 4
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3?r 5
sector 3 < arg p < the additive term must be used and

4- 4

over the sector - 7 < arg p < - it must not be used. The fact4-4

that 2 exp(p2 ) exp(-z 2 )dz has different asymptotic
p

expressions over different sectors of the complex p-plane is

an instance of what is known as Stokes' phenomenon.

In order to appraise, when - < arg p < , the difference
2 2

An+i between 2 exp(p 2 ) exp(-z 2 )dz and the sum of the

P 1 1 1.3
first n+1 terms of the asymptotic series - - - +

p 2p 3  22p 5

we observe that, if T is any real number, expT= 1 + 7

7 '  n+l
+ - +... n + exp( 7) n+ where 0 < E < i,

2 n (n+1) !
t2

6 varying with 7. Setting 7 = -- we obtain
S,24

exp(- ) = 1 ()2 + 1 t )4 .. + (_-1)n 1 t )2n
4 2 21 2 n! 2

ot 2

+ (_1 )n+1 exp ( 4) ( t )2n+2 so that A which is the
2 n+1

(n+1) I

Laplace Transform, over the half-plane c > 0, of

exp (- ) - t )2 + ... + 1)n t 2n u(t) may be
4 [exp( + -n 2

(-1)n+1 e t2  2n+2
written as J n+ exp(- ) t exp(-pt)dt.

2
2 n. (n+1) 1 0

et 2

Since 0 < < , O < exp ( 4 ) < 1, no matter what is the

value of t, and so t 2n+2 exp(-ct)dt
1u (and1soAn+1 I 2

2 n+2 .(n+l) 0

1.3 .... (2n+1) . Thus A n+ is dominated by the first term

2 n+lc2 n+3 n+1
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omitted of the asymptotic series. Furthermore, if p = c > 0

is real, An+1 has the sign of this first term omitted since
n+ 2

r exp (- 42 )t2n+2 exp(-ct)dt is positive. For example,0 4

2 exp(c2) c exp(-t 2 )dt, c > 0, lies between - and -
c c 2c3exp(-c 2 )

so that if we use exp(-c 2) as an approximation to

Jo exp(-t 2 )dt, c > 0, this approximation is in excess by less

than per cent; if we use exp(-c 2 )  - as an
2c2 -1 0o 2c 4c3

approximation to f exp(-t 2 )dt, c > 0, this approximation

150
is too small by les than 2 -1)per cent and so on. If c = 1,

2(2c 1 1 1.3
the term of the asymptotic series c 2 22c 5  ... whose

numerical value is least is the second term and the asymptotic

series cannot guarantee a better approximation than that given

by its first term; if c = 2, the term whose numerical value is

least is the fifth and the asymptotic series cannot guarantee a

better approximation than that given by the sum of its first 4 terms.

In general, if c is an integer, the asymptotic series cannot

guarantee a better approximation than that given by the sum of its

first c 2 terms.
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Lectures on Applied Mathematics

Lecture 18

1/2 x
The Asymptotic Series for (27p) exp(-p) I (p), l arg p I<

The Hankel Functions 2

If p is any complex number, the infinite series 10 (P)

+ 2(cos 6) I2 (p) + 2(cos 46) I4 (P) + ... converges, with the sum

cosh(p cos 6), and, since this infinite series is dominated by the

infinite series I0 (I p) + 2 12 (Ip 1) + ... which converges, with the

sum coshI p I , the convergence is uniform over any closed interval.

Hence the infinite series may be integrated term-by-term, after

multiplication by cos 2me, m = 0, 1, 2, ... , over the interval

0 < a < r so that

12m(P) = cosh(p cos 6) (cos 2mE) dG, m = 0, 1, 2,

If, then, f(6) is any linear combination, c o + cl cos 26 + ... + cn cos 2n6,

of the functions cos 2m6, m = 0, 1, ... , n, we have

1- f Tcosh (p cos e) fe() dO = I0 0() + cl 2 (P) + -

+ c n 12n(P)

Now, (-1)" 22n-1 sin2n exp(ie) - exp(-i0) 2n, n = 1, 2,

is such a linear combination, the coefficients cn, cn-_l, ... , c

being the first n coefficients of the binomial expansion

(1-x)2n = 1-2nx + ( ) x2 - .. and
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1 2n
S= (-1)n 2 ( n ) being one-half the (n+l)st term of this binomial

expansion. For example, when n = 1, -2 sin20 = cos26-1; when

n = 2, 23 sin4 6 = cos 40 - 4 cos 26 + 3, and so on.

n 2n-1
(-1) 2

nr 10

Hence

cosh(p cos 6) sin2 ne dO = CnI2n(P)

+ n-1 I2n- 2 (p) + ... + o0 10 (P)

where c , ... , c 1 are the first n coefficients of the binomial
n 1

expansion of (1-x)2 n and c0 is one-half the (n+1)st coefficient of

this expansion.

so that

so that

Setting n = 1, we obtain

cosh(p cos e) (sin20) dO = I2 (p) - I0 () =

cosh(p cos E) (sin2 ) dO =
1 1 (p)
p 1

Setting n = 2, we obtain

cosh(p cos 0) (sin48) de = I4 (P) -4 12 (P) + 3 I0 (P)

6
Now, 14 (P) = 12 () -p 3 (P)

6
I2(P) - II(P)

= 12 (p) + 3

so that 14 (p) - 4 I2 (P) + 31 0(P)
24

p2

12 (P) - 0 (P)

I2 (P).Hence

1 2 (pcosh (p cos 6) (sin40) dO =
p2

1

v 0

These two results are special cases, corresponding to n = 1 and

n = 2, of the general formula
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1 r (2n A1 cosh(p cos 6) (sin 2n6) d n I (p)
7T pn n

where A = 1. 3. 5...(2n-1), n = 1, 2, .... Setting A 0 = 1 this

formula covers the case n = 0 so that

1 cosh(p cos 6) (sin ) d = I (p), n =0, 1, 2, ...
7 0 pn n

This general formula may be easily verified by multiplying the

infinite series IO(p) + 2(cos 20) I2 (P) + ... , whose sum is cosh(p cos E)

by sin2n0 and integrating term-by-term. We prefer, however, to

derive it by an extension of the method by which we proved it in the

case n = 2 since we obtain in this way a useful generalization of the

recurrence relation, In(P) = I(p) - 2(n-1) (p), n = 2, 3...

Replacing n by n-1 in this relation we obtain I n_(p) = In3 (p)

2(n-2) I n_(p), n = 3, 4, ... , so that

P )2(n-1) 22(n- 1)(n-2)I (p) = I (p) - I (p) + I (p), n=3 4,
n n-2 p n-3 p2 n-2 ( =3, 4,

2(n-3)and since I 3 (p) = In 4 () - In_2 (p), n = 4, 5, ..., the right-
p

hand side of the relation just derived may be replaced, when n = 4, 5, ... ,
n-1 { }22(n-1)(n-2)

by I 2 (p)-- I - (p) - I (p ) + 2 In-2(p).. Thus
n2 n-3 n-4 n-2 p2

n-2 n-1 22(n-1)(n-2)
I (p ) - 2 - I (p) + I (p ) = I (p), n=4, 5,...
n n-3 n-2 n-3 n-4 2 n-2

This is our first extension of the recurrence relation I (p) - I (p)
n n-2

2(n-1)
= - I n-_(p), n = 2, 3, ... ; it yields, when n = 4, the relation

P 23.3
14 (p) - 4 12(p) + 3 10(p) = 2 1I2(p)
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2(n-3)
On setting I (p) = In 4() - I (p) on the right-hand side

of this extension of the recurrence relation and using the fact that

n-4 n-3
I (p) - 2- I 4 (p) +
n-2 n-5 n-4 n-5

we obtain

22(n-3)(n-4)I (p) 2 (n)( I 4(p) , n=6, 7,...,
n-6 p2 n

n-2
In (p) - 2 -

n-3

n-4
2-

n-5

or, equivalently,

3(n-2)
I (p) - n-

nn-4

n-1
I (p) + - I (p)
n-2 n-3 n-4

I_4(p) + - (p -n- n-5 n - 6

(n-1)(n-2)

(n-3)(n-4)

23(n-1)(n-2)(n*-3)
3 n-3

p

3(n-1) (n-1)(n-2)
I () + I () - I4)(n5) n6(p)n-2 n-5 n-4 (n-4)(n-5) n-6

=- (n-1)(n-2)(n-3)I n3(p), n=6, 7, 8, ....
3 n-3

p
This is our second extension of the recurrence relation I (p) - In 2 (P)

n-1
= - 2 I (p); it yields, when n = 6, the relation

p n- 252 .3. 5
I6 (P) - 6 I4 () + 15 I2 (P) - 10 14 (P) = - 3 I 3 ()

22n-1 for
On setting n = 3 in the relation (-1)n 2 2n- cosh(p cos 6) (sin2 n) d

-= n I2n(P) + ... + CO I0 (p) we obtain

3. 5 A3o cosh (p cos 0) (sin6 ) dO = 3I 3 I

Proceeding in this way, we obtain the following generalized

recurrence relation whose validity may be verified by an induction

proof:

I (p ) - 1 + n ( n ) U 2 I (p)- ... +m n m-2 2 n m-4

= ()n 2(m-1)(m-2)... (m-n)= (- ) (o)
pn m-n

n = 1, 2, ... , m = 2n, 2n+1,.... The coefficient,

(-1)n an I (p)
n m-2n

k
a n '
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n
(-1)k (k ) I (p) on the left-hand side of this relation is a

m- 2k

fraction whose denominator is (m-n-1) ... (m-n-k) and whose

numerator is independent of n, this numerator being determined by

k (m-1) ... (m-k+1)
the fact that a( if k = 2, 3, ... , while

k (m-k-l)... (m-2k+l)

1 1 m-2 k (m-1)(m-2)... (m-k+l)(m-2k)
a = 1. Thus a = anda =
1 n m-n-I n (m-n-1)... (m-n-k)

k = 2, 3, ... , n. When m = 2n, this generalized recurrence formula

yields the relation

In(P) - 2n I 2n2(p )  ) I (p)- .. +(-)n 2n2n 2n-2 2 2n-4 2 n 0
2n-1

= (-1)n  n An n

and this implies that - cosh (p cos 6)(sin2n6)d = In(P),

n =0, 1, 2,. ... On replacing cosh (p cos )by exp(pcos )

+ exp(-p cos 6) and observing that 1 exp(p cos 6)(sin2nO) dO

-= exp(-p cos 6') (sin 2 n ') dO', 6' = 7-O, we obtain

7 An p-n n(p) = (sin2n6) exp(-p cos 0) dO

exp(-pv)dv, v = cos 0
-1

= (exp p) tn -  (2-t)en-1/xp(-pt)dt, t = v+1
0

so that 7T An p-n exp(-p) In(p) is the Laplace Transform, over the

entire finite complex p-plane, of the right-sided function which

=tn/(1(2-t) over the interval 0 < t < 2 and which = 0, if t > 2.
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If n = 0, this right-sided function is unbounded at t = 0 and t = 2.

n-/2) n-(1/2)
Over the interval 0 < t < 2, t (2-t) may be written in the form

1 3n- n-/ 1 t (n- 1 )(n- 3)2 t 1-(n -) 2 + 2 2 ) t )2

(n-)... (n- 2 )  t

+ (-1)k -1  2)k-1

(k-i)! 1 21-
S-/ 2n - k +/ - (n 2 ) 1

+ E(t) where E(t)

is continuous over 0 . t < 2 and is arbitrarily small over

o < t < 6, if 6 is sufficiently small. Hence, if the real part

c of p is positive, the product of A p-n exp(-p)In(p)
1 1 3

n-/2)r(n 2 (n- 2) -(n + 2 )
-2 L)[ n+l/2) 2pn@/2) ...

1 2k-1 i

+ (- 1)k (n-) . (n 2 ) (n+k+4/2) by pn+k +(1/2)

2k.kI pn+k+4/2)

tends to zero as p---oa along the ray 0--- p, the convergence being

7T 7T
uniform over the sector - - + B < arg p < -- , where B is any

2 2
It 11 1

positive number less than Since (n + ) = (n - (n
12 2 2

(n -) (n - 1 /2 = 2-n A 1/2 it follows, on
2 2 2 n

multiplication by 21/2 a-1/2 A- 1 pn-4/2, that the product of

S 4n 2 - 1  (4n2 -1)(4n 2 -3 2 )
S = (2 p) 1/2 exp(-p) In (p) - 1 - 84n2 2 (8p 2

k+1 8 P 21(8p) 2

k (4n 2 -1)(4n2- 32).. 4n 2 -(2k-.
kl(8p)k
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by pk tends to zero as p coo along any curve which is

covered by the sector - - + 1B < arg p < - - B so that the
4n2-12 (4n2-1)(4n2 332

infinite series 1 - 8 + - ... , which fails
8p 2 1(8p) 2

to converge at any point of the finite complex p-plane, is an

asymptotic series, over the sector - 7 + B < arg p <- - 13,2 
2

for the function (27p) - 1 / 2 exp(-p) In(p) of the complex variable p.

The asymptotic series which we have just obtained for

(2ip) exp(-p) In (p) is not valid when p = it is a pure imaginary

and so it fails to provide an asynmptotic series for J n(t). To obtain

an asymptotic series useful in the calculation of Jn(t) we proceed as follows.

Let v be a complex variable and let the complex v-plane be cut along the

segment 0 < v 2 of its real axis so as to make v ( 2-v) exp(-pv)

uniform over the two-sheeted Riemann surface so obtained, the value

of this function at any point of the lower sheet of this Riemann surface

being the negative of its value at the corresponding point of the

upper sheet. Let us consider the closed curve C on this two-sheeted

Riemann surface which consists of the following four parts:

1) The line segment from the point 2 -6 in the lower sheet

to the point 6 in the lower sheet, O < 6 < 1.

2) The circumference Iv 1 = 6 from the point 6 in the lower

sheet to the point 6 in the upper sheet.

3) The line segment from the point 6 in the upper sheet to

the point 2 -6 in the upper sheet.
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4) The circumference v - 2 I = 6 from the point

2 - 6 in the upper sheet to the point 2 - 6 in the lower sheet.

n-(1/2) n-(1/2)
The integral of v( / 2 -v) exp(-pv) along C is independent of 6

and as 6-5 0 the contributions from the parts 2) and 4) of C

tend to 0 while the contributions from the parts 1) and 3) of C tend
2 n(1/ n -( 1/2)

to f tn  (2-t) exp(-pt)dt so that the integral of

n -(1/) n -(1/2) n n

v ( v) exp(-pv) along C has the value 27TA n p-n exp(-p)I(p)

We next consider the closed curve C' on our two-sheeted Riemann

surface which consists of the following five parts:

1') The line segment from the point R exp(ia) in the lower sheet

to the point 6 in the lower sheet where R is any positive number,

a is any number which is such that a + arg p I< and 6 is any

positive number less than 1

2') The circumference v I = 6 from the point ( in the lower

sheet to the point 6 in the upper sheet.

3') The line segment from the point 6 in the upper sheet to

the point 2 - 6 in the upper sheet

4') The circumference Iv - 2 = ( from the point 2 - 6 in the

upper sheet to the point 2 - 6 in the lower sheet

5') The line segment from the point 2 -6 in the lower sheet

to the point R exp(ia) in the lower sheet
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n-(1/2) n-(1/2)
The integral of v (2-v) exp(-v) along C' is the same

as the integral of the same integrand along C and is independent

of R, a and 6. As 6(--0 the contributions to this integral

from the parts 2') and 4') of C' tend to 0 while the contribution

2 n-(1/_ n-(1/2) .
from the part 3') of C' tends to f t ( -t)n exp(-pt)dt

= irAnp-n exp(-p) In (p). As R---- the contribution from the

part 1') of C' tends to J v (2-v) 'Pxp(-pv)dv, the integral
0

being extended along the ray of angle a from 0 to 00 (this infinite

integral existing since I a + arg p < - ) and the contribution from

the part 5') of C' tends to - v (2-v) n  exp(-pv)dv,
2

the integral being extended along the ray of angle a from 2 to oo.

Thus
fooexpia n -a/2) n - (1/2)

TAnp-n exp(-p) In(P) = J v (2-v) exp(-pv)dv
0

f00 expia

2
n-(1/_v)n(1/2v = I -I2, say.

If -< arg p < P we set a =-- and, if - a < arg p < - we set
2- 2 2

a =2 Treating the first case, we set v - it i I.1, and 7 = 2-it in

12 so that, in each of the two integrals, 0 <t <oo. I1 appears

n-(/2) n+(1/2) n-(1/2) it n-(1/2)
as 2 -(i) ) t + ) exp(-p't)dt, where

0

p' = -ip so that the real part of p' is positive, and 12 appears as

n-(1/ 2 ) n1/2 ) n-(1/2) it n-(1/2)
-2 t (1 - 2 ) exp(-p't)dt times exp(-2p).

O
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On multiplying through by exp p we obtain An(ip')-n In(ip')
n-(1/))n+(1/2 n-(1/2) it n-(1/2)

= 2(ip') t (1 + 2 exp(-p't)dt

n- (1/2).n+(/2) r n_(1/2) it n -(1/2)
+ 2 i exp(-ip') J t ( - 2 ) exp(-p't)dt

0
or, equivalently, since i - n In(ip') = Jn(p'), we have 2Jn(')

= 2n + -1 A(p,)n exp [i(p'-(n+ ) ) t-( +- Yexp(-p't)dt

n0 2
+ 2n 1 A 1( 2)n exp [-i(p'-(n+ ) 2) ftn-/ 2 i e(-pt)dt

= (1)(p) + H(2) ,
HI (p')+H (p')

n n

where H (p') is the first member, and H(2 ) (p') is the second member,n n

on the right-hand side and 0 < arg p' < . H(1)(p ') and H(2)(p') are
2 n n

known as Hankel Functions. A similar argument shows that the

relation 2 J (p') = H(1)(p') + H( 2 )(p') remains valid whenn n n

-< argp' < 0, in which case - r <argp < - and we seta = .
2 2 2

We shall derive in our next lecture, from this representation of

J (p ' ) as the mean of the two Hankel functions, H(1)(p ' ) and H(2)(),n n

a formula furnishing Jn(t), wnen t is real and positive, as the sum

of two asymptotic series, each of which has the convenient property

that the error made in stopping at any term has the same sign as the

next term and is dominated by this term.
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Lectures on Applied Mathematics

Lecture 19

The Asymptotic Series for P (c) and Qn(c)

If p is any complex number whose rea2 part c is positive

(1)
the Hankel Function Hn (p) is defined by the formula

() n+(1/2) -1 1 n 1 n-(1/2) n-(1/2)
Hn (p) = 2n+() - An p exp[i(p-(n+ ) t (1+ 2 ) exp(-pt)dt

In particular, when p = c is real and positive, we have, on making the

substitution t = t'/c and then dropping the prime,

(1) n+(1/2) 1 /2 1n-(1/2) it n-(1/2)
H (1)(c) = 2 An c -exp (c - t +-) exp(-t)dt

n n2

Similarly,

H (2)(c) = 2n +

n

so that

(1/2) -1 -1/2 i(( n-(1/2) it n-(1/2)
r Aexp-i-(n+ t (1--) exp(-t)dt

nL (22 2c

1 (1) (2) 2 1/2

J (c)2 n n ( )

- Qn(c) sin c-(n+1 )

where 2 1
2n-1

P,(c) = 1/2A

((c) =
2n-1

1/2A i
n

f t n-(1/2) it n-(1/2)

itt n-(1+- 
)

n-(1/2) it n-(1/2)

o 2c

it n-(1/2
+ (12--) exp(-t)dt

it n -(1/2)

-(1 - it n - exp(-t)dt
2c )
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2
If n =1, 2,..., J n(c) =(n-1 ne

-P (c)sin -(n+

- Qn_ 1 (c)cOS[c-(n+1 ) and, if n = 0,1,2,...,Qn-1 c- 21

+ Qn+(c)coslc-(n+Ij
Jn+1(C) = (

2n
and it follows, since J n_(c) - J (c) = Jn (c),n-1n+1 c f

2n
Pn+ 1 (c) - Pn- 1 (c) = -7 Qn(c ) ; Qn+1

n = 1,2,...

n =1, 2,..., that

2n
(c) - Qn-1(C) = Pn(c);

We shall obtain asymptotic series for Po(c),

Q0 (C), P 1 (C), a 1(c) and shall deduce from these, by means of the

recurrence relations just derived, asymptotic series for

Pn (c) and Qn(C), n -2,3,... .

In order to obtain asymptotic series for Po(c) and Q0 (c)

we observe that, if v is any non-real complex number,

(1-v) -1/2= 2
7T 0 1-v sin2 "

1-v sin2o

S 2d

2-v+v cos 24

dO
d , 0 = 20,

2-v+v cos 8

dO

2-v+v cos 8

Setting exp iO = z, so that dO =

dz

C 2)zz2+2(V - 1)z+1

dz 1
iz ' 2 I dG

7- 2-v+v cos 6

where C is the circumference I z = 1.
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The two zeros, z 1 and z 2 , of the quadratic polynomial

z 2 + 2 ( 2 - 1)z+l are such that z 1 z 2 = 1 and, since their2

sum, 2( 1 - - ) , is not real, neither can be a complex number

of unit modulus for, if Izl 1, for example, the reciprocal z 2

of z 1 would be its conjugate, 21, and z 1 + z 2 would be real.
2 2 1/2

Writing z 1 = 1 - Y +  ( 1 - v) we see that, when I vl< 1,
1

z 1 =-v + ... tends to zero with v. Hence I z l I <1 if Ivl is

sufficiently small and this implies, since Izl is never 1, that

I Z1 < 1 no matter what is the non-real complex number v and

this implies that 1z2 1 > 1 no matter what is the non-real complex
2

number v so that z 1 is the only zero of z 2 + 2( 7 - 1) z+1 which

1
lies inside C. The coefficient of in the development of

z-z 1  C- 11 e-1
as an infinite series of the type + co

(z-zl)(Z-z 2 ) z-z 1  0

+ cl(z-zl) + ... is (1-v)-1/2 and so
1 -z 2  4

S dz _ iTV (1-v)-1/2, proving that (1-v)-1/2
C z 2 +2( 2 1)z+l 2

v

2 0 d 2  The usefulness of this result lies in the

fact that is provides us with a convenient expression for the remainder

in the binomial expansion of (1-v)- 1/2 . Writing (1- v sin2o)-1
2 m sin4 m

= 1 + vsin2 +... +v2m-sin4m-2+ sin , = 1,2,...,
1 - vsin 2
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1/2 1
we obtain (1-v)- = 1 + 1

2

1.3 v2

2.4
1. 3... (4m-3) v2m-1

2.4... (4m-2)

+2v2m
+ -

(sin4 m -)d.

1-vsin2 0
On changirg the sign of v we obtain,

by addition and subtraction, the relations

+ (1+v)- 1/2

+2 v2 m

0

1.3 2
= 1 + -- v + ...

2.4

'2 sin4m d

1-v2sin4

1. 3... (4m-5) 2m-2
+ . (4m-4)

2,4... (4m-4)

(1-v)-1/2
2 (

- (1+v)-1/2
1- v
2

1.3.5 3 +... +
2.4.6

1.3... (4m-3) v2m-1
2.4...(4m-2

2 v2m+ l  '

7T

r/2 sin4 m+2

1-v 2 sin4o

it
t= -,<t <oo, we obtain

2c

it)-1/2 it )-1/2
(1+ 2c2c

1 -

21

+ ( 1 m-1 1.3.... (4m-5

(2m-2)

m2(t )2m+ ( _ (2c
g 2c

1
1 it

1
it --

2cE) 2

m-1 1
+ (- 1)

t

4c

1.3.5

31

.3.. (4m-3)

(2m-1) I

2m-2
) t

(4c)2m-2

sin4 m

1! sin4

4c 2

3

(4c)3 +---

t 2m-1

(4c) 2 m-1

+ (-1) m  2 m t )2m+1
72c

sin4 m+2

t2  4
lt+-- sin 4

4c 2
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t" sin 4@ > 1, the integral 2
4c 2 -7

is positive, is dominated by

similarly, the
2

integral -
IT

Sin4m
sin4 d, which
0 1+ 2 sin4

4c
2

2 sin4md =

sin4m+2

t2

1+- sin4
4c 2

1.3... (4m-1)

2.4... (4m)
and,

do, which is also

positive, is dominated by
1.3... (4m+l)

2.4...(4 .On
2.4... (4m+2)

denoting by 8(t) any

positive function of t which is dominated by 1 we have the

following two equations which we shall refer to as the equations A:

{ (1 -
it 1/2
2c

it

2c

1. 3
=1- 21

t()2

(4c)2 
+

(_)m_1 1. 3... (4m-5) t 2 m- 2

+ (_i)m 1.3... (4m-1)

(2m)I
AO:

-1/2} t
4c

(4c)zm-z

t 2m O(t)

(4c)
2 m

1.3. 5 t 3

+31 (4c
3!I (4c)3

+ (_l)m-1 1.3... (4m-3) t 2 m-1

(2m-1) I (4c) 2 m-1

+ (_1)m 1.3... (4m+1)

(2m+1) I

t2m+1
(4(t)

(4c) 2 m + 1

where the positive function 6(t) which appe.ars on the right-hand side

of each of these two equations is not the same in the two equations.

Upon integrating the equa.tions A0 over the interval [0, t] and using the
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fact that the integral of t 2 m6(t) over this interval is positive and

t2m+1
is dominated by t we obtain the following two equations which we

2m+1
shall refer to as the equations A I:

1 it 1/2 it 1/2 t 1.3t 3

2i 2c 2c 4c 31 (4c)

+ ()m-i 1.3...(4m-5) t 2 m- 1

(2m-1)! (4c) 2 m-l

1.3... (4m-1) t 2 m+1

+ (-1)m 0(t)
(2m+1) I (4c) 2 m+l

Al'

1 it 1/ 2  it 1/2 1 t 2  1.3.5 t41(1+-) +(1- 11+- +...
2 2c 2c 21 (4c) 2  41 (4c)4

+ ()m-1 1.3...(4m-3) t 2 m

(2m) (4c)2m

+ ( 1 )m 1.3... (4m+l) t 2m+2 (t)
(2m+2) (4c)2m+2

where the positive function 9(t) which appears on the right-hand

side of each of the equations A 1 is not the same in each of the two

equations nor the same as the positive function 0(t) which appeared

on the right-hand side of the equations A0 .

Upon multiplying the equations AO by the non-negative function

t-1/2exp(-t) and integrating over the positive real axis we obtain,
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on denoting by 6 any positive number which is dominated by 1,

1 [ 1 1.3 p
= 12 2 ) 21 

(1

+ (_1)I-1 1.3... (4m-5)
(2m.,2) I1

+ (1)m 1.3...(4m-1)

(2m) I

5
2 +...

4c) 2

p(2m- )

(4c) 2 m- 2

1p (2m + -)

(4c)2m

12. 32... (4m-5)2

(2m-2)1(8c)
2 m - 2

12.32...(4m-1) 2

(2m) I (8c) 2 m

7
1.3.5 (I)

31 (4c)3

+ m- 1 1. 3... (4m-3)

(2m-1) I

1.3... (4m+1)

(2m+1)I

1
p(2m -

(4c)2m-1
1

( 2 m + )

(4c) 2m + l

12. 32. .. (4m-3)2

(2m-1)1(8c) 2m- 1
(- )m+l

12.32.52

331(8c)3

12. 32... (4m+1) 2

(2m+1) 1(8 c) 2 m+l

where the positive number O which appears on the right-hand side of

each of these two equations is not the same in the two equations.

Neither of the two infinite series

12.32
.1 - c +

2 !(8c)2

12. 32. 5272 1 12.32.52
-- +
8c 31(8c)3

12 . 32 . 2 . 72. 92

51(8c)
5

converges for any finite value of c but the first of these two infinite
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series is an asymptotic series for PO(c) and the second is an

asymptotic series for Q0 (c). Each of these two asymptotic series

possesses the property that the error made in stopping at any term

has the sign of the next term and is dominated by this term.

Upon multiplying the equations Al by the non-negative function

tl/2exp(-t) and integrating over the interval [0, t] we obtain,

similarly,

Q 3) 32. 5.7 1 32.. (4m-5)2 (4m-3)(4m-1)
Q1(c)= cc 31(8c) 3 + "". +(-1)m-1 "

(2m-1)I (8c) 2 m-1

32. .. (4m-1)2 (4m+1)(4m+3)

+ (-1) m  0
(2m+1) I (8c) 2 m+l

3.5 32.52. 79 ) 32.52.. (4m-3)2(4m-1

P 1 (c) = 1 +2(8c)2 - 4(8c)4  + ... + (-12 (8) 4 (8c)4 (2m) I (8c) 2 m

32. 52... (4m+1) 2 (4m+3)(4m+5)
+(-1)m  02m+2

(2m+2) I (8c) 2 m + 2

where, again, the positive number E which appears on the right-hand

side of these equations is not the same in each of the two equations.

Thus the two infinite series

3.5 32.52.7.9 32. 52. 72. 92. 11. 13
1+ 2 - + -""2!(8c) 2  4!(8c) 4  61(8c) 6

2 222
3 32. 5.7 32. 5 . 72. 9.11

8c 31(8c) 3  51(8c) 5

each of which fails to converge for any finite value of c, are

161

-1 1111 ii



asymptotic series for Pl(c) and Q 1 (c), respectively. The asymptotic

series for Q1 (c) is alternating while the asymptotic series for

Pl(c) is alternating if we remove its first term. The asymptotic

series for Q 1 (c) possesses the same property as the asymptotic

series for PO(c) and Q0 (c): The error made in stopping at any term

has the sign of the next term and is dominated by this next term.

On the other.hand, the asymptotic series for Pl(c) does not,

necessarily, possess this property if we stop at the first term;

for this asymptotic series all we can claim is that: The error made

in stopping at any term, after the first, has the sign of the next term

and is dominated by this next term.

The asymptotic series which we have obtained for P 0 (c) and

P (c) are special cases, corresponding to n = 0 and n = 1,

respectively, of the series

(4n2-12)(4n2-32 (4n -12 )(4n2 -32 )(4n 2-52 )(4n -72
1- +

2 I(8c) 2  41(8c) 4

and the asymptotic series which we have obtained for Qo(c) and Q1 (c)

are special cases, corresponding to n = 0 and n = 1, respectively,

of the series

(4n2-12) _(4n2-1 2 )(4n 2 -3 2 )(4n 2 -5 2) + ...

8c 3 1(8c) 3

We proceed to show that these series are asymptotic series for

Pn(c) and Qn(c), respectively, and, furthermore, that, if n = 2k

is even, these asymptotic series possess the property that the error
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made in stopping at any term after the kth has the sign of the

next term and is dominated by this next term; if n = 2k + 1 is

odd the error made in stopping at any term after the (k + 1)st of the

asymptotic series for P (c),

asymptotic series for Qn(c),

dominated by this term. We

are true when n = 0 and when

true for any two consecutive

to show that this assumption

next consecutive value, j+1,

(4n 2 -1 2 )(4n 2 -3 2 )

Pn() = 1 - (8) 2

2 I(8c) 2

and at any term after the kth of the

has the sign of the next term and is

have shown that these statements

Sn = 1 and, assuming that they are

values, j-1 and j, of n we proceed

implies that they are true for the

of n. Thus we assume that

... + ()m (4n2 -1 2 )... /4n2-(4m-5) 2 }

(2m-2) (8c) 2 m- 2

(4n 2-12 ). . 4n 2-(4m-1) 2

(2m) (8 c) 2 m

if n = j -1 and m is sufficiently large and that

(4n 2 -1 2 ) m (4n 2 _12 ).. 4n2(4m7)2

8c (2m-3)l(8c) 2 m - 3

+ (-1)m+1 (4n 2 -1 2 )... 4n2_(4m-3) 2 '

(2m-1) 1(8c) 2 m-1

if n = j and m is sufficiently large, both the positive numbers 0

and 9' being dominated by 1. The coefficient of (-1) r (2r) I(8c)2r I -1

r = 0, 1, ... , m=1, in the asymptotic series for Pj 1_(c) is the
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product (2j-4r-1)... (2j+4r-3) of all the odd integers, not

necessarily positive, beginning with 2j -4r-1 and ending with 2j+4r-3

and the coefficient of (-1) r (2r) 1(8c)2r -1 r = 1, .. , m-l, in the

2j
product of the asymptotic series for Qj(c) by - c is 32jr times

the product (2j -4r+3) .. (2j+4r-3) of all the odd integers

beginning with 2j-4r+3 and ending with 2j+4r-3. Since

(2j-4r-1)(2j-4r+l) + 32jr = (2j+4r-1)(2j+4r+l) the coefficient of

(l)r 1(2r)! (8c)2r} -, r = 1,..., m-1, in the result of

2j
subtracting 2 times the asymptotic series for (c) from the

asymptotic series for Pj_ 1 (c) is the product, (2j-4r+3)... (2j+4r+1),

of all the odd integers beginning with 2j -4r+3 and ending with

(2j+4r+l) and this product is the value, when n = j+1, of

(4n2-12)... 4n2-(4r-1)2 . Since P.+1 (c ) = P. 1(c) - 2 Q.(c)

it follows that, when n = j+l, Pn(c) is

1 - (4n 2 -1 2 )(4n 2 -3 2) +.. +(-1)m - 1 (4n 2 -1 2 )... {4n2-(4m-5)2
2!(8c) 2  (2m-2) (8c) 2 m - 2

plus a remainder term, this remainder term being (-1)m {(2m)1(8c)2m -1

times the product of (2j-4m-1)(2j-4m+l) 0 + 32jm e' by the product,

(2j-4m+3)... (2j+4m-3), of all the odd integers beginning with

2j-4m+3 and ending with 2j+4m-3. Since (2j-4m-1)(2j-4m+l) + 32jm

= (2j+4m-1)(2j+4m+l), (2j-4m-1)(2j-4rm+1) 0 + 32jm E' is of the

form (2j+4m-1)(2j+4m+1) e" where 0" is positive and dominated by 1
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provided that m is large enough to make 2j -4m+ negative (so that

(2j-4m-1)(2j-4m+1) is positive). Thus the remainder term is the

value, when n = j+1,of (-1)m (4n 2 -12 )... 4n2-(4m-1)21 e8 which
(2m) I(8c) 2 m

proves the validity, when n = j+1, of the statement made concerning

the asymptotic series for Pn(c). In the same way we prove the

validity, when n = j+1, of the statement made concerning the

asymptotic series for Qn(c). This completes the proof, by

mathematical induction, of the validity, for all non-negative integral

values of n, of the statements made concerning the asymptotic

series for Pn(c) and Qn(c).

Now the product of any term, say the rth, of the asymptotic

2j
series for Q(c) by - becomes, by virtue of the relation Pj+ 1 (c)c

= Pj 1 (c) - Q (c), part of the (r+l)st term of the asymptotic

series for Pj+l(c) while the product of the rth term of the asymptotic

series for P.(c) becomes, by virtue of the relation

Qj+(c) = Q. l(C) + P(c) part of the rth term of the asymptotic

series for .+ 1 (c). Thus, in order to be assured that the error

made in stopping at any term of the asymptotic series in question

has the sign of the next term and is dominated by this next term

we must take

1) more than 1 term of the asymptotic series for P2(c),

Q2 (c) and Q3 (c)
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2) more than 2 terms of the asymptotic series for

P 3 (c), P 4 (c), Q4 (c) and Q5 (c)

and, so on. In general, if n = 2k is even, we must take more

than k terms of the asymptotic series for Pn(c) and Qn(c) while,

if n = 2k+1 is oddwe must take more than k+1 terms of the

asymptotic series for P (c) and more than k terms of the

asymptotic series for Qn(c).
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