

TRAINING MANUAL ON PROGRAMMING FOR THE IBM 704

Carl L. Tibery

April 1960 Report 1368

TABLE OF CONTENTS

CHAPTER I — ADDITION AND SUBTRACTION ...cccooiiiiiiiiiiiciccricrccceeteeeneecaens
CHAPTER II — MULTIPLICATION AND DIVISIONcccooiiiiiiiicnieneecrcreree e
CHAPTER III — INDEX REGISTERS AND THEIR USEcccooviiiiiniinninecinnieeeneenee
CHAPTER IV — FLOW CHARTS ..ottt te st sse st e st e s s s sae e e e e s e enesaesnas
CHAPTER V — AUTOMATIC PROGRAMMINGcoooiriimiiiiiticiicncee e ceeneeeencenes
CHAPTER VI — BELL INPUT-OUTPUT SYSTEMcooooiiiiieerccne,
CHAPTER VII — SUBROUTINESoootiiiiicnitntitrin st sncess s eeneseeae
CHAPTER VIII — NUMBERS IN MACHINE LANGUAGEcccoiiiiiniiiiccnienens
CHAPTER IX — INSTRUCTIONS IN MACHINE LANGUAGEcccoevviiviiiiiiiinniinnnne
CHAPTER X — LOGICAL OPERATIONScocciiiiiiiiiiiiiiiirc et
CHAPTER XI — PROGRAM CHECKING ...cooviiiiiriiiiiirictiricirsar st
CHAPTER XII — READING AND WRITING ON TAPE ..ot
CHAPTER XIII — FORTRAN, AN AUTO'ATIC CODING SYSTEMccccoevviiiiiciinnennnne
ACKNOWLEDGMENT ..cooiiiiiiiiiiiiiiriiictiis et e st sssssssesesssesasesseesesnessesssenesessonees
APPENDIX A — OPERATIONS BY ALPHABETIC CODE ...,
APPENDIX B — INSTRUCTIONS TO THE SAP AND BELL SYSTEMScccccoceiiinnies
APPENDIX C — DECIMAL, BINARY, AND OCTAL NUMBER SYSTEMScccceee.

REFERENCES ...c.cooiiritiiiniiiniiiiiiieiei sttt snsstssae s sssesatssbsenessasssessassnssnnes

ii

10

15

20

26

32

36

46

54

60

71

80

90

94

95

96

97

LIST OF FIGURES

Figure 1 — Contents of the Core Units ..o
Figure 2 — Sample Coding FOIm .ottt
Figure 3 — An IBM Card ..o
Figure 4 — An IBM Card with the Instruction ADD 121 ..ccoviiiiniininiii
Figure 5 — Program to Add Two NUmbers ..o
Figure 6 — Representation of the Product ...,
Figure T — Product of 6 X 4 .ot s
Figure 8 — Program to Evaluate the Product of Two Numbersccccovuiniinniinnnnnnene.
Figure 9 — Representation of the Dividend ..o
Figure 10 — Program to Evaluate the Quotient of Two Numbersc.cccoeniiniricnninnn
Figure 11 — Program to Find the Sum of Ten Numbers Using an Index Register
Figure 12 — Program to Place Sum of Each Pair of Numbers in Consecutive

| 70T 37 Lo) 1 1= SO OO OO OPOPT PP
Figure 13 — A Logical ChOICE .ttt
Figure 14 — An Evaluation of a FOrmula ..o
Figure 15 — Counting SymbDOL .c.ovoeoiiiiii e
Figure 16 — A CONNECLOE ...ovremeiireitstccrsist ettt s
Figure 17 — An ASSertion oF NOtEc.cccccoiemeiiiiiiiiiiiii e
Figure 18 — Flow Chart to Evaluate y, = (x2 +38x; -5),i=1,2, ..., 100 cccevrrrrnree
Figure 19 — Program Associated with the Flow Chart of Figure 18 ...ccccouinnninnnnnnne.
Figure 20 — Symbolic Program to Find the Sum of Ten Numberscccoveninininnnicn
Figure 21 — Symbolic Program to Evaluate y, = (x2 + 3x; - 5),i=1,2, ..., 100
Figure 22 — Order of Instructions to Run a Symbolic Program Using SAP 3-T7
Figure 28 — Flow Chart to Evaluate the Sum of Two Numbersccooiiniiininnncene.
Figure 24 — Symbolic Program Associated with Flow Chart of Figure 23ccccccoevvnnnc.

iii

Page

Figure 25 — SHARE Subroutine for Evaluating TAN X ..o, 39
Figure 26 — Flow Chart to Evaluate the TAN X Using a SHARE Subroutine 40
Figure 27 — Symbolic Program Associated with Flow Chart of Figure 26 40
Figure 28 — Flow Chart Demonstrating Variable Connectorccccoeveeinininnnnnnnene 41
Figure 29 — Program Associated with Flow Chart of Figure 28ccocivvrrrinnvnennnnnnn. 42
Figure 30 — SHARE Subroutine for Evaluating the Square Root of the Absolute

Value of X vttt ea e s sas e sae e 45
Figure 81 — Bits of & Core Unit ...cceoeeeriereiiiiieetenette e 46
Figure 32 — Floating-Point Number Representationcccoimonieninicnnieneee, 47
Figure 33 — Decimal 5 in Normalized Floating-Point Binary Formcccccocvnieennnnnne. 47
Figure 34 — Bits of the Accumulatorccooeeeeinieiieniciiie vt 47
Figure 35 — Program to Check for Overflow in Additioncccoccoveniniinnininninnniinnnneee. 48
Figure 36 — Program to Check Whether or Not Division Takes Placeccccocceeueencees 50
Figure 37 — Type A INStruCtionccooeiiiiiiniieicinee et 54
Figure 38 — Type B INSEIUCEION ..eeeiiieieineiins ettt s a s 54
Figure 39 — SAP Printout of TIX 101,1,1 vttt stesnnesscessnesnensne 55
Figure 40 — Machine Representation of TIX 101,1,1 .o 55
Figure 41 — Octal Code for FISCAL YEAR 1959 ...cooooiiiniiiciniiiniinnnencscnnes 56
Figure 42 — Octal Representation of FISCAL YEAR 1959 in Core Storage 56
Figure 43 — Type A INSErUCLION .eoveeiereieiiiiiiiteenintte ettt st 58
Figure 44 — Type B INStruction ...t 58
Figure 45 — Program to Modify the Address of an Instructionccccevvvvivvninnninnninn 60
Figure 46 — Exchange of Bits as Result of CAL A ..ccooiiniiniicin 61
Figure 47 — Operation of ACL Y oottt 61
Figure 48 — A Packed Wordcccooeiiiniiinicsccctns e 62
Figure 49 — EXtractor Pattern 1 ..ottt 62

iv

Figure 50 — N, in the c(AC)p | _ 1 1w snis s 62
Figure 51 — N, in c(MQ)S, QA B T st 63
Figure 52 — P in ¢(MQ)g | _ ;1 oo e, 63
Figure 53 — EXtractor Patterniiiniiiiniiniiiinincciessnncessesessesessseseneenens 64
Figure 54 — Location DATA Now Contains N and Ny oo, 64
Figure 55 — Location DATA Now Contains P, N,, and Ny o 64
Figure 56a — Extractor Pattern 1 and its Octal Codeccccovvvreinveervrinneinnnenneeernneennnees 65
Figure 56b — Extractor Pattern 2 and its Octal Codeccoeevmriivuvrviiriininininiciiens 65
Figure 57 — Flow Chart for Extraction of N, from Packed Word and Insertion of

P, into Packed WOrd ... 65
Figure 58 — Program Associated with Flow Chart of Figure 57 «ccccoceeverieiicnincnnnnnane. 66
Figure 59 — Operation of ANA INSEIUCLION -.ccevivvrriviiviiniiiiiirntcit s 67
Figure 60 — A Binary Card with Twenty-two Instructionscccovveiiiiineinniencnennen. 71
Figure 61 — Sequence of Cards to Run with Binary Deckcccceciiiinninniinnnninnnne, 72
Figure 62 — Instruction for Snapshot DUmpcccceereerminiientic i 73
Figure 63 — Sequence of Cards when Making Corrections and/or Dumps with a

Binary or Symbolic Deck ...ttt 74
Figure 64 — Program to Obtain a Dump at Location 165 and a Post-Mortem Dump T4
Figure 65 — Program to Multiply Two 10 x 10 Matrices, A and B ..., 75
Figure 66 — Programs to Run a Symbolic Deck with Dumps or a Binary Deck with

Corrections and/or DUMPS ..ot s 8
Figure 67 — One Frame on Tapeccccoevevieeneniiitienientstsnnnsnt st se s anens 80
Figure 68 — BCD Mode Of TaPeccoureeuruitiriritininnietenetitenertsi sttt sna st sasasas 80
Figure 69 — Longitudinal Check ..ottt sttt 81
Figure 70 — Flow Chart to Copy 1000 10-Word Records from Tape to Memory 82
Figure 71 — Program Associated with Chart of Figure T0 ...c..cccocevvniiinnncnnniiniinnin 83

Figure 72 — Flow Chart to Copy 1000 Words from Core Storage in Units of

10-Word Records onto Tape «.ccccvrmiemmiiiiricncrinniiinnieniennneennns

Figure 78 — Program Associated with Flow Chart of Figure 72
Figure 74 — A FORTRAN Program to Evaluate the NORM of a Matrix

Figure 75 — Data Card with Format 5E14.8 .ccovveiniinniiiiies

Figure 76 — A Few Binary Integers and Their Decimal Equivalents

....................

Figure 77 — Addition and Multiplication Tables for Binary Number System

Figure 78 — Multiplication of 6 by T .ooreireie e

Figure 79 — A Few Binary Integers with Their Octal and Decimal Equivalents

Figure 80 — Addition and Multiplication Tables for Octal Number System

vi

....................

84

85
91

91

97

97

98

98

99

ABSTRACT

This training manual consolidates the essential information from the IBM
704 Reference Manual, the Bell Telephone Laboratories IBM 704 Input-Output
System — BE SYS 2, and the United Aircraft SAP 3-7 Programmer’s Notes into
one presentation, from which the mathematician can learn to write a program for
the IBM 704 using those systems.

Among the topics covered are flow charting, machine language, symbolic
programming, subroutines, input-output operations, and FORTRAN, an IBM auto-

matic coding system. Each chapter includes simple examples and exercises.

INTRODUCTION

The purpose of this manual is to introduce the techniques of programming mathematical
problems for the IBM 704 to the mathematician who is unacquainted with high-speed computers.

Programming for the IBM 704 in the Applied Mathematics Laboratory of the David Taylor
Model Basin requires a knowledge of several systems, as described in: IBM 704 Reference
Manual,! Bell 704 Input-Output System - BE SYS 2,2 Programmer’s Notes for SAP 3-7,3 FOR-
TRAN Primer,* FORTRAN Reference Manual,5 FORTRAN II Reference Manual,® and 704
Snapshots.”

This manual coordinates the essential points of References 1-7 into one presentation,
from which the mathematician should be able to learn to prepare a complete program for the
solution of a problem on the IBM 704.

Since one learns best by applying what he is learning, this manual is written so that,
from the very first chapter, the mathematician can run programs on the computer. A set of con-
trol cards is provided with each manual (in a pocket inside the back cover), and to perform the
input-output operations the cards are simply placed before and after the symbolic program.

The instructions necessary to write a program for a fairly sophisticated mathematical
problem are presented first. Then the meaning of the control cards is explained, and the method
for preparing the control cards is given. In the chapters that follow, more instructions, sub-
routines, symbolic codes, and other input-output devices are presented, but the responsibility
for preparing the control cards is left to the user of this manual.

Thus, upon completion of the exercises given in this manual, the mathematician should
be able to program, independently, problems for the IBM 704, and should have no difficulty in
using the references to find any new instructions he may need.

Appendixes A and B contain tables of the IBM 704 operations, SAP codes, and Bell

System codes,

lRefetences are listed on page 105,

USE OF THE CONTROL CARDS

You will find a set of control cards in the pocket inside the back cover of this manual.
They must be in the following order, with the label INT (initial) or FIN (final) appearing in
columns 73-80 of the card:

INT
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN 10
FIN 11

O 00 =3 Ut W NN

These control cards, except for the one labeled FIN 5, are to be used for all the exer-
cises through Chapter VII. The card labeled FIN 5 is to be replaced in each chapter by a new
card which has the chapter number preceding FIN 5.

The first initial control card, INT 1, is not included in this deck. It is called the JOB
card and contains the programmer’s problem number. It can be obtained from the supervisor of
computer operations.

CHAPTER |
ADDITION AND SUBTRACTION

This is an introduction to the solving of mathematical problems on the IBM 704 comput-
ing machine.

One of the most important functions of a computing machine is to perform the four arith-
metic operations, and its great utility comes from the fact that it can perform these operations
many times faster than a human being can using a desk calculator.

Similar to a human brain, the computer must first ‘‘find’’ the number it wants to operate
on and then perform the operations. How is this done?

This is done by instructions which the programmer gives to the machine. The 704 has
32,768 storage units, or cells, which can contain either instructions or data. Suppose you have
stored in location 120 the number +5 and in location 121 the number +2, and you want to find
the sum of these two numbers.

The instruction ‘‘Clear and Add”’

‘

CLA 120

will bring the contents of cell 120 (namely, the number +5) to a working part of the computer
called the accumulator. There the contents of cell 120 will be ready for comparison. Then the

instruction ‘‘Add”’
ADD 121

will tell the machine to add the contents of cell 121 to the contents of the accumulator. The
result, +7, will replace the number, +2, in the accumulator. But next, you will want to store

this sum in a convenient location. This is done by the instruction ‘‘Store”

STO Y

Y being the location where you desire the result to be. For example, if you want this sum

stored in location 122, you would write the instruction thus:
STO 122

The internal memory or core storage, assuming the instructions to begin in location 100, now
contains the following information; see Figure 1. (Note that the first cell is numbered 0.)

But now a question arises. How do these instructions and data get into the internal
memory (core storage) of the machine, and how do you get the result out of the memory?

One way of doing this is by punching the instructions and data on cards and then letting
the machine read the cards into the memory. Instructions are normally written on special
coding paper which specifies the card columns to be punched. An example is given in Figure
2. The computer will read the data and instructions into the memory by means of control cards
placed before the instruction cards. Then by a control card placed at the end of the instruc-

tions and some additional ones placed at the end of the data, the computer will write the

Location Number | Contents
0
100 CLA 120
101 ADD 121
102 STO 122
103
120 +5
121 +2
122 +
123
32,767

Figure 1 — Contents of the Core Units

IBM Data Processing Division SHARE 704 Symbolic Codmg Form
Problem
Coder JOl!I} Smith) IDate >_e_mber 15. 1959 Page 1 Of
H i Location op Addeess, Tag Decrement Comments adenct
1 ll sl 718 10 1 {12 e n|n L]
_%____7 | | ORG | (100
R |_CLA | 120
4 | |ADD } 21
| STO | n22
! ORG 120
e
| _DEC 5
____:_________ | DEC 2
I RUNR— —_—

Figure 2 — Sample Coding Form

answer or answers on a magnetic tape. A printer will print the information from tape onto

paper. (The control cards will be explained in Chapters VI and VIL.)

To begin our instructions at location 100, place immediately after the initial control

cards the ““Origin®’ card

ORG 100

This instructs the machine to place the instructions on the cards that follow in core storage,

starting at location 100.

Thus to perform your sample problem you would place the sets of cards in the order

indicated in the hopper of the machine:

Initial Control Cards Nos. 1-2
Instruction Cards for the Problem
Final Control Card No. 1

Data for the Problem

Final Control Cards Nos. 2—11

To place a decimal integer into the memory, use the instruction ‘‘DECimal data”

DECN

where N is any decimal number preceded by a sign (+ or -). The + sign may be omitted.
When placing decimal integers in consecutive locations, you can write all the numbers

on the same card in columns 12—72 if you separate each number by a comma. Thus, the cards

ORG 100
DEC 78, 85, -26

will place the integers 78, 85, and -26 into locations 100, 101, and 102, respectively.

An IBM card contains 80 columns and 12 rows. (See Figure 3.) You can punch a char-
acter in each column desired. However, the computer will interpret only the first 72. The re-
maining 8 are either left blank or are used to number the cards. At the Model Basin columns
78—74 are used for the programmer’s initials, and the last 6 columns are used for the card

number.

SYMBOL| | OP | | ADDRESS, TAG, DECREMENT ——» ® REMARKS LABEL

©

300000 000/ [00000000000000000000000060000Q000000000000000000000000000000000000000
M2 3456 (8810 (2RI N2 2805527220033233U35%37 3394041 4243 M 454647 049505125354 555657 NG 23 EETARNTI DU K177 K|
RERRINIER IR R R R R R R AR R R R R R R R R R R AR R R R O IR R R R R R R R RN R R R AR A R AR RRRRRRRRARIIRRERR R R
22222\ 1222/ (22222222222222222222222222222Q2222222222222222222222222222222(22222222

33333/ (33.3/1333333333333333333233333333339333333333333333333333333333333333333333

55555/ [555/ |55555555555555555555555555559555555555555555555555555555555555555555

b QYYD dVS VN

2
3
444444 1444 4444448484404 04444444844444200@D0444484440444484444444444840044040004420
§
&

66666/ (666 [666666666656666566666666666666E66566666666666666666666666666666(66666668
RERR IR R IR R R R AR R A AR R R R R AR R AR R AR R O AR R R R R R R R R R RN R R RN RN R RN RRRRIIARERREN]

-~

388688 888 8888888888888888538806888808883@88808838383888888888888883880888088688888

8
|
399999 1999(/1999999999993599999999999989993)99499999999999999999999959999959995998939
1123 456 708 $ 101213161515 17 18 192021222326 25 5 27 2823 W0 31 22 33 M 3536 37 38 39 40 414243 444546 47 484950 515253 54 55 56 57 56 52 60 o1 62 63 A $5 66,67 88 63 7011 125 M TS 26 11 18 10 80
154884391

‘

Figure 3 — An IBM Card
NOTE: The circled numbers indicate the row numbers.
In which columns do you punch your instructions? Columns 1-6 are reserved for the
location in the storage where you desire to place an instruction or data. However, with the
initial control cards given in this manual, you do not have to fill in columns 1-6 because the

instructions and data are stored in consecutive locations beginning at location Y, as specified
in the ORG Y card.

Column 7 is a blank.

Columns 8, 9, and 10 are for the operation code, such as CLA or ADD.

Column 11 is a blank.

Columns 12-72 are used for the address, tag, and decrement of the instruction. In this
chapter only the address will be defined.

The address is that part of an instruction specifying the location in the core storage
of the data to be operated on.

Figure 4 shows how an instruction would be punched on a card.

Location
Operation
Address

121

>
-mo
- O

ADDRESS, TAG, DECREMENT ———» REMARKS LABEL

(%]
<
=
@
o
r
o
h

000/ (0G0OD0C0O00000000000000000C06000000000000000000000000000000000000/00000000

0
6| 18 910] |121314151617 18192025 2223242526 27 2818 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72173 74 15 76 17 78 79 80|
1

| KNI RN ERRRRRRRR R R RN R R R R R R R R R R R AR R R R R R R R R R R R R R R R R R R RRRRRIIR AR R R R

33333/13331333)333333133
444444 (4NN (4444444440444 444444440000442044004444444444844444444444444044884444444
555555 (555 (555

I Q4Vv0 dvS vNn

i
1
1
2022222 (222 128222|1222222122
3
¥l
§
s

66666 666 666/66666666
Mminiy iy 3111111111111 1111111171791111101111117111171111111111111111119)111117111

8188888 888 (888888888808888888883888838808868888088888888888888888888888888(88688888
9999959999999/92999999
60 21 7. nims

5580 21 6265 4638687686876 7|73 74 15 Ty

17879 80

ﬂ99999 999)/999999999999999999
23456708 90BN BBINRLNBEIRS
18 894 39

8w
&
e

Figure 4 — An IBM Card with the Instruction ADD 121

To solve your problem on the computer, use the sequence of cards (as indicated in
Figure 5) which contain instructions or data. (Note that the decimal point is not used with
integers.) Such a sequence of instructions is called a machine program.

IBM Data Processing Division SHARE 704 Sy’mbolit: CDding Form

Problem
ot John Smith_ D¢ ceptember 15, 1950 |°™ 1 °y
H :’ Location Op Address, Tag Decrement Comments ‘Ig:n“‘r:
IIL 6l 718 10f 112 nn 80
! (Initiall Control Cards)
| | ORG | |100
| | cra | [120
- ADD | 121
L sTO | [122
! (Final (Control| Card #1)
(ORG | [120
B 'pEC | |5
i DEC | |2
! (Final CTArol Cards #2-11)
1
|
1
|
|
|
|
1
|
]
1
|
t
|
|
100M PSO 2{59
Form 120-6809-3

Figure 5 — Program to Add Two Numbers

SUMMARY — Chapter |

To run a program with cards in the 704, place them as follows in the card hopper:

Initial Control Cards Nos. 1-2
Your Own Instructions

Final Control Card No. 1

Data

Final Control Cards Nos. 2—-11

Instructions covered in this chapter are:

ORG Y Origin
Specifies that the information on the cards that follow is to be stored

in the core storage beginning at location Y.

CLAY Clear and Add

Places the contents of Y in accumulator and leaves Y unchanged.

ADDY Add
Adds contents of Y to contents of accumulator, places the sum in the

accumulator, and leaves Y unchanged.

STOY Store
Stores contents of accumulator in location Y, and leaves the accumu-

lator unchanged.

DEC N Decimal Data
Specifies that N is a decimal integer.
SUB Y Subtract

Subtracts contents of Y from contents of accumulator, places the

difference in the accumulator, and leaves Y unchanged. (See Exercise 2.)

EXERCISES - Chapter |

1. Write a program to find the sum of five different numbers. Begin the first instruction in
location 100 and the first data item in location 200. Store the result in 300.*

2. Given that the instruction ‘‘Subtract’’ .

SUBY

will subtract the contents of Y from the contents of the accumulator and leave the result in the
accumulator, write a program to add 5 and 7; then subtract 4. Assume same ORG cards as in

Exercise 1. Store the result in 300.

3. Punch your instruction and data cards and place them with the control cards in the order
given in this chapter; then run Exercises 1 and 2 on the 704. Check your answer with the ma-
chine answer. Notice that the first of the Final Control Cards is to be placed after your last

instruction card.

*
Note that on your printout the core storages are numbered in the octal system and not the decimal system.

See Appendix A.

CHAPTER I
MULTIPLICATION AND DIVISION

In Chapter I you learned how to subtract and add on the 704, Now you will learn how
to divide and multiply.

MULTIPLICATION

To multiply, you must use two registers: the accumulator or AC register, and the
multiplier-quotient or MQ register. First, place the multiplicand with sign in the MQ register
by the instruction ‘‘Load MQ”’

LDQY

This will replace the contents of the MQ with the contents of Y, leaving the contents
of Y unchanged.

Then the instruction ‘‘Multiply’’

MPY Y

will multiply the contents of MQ by the contents of Y.

The most significant half (msh) and the sign of the product will appear in the AC, and
the least significant half (Ish) will appear in the MQ. Read your answer as if the contents of
the AC were placed to the left of the contents of the MQ. (See Figure 6.)

AC MQ
[msh | 1lsh |

Figure 6 — Representation of the Product

If you multiply 4 by 6, the answer 24 will appear, as in Figure 7. The sign of the MQ is the
same as the sign of the AC. The number 24 appears entirely in the MQ because each register
is capable of holding an integer as large as 34,359,738,367 plus a sign.

AC MQ

Figure 7 — Product of 6 x 4

Now you must take the contents of the AC and the MQ and place them somewhere in
storage. As before, use

STOY

to place the contents of the AC in location Y.

To place the contents of the MQ in some storage location, use the instruction ‘‘Store MQ’’

STQY

10

This will place the contents of the MQ in location Y.
Example: Assume that +972 is in location 200 and +852 is in location 201. Find the
product of these two numbers, and place the msh of the product in location 300 and the Isk in

location 301. You would do this as shown in Figure 8.

IBM Data Processing Division SHARE 704 SYmhlJlll: Cnding Form
Problem
G John Smith [P September 15, 1959 [F= 1 oy
H : Loamm——lv Op Addres, Tag Decrement Comments ‘lgm
1 :1 6] 718 of1nyn s 80
i (I:ﬂdal | Contro}l Cards)
_:_____ﬁ | ORG | (100 Specifies 100 as the location of the first
| I ___instruction.
| | LDQ | |200 Places c(200), contents of 200, in the MQ.
! | MPY | |201 Multiplies c(MQ) by c(201).
| | STO | (300 Stores msh product in 300.
! | STQ | [301 Stores 1sh product in 301.
| (Fimal|Control Card #1)
! ORG | |200 Specifies 200 as the location of the first
!] data item.
! | | DEC 972 Places 972 in location 200.
! | DEC | [852 Places 852 in location 201,
| (Final Qontrol Cards #2-11)
I

Figure 8 — Program to Evaluate the Product of Two Numbers

After the operations are performed, location 300 will contain all zeros and location 301
will contain +828144.

DIVISION

To divide, use both the AC and the MQ registers. The instruction for division is

DVHY
This instruction treats the contents of the AC and the MQ as the dividend, the MQ con-
taining the lsh, and the AC containing the msh and the sign (Figure 9).

AC MQ
Dividend: I J

Figure 9 — Representation of the Dividend

Then if the absolute value of the contents of Y is greater than the absolute value of
the contents of the AC, i.e., | ¢(Y)| >|c(AC)|, division takes place. The quotient and its
sign replace the contents of the MQ, and the remainder replaces the contents of the AC.

Suppose you have 0 in location 200, 55 in location 201, and 11 in location 202, and
you want to divide 55 by 11 and then store the quotient in location 30C and the remainder in
location 301. If you begin the instructions at location 100, your program would look thus.
(See Figure 10.)

11

IBM Data Processing Division

SHARE 704 Symbalic Coding Form

Problem
Codet John Smith |°* September 15, 1959 ey °
H i Location op Address, Tag Decrement Comments feoe
1 :2 6l 718 iz L k23| kil
| (initid] Control [Cards)
! |ORG | 100 Specifies location of first instruction.
| | CLA 200 i Places 0 in the AC.
| LDQ | [201 | Places 55 in the MQ. A
' DVH 202 : Places quotient in the MQ and remainder in
! | the AC.
! | STQ 300 Stores quotient of 5 in 300.
; STO 301 Stores remainder 0 in 301.
| ___ (Final|Control Chrd #1)
! ORG_| |200
! | DEC_| |0
! | DEC_ | |58
! pEC_| |11
_E__JM_CO rol Cards #2-11)
|

Figure 10 — Program to Evaluate the Quotient of Two Numbers

12

SUMMARY — Chapter Il

The new orders learned in this chapter are:

LDQ Y

STQ Q

MPY Y

DVHY

Load MQ

Replaces the contents of the MQ by the contents of Y, leaving Y
unchanged.
Store MQ

Places contents of the MQ in Y, and leaves MQ unchanged.
Multiply

Multiplies the contents of the MQ by the contents of Y and puts the
msh and the sign of the product in AC and the Ish of the product in MQ,

and leaves Y unchanged.

Divide or Halt

Treats the AC and MQ as the dividend and then divides this by the
contents of Y and puts the signed quotient in MQ and the signed remainder
in AC. The sign of the remainder always agrees with the sign of the quotient.
Division takes place only if |c(Y)|>]|c(AC)|. If |c(Y)]|<|c(AC) | the com-
puter stops.

13

EXERCISES - Chapter Il

1. Find the average of five integers, each less than 1,000. Begin your instructions at
location 100 and your data at 200. Place quotient in 300 and remainder in 301. Assume that
the dividend will fit entirely in the MQ.

2. FEvaluate the following:

5 x2 X;=2,8,4,56;1=1,2,...,5
E-_‘_.,where .
iT1y. y;=2,-3,1,5,4;1=1,2,...,5.
1

Begin your instructions at location 100 and data at 200. Place result in 300.

3. Punch cards for Exercises 1 and 2 and then run the problems on the computer. Check

your answers,

14

CHAPTER Il
INDEX REGISTERS AND THEIR USE

Suppose you have 100 different numbers beginning at location 200, and you want to find
the sum of these numbers. It certainly would be tedious to write 99 ADD orders. To facili-
tate operations such as this, the 704 has some special instructions.

All 704 instructions with memory references are classed into two groups: indezable,
and nonindexable. The nonindexable instructions contain the letter X in their operation code
whereas the indexable instructions do not. To understand how these instructions work, it is
necessary to know how the 704 picks up and interprets an instruction.

The 704 has an instruction location counter which tells the computer from which lo-
cation to pick up the next instruction. The computer then places this instruction in the storage
register (SR) and restores the instruction unchanged into its original storage location. Then
the computer places the operation part of the instruction in the instruction register and leaves
the rest of the instruction in the SR. If the instruction register contains an instruction which
is not indexed, such as CLA 100, the computer will execute this instruction without further
delay. In this case, it will clear and add ¢ (100) to the accumulator. But if, on the other hand,
the instruction register contains an indexed instruction, the computer will modify the address
of the instruction before execution. This is explained as follows.

If you associate an index register (of which the 704 has three, designated 1, 2, and 4)
with an indexable instruction, the instruction is Zagged with the index register named. For
instance, if you tag the instruction CLA 100 with the index register 1 (IR—1), write it as
follows:

CLA 100,1

Thus, you associate with this instruction the index register 1. Suppose now that the
index register 1 contains the number 10.

When the computer picks up the instruction CLA 100,1, it will, as explained above,
place the operation part in the instruction register and the address and tag in the storage
register. Since this instruction is tagged with index register 1, the computer will first sub-
tract the contents of the index register (namely, 10) from the address in the storage register

and then execute the instruction with the new address. Thus the computer will execute
CLA 90

That is, the contents of location 90 (instead of location 100) will now replace the contents of
the accumulator. This is called effective address modification.

The next two instructions explain how to load an index register with a number, and
how to change this number once it is in the index register.

To load an index register with a number, you must first have the number stored some-

where in the core storage. Then the instruction ‘‘Load Index from Address”

15

LXA Y,N

will load the contents of location Y into index register N, where N is 1, 2, or 4.
For example, if you have the number 10 in location 200, the following instruction

LXA 200,1

will load the number 10 into index register 1.

To change the contents of the index registers, the 704 uses control instructions, which
have, besides an address and a tag, a third part called a decrement. One of these instructions
is ““Transfer on Index”

TIX, Y,N,D

where Y represents the address, N the tag, and D the decrement.

This instruction operates as follows. If the contents of the index register N are greater
than the decrement D, the computer will reduce the contents of the index register by the
amount of the decrement and take the next instruction from location Y. Otherwise, the com-
puter proceeds to the next instruction in sequence.

These instructions are illustrated by the following example.

Find the sum of ten numbers stored in consecutive locations beginning at location 200,
and store the result in 210. Begin the instructions at location 100.

The program for this problem is in Figure 11. In the column for Comments, an arrow

(——) indicates ‘‘replaces’’ and c(u) indicates contents of unit u.

16

IBM Data Processing Division SHARE 704 Symbolil: Cuding Form

Problem

Coder ™ John Smith |>*“ September 15, 1959 = 4 4
H E Location Op Address, Tag Dectement ' Comments gth and last m
Uy AN N 1st time around loop (2nd time around loop|-~----- time around L ©
|| (Initial (Control Chrds) |
; | ORG | [100 Says place instructions in core beginning at locagpn 100,
| | LXA | [200,1 9—= c(IR-1).
g CLA 200 c(200)=9—=c(AC).
! _ | LADD | |210,1 c(AC)+c(201)»>c(AC)| c(AC)+c(202)>c(AC) | ------ c(AC)+c(208)
I] =9+2 —»c(AC). =9+2+4 —=c(AC). —c(AC)=9
! L +2+4+3-445
!‘____ +8-7+12-13
L] =19—+>c(AC),
; | TX 102,1,1 Reduces c(IR-1) to | Reduces ¢(IR-1) |------ Since ¢(IR-1)
!] 8 and proceeds to | to 7 and proceeds is now 1,
IR 102. to 102. computer
! takes next
—_—— —— ! —_
! instruction in|
i : sequence.
! STO 210 Sum--c(210),
! (FinaliControl Card #1) i _
i | ORG 200 Places the following data in core storage beginning at location 200.
' DEC | |9
DEC 2
! | DEC | |4
B DEC | |3
i DEC | |-4
i DEC | |5
! DEC | |8
! DEC | |-1
: | DEC | (+12
: | DEC | |-13
! (Final Control Cards #2-11)
1
|

Figure 11 — Program to Find the Sum of Ten Numbers Using an Index Register

17

SUMMARY - Chapter IlI

A nonindexable instruction contains an X in its operation code, but an indexable in-
struction does not.

If you tag an indexable instruction with an index register, the computer uses effective
address modification on this instruction.

The following new instructions were introduced:

=} -
S 5
= 0
S B wo
2 T a0
- < HA
LXAY,N Load Index from Address
Loads index register N with number stored in location Y, where
N=1, 2, or 4.*
TIXY,N, D Transfer on Index

If the contents of the index register N are greater than the decre-
ment D, the computer will reduce the contents of the index register by the
amount of the decrement and take the next instruction from location Y.

Otherwise, the computer proceeds to the next instruction in sequence.

*A tag number 3, 5, 6, or 7 is also used. For their meaning, see Reference 1, page 8.

18

EXERCISES - Chapter 11l

1. Do Exercise 1 of Chapters I and II using an index register.

2. Given thata ,b,, andc, (i=1,2,...,10) are 30 integers beginning at location 200,
find X as defined below and place the value of X in 300. Begin the instruction at 100.

*e (112:) 1(aici)2)(i 1501(bi—ci)\)

3. Assume, in Exercise 2, that the first nine a’s are the elements of a 3 x 3 martrix A,
stored row-wise, and that the first nine b’s are the elements of a 3 x 3 matrix B, also stored
row-wise, Find the elements of the product AB = C. Store the ¢y columnwise beginning at

location 300. Begin the instructions at 100.

4. Prepare data and instruction cards for Exercises 2 and 3, and then run the problems on

the machine. Check your answers by hand computation.

19

CHAPTER IV
FLOW CHARTS

In the first three chapters, you learned what the instruction codes for the arithmetic
operations are, how to index an instruction, and what the meaning of one control instruction
is. In this chapter, you will study three more control instructions and an aid to programmers—
flow charting.

The three new control operations are:

TRAY Transfer
Transfers control to Y. The computer will take its next oper-

ation from location Y and continue from there.

TNX, Y, N, D Transfer on No Index
If contents of index register N are greater than the decrement
D, the computer reduces the contents of index register N by D and takes
the next instruction in sequence. If contents of index register N are
less than or equal to D, the computer leaves the IR as it is and takes

the next instruction from location Y.

TXI, Y, N, D Transfer with Index Incremented
Adds D to the contents of index register N and places this sum
in index register N. Then the computer takes the next instruction from
location Y.

The following example will illustrate how you may use these orders. Note that the
pseudoinstruction TRA FINISH signifies the end of your program and prints the output on
tape 9, from which you obtain a printed copy via the printer. This card is always placed after
your last instruction. It is Final Control Card No. 1. Previously, you have included this
instruction in the final control cards. Now this card in the control deck will be omitted and
you are to place it with your own instructions.

Assume that you have ten integers stored in consecutive locations beginning at 200.
Find the sum of the first two numbers and store this sum in 800; then find the sum of the
next two numbers and store this sum in 8301. Continue this procedure until you have added
all pairs of numbers.

The program in Figure 12 will accomplish this.

When writing a program, you must write the instructions for the machine in a particular
order, according to what you want to do. You could write down in sequence what you de-
sire to do and then write the machine instructions that will accomplish each step. However,

a diagram is usually easier to use, so resort to this method.

20

IBM 5eu rrocessing Divisien SHARE 704 Symbolic Coding Farm

Probilem .]
% John Smith [>** september 15, 1959 [1 bl o= [=
H Locarion Op Address. Tag Decrement O_'- -_(
A Jale ol | 1st time around loop (2nd time around loop Srd time around loop time around L&‘Mm
| . (initial Cq Gards)
| ORG 100 Sets location c%@_ 100.
i | LXA | [108,2 5— c(IR-2).
i LXA | [109,1 10— ¢(IR-1). I
— CLA | [210,1 £(200) = ¢(AC). ¢(202)—~c(AC). £(204) —=¢(AC). ¢(208)— c(AC). ¢(208)—>c(AC). |
i ADD | (2111 mEJML_ ¢(202) + (208 £(204) + c(205 ¢(206) + c(207) ¢(208) + c(209)
| —=¢(AC). L —*c(AC). ~=c(AC). —»¢(AC). —+c(AC).
STO | [305,2 (200 + c(201) 1 c(204) + ¢(205 ¢(208) + c(207) (208) + c(209)
—=c(300). -~ c(301). —»c(302). —»c(308), —c(304).
! | TNX | |1 1 Subtracts 1 1 Subtracts 1 from Since IR-2 contains

1
| IR-2,1.e., 4~c(IR-1), |TR-2,1.e., 3+c(IR-2) IR-2,1.e., 2+c(IR-2)'IR-2,1.e., 1-=c(IR-3), one, the calculator

] then calcul goes |then calculator goes |then calculator then calculator proceeds to end
] I!oncxti_qggcgi_g. to next instruction. Eeedatouxt proceeds to next routine.

! instruction. instruction.
] TIX | [102,1,2 |8—s-c(IR-1), then [6—=c(IR-1), then [4—~c(IR-1), then |2—+c(IR-1), then
|calculator proceeds |calculator proceeds |calculator proceeds
102. to 102. to 102. to 102.
TRA | [FINISH |

5

ho

200

578
-2

B
812

75236
-851

| DEC |
DEC
ORG
DEC
DEC
DEC | |-457
DEC
| DEC |
| DEC |
| DEC |

DEC +752
! DEC 1256
! DEC 9234

(Fina] £ 1 u-F #2-11)

Figure 12 — Program to Place Sum of Each Pair of Numbers in Consecutive Locations

1. Path of Computational Flow
To indicate ‘‘the path of computational flow,’’ use a directed arrow. (——=).

2. Logical Choice
A logical choice between two directions of a path, depending on the magnitude of two
quantities A and B, is indicated by an oval, as shown in Figure 13:

3. Computation, Operation, Etc.

The evaluation of a formula or other expression is indicated by a rectangular box. See
Figure 14.

A>B

A<B —-—"'3x2+x-5=y_’

Figure 13 — A Logical Choice Figure 14 — An Evaluation of a Formula

21

4. Counting Operations
When you wish to increase the value of a subscripted quantity, use a rectangular
box with a double line at the left end. See Figure 15,

—»{y, =3x2 +4pll i+ 1—i |—»

Figure 15 — Counting Symbol
Note that many programmers use the plain rectangular hox as the counting symbol.
5. Connectors
To connect one part of a flow chart to another part, you can draw an arrow to that part.
But at times it is more convenient to use what is called a connector. This is indicated by a

circle with a number or other symbol in it (Figure 16).

—(2)~

Figure 16 — A Connector

6. Assertions and Notes
To assert that a certain condition is true at a particular time or to make a note for

later reference, use a rectangular flag attached to the flow line.

b=1

-
Figure 17 — An Assertion or Note

The flow chart in Figure 18 and program in Figure 19 illustrate the use of these sym-
bols, in solving the problem given on page 238. Notice that each figure in the flow chart

is labeled and certain instructions are associated with it in the program.

A i=1 B C D

E =
100-»0(1R-—1)—>®-q Yi=X;(X;+3)=5ke y, (399 +i)} i+1->i-—£i :100 @
+

F
Figure 18 — Flow Chart to Evaluate y, =(xi2 +3x,-5),i=1,2,...,100

22

IBM Data Processing Division SHARE 704 smbuﬁc CUdinq Form

Problem
G John Smith [°** September 15, 1950 [P= 4 oy
H Location op Address, Tag Decrement Comments Fd
A ol 28 wlule 1st time around loop | 2nd time around log; Inatumearmmd)L ©
! (Initia] Contrql Cards)
! ORG 100
[\ LXA | 302,1 100->c(IR-1).
! B | CLA | 800,1 x4-»c(AC). xg-,—c(AC). ------ X4 oo-bc!AC).
| ADD | 301 (x,+3)>¢c(AC), (xg+3)->-c(AC). | ------ (x499+3)-2c(AC)L
STO | |302 (x,+3)-¢(302). (xg+3)-»c(302). | ------ (x40g+3)>c(302).
LDQ | [s02 (x,+3)=-c(MQL (xg+3)>c(MQ). | ------ (x1 99+ 3)>-c(MQ).
CLA | [303 0-=c(AQC), 0—>c(AC). [-=-ceee 0—»c(AC).
MPY | 300,1 Xy (xg+3)->~ c(MQ), xz(x3+3HE(MQ).T ------ x4 ga(Xy90+3)
! e . — c(MQ).
! STQ | (302 | ;!(xl+a)-»c(302). X9(x9+3)>c(302). | ------ X100(X10*3).
! —»c(302)
L | [cLA | 302 X, (x4 +3)-c(AC). Xg(x1+3)>c(AC). | ------ X190(X100+3)
' , —>c(AC).
! ADD | (300 x,(x,43)-5+c(AC) | Xp(x5+3)-5-w-c(AC).| ------ | x490(x106+3)-5
! j—=>c(AC).
c STO | [500,1 Xy (x1+43)-5C(400). | Xq(xg+3)-5-»c(401). ------ | x4.00(x3.00+3)-5
—>c(499).
D,E.F TIX 101,1,1 Reduces c(WQ_l;L Reduces c¢(IR-1) by, -——-—- Since c(IR-1) = 1,
one; then ¢:og,1!|_tI uter | one; then compute: computer goes to
proceeds to 101, proceeds to 101. next instruction.
l c(IR-1) is now 99. | c(IR-1) is now 98. |
G TRA | [FINISH : Transfers to
] }T ending routine.
i 1
! ORG | (300 Stores constants
1 beginning at 300.
! DEC | |-5
! | DEC | |8
. | DEC | [100
' | DEC | | 0
! __(Final Qontrol Cards #2-11)

Figure 19 — Program Associated with the Flow Chart of Figure 18

Find the value of each y, in the following expression, and store each y, beginning at
location 400. Assume that all products will not exceed the capacity of the MQ. Store the
x,’s at location 200; place the constant -5 in 300 and the constant 3 in 301. Start the instruc-

tion in location 100.

y=(x% +3x,-5),i=1,2,..., 100.

23

SUMMARY = Chapter IV

In this chapter you learned the following instructions and flow charting.

TRAY Transfer
Transfers control to location Y.
TNX Y,N,D Transfer on No Index

If contents of index register N are greater than the decrement D,
the computer reduces the contents of index register N by D and takes
the next instruction in sequence. If contents of index register N are
less than or equal to D, the computer leaves the IR as it is and takes
the next instruction from location Y.

TXI, Y, N, D Transfer with Index Incremented
Adds D to the contents of index register N and places this sum
in index register N. Then the computer takes the next instruction from
location Y.
TRA FINISH Transfer to FINISH
Signifies the end of your program and prints output on tape 9.

The following symbols are used in flow charts:

1. > path of computational flow
2. —> ——> computation box

3. CD-L) logical choice

4. —> counting operations

5. ——)O——) connectors

24

EXERCISES - Chapter IV

In the following exercises, draw a flow chart first and then code each symbol of the
flow chart.

1. Fifty numbers (x;,i=1,2, ..., 50) are stored in locations 301, 302, . . ., 8350, and
fifty others (y,, i =1, 2, ..., 50) are stored in 851, 352, ..., 400. Placex, -y,;,i=1,2,
.« « 50 in locations 201-250.

2. Given the instruction

TPL Y Transfer on Plus
The computer takes the next instruction from location Y if the sign of
the quantity in the accumulator is positive. If the sign of the quantity in the

A is negative, the computer proceeds to the next instruction.

do the following problem:
Fifty numbers are stored in locations 201-250. Place the sum of the positive ones in
300 and the sum of the negative ones in 301.

25

CHAPTER V
AUTOMATIC PROGRAMMING

A machine program, as previously defined, is a list of instructions written in machine
language and arranged in proper sequence. Since the machine will do exactly what it is told
to do, these instructions must be precise and correct to the last detail. For this reason and
because machine language is totally dissimilar to English, machine programming is extremely
time-consuming and error-prone.

One method used to help alleviate these problems is symbolic programming. In this
system, the programmer uses symbolic operation codes and addresses. Then a machine master
program, called an assembly or compiler, translates these symbolic codes into machine lan-
guage, and either writes them onto a tape or punches them on cards which then can be used in
the usual manner.

The symbolic assembly program discussed next is called SAP 3-7.

When yourefer to an instruction or a piece of data by giving its location, you must know
exactly where this instruction or piece of data is located in the core storage. With a large
program, this would be difficult and tedious to do, so instead you may use symbolic addresses.
That is, in place of a numerical address, use a symbol in the address part of an instruction.
The symbol may be from one to six consecutive characters, at least one of which is an alpha-
betic character. The other characters may be numbers or letters. For example, A1, 2C,
DATA 1, 34A 2, 12345 X, L, are all acceptable symbols.

To refer to the nt! instruction after the current instruction use the following scheme

when using symbolic addresses.
First note the meanings of the following 704 characters:

+ denotes addition,

- denotes subtraction,

* denotes multiplication, and
/ denotes division.

You may use these arithmetic characters in the address, tag, or decrement of an in-
struction. For example, suppose that you have ten numbers beginning at symbolic location
DATA. If you want to place the seventh one into the accumulator, you could use

CLA DATA +6

The character* is used not only to denote multiplication but also to signify the current
location. It means the current location if it is the first character in the symbolic address.
For example, if you have a transfer instruction at location 200, which transfers control to

location 208, you could write it thus:

TRA *+3

26

The computer will then pick up the next instruction from location 203.
The following example illustrates the use of these symbols. The following pseudo-
instruction ‘‘Block Reservation”’

M BSS N

is introduced here. It will reserve N consecutive core units beginning at location M, so that
the programmer may store data or results in consecutive locations.

Find the sum of ten integers which are stored in consecutive memory locations, be-
ginning at location M. Begin your instructions in symbolic location L. Store the sum in sym-
bolic location SUM. The program for this problem is given in Figure 20.

IBM 5. Frocessing Division SHARE 704 Symbholic Coding Form
Problem
Codet John Smith P September 15, 1959 P 4 R
H i Location op Addrem, Trg Decrement Comments Jdenttr
t L 6|18 o1t |n o n|ln [
| (Initial Contro} Cards)
I ORG | [100
L LXA | |NINE,1 Loads IR-1 with 9.
i CLA | (M c(M)—>c(AC),
0 ADD | [M+10,1 ¢[M+10-c(IR#1)] +c(AC)—ac(AC).
i TIX *-1,1,1 If not the last number to be added, transfers
! i to previous instruction. If last number, goes
!]]] to next instruction.
! STO_| |sum 5 Stores the sum in SUM. _
| TRA | |FINISH ‘ Transfers to END Routine.
__:_. NINE | | DEC | |9 i Stores the number 9 in location nine.
| M | | DEC | |N; ’ Begins storing data at location M.
L DTJC_ Ny Nj(i=1,2,...,10) are integers.
; -
’ b
I . '
] | DEC | |Nig
| _SUM _% Reserves 1 core unit for the sum.
| (Fal Cfmﬁrol IaT:LB #2-11) '
1

Figure 20 — Symbolic Program to Find the Sum of Ten Numbers

Note that every time you use a symbol in the address, tag, or decrement field, that
~symbol must be defined in some location field.
If you know the absolute address of a piece of data, you can, if you wish, use this
absolute number when referring to the data.
Here is another example, similar to the last example in Chapter IV,
| Find the value of each y, in the following expression, and store y; in every third
location beginning at location RESULT. Assume that all products will not exceed the
capacity of the MQ. Begin data at location DATA

y;=&2 +3x,-5),i=1,2,...,10

27

In solving this problem, you will illustrate the use of an index register to increase

rather than to decrease the address of an instruction. Since the computer always subtracts the

contents of the index register from the address of the instruction tagged with that register,

you need only to make provision for the index register to contain a negative integer. Do this

by initially setting the contents of the index register equal to zero, and then by using a neg-

ative integer in the decrement part of a TXI instruction used to modify the index register.

The flow chart is Figure 21a, and the program is Figure 21b.

1=1
A]=0 B C
10 » c(IR-1) @ s I
0- C(IR—-Q) yi~xi(xi+)— yi - C(b +])
D E = F
#
A
j +3 -]

_,@

(a) Flow Chart

IBM o processing Divtsien SHARE 704 Symbolic Coding Form
Problem
4 John Smith [P**September 15, 1959 [P 1 of
H Location op Addrem, Tag Decrement Comments s

12 6| 7|8 w1 fn

(Initial|Contro] Cards)

! A LXA | |TEN,1 10-~c(IR-1).
! LXA ZERO, 2 0—»c(IR-2).
! B CLA DATA+10,1 x;wc(AC).
! ADD THREE (x:+3)—>c(AC).
sTO0 | |TEMP (x;+3)+¢(TMEP).
LDQ TEMP (X§+3)*C(MQ).
MPY DATA+10,1 X, (x,+3)+c(AC) and c(MQ).
STQ TEMP X (x;+3)-*c(TEMP).
| CLA TEMP X; (x;+3)->c(AC).

i ADD | [NFIVE

[xy(x1+3)-5}>c(AC).

| | DEF _| | TNX | |FINISH,1,1

¢ | STO_| |RESULT,?2 {x;(x;+3)-6}>c(RESULT+j) .

If last computation, goes to FINISH.

If not, goes to next instruction.

G TXI1, B,2,-3 Adds 3 to IR-2, then goes to B.
TEN DEC 10
ZERO | | DEC | |0
DATA | | DEC | |78
| Reserves 10 core unit beginning at DATA.
H DEC 65
THREE | | DEC 3
TEMP_ | | BSS | |1 Reserves 1 core unit for TEMP.
NFIVE E -5
| RESULT BSS 10 Reserves 10 core units beginning at RESULT.

! (Final| Contro] Qards)

(b) Program

Figure 21 — Symbolic Program to Evaluate y, = (x? + 8x,-5),i=1,2,...,100

28

When you assemble this program, the symbolic assembly program, or SAP 3-7, will
change all symbolic addresses to absolute addresses and will prepare a program on tape 4
and on punched cards ready to be run on the computer. At the same time, SAP will cause the
computer to print on tape 9 an assembly listing which consists of the symbolic program and

the octal location of each of these instructions.

29

SUMMARY - Chapter V

In this chapter you began your study of SAP 3—7, an automatic coding system. In SAP
3—7, you use symbolic addresses which consist of one to six consecutive characters, one of
which must be alphabetic.

SAP 3-T7 also will interpret the arithmetic characters (+, -, *, /) in an address, tag,
or decrement as add, subtract, multiply, and divide.

The following pseudoinstruction was introduced:

M BSS N Block Reservation
Reserves N core units beginning at location M.

30

EXERCISES - Chapter V

1. Punch the cards for the last example of this chapter and run the example on the com-
puter. Look at the assembly listing and see what locations SAP assigns to each instruction
and data item,

2. Do the problems at the end of Chapter IV, using symbolic addresses. Redraw the flow
diagrams. Store the answer in core storage, beginning at symbolic location RESULT.

31

CHAPTER VI
BELL INPUT-OUTPUT SYSTEM

To get information from punched cards into the core storage of the IBM 704 and to get
printed results, you have been using certain control cards. Before these cards can be ex-
plained, certain details about the computer and its operation must be mentioned.

The Applied Mathematics Laboratory of the David Taylor Model Basin uses for the IBM
704 an operating system developed by the Bell Telephone Laboratories, and known as BE SYS 2.
This system is itself a computer program designed to control input-output and other general
operations. It is stored in locations 0-23 and 98,672-32,768. Thus these locations are not
available for use by the programmer. Since the IBM 704 operates internally in the binary num-
ber system, it is more convenient to refer to locations in the octal number system (see Appendix
C) rather than the decimal system. Thus, in the octal system then, locations 0—27 and 70000—
TT7777 are reserved for the Bell System,

Here at the Applied Mathematics Laboratory the 704 has ten magnetic tape units num-
bered 1-10. Information can be transferred from core storage to tape, and vice versa. Tapes
1, 2, and 9 are reserved for use by the Bell System; tapes 3, 4, and 5 are used for SAP 3-T7
and FORTRAN, an automatic coding system which will be explained in Chapter XIII. The
other tape units are available for use by the programmer.

The Bell System is activated by the reading of control cards. On these control cards
are punched the pseudo—operations (defined below) in exactly the same way as SAP instruc-
tions are punched; i.e., the operation code is punched in columns 8-10; the location, in col-
umns 1—-6; and the address, tag, and decrement, in columns 12-72.

Notice that on these control cards there is a comment following the address, tag, and
decrement. (The address, tag, and decrement are often called the variable field.) However,
the machine does not interpret the comment as part of the instructions, since this comment is

separated from the variable field by a space.
JOB (Initial Control Card No. 1)

JOB prepares the system for execution of the program to be performed and causes the
~ computer to read the next card.

This is the first card in performing any job.

SAP (Initial Control Card No. 2)

This card loads SAP into core storage and executes an assembly as explained in the
previous chapter. If the assembly is successful, it translates the SAP program into machine
language and places the result on tape 4 and on punched cards, which may be reserved for

32

rerunning the problem.* When an unsuccessful assembly occurs, the instruction SAP causes
information to be printed, telling why the assembly failed, and then causes the computer to
stop or to transfer control to the next JOB card if one exists. (See Reference 3.)

This card is placed after the JOB card.

END ‘‘START’’ (Final Control Card No. 9)
This signifies the end of the program, where ‘“‘START’’ is the symbolic location of the

first instruction to be executed in the program,

This card is placed at the end of the symbaiic deck.

LOD 4 (Final Control Card No. 10)

This instruction loads the translated program which has been written on tape 4 into
core storage and causes the computer to read the next card.
This card is placed after the END card.

TRA (Final Control Card No. 11)

This card transfers eontrol to the location ‘‘START’’ specified in the END card of the
program if the assembly is successful. That is, the computer begins now to execute the
assembled program.

This card is placed after the LOD 4 card.

The above instructions leave Final Control Cards Nos. 2—8 yet to be explained, but
this will be done in the next chapter. These unexplained cards should be inserted just be-
fore the END card.

*For a description of the binary cards and their use, see Chapter X.

33

SUMMARY — Chapter VI

To run a SAP program on the 704, the Bell System is used for input-output operations.

The following pseudoinstructions are punched on cards and used in the sequence given in

Figure 22.

IBM Data Processing Division SHARE 704 SYmbﬂliG COding Form
Problem
o John Smith [°** September 15, 1959 |™* 1 o
HI Locaton op Address, Tag Decrement Comments dosnen
1 ,1 6] 78 0] nin
JOB Initializes the system.
| SAP | Translates instructions and writes them on

tape 4 and cards.

(

et Pr m,

—

o&;& [of #2-8) Controls printing.
| _END | | "START" Ends translation,
| LOD | |4 Loads translated instructions into core storage.
|_TRA | Causes translated instructions to be executed

beginning in location "START".

|
i
!
!
| (Final ¢
[
|
I
|
i
!

Figure 22 — Order of Instructions to Run a Symbolic Program Using SAP 3-7

34

EXERCISES ~ Chapter VI

1. Write a symbolic program to evaluate the following polynomial:

- 5 4 3 2 e 1=
y; = ax) +bx{ +ex] +dx{ +ex; +f51=1,2,...,10

First draw a flow chart. Assume small integer values for x and the constants. Begin
the instructions and data at any convenient location and store the answers beginning at sym-
bolic location RESULT. Then punch the necessary cards and run the problem on the 704.
Check your answers with the machine and if they are not correct, then correct your program.

2. Write a symbolic program to solve by determinants the following two equations. Store
the answers beginning at location RESULT.

+Tx-5y=9
+38x +4y =10

35

CHAPTER VI
SUBROUTINES

In mathematical problems, functions such as the square root of a number, the cosine of
an angle, etc. frequently have to be evaluated. The manufacturer of a computer could make
an instruction that would evaluate any one of these. However, to build into a computer all the
functions that one might need would be prohibitive in cost and would require a machine of
enormous size. Therefore, subroutines are used, as explained below, to evaluate any special
functions which are needed and are not provided as instructions in the computer.

3y using approximations involving only the four arithmetic operations, a program can be
written to evaluate such functions. For example, a program can be written to evaluate trigono-
metric or logarithmic functions by use of Chebyshev polynomial approximations. Such a pro-
gram could be saved on tape or cards and used whenever a problem requires the evaluation of
this function. A prewritten program used in this way is called a subroutine. Subroutines are
used not only for special mathematical functions but also for many other operations that are
frequently needed, such as input-output. The flow chart symbol for a subroutine is: >

For practical use of a subroutine, a set of pseudoinstructions, or the calling sequence,
is used to incorporate the subroutine into the main routine. This is best illustrated by an
example,

In the exercises of the previous chapters, Final Control Cards Nos. 2—8 have been
causing the computer to write the results on tape 9. These cards contain the calling se-
quence of the print subroutine, which is in core storage as part of the Bell System. In the
Bell System instructions, the calling sequence of this subroutine is described as follows.
(See Final Control Cards Nos. 3, 4, 5, 7, and 8. Final Control Card No. 2 is ORG 500, which
stores the calling sequence beginning at location 500. Final Control Card No. 6 is explained
later.)

TSX OUTPUT, 4 (Final Control Card No. 3)

NTR F,,N (Final Control Card No. 4)

MON A, , B (Final Control Card No. 5)

Normal Return

The Bell System instructions further state that this routine will write on tape N a con-

secutive block of words from core locations A to B, inclusive, where F is the location of the
format of the printout desired. The following format was used in the Final Control Cards of
the exercises to print integers (see Reference 2):

F BCD 1(N13) (Final Control Card No. 7)
SVN -1, 7, -1 (Final Control Card No. 8)

In the exercises, N was set equal to 9 because the Bell System uses tape 9 for all
output; thus the result will be printed after the SAP listing.

36

The last line of the calling sequence is called the normal return. This means that after
the integer is written on tape the computer will take its next instruction from this line. In the
Final Control Cards for the exercises, the instruction used as the normal return was (see
Final Control Card No. 6):

TRA ENDJOB

This is a Bell System pseudocode which signifies the end of the problem and writes
on tape 9 the words Post-Mortem Dump followed by the contents of the index registers, the
accumulator, the MQQ register, and other information to be explained later.

Since all the control cards have now been explained, a complete program illustrating
their use will be given, Find the sum of two numbers, a and b, and print the sum on tape 9,
The flow chart is in Figure 23, followed by the program in Figure 24.

BEGIN PRINT STOP

(sure)L som =0t o >—{ o0

Figure 23 — Flow Chart to Evaluate the Sum of Two Numbers

IBM Data Processing Division SHARE 704 SYmbUlic Coding Form
Problem
Codr John Smith [P** September 15, 1959 [Py S
H1 Loaden op Address, Tag Decrement Comments Jdent
1 :1 6 718 10011712 7|71 80
| JOB
[SAP
' ORG | |100
| BEGIN | | CLA | |DATA 5—=c(AC).
! ADD | |DATA+1 (5+2)—»c(AC).
i STO SUM T—w-c(SUM).
| PRINT | | TSX | |OUTPUT,4 R
' | NTR | |F,,9 ¥ Prints integer located in SUM on tape 9.
! MON | {SUM,,SUM
| sTop TRA | |ENDIOB _MA Ends problem and writes Post-Mortem
! on tape.
| DATA | | DEC | |5 Places integer 5 in location Data.
! | DEC | |2 Places integer 2 in location Data+1.
_i_S_UM_._ | BSs | |1 ' Reserves 1 storage unit for SUM.
| F | BCD | [1(N8) Format for print routine.
! | SVN | | -1,7,-1
! END | |BEGIN
| LoD | (4
| TRA
]
I

Figure 24 — Symbolic Program Associated with Flow Chart of Figure 23

37

The Bell System has a few other subroutines, besides the ‘‘PRINT’’ subroutine used
above, as part of its program. In addition, many more prewritten routines are available through
an organization called SHARE, made up of installations having IBM 704’s, and organized for
the purpose of exchanging information about the computer and avoiding duplication of effort
in preparing subroutines. Thus, when one installation writes a routine to evaluate a function,
that routine becomes available to all other members of SHARE. These subroutines are punched
in symbolic form on cards. To use one in a program, the symbolic deck is placed before or
after the data, and the calling sequence is placed in the position where the subroutine is to
be used.

All symbols in the calling sequence of the subroutine must be defined, and core storage
must be reserved for the ‘*‘COMMON’’ of each subroutine, as specified in the writeup of that
subroutine. For example, the routine shown on Figure 25 specifies that the ‘“‘COMMON’ is
COMMON through COMMON+3 or 4 storage units.

The subroutines that are most frequently used are stored on tape rather than on cards
because it is easier and quicker to get the subroutine into the core storage from tape than from
cards. The Bell System uses Tape 7 as the library tape. To incorporate in the main program
a subroutine which is on tape, a library card, rather than a symbolic deck, is used and is
punched as follows:

Columns _Data_
1-6 SHARE identification number
7 Blank
8-10 LIB
11 Blank
12 7

An example is now given. Suppose it is desired to evaluate Y = tan X.

To find the value of tan X, a SHARE subroutine which is on the Bell System library
tape is used. A description of this subroutine is reproduced in Figure 25. Notice that to use
this subroutine, X must be expressed in radians and it must be stored in the accumulator in
normalized floating-point form before entering the subroutine. Floating-point numbers will be
explained in the next chapter. Here it is necessary to know only that the instruction DEC
will place a number into core storage in normalized floating-point form if the number is speci-
fied with a decimal point in the address field.

The flow chart for this problem is given in Figure 26 and the program is given in Figure
27.

Notice that F here is defined differently than in the previous chapter. This is because
the result is not an integer but a decimal number, and the F as defined above is a format for
printing numbers with a decimal point,

Another example using subroutines is given and at the same time a new flow chart

symbol is introduced, the variable connector.

38

SHARE SUBRéUTIRE
IDENTIFICATION
Tangent, CL TANl
Re G. Jobmson ~ 1=7=56
Lookheed Airoraft Corporation, California Division

PURPOSE

Compute: tan X for all X in radians,
Error X(1+tan®X) (5+1078),

METHOD
The continued fraction,
X
-
> o

xR
L

':% 1s used for 10~% < |x| <226,

tan X =

1r | x| < 10°%, tan X 1s set equal to X.
Ie |x| :’ﬂ -8“. tan X ia set equal to gero,

D2AGE
LOO___OP _ ADDR. __ TAG __DEOCR,
L 78X TAN 4
g Normal Return

Normalised floating point X, in radians, must be in the AC.
dormalised floating point tan X is in the AC on Normal Return.

SIORAGR
63 words plus OAMMEN through CEMMEN + S,

Figure 25 — SHARE'Subroutine for Evaluating TAN X

39

A B C

@ | X—c(AC) Y~ ¢ (RESULT)

Print the
Result

Figure 26 — Flow Chart to Evaluate the TAN X Using a SHARE Subroutine

IBM Data Processing Division SHARE 704 stbUlic Cﬂding Form
Problem
Codr " John Smith [P** September 15, 1959 [P 4 oy
H i Location op Addres, Teg Decrement Comments et
1 !1 6| 718 1wl 247 %0
' JOB
l SAP
|ORG | |100
A cLA_| X ' X—>c(AC).
, B | TSX_ | |TAN,4 tan X—~c(AC).
c STO | |RESULT Y—>c(RESULT),
D | TSX | |OUTPUT, 4
NTR F,,9 Prints result Y on tape 9.
! MON | |RESULT,,RESULT
| E TRA | |[ENDJOB Ends problem.
| CLTAN1 LIB 7 Place ent subroutine re.
Fox DEC | (1.25 , Places 1. 25 in normalized floatingspoint
: = form in core gtorage.
| RESULT | |BSS 1
| F BCD | |2(F16.8)
SVN -1,7,-1
COMMON | | BSS 4
! END | A
' LoD | 4
TRA

Figure 27 — Symbolic Program Associated with Flow Chart of Figure 26

It may happen that a section of coding which is repeated many times calls alternately
upon each of two or more subroutines. This situation requires the repetition of the coding of
the section before the calling sequence for each subroutine. Such repetition can be avoided
by the use of a switch, or variable connector. Suppose you have a large program which con-
sists of three parts: main routine A, subroutine B, and subroutine C. And suppose that all
parts are long and that A is repeated 50 times. Further, suppose that the sections are done
in the order A, B, A, C. Each time after C is done, a test is made to see if the conditions for
problem completion are satisfied, in which case the problem is stopped. A suggested flow
chart is given in Figure 28. In this flow chart the symbol for the variable connector or switch

40

is @5 . The computer, when it comes to this connector, will go either to or , ac-
1,2

cording to how & has been set. The delta switch is merely a transfer instruction. The pro-
gram associated with this flow chart is given in Figure 29. Notice that after you load index

register 1 with N, you set the variable switch 8 to §, as follows:
The instruction
CLA DELTA
clears and adds the contents of DELTA, which is the instruction TRA X4. Thus the com-

puter, when it first comes to this instruction, will transfer control to location X4 and continue
from there. After the calling sequence for subroutine B, notice that you again set the delta

switch, this time to 6 . Then the computer, when it comes the second time to the delta switch,
2

will transfer control to location X6, etc.
It is worth noting that the variable connector may connect more than two parts, also

that a program may contain several of these variable connectors or switches.

Load IR—1
with n

'

X9 6 - §

X1

1 ol
i
X3
- Part A
peea (2) (5
1,2

e Xg¢ | Subroutine C

X4 | Subroutine B

End of
Problem

X5

X8

Figure 28 — Flow Chart Demonstrating Variable Connector

41

IBM Data Processing Division

SHARE 704 Symbolic Coding Form

Problem
Coder John Smith [°* September 15, 1959 ey 1
Wi Loaocn op Addrem, Tag Decrement Comments i desnen
IJJ 6|78 o1 _ _”,_71‘177\‘
i JOB i
I SAP
i ORG | [100 i
I x1 LXA | [N,1 Loads index register 1 with n.
| X2 CLA | |DELTA1 Sets switch delta to delta 1.
! | STO | |DELTA
X3 | PART)
¢ Instructions for Part A.
Iy -
| DELTA | |(_) Space for variable connector.
|) X4 Calling
a _|| sequenc Instructions for Part B.
; for 1
| brouting . ,
! B
| X5 | CLA | |DELTA2 Sets switch delta to delta 2.
| STO | |DELTA
| _;,alﬂn&E 1 - i
' || bequenck . mstructions for part c.
for “
! gubroutipe |
| L | C |
L ox1 TIX_| |X2,1,1 Tests for end of problem. _ ‘
1 X8 TRA | |ENDJOB Completes the problem.
| N ' DEC | |50 Program constant.
' DELTALl| | TRA | |X4 Program constant.
| DELTA2| | TRA | |X6 . _Program constant.
|
! | Enp| [x1
i LOD| |4
! L_mA_
|

Figure 29 — Program Associated with Flow Chart of Figure 28

42

SUMMARY — Chapter ViI

Subroutines are prewritten routines which are stored either on tape or on cards. To
place the program of a subroutine on cards in the main program, the subroutine deck is placed
before or after the data. If the subroutine is on tape, a card with the pseudoinstruction LIB
must be used. In Columns 1—6 is punched the SHARE identification numbery in Columns 8-10,
the letters LIB; and in Column 12, the number 7.

To use the subroutine, the calling sequence must be given and all symbols including
the COMMON must be defined.

If the subroutine is a part of the Bell System program, the subroutine is already in the
core storage; therefore, you need only to define the symbols and use the calling sequence.

A new programming technique was introduced here, the variable connector or switch.
This is indicated in a flow chart as(8), where & is the name of the connector and n is the

number of connections. 1,2,...,n

43

EXERCISES - Chapter Vil

1. Evaluate Y = tan X; (i=1,2,3) for X, = 1.00 radians, X, = 1.25 radians, and X, = 1.30

radians. Use the subroutine reproduced on Figure 25, and notice that this subroutine is on the
library tape.

2. The subroutine reproduced on Figure 30 will evaluate / X. However, this subroutine
is punched in symbolic form on cards. Find the square root of the following three numbers:

12, 158.92, and 18932.51. The symbolic deck may be obtained from the supervisor of computer
operations.

3. Store 86 numbers in the memory as follows:
a, i=1,2,...,12)
b, (i=1,2,...,12)
c,(i=1,2,...,12)
Then draw a flow chart using a variable connector to evaluate the following:
Ai Ci (l = 1’ 4,79 10)
A, +C, (1 =2,5,8,11)
A, +C,(1=3,6,9,12)

where

(0.212a, + 7.852b,)?

A, = e ,i=1,2,...,12

C,=5.786c,, i=1,2,...,12

Finally, write a program using the flow chart and run the program on the computer.

44

SHARE SUBROUTINE

IDENTIFICATION

Square Root, CL SQRT 03

R. Johnson = 1l1-22-55

Lockheed Alireraft Corporation, California Division

PURPOSE
Takes the square root of the absolute value of X, a floating

point number.

RESTRICTIONS

None

METHOD
Four Newtonian iterations.
Accurate to eight significant decimal figures.
Indication of negative X.

USAGE
Loc op ADDR, TAG
n TSX SQRT 4
nel Return for X negative
ne2 Normal return

Place X in the accumulator in normalized floating point. The
Square root of X will be in the accumulator after return in
normalized floating point.

CODING INFORMATION

Location symbols used are P, Py, and C. Constants start ut C
and are three octal words, 001000000000, 100000000000,
000000000004, respectively. Erasable storage, COMMON through

COMMON ¢ 1, must be assembled with subroutine.
2.055 milliseconds 1f X >O0.
«024 milliseconds if X =0,
2.103 milliseconds if X <0 error return.

Figure 30 — SHARE Subroutine for Evaluating the Square Root of the Absolute Value of X

45

CHAPTER VIlI
NUMBERS IN MACHINE LANGUAGE

The IBM 704 is a binary computer; that is, it uses the binary number system in perform-

g seeeeebyb by,

is represented in binary form as b - 2% + b _.2® 14+ .. +b,.22+b, .21+ b, - 2%, where

ing all arithmetic operations. As explained in Appendix C, a number, b, b

b, (i=1,2,...n)is either a one or a zero. For example, the binary integer 101 is 1 x 22 +
0x2! +1x2%or 5 in the decimal system. Of course, the size of a number you can place in
core storage (or a register) is limited by the capacity of the core storage unit (or register).
Each core storage unit, commonly called a word, has a capacity of 36 binary digits (bits).
The first bit is reserved for the sign of a number. A zero in this position indicates plus, and
a one indicates minus. The other bits are numbered 1-385 and are represented as shown in
Figure 31.

(s = sign)

Bits S 1 2 300..-....0....000035
Figure 31 — Bits of a Core Unit

Thus the numerical capacity of one word is 2351 or 34,359,738,367, if you consider the
number to be an integer.

In the arithmetic operations ADD, SUB, DVH, and MPY, that you have learned, the
numbers used were integers; that is, the binary point was assumed to be to the right of the
last digit. Actually, the binary point can be considered to be between any two bits. of the
word if sufficient care is taken to scale properly when using the arithmetic operations. These
numbers and operations are called fized-point numbers and fized-point operations, respectively.

Fixed-point numbers are rarely used except to represent integers. Numbers that are
not integers are usually represented in floating-point form. A number is in floating-point form
when it is expressed as a signed fraction F times 2”, where n is an integer. For example, the
binary number 0.01 = 0.1 x 2= 1, If the most significant digit is immediately after the binary
point, the number is in normalized floating-point form.

A floating-point number is represented in the core storage as follows: the first bit is
the sign bit; bits 1-8 are reserved for the exponent of 2; and bits 9—35 are reserved for the
fraction F (Figure 32). So that you have to work with positive exponents only, the exponent
is increased by 128 before the computer stores it in positions 1—-8. This number is then re-
ferred to as the characteristic (i.e., the exponent-of-two plus 128) of the number., Thus, the
range of the characteristic is 0 ¢ ¢ < 255, and the range of n is —128 < n < 127.

46

(5]
)
.g
o 3
w % g
= a =S
w O St [5]
°F 2 £
e g O [c2
,EPI.. e\ —\
n i N
Bit s 1 2 ... 8 910 35

Figure 32 — Floating-Point Number Representation

The integer 5 is represented in normalized floating binary point form as 0.101 x23. Be-
fore placing this number in the core storage, the exponent is of two increased by 128 to get a

characteristic of 131. (See Figure 33)

cil?’l Fi5

o
(=

oj1(ojojofofoj1f{1}j11]0]1
Bit S 1 2 3 4 5 6 7 8 9 1011 12..... 35

Figure 38 — Decimal 5 in Normalized Floating-Point Binary Form

If you store numerical data in floating-point form, you must use the floating-point arith-
metic operations, which are FAD Y, FSB Y, FMP Y, and FDP Y (add, subtract, multiply, and
divide, respectively). These instructions are used much like the corresponding fixed-point
instructions, and will not be explained in detail here. (For details, see ‘‘Floating-Point

Arithmetic Operations,’’ Reference 1.¥)
However, an explanation of what happens when the computer does fixed-point operations

using integers as data is given here. Much of this explanation can be readily extended to

apply to floating-point operation as well.
First, note that the accumulator contains 38 bits: a sign bit, Q and P bits, and bits

numbered 1-385, as indicated in Figure 34.

Accumulator

S Q P 1 2 * & o 6 0 0 0o v 0 35
Figure 34 — Bits of the Accumulator

If the sum of two integers exceeds 235—1 (the capacity of bits 1—85), the extra digits
are shifted first into the P bit and then into the Q bit and otherwise are lost. This is called
overflow.

*In the IBM 704 Reference Manual, there are two numbers associated with each instruction. These numbers

will be explained in the next chapter,

47

Since the instruction STO SUM will place only the sign and bits 1—-35 of the AC into
core location SUM, then in case of overflow the location SUM will not contain the correct value
of the SUM (because the Q and P bits are lost). Naturally, you do not desire incorrect an-
swers. Therefore, an indicator and light are built into the computer to tell when there is over-
flow in the accumulator, and there are also instructions to test this indicator. These operate
in the following manner. Whenever a 1 passes into or through bit P of the accumulator as the
result of an instruction, the overflow indicator and light (for visual checking) are turned on.
Then either of the instructions TOV Y or TNO Y tests the condition of the accumulator over-
flow indicator.

The instruction ‘‘Transfer on Overflow’’

TOV Y
is used to check overflow. That is, if the overflow indicator and light are on when the com-
puter comes to this instruction, the computer will turn off the indicator and light and take the
next instruction from location Y. If the indicator and light are off, the computer proceeds to
the next instruction in sequence. Thus, on overflow you might have some sort of error routine
beginning at location Y. For instance, you might wish to print out the contents of the accumu-
lator and the data that caused the overflow.

The instruction ‘‘Transfers on No Overflow’’

TNO Y
also is used to check overflow. When the computer comes to this instruction and the overflow
indicator and light are off, the computer takes its next instruction from location Y. If the in-
dicator and light are on, the computer first turns off the indicator and light and then proceeds
to the next instruction in sequence.

The use of these instructions is illustrated here with a simple problem. Find the sum of

two numbers and store the result unless overflow occurs. In that case, do not store the result.

IBM 5.tx Processing Division SHARE 704 Symbolic Coding Form
Problem
Cod __ John Smith ™ _September 15, 1959 [4 Rl
H Location Op Address, Tag Decrement ‘Comments m
1312 6|l 748 101112 724 80
! JOB
' | SAP |
! ORG | [100
! | CLA | |X cfx)—>c(AC).
! ADD | [Y c(x) + c(Y) —= c(AC).
| TOV ERROR If overflow occurs, transfers to error
! routine. If not, continues to next instruction.
! | STO | |[RESULT .c(x) + ¢(Y)— c(RESULT).
g | TRA | |[ENDJOB
|| ERROR | _(Mmcﬁons for
! | Error|Routine)
! END | (100
! 1OD | |4
! |_TRA |

Figure 35 — Program to Check for Overflow in Addition

48

At ERROR, you might have the computer print out the contents of X, Y, and the accu-
mulator so that you can find out why overflow occurs. If there is no overflow, the computer
will store the sum in RESULT and continue from there. AC overflow is also possible in fixed-
point subtraction (SUB) .

Since, in fixed-point division (DVH), division does not take place if |C(Y)| <|C(AC)|,
a signal called the divide-check indicator and light is turned on when the above condition
occurs. At the same time, the computer stops. When the programmer observes the divide-
check light, he can tell the operator of the 704 to push the control button and continue the

program. However, there is another instruction, called ‘‘Divide or Proceed”’
DVP Y

Division takes place under the same condition as with the instruction DVH Y. However, if
IC(Y)| <IC(AC)|, division does not take place, the divide-check indicator and light are
turned on, and the computer proceeds to the next instruction.

The instruction that is used to test whether or not division has taken place is “Divide
Check Test”’

DCT

When the divide-check indicator and light are off and the computer comes to the DCT instruc-
tion, it will skip the next instruction and proceed from there. If the divide-check indicator
and light are on, the computer turns them off, then proceeds to the next instruction in se-
quence. For example, suppose you want to divide X by Y, where X does not exceed the capa-
city of the MQ, and you want to check whether or not division takes place. You would pro-
gram as in Figure 36.

The instruction DCT is also used to check whether or not floating-point division takes
place.

In the floating-point arithmetic operations, AC overflow occurs when the characteristic
c of the result is too large; i.e., ¢ > 255. If the characteristic ¢ is less than zero, it is
called underflow. The instructions TOV and TNQ are also used to test overflow or underflow
of floating-point arithmetic operations. During floating multiply or divide, it is possible that
the characteristic in the MQ is too small or too large. In this case, the MQ overflow indicator
and light are turned on. To test MQ overflow or underflow, use the instruction *‘Transfer on
MQ Overflow”’

TQO Y

This instruction operates as follows. If the MQ overflow indicator and light have been turned
on by an overflow or underflow in the MQ characteristic during a previous floating-point opera-
tion, the computer turns off the indicator and light and takes the next instruction from location
Y. If the indicator and light are off, the computer proceeds to the next instruction in sequence.
For a full explanation of the floating-point operations, see pp. 21—26 of Reference 1.

49

IBM bu Processing Division SHARE 704 Symbolic Coding Form

Problem

Coder John Smith [P September 15, 1859 [~ 1 oy
H Location Op Address, Tag Decrement Comments
112 6| 7]8 0] 1|12

JOB

' | SAP |
ORG | [100

! c ZERO 0—=c(AC).

! | sTQ | |X X—-c(MQ).

1 pvP | |Y Quotient (§)—= c(MQ)

|

and remainder— c(AC), iflc(¥)>]c(ac).

DCT Checks to see if division takes place.

If division takes place, computer

skips next instruction and proceeds from

there. I division does not take place,

computer goes to next instruction.

| TRA | |ERROR " Goes to "ERROR" routine.
| STQO | |REM Remainder —~c(REM).
| STQ | |QUOT QUOTIENT —= c(QUOT).

10D | |4

Figure 36 — Program to Check Whether or Not Division Takes Place

50

SUMMARY - Chapter VIII

Since the IBM 704 is a binary machine, all numbers are represented as a combination
of ones and zeros. Each core unit consists of 85 bits plus a sign bit.

Numbers in storage can be represented either as signed integers, fixed-point numbers,
or floating-point numbers.

For integers and fixed-point numbers, the first or S bit is reserved for the sign, and bits
labeled 1—-35 are reserved for the number. (See Figure 31.)

For floating-point numbers, F x 27, the S bit is reserved for the sign, bits 1-8 for the
characteristic of the number, (which equals n + 128), and bits 9—35 for the Fraction F. (See
Figure 32.) Instructions for arithmetic operations with floating-point numbers are:

FAD - addition,

FSB - subtraction,

FMP - multiplication, and
FDP - division.

The accumulator has two more bits than a core storage unit has. These are called the
Q and P bits, and they are used for overflow in the accumulator. (See Figure 34.) The com-
puter has an indicator and light to indicate this condition. The instructions used to test
whether overflow has taken place in the accumulator are TNO and TOV.

To indicate whether or not division has taken place, the 704 has a divide-check light
and indicator that are turned on if division fails to take place. To test whether this indicator

is on, the instruction DCT is used.

TOV Y Transfer on Overflow
If the overflow indicator and light are on when the computer comes to
this instruction, the computer will turn off the indicator and light and take
the next instruction from location Y. If the overflow indicator and light are
off, the computer proceeds to the next instruction in sequence.

TNO Y Transfer on No Overflow
If the overflow indicator and light are off when the computer comes to
this instruction, the computer takes its next instruction from location Y. If
the overflow indicator and light are on, the computer first turns off the indi-
cator and light, and then proceeds to the next instruction in sequence.

DCT Divide Check Test
If the divide-check indicator and light are off, when the computer
comes to this instruction, it will skip the next instruction and proceed from
there. If the divide-check indicator and light are on, the computer will pro-
ceed to the next instruction in sequence after turning off the indicator and
light.

51

TQO Y Transfer on MQ Overflow

If the MQ overflow indicator and light have been turned on by an over-
flow or underflow in the MQ characteristic during a previous floating-point
operation, the computer turns off the indicator and light and takes the next
instruction from location Y. If the indicator and light are off, the computer

proceeds to the next instruction in sequence.

DVP Y Divide or Proceed
Division takes place exactly as for DVH if |c(Y)|>c |c(AC)|. How-
ever, if |c(Y)|<|c(AC)|, division does not take place, the divide-check indi-
cator and light are turned on,.and the computer proceeds to the next

instruction in sequence,

52

EXERCISES — Chapter VilI

1. Add the integer 534 to the integer 34,359,738,367 using fixed-point arithmetic and
check for overflow, If there is no overflow, store the sum and write it on tape 9. If there is
overflow (which there should be), transfer to ENDJOB. This will cause the computer to stop
and write on tape a ‘‘Post Mortem,’* which will be printed after your SAP listing. In this
Post Mortem, you will see the contents of the accumulator, bits 1-35, and the contents of
the Q and P bits printed side by side. Notice that the P bit contains a 1, which indicates
an overflow.

9. Divide 50 by 0 using fixed-point arithmetic divide. If you do not use the instruction
DCT, you will notice in the Post Mortem the words ‘‘divide check on,’’ indicating that divi-
sion did not take place.

3. Place the number 3.10 x 103 into the computer in floating-point form and multiply it
by the number 2.14 x 10%. To place a number n x 10° in the computer in floating-point form,

use the pseudoinstruction
DEC nEe
(See the definition of DEC in the SAP 3-7 instructions).
4. Solve the following system of equations, using floating-point arithmetic:

9.2x - 16.1y =11.5
3.5x ~ 2.0y = -2.5

53

CHAPTER IX
INSTRUCTIONS IN MACHINE LANGUAGE

In the last chapter you saw what numbers, both fixed and floating type, looked like in
the core storage. Now you will see how the various instructions appear in the computer. Ac-
tually, you have been using at all times letters to represent an instruction; for instance, ADD,
SUB, etc. However, the 704 is a binary machine and everything is represented internally as a
combination of 1’s and 0’s.

All instructions are divided into two types, A and B.

Type A instructions have a decrement part, whereas Type B instructions do not.

In Type A instructions, bits S, 1, 2 are reserved for the operation code. Since each
instruction is represented by a combination of 1’s and 0’s, you could have 23 or 8 A instruc-
tions; however, there are only five; namely, TIX, TNX, TXI, TXL, and TXH. Bits 3—17 are
reserved for the decrement; bits 18—20 are reserved for the tag; and bits 21—35 are reserved
for the address of Type A instruction. Type A instructions are represented as indicated in
Figure 37.

Operation Decrement Tag Address

——N— s N N — %

i N

S 1 92 8 ceececcccoeql 18 19 20 Q2] cccccccccecsap
Figure 37 — Type A Instruction

Notice that the decrement and address fields contain 15 bits each. Therefore, the
greatest number for the decrement or address is 215—1 = 32,767, which makes it possible to
refer to any one of the 32,768 core locations. Further, notice that each index register also
has a capacity of 15 bits,

In Type B instructions, bits S, 1—~11 are reserved for the operation code, bits 12—17 are
not used, bits 18—20 are reserved for the tag, and bits 21—35 are reserved for the address, as

indicated in Figure 38.

Operation Not Used Tag Address

/N

7 N l_'—'—'_/\'—_\ st Nty I % N

LA A * o 0 ¢ 0 ® s 0 0 00 0 0

i
S 1 2¢ceee11 12 ¢cce+°17 18 19 20 21 - e-« 35

Figure 88 — Type B Instruction

With each instruction you associate an octal code, which corresponds to bits 1-11,
and a sign, which represents bit S, These codes are found in the IBM 704 Reference Manual

54

(Reference 1)* and are printed beside each instruction in the SAP printout. For instance, the
octal code for ADD is +0400, and since each octal number is equivalent to 3 binary numbers
the octal code for ADD is represented in binary form as shown in Table 1 below.

TABLE 1
Octal and Binary Codes for ADD
Octal Code +1 0 4 0 0
Binary Code ojofoj1jojofojojojol ojf o
Bits S{112(3|4]|5(6]|7|8]9 |10 |11

The octal code for TIX is +2000. If you use the instruction TIX 101, 1, 1, it would
appear in the SAP printout thus (Figure 39):

Decrement
ddress
Operation

Address
g
~ Decrement

=
S
E
2 &

o B <
2 1 00145 TIX 101,

— Ta

-

00001

/

e

a0
.
w2
+
~

N

Octal Code**

Figure 39 — SAP Printout of TIX 101, 1, 1
This instruction is represented in core storage, as shown in Figure 40.

Opr Decrement Tag Address

e N A\ \,l\-—.\, A\ ~

o{1fofoj---fojrjofo|tjofo|* - -"olojL|t]|o]o]i|0]1
BitS S1230"'16171819202122.-0.00-0000.0-0...-.35

Figure 40 — Machine Representation of TIX 101, 1, 1

Thus far, you have seen that numbers and instructions are represented as a series of
of 1’s and 0’s in the computer. But suppose you have alphabetical characters which you
wish to print. How do these appear in the computer?

*The number which appears in front of the instruction in the Reference Manual refers to the number of cycles
required for the instruction to take place. Each cycle represents 12 microseconds.

**+Of course, if the decrement is large enough, any of the first three octal digits of the decrement may be non-

zero, even though the octal code for the instruction represents them as zeros.

55

First, note that punched cards can carry alphabetic as well as numeric characters.
These characters are called Hollerith characters, named for Dr. Hollerith of the U. S. Bureau
of the Census, who originated the idea of representing information by punched cards.
Hollerith characters are represented in the computer by six binary digits or two octal digits.
(See Table 2.) For example, the octal code for H is 30 and its binary form is 011000. Thus,
you see that one core unit can hold six Hollerith characters. Of course, you can mix the let-
ters with numbers, if you wish. To place an alphabetic character or a blank in core unit, use

the pseudoinstruction.

BCD VADDRESS

This instruction will convert the Hollerith data ADDRESS into binary form and store it in V
consecutive core locations, as indicated below.

Next, define a Hollerith word to consist of six Hollerith characters; i.e., six letters,
five letters and a blank, or three letters followed by a blank and two more letters, etc.

ADDRESS is the Hollerith data to be converted and may occupy columns 13—72 on a
card, If V is a blank, ten Hollerith words are converted and entered into ten consecutive
core units. If V equals n, a number from 1 to 9, n Hollerith words will be converted and
stored in n consecutive locations. V is punched in column 12. Here is an example.

Suppose you wish to use the heading FISCAL YEAR 1959. You must put this in stor-
age before writing it on tape. Since you have sixteen Hollerith characters, you must reserve

three core units for the title (i.e., V = 8). Thus, your instruction is
BCD 3FISCAL YEAR 1959
The octal code for this Hollerith data is given in Figure 41. Note that A indicates a

space.

A A+l A+2

—\ 7™\
—\ \ — \ \

26 31 62 23 21 43 60 70 25 21 51 60 01 11 05 11 60 60
F I § C A L A Y E AR A 1 9 5 9 A A

Figure 41 — Octal Code for FISCAL YEAR 1959

The data will go into three core units: A, A +1, A +2, as indicated below in octal

representation (Figure 42).

Loc Contents

A 26 31 62 23 21 43
60 70 25 21 51 60
01 11 05 11 60 60

Figure 42 — Octal Representation of FISCAL YEAR 1959 in Core Storage

Suppose now you desire to change the year to 1960. This can be done by using the
logical operations to extract the date and replace it with a new date. Notice the date consists

56

of the first 12 bits of the third core unit, A + 2. The logical operations will be explained in
the next chapter,

To write the Hollerith data on tape to be printed on paper, use the Bell System BCD
print subroutine, X PRINT, making sure the first digit to be printed is a space.* Its calling

sequence 18: TS X XPRINT,4

MZE A, , Z
This will print the Hollerith data contained in consecutive locations from A to Z. Thus to
print the data, FISCAL YEAR 1959, you would use the calling sequence:

TSX XPRINT, 4
MZE A, ,A+2

For further details of the F statements you have been using in the QUTPUT routine,
see the Bell System instructions under the heading (Reference 2) ‘‘System Subroutines.’’

TABLE 2
704 BCD CODE
Character Octal Code Character Octal Code

A 21 A (space) 60
3] 22 = 13
C 23 " 14
D 24 + 20
E 25 - 40
F 26) 34
G 27 (74
H 30 b) 53
] 31 * 54
J 41 - 40
K 42 . 33
L 43 / 61
M 44 , 73
N 45 +0 32
0 46 -0 52
P 47 0 00
Q 50 1 01
R 51 2 02
S 62 3 03
T 63 4 04
U 64 5 05
v 65 6 06
W 66 7 07
X 67 8 10
Y 70 9 11
z 71

*See ‘‘Carriage Control,”’ Reference 5.

57

SUMMARY - Chapter IX

All IBM 704 instructions are divided into two types, A and B. Type A instructions
have an address, tag, and decrement field, as indicated in Figure 43.

Operat. Decrement Tag Address

S —N\
P, S, ~ - N 2 Y

S 1 2 8..:00000ceel7 18 19 20 21cscssesses0435

Figure 43 — Type A Instruction

Type B instructions do not contain a decrement field. (See Figure 44.)

Operation Not Used Tag Address
”- e ~ - W ~ — ‘h—.\ ~ PN .

S 1 2¢+0e011 12 ««+17 18 19 20 21 ccccccce235
Figure 44 — Type B Instruction

With each instruction is associated a number called the octal code and a sign of the
instruction. The sign represents the S bit, and the four octal digits represent bits 1-11 of
the instruction.

Each Hollerith character (those produced by a manual key punch) is represented by
two octal or six binary digits. (See Table 2.)

BCD VADDRESS This instruction will convert the Hollerith data ADDRESS

into binary form and store it into V consecutive core locations. V

is either 1-9, or a blank which means 10 locations.

F BCD 1(nH) This is the format for Hollerith characters when using the
SVN -1,7, -1 print subroutine, OUTPUT, where n is the number of Hollerith
characters.

58

EXERCISES - Chapter 1X

1. Place your name in the computer and then write it on tape 9 so that it will be printed
after the SAP listing.

2. Hastings® gives the following approximations for 10%, 0 & x < 1.

2

10* = [1+8,x+a,x2+a,x3+a x*+a x5+a x5
a, =1.1512,87586 a, = 0.0754,67547
a, = 0.6628,43149 ag = 0.0134,20940
a, = 0.2536,03317 ag = 0.0056,54902

Write a program to evaluate 10* for some value of 0 { x < 1 and check your result with a
table.

3. Study your SAP listing from Exercise 2, observing the octal code of each instruction

and the contents of each field.

59

CHAPTER X
LOGICAL OPERATIONS

You previously saw that the index registers can be used to modify an address portion
of an instruction before executing that instruction. However, this did not change the address
portion of the instruction as it appeared in core storage. To change the address portion of an
instruction in a core unit, you could first clear and add the instruction into the accumulator,
then add an integer equal to the amount by which you wish to modify the address, and, finally,
store the modified instruction in its original location. This is illustrated in the following ex-
ample.

Suppose you have been using the instruction
A MPY RESULT
but wish to change this to read
A MPY RESULT + 10.

You could do this as shown in Figure 45.

Operation and Address Comment
CLA A c(A)—+c(AC)
ADD TEN [c(A) + 10]—c(AC)
STO A [c(A) + 10] —c(A)
TEN DEC 10 Places decimal 10 in core storage

Figure 45 — Program to Modify the Address of an Instruction

The above program will increase the address of any instruction, provided the sign of that in-
struction is positive. If the sign of the instruction is negative, you must either add a nega-
tive number or use SUB in place of ADD.

The instruction ‘‘Store Address *’

STA A

could have been used instead of STO A. STA A places bits 21—-35 of the accumulator into
bits 21—-35 of location A.

If, in place of the above set of instructions, you used the following set of logical
operations, you would not need to be concerned about the sign of the instruction.

60

First, use the instruction ‘“‘Clear and Add Logical’® word:
CAL A

This will replace bits P and 1-35 of the accumulator, C(AC)P,I—SS’ with the contents

of core location A. (See Figure 46.)

A S 1 2 ® 0 6 0 0 0 0 0 0 9 0 0 0 0 s 0 s s s 00 00 e 35

AC SQ Pl 2 o 6 0 0 0 0 8 8 8 06 8 o s 0 s s s 0 s 0000000 35

Figure 46 — Exchange of Bits as Result of CAL A

Then the instruction ‘‘Add and Carry Logical’’ word:
ACL TEN

will add the c(Y)g ;_ 34 to the ¢(AC)p,;_35, respectively, and replace ¢(AC)p | 35 With

this sum. Position S of location Y is treated as a numerical bit, and the sign of the accumu-
lator is ignored. A carry from position P of the AC adds into position 35 of the AC. It does
not add into position Q. Bits Q and S of the accumulator and the c¢(Y) are left unchanged.
Since a carry from position P adds into position 35, no overflow is possible. (See Figure 47.)

S Q P 1 Q ceesecsceseeel39 33 34 35

ACL Y
Figure 47 — Operation of ACL Y

Finally, the instruction ‘‘Store Logical Word”’
SLW A

replaces the c(Y)g ;55 with the ¢(AC)p ;_ 55, leaving ¢(AC) unchanged.

Suppose now you have a large amount of numerical data which consist of binary inte-
gers of not more than 11 binary digits and a sign. To put as many numbers as possible into
core storage you could ‘‘pack’ three numbers N, N,, and N into one core unit, DATA, as
indicated in Figure 48, a packed word. Bits S, 12, 24 contain the sign of N,, N,, and N,

respectively.

61

DATA N, N, N,

Figure 48 — A Packed Word

Next, assume you want to operate on each number. To do this, you would have to *‘un-
pack’® (separate) each number from the others. One way to do this is by using the logical op-
erations as explained below.

First, bring the contents of location DATA into the accumulator by means of the logical
operation,

CAL DATA

This instruction will replace the c(AC)P'l_35 with the contents of location DATA. Thus the
sign bit of DATA does not go into the sign bit of the AC (as in CLA) but into bit P.

Next, you want to operate on one of the numbers, say N,. To eliminate N, and N, from
the accumulator, you can use an extractor pattern and the instruction ANA Y. The extractor
pattern will consist of a word stored in EXT (Figure 49) with 1’s in the bits you wish to keep

and 0’s elsewhere:

EXT1{1|1|1f1f1j1f{1j1f{1{1}1 11|00 }jc.cccn. s et e e e 0
Bits Sl 2.......00..... 111213.............00'.... 35

Figure 49 — Extractor Pattern 1
Then the instruction ‘““AND to Accumulator’’
' ANA EXT 1

will leave unchanged ¢(AC)p ,_,, and replace ¢(AC),,_ ;5 with 0’s. Thus you have N,
in ¢(AC)p ,_,, (Figure 50).

AC .‘__.—N __—...0 0

Figure 50 — N, in the ¢(AC)p ,_;,

62

The logical instruction ‘‘Store Logical Word”’
SLW TEMP

will store c(AC)p'l_35 into the ¢(TEMP)g ,_;; i.e., it stores N, into location TEMP. Then
if you do the instruction

CLA TEMP
you will have N in bits S, 1-11 of the AC. The shift instruction ‘‘Long Right Shift’’
LRS 59

will shift ¢(AC)q, p ;35 and ¢(MQ),_;4 59 bits to the right, fill vacated positions with 0’s,
and make the sign of the MQ the same as the sign of the AC. Thus the sign bit of the MQ now
contains the sign of N,. (See Figure 51.)

MQ | N N,

Figure 51 — N, in ¢(MQ)g ,5_35

Next, multiply N, by ¢(MULT) and assume that the product P, will not exceed the ca-

pacity of 11 bits:
MPY MULT

Since the product is now in the (MQ), shift left 24 to put the product into (MQ)g ,_,,

with the instruction ‘‘Long Left Shift’’
LLS 24

This instruction shifts the ¢(AC)g, p ;_35 and the ¢(MQ), ;4 24 places. (See Figure
52.) Bits from position 1 of the MQ enter position 35 of the AC, and the sign of the AC is
made the same as the sign of the MQ. To have P, available for future use, store it in loca-
tion PROD with the instruction

STQ PROD

MQ p

Figure 52 — P in c(MQ)g ;_,,

63

So far you have extracted N, from the packed word, multiplied N, by another number,
and stored the product P, into core location PROD. Now you would like to insert this new
number P into the packed word DATA in place of N,.

First, extract N, from core storage, DATA with EXT 2 (Figure 53) which has 0’s in
position S, 1—11 and 1’s elsewhere and with the instruction ANS DATA.

Figure 53 — Extractor Pattern 2

The instruction

CAL EXT 2

will replace bits P, 1-85 of the AC with bits S, 1-35 of core location EXT 2. Then the in-
struction ‘‘AND to Storage’’

ANS DATA

will erase N, from core location DATA, leaving N, and N; as shown in Figure 54.

DATA N N

2 3

Figure 54 — Location DATA Now Contains N, and N,

Next the instruction
CAL PROD

will place the c(PROD)S'l_35 into the ¢(AC)p ;_35-
Then the instruction ‘‘OR to Storage’’

ORS DATA

will insert P, into bits S, 1-11 of location DATA, to get

P, N, N,

New Contents of DATA
Figure 55 — Location DATA Now Contains P, N,, and N,

64

Thus the packed word now contains P, N,; N3, as shown in Figure 55.
To place the extractors in core storage, use the pseudo-operation

LOC OCT N

where LOC is the octal storage location of the extractor and N is the octal code of the ex-
tractor. For example, here is given the octal code of EXT 1 and EXT 2 (Figures 56a and 56b).

Ele 111.... 1 O 0 ® & & 5 0 0 0 0 o 0
Bits S12.... 11 12 13 ees 35

Octal Code -3 77700000000

Figure 56a — Extractor Pattern 1 and its Octal Code

EXT 2 0{0]eeesen 0] 11| 1
I R 11 12 13, 35

Octal Code 000077777777

Figure 56b — Extractor Pattern 2 and its Octal Code

The flow chart and program for the above problem are given in Figures 57 and 58.

Before closing this chapter, the logical instruction ANA will be explained in detail;
then you can read and interpret the other logical instructions as given in the summary and
in the IBM 704 Reference Manual.!

The instruction ANA Y is called ‘‘AND to Accumulator.”” It matches each bit of
¢(AC)p, ,_35 With the corresponding bit of ¢(Y)g ; 55, the ¢(AC)p being matched with the
¢(Y)g. If the corresponding bit of both the AC and location Y is a 1, a 1 replaces the
contents of that position in AC. If the corresponding bit of either the AC or location Y is a
0, a 0 replaces the contents of that position in the AC. The c(AC)S'Q are cleared and
the c(Y) are left unchanged.

In the example given, N, was to be left in the accumulator so the extractor pattern was
12 1’s in positions S, 1-11 of location EXY 1 and 0’s elsewhere. Suppose N, is the bina-
ry number —00000110101. Since the minus sign is indicated by a 1, N, appears in storage as

A B C D E
Extract | Conti
N, Erase N, Insert o:::::ue
from - (N, x3=P,) |4 from core | Pyin remainder
Packed Word -+ ¢(PROD) location Packed of
and Store DATA Word program
in TEMP

Figure 57 — Flow Chart for Extraction of N, from Packed Word and
Insertion of P, into Packed Word

65

IBM Data Processing Division

SHARE 704 Symbolic Coding Form

Problem
Cod " John Smith [°*** September 15, 1959 [P 4 oy
q Locstion o Addeess, Tag Decrement Comments [
1 :1 6| 718 01§ n|n
T | | JoB
C SAP | A
o ORG | 100
i A | CAL | |DATA Places packed word into positions P, 1-35 of AQ.
L |_ANA | [EXT 1 Leaves Ny in (AC)p 1.11-
| SLW | |TEMP Stores N, -in TEMP.
B | cLA | [TEMP Clears Ny in positions S, 1-11 of AC.
! LRS | |59 Shifts contents of bits 1-11 into bits 25-35 of
' MQ and places sign of Ny in c(MQ)g.
! MPY | |MULT Multiplies N1 by ¢(MULT) and places product
: |) Pqin c(MQM-&S'
! | LLS | |24 Shifts product P_into bits S, 1-11 of MQ.
__:___,_,____ | STQ | |PROD Stores product Py with sign in location, PROD.
4 _C | CAL | [EXT 2 Places EXT 2 into positions P, 1-35 of AC.
! ANS_‘ DATA Erases Nl from core storage, DATA.
I D CAL | |PROD Places product Py into positions P, 1-11 of AC|
! | ORS | |DATA Inserts product P, into position S, -1-11 of AC.
| _E __(Beginni nstructions to be performed after Py)
‘ hag been insdrted in packed word.)
. .
]
1
| _EXT1 ocT | |777700000000
| EXT2 OCT | {000077777777
| _TEMP BSS | |1
| P | BSS | 11
| MULT DEC | |3
L DATA OCT | (000111001010101011 ‘Storage of packed data, three 12-bit sets of
i data per word.
b | END | {100
i LoD | |4
! TRA
|
n
|

Figure 58 — Program Associated with Flow Chart of Figure 57

66

100000110101

Then when you match the extractor EXT 1 with this number, you get N, left in the AC as in-
dicated in Figure 59.

Bits S12....... 1112........ 2324 35
DATA 1{o{ofo[ofof1{1]o|1 0|1 N, N,

S1¢9 111213 35

EXT 1 | 1fafuftfefefa]a]efafafe] ofo | e 0

P12 1112 35
AC tfofofofofo[t[t[ofto[a o] o]
(after performing
ANA EXT 1) R ,
" nmn S
N, AlL 0°s

Figure 59 — Operation of ANA Instruction

67

SUMMARY — Chapter X

In this chapter you learned how to modify the address of the instruction by adding an

integer to the instruction.

Then you studied how to pack several pieces of data into one computer word and how

to unpack a number from a packed word.

STAY

CALY

ACL Y

ORS Y

LLS Y

LRSY

Below are listed the new instructions used in this chapter.

Store Address
The c(AC),, 5 replaces the c(Y),,;_ ;5. The ¢(AC)g, | _,0 and the
¢(Y)g, ;_o¢ are left unchanged.

Clear and Add Logical Word

Replaces the ¢(AC)p ;55 with the ¢(Y)g ;_35. The sign of the c(Y)
replaces position P of the AC. The c(Y) are left unchanged. (See Figure 46.)

Add and Carry Logical Word

Adds ¢(Y)g, ;_35 to the ¢(AC)p ;_34, and replaces c(AC)p ;55 With
this sum. Position S of location Y is treated as a numerical bit, and the sign
of the accumulator is ignored. A carry from position P of the AC adds into
position 385 of the AC. It does not add into position Q. Bits Q and S of the
accumulator and the c(Y) are left unchanged. Since a carry from position P
adds into position 35, no overflow is possible. (See Figure 47.)

OR to Storage

Matches each bit of c(AC)l,,'l_35 with the corresponding bit of the
¢(Y)g, ,_3s5s the P bit of the AC being matched with the S bit of the c(Y). If
the corresponding bit of either the AC or location Y is a 1, a 1 replaces
the contents of that position in location Y. If the corresponding bit of both
the AC and location Y is a 0, a 0 replaces the contents of that position
in location Y. The c(AC) are left unchanged.

Long Left Shift

The ¢(AC)q p,;_35 and the c(MQ), _ ;4 are shifted left Y places (mod-
ulo 256). Bits from position 1 of the MQ enter position 35 of the AC. Posi-
tions made vacant are filled with zeros. If a nonzero bit is shifted into or
through P, the AC overflow indicator and light are turned on. Bits shifted
beyond position Q are lost. The sign of AC is made the same as the sign of
the MQ.

Long Right Shift

The ¢(AC)q,p, 35 and the ¢(MQ), _;4 are shifted right Y places
(modulo 256). Bits from position 35 of the AC enter position 1 of the MQ.

68

SLW Y

ANA'Y

Positions made vacant are filled with 0°’s, and bits shifted beyond position
35 of the MQ are lost. The sign of the MQ is made the same as the sign of
the AC.

Store Logical Word
Replaces the ¢(Y)g ;35 With the ¢(AC)p ;_35. The c(AC) are left

unchanged.
AND to Accumulator

Matches each bit of ¢(AC)p , ;¢ with the corresponding bit of the
¢(Y)g,_35s the P bit of the AC being matched with the S bit of the c(Y). If
the corresponding bit of both the AC and location Y is a 1, a 1 replaces
the contents of that position in the AC. If the corresponding bit of either the
AC or location Y is a 0, a O replaces the contents of that position in
the AC. The c(AC)s'Q are cleared and the c(Y) are left unchanged.

Note that in Reference 1 there are two additional instructions which shift only the con-

tents of accumulator, and two logical operations. For details of these instructions see Refer-

ence 1, pp. 19—-21, These instructions are:

ALS Y Accumulator Left Shift
ARS Y Accumulator Right Shift
ANS Y AND to Storage

ORA Y OR to Accumulator

69

EXERCISES - Chapter X

1. Do Exercise 3 of Chapter III making use of the operations of this chapter to modify

addresses. Use the smallest number of core units possible.
2. Place in consecutive core storage units the following data:

ABCDEF
DEFGHI
134DFE
CROD21
IE453L

Then use the logical operations to check to see which core units have a letter D in bits 18—23.
If the word contains such a D, print the word on the output tape (tape 9). If it does not con-
tain a D in bits 18—23, skip over it.

70

CHAPTER XI
PROGRAM CHECKING

After a problem has been defined, you must find the best numerical solution to the
problem. Then you must flow-chart the solution, code the problem from the flow-chart, and
finally run the program (the list of instructions and data) on the computer.

Of course, during each of these processes, you must check for errors and correct each
error as you find it. Here a few methods to check and then to correct your program are dis-
cussed.

When you write a program in SAP language and have cards punched and loaded into the
computer under Bell System control, you receive a SAP printout which lists all the pseudoin-
structions used. If the assembly was successful, the computer translates the pseudoinstruc-
tion into machine language and then punches these binary instructions on IBM cards, with up
to 22 instructions per card. (See Figure 60.)* The first instruction is punched in the first 36
columns of row 8; the second instruction is punched in columns 37-72 of row 8; the third in-
struction is punched in the first 36 columns of row 7; the fourth instruction is punched in col-
umns 37—72 of row 7, etc. In row 9, columns 14--18, is the number of instructions contained
on the card. In Figure 60, this binary word count is 10110; i.e., 22 instructions. Columns
2236 of row 9 are reserved for the location of the first instruction. In Figure 60 this is
1100100 binary or 100 decimal.

nnlllmolluumnnnmoooomnomonnmlomllnl nmnIm[ilmuunlunmauonoulnnnloonmlmulllu @ \
|

| ! i
n0010llloleo00ucnoqoomouolonomlmlulll Uﬂlﬂli(lD0‘00l]l(lUl]llll]0000000[000‘0'0]0“!0
| t t

ﬂBlOIOGM"soocu0nonnwnununnolo'lollln(qaouumoInnumo0u'uuolnoluuooomoomoomun uonuu@on
Sip o203 4 516 7 8'9 10 11 1213 14073 16 17018 19 26121 22 22424 25 26127 28 28130 31 32133 34 35\~ 11 213 4 sl6 7 8l9 10 1141213 [EERURHIT] 19 20i21 22 23124 7S 26127 28 28130 31 32033 24 3
onnlﬂlllooomoououuuoowoomoonolmollulu0umunmlouoomunn!nonooe«oﬂnouomln.nnmnnnllIHICDH
i !
0ﬂxl0Illnsacuunsueuuo»ounawuloullll olououulluumuuuumuuuuumunmuuulwl'llmllozzzzzQ)zz
|
cullllluwoouuouonouoeuuouomuue‘ouu00onumllocuauclaoouoounuuomooolnlmlulllnszss3®33
[{ | |
.aoalllllou0onooooooun‘oemoun.uanruuol 610 unIIIuouumoou:ouo0aouameoalalc'nllouhuu@u
T4 203 4 506 7 o2 16 1111213 14115 16 17118 19 20121 27 23124 25 26177 28 29140 34 32103 4 30 ,Il 215 4 416 7 819306 113 s 04'15 16 17118 19 2017, 22 23024 25 23017 24 232¢ 11 37153 34
uu:aon.oln‘sou»aowao0001“00u:ononlﬁ-lonnuu.llmuno‘unlnumuunuualuaoéouu:olu‘lnlllu55555@55
[T T T U S A A TN SS FUNY JE J A AN U (Y AN SN I I P
Ealnuanouuauaulonﬁouu[ono[onmuIolollcu oluounonulmlolollouuuuoluooololnlal 66666666
|

|
mnmllunumoolnnmn

)

ENES [0

0

] R

nwnnmnnmnqgglnllniul UﬂologU‘Ill.'\U[ﬂﬂl\‘ﬂﬂﬂ.ﬂﬂ‘..'nnﬂ'quﬂ00Ull 11111011

Homlo‘ousuuuuﬁylﬂsutulunusw‘?mﬂuc!aIcloloIUvons.onu?lllzlna'usﬁ.?ondmll?f‘tury%'l??onIlloloI 86880088
ToT ;
g ?E? HiE 9:2 o ,.,5\!!22298232,"%22:22!!93 3!!32&3522!;!!22!52;22,“ 5 !k!!’e5!!&!3515&&;&2&%& SRR
PN Y — — _
Word Location of Check Sum

Count First Instruction

Figure 60 — A Binary Card with Twenty-two Instructions

*See description of ‘“ SAP”’ instruction, page 32.

71

Columns 87-72 of row 9 are reserved for the ‘‘check sum.’’ The check sum is the logical
sum (ACL) of all the words contained on the binary card, plus the contents of columns 1-36
of row 9. When SAP punches a binary card, it punches the check sum here. When the binary
cards are loaded into the machine, SAP checks this sum after the instructions are in the com-
puter. If this sum is incorrect, SAP stops and writes on tape ‘‘loading error.’’ At the same
time, SAP also prints on the on-line printer the words ‘‘loading error.”’ Thus, you see that
SAP assembly has built into it a check to see that the information from cards is placed in the
core storage correctly. If this sum is incorrect, you must find the error and correct it. The
card might have been punched incorrectly; the computer might have read the card incorrectly;
etc.

To correct a word on a binary card, you can use a card containing any one of the fol-

lowing pseudoinstructions:

LOCT A
L DECN
L BCDH
where L is the octal location of the incorrect word,
A is correct octal code of the word to be corrected,
N is correct decimal form of a number either fixed-point or floating as defined in
SAP 3-7, and
H is the Hollerith word to be inserted in location L.
To run a program using the binary deck with or without correction, use the sequence of cards

as indicated in Figure 61.

H 1: Location Op Address, Tag Decrement
1 : 2 6| 718 10] 11|12
! JOB
|
R | |Lop
: (Binary Deck)
! (Correction Cards,|if jany)
!
. .| |TRA
|
. (Ddta Cards)

Figure 61 — Sequence of Cards to Run with Binary Deck

The Bell System data will load in the binary deck, make any corrections, then transfer
to the first instruction to be executed.

Another method of checking a program is by the use of snapshot dumps. A smapshot
dump is the printed contents of a specified number of core locations taken at particular times

during the running of a program. The snapshots are first written on the Bell print tape and

72

then on paper. This affords you an opportunity to check to see if the contents of a specific
core unit are what you anticipated at any given time.

The instruction used to obtain a snapshot dump is given in Figure 62.

H Location Op Address, Tag Decrement
1 12 61 718 10f 11 |12
L Y - s, A’ B

Figure 62 — Instruction for Snapshot Dump

L specifies the location in octal form where you desired to take the snapshot dumps.
The snapshot is taken before the instruction at L is executed. L must not contain a TSX in-
struction or a TXI instruction with a zero tag, nor may L be a location occupied by instruc-
tions of the Bell System.

The snapshot will be printed either in octal, floating-point decimal, BCD, or fixed dec-
imal form, according to whether S is 8,F,BCD, or Pn, where n is a decimal integer specifying
the location of the binary point.

A, B specifies that octal locations A to B inclusive shall be dumped.

Y— — specifies whether the snapshot shall be taken under specified conditions (Con-
ditional Dump) or not (Unconditional Dump). Some of the forms of Y— — are listed here, fol-

lowed by the condition which determines whether or not a snapshot will take place.

Instruction Condition for Dump
YUN None.
YMI If accumulator is minus.
YZE If accumulator is zero.
YPL If accumulator is plus.

To obtain a snapshot dump after the complete runliing of the program, insert a card
with the instruction YPM followed by a dump card without a location specified. Such a dump
is commonly called a Post-Mortem Dump.

All dump cards are inserted just after the LOD card when using either a symbolic deck
or a binary deck, the post-mortem dump card being placed after the snapshot dump cards.

Thus, when using a symbolic or a binary deck, place the dump cards as indicated in

Figure 63.

73

mx Data Procassing Division SHARE 704 IBM Data Processing Division

Froblem
Coder For Symbolic Deck 75— Coder For Binary Deck —-
R : Location Op Addrem. Teg Decrement H i Locstion Op Addres, Tag Drecreme
1:1 6| 7|8 1ol lil 6] 7]8 ||
! | ljoB | |
' ' | LOD |
. ! (Binary Deck)
! (Corirection CTrds)
| | (Snapshot Dump Cards)
|| _ (Post-Mgrtem inf Cards%
| TRA |
(Pata Cards)

Figure 63 — Sequence of Cards when Making Corrections and/or Dumps
with a Symbolic or Dinary Deck

Here is an example. Assume that it is desired to assemble a SAP program and then
run it, obtaining an unconditional octal snapshot dump of core units 210—-250 (octal) at loca-
tion 165 (octal) and an unconditional octal post-mortem dump of core units 144—510 (octal).

The program in Figure 64 will accomplish this.

IBM 5..c erocessing Division SHARE 704 Symbalic Coding Form

Problem

Coder

John Smith [P September 15, 1959 [Pee= g °

Jdentt-
: Comments feation
1
12 s]7ls 10112
¥
|
|

! 165 YUN 8, 210, 250

Snapshot Dump

YUN | |8, 144, 510
TRA
(Data Caids)

Figure 64 — Program to Obtain a Dump at Location 165 and a Post-Mortem Dump

For information concerning other snapshots, see Reference 2, under the heading ‘‘Post-
Mortem and Snapshot Dumps.”’

Notice that in the above program you place the data after the TRA card, whereas pre-
viously you had been storing the data into the core units by means of the pseudoinstruction
DEC. Storing data within the program by means of the DEC instruction carries with it the
disadvantage that the program must be reassembled with SAP each time the data is changed.
By including in the program the calling sequence for an input read routine and allowing the
data cards to follow the TRA card, you can provide for many sets of data being processed
with the same binary (or symbolic) program. For example, suppose you are doing matrix mul-
tiplication of two 10 x 10 matrices and assume that each element is an integer. You could
read in the data with the XINPUT routine of the Bell System as shown in Figure 65.

4

mM Dats Procesmng Division SHARE 704 Symbohc CUdlng Form

Problem

Coder John Smith ___|"* september 15, 1959 [Py oy
H i Location o Addres, Tag Decrement Comments o
1 :1 RAL e ufn . ulln 8
|
.+ | | JOB | _ _
: |_SAP |

""" "] [ora] [100 -
! |_TSX | IXINPUT
I + ____ | | NTR| |F,,0 r Calling seq to read in 200 words of data.
! © | MON| |A,,A+199

e
S S L

! Lo ? Here you put your instructions for the matrix |
U B N multiplication. |
_i______ L] J
|, __F || BCD| |1(N13)
| LSVN | |-1,7,-1

. | END | [100
| . | | LoD 4

; | LTRA

{__ ___| (Data Cards)

!
L]

Figure 65 — Program to Multiply Two 10 x 10 Matrices, A and B

The computer will first assemble the above program, then load the binary program in the mem-
ory from tape 4, and finally begin to execute the instructions. The first three instructions
cause the computer to read in the data and place it in core units A through A+199. Then the
computer continues with the remainder of the program.

Two other ways to check a program will now be discussed. Most problems involve
either a few calculations and a great amount of data or a great number of calculations and a
relatively small amount of data.

If a program involves a great number of calculations, it is good practice to print inter-
mediate results during the checkout of the program and check these with hand calculations.
Also, if a problem runs a very long time, it is advisable to provide for dumping on tape the
necessary part of the memory (core storage) at approximately 10-minute intervals. This can
be done by the instruction ‘‘Write Block on Binary Tape N’

WTB N,A,B
which will write the contents of the core storage from core Storage A through core Storage B
in binary form on tape N. This enables you to restart the program with a loss of, at most, 10
minutes of computer time by reading tape N into the memory and using the values of the param-
oters at that time. It is wise to alternate between two tapes, if possible, in taking such dumps,
thereby guarding against complete loss of restart information in the event of a tape failure.
Thus if something goes wrong near the end of the problem, you will not have to go back to the

beginning but can restore the memory to its previous state as given in the snapshot just before
the error occurred.

75

On the other hand, if a problem consists of much data and a few calculations, a snap-
shot may not be so important for usually you read data as you need it. Thus, to rerun a prob-
lem with much data, you can reset the instructions to their original form and run the program

with the unused data.

76

SUMMARY — Chapter XI

When you compile a program with SAP, the pseudoinstructions are translated to machine
language (binary) and punched on cards. These cards can contain as many as 22 instructions.
Each card contains a check sum which the computer recomputes and checks when reading the
cards. This affords you a check to see that the correct instructions are being placed into the
memory. If an error is found in a binary deck, it can be corrected by an OCT, DEC, or BCD
correction card as explained below.

If you want to check the contents of specific core units at any given time, you can take
a snapshot dump of the core units. This dump may be conditional or unconditional and may be
either in octal, fixed-point, floating-point, or BCD form. Dumps are useful when running a long
problem because this makes it possible to rerun a problem at any intermediate point in which a
memory dump has been taken,

The following pseudoinstructions are used for correcting a binary deck.

L OCT A Octal Correction
A is the corrected octal code of the word to be stored in Octal Loca-
tion L.
L DECN Decimal Correction

N is the correct decimal form of a fixed-point or floating-point number
to be stored in Octal Location L.

L BCDH BCD Correction
H is the new Hollerith word to be stored in Octal Location L.

If a dump is to be made at the end of a program, it is called a Pos¢t-Mortem Dump, and
all such dump cards should be preceded by a card with YPM in the operation columns.

The following pseudoinstructions are used to obtain snapshot dumps at octal location
L of core units from A through B. The dump is obtained before the instruction at L is exe-
cuted. Two of the more important restrictions are: L may not be a location occupied by the
instructions of the Bell System, nor may L contain a TXI instruction with a zero tag or a TSX
instruction with any tag. S in the instruction below may be either 8 for octal, F for floating-
point decimal, BCD for Hollerith, or Pn for a fixed-point decimal number where n is a decimal
integer specifying the assumed position of the binary point in the computer word.

L YUN S5,A,B Unconditional Dumps
Dumps core units A-B on output tape 9.

L YMI §,A,B Conditional Dump
Dumps core units A-B if accumulator is minus.

L YZE S,A,B Conditional Dump
Dumps core units A-B if accumulator is zero.

7

L YPL S,A,B

YPM

Conditional Dump

Dumps core units A-B if accumulator is plus.

This card must be inserted before the first of the Post-Mortem Dumps.

You also have learned how to write a block of information in the binary mode on tape N.

This instruction is

WTB N,A,B

place the cards as indicated in Figure 66.

Write Block on Binary Tape N

Writes the contents of the core block A to B, inclusive, on tape N.

This block is followed by a check sum,

To run a symbolic program with dumps or a binary deck with corrections and/or dumps,

IBM Data Processing Division

Problem
Coder For Symbolic Deck
H i Location Op Mdr;u. Tag Decrem
1 !2 6] 718 10j11}12
! | JOB
! SAP_ |
T I
! (Symbolic)
| LOD | |4
e _Snapshot Dump Cards
! Post-Mortem Dimp Cards
! TRA
} (Data Gar
|
|

IBM Data Processing Division SH
Problem ’
cea——— For Binary Deck
Hj: Location Op Address, Tag Decrement
1 !z 6] 118 10011 |12
! JOB
; LOD
! (Binary Detk)
! oxrection|Cards
: S ot Dump [Cards
! Pogt1Mortem Dump Cards
]
i —
4 [Data Ca r(s)
!
i

Figure 66 — Programs to Run a Symbolic Deck with Dumps or a Binary Deck with
Corrections and/or Dumps

78

EXERCISES — Chapter XI

1. Obtain a SHARE subroutine that will do matrix multiplication and find the product of
two 5 x 5 matrices, A and B, and print the results on tape 9. Use the input routine of the Bell
System, XINPUT, to read the data in. Plant a snapshot dump after the read routine to obtain
the elements of A and B. Also obtain an unconditional octal post-mortem dump of all the core
units used except for those of the subroutine.

Check the results and, if necessary, correct the binary deck and rerun the problem.

2. Using the binary deck of Exercise 1, run Exercise 1 with different data.

79

CHAPTER XII
READING AND WRITING ON TAPE

As previously noted, information can be stored on tape in binary form or binary-coded
decimal (BCD) form. If the tape is to be printed, however, the information must be in BCD
format.

Here you will see exactly how information is stored on tape and how to read or write
on & tape in either the BCD or binary mode.

Information is stored on tape, six bits at a time, placed laterally across the tape, plus
a redundancy check bit. The six bits are referred to as a frame (see Figure 67). Thus six
frames constitute one computer word.

XXXXXX = 6 bits

A I A e

y = redundancy check bit

Figure 67 — One Frame on Tape

When the information is in binary form, the redundancy check is an odd check. Thus,
if the group of six bits xxxxxx contains an even number of 1’s, y is a 1, so that the number of
1’s is odd. Otherwise, y is 0, again making the number of 1’s odd. The y bit is also called
a check bit and an odd check.

When the information is in the BCD form, the redundancy check is an even check; i.e.,
y is a 1 if the six bits contain an odd number of 1’s and a 0 otherwise. This is illustrated in
Figure 68.

1 01101 X
0 0111 0 X
00 0101 X
0 01011 X
100111 X
011111 X
010101 y

Figure 68 — BCD Mode of Tape

In keeping payroll information, a company may have a man’s name, his number, rate of
pay, etc., all written on one card. This is called the payroll record of the particular employee.
To put this information on tape may require, say, ten computer words. Thus, you say that
every ten words on this tape constitute a record. A record can be of any length, At the end

80

of each record, there is a longitudinal redundancy check, which is always an even check.
Suppose you have a tape which consists of two word records. Figure 69 shows what a typical
record on this tape might look like.

6111001101101 X
100 0 011001110 X
Direction of 011000 O0O0O0O0T1O0T1 X
tape motion 1100111001011 X
11100 01100111 X
0110111011111 X
1101011010101 y
¥ v /N v /
check second word first word
frame

Figure 69 — Longitudinal Check

Of course, each employee’s record is only one of several in the employee’s file. Sim-
ilarly on tape, a file may contain several records. To designate an end of a file on tape, there
is an instruction ‘‘Write End of File”’

WEF N

which will make a special mark at the end of file on tape N. A tape may contain more than
one file. Each tape is 2400 feet long and holds 200 frames per inch, or 331/3 words per inch.
The length of interrecord gap is 8/4 inch, and the length of an end-of-file gap is 4% inches
which includes one end-of-record gap. Thus a tape can hold as many as 5,760,000 BCD char-
acters or about 960,000 words.

To read or write on a tape, you must select the tape desired and specify in which mode
(binary or BCD) the information is to be read or written. To prepare to read one record of in-
formation from tape N, which is in binary mode, use the instruction ‘‘Read Tape Binary”’

RTB N

To prepare to read one record of information from tape N in the BCD mode, use the in-

struction ‘‘Read Tape Decimal’’
RTD N

After the tape is selected, you must copy each word from the tape and store it in loca-
tion Y of the core storage. You do this with the instruction ‘“‘Copy and Skip”’

CPYY

This will copy one word from the tape specified by RTB and place this word first in
the MQ, and then in core location Y. If an end-of-record gap is detected during a CPY order,
this order is not executed. Instead, the computer skips the next two instructions following
the CPY instruction and proceeds from there. If during a read order an end-of-file mark is
detected, the computer skips the first CPY instruction and proceeds from there. These in-

structions are illustrated by an example.

81

Suppose tape 8 consists of 1000 10-word records in binary form followed by an end-of-
file mark. Place all those records into the memory, beginning at core location X.
The flow chart for this problem is given in Figure 70.

Read ith word

of the current
record and |

store in x+j+1i.

A
] Position tape
—.-®—> 0—i o 8 for reading
a record.

Continue to
next section
of program.

End of No . .
Record? | =1

Yes

j+10—j

Figure 70 — Flow Chart to Copy 1000 10-Word Records from Tape to Memory

The program associated with the above flow chart is given in Figure 71.

82

m“ Data Processing Diviaion

SHARE 704 Symbolic Coding Form

Problem
% John Smith [P**September 19, 1959 [P g oy
H i Location op Address, Tag Decrement Comments e
1 '1 6] 7]8 0] uln nlln
i JOB
: | SAP |
! | ORG | |100
! | cAL| [psET 0—j.
i SLW | |D
| _A LXA | |ZERO, 1 0—=1,
B | RTB | |2 _Positions tape 2 for reading.
! D CPY | X,1 ithword-x+ifj. .
i EFG TXI *-1,1,-1 If no EOR, i+1—i, goes to D.
i [o] TRA K I no EOF, goes to K.
| | EBE__| | cAL| |D
! ACL | | TEN If EOR j+10—j.
! sLw | D
L1 | TRA | |A Goes to location A.
! K . of instructions to be
! performed after all records are read.
I
|
ZERO DEC 0
ll TEN DEC 10
! DSET CPY X1
i END | | 100
LOD 4
I

Figure 71 — Program Associated with Chart of Figure 70
To prepare to write one record of information on tape N in binary mode, use the instruc-
tion ‘‘Write Tape Binary’’
WTB N

To prepare to write one record of information on tape N in the BCD mode, use the in-
struction ‘‘Write Tape Decimal®’

WID N

Either of the above instructions will prepare the computer to write one record of binary
information on tape number N. Then the instruction

CPYY

will place one word from memory location Y into the MQ and then write this word on tape N.
At the end of the copy loop, the computer writes the longitudinal check bits and end-of-record

83

gap and disconnects the tape. After writing the last record, you can make an end-of-file mark

on tape N with the instruction

WEF N

For example, suppose you do the reverse of the previous problem; i.e., copy 1000 words

from core storage in units of 10-word records onto tape 8. Assume that the first word is locat-

ed at X, The flow chart in Figure 72 and the program (Figure 73) following it are the solutions

to this problem,

B

Prepare tape
for writing,

RO

C D No E
Copy ith word i=10 i4+1ei
of jth record.

Yes

F
G j+l—]
No
H IOD—-@
Yes

K {Continue.

Figure 72 — Flow Chart to Copy 1000 Words from Core Storage in Units of 10-Word

Records onto Tape

84

IBM Data Processing Division

SHARE 704 Symbolic Coding Form

Problem

Coder John Smith Datc geptember 19, 1959 EE of
H i Location o Address, Tag Decrement Comments adenee
1 11 & k) w0 2
' | JOB |
| | | SAP
| ! ____{ | ORG) 100 _ -
.+ ____ _| | CAL | |CSET i=0.
L | | SwW | |C
| ! A1 | LXA 1HNRD, 1 100—=c(IR-1).
| | A2 | | LXA | |TEN,2 10 — c(IR-2).
B __| | WTB | |8 Prepares tape 8 for writing.
| ¢ | | CPY | [X+10,2 Copies ith word onto tape 8-
! D,EF | | TIX | [C,2,1 Checks for end of record.
! ¢ __| | CAL | [C
! | ACL | |TEN
| [sww]c
|\ HI_ || TIX | 1A2,1,1 Checks for last record.
[e e pecgram
I S N
.;_ : -
mmwnln +—
! 1BNRD | | DEC | |100
| | TEN _| | DEC | [10
| | CSET | | CPY | [X+10,2
]
|)
| T
! | END | | A1
; Lop | (4
! TRA

Figure 73 — Program Associated with Flow Chart of Figure 72

85

After any copy order (when writing on tape) you are able to do other operations which
do not involve the MQ before the next copy and EOR gap are made on tape, for the computer
does not write the longitudinal check bits and end-of-record gap until 836 microseconds after
the last copy order. Thus you can do any operation not involving the MQ after any copy in-
struction, provided the total time elapsed before the next copy does not exceed 336 micro-
seconds. (For the timing of instructions, see Reference 1.) If another copy is given within
this time, no EOR gap is written on the tape. However, if another copy is not given within
this time or if a new write order of the same tape is given, the longitudinal check sum and
EOR gap are written on the tape.

Torewind a tape N, use the instruction
REW W

All tapes used in a problem should be rewound before the problem is finished.

It is also a good idea to rewind tapes before using them, to be sure they are positioned
at the beginning,

You can move tape N backwards one record with the backspace tape instruction

BST N

However, if tape N is at the load point, the instruction BST is interpreted as no operation.

If you are writing a large number of records on a tape or reading a nearly full tape, you
do not want to pull the tape from its reel, so when the physical end of a tape is reached or
when the tape breaks, an indicator and light, called the ‘‘tape indicator and light,’’ are turned

on. To test for this condition, use the instruction ‘‘End-of-Tape Test *’
ETT

Also, when reading a tape, the computer recomputes the lateral and longitudinal check sum.
If there is a mistake, an indicator light called the ‘‘tape-check indicator and light’’ is turned

on. This indicator can be tested with the instruction ‘‘Redundancy Tape Test’’
RTT

For full details of these last two instructions, see the summary at the end of this
chapter.

Information can be transferred from cards to tape, or vice versa. In transferring from
cards to tape, the computer writes the longitudinal check sum automatically on tape when it

has read the last card.

86

SUUMMARY — Chapter XII

Information is stored laterally on a tape, six bits at a time plus another bit which is
the lateral redundancy check. For BCD information this check is an even check, and for bi-
nary information it is an odd check. At the end of each record there is a longitudinal check
which is an even check.

When reading a tape, these check sums are automatically recomputed, and if one of
these new sums does not agree with the corresponding one on the tape, the tape check indi-
cator and light are turned on.

When reading and writing tape, the tape number and mode of information must be spec-
ified because BCD words are stored on tape differently than in memory. This is explained
in detail in the Reference 1 under the heading ¢‘ Character Alteration in BCD Mode.”

The following instructions were explained in this chapter, but they by no means con-

stitute all the read and write instructions. (See Reference 1, pp. 26—28.)

RTB N Read Tape Binary
Prepares to read one record of information from tape N in the binary
mode.
RTD N Read Tape Decimal
Prepares to read one record of information from tape N in the BCD
mode.
WTB N Write Tape Binary
Prepares to write one record of information from tape N in the binary
mode.
WID N Write Tape Decimal
Prepares to write one record of information from tape N in the BCD
mode.
REW N Rewind Tape
Rewinds tape N.
WEF N Write End of File
Writes end of file on tape N.
BST N Backspace Tape N

Moves tape N in a backward direction one record. If the tape is at the

load point, no operation is performed.

CPYY Copy and Skip
Transfers one word of information between location Y and the tape N
as specified in the read or write order which precedes this instruction.

87

If an EOR gap is detected when reading from a tape, the computer
does not execute this instruction but skips the next two instructions after
the CPY order and proceeds from there. If an EOF gap is detected in read-
ing from tape, the computer does not execute this instruction but skips the
next instruction after the CPY and proceeds from there. If another read in-
struction is given after a CPY instruction, the computer skips the first CPY
instruction after this read order plus the next instruction following the CPY

order and proceeds from there.

RTT Redundancy Tape Test
If the tape check indicator and light are on, the computer turns them off
and takes the next instruction in sequence. If the tape check indicator and

light are off, the computer skips the next instruction and proceeds from there.

ETT End of Tape Test
This instruction must be given after a read or write order and before
the tape is disconnected. If the tape indicator and light are off, the computer
skips the next instruction and proceeds from there. If the tape indicator and
light are on, the computer turns them off and takes the next instruction in

sequence,

88

EXERCISE — Chapter XlI

1. Place enough BCD characters to fill up 100 core storages on cards. Then read this
into memory and write this data into 10-word records in the binary mode on tape 6. Then copy
this data back into memory and, finally, write the data in the BCD mode on tape 9. If you

have done this exercise correctly, the printout from the tape should be exactly the same as

the input.

89

CHAPTER XIll
FORTRAN, AN AUTOMATIC CODING SYSTEM

As has been observed, the machine language of the 704 is binary. To actually program
a problem in binary form would certainly be time-consuming and error prone. Therefore, we
have been using pseudo-operations, which a prewritten program, SAP, translates into machine
language, and which the computer then executes. However, since it is desirable to have a
language which is more similar to descriptive English and algebraic symbolism than the Bell
and SAP languages are, a computer program called FORTRAN (Formula Translator) has been
written,

FORTRAN enables you to write a program for a problem in a relatively few statements
similar in form to algebraic formulae. These statements are punched on cards and then read
into the computer. The FORTRAN translator, which is stored on tapes 1 and 2 when used
with the Bell System, then causes the 704 to change these statements into a program in ma-
chine language which the computer can execute. The 704 writes the new program on tape 5
and punches it on cards. At the same time, it writes a SAP-type listing on tape 9. If the as-
sembly is successful, the translated program can be immediately loaded into memory and exe-
cuted.

A short example will now be given, using the FORTRAN lan{uage.

Given that the norm of an n x n matrix A = (a,;) is norm A = S a2)%, write a

4,j i
FORTRAN program to evaluate the norm of a matrix A, where b
123
A= (4 56)
789

The program to do this is reproduced on Figure 74 on a standard FORTRAN coding
form. The statements are written on this sheet first and then punched on cards. Notice that
columns 1-5 are reserved for the statement number and columns 7—72 for the statement. If a
character is written in column 6, it means that the statement on this line is a continuation of
the statement on the previous line.

The first statement identifies the program that follows. A c is punched in column 1
to indicate that this statement is not to be interpreted as an instruction. The computer will,
however, always print out the first statement of a FORTRAN program, whether it is an in-
struction or not.

The next two statements (JOB and FOR) are the Bell System control cards which load
the FORTRAN program into the memory. They are punched in columns 8, 9, and 10.

The DIMENSION statement says to reserve 3 x 3 or 9 core units for the matrix A.

The READ statement says to read in the elements of the matrix A, which is punched
on cards and placed after the TRA card and has the format as given by statement 1.

90

iBM FORTRAN CCDING FRM
PRNC- T™8. 75| (10 »8°

[“Tohn Smith

. NORMof Matrix A _

1 ' 1

] RN

Séptember 19, 1959

FORTRAN STATEMENT

T
|
!

NORM of Matrix A, John Smith, September 19, 1959

AJOB

AFOR

DIMENSION A(3,3)

READI1, ((A(1,J)J=1,3), I=1,3)

FORMAT (5E14. 8)

SUMSQ = 0.0

DO 21-1,3

DO 2 J=1,3

SUMSQ = SUMSQ + A(I,)* A(1,J)

PRINT 3, SUMSQ

FORMAT (8HASUMSQ = AE25. 8)

XNORMA = SQRTF(SUMSQ)

PRINT4, XNORMA

FORMAT (8HANORMA = AE25. 8)

AEND

ALOD

P el e

. (AMFNR2, a subroutine needed with all FORTRAN programs)

(BEJ.SQHL’I‘1 a subroutine needed with this program)

1 (A cprd with 9 punched in column 2)

ATRA

! ALODAS
-

f

1

Figure 74 — A FORTRAN Program to Evaluate the NORM of a Matrix

FORMAT statement 1 says that each element of A is written in floating-point deci-
mal form with a field width of 14 and 8 places after the decimal point, and that 5 elements

appear on a card. (See Figure 75.) Format and dimension statements are not executed.

. SO000000E+01
1

. 200000C00E+01+, 30000000E+01
1 nm n n

+. 40000000E+01

+. 100URDOOE+Q1
] n n

00fo0
10 1112 13 14
IRERY |
22222222222222
3#333333333333
44444044444444
55555555550555
66665666666666
171171111111717
8888888888888

999899

LRI RIRFAERT]

9999999§
Y234567%8

ooolREl
1516 1718192021
IRRRRRE]
2222222222222
30333333333333
44444444444444
5555555555555

66666666666666

5% 22

i
nuu
IRRRRE

1111171111111 11
39888888888888
9999999999

9
5161718192021 22 23 26 25 %

9
2

0o oy ENNNRNOOY

2930 31 32 33 34 35 36 37 38 39 40 41

IRRRREERREREE
22222222222222
4833333333333
44444444444444
5555555555Q555
66666666666666
1171117111111
8888888888888

\

|

0o oNBEERNROON

43 44 45 46 47 48 49 50 51 52 53 54 55

11111111111115
2222222222222
303333335333333
4444444444044
55555555550555
66666666666666

11111111711111

5f§868888888888

cooBNENRERoORO

57 58 59 60 61 62 6% &< 65 €6 67 58 69 1

IRRREREERRRRE]
22222222222222
3§333333333333
444444440440444
55055555550555
66666666666666
1171111111111
8888888888888

99/99999999999999199999999999999/99999999989893

27 28029 30 31 32 33 34 35 36 7 38 39 40 41 42]43 44 45 46 47 48 49 50 51 52 53 54 55 56]57 50 59 63 b1 62 63 64 65 56 67 58 69 10

22222222122
3333333333
4444444444
5555555555
6666666666
111117111117
8888888888
?599999999

1213731516 1718 19 80

\

0000000000

NI233747576 1778 13 80

[REREREREE

1BM s081

Figure 75 — Data Card with Format 5E14.8

91

The next statement sets the quantity SUMSQ equal to zero.

The first DO statement means to do all the statements through statement 2 for I = 1, N.
The next DO statement is similarly interpreted except that the running variable is J and not L.

Statement 2 gives the formula for the quantity SUMSQ. It reads that the SUMSQ is equal
to the preset value of SUMSQ plus the square of each element. The two DO statements form
the sum of those products.

The next statement says to print the sum of the squares according to the FORMAT
statement 3.

The statement XNORM4 = SQRTF(SUMSQ) says that the NORM A is equal to the square
root of SUMSQ. The next two statements print the value of the NORM A.

The END statement signifies the end of the translation.

The LOD statement loads the next subroutine AMFNR2, which is needed with all
FORTRAN programs, and the subroutine, BESQRT, which is needed for this program. These
subroutines come immediately after the LOD card.

The final two cards are Bell control cards. The LOD 5 loads the binary instruction
from tape 5 into the memory and TRA causes the computer to begin executing the program.

It is noted that if any FORTRAN statements are not written as specified in the
FORTRAN manuals, the computer will print a diagnosis of the mistakes and not punch a bi-
nary deck.

Also the above program is only a simple example and by no means illustrates all the
statements available in FORTRAN. See the FORTRAN Primer,* FORTRAN Reference Man-
ual,5 and the FORTRAN II Reference Manual® for a full discussion of this automatic coding
system.

92

SUMMARY — Chapter XIII

FORTRAN is an automatic coding system similar to descriptive English and algebraic
symbolism. FORTRAN statements are punched on IBM cards in columns 7—72 and the state-
ment number, if desired, in columns 1-5. Column 6 is the continuation column.

To compile and run a FORTRAN program on the IBM 704, using the Bell Operating
System, use the following cards in the order given:

JOB Bell System Control Cards
FOR

(FORTRAN Program)
END Bell System Control Cards
LOD

(AMFNR2, a subroutine needed with all FORTRAN programs)
(Any other subroutines needed)
(A card with 9 punched in column 2)

LOD 5 Bell System Control Cards
TRA

93

ACKNOWLEDGMENTS

The author wishes to express his thanks to all those who read the manuscript and of-
fered many valuable suggestions, most of which were adopted. In addition, the author is in-
debted to Mr. Ernest Hairston, Mr. Dennis Hardy, and Mrs. Sharon Good, who always so kindly
answered the many questions that occurred during the writing of this manual. Finally, the au-
thor is especially grateful to Mr. Kenton Meals, without whose assistance and encouragement

this manual could not have been written.

94

APPENDIX A - OPERATIONS BY ALPHABETIC CODE

Alpha Code Octal Code Operation Page
ACL +0361 Add and Carry Logical Word 61
ADD +0400 Add 3
ALS +0767 Accumulator Left Shift 69
ANA -0320 AND to Accumulator 62
ANS +0320 AND to Storage 64
ARS +0771 Accumulator Right Shift 69
BST +0764 Backspace Tape 86
CAL ~0500 Clear and Add Logical Word 61
CLA +0500 Clear and Add 3
CPY +0700 Copy and Skip 81
DCT +0760...0121 Divide Check Test 49
DVH +0220 Divide or Halt 13
DVP +0221 Divide or Proceed 49
ETT -0760...0111 End of Tape Test 86
FAD +0300 Floating Add 51
FDP +0241 Floating Divide or Proceed 51
FMP +0260 Floating Multiply 51
FSB +0302 Floating Subtract 51
LDQ +0560 Load MQ 10
LLS +0763 Long Left Shift 63
LRS +0765 Long Right Shift 63
LXA +0534 Load Index from Address* 18
MPY +0200 Multiply 10
ORA -0501 OR to Accumulator . 69
ORS ~0602 OR to Storage 64
REW +0772 Rewind 86
RTB +0762,221-232tt Read Tape Binary 81
RTD +0762,201-2121t Read Tape Decimal 81
RTT ~0760...012 Redundancy Tape Test 86
SLW +0602 Store Logical Word 61
STA +0621 Store Address 60
STO +0601 Store 3
STQ -0600 Store MQ 10
SUB +0402 Subtract 8
TIX +2000 Transfer on Index** 18
TNO -0140 Transfer on No Overflow 48
TNX -2000 Transfer on No Index** 20
TOV +0140 Transfer on Overflow 48
TPL +0120 Transfer on Plus 25
TQO +0161 Transfer on MQ Overflow 49
TRA +0020 Transfer 20
TSX +0074 Transfer and Set Index* 36
TXH +3000 Transfer on Index High** 54
TXI +1000 Transfer with Index Incremented** 20
TXL -3000 Transfer on Index Low or Equal** 54
WEF +0770 Write End of File 81
WTB +0766,221-2321t Write Tape Binary 75
WTD +0766,201—-21211 Write Tape Decimal 83

*Not indexable.
**Not indexable but contains a decrement part.
{These instructions require the indicated numbers in the fast three octal positions.
t{The second number is the address of the instruction and specifies the tape unit. See p. 27 of Ref. 1.

95

APPENDIX B ~ INSTRUCTIONS TO THE SAP AND BELL SYSTEMS

SAP SYSTEM
Code Pseudo-operation Page
BCD Binary-Coded Decimal or Hollerith Data 30, 56,57, 58
BSS Block Reservation 8,27
DEC Decimal Data 5,34, 53
END End of Program 33
OCT Octal Data 72,77
ORG Origin 4,8

BELL SYSTEM
Code Pseudo-operation Page
FOR Load FORTRAN 90
JOB Beginning of Job 32,34,72
LIB Library Routine 38,43
LOD Load Program 33,34 72,92
SAP Load SAP 32,34
TRA Transfer to first instruction of program

to be executed. 33, 34,72, 92, 93

YMI If ¢(AC) is minus, dump core storage. 73,77
YPL If ¢(AC) is plus, dump core storage. 73,18
YPM Post-Mortem Dump Cards follow. 73,78
YUN Unconditional Dump 73,77
YZE If ¢(AC) is zero, dump core storage. 73,77

96

APPENDIX C —DECIMAL, BINARY, AND OCTAL NUMBER SYSTEMS

DECIMAL SYSTEM

In the decimal (or base 10) number system, any number can be represented by using
the ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, where each digit can occupy any position in the num-
ber. Each position is associated with a power of ten. In particular, the integer 53712 in dec-

imal notation represents
5x10* +3 x10% +7x102 +1 x101 +2 x10°

The positions from right to left in an integer are spoken of as the units, tens,

hundreds, thousands, etc., digits.

BINARY SYSTEM

Using this same scheme, a binary (or base 2) number can be represented by using the
digits 0 and 1 where each digit may occupy any position in the number. Each position is now
associated with a power of 2. Some examples of binary integers and their decimal equivalents

are given in Figure 76.

Binary Number Binary Formula Decimal Equivalent
101 1x22 + 0x2! +1x2° 5
1011 1x23 +0x22 + 1x21 +1x20 1
1110 1x23 +1x22 + 1x21 + 0x2° 14

Figure 76 — A Few Binary Integers and Their Decimal Equivalents

To use any number system, you must know how to add and multiply any two digits.
Thus at an early age, you learned the multiplication and addition tables of the decimal num-
bers from 0 to 9. These each consist of 100 entries. However, in the binary system each
table has only 4 entries because there are only 2 digits, 0 and 1. To add and multiply in the
binary system, you must use for each digit of the number the tables given in Figure 77.

+{0)1 0

010 |1 00

11 |10 110]1
Addition Multiplication

Figure 77 — Addition and Multiplication Tables for Binary Number System

97

To illustrate the use of these tables, multiply 6 by 7 using binary arithmetic. (See
Figure 78.)

Decimal System Binary System

110 (6)
111 (1)
110

110
110

101010

'S
[\DIQ@

Figure 78 — Multiplication of 6 by 7

OCTAL SYSTEM

In a manner similar to the decimal and binary number systems, a number in the octal,
or base 8, number system can be represented by the digits 0, 1, 2, 3, 4, 5, 6, 7 in positions
associated with powers of 8. Since 8 = 23, every octal digit can be written as a binary num-
ber with three or less digits. Hence, if the digits of a binary number are grouped by threes,
the octal equivalent can be immediately written down. Figure 79 illustrates the equivalence
of a few binary, octal, and decimal integers.

Binary Number | Octal Number Octal Formula Decimal Equivalent
00100100 144 1x824+4x8144 100
010011010001 2391 2x83+3x82+2x81+1 721
100111110 476 4x82+Tx8+6 318

Figure 79 — A Few Binary Integers with Their Octal and Decimal Equivalents

The multiplication and addition tables for the octal number system are given in
Figure 80.

98

+101 1} 2| 3| 4| 5] 6| 7 0{1}1 2| 3| 45| 6|7
010} 1| 2} 3| 4] 5| 6| 7 ojo(fofojojo|ofo| o
1(1]| 2] 3] 4| 5| 6| 7]10 110(1] 2} 3| 45) 6] 7
212| 3| 4| 5| 6| 7]10](11 2102 4| 610 |12 |14 |16
33| 4| 5| 6| 7T/[10] 11|12 31013 | 6|11 |14 |17 |22 |25
44| 5(6 710111213 410(4 10 |14 |20 |24 |30 | 34
515 6 7{10}11 12|13 |14 5105 |12 |17 |24 [31 |36 | 43
66| 7({10(11 12 |13 |14 |15 6106 |14 {22 |30 |36 |44 | 52
T|7110{11 12|13 |14 |15 |16 7107116 |25 |34 [43 |52 | 61
Addition Multiplication
Figure 80 — Addition and Multiplication Tables for Octal Number System
Here is an example using the above tables to multiply 100 x 318 using octal arithmetic:
Decimal System Octal System

318 476

100 144

31,800 2370

2370

476

76070

An integer can be represented in a number system with any base, b, as follows:
b b . b, b, b,
where

0 < by <b-1(i=0,1,...,n)

Its value is given by the formula

b -b™+b .
In discussing the different number systems, only integers have been considered here.
The next question is how do you interpret numbers after the decimal or binary point. If you

consider a number to the base b

0-b_.b_,b

-1 "=2

99

it is represented by the following formula

b b‘1+b_2b"2+...+b h—n

-1 -n

For example, the binary number 0.111 is equivalent to

1.2-141.2-2 4 1.2-3 - 0.500 + 0.250 + 0.125
=0.875

The above discussion gives the definition of numbers with different bases. Now will
be discussed some practical methods to convert from one system to another and to convert a

floating-point* octal number to a decimal number,
INTEGERS

Decimal to Octal or Octal to Decimal

Use the table of Appendix C of the IBM 704 Reference Manual.l

Decimal to Binary

First convert the number to octal; then write the binary equivalent of each digit.

Binary to Decimal
Change the binary integer to octal, then to decimal, using Appendix C of the IBM 704
Manual.!

FRACTIONS

Decimal to Octal

This method is illustrated with an example. Suppose you wish to convert the decimal
fraction 0.957.
1) Write the number as a fraction:

0.957 = 957
1000
2) Multiply and divide the fraction by 8:
957 8 7656

_— ——

1000 8 8000

*See Chapter VIII.

100

3) Divide the result into 2 parts, thusly:

7656 7000 656 7T 656
= + =— —
8000 8000 8000 8 & 8000

The numerator of the first fraction is the first octal digit, namely 7.

4) Multiply the second fraction of step 3 by—?3 :

6) Repeat the above process to obtain as many digits as desired. For the number of your
example, its octal equivalent to 6 places is 0.751770.
You can also convert from a decimal fraction to an octal fraction using Appendix D of
the IBM 704 Manual. !

Decimal to Binary

Change the decimal fraction first to octal, then to binary. Or if you wish, use the same
method as for changing a decimal fraction to octal except use the multiplicative factor 2/2 in-
stead of 8/8.

Octal to Decimal

Appendix D of the IBM 704 Reference Manual! is an octal-decimal fraction conversion
table. Notice that the biggest octal fraction is 0.377. However, this represents no difficulty,
for if the number you are converting is bigger, you can split it up into parts. Thus to convert
the octal fraction 0.751770, find the decimal equivalent of each part as indicated below:

Octal Decimal

0.300000 0.375000
0.300000 0.375000
0.100000 0.125000
0.051000 0.080078
0.000770 0.001922
0.751770 0.957000

101

Binary to Decimal

Change the binary number to octal and then to decimal form.

Floating Point Octal to Decimal

As explained in Chapter VIII, a floating (F x2™) point number is stored in the memory
in three parts. The first bit represents the sign bit; bits numbered 1—8 represent the char-
acteristic of the number; and bits 9—85 represent the fraction F. The characteristic is 128
(decimal) plusthe exponent of two (n+ 128) or 200 (octal) plus the exponent of two (n+200).

Now to convert a floating-point number to a decimal number, first change the fraction
to a decimal fraction. Then multiply this result by 27,

For example, suppose you have the floating-point binary number as it would appear in

an octal printout
4210751770000
where 210 is the characteristic and 0.751770000 is the fraction.
The fraction 0.751770000, as shown above, is equivalent to 0.957000 (decimal). The
characteristic 210 represents n = 8, Thus the above floating-point number is equivalent to:
0.957000 x28 = 244.992000

For your convenience, Table 8 gives a list of characteristics from 131 to 247 with

their equivalent exponents n of two and the decimal equivalent of 2".

102

TABLE 3

The Octal Characteristics from 131 to 247 with the Corresponding
Exponent (n) of Two, and 2.

Octal Exponent (n) on
Characteristic of Two
131 -39 0.000 000 000 001 818 989 403 545 856 475 830 078 125
132 -38 0.000 000 o000 003 637 978 807 091 712 951 660 156 25
133 =37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
134 -36 0.000 000 000 014 551 915 228 366 851 806 640 625
135 =35 0.000 000 000 029 103 830 456 733 703 613 281 25
136 -34 0.000 000 000 058 207 660 913 467 407 226 562 5
137 -33 0.000 000 000 116 415 321 826 934 814 453 125
140 -32 0.000 000 000 232 830 643 653 869 628 906 25
141 =31 0.000 000 000 465 661 287 307 739 257 812 §
142 -30 0.000 000 000 931 322 574 615 478 515 625
143 -29 0.000 000 001 862 645 149 230 957 031 25
144 -28 0.000 000 003 725 290 298 461 914 062 5
145 =27 0.000 000 007 450 580 596 923 828 125
146 ~26 0.000 000 014 901 161 193 847 656 25
147 -25 0.000 000 029 802 322 387 695 312 §
150 -24 0.000 000 059 604 644 775 390 625
151 -23 0.000 000 119 209 289 550 781 25
152 ~22 0.000 000 238 418 579 101 562 5
153 =21 0.000 000 476 837 158 203 125
154 =20 0.000 000 953 674 316 406 25
155 -19 0.000 001 907 348 632 812 5
156 -18 0.000 003 B8l14 697 265 625
157 =17 0.000 007 629 394 531 25
160 -16 0.000 015 258 789 062 5
161 -15 0.000 030 517 578 125
162 -14 0.000 061 035 156 2§
163 -13 0000 122 070 312 5
164 -12 0.000 244 140 625
165 =11 0.000 488 281 25
166 ~-10 0.000 976 562 5
167 -9 0.001 953 125
170 -8 0.003 906 25
171 -1 0.007 812 5§
172 -6 0.015 625
173 -5 0031 25
174 -4 0.062 S
175 -3 0.125
176 -2 0.25
mn -1 0.5

103

TABLE 3 (Continued)

Octal. Exponent (n) »
Characteristics of Two
200 0 1
201 1 2
202 2 4
203 3 8
204 4 16
205 5 32
206 6 64
207 17 128
210 8 256
211 9 512
212 10 1 024
213 11 2 048
214 12 4 096
215 13 8 192
216 14 16 384
217 15 32 768
220 16 65 536
221 17 131 072
222 18 262 144
223 19 524 288
224 20 1 048 576
225 21 2 097 152
226 22 4 194 304
Yy 23 8 388 608
230 24 16 777 216
231 25 33 554 432
232 26 67 108 864
233 27 134 217 728
234 28 268 435 456
235 29 536 870 912
236 30 1 073 741 824
237 31 2 147 483 648
240 32 4 294 967 296
A1 33 8 589 934 592
242 34 17 179 869 184
243 35 34 359 738 368
244 36 68 719 476 736
245 37 137 438 953 472
246 38 274 877 906 944
247 39 549 755 813 888

104

REFERENCES

1. ‘“IBM Reference Manual, 704 Data Processing System,’’ International Business Ma-
chines Corporation, New York (1958).

2. ‘704 Input-Output and Monitor System - BE SYS 2, Bell Telephone Laboratories, by
George H. Mealy, Murray Hill, N. J. (May 1959).

3. ‘704 Symbolic Assembly Program UA SAP 3-7,”’ Bell Telephone Laboratories, by
George H. Mealy, Murray Hill, N. J. (Jan 1958). (Revision of UA SAP 1-2, United Aircraft
Corporation, Roy Nutt, Hartford)

4. “‘Programmer’s Primer for FORTRAN,’’ International Business Machines Corporation,
New York (1958).

5. ““FORTRAN Reference Manual,”’ International Business Machines Corporation, New
York (1958).

6. ‘‘FORTRAN II Reference Manual,” International Business Machines Corporation,
New York (1958).

7. ““704 Snapshots,” Applied Mathematics Laboratory Bulletin, David Taylor Model Basin,
Carderock, Maryland, Vol. 1, Nos. 1-18 (1958-1959).

8. Hastings, Cecil, Jr., ‘‘Approximations for Digital Computers,”’ Princeton University
Press, Princeton, N. J. (1955).

BIBLIOGRAPHY

1. Eckert, J., and Jones, Rebecca, “Fasi;er, Faster,”” McGraw-Hill Book Company, Inc.,
New York (1955).

2. McGee, W.C., ‘““Generalization: Key to Successful Electronic Data Processing,
Journal of the Association for Computing Machinery, Vol. 6, No. 1 (Jan 1959).

3. ‘‘Programming for the UNIVAC System,”’ Remington Rand UNIVAC, New York. Chapter
10 (1953).

4. McCracken, D.D., ‘‘Digital Computer Programming,’’ John Wiley & Sons, Inc., New
York (1957).

5. Alt, Franz L., “Electronic Digital Computers,’’ Academic Press, Inc., New York (1958).

6. Gorn, Saul, ‘‘Standardized Programming Methods and Universal Coding,’’ Journal of the
Association for Computing Machinery, Vol. 4, No. 3 (Jul 1957).

7. ‘““Faster than Thought,’’ Edited by B. V. Bowden, Sir Isaac Pitman & Sons, Ltd.,
London (1955).

105

8. Vazsonyi, Andrew, ‘‘Scientific Programming in Business and Industry,’”’ John Wiley
& Sons, Inc., Boston (1958).

9. Kemeny, J.A., et al., “‘Introduction to Finite Mathematics,’’ Prentice-Hall, Inc.,
Englewood Cliffs, N. J. (1957).

106

INDEX

Accumulator, 3, 47 Corrections, 72, 77

Addition: Counting symbol, 22
fixed-point, 3, 46, 60
floating-point, 47, 51

Address: Decimal system, App. C
definition of, 6 Decrement, 6, 16, 54, 55, 58
modification of, 15, 60
symbolic, 26 Divide check light and indicator, 49, 50, 51

Alphabetic code for operations, 54, Apps. A, B Division:
check indicator, 49, 50

Alphabetical characters, 55—57 fixed-point, 11
octal code for, 57 floating-point, 47
Arithmetic operations: Dumps:
flxeq°p01nt3 3, 47 conditional, 73, 74
floating-point, 47, 51 Post-Mortem, 73, T4

Snapshot, 72, 73, 74

A bly, 26
ssembly unconditional, 73, 74

Automatic programming, 26—30, 90—93

End of file, 81, 82, 84
End of record, 81
End of tape, 86

Bell Telephone System, 32—35

Binary coded decimal, 56, 57
table of, 57

Errors, 71

Extractors, 62, 64, 65, 66, 67

Binary corrections, 72

Binary number system, 46, 47, App. C

Calling sequence, 36—38 File, 81

Card: Fixed-point numbers, 46, 49
binary, 71 Floating-point numbers, 46, 47, 49
IBM, 5, 6, 71, 91 normalized, 46, 47

reading, 3, T4
Carry, 61
Characteristic, 46, 49
Check sum, 72

Flow charts, 21, 22, 24
FORTRAN, 90-93
Fractional part of a floating-point number, 46, 47

Frame, 80
Compiler, 26

Computational flow symbol, 21
Hollerith characters, 56, 57

Connector:
nonvariable, 22
variable, 38, 40, 41 IBM card, 3, 5, 6, 71, 91
Control instructions, 16, 20, 21 - Index registers, 15—20
Copy loop, 81 Input, 3, 32, 74, 90
Core storage, 3, 46, 47 Instruction location counter, 15

107

Instruction register, 15

Instructions:
indexable, 15, 20
nonindexable, 15, 20
Type A, 54, 55
Type B, 54

Lateral check of tape, 80
Location counter, 15

Logical choice symbol, 21
Logical operations, 60—71
Longitudinal check of tape, 81

Magnetic tape, 4, 80—89
MQ register, 10, 11

Multiplication:
fixed-point, 10
floating-point, 46

Normal return, 36
Normalizing floating-point numbers, 46, 47

Numbers:
Fixed-point, 46, 49
floating-point, 46, 47, 49
Integers, 5, 46, App. C

Octal code, 54, 55, 65
BCD characters, table of, 57

Octal number system, 55, App. C
Output, 3, 4, 32, 57, 92

Overflow, 47, 48, 49
AC, 47, 48
MQ, 49

Packed word, 61, 62, 64

Physical arrangement of data on tape, 80, 81

Physical end of tape, 86
Post Mortem, 73, 74
Printer, 4

108

Program, 5

Record, 80, 81
Redundancy check bit, 80, 81

Registers:
accumulator, 3, 47
MQ, 10, 11
storage, 3, 46, 47

Rewinding tapes, 86

SAP, 26, 32

Snapshots, 72, 73, T4
Storage, 3, 46, 47
Storage register, 3, 46,47
Subroutines, 36—45, 92

Subtraction: -
fixed-point, 8, 9
floating-point, 47

Symbolic programming, 26
Symbols, definition of, 26

Tag, 6, 15, 54, 55

Tape, 4, 32, 36, 57

Tape-check indicator and light, 86
Tape indicator and light, 86

Variable connector, 38, 40, 41
Variable field, 32

Write end of file, 81
Writing tape, 4, 32, 37, 92

Word, computer, 46

XINPUT, 74
XPRINT, 57

Copies

INITIAL DISTRIBUTION

Copies
CHBUSHIPS 1 DIR, USNEES
3 Tech Info Sec (Code 335)
1 Tech Asst to Chief (Code 106) 1 DIR, USNRL
3 Electronic Computer Div (Code 280) 1 DIR, Natl BuStand

1 Asst Chief for Field Activities (Code 700)
1 Asst Chief for Nuclear Prop (Code 1500)

CHBUWEPS

CHBUSANDA

CHBUCEN

CHONR

CDR, NAVSHIPYD BSN
CDR, NAVSHIPYD CHASN
CDR, NAVSHIPYD LBEACH

CDR, NAVSHIPYD NYK
1 Material Laboratory

CDR, NAVSHIPYD MARE
CDR, NAVSHIPYD NORVA
CDR, NAVSHIPYD SFRAN
CDR, NAVSHIPYD PHILA
CDR, NAVSHIPYD PTSMH
CDR, NAVSHIPYD PUG
CDR, NAVSHIPYD PEARL
CO & DIR, USNBTL

CO & DIR, USNEL

CO & DIR, USNRDL

CO & DIR, USNAVTRADEVCEN
CO & DIR, USNMDL

CO & DIR, USNUSL

CDR, USNWL

CDR, USNOTS, China Lake
1 Michelson Lab (Code 5038)
1 Attn: Library

CDR, USNOL, White Oak

109

118D ‘Aieqry
uoryesedg — $0L Wl
— s1emdwoo 183181q ‘¢
Suyuueaforq — $0L WAI
~ sieynduwoo [89131q ‘g
s[enuBw
uonjonnsuy ~ $0L WAI
— s1egndwoo [e1Siq ‘T

‘sesrolexe pue sejdwexe eyduirs sepnfo

-ut 109d8yo yovy -weysAs Surpod orjewoine WG] us ‘NYALYOJL

pus ‘suornjeiedo jndino-jndur ‘seurnoiqns ‘Sutwweidoid orjoquAs
‘ofendus] auryosw ‘Surasydo Mo[j 818 pelerod §91doy ey) Fuowy

‘sweyshs esoy) Suisn 0., WAl

oY) 10j wsidoid ® 91am 07 WIBS[UBD UBIDIBWAYIBW BY) YOIYym

wolj ‘uorivjueseld euo ojuUl SJON & JewwWBIF0I] L-¢ JVS HeIY

pejtun) oY) pue ‘g §XS Fd — weysAg ndinp-nduy $0, WAl SOLI0)

-vioqer] euoyde[e], [[og oY) ‘|enusjy eousiejoy $0L WHI @Y woiy
UOIYBWIOJUT [BIJUSSSD oY) S0)8pI[OSU0D [enusul Fuiurely sy,

QUIAISSVTIONN
'sjea ‘se[qey ‘'snqi ‘dOIT ‘14 0961 :dy -AzeqIy 7T 148D 4q
‘%0, WAl FHL Y04 HNINWVIDO0Ud NO TVANVA ONINIVEL
*9¢| s10day uisog [spoy i0|Ap] piabq

1 138D ‘Aseqy,]
uoyyeedQ — F0L WAI
— saomdwood eydiq ‘g
Surmweajolg — $0L Wl
~— saoyndwoos 8Ndiq ‘g
s[enusw
uorjonynsu] — 0L WAI
— sieyndwoo [e3151q ‘1

ses1olexe pus sejdwsxa ojdwis sepn[d

-ur Joydeyd yoey -wejsAs Fuipoo drjewoine WE[us ‘NVHILUOA

pue ‘suorjesedo jndino-indu; ‘seurinoiqns ‘Surtwweidord orjoquis
‘oFBndus| suryoew ‘SuUIMEBYO MO[j 918 PeleA0d s91doj oy3 Juowy

-swe)sAs esoy) Juisn o), WAl

oY) 10} weiFoid ¥ 9JlIM 07 WIBS] ULD UBIOIJBWAYIBW OY) YOIym

woly ‘uorivjuaseld euo ojul s8J0N S JewwsIFoid L-¢ JVS WY

pajtun) oYy pus ‘g SXS @ — wersAg mdmQ-nduy 0L WAI 591209

-vioqer] euoydeje], [[9d oY ‘|enuBjy 9dusiejoy F0L WHI Oyl woij
UOI)BWIOJUT [8IJUSSSS OY) §0I8PI[OSUCD [BnuUBW Fuiulsy siyy

QAIJISSVIONA
'sjo1 ‘seiqey ‘'snyit "doIT ‘1A ‘0967 ady Aleqry ' [aeD Aq
‘$0L WAl FHL Y04 DNINAVEDOHUd NO "TVANVA HNINIVIL
*89¢1 soday ‘uisog [apoyy so[Any piang

118D ‘Aieqry -
uoryried0 ~ $0L Wl
— siemdwood [endiq ‘g
SuruwsiFosy — $02 WAl
— sieyndwod peydiq ‘g
s[snusw
uononnsul — 502 WAl
— sieindwood eyidiq °y

*sostolexe pus sejduexe ejdurs sepnjo

-ur aoydeyo yovy ‘wesks Burpoo orjewoIns WYl UB ‘NYALIOL

pus ‘suorjsiado yndino-ndur ‘seurinoaqns ‘SurwuresSord orjoquis
‘eFun3us| euryosw ‘SuIueYd MO[} 018 PeieA0d so1do} ey) Fuowy

‘sweIsAs esoyj Juisn 0L, WdI

oY) 40j weiFoid B 9ILIM 0} WIBA[UBD UBIOIIBWAYIBW OY) YOIym

woy) ‘uoijsjuaseld ouo ojur §9)ON € Jewwsidold)-g JVS WeIIlY

pestuq ey3 pus ‘g SXS Fg — weisAg ndmnQ-mduy 0., WAI sel

-vioqer] euoydeje], [[og oY) ‘[8nusjpy oousiejey ¥0. WI °Y) wolj
UOI)BWIOJUI [BIJUSGSES OY) S9IBPIJOSUOD [BNUBW Fululsd} sIy]

JIIJISSVTONN
*sjoi ‘se[qey “'snjt °doTT ‘ta ‘0967 My °Aseqry 7] 118D Aq
‘70, WAI FHL Y04 DNINWVEDOYUd NO TVANVA DNINIVYL
*‘g9g| Hioday “disog |apoy 0]Ap] piapQg

- - o — -

LR sden b

CaTyeasan

LXK X Y WssReas t@seTIaeN

X

»

L O R Y RN N]

“ei1nat Se8’ T YeeieANre

RN EER R REREEIEREE RN PEEE XX RE NN

POOELLBOOTL LT S HEL VLRI BAEN s L P M T T ERL P T TR PE PESLELIEAeE® AraSbd b st Aup LR N Y RN e s e e a2t ns R P N I

CONTROL CARD INFORMATION

CONTROL CARDS

cards should be in the following order:

Then:

INT 2 (Notice that the labei is in columns 73-80.)

FIN 1
FIN 2
FIN 3
FIN 4
FIN 5
FIN 6
FIN 7
FIN 8
FIN 9
FIN 10
FIN 11

CHAPTER II
CHAPTER 1I
CHAPTER III
CHAPTER III
CHAPTER IV
CHAPTER IV
CHAPTER V
CHAPTER V
CHAPTER V
CHAPTER VI
CHAPTER VI

EXERCISE 1
EXERCISE 2
EXERCISE 2
EXERCISE 3
EXERCISE 1
EXERCISE 2
EXERCISE 1
EXERCISE 2-1
EXERCISE 2-2
EXERCISE 1
EXERCISE 2

110

The control cards in the pocket are to be used with the exercises in this manual. The

FIN 5
FIN 5
FIN 5
FIN 5
FIN 5
FIN 5
FIN 5
FIN 5
FIN 5
FIN 5
FIN 5

