
V393
R46

q

Y

4 xw

TRAINING MANUAL ON PROGRAMMING FOR THE IBM 704

by

Carl L. Tibery

Report 1368

__

April 1960

TABLE OF CONTENTS

Page

A B ST R A C T 1.................... 1

IN T R O D U C T IO N 1

USE OF THE CONTROL CARDS ... 2

CHAPTER I - ADDITION AND SUBTRACTION .. 3

CHAPTER II - MULTIPLICATION AND DIVISION .. 10

CHAPTER III - INDEX REGISTERS AND THEIR USE .. 15

CHAPTER IV - FLOW CHARTS .. 20

CHAPTER V - AUTOMATIC PROGRAMMING ... 26

CHAPTER VI - BELL INPUT-OUTPUT SYSTEM .. 32

CHAPTER VII - SUBROUTINES .. 36

CHAPTER VIII - NUMBERS IN MACHINE LANGUAGE ... 46

CHAPTER IX - INSTRUCTIONS IN MACHINE LANGUAGE ... 54

CHAPTER X - LOGICAL OPERATIONS ... 60 I
CHAPTER XI - PROGRAM CHECKING .. 71

CHAPTER XII - READING AND WRITING ON TAPE ... 80

CHAPTER XIII - FORTRAN, AN AUTO"ATIC CODING SYSTEM 90

A C KN OW L ED G M E N T .. 94

APPENDIX A - OPERATIONS BY ALPHABETIC CODE ... 95

APPENDIX B - INSTRUCTIONS TO THE SAP AND BELL SYSTEMS 96

APPENDIX C - DECIMAL, BINARY, AND OCTAL NUMBER SYSTEMS 97

R E F E R E N C E S .. 105

B IB L IO G R A P H Y .. 105

IN D E X .. 1 0 7

I _ -, I .

LIST OF FIGURES

Page

Figure 1 - Contents of the Core Units .. 4

Figure 2 - Sam ple Coding Form .. 4

F igure 3 - A n IB M C ard .. 5

Figure 4 - An IBM Card with the Instruction ADD 121 ... 6

Figure 5 - Program to Add Two Numbers .. 7

Figure 6 - Representation of the Product ... 10

F igure 7 - Product of 6 x 4 10

Figure 8 - Program to Evaluate the Product of-Two Numbers 11

Figure 9 - Representation of the Dividend ... 11

Figure 10 - Program to Evaluate the Quotient of Two Numbers 12

Figure 11 - Program to Find the Sum of Ten Numbers Using an Index Register 17

Figure 12 - Program to Place Sum of Each Pair of Numbers in Consecutive
L ocations .. 21

Figure 13 - A Logical Choice ... 21

Figure 14 - An Evaluation of a Formula ... 21

Figure 15 - Counting Symbol ... 22

F igure 16 - A C onnector ... 22

Figure 17 - An Assertion or Note ... 22

Figure 18 - Flow Chart to Evaluate yi = (x2 + 3xi - 5), i = 1,2, . . . , 100 22

Figure 19 - Program Associated with the Flow Chart of Figure 18 23

Figure 20 - Symbolic Program to Find the Sum of Ten Numbers 27

Figure 21 - Symbolic Program to Evaluate yi = (xi2 + 3xi - 5), i = 1,2, . . . , 100 28

Figure 22 - Order of Instructions to Run a Symbolic Program Using SAP 3-7 34

Figure 23 - Flow Chart to Evaluate the Sum of Two Numbers 37

Figure 24 - Symbolic Program Associated with Flow Chart of Figure 23 37

* ___ _~_ _I

Y" "LnX~~~~~~wir~n

Page

Figure 25 - SHARE Subroutine for Evaluating TAN X ... 39

Figure 26 - Flow Chart to Evaluate the TAN X Using a SHARE Subroutine 40

Figure 27 - Symbolic Program Associated with Flow Chart of Figure 26 40

Figure 28 - Flow Chart Demonstrating Variable Connector ... 41

Figure 29 - Program Associated with Flow Chart of Figure 28 42

Figure 30 - SHARE Subroutine for Evaluating the Square Root of the Absolute
V alue of X ... 45

Figure 31 - B its of a Core Unit ... 46

Figure 32 - Floating-Point Number Representation .. 47

Figure 33 - Decimal 5 in Normalized Floating-Point Binary Form 47

Figure 34 - Bits of the Accumulator ... 47

Figure 35 - Program to Check for Overflow in Addition .. 48

Figure 36 - Program to Check Whether or Not Division Takes Place 50

Figure 37 - Type A Instruction ... 54

Figure 38 - Type B Instruction .. 54

Figure 39 - SAP Printout of TIX 101,1,1 .. 55

Figure 40 - Machine Representation of TIX 101,1,1 ... 55

Figure 41 - Octal Code for FISCAL YEAR 1959 ... 56

Figure 42 - Octal Representation of FISCAL YEAR 1959 in Core Storage 56

Figure 43 - Type A Instruction ... 58

Figure 44 - Type B Instruction ... 58

Figure 45 - Program to Modify the Address of an Instruction .. 60

Figure 46 - Exchange of Bits as Result of CALA .. 61

Figure 47 - Operation of ACL Y .. 61

Figure 48 - A Packed Word .. 62

Figure 49 - Extractor Pattern 1 .. 62

- --- ----- - 1l.

r I I Il I I 1 I II~ ------1 ---------

M I Y III lill III M i i ii

Page

Figure 50 - N1 in the c(AC)p, _, .. 62

Figure 51 - N1 in c(MQ)s, 24-35s ... 63

Figure 52 - P1 in c(MQ)s, 1- 11 ... 63

Figure 53 - Extractor Pattern ... 64

Figure 54 - Location DATA Now Contains N 1 and N3 .. 64

Figure 55 - Location DATA Now Contains P 1 , N2 , and N3 64

Figure 56a - Extractor Pattern 1 and its Octal Code ... 65

Figure 56b - Extractor Pattern 2 and its Octal Code ... 65

Figure 57 - Flow Chart for Extraction of N1 from Packed Word and Insertion of
P1 into P acked W ord ... 65

Figure 58 - Program Associated with Flow Chart of Figure 57 66

Figure 59 - Operation of ANA Instruction ... 67

Figure 60 - A Binary Card with Twenty-two Instructions ... 71

Figure 61 - Sequence of Cards to Run with Binary Deck .. 72

Figure 62 - Instruction for Snapshot Dump ... 73

Figure 63 - Sequence of Cards when Making Corrections and/or Dumps with a
B inary or Symbolic Deck .. 74

Figure 64 - Program to Obtain a Dump at Location 165 and a Post-Mortem Dump 74

Figure 65 - Program to Multiply Two 10 x 10 Matrices, A and B 75

Figure 66 - Programs to Run a Symbolic Deck with Dumps or a Binary Deck with

Corrections and/or Dumps ... 78

Figure 67 - One Frame on Tape ... 80

Figure 68 - BCD Mode of Tape .. 80

Figure 69 - Longitudinal Check .. 81

Figure 70 - Flow Chart to Copy 1000 10-Word Records from Tape to Memory 82

Figure 71 - Program Associated with Chart of Figure 70 .. 83

Figure 72 -

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Flow Chart to Copy 1000 Words from Core Storage in Units of
10-Word Records onto Tape ..

Program Associated with Flow Chart of Figure 72

A FORTRAN Program to Evaluate the NORM of a Matrix

Data Card with Format 5E14.8

A Few Binary Integers and Their Decimal Equivalents

Addition and Multiplication Tables for Binary Number System

M ultiplication of 6 by 7 ...

A Few Binary Integers with Their Octal and Decimal Equivalents

Addition and Multiplication Tables for Octal Number System

Page

Ilk 11

I I II I Il I I~ -4L

ABSTRACT

This training manual consolidates the essential information from the IBM
704 Reference Manual, the Bell Telephone Laboratories IBM 704 Input-Output

System - BE SYS 2, and the United Aircraft SAP 3-7 Programmer's Notes into

one presentation, from which the mathematician can learn to write a program for

the IBM 704 using those systems.

Among the topics covered are flow charting, machine language, symbolic

programming, subroutines, input-output operations, and FORTRAN, an IBM auto-
matic coding system. Each chapter includes simple examples and exercises.

INTRODUCTION

The purpose of this manual is to introduce the techniques of programming mathematical
problems for the IBM 704 to the mathematician who is unacquainted with high-speed computers.

Programming for the IBM 704 in the Applied Mathematics Laboratory of the David Taylor
Model Basin requires a knowledge of several systems, as described in: IBM 704 Reference

Manual, 1 Bell 704 Input-Output System - BE SYS 2,2 Programmer's Notes for SAP 3-7,3 FOR-

TRAN Primer, 4 FORTRAN Reference Manual, s FORTRAN II Reference Manual, 6 and 704

Snapshots. 7

This manual coordinates the essential points of References 1-7 into one presentation,
from which the mathematician should be able to learn to prepare a complete program for the

solution of a problem on the IBM 704.

Since one learns best by applying what he is learning, this manual is written so that,
from the very first chapter, the mathematician can run programs on the computer. A set of con-
trol cards is provided with each manual (in a pocket inside the back cover), and to perform the

input-output operations the cards are simply placed before and after the symbolic program.

The instructions necessary to write a program for a fairly sophisticated mathematical
problem are presented first. Then the meaning of the control cards is explained, and the method
for preparing the control cards is given. In the chapters that follow, more instructions, sub-
routines, symbolic codes, and other input-output devices are presented, but the responsibility

for preparing the control cards is left to the user of this manual.

Thus, upon completion of the exercises given in this manual, the mathematician should
be able to program, independently, problems for the IBM 704, and should have no difficulty in

using the references to find any new instructions he may need.

Appendixes A and B contain tables of the IBM 704 operations, SAP codes, and Bell

System codes.

1References are listed on page 105.

USE OF THE CONTROL CARDS

You will find a set of control cards in the pocket inside the back cover of this manual.

They must be in the following order, with the label INT (initial) or FIN (final) appearing in

columns 73-80 of the card:

INT
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

These control cards, except for the one labeled FIN 5, are to be used for all the exer-

cises through Chapter VII. The card labeled FIN 5 is to be replaced in each chapter by a new

card which has the chapter number preceding FIN 5.

The first initial control card, INT 1, is not included in this deck. It is called the JOB

card and contains the programmer's problem number. It can be obtained from the supervisor of

computer operations.

IIC. --- r-- 311 - I I I --r*I~L"~---sl-- sT111

CHAPTER I

ADDITION AND SUBTRACTION

This is an introduction to the solving of mathematical problems on the IBM 704 comput-

ing machine.

One of the most important functions of a computing machine is to perform the four arith-

metic operations, and its great utility comes from the fact that it can perform these operations

many times faster than a human being can using a desk calculator.

Similar to a human brain, the computer must first "find" the number it wants to operate

on and then perform the operations. How is this done?

This is done by instructions which the programmer gives to the machine. The 704 has

32,768 storage units, or cells, which can contain either instructions or data. Suppose you have

stored in location 120 the number +5 and in location 121 the number +2, and you want to find

the sum of these two numbers.

The instruction "Clear and Add"

CLA 120

will bring the contents of cell 120 (namely, the number +5) to a working part of the computer

called the accumulator. There the contents of cell 120 will be ready for comparison. Then the

instruction "Add"

ADD 121

will tell the machine to add the contents of cell 121 to the contents of the accumulator. The

result, +7, will replace the number, +2, in the accumulator. But next, you will want to store

this sum in a convenient location. This is done by the instruction "Store"

STO Y

Y being the location where you desire the result to be. For example, if you want this sum

stored in location 122, you would write the instruction thus:

STO 122

The internal memory or core storage, assuming the instructions to begin in location 100, now

contains the following information; see Figure 1. (Note that the first cell is numbered 0.)

But now a question arises. How do these instructions and data get into the internal

memory (core storage) of the machine, and how do you get the result out of the memory?

One way of doing this is by punching the instructions and data on cards and then letting

the machine read the cards into the memory. Instructions are normally written on special

coding paper which specifies the card columns to be punched. An example is given in Figure

2. The computer will read the data and instructions into the memory by means of control cards

placed before the instruction cards. Then by a control card placed at the end of the instruc-

tions and some additional ones placed at the end of the data, the computer will write the

^-------(II-----~~~ *il

Location Number Contents

0

100 CLA 120
101 ADD 121
102 STO 122
103

120 +5
121 +2
122 +7
123

32,767

1 - Contents of the Core Units

IBM Data Processing Division SHARE 704 Symbolic Coding Form
Problem

I Date Page OfCoder John Smith SeDtember 15, 1959 1 1

HI Lotion OP Addre,. Tag Decrment Cm entu fatio

2 6 8 22 11 12 7__ 80

ORG 100
CLA 120

ADD 121
STO 122

ORG 120

DEC 5

DEC 2

~~L~ZII] Lii
Figure 2 - Sample Coding Form

answer or answers on a magnetic tape. A printer will print the information from tape onto

paper. (The control cards will be explained in Chapters VI and VII.)

To begin our instructions at location 100, place immediately after the initial control

cards the "Origin" card

ORG 100

This instructs the machine to place the instructions on the cards that follow in core storage,

starting at location 100.

Thus to perform your sample problem you would place the sets of cards in the order

indicated in the hopper of the machine:

Figure

1 ab i' IC ~ II I IIII1C I _-- 1111~111111111~ 1~

I

Initial Control Cards Nos. 1-2

Instruction Cards for the Problem

Final Control Card No. 1

Data for the Problem

Final Control Cards Nos. 2-11

To place a decimal integer into the memory, use the instruction "DECimal data"

DEC N

where N is any decimal number preceded by a sign (+ or -). The + sign may be omitted.

When placing decimal integers in consecutive locations, you can write all the numbers

on the same card in columns 12-72 if you separate each number by a comma. Thus, the cards

ORG 100

DEC 78, 85, -26

will place the integers 78, 85, and -26 into locations 100, 101, and 102, respectively.

An IBM card contains 80 columns and 12 rows. (See Figure 3.) You can punch a char-

acter in each column desired. However, the computer will interpret only the first 72. The re-

maining 8 are either left blank or are used to number the cards. At the Model Basin columns

73-74 are used for the programmer's initials, and the last 6 columns are used for the card

number.

SYMBOL OP ADDRESS, TAG, DECREMENT -* REMARKS LABEL

0

so0o00 0o0 oooo ooooooooooooooooooooooooo ooooooooooooooooooooooooooooo ooooooool
1 2 3 4 5 6 A 9 10 12 13 14 15 16 17 18 1 20 21 22 23 24 25 26 27 28 29 30 31 32

3 3 3 4 3 5
6 37 31

3 9 4 0 4 1 4 2 4 3 4 4
45 46

4 7
48 49

0
51 52 53 54 556 57 5

1
59 6061 62 63

6 S
66 67

6
9G 70

7 1
73 74 75 76 77 78 79 80

11 1i 11 1 1 1 1 Ill It i Ii I I I Ii 11 il t I l I I lili It I l I I It II I II ll III ll IIIlil I I III Il 1 1

222222 222 22222222222222222222222222222)222222222222222222222222222222222222222 >

33333 33.3 3333333333333333333333333333 33 33333333333333333333333333333333333333 -

444444 444 44444444444444444444444444444(444444444444444444444444444444444444444 >

555 55 555 5555555555555555555555555555 ~ 55555555555555555555555555555555555555

66666 666 66666666666666666666666666666 66666666666666666666666666666666666666

171111 771 77111 111 111 1777 111111111177777 ii7777777h 7 77u 7777h 7 777777771 7777777711

888888 888 8888888888888888888888888888(88
919999 9 999

! 9999999999999999999999 99999991)9999999999999999999999999699999999999999i
2 3 4 5 6 718 5 5 2 13 1415 17 1 19 21 2 23 24 5 527 5 3

-
35 3 5 341 42 43 5 a 4 5 4 47 5 49 52 5 5 5 5 56 ?759 60 1 45 5 O 5 5 5 27 74757l5 75 o I

IBM 884391

Figure 3 - An IBM Card

NOTE: The circled numbers indicate the row numbers.

In which columns do you punch your instructions? Columns 1-6 are reserved for the

location in the storage where you desire to place an instruction or data. However, with the

initial control cards given in this manual, you do not have to fill in columns 1-6 because the

instructions and data are stored in consecutive locations beginning at location Y, as specified

in the ORG Y card.

Column 7 is a blank.

Columns 8, 9, and 10 are for the operation code, such as CLA or ADD.

Column 11 is a blank.

Columns 12-72 are used for the address, tag, and decrement of the instruction. In this

chapter only the address will be defined.

The address is that part of an instruction specifying the location in the core storage

of the data to be operated on.

Figure 4 shows how an instruction would be punched on a card.

r . .0

o 0

ADD 121
III

SYMBOL OP ADDRESS, TAG, DECREMENT -- REMARKS LABEL

*00000 000 000888000000000000000
t 2 3 4 5 6 8 9 10 12 13 14 15 16 17 18 14 20 2, 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 46 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 G6 67 68 69 70 71 72 73 74 75 76 77 78 79 80

22222 222 23222 >

33333 333 333 -
444 411 44 0

$555 55 555 555

866666 666 66

7 1777 777 777717177177 71

888888 888 888

2 5 6 78 9 102 2 12 13 1415 1 17 18 19 2 2 2 2 24 2 26 2 28 2 2 2 2 233 343536 32 38 39 40 41 42 43 2 45 46 47 449 5 21 52 53 5425 56 57 58 2960:1 8263 4 657 88 SS 72 2 2 273 74 25 72 27 78 79 8
IM 884391

Figure 4 - An IBM Card with the Instruction ADD 121

To solve your problem on the computer, use the sequence of cards (as indicated in

Figure 5) which contain instructions or data. (Note that the decimal point is not used with

integers.) Such a sequence of instructions is called a machine program.

-- MINI 1,

I I I I I I -l_ L_~m----- ----~--~llmrunaaF1 *n~l-aan~nn~~

SHARE 704 Symbolic Coding Form

Figure 5 - Program to Add Two Numbers

1IIIIIY IIIYIIIIIII IIIIY III Ill IIIIIYIIIIII IIIII - - I- -

IBM Data Processing Divisio.

SUMMARY - Chapter I

To run a program with cards in the 704, place them as follows in the card hopper:

Initial Control Cards Nos. 1-2

Your Own Instructions

Final Control Card No. 1

Data

Final Control Cards Nos. 2-11

Instructions covered in this chapter are:

Origin

Specifies that the information on the cards that follow

in the core storage beginning at location Y.

Clear and Add

Places the contents of Y in accumulator and leaves Y

Add

Adds contents of Y to contents of accumulator, places

accumulator, and leaves Y unchanged.

Store

is to be stored

unchanged.

the sum in the

Stores contents of accumulator in location Y, and leaves the accumu-

lator unchanged.

Decimal Data

Specifies that N is a decimal integer.

Subtract

Subtracts contents of Y from contents of accumulator, places the

difference in the accumulator, and leaves Y unchanged. (See Exercise 2.)

ORG Y

CLA Y

ADD Y

STO Y

DEC N

SUB Y

11 III

.~- 1 11~1 1 1 1111 1 I ____. _I I

EXERCISES- Chapter I

1. Write a program to find the sum of five different numbers. Begin the first instruction in

location 100 and the first data item in location 200. Store the result in 300.*

2. Given that the instruction "Subtract"

SUB Y

will subtract the contents of Y from the contents of the accumulator and leave the result in the

accumulator, write a program to add 5 and 7; then subtract 4. Assume same ORG cards as in

Exercise 1. Store the result in 300.

3. Punch your instruction and data cards and place them with the control cards in the order

given in this chapter; then run Exercises 1 and 2 on the 704. Check your answer with the ma-

chine answer. Notice that the first of the Final Control Cards is to be placed after your last

instruction card.

*
Note that on your printout the core storages are numbered in the octal system and not the decimal system.

See Appendix A.

_I _ I~___

CHAPTER II

MULTIPLICATION AND DIVISION

In Chapter I you learned how to subtract and add on the 704. Now you will learn how

to divide and multiply.

MULTIPLICATION

To multiply, you must use two registers:

multiplier-quotient or MQ register. First, place

by the instruction "Load MQ"

the accumulator or AC register, and the

the multiplicand with sign in the MQ register

LDQ Y

This will replace the contents of the MQ

of Y unchanged.

with the contents of Y, leaving the contents

Then the instruction "Multiply"

MPY Y

will multiply the contents of MQ by the contents of Y.

The most significant half (msh) and the sign of the product will appear in the AC, and

the least significant half (lsh) will appear in the MQ. Read your answer as if the contents of

the AC were placed to the left of the contents of the MQ. (See Figure 6.)

AC

msh

MQ

Figure 6 - lepresentation of the Product

If you multiply 4 by 6, the answer 24 will appear, as in Figure 7. The sign of the MQ is the

same as the sign of the AC. The number 24 appears entirely in the MQ because each register

is capable of holding an integer as large as 34,359,738,367 plus a sign.

AC MQ

+0------ -0 +0------- 024

Figure 7 - Product of 6 x 4

Now you must take the contents of the AC and the MQ and place them somewhere in

storage. As before, use

STO Y

to place the contents of the AC in location Y.

To place the contents of the MQ in some storage location, use the instruction "Store MQ"

STQ Y

-- ' 1111111N11 111"

Y I! 1 31 11 II I ------------- ---- ~ -r A~

This will place the contents of the MQ in location Y.

Example: Assume that +972 is in location 200 and +852 is in location 201. Find the

product of these two numbers, and place the msh of the product in location 300 and the Ish in

location 301. You would do this as shown in Figure 8.

IBM n..Data Procesi......ng Divisio SHARE 704 Symbolic Coding Form

Problem

Codero John Smi
HI Loaton

I 2 6 7

tal

I
---- nl o-----~----

.-- t-----

c- -----

.LPI

.th

8 10 11

Contro I
ORG

LDQ
MPY
STO

Control C

ORG

DEC
DEC

trol Cad

Figure 8 -

After the operations

will contain +828144.

Program to Evaluate the Product of Two Numbers

are performed, location 300 will contain all zeros and location 301

DIVISION

To divide, use both the AC and the MQ registers. The instruction for division is

DVH Y

This instruction treats the contents of the AC and the MQ as the dividend, the MQ con-

taining the lsh, and the AC containing the msh and the sign (Figure 9).

AC MQ
Dividend:

Figure 9 - Representation of the Dividend

Then if the absolute value of the contents of Y is greater than the absolute value of

the contents of the AC, i.e., j c(Y) I > I c (AC) I, division takes place. The quotient and its

sign replace the contents of the MQ, and the remainder replaces the contents of the AC.

Suppose you have 0 in location 200, 55 in location 201, and 11 in location 202, and

you want to divide 55 by 11 and then store the quotient in location 300 and the remainder in

location 301. If you begin the instructions at location 100, your program would look thus.

(See Figure 10.)

t'g 1~ 1
I Dat September 15, 1959

Cmmtsto
Adder. T. D

ards

721 73

100 Specifies 100 as the location of the first
instruction.

200 Places c(200), contents of 200, in the MQ.

201 Multiplies c(MQ) by c(201).

300 Stores msh product in 300.

391 Stores ish product in 301.

ard #1)
200 Specifies 200 as the location of the first

data item.

972 Places 972 in location 200.

852 Places 852 in location 201.

t #2-11)

_I _ _

I

------ t- ~

l l~r*c-u~ unr~~*- ;r~rrrra~ ---------I---~- -~

Irage 1 1

IBM Data Pracessing Division SHARE 704 Symbolic Coding Form
Problem

Da Seuember 15. 1959 I Page 1
Addre. Tal Decrement

12

of 1

Comment u

rds)
100 4 Specifies location of first instruction.
200 Places 0 in the AC.
201 Places 55 in the MQ.
202 Places quotient in the MQ and remainder in

the AC.
300 Stores quotient of 5 in 300.
301 Stores remainder 0 in 301.
d #1)
200

0
55
11

1 #2-11)

Figure 10 - Program to Evaluate the Quotient of Two Numbers

Coder
John Smith

8 10

H L¢aorn

1 2 6

MMA__Initi

n-----Fia-- 4----

lontrol
ORG

CLA

DVH

STQ
STO

ntrol C

DCG

DEC
DECtal92

n R

. 73

I I I II la sil ---- -- -------------------- ~----

Lden

fictio

SUMMARY - Chapter II

The new orders learned in this chapter are:

LDQ Y Load MQ

Replaces the contents of the MQ by the contents of Y, leaving Y

unchanged.

STQ Q Store MQ

Places contents of the MQ in Y, and leaves MQ unchanged.

MPY Y Multiply

Multiplies the contents of the MQ by the contents of Y and puts the

msh and the sign of the product in AC and the lsh of the product in MQ,

and leaves Y unchanged.

DVH Y Divide or Halt

Treats the AC and MQ as the dividend and then divides this by the

contents of Y and puts the signed quotient in MQ and the signed remainder

in AC. The sign of the remainder always agrees with the sign of the quotient.

Division takes place only if Ic (Y) jI> I c (AC)I. If Ic (Y) |_< c(AC) I the com-

puter stops.

EXERCISES- Chapter II

1. Find the average of five integers, each less than 1,000. Begin your instructions at

location 100 and your data at 200. Place quotient in 300 and remainder in 301. Assume that

the dividend will fit entirely in the MIQ.

2. Evaluate the following:

5 x? x i = 2,3,4,5,6; i = 1,2, . . . , 5
, where

1 i wh i = 2, -3, 1, 5, 4; i = 1, 2, . . . , 5.

Begin your instructions at location 100 and data at 200. Place result in 300.

3. Punch cards for Exercises 1 and 2 and then run the problems on the computer. Check

your answers.

11011 ill I 111111i

I I LI I I rl II r I-

CHAPTER III

INDEX RE31STERS AND THEIR USE

Suppose you have 100 different numbers beginning at location 200, and you want to find
the sum of these numbers. It certainly would be tedious to write 99 ADD orders. To facili-
tate operations such as this, the 704 has some special instructions.

All 704 instructions with memory references are classed into two groups: indexable,
and nonindexable. The nonindexable instructions contain the letter X in their operation code
whereas the indexable instructions do not. To understand how these instructions work, it is
necessary to know how the 704 picks up and interprets an instruction.

The 704 has an instruction location counter which tells the computer from which lo-
cation to pick up the next instruction. The computer then places this instruction in the storage
register (SR) and restores the instruction unchanged into its original storage location. Then
the computer places the operation part of the instruction in the instruction register and leaves
the rest of the instruction in the SR. If the instruction register contains an instruction which
is not indexed, such as CLA 100, the computer will execute this instruction without further
delay. In this case, it will clear and add c (100) to the accumulator. But if, on the other hand,
the instruction register contains an indexed instruction, the computer will modify the address
of the instruction before execution. This is explained as follows.

If you associate an index register (of which the 704 has three, designated 1, 2, and 4)
with an indexable instruction, the instruction is tagged with the index register named. For
instance, if you tag the instruction CLA 100 with the index register 1 (IR-1), write it as

follows:

CLA 100,1

Thus, you associate with this instruction the index register 1. Suppose now that the
index register 1 contains the number 10.

When the computer picks up the instruction CLA 100,1, it will, as explained above,
place the operation part in the instruction register and the address and tag in the storage
register. Since this instruction is tagged with index register 1, the computer will first sub-
tract the contents of the index register (namely, 10) from the address in the storage register
and then execute the instruction with the new address. Thus the computer will execute

CLA 90

That is, the contents of location 90 (instead of location 100) will now replace the contents of
the accumulator. This is called effective address modification.

The next two instructions explain how to load an index register with a number, and
how to change this number once it is in the index register.

To load an index register with a number, you must first have the number stored some-

where in the core storage. Then the instruction "Load Index from Address"

__ ~~__~~ _ .^__ I

-rr~ -~~~nnlulia

LXA Y, N

will load the contents of location Y into index register N, where N is 1, 2, or 4.

For example, if you have the number 10 in location 200, the following instruction

LXA 200,1

will load the number 10 into index register 1.

To change the contents of the index registers, the 704 uses control instructions, which

have, besides an address and a tag, a third part called a decrement. One of these instructions

is "Transfer on Index"

TIX, Y, N, D

where Y represents the address, N the tag, and D the decrement.

This instruction operates as follows. If the contents of the index register N are greater

than the decrement D, the computer will reduce the contents of the index register by the

amount of the decrement and take the next instruction from location Y. Otherwise, the com-

puter proceeds to the next instruction in sequence.

These instructions are illustrated by the following example.

Find the sum of ten numbers stored in consecutive locations beginning at location 200,

and store the result in 210. Begin the instructions at location 100.

The program for this problem is in Figure 11. In the column for Comments, an arrow

(-.-) indicates "replaces" and c(u) indicates contents of unit u.

_ I ill I I--- I I NI

IBMData Processing Division SHARE 704 Symbolic Coding Form
Problem

John Smith D ptember 15 1959 Page 1 1
HI Loaon Op Addrem. Ta. Decrement Cmments fa

... j 9th and last
2 6 8 10 , 1z Ist time around loop 2nd time around loop---- ime around p

. Initi l Control Cards)
ORG 100 Says place instructions in core beginning at locat ion 100,
SLXA 200, 1 9- c(IR-1).
CLA 200 c(200)=9--c(AC).
ADD 210 1 c(AC)+c(201)-c(AC) c(AC)+c(202)-c(AC) ------ c(AC)+c(209)

i =9+2 --- c(AC). =9+2+4--c(AC). -*c(AC)=9
+2+4+3-4+5

+8-7+12-13

=19-c(AC)
TIX 102, 1, 1 Reduces c(IR-1) to Reduces c(IR-) ------Since c(IR-)

8 and proceeds to to 7 and proceeds is now 1,

102. to 102. computer
takes next

instruction in
sequence.

STO 210 Sum-c(210).
I Finll Control Card #1)

ORK 200 Places the followin data in core storage beginning at location 200.
DEC 9
DEC 2

S 4

pEC 3
DEC -4

DEC 5
DEC 8

(Final

DEC

DEC

trol Ca

Figure 11 - Program to Find the Sum of Ten Numbers Using an Index Register

+12

-13

S#2-11)

__ __ __

SUMMARY - Chapter III

A nonindexable instruction contains an X in its operation code, but an indexable in-

struction does not.

If you tag an indexable instruction with an index register, the computer uses effective

address modification on this instruction.

The following new instructions were introduced:

0
°C.)

L.

LXA

ad)

N

TIX Y, N, D

Load Index from Address

Loads index register N with number stored in location Y, where

N = 1, 2, or 4.*

Transfer on Index

If the contents of the index register N are greater than the decre-

ment D, the computer will reduce the contents of the index register by the

amount of the decrement and take the next instruction from location Y.

Otherwise, the computer proceeds to the next instruction in sequence.

*A tag number 3, 5, 6, or 7 is also used. For their meaning, see Reference 1, page 8.

I I I I r I - II I _ I_

EXERCISES- Chapter III

1. Do Exercise 1 of Chapters I and II using an index register.

2. Given that ai, bi, and c i (i = 1, 2, . . . , 10) are 30 integers beginning at location 200,

find X as defined below and place the value of X in 300. Begin the instruction at 100.

10 \10
X= I (a i c i)2) I (bi-c i)

=1 i =1

3. Assume, in Exercise 2, that the first nine a's are the elements of a 3 x 3 martrix A,

stored row-wise, and that the first nine b's are the elements of a 3 x 3 matrix B, also stored

row-wise. Find the elements of the product AB = C. Store the cij columnwise beginning at

location 300. Begin the instructions at 100.

4. Prepare data and instruction cards for Exercises 2 and 3, and then run the problems on

the machine. Check your answers by hand computation.

_ -111111 _

cl i ~p~~n~"luSrUrrprWYI~ II~ "L*O-C-

CHAPTER IV

FLOW CHARTS

In the first three chapters, you learned what the instruction codes for the arithmetic

operations are, how to index an instruction, and what the meaning of one control instruction

is. In this chapter, you will study three more control instructions and an aid to programmers-

flow charting.

The three new control operations are:

TRA Y

TNX, Y, N, D

TXI, Y, N, D

Transfer

Transfers control to Y. The computer will take its next oper-

ation from location Y and continue from there.

Transfer on No Index

If contents of index register N are greater than the decrement

D, the computer reduces the contents of index register N by D and takes

the next instruction in sequence. If contents of index register N are

less than or equal to D, the computer leaves the IR as it is and takes

the next instruction from location Y.

Transfer with Index Incremented

Adds D to the contents of index register N and places this sum

in index register N. Then the computer takes the next instruction from

location Y.

The following example will illustrate how you may use these orders. Note that the

pseudoinstruction TRA FINISH signifies the end of your program and prints the output on

tape 9, from which you obtain a printed copy via the printer. This card is always placed after

your last instruction. It is Final Control Card No. 1. Previously, you have included this

instruction in the final control cards. Now this card in the control deck will be omitted and

you are to place it with your own instructions.

Assume that you have ten integers stored in consecutive locations beginning at 200.

Find the sum of the first two numbers and store this sum in 300; then find the sum of the

next two numbers and store this sum in 301. Continue this procedure until you have added

all pairs of numbers.

The program in Figure 12 will accomplish this.

When writing a program, you must write the instructions for the machine in a particular

order, according to what you want to do. You could write down in sequence what you de-

sire to do and then write the machine instructions that will accomplish each step. However,

a diagram is usually easier to use, so resort to this method.

I--- -.--r - I I I- - I I I alln - IY ~ --h--~-bb 1 ~CC~- I~~

SHARE 704 Symbolic Coding Form

Cod John Smith

_LIII , d
-i

-4

-4

- 4 - -.

-4----

i4

-I - -

-4 --

-i --

-i

- 4 --..

4 ---.

-I- -

Contro
ORG

LA_
LXA
CLA

ITO

TI

TRA

DEC

ORG
DEC
DEC

DEC

I
'

1 1 D
oI-September 15. 1959

,I . 1 1

lards)
100 Sets location counter to 100.

108, 2 5-- c(IR-2).
109.1 10--c(IR-1).
210,1 c(200)- c(AC). c(202)-c(AC). c(204) -- c(AC). c(206)-- c(AC). c(208)--c(AC).

211.1 c(200) + c(201) c(202) + c(203) c(204) + c(205) c(206) + c(207) c(208) + c(209)

-*c(AC). -- &c(AC). --- c(AC). -- c(AC). - c(AC).
305,2 c(200 + c(201) (202) + (20) c(204) + c(205) c(206) + c(207) c(208) + c(209)

-c(00). .- c(301). -c(302). --- c(303). -- c(304).

107 1 Subtracts from Subtracts from acts from Subtracts 1 from Since IR-2 contains
IR-2,i. e., 4-c(IR-1). IR-2I. e.. 3-1c(1IR-2 IR-2.i.e., 2-c(IR-2 IR-2, .e., 1-.c(IR-2) one, the calculator
then calculator goes then calculator goes then calculator then calculator proceeds to end

to next Instruction. to next instruction. proceeds to next proceeds to next routine.
instruction. Instruction.

10212 8-c(IR-1), then 6-c(IR-1). then 4-c(IR-1), then 2-c(IR-1), then

calculator oroceeds calculator orodeeds calculator proceeds calculator proceeds
to 102. to 102. to 102. to 102.

5
10
1200

578
-2

-457

EC W812
75236

ABC -851
DEC +752
DEC 1256
DEC 9234

(iCc atro CMIa #2-11)

Figure 12 - Program to Place Sum of Each Pair of Numbers in Consecutive Locations

1. Path of Computational Flow

To indicate "the path of computational flow," use a directed arrow. ().

2. Logical Choice

A logical choice between two directions of a path, depending on the magnitude of two
quantities A and B, is indicated by an oval, as shown in Figure 13:

3. Computation, Operation, Etc.

The evaluation of a formula or other expression is indicated by a rectangular box. See
Figure 14.

A >B
A:B

A B 2 lop

Figure 14 - An Evaluation of a Formula

SO-f

r m run op ttmeaon -ILa ieaon

IM t a a m..g . vmsd.

D IPg

Alk, Ta D -nnu.: ,.--
i lz 6 7 let time around loop 2nd time around loop

r , Collrr '

Figure 13 - A Logical Choice

4. Counting Operations

When you wish to increase the value of a subscripted quantity, use a rectangular

box with a double line at the left end. See Figure 15.

y. x +4+ + - -

Figure 15 - Counting Symbol

Note that many programmers use the plain rectangular box as the counting symbol.

5. Connectors

To connect one part of a flow chart to another part, you can draw an arrow to that part.

But at times it is more convenient to use what is called a connector. This is indicated by a

circle with a number or other symbol in it (Figure 16).

SR-2

Figure 16 - A Connector

6. Assertions and Notes

To assert that a certain condition is true at a particular time or to make a note for

later reference, use a rectangular flag attached to the flow line.

b=1

Figure 17 - An Assertion or Note

The flow chart in Figure 18 and program in Figure 19 illustrate the use of these sym-

bols, in solving the problem given on page 23. Notice that each figure in the flow chart

is labeled and certain instructions are associated with it in the program.

A B C D E ..

Figure 18 - Flow Chart to Evaluate yi=(xi + 3xi-5) i=1, =, . . ,100

-- ~-'1110111f kdil ,Ivsvlslu IIIII1IY

.. I I I r I IC I II ~~

"ll MUNINIIIfiYI fIIA

Problem

John Smith Dte September 15, 1959 Pag 1 O 1

2t a ,o0 1112 st time around loop 2nd time around loo Last time around k
(nit ia L Contr 1 1ards)

OR 100
AI . 30 100-c(IR-1).
B CLA 1300,1 X1 c(AC). x2 .c(AC). ------ 10 c(AC).

301 (x1 +3)--c(AC). (x2+3)--c(AC). +-------_

STO 302 (x1+3)-s*c(302). (x2+3)--c(302). ------ (x 0 +3)-c(302).
ID 302 (Xl+3-c(MQL (x2+3)-c(MQ). ------ (+3)-c(MQ).
_LA _30 0-c(AC) 0--c(AC). ------ 0--c(AC).
AMP 300,1 x, (x,+3)-, c(MQ). x(x+3 c(MQ) ------ x 0 0 (x, +3)

-+ c(MQ).
ST 302 x (x +3)-*c(302). x2 (x2+3)-,.c(302). ------ x3)

__---_-c(302).

_ CLA 302 x 1(x1 +3)-.c(AC) x2 (x1-+3)-.-c(AC). ------ x1(1
-c(AC).

ADD 300 x1 (x 1+3)-5.c(ACL x2 (x2+3)-5--c(AC). x0(x10+3)-5
-"_- c(AC).

C STO 500,1 x1 (xl+3)-5-c(400). x(x 2+3)-5--c(401) ------ x (x +3)-5

_--*c(499).

F 101,1,1 Reduces c() by Reduces c(IR-1) by ------ Since c(IR-1) = 1,
one: then conmuter oe then compute computer goes to
proceeds to 101. proceeds to 101. next instruction.

c(IR-1) is now 99. c(IR-1) is now 98.

G TRA IBH Transfers to

I.... .. -ending routine.

- 4

ORG

DIC
DECDt Ca-DEC
DECa

trl .Ca

300 Stores eonstants
beginning at 300.

-5

3
100

0
de #2-11)

Figure 19 - Program Associated with the Flow Chart of Figure 18

Find the value of each yi in the following expression, and store each yi beginning at

location 400. Assume that all products will not exceed the capacity of the MQ. Store the

xi's at location 200; place the constant -5 in 300 and the constant 3 in 301. Start the instruc-

tion in location 100.

Yi = (x2 +3x-5), i =1, 2,... , 100.

..... - -Y~i

SHARE 704 Symbolic Coding Form

(ipaI
I I~

M Data Processing Division

SUMMARY - Chapter IV

In this chapter you learned the following instructions and flow charting.

TRA Y Transfer

Transfers control to location Y.

TNX Y, N, D

TXI, Y, N, D

TRA FINISH

Transfer on No Index

If contents of index register N are greater than the decrement D,

the computer reduces the contents of index register N by D and takes

the next instruction in sequence. If contents of index register N are

less than or equal to D, the computer leaves the IR as it is and takes

the next instruction from location Y.

Transfer with Index Incremented

Adds D to the contents of index register N and places this sum

in index register N. Then the computer takes the next instruction from

location Y.

Transfer to FINISH

Signifies the end of your program and prints output on tape 9.

The following symbols are used in flow charts:

1.)

2.

3.

4. o j

5.

path of computational flow

computation box

logical choice

counting operations

connectors

__ ~____ _ ___ ____ __"I

- III I r r - 3 I r 11112~ ~~r~

EXERCISES- Chapter IV

In the following exercises, draw a flow chart first and then code each symbol of the

flow chart.

1. Fifty numbers (xi, i = 1, 2, . . . , 50) are stored in locations 301, 302, . . . , 350, and

fifty others (yi, i = 1, 2, . . . , 50) are stored in 351, 352, . . . , 400. Place xi - yi , i = 1, 2,

. . . 50 in locations 201-250.

2. Given the instruction

TPL Y Transfer on Plus

The computer takes the next instruction from location Y if the sign of

the quantity in the accumulator is positive. If the sign of the quantity in the

A is negative, the computer proceeds to the next instruction.

do the following problem:

Fifty numbers are stored in locations 201-250. Place the sum of the positive ones in

300 and the sum of the negative ones in 301.

CHAPTER V

AUTOMATIC PROGRAMMING

A machine program, as previously defined, is a list of instructions written in machine

language and arranged in proper sequence. Since the machine will do exactly what it is told

to do, these instructions must be precise and correct to the last detail. For this reason and

because machine language is totally dissimilar to English, machine programming is extremely

time-consuming and error-prone.

One method used to help alleviate these problems is symbolic programming. In this

system, the programmer uses symbolic operation codes and addresses. Then a machine master

program, called an assembly or compiler, translates these symbolic codes into machine lan-

guage, and either writes them onto a tape or punches them on cards which then can be used in

the usual manner.

The symbolic assembly program discussed next is called SAP 3-7.

When you refer to an instruction or a piece of data by giving its location, you must know

exactly where this instruction or piece of data is located in the core storage. With a large

program, this would be difficult and tedious to do, so instead you may use symbolic addresses.

That is, in place of a numerical address, use a symbol in the address part of an instruction.

The symbol may be from one to six consecutive characters, at least one of which is an alpha-

betic character. The other characters may be numbers or letters. For example, A1, 2C,

DATA 1, 34A 2, 12345 X, L, are all acceptable symbols.

To refer to the nth instruction after the current instruction use the following scheme

when using symbolic addresses.

First note the meanings of the following 704 characters:

+ denotes addition,

- denotes subtraction,

* denotes multiplication, and

/ denotes division.

You may use these arithmetic characters in the address, tag, or decrement of an in-

struction. For example, suppose that you have ten numbers beginning at symbolic location

DATA. If you want to place the seventh one into the accumulator, you could use

CLA DATA+6

The character* is used not only to denote multiplication but also to signify the current

location. It means the current location if it is the first character in the symbolic address.

For example, if you have a transfer instruction at location 200, which transfers control to

location 203, you could write it thus:

TRA *+ 3

-- -1111111

I I I II --- I II I I I I

11 ' W m'lh ,1 101 1.

The computer will then pick up the next instruction from location 203.

The following example illustrates the use of these symbols. The following pseudo-

instruction "Block Reservation"

M BSS N

is introduced here. It will reserve N consecutive core units beginning at location M, so that

the programmer may store data or results in consecutive locations.

Find the sum of ten integers which are stored in consecutive memory locations, be-

ginning at location M. Begin your instructions in symbolic location L. Store the sum in sym-

bolic location SUM. The program for this problem is given in Figure 20.

IBM Data Processing Division SHARE 704 Symbolic Coding Form
Problem

coder John Smith - Date September 15, 1959 " 1 1

H Letm Op Adde Ts Decrement Cemmet i.on

I m2 6 7 8 o nt 127

67 8 [0 it ____________2__ 72 73 so

Control

ORG
LXA
CLA
ADD
TIX

STO
TRA

DEC_
DEC
DEC

E
Btro

ards)

100
NINE, 1 Loads IR-1 with 9.
M c(M)-am c(AC).
M+10, 1 cVi+10-c(IR#i)] +c(AC)-a-c(AC).

*-1, 1, 1 If not the last number to be added, transfers
to previous instruction. If last number, goes
to next instruction.

SUM Stores the sum in SUM.
FINISH Transfers to END Routine.

9 Stores the number 9 in location nine.

N1 Begins storing data at location M.

N2 Ni (i = 1, 2,..., 10) are integers.

Ni
Reserves 1 core unit for the sum.

ds #2-11)

Figure 20 - Symbolic Program to Find the Sum of Ten Numbers

Note that every time you use a symbol in the address, tag, or decrement field, that

-symbol must be defined in some location field.

If you know the absolute address of a piece of data, you can, if you wish, use this

absolute number when referring to the data.

Here is another example, similar to the last example in Chapter IV.

Find the value of each yi in the following expression, and store yi in every third

location beginning at location RESULT. Assume that all products will not exceed the

capacity of the MQ. Begin data at location DATA

yi=((xF +3x i -5),i=1,2,...,10

(Initi

IEM

M---- 4-sum

___~~ ~~-- - - -111~---1_

H

In solving this problem, you will illustrate the use of an index register to increase

rather than to decrease the address of an instruction. Since the computer always subtracts the

contents of the index register from the address of the instruction tagged with that register,

you need only to make provision for the index register to contain a negative integer. Do this

by initially setting the contents of the index register equal to zero, and then by using a neg-

ative integer in the decrement part of a TXI instruction used to modify the index register.

The flow chart is Figure 21a, and the program is Figure 21b.

D E F

(a) Flow Chart

IBM Dat. Prce..ing Division

!RESULT BSS

i (Fial Contro:

SHARE 704 Symbolic Coding Form

Reserves 10 core units beginning at RESULT.

ards)

(b) Program

Figure 21 - Symbolic Program to Evaluate yi = (xi 2 + 3xi -5), i = 1, 2, . . . ,100

28

Problem

Coder John Smith DateSeptember 15, 1959 P"e 1 O 1

H .. o Add Ta Danm Cm. cd-

Op 1 8 0 Ia 12 8o

S (Ini LI ControC ards)

A LXA TEN, 1 10-c(IR-1).
LXA ZERO, 2 0- (IR-2).-c-

CLA DATA+10,1 Xi-Wc(AC).

ADD THREE (x1+3)-c(AC).
TO TEMP (+3)- c(TMEP).

L _ TEMP (xi+3)-c(MQ).
MPY DATA+10, 1 x(xi+3)--c(AC) and c(MQ).

STQ TEMP xi(xi+3)-c(TEMP).
CLA TEMP xi(xj+3)-c(AC).
ADD NFIVE (L,(xj+3)-5-.e(AC).

C STO RESULT, 2 x(xi+3)-5-.c(RESULT+j).

DE_ T FINISH, 1.1 It last computation, goes to FINISH.
If not, goes to next instruction.

SG B,2. -3 Adds 3 to IR-2, then goes to B.
TEN DEC 10

ERO DEC 0

DATA. DEC 78

Reserves 10 core unit beginning at DATA.

DEC 65

THE EC 3

I P 1 Reserves 1 core unit for TEMP.

NFIVEd IdEC -5

I I I C __ I I --~mr

When you assemble this program, the symbolic assembly program, or SAP 3-7, will

change all symbolic addresses to absolute addresses and will prepare a program on tape 4

and on punched cards ready to be run on the computer. At the same time, SAP will cause the

computer to print on tape 9 an assembly listing which consists of the symbolic program and

the octal location of each of these instructions.

SUMMARY - Chapter V

In this chapter you began your study of SAP 3-7, an automatic coding system. In SAP

3-7, you use symbolic addresses which consist of one to six consecutive characters, one of

which must be alphabetic.

SAP 3-7 also will interpret the arithmetic characters (+, -, *, /) in an address, tag,

or decrement as add, subtract, multiply, and divide.

The following pseudoinstruction was introduced:

M BSS N Block Reservation

Reserves N core units beginning at location M.

.1.. -- ~W-YII

I I ~ICIIIIIIIIIIIIIIIAI11111~1~

EXERCISES- Chapter V

1. Punch the cards for the last example of this chapter and run the example on the com-

puter. Look at the assembly listing and see what locations SAP assigns to each instruction

and data item.

2. Do the problems at the end of Chapter IV, using symbolic addresses. Redraw the flow

diagrams. Store the answer in core storage, beginning at symbolic location RESULT.

CHAPTER VI

BELL INPUT-OUTPUT SYSTEM

To get information from punched cards into the core storage of the IBM 704 and to get

printed results, you have been using certain control cards. Before these cards can be ex-

plained, certain details about the computer and its operation must be mentioned.

The Applied Mathematics Laboratory of the David Taylor Model Basin uses for the IBM

704 an operating system developed by the Bell Telephone Laboratories, and known as BE SYS 2.

This system is itself a computer program designed to control input-output and other general

operations. It is stored in locations 0-23 and 28,672-32,768. Thus these locations are not

available for use by the programmer. Since the IBM 704 operates internally in the binary num-

ber system, it is more convenient to refer to locations in the octal number system (see Appendix

C) rather than the decimal system. Thus, in the octal system then, locations 0-27 and 70000-

77777 are reserved for the Bell System.

Here at the Applied Mathematics Laboratory the 704 has ten magnetic tape units num-

bered 1-10. Information can be transferred from core storage to tape, and vice versa. Tapes

1, 2, and 9 are reserved for use by the Bell System; tapes 3, 4, and 5 are used for SAP 3-7

and FORTRAN, an automatic coding system which will be explained in Chapter XIII. The

other tape units are available for use by the programmer.

The Bell System is activated by the reading of control cards. On these control cards

are punched the pseudo-operation8 (defined below) in exactly the same way as SAP instruc-

tions are punched; i.e., the operation code is punched in columns 8-10; the location, in col-

umns 1-6; and the address, tag, and decrement, in columns 12-72.

Notice that on these control cards there is a comment following the address, tag, and

decrement. (The address, tag, and decrement are often called the variable field.) However,

the machine does not interpret the comment as part of the instructions, since this comment is

separated from the variable field by a space.

JOB (Initial Control Card No. 1)

JOB prepares the system for execution of the program to be performed and causes the

computer to read the next card.

This is the first card in performing any job.

SAP (Initial Control Card No. 2)

This card loads SAP into core storage a~nd executes an assembly as explained in the

previous chapter. If the assembly is successful, it translates the SAP program into machine

language and places the result on tape 4 and on punched cards, which may be reserved for

I II II I

rerunning the problem.* When an unsuccessful assembly occurs, the instruction SAP causes

information to be printed, telling why the assembly failed, and then causes the computer to

stop or to transfer control to the next JOB card if one exists. (See Reference 3.)

This card is placed after the JOB card.

END "START" (Final Control Card No. 9)

This signifies the end of the program, where "START" is the symbolic location of the

first instruction to be executed in the program.

This card is placed at the end of the symbotic deck.

LOD 4 (Final Control Card No. 10)

This instruction loads the translated program which has been written on tape 4 into

core storage and causes the computer to read the next card.

This card is placed after the END card.

TRA (Final Control Card No. 11)

This card transfers control to the location "START" specified in the END card of the

program if the assembly is successful. That is, the computer begins now to execute the

assembled program.

This card is placed after the LOD 4 card.

The above instructions leave Final Control Cards Nos. 2-8 yet to be explained, but

this will be done in the next chapter. These unexplained cards should be inserted just be-

fore the END card.

*For a description of the binary cards and their use, see Chapter X.

-1_1_.I__. _ _lm llri ~ 1~

SUMMARY - Chapter VI

To run a SAP program on the 704, the Bell System is used for input-output operations.

The following pseudoinstructions are punched on cards and used in the sequence given in

Figure 22.

IBM .Data. Prc....sing Divison SHARE 704 Symbolic Coding Form
Problem

John Smith Date September 15, 1959 1 Of 1
H I Locato Op Addre . Ta Decrement Comments on

1 2 6 7 8 0 17 12 72 73 so

JOB Initializes the system.

Translates instructions and writes them on

tape 4 and cards.
(}0 jct Pr r m)

___n_ o trlCards #2-8 Controls printing.

END_ "START" Ends translation.
D__ 4 Loads translated instructions into core storage.

TA_ Causes translated instructions to be executed

beginning in location "START".

Figure 22 - Order of Instructions to Run a Symbolic Program Using SAP 3-7

34

'IP~YCII -- e1 I I I I ,-lr I ;~ _ I I

EXERCISES- Chapter VI

1. Write a symbolic program to evaluate the following polynomial:

yi = ax5 +bx +cx +dx +ex i + f; i= 1, 2,..., 10

First draw a flow chart. Assume small integer values for x and the constants. Begin

the instructions and data at any convenient location and store the answers beginning at sym-

bolic location RESULT. Then punch the necessary cards and run the problem on the 704.

Check your answers with the machine and if they are not correct, then correct your program.

2. Write a symbolic program to solve by determinants the following two equations. Store

the answers beginning at location RESULT.

+ Tx - 5y = 9

+ 3x + 4y = 10

CHAPTER VII

SUBROUTINES

In mathematical problems, functions such as the square root of a number, the cosine of

an angle, etc. frequently have to be evaluated. The manufacturer of a computer could make

an instruction that would evaluate any one of these. However, to build into a computer all the

functions that one might need would be prohibitive in cost and would require a machine of

enormous size. Therefore, subroutines are used, as explained below, to evaluate any special

functions which are needed and are not provided as instructions in the computer.

By using approximations involving only the four arithmetic operations, a program can be

written to evaluate such functions. For example, a program can be written to evaluate trigono-

metric or logarithmic functions by use of Chebyshev polynomial approximations. Such a pro-

gram could be saved on tape or cards and used whenever a problem requires the evaluation of

this function. A prewritten program used in this way is called a subroutine. Subroutines are

used not only for special mathematical functions but also for many other operations that are

frequently needed, such as input-output. The flow chart symbol for a subroutine is:

For practical use of a subroutine, a set of pseudoinstructions, or the calling sequence,

is used to incorporate the subroutine into the main routine. This is best illustrated by an

example.

In the exercises of the previous chapters, Final Control Cards Nos. 2-8 have been

causing the computer to write the results on tape 9. These cards contain the calling se-

quence of the print subroutine, which is in core storage as part of the Bell System. In the

Bell System instructions, the calling sequence of this subroutine is described as follows.

(See Final Control Cards Nos. 3, 4, 5, 7, and 8. Final Control Card No. 2 is ORG 500, which

stores the calling sequence beginning at location 500. Final Control Card No. 6 is explained

later.)

TSX OUTPUT, 4 (Final Control Card No. 3)

NTR F, , N (Final Control Card No. 4)

MON A, , B (Final Control Card No. 5)

Normal Return

The Bell System instructions further state that this routine will write on tape N a con-

secutive block of words from core locations A to B, inclusive, where F is the location of the

format of the printout desired. The following format was used in the Final Control Cards of

the exercises to print integers (see Reference 2):

F BCD 1(N 13) (Final Control Card No. 7)

SVN -1, 7, -1 (Final Control Card No. 8)

In the exercises, N was set equal to 9 because the Bell System uses tape 9 for all

output; thus the result will be printed after the SAP listing.

I -Y~ I I II --c~------- -- *-- --- b--- -- n~ -- c'

The last line of the calling sequence is called the normal return. This means that after

the integer is written on tape the computer will take its next instruction from this line. In the

Final Control Cards for the exercises, the instruction used as the normal return was (see

Final Control Card No. 6):

TRA ENDJOB

This is a Bell System pseudocode which signifies the end of the problem and writes

on tape 9 the words Post-Mortem Dump followed by the contents of the index registers, the

accumulator, the MQ register, and other information to be explained later.

Since all the control cards have now been explained, a complete program illustrating

their use will be given. Find the sum of two numbers, a and b, and print the sum on tape 9.

The flow chart is in Figure 23, followed by the program in Figure 24.

STOP
BEGIN PRINT STOP

Sum = a +b Print sumE

Figure 23 - Flow Chart to Evaluate the Sum of Two Numbers

IB Data P.rocess..ing Division SHARE 704 Symbolic Coding Form
Problem

Coder John Smith Date September 15, 1959 Page 1 Of 1

H Loation Addren. Tas Decrement Comment ti.o

I 2 6 7 8 1 l 12 72 73 s0

BEGIN

PRINT

DATA

F

-jQE_
BSA
ORG
CLA

-A-Pp

TSX
NTR-
MON

TRA

DEC

BCD
-- N

LOD
TRA

Figure 24 - Symbolic Program Associated with Flow Chart of Figure 23

37

100

DATA 5-- c (AC).
DATA+1 (5+2)--w c(AC).

SUM 7- c(SUM).
OUTPUT, 4
F, , 9 Prints integer located in SUM on tape 9.

SUM, ,SUM
ENDJOB Ends problem and writes Post-Mortem

on tape.

5 Places integer 5 in location Data.

2 Places integer 2 in location Data+l.

1 Reserves 1 storage unit for SUM.

1(N8) Format for print routine.
-1,7,-1

BEGIN

4

The Bell System has a few other subroutines, besides the "PRINT" subroutine used

above, as part of its program. In addition, many more prewritten routines are available through

an organization called SHARE, made up of installations having IBM 704's, and organized for

the purpose of exchanging information about the computer and avoiding duplication of effort

in preparing subroutines. Thus, when one installation writes a routine to evaluate a function,

that routine becomes available to all other members of SHARE. These subroutines are punched

in symbolic form on cards. To use one in a program, the symbolic deck is placed before or

after the data, and the calling sequence is placed in the position where the subroutine is to

be used.

All symbols in the calling sequence of the subroutine must be defined, and core storage

must be reserved for the "COMMON" of each subroutine, as specified in the writeup of that

subroutine. For example, the routine shown on Figure 25 specifies that the "COMMON" is

COMMON through COMMON+3 or 4 storage units.

The subroutines that are most frequently used are stored on tape rather than on cards

because it is easier and quicker to get the subroutine into the core storage from tape than from

cards. The Bell System uses Tape 7 as the library tape. To incorporate in the main program

a subroutine which is on tape, a library card, rather than a symbolic deck, is used and is

punched as follows:

Columns Data

1-6 SHARE identification number

7 Blank

8-10 LIB

11 Blank

12 7

An example is now given. Suppose it is desired to evaluate Y = tan X.

To find the value of tan X, a SHARE subroutine which is on the Bell System library

tape is used. A description of this subroutine is reproduced in Figure 25. Notice that to use

this subroutine, X must be expressed in radians and it must be stored in the accumulator in

normalized floating-point form before entering the subroutine. Floating-point numbers will be

explained in the next chapter. Here it is necessary to know only that the instruction DEC

will place a number into core storage in normalized floating-point form if the number is speci-

fied with a decimal point in the address field.

The flow chart for this problem is given in Figure 26 and the program is given in Figure

27.

Notice that F here is defined differently than in the previous chapter. This is because

the result is not an integer but a decimal number, and the F as defined above is a format for

printing numbers with a decimal point.

Another example using subroutines is given and at the same time a new flow chart

symbol is introduced, the variable connector.

I I I I -I III I _ ,

SHARE SUBROUTINE

IDENTIFICATION

Tangent, CL TANl

R. Go JTohnson - 1-7-56

Lookbeed Airoraft Corporation, Calif ornia Division

mxR

Comipute., tan X for all XIin radians.

Error XIl+tan2X) (5*1lO8).

The oontinued traotions

tan X a X

:.2Is used fr1" 91X cf26

If I~ < O0-4 tan X Is set equal to X.

If I t4 *2rr2a6. tan X is set equal to $.ro.

LOO O ADDR. TAG DICR.

L Tax TAN 4

mi Normal Retun

Normalized floating point X# In radians, 9 wst bes In the AC.m

Normalized floating point tan XIn Isn the AC on Normal Return.,

STORMG

63 words plus COWN#k through C#MMN 3o

by ISS ha S

Figure 25 - SHARE' Subroutine for Evaluating TAN X

Figure 26 - Flow Chart to Evaluate the TAN X Using a SHARE Subroutine

IBMData Processing Division

Problem

Coder John Smith

H i Lo.,i Op

I 2 6 7 8 10 11

JOB
SAP

i ORG
-- A

B TX
C STO

T sx
I _ NTR

MON
E TRA

LTAN1 LIB
X DEC

RESULT BSS
SF BCD

i SVN

CMMON BSS
END

LOD
TRA

Figure 27

SHARE 704 Symbolic Coding Form

September 15, 1959 Page 1 1 d

A dd . o . T D ec r .n n t C o72 7 ta.l o W

12 71 73 0

100

X X--*-c(AC).

TAN.4 tan X-- c(AC).

RESULT Y-oc(RESULT).
OUTPUT, 4
F, 9 Prints result Y on tape 9.

RESULT, RESULT

ENDJOB Ends problem.

7 Places tangent subroutine beginning here.

1.25 Places 1. 25 in normalized floatingvoint

form in core storage.

1
2(F16. 8)
-17,-1

4
A
4

- Symbolic Program Associated with Flow Chart of Figure 26

It may happen that a section of coding which is repeated many times calls alternately

upon each of two or more subroutines. This situation requires the repetition of the coding of

the section before the calling sequence for each subroutine. Such repetition can be avoided

by the use of a switch, or variable connector. Suppose you have a large program which con-

sists of three parts: main routine A, subroutine B, and subroutine C. And suppose that all

parts are long and that A is repeated 50 times. Further, suppose that the sections are done

in the order A, B, A, C. Each time after C is done, a test is made to see if the conditions for

problem completion are satisfied, in which case the problem is stopped. A suggested flow

chart is given in Figure 28. In this flow chart the symbol for the variable connector or switch

loll,

"r II I I, II III II I I I I II a

I

is (E . The computer, when it comes to this connector, will go either to ~or , ac-

cording to how 8 has been set. The delta switch is merely a transfer instruction. The pro-

gram associated with this flow chart is given in Figure 29. Notice that after you load index

register 1 with N, you set the variable switch 8 to 81 as follows:

The instruction

CLA DELTA

clears and adds the contents of DELTA, which is the instruction TRA X4. Thus the com-

puter, when it first comes to this instruction, will transfer control to location X4 and continue

from there. After the calling sequence for subroutine B, notice that you again set the delta

switch, this time to 8 . Then the computer, when it comes the second time to the delta switch,
2

will transfer control to location X6, etc.

It is worth noting that the variable connector may connect more than two parts, also

that a program may contain several of these variable connectors or switches.

X3

DELTA

X6

X4

Figure 28 - Flow Chart Demonstrating Variable Connector

IBM Data Procssing Division

Problem

Coder

Hi Lomo

I1 2

i
SX2 .

X3

4X4

-A---

x _

X8
N

DELTA1
DELTA2

-4-.-..

-4---

John Smith
op

a to

JOB
SAP

ORG
LXA

CLA
STO

PART

A

eguenc
for

B
CLA

5equene
for

mbrouti

TRA

PEC
-- R ---

TRA

LOD

SHARE 704 Symbolic Coding Form

IDte Sentember 15. 1959 I age 1
Addrem. Ta D-ecrmn

Of

Loads index register 1 with n.

DELTA1 Sets switch delta to delta 1.
DELTA

Instructions for Part A.

Smee for variable connector.

Instructions for Part B.

DELTA2 Sets switch delta to delta 2.

DELTA

Instructions for Part C

X2._1. 1 Tests for end of Droblem.
ENDJOB Completes the problem.
50 Program constant.
X4 Program constant.
X6 . Program constant.

Figure 29 - Program Associated with Flow Chart of Figure 28

4

= -

-- -- - ---------------------------- -

-~------

' "

won r I In Ir a I rr -

N,.1

SUMMARY - Chapter VII

Subroutines are prewritten routines which are stored either on tape or on cards. To

place the program of a subroutine on cards in the main program, the subroutine deck is placed

before or after the data. If the subroutine is on tape, a card with the pseudoinstruction LIB

must be used. In Columns 1-6 is punched the SHARE identification numberl in Columns 8-10,

the letters LIB; and in Column 12, the number 7.

To use the subroutine, the calling sequence must be given and all symbols including

the COMMON must be defined.

If the subroutine is a part of the Bell System program, the subroutine is already in the

core storage; therefore, you need only to define the symbols and use the calling sequence.

A new programming technique was introduced here, the variable connector or switch.

This is indicated in a flow chart as), where 8 is the name of the connector and n is the

number of connections. 1,2,...,n

~_ _I _ ~ - I - I -I

EXERCISES- Chapter VII

1. Evaluate Y = tan Xi (i=1, 2,3) for X = 1.00 radians, X2 = 1.25 radians, and X3 = 1.30
radians. Use the subroutine reproduced on Figure 25, and notice that this subroutine is on the

library tape.

2. The subroutine reproduced on Figure 30 will evaluate /X. However, this subroutine

is punched in symbolic form on cards. Find the square root of the following three numbers:

12, 158.92, and 18932.51. The symbolic deck may be obtained from the supervisor of computer

operations.

3. Store 36 numbers in the memory as follows:

ai (i = 1, 2, . . . , 12)

bi (i = 1, 2, . . . ,12)

ci (i = 1, 2,. . . , 12)

Then draw a flow chart using a variable connector to evaluate the following:

Ai C i (i =1,4,7,10)

Ai+C i (i = 2, 5, 8, 11)

A z.Ci (i =3, 6, 9, 12)

where

(0.212 ai + 7.852 bi) 2

Ai = 1.784 i = 2 1

Ci = 5.736 c i , i= 1,2,... ,12

Finally, write a program using the flow chart and run the program on the computer.

I W 41 I I - I il

SHARE SUBROUTINE

IDENTIFICATION

Square Root, CL SQRT 03

R. Johnson - 11-22-55

Lookheed Aircraft Corporation, California Division

PURPOSE

Takes the square root of the absolute value of X, a floating

point number.

RESTRICTIONS

None

METHOD

Four Newtonian iterations.

Accurate to eight significant decimal figures.

Indication of negative X.

USAGE

LOC OP ADDR. TAG

n TSX SQRT 4

n*l Return for X negative

n#2 Normal return

Place X in the accumulator in normalized floating point. The

Square root of X will be in the accumulator after return in

normalized floating point.

CODING INFORMATION

Location symbols used are Pl, P20 and C. Constants start it C

and are three octal words, 001000000000, 100000000000,

000000000004, respectively. Erasable storage, COMMON through

COMMON # 1, must be assembled with subroutine.

2.055 milliseconds if X>0.

.024 milliseconds if X 0.

2.105 milliseconds if X<0 error return.

Figure 30 - SHARE Subroutine for Evaluating the Square Root of the Absolute Value of X

CHAPTER VIII

NUMBERS IN MACHINE LANGUAGE

The IBM 704 is a binary computer; that is, it uses the binary number system in perform-

ing all arithmetic operations. As explained in Appendix C, a number, bn bn- 1 b 2 b I bo,
is represented in binary form as bn • 2n + bn-1, 2 n-1 + . . . + b 2 22 + b I . 21 + bo 20o , where
bi (i = 1, 2, .. . n) is either a one or a zero. For example, the binary integer 101 is 1 x 22+

0 x 2 1 + 1 x 20 or 5 in the decimal system. Of course, the size of a number you can place in
core storage (or a register) is limited by the capacity of the core storage unit (or register).

Each core storage unit, commonly called a word, has a capacity of 36 binary digits (bits).

The first bit is reserved for the sign of a number. A zero in this position indicates plus, and
a one indicates minus. The other bits are numbered 1-35 and are represented as shown in

Figure 31.

(s = sign)
Bits S 1 2 3 35

Figure 31 - Bits of a Core Unit

Thus the numerical capacity of one word is 235-1 or 34,359,738,367, if you consider the

number to be an integer.

In the arithmetic operations ADD, SUB, DVH, and MPY, that you have learned, the
numbers used were integers; that is, the binary point was assumed to be to the right of the

last digit. Actually, the binary point can be considered to be between any two bits. of the

word if sufficient care is taken to scale properly when using the arithmetic operations. These
numbers and operations are called fixed-point numbers and fixed-point operations, respectively.

Fixed-point numbers are rarely used except to represent integers. Numbers that are
not integers are usually represented in floating-point form. A number is in floating-point form

when it is expressed as a signed fraction F times 2n , where n is an integer. For example, the

binary number 0.01 = 0.1 x 2-1. If the most significant digit is immediately after the binary

point, the number is in normalized floating-point form.

A floating-point number is represented in the core storage as follows: the first bit is
the sign bit; bits 1-8 are reserved for the exponent of 2; and bits 9-35 are reserved for the
fraction F (Figure 32). So that you have to work with positive exponents only, the exponent

is increased by 128 before the computer stores it in positions 1-8. This number is then re-

ferred to as the characteristic (i.e., the exponent-of-two plus 128) of the number. Thus, the

range of the characteristic is 0< c < 255, and the range of n is -128 < n < 127.

i I I I I _I 1111 I-- ~ I I 11 Ir

on 0
0

U
°2..-- -------o..

Il II l l l l I I I
Bit S 1 2 ... 8 9 10 35

Figure 32 - Floating-Point Number Representation

The integer 5 is represented in normalized floating binary point form as 0.101 x2 3 . Be-

fore placing this number in the core storage, the exponent is of two increased by 128 to get a

characteristic of 131. (See Figure 33)

c=131 F=5

K1 01 01000 111I 11101110 . 0..
Bit S 1 2 3 4 5 6 7 8 9 10 11 12..... 35

Figure 33 - Decimal 5 in Normalized Floating-Point Binary Form

If you store numerical data in floating-point form, you must use the floating-point arith-

metic operations, which are FAD Y, FSB Y, FMP Y, and FDP Y (add, subtract, multiply, and

divide, respectively). These instructions are used much like the corresponding fixed-point

instructions, and will not be explained in detail here. (For details, see "Floating-Point

Arithmetic Operations," Reference 1.*)

However, an explanation of what happens when the computer does fixed-point operations

using integers as data is given here. Much of this explanation can be readily extended to

apply to floating-point operation as well.

First, note that the accumulator contains 38 bits: a sign bit, Q and P bits, and bits

numbered 1-35, as indicated in Figure 34.

Accumulator

S Q P 1 235

Figure 34 - Bits of the Accumulator

If the sum of two integers exceeds 235-1 (the capacity of bits 1-35), the extra digits

are shifted first into the P bit and then into the Q bit and otherwise are lost. This is called

overflow.

In the IBM 704 Reference Manual, there are two numbers associated with each instruction. These numbers

will be explained in the next chapter.

_ ^ ______p _~ I D

Since the instruction STO SUM will place only the sign and bits 1-35 of the AC into

core location SUM, then in case of overflow the location SUM will not contain the correct value

of the SUM (because the Q and P bits are lost). Naturally, you do not desire incorrect an-

swers. Therefore, an indicator and light are built into the computer to tell when there is over-

flow in the accumulator, and there are also instructions to test this indicator. These operate

in the following manner. Whenever a 1 passes into or through bit P of the accumulator as the

result of an instruction, the overflow indicator and light (for visual checking) are turned on.

Then either of the instructions TOV Y or TNO Y tests the condition of the accumulator over-

flow indicator.

The instruction "Transfer on Overflow"

TOV Y

is used to check overflow. That is, if the overflow indicator and light are on when the com-

puter comes to this instruction, the computer will turn off the indicator and light and take the

next instruction from location Y. If the indicator and light are off, the computer proceeds to

the next instruction in sequence. Thus, on overflow you might have some sort of error routine

beginning at location Y. For instance, you might wish to print out the contents of the accumu-

lator and the data that caused the overflow.

The instruction "Transfers on No Overflow"

TNO Y

also is used to check overflow. When the computer comes to this instruction and the overflow

indicator and light are off, the computer takes its next instruction from location Y. If the in-

dicator and light are on, the computer first turns off the indicator and light and then proceeds

to the next instruction in sequence.

The use of these instructions is illustrated here with a simple problem. Find the sum of

two numbers and store the result unless overflow occurs. In that case, do not store the result.

IBM Data Processing Division SHARE 704 Symbolic Coding Form
Problem

cod John Smit I Date Seember 15, 1959 Pa 1 of 1

H L oat p Ad T a De neat fa

1 2 64 7 8 10 11 12 7__ j 73 B

JOB
RAP

ORG
CIA
ADD
TOV

TRA
(Instt tons for

Error R mtine)
END 100
LOD 4
TR r

Figure 35 - Program to Check for Overflow in Addition

100

X c(x)-c(AC).
Y c(x) + c(Y) - c(AC).

ERROR If overflow occurs, transfers to error
routine. If not, continues to next instruction.

RESULT c(x) + c(Y)-- c(RESULT).
ENDIOB

w liilw'Ii k, ,, - A011 io im llwlo1111m l,

lar , I I I I I I I I-L II - I

,,,11Li I l IYilililgiliwiii molmim

At ERROR, you might have the computer print out the contents of X, Y, and the accu-

mulator so that you can find out why overflow occurs. If there is no overflow, the computer

will store the sum in RESULT and continue from there. AC overflow is also possible in fixed-

point subtraction (SUB) .

Since, in fixed-point division (DVH), division does not take place if IC(Y) I< IC(AC)I,
a signal called the divide-check indicator and light is turned on when the above condition

occurs. At the same time, the computer stops. When the programmer observes the divide-

check light, he can tell the operator of the 704 to push the control button and continue the

program. However, there is another instruction, called "Divide or Proceed"

DVP Y

Division takes place under the same condition as with the instruction DVH Y. However, if

IC(Y) I < C (AC) I, division does not take place, the divide-check indicator and light are
turned on, and the computer proceeds to the next instruction.

The instruction that is used to test whether or not division has taken place is "Divide

Check Test"

DCT

When the divide-check indicator and light are off and the computer comes to the DCT instruc-

tion, it will skip the next instruction and proceed from there. If the divide-check indicator

and light are on, the computer turns them off, then proceeds to the next instruction in se-

quence. For example, suppose you want to divide X by Y, where X does not exceed the capa-

city of the MQ, and you want to check whether or not division takes place. You would pro-

gram as in Figure 36.

The instruction DCT is also used to check whether or not floating-point division takes

place.

In the floating-point arithmetic operations, AC overflow occurs when the characteristic
c of the result is too large; i.e., c > 255. If the characteristic c is less than zero, it is
called underflow. The instructions TOV and TNO are also used to test overflow or underflow

of floating-point arithmetic operations. During floating multiply or divide, it is possible that
the characteristic in the MQ is too small or too large. In this case, the MQ overflow indicator

and light are turned on. To test MQ overflow or underflow, use the instruction "Transfer on

MQ Overflow"

TQO Y

This instruction operates as follows. If the MQ overflow indicator and light have been turned

on by an overflow or underflow in the MQ characteristic during a previous floating-point opera-

tion, the computer turns off the indicator and light and takes the next instruction from location

Y. If the indicator and light are off, the computer proceeds to the next instruction in sequence.

For a full explanation of the floating-point operations, see pp. 21-26 of Reference 1.

-- IIIIIIIYII LIIIIIYI YIIYIIIYYILI till liiii

LOD

MTA~
I

Figure 36 - Program to Check Whether or Not Division Takes Place

50

uft~__ I I -L I I I I Ir C11I

fil iii iii~ mU 'Mil thfllwll l lilts IIIYllllrYII i

--- c--------

SHARE 704 Symbolic Coding FormIEBM Dat Processing Division

Problem

Cod, John Smith
D

aI September 15, 1959 P"' 1 o 1

H i olp Aacd TO DeeAas Co.ments ne-

7 s 10 1112 73 0

JOB

QRG 100
_CLA ZERO 0--c(AC).

x X-ec(MQ).
I

IV_ Y Quotient ()c(MQ)
andremainder- cAC) it c(Y >c(AC.

Checks to see if division takes place.

If division takes place, computer
skips next instruction and proceeds from

there. If division does not take place,
computer goes to next instruction.

RA ERROR Goes to "ERROR" routine.

REM Remainder -- c(REM).
T_ QUOT QUOTIENT-- c(QUOT).--- L

TR ENDJOB

ERROR Inatruat Lons for
rro- outine

I

I

SUMMARY - Chapter VIII

Since the IBM 704 is a binary machine, all numbers are represented as a combination

of ones and zeros. Each core unit consists of 35 bits plus a sign bit.

Numbers in storage can be represented either as signed integers, fixed-point numbers,

or floating-point numbers.

For integers and fixed-point numbers, the first or S bit is reserved for the sign, and -bits

labeled 1-35 are reserved for the number. (See Figure 31.)

For floating-point numbers, F x 2n , the S bit is reserved for the sign, bits 1-8 for the

characteristic of the number, (which equals n + 128), and bits 9-35 for the Fraction F. (See

Figure 32.) Instructions for arithmetic operations with floating-point numbers are:

FAD - addition,

FSB - subtraction,

FMP - multiplication, and

FDP - division.

The accumulator has two more bits than a core storage unit has. These are called the

Q and P bits, and they are used for overflow in the accumulator. (See Figure 34.) The com-

puter has an indicator and light to indicate this condition. The instructions used to test

whether overflow has taken place in the accumulator are TNO and TOV.

To indicate whether or not division has taken place, the 704 has a divide-check light

and indicator that are turned on if division fails to take place. To test whether this indicator

is on, the instruction DCT is used.

TOV Y Transfer on Overflow

If the overflow indicator and light are on when the computer comes to

this instruction, the computer will turn off the indicator and light and take

the next instruction from location Y. If the overflow indicator and light are

off, the computer proceeds to the next instruction in sequence.

TNO Y Transfer on No Overflow

If the overflow indicator and light are off when the computer comes to

this instruction, the computer takes its next instruction from location Y. If

the overflow indicator and light are on, the computer first turns off the indi-

cator and light, and then proceeds to the next instruction in sequence.

DCT Divide Check Test

If the divide-check indicator and light are off, when the computer

comes to this instruction, it will skip the next instruction and proceed from

there. If the divide-check indicator and light are on, the computer will pro-

ceed to the next instruction in sequence after turning off the indicator and

light.

-X II_

TQO Y Transfer on MQ Overflow

If the MQ overflow indicator and light have been turned on by an over-

flow or underflow in the MQ characteristic during a previous floating-point

operation, the computer turns off the indicator and light and takes the next

instruction from location Y. If the indicator and light are off, the computer

proceeds to the next instruction in sequence.

DVP Y Divide or Proceed

Division takes place exactly as for DVH if Ic(Y)I >c Ic(AC)1. How-

ever, if Ic(Y)Ij<Ic(AC)I, division does not take place, the divide-check indi-

cator and light are turned on,and the computer proceeds to the next

instruction in sequence.

4 I I r r Il r

EXERCISES - Chapter VIII

1. Add the integer 534 to the integer 34,359,738,367 using fixed-point arithmetic and

check for overflow. If there is no overflow, store the sum and write it on tape 9. If there is

overflow (which there should be), transfer to ENDJOB. This will cause the computer to stop

and write on tape a "Post Mortem," which will be printed after your SAP listing. In this

Post Mortem, you will see the contents of the accumulator, bits 1-35, and the contents of

the Q and P bits printed side by side. Notice that the P bit contains a 1, which indicates

an overflow.

2. Divide 50 by 0 using fixed-point arithmetic divide. If you do not use the instruction

DCT, you will notice in the Post Mortem the words "divide check on," indicating that divi-

sion did not take place.

3. Place the number 3. 10 x 103 into the computer in floating-point form and multiply it

by the number 2.14 x 10 4 . To place a number n x 10 e in the computer in floating-point form,

use the pseudoinstruction

DEC nEe

(See the definition of DEC in the SAP 3-7 instructions).

4. Solve the following system of equations, using floating-point arithmetic:

9.2x - 16.1y = 11.5

3.5x - 2.0y = -2.5

CHAPTER IX

INSTRUCTIONS IN MACHINE LANGUAGE

In the last chapter you saw what numbers, both fixed and floating type, looked like in

the core storage. Now you will see how the various instructions appear in the computer. Ac-

tually, you have been using at all times letters to represent an instruction; for instance, ADD,

SUB, etc. However, the 704 is a binary machine and everything is represented internally as a

combination of l's and O's.

All instructions are divided into two types, A and B.

Type A instructions have a decrement part, whereas Type B instructions do not.

In Type A instructions, bit,s S, 1, 2 are reserved for the operation code. Since each

instruction is represented by a combination of l's and 0's, you could have 23 or 8 A instruc-

tions; however, there are only five; namely, TIX, TNX, TXI, TXL, and TXH. Bits 3-17 are

reserved for the decrement; bits 18-20 are reserved for the tag; and bits 21-35 are reserved

for the address of Type A instruction. Type A instructions are represented as indicated in

Figure 37.

Operation Decrement Tag Address

.]

S 1 2 3 17 18 19 20 21 35

Figure 37 - Type A Instruction

Notice that the decrement and address fields contain 15 bits each. Therefore, the

greatest number for the decrement or address is 21-51 = 32,767, which makes it possible to

refer to any one of the 32,768 core locations. Further, notice that each index register also

has a capacity of 15 bits.

In Type B instructions, bits S, 1-11 are reserved for the operation code, bits 12-17 are

not used, bits 18-20 are reserved for the tag, and bits 21-35 are reserved for the address, as

indicated in Figure 38.

Operation Not Used Tag Address

I I*!* I I
S 1 211 12 17 18 1920 21 35

Figure 38 - Type B Instruction

With each instruction you associate an octal code, which corresponds to bits 1-11,

and a sign, which represents bit S. These codes are found in the IBM 704 Reference Manual

rh-- II _I I- q , I II_

(Reference 1)* and are printed beside each instruction in the SAP printout. For instance, the

octal code for ADD is +0400, and since each octal number is equivalent to 3 binary numbers

the octal code for ADD is represented in binary form as shown in Table 1 below.

TABLE 1

Octal and Binary Codes for ADD

Octal Code + 0 4 0 0

Binary Code 0 0 0 1 0 0 0 0 0 0 0 0

Bits S 1 2 3 4 5 6 7 8 9 1011

The octal code for TIX is +2000. If you use the instruction TIX 101, 1, 1, it would

appear in the SAP printout thus (Figure 39):

+ 2 00001 1 00145 TIX 101, 1, 1

Octal Code**
CD ad 0 0

&W La &W &W

C 0 W 10 W

+ 2 00001 1 00145 TIX 101, 1, 1

Octal Code**

Figure 39 - SAP Printout of TIX-101, 1, 1

This instruction is represented in core storage, as shown in Figure 40.

Opr Decrement Tag Address

0 1 01 .I0 1 o 0 10 1 .0. 0Ioi 1 11 010 io U
Bits S 1 2 3....16 17 18 19 20 21 22 35

Figure 40 - Machine Representation of TIX 101, 1, 1

Thus far, you have seen that numbers and instructions are represented as a series of

of l's and 0's in the computer. But suppose you have alphabetical characters which you

wish to print. How do these appear in the computer?

*The number which appears in front of the instruction in the Reference Manual refers to the number of cycles

required for the instruction to take place. Each cycle represents 12 microseconds.

**Of course, if the decrement is large enough, any of the first three octal digits of the decrement may be non-

zero, even though the octal code for the instruction represents them as zeros.

First, note that punched cards can carry alphabetic as well as numeric characters.

These characters are called Hollerith characters, named for Dr. Hollerith of the U. S. Bureau

of the Census, who originated the idea of representing information by punched cards.

Hollerith characters are represented in the computer by six binary digits or two octal digits.

(See Table 2.) For example, the octal code for H is 30 and its binary form is 011000. Thus,

you see that one core unit can hold six Hollerith characters. Of course, you can mix the let-

ters with numbers, if you wish. To place an alphabetic character or a blank in core unit, use

the pseudoinstruction.

BCD VADDRESS

This instruction will convert the Hollerith data ADDRESS into binary form and store it in V

consecutive core locations, as indicated below.

Next, define a HIollerith word to consist of six Hollerith characters; i.e., six letters,

five letters and a blank, or three letters followed by a blank and two more letters, etc.

ADDRESS is the Hollerith data to be converted and may occupy columns 13-72 on a

card. If V is a blank, ten Hollerith words are converted and entered into ten consecutive

core units. If V equals n, a number from 1 to 9, n Hollerith words will be converted and

stored in n consecutive locations. V is punched in column 12. Here is an example.

Suppose you wish to use the heading FISCAL YEAR 1959. You must put this in stor-

age before writing it on tape. Since you have sixteen Hollerith characters, you must reserve

three core units for the title (i.e., V = 3). Thus, your instruction is

BCD 3FISCAL YEAR 1959

The octal code for this Hollerith data is given in Figure 41. Note that A indicates a

space.

A A+1 A+2

26 31 62 23 21 43 60 70 25 21 51 60 01 11 05 11 60 60

F I S C A L A YE A R A 1 9 5 9 A A

Figure 41 - Octal Code for FISCAL YEAR 1959

The data will go into three core units: A, A +1, A+2, as indicated below in octal

representation (Figure 42).

Contents

A 26 31 62 23 21 43
60 70 25 21 51 60
01 11 05 11 60 60

Figure 42 - Octal Representation of FISCAL YEAR 1959 in Core Storage

Suppose now you desire to change the year to 1960. This can be done by using the

logical operations to extract the date and replace it with a new date. Notice the date consists

- I rll I I II all I Ir

Loc

of the first 12 bits of the third core unit, A + 2. The logical operations will be explained in

the next chapter.

To write the Hollerith data on tape to be printed on paper, use the Bell System BCD

print subroutine, X PRINT, making sure the first digit to be printed is a space.* Its calling

sequence is: TSX XPRINT, 4

MZE A, , Z

This will print the Hollerith data contained in consecutive locations from A to Z. Thus to

print the data, FISCAL YEAR 1959, you would use the calling sequence:

TS X

MZE

XPRINT, 4

A, , A + 2

For further details of the F statements you have been using in the OUTPUT routine,

see the Bell System instructions under the heading (Reference 2) "System Subroutines."

TABLE 2

704 BCD CODE

Character Octal Code Character Octal Code

A 21 A (space) 60
B 22 = 13
C 23 " 14
D 24 + 20
E 25 - 40
F 26) 34
G 27 (74
H 30 $ 53
I 31 * 54
J 41 40
K 42 * 33
L 43 / 61
M 44 73
N 45 +0 32
0 46 -0 52
P 47 0 00
Q 50 1 01
R 51 2 02
S 62 3 03
T 63 4 04
U 64 5 05
V 65 6 06
W 66 7 07
X 67 8 10
Y 70 9 11
Z 71

*See "Carriage Control," Reference 5.

SUMMARY - Chapter IX

All IBM 704 instructions are divided into two types, A and B. Type A instructions

have an address, tag, and decrement field, as indicated in Figure 43.

Operat. Decrement

S 1 2 3. 17

Tag Address

18 19 20 2135

Figure 43 - Type A Instruction

Type B instructions do not contain a decrement field. (See Figure 44.)

Operation Not Used Tag Address

Il ...i I . I. 1 I. IJ.
S 1 2 11 12 .. 17 18 19 20 21 35

Figure 44 - Type B Instruction

With each instruction is associated a number called the octal code and a sign of the

instruction. The sign represents the S bit, and the four octal digits represent bits 1-11 of

the instruction.

Each Hollerith character (those produced by a manual key punch) is represented by

two octal or six binary digits. (See Table 2.)

BCD VADDRESS

F BCD

SVN

1(n H)

-1, 7, -1

This instruction will convert the Hlollerith data ADDRESS

into binary form and store it into V consecutive core locations.

is either 1-9, or a blank which means 10 locations.

This is the format for Hollerith characters when using the

print subroutine, OUTPUT, where n is the number of Hollerith

characters.

I", IIIY- I 1mm m wi - -11111III IY

-a, I ar I I II L I I---~-- I ----

44 1 h 1II hnlnh i

EXERCISES- Chapter IX

1. Place your name in the computer and then write it on tape 9 so that it will be printed

after the SAP listing.

2. Hastings8 gives the following approximations for 10x, 0 < x 1.

10x = [1+a lx+a 2 x
2 +a 3 x

3 +a 4 x
4 +a 5 xS+a 6 x

6] 2

a1 = 1.1512,87586 a4 = 0.0754,67547

a2 = 0.6628,43149 a s = 0.0134,20940

a 3 = 0.2536,03317 a 6 = 0.0056,54902

Write a program to evaluate 10x for some value of 0 < x < 1 and check your result with a

table.

3. Study your SAP listing from Exercise 2, observing the octal code of each instruction

and the contents of each field.

---4~- 1111111111111111111 .~_ ____ I_

CHAPTER X

LOGICAL OPERATIONS

You previously saw that the index registers can be used to modify an address portion

of an instruction before executing that instruction. However, this did not change the address

portion of the instruction as it appeared in core storage. To change the address portion of an

instruction in a core unit, you could first clear and add the instruction into the accumulator,

then add an integer equal to the amount by which you wish to modify the address, and, finally,

store the modified instruction in its original location. This is illustrated in the following ex-

ample.

Suppose you have been using the instruction

A MPY RESULT

but wish to change this to read

A MPY RESULT + 10.

You could do this as shown in Figure 45.

Operation and Address Comment

CLA A c(A)-,c(AC)

ADD TEN [c(A) + 101]--.c(AC)

STO A [c(A) + 10] ~ c(A)

TEN DEC 10 Places decimal 10 in core storage

Figure 45 - Program to Modify the Address of an Instruction

The above program will increase the address of any instruction, provided the sign of that in-

struction is positive. If the sign of the instructi6n is negative, you must either add a nega-

tive number or use SUB in place of ADD.

The instruction "Store Address "

STA A

could have been used instead of STO A. STA A places bits 21-35 of the accumulator into

bits 21-35 of location A.

If, in place of the above set of instructions, you used the following set of logical

operations, you would not need to be concerned about the sign of the instruction.

I I I I r I I I

First, use the instruction "Clear and Add Logical" word:

CAL A

This will replace

of core location A. (See

bits P and 1-35 of the accumulator, c(AC)p, 1- 3 5 , with the contents

Figure 46.)

A S 1 2 35

AC LS Q I P 1 12 ******* ******** ***** * 35J

Figure 46 - Exchange of Bits as Result of CAL A

Then the instruction "Add and Carry Logical" word:

ACL TEN

will add the c(Y)s, 1-35s to the c(AC)p, 1- 35 , respectively, and replace c(AC)p, 1- 3 s with

this sum. Position S of location Y is treated as a numerical bit, and the sign of the accumu-

lator is ignored. A carry from position P of the AC adds into position 35 of the AC. It does

not add into position Q. Bits Q and S of the accumulator and the c(Y) are left unchanged.

Since a carry from position P adds into position 35, no overflow is possible. (See Figure 47.)

S Q P 1 2 32 33 34 35

ACL Y

Figure 47 - Operation of ACL Y

Finally, the instruction "Store Logical Word"

SLW A

replaces the c(Y)s,1-3s with the c(AC)p,1- 3 s, leaving c(AC) unchanged.

Suppose now you have a large amount of numerical data which consist of binary inte-

gers of not more than 11 binary digits and a sign. To put as many numbers as possible into

core storage you could "pack" three numbers N 1 , N2 , and N3 into one core unit, DATA, as

indicated in Figure 48, a packed word. Bits S, 12, 24 containthe sign of N1 , N2 , and N3 ,

respectively.

Figure 48 - A Packed Word

Next, assume you want to operate on each number. To do this, you would have to "un-

pack" (separate) each number from the others. One way to do this is by using the logical op-

erations as explained below.

First, bring the contents of location DATA into the accumulator by means of the logical

operation,

CAL DATA

This instruction will replace the c(AC)p, 1- 3 5 with the contents of location DATA. Thus the

sign bit of DATA does not go into the sign bit of the AC (as in CLA) but into bit P.

Next, you want to operate on one of the numbers, say N1 . To eliminate N2 and N3 from

the accumulator, you can use an extractor pattern and the instruction ANA Y. The extractor

pattern will consist of a word stored in EXT (Figure 49) with l's in the bits you wish to keep

and O's elsewhere:

EXT 1 1l 1 1 1 1 1 111 1 I1 0 0 O 0

Bits S 1 2.............. 11 12 13 35

Figure 49 - Extractor Pattern 1

Then the instruction "AND to Accumulator"

ANA EXT 1

will leave unchanged c(AC), 1 1 and replace c(AC) 12 -35 with O's. Thus you have N

in c(AC)p,1 _. 1 (Figure 50).

S Q P 1. 11 12..................... 35

AC N 0- IN 1 A........ 0

Figure 50 - N1 in the c(AC)p, _ 1

* II II I I I-I - I II _I ~rrr~

The logical instruction "Store Logical Word"

SLW TEMP

will store c(AC)P,1-35 into the c(TEMP)s,1-35; i.e., it stores N1 into location TEMP. Then

if you do the instruction

CLA TEMP

you will have N1 in bits S, 1-11 of the AC. The shift instruction "Long Right Shift"

LRS 59

will shift c(AC)Q,P,1- 3 s and c(MQ)1- 3 5 59 bits to the right, fill vacated positions with O's,

and make the sign of the MQ the same as the sign of the AC. Thus the sign bit of the MQ now

contains the sign of N1 . (See Figure 51.)

S 25 35

MQ N N

Figure 51 - N1 in c(MQ)S, 25-35

Next,

pacity of 11

multiply N1 by

bits:

c(MULT) and assume that the product P 1 will not exceed the ca-

MPY MULT

Since the product is now in the (MQ), shift left 24 to put the product into (MQ)s, 1-11
with the instruction "Long Left Shift"

LLS 24

This instruction shifts the c(AC)Q,p, 1- 35 and the c(MQ) 1 -35 24 places. (See Figure

52.) Bits from position 1 of the MQ enter position 35 of the AC, and the sign of the AC is

made the same as the sign of the MQ. To have P 1 available for future use, store it in loca-

tion PROD with the instruction

STQ PROD

Figure 52 - P 1 in c(MQ)s, 1- 1 1

So far you have extracted N1 from the packed word, multiplied N 1 by another number,

and stored the product P 1 into core location PROD. Now you would like to insert this new

number P1 into the packed word DATA in place of N1 .

First, extract N1 from core storage, DATA with EXT 2 (Figure 53)

position S, 1-11 and l's elsewhere and with the instruction ANS DATA.

which has O's in

0 0 1 0 1 1 1 I
S 1 11 12 13 35

Figure 53 - Extractor Pattern 2

The instruction

CAL EXT 2

will replace bits P, 1-35 of the AC with bits S, 1-35 of core location EXT 2. Then the in-

struction "AND to Storage"

ANS DATA

will erase N from core location DATA, leaving N2 and N3 as shown in Figure 54.

DATA N, N3 I

Figure 54 - Location DATA Now Contains N2 and N3

Next the instruction

CAL PROD

will place the c(PROD)s,1-3s into the c(AC)p,1-as"

Then the instruction "OR to Storage"

ORS DATA

will insert P 1 into bits S, 1-11 of location DATA, to get

P, N2 N3

Figure 55 -

New Contents of DATA

Location DATA Now Contains P 1, N2 , and N3

'" Il I I I III I I r I Ir

Thus the packed word now contains P,, N2 , N3 , as shown in Figure 55.

To place the extractors in core storage, use the pseudo-operation

LOC OCT N

where LOC is the octal storage location of the extractor and N is the octal code of the ex-

tractor. For example, here is given the octal code of EXT 1 and EXT 2 (Figures 56a and 56b).

EXT1 01 1 0 O
Bits S 1 2 11 12 13 35

Octal Code -377700000000

Figure 56a - Extractor Pattern 1 and its Octal Code

EXT2 1 0101 0 1 1 .1 1
S 1 11 12 13 35

Octal Code 0 0 0 0 7 7 7 7 7 7 7 7

Figure 56b - Extractor Pattern 2 and its Octal Code

The flow chart and program for the above problem are given in Figures 57 and 58.

Before closing this chapter, the logical instruction ANA will be explained in detail;

then you can read and interpret the other logical instructions as given in the summary and

in the IBM 704 Reference Manual. 1

The instruction ANA Y is called "AND to Accumulator." It matches each bit of

c(AC)p, 1-3s with the corresponding bit of c(Y)s 1-35' the c(AC)p being matched with the

c(Y)s. If the corresponding bit of both the AC and location Y is a 1, a 1 replaces the

contents of that position in AC. If the corresponding bit of either the AC or location Y is a

0, a 0 replaces the contents of that position in the AC. The c(AC)s,Q are cleared and

the c(Y) are left unchanged.

In the example given, N was to be left in the accumulator so the extractor pattern was

12 l's in positions S, 1-11 of location EXY 1 and 0's elsewhere. Suppose N1 is the bina-

ry number -00000110101. Since the minus sign is indicated by a 1, N1 appears in storage as

Figure 57 - Flow Chart for Extraction of N from Packed Word and
Insertion of P1 into Packed Word

BM Data Processing Division SHARE 704 Symbolic Coding Form
Problem

Code John Smith a
September 15, 1959 Page 1 Of 1

HI
0 0

AddrM, Tag Daement

1 2 8s~ 1v

A
-I---

B

E
Ib----4-------

EXTI

IEXT2

TEMP

MULT--IATA--- t----

JOB
SAP

ORG
CAL

ANA
SLW

CLA

LRS

MPY

LLS

CAL
ANS

SAL__:Ab.
-OR$

ing
been ir

OCT
BSS

DEC

OCT

END
LOD
TRA

DATA

Ident-
Cm en atn

72 73 O

Places packed word into positions P. 1-35 of Ad .
EXT 1 Leaves N1 in (AC)p, 1-11
TEMP Stores N1 in TEMP.

TEMP Clears N1 in positions S, 1-11 of AC.
59 Shifts contents of bits 1-11 into bits 25-35 of

MQ and places sign of N 1 in c(MQ) S .
MULT Multiplies Ni by c(MULT) and places product

P 1 in c(MQ)Sq 29 -35'
24 Shifts product P into bits S, 1-11 of MQ.

PROD Stores product P 1 with sign in location, PROD.
EXT 2 Places EXT 2 into positions P, 1-35 of AC.
DATA Erases N1 from core storage, DATA.

PROD Places product P 1 into positions P, 1-11 of AC.
DATA Inserts product P 1 into position S, .1-11 of AC.
nstructions to be performed after P1

rted in packed word.)

777700000000
000077777777

1

3
000111001010101011 Storage of packed data, three 12-bit sets of

data per word.

100
4

Figure 58 - Program Associated with Flow Chart of Figure 57

66

""~-~'~-- -- - 1 111

-

----- ---- ~- ---- ---------------------- l---~r~- ~~--4-~. ~ ~~_~~~ ~ __

100000110101

Then when you match the extractor EXT 1 with this number, you get N1 , left in the AC as in-

dicated in Figure 59.

Bits S12 1112 2324 35

DATA 100000110101 N2 N3

S12 111213 35

EXT 1 111111111 111 11 0 °
P 12 11 12 35

AC 11010 1111 1 I o
(after performing

ANA EXT 1)

N i All 0's

Figure 59 - Operation of ANA Instruction

SUMMARY - Chapter X

In this chapter you learned how to modify the address of the instruction by adding an

integer to the instruction.

Then you studied how to pack several pieces of data into one computer word and how

to unpack a number from a packed word.

Below are listed the new instructions used in this chapter.

STAY Store Address

The c(AC) 2 1- 35 replaces the c(Y) 2 1-3,. The c(AC)S, 1- 20 and the

c(Y)S, 1-20 are left unchanged.

CAL Y Clear and Add Logical Word

Replaces the c(AC)p, 1-3s5 with the c(Y)s, 1- s. The sign of the c(Y)

replaces position P of the AC. The c(Y) are left unchanged. (See Figure 46.)

ACL Y Add and Carry Logical Word

Adds c(Y)s,1- 35 to the c(AC)p, 1-3 5 , and replaces c(AC)p,1- 3 5 with

this sum. Position S of location Y is treated as a numerical bit, and the sign

of the accumulator is ignored. A carry from position P of the AC adds into

position 35 of the AC. It does not add into position Q. Bits Q and S of the

accumulator and the c(Y) are left unchanged. Since a carry from position P

adds into position 35, no overflow is possible. (See Figure 47.)

ORS Y OR to Storage

Matches each bit of c(AC)P, 1 - s. with the corresponding bit of the

c(Y)s, 1-s, the P bit of the AC being matched with the S bit of the c(Y). If

the corresponding bit of either the AC or location Y is a 1, a 1 replaces
the contents of that position in location Y. If the corresponding bit of both

the AC and location Y is a 0, a 0 replaces the contents of that position

in location Y. The c(AC) are left unchanged.

LLS Y Long Left Shift

The c(AC)Q,p, 1- 35 and the c(MQ)1-3 s are shifted left Y places (mod-

ulo 256). Bits from position 1 of the MQ enter position 35 of the AC. Posi-

tions made vacant are filled with zeros. If a nonzero bit is shifted into or

through P, the AC overflow indicator and light are turned on. Bits shifted

beyond position Q are lost. The sign of AC is made the same as the sign of

the MQ.

LRS Y Long Right Shift

The c(AC),p,1- 35 and the c(MQ)1-3 s are shifted right Y places

(modulo 256). Bits from position 35 of the AC enter position 1 of the MQ.

IIIYIIIIIIYIYYIIIY IIIYI 111111 1111

* II-I I Ilcl I -- t Il --- - s~

d w h , ,

Positions made vacant are filled with O's, and bits shifted beyond position

35 of the MQ are lost. The sign of the MQ is made the same as the sign of

the AC.

SLW Y Store Logical Word

Replaces the c(Y)s 1-3s with the c(AC)p, 1-35. The c(AC) are left

unchanged.

ANA Y AND to Accumulator

Matches each bit of c(AC)p,1- 35 with the corresponding bit of the

c(Y)s,_1-s, the P bit of the AC being matched with the S bit of the c(Y). If

the corresponding bit of both the AC and location Y is a 1, a 1 replaces

the contents of that position in the AC. If the corresponding bit of either the

AC or location Y is a 0, a 0 replaces the contents of that position in

the AC. The c(AC)s,Q are cleared and the c(Y) are left unchanged.

Note that in Reference 1 there are two additional instructions which shift only the con-

tents of accumulator, and two logical operations. For details of these instructions see Refer-

ence 1, pp. 19-21. These instructions are:

ALS Y Accumulator Left Shift

ARS Y Accumulator Right Shift

ANS Y AND to Storage

ORA Y OR to Accumulator

EXERCISES - Chapter X

1. Do Exercise 3 of Chapter III making use of the operations of this chapter to modify

addresses. Use the smallest number of core units possible.

2. Place in consecutive core storage units the following data:

SABCDEF

DEFGHI

134DFE

CROD21

IE453L

Then use the logical operations to check to see which core units have a letter D in bits 18-23.

If the word contains such a D, print the word on the output tape (tape 9). If it does not con-

tain a D in bits 18-23, skip over it.

low" I_ 11 I I ~

CHAPTER XI

PROGRAM CHECKING

After a problem has been defined, you must find the best numerical solution to the

problem. Then you must flow-chart the solution, code the problem from the flow-chart, and

finally run the program (the list of instructions and data) on the computer.

Of course, during each of these processes, you must check for errors and correct each

error as you find it. Here a few methods to check and then to correct your program are dis-

cussed.

When you write a program in SAP language and have cards punched and loaded into the

computer under Bell System control, you receive a SAP printout which lists all the pseudoin-

structions used. If the assembly was successful, the computer translates the pseudoinstruc-

tion into machine language and then punches these binary instructions on IBM cards, with up

to 22 instructions per card. (See Figure 60.)* The first instruction is punched in the first 36

columns of row 8; the second instruction is punched in columns 37-72 of row 8; the third in-

struction is punched in the first 36 columns of row 7; the fourth instruction is punched in col-

umns 37-72 of row 7, etc. In row 9, columns 14-18, is the number of instructions contained

on the card. In Figure 60, this binary word count is 10110; i.e., 22 instructions. Columns

22-36 of row 9 are reserved for the location of the first instruction. In Figure 60 this is

1100100 binary or 100 decimal.

0 o olo 0 o oo ooo ooooo Ioo l o 1 0olo 010 1 o 0 o 01oooo o o 0 0 o0 0 0o o 001oo 0 ElClo!
I I I I I I I I I !! I I I I I I I i I |

S O O O 00000 0 0000000 0 010 00 0 II0 o0010 .00 0 001 000 000 00 0 0 0010 0 10110 0o o l looo oononooonoi ooooaooI lo ll oo o o s olo o oooo o oo ol o loooI oo o o o o
1 2 3 4 S IG 7 8 9 10 111 1115 6I 1 8 19 20121 ? 2 23124 2 5 26 1 28 2937 30 1 23 34 3 1 213 4 5 16 7 8 9 10 1112 13 14115 16 17 8 19 20121 22 21 24 25 2GI21 23 23110 31 3 311

"Ol ia lo o00 0 o O O 0 oo 0 010 100 Igo o oG io o 0110 0100 00 O 00 0 0 CIO 0 001010 loi o 0 111 I 1(I 1
1 i I i I i I aIil l I l I I

lo0 10l E 0 0000 00'0 0 00000000 0 0 00 Ii I 10oT0 010 0011 010000001000 0100010000001 o10 0 622222022

00!11 00000000000000 000,00000 G,00000 0011O0 000 la o0 o 00000001000 0 I0 101110333 3 3 33
I I I I I I I I I i 1 I I I

o 0,11111 ,0 0 0 0 0 H 0 0 0 0 O 0 010 0 Oio o 0, G 0 o10 1 I :, 0,0 I D o O 0 O 0 0 o 0 o 0 D o O o 1 Ii f 0 04 44 4
1 2, 3 4 5 16 7 b 19 l 1 14 15 70171 8 19 220121 22 23124 25.61-7 28 72 3, 3 3 ! 4 A 3 1 213 4 16 7 8 79 1 1 W 7 7 171 19 2012, 22 211242 2 21 2' 2312t '1 1 3 3

0o0010000~00000 00on 0 on0 I0DI 00101000400000 0 0 010 0 in0 0 n010 0 01000 O10:10101 6666@6
I0 1 1 I J I 1 I 1 7 Ii I I I 1 I I I I

11 .1 n nPn nn nn nin n nin qo, 0 jol ,o0000GII IO0 n fln n n nl i ll I FII n n ng0pO6000,110,0001001ooaaa' 0I10 i0~o~ I" 00011 10 I 00o 0 0 IlI 666,11 66776)7!0000 ! u ~u u, ~u , loo l loo 00 ill lo0 n1U n 0, li.u. n , 00 "0 0 'il17117(
ao First Instruction i I 'Second Instruction

noo 0ono 0o0oUnUaUiUiU 0: 00uUUu 0000 0 101 !" 010018 0111111 7963_LJU- 1 74 62631u46766u6u 0 0 070 74167 7 40Q

0000 0000 000 0 110 000000000 00 10 CoCl o 0 Il loon 1Ia i I1o i1 1 I a 0o o ol 99 o99&
S4 5 I 7 8 9 0 1 1213 14 15 16 17 18 19 20 21 22 23 24125 26 27128 29 3L1,I 32 3J34 35 36[38 30, 41 4 43 44 45146 ? 46149 - '!112 53 54155 56 5i18 59 601G 62 63164 65 66167 S 6S470 11 73 74 75 76 77 78 19 80

IBM 406-F 5 7

Word Location of Check Sum
Count First Instruction

Figure 60 - A Binary Card with Twenty-two Instructions

*See description of "SAP" instruction, page 32.

Columns 37-72 of row 9 are reserved for the "check sum." The check sum is the logical

sum (ACL) of all the words contained on the binary card, plus the contents of columns 1-36

of row 9. When SAP punches a binary card, it punches the check sum here. When the binary

cards are loaded into the machine, SAP checks this sum after the instructions are in the com-

puter. If this sum is incorrect, SAP stops and writes on tape "loading error." At the same

time, SAP also prints on the on-line printer the words "loading error." Thus, you see that

SAP assembly has built into it a check to see that the information from cards is placed in the

core storage correctly. If this sum is incorrect, you must find the error and correct it. The

card might have been punched incorrectly; the computer might have read the card incorrectly;

etc.

To correct a word on a binary card, you can use a card containing any one of the fol-

lowing pseudoinstructions:

L OCT A

L DEC N

L BCD H

where L is the octal location of the incorrect word,

A is correct octal code of the word to be corrected,

N is correct decimal form of a number either fixed-point or floating as defined in

SAP 3-7, and

H is the Hollerith word to be inserted in location L.

To run a program using the binary deck with or without correction, use the sequence of cards

as indicated in Figure 61.

HI Location Op Address, Tag Decrenment
I
I

1 2 6 7 .8 10 11 12

S JOB

LOD

(B nary Deck)

C(qprre ction Cards, if any)

TRA

I (D ta Cards)

Figure 61 - Sequence of Cards to Run with Binary Deck

The Bell System data will load in the binary deck, make any corrections, then transfer

to the first instruction to be executed.

Another method of checking a program is by the use of snapshot dumps. A snapshot

dump is the printed contents of a specified number of core locations taken at particular times

during the running of a program. The snapshots are first written on the Bell print tape and

a~e~ IIII I I I I I -I I I r,

then on paper. This affords you an opportunity to check to see if the contents of a specific

core unit are what you anticipated at any given time.

The instruction used to obtain a snapshot dump is given in Figure 62.

H I Location Op Address, Tag DecrementI
I

1
2

6 7 8 10 It 12

I L Y-- S, A B
I
I

Figure 62 - Instruction for Snapshot Dump

L specifies the location in octal form where you desired to take the snapshot dumps.

The snapshot is taken before the instruction at L is executed. L must not contain a TSX in-

struction or a TXI instruction with a zero tag, nor may L be a location occupied by instruc-

tions of the Bell System.

The snapshot will be printed either in octal, floating-point decimal, BCD, or fixed dec-

imal form, according to whether S is 8,F,BCD, or Pn, where n is a decimal integer specifying

the location of the binary point.

A, B specifies that octal locations A to B inclusive shall be dumped.

Y-- specifies whether the snapshot shall be taken under specified conditions (Con-

ditional Dump) or not (Unconditional Dump). Some of the forms of Y- - are listed here, fol-

lowed by the condition which determines whether or not a snapshot will take place.

Instruction Condition for Dump

YUN None.

YMI If accumulator is minus.

YZE If accumulator is zero.

YPL If accumulator is plus.

To obtain a snapshot dump after the complete running of the program, insert a card

with the instruction YPM followed by a dump card without a location specified. Such a dump

is commonly called a Post-Mortem Dump.

All dump cards are inserted just after the LOD card when using either a symbolic deck

or a binary deck, the post-mortem dump card being placed after the snapshot dump cards.

Thus, when using a symbolic or a binary deck, place the dump cards as indicated in

Figure 63.

IBM Dat.a Processing Ditit. SHARE 704 IBM Data P.cessin. g Division

Problem

coI., For Symbolic Deck Date

HI L, O Add. Ta D--.n

1 2 6 7 8 o 10 1 12

Problem

Coder For Binary Deck

HI LM O Add-. Ta 0er.

I It 6 7 8 10 11 I

JO I JOB

SAP LOD

LOD _ _(C or rection C trds
S shot D n Card) -I S- s na ~n p Iardsl

_ o -A orteM)u n Cards) __lPost- Wertem Danp Cards)

Cr(Data C)

Figure 63 - Sequence of Cards when Making Corrections and/or Dumps
with a Symbolic or Pinary Deck

Here is an example. Assume that it is desired to assemble a SAP program and then

run it, obtaining an unconditional octal snapshot dump of core units 210-250 (octal) at loca-

tion 165 (octal) and an unconditional octal post-mortem dump of core units 144-510 (octal).

The program in Figure 64 will accomplish this.

IBM Data Processing D.vision... SHARE 704 Symbolic Coding Form

Coder John Smith Date September 15, 1959 a 1 of 1
H I Ldtlo Op Add... T" De-emnt C "mmm. t dt,.0

I 12 6 7 10 11 1 71 73

JOB
SAP

W, bol0 e *k)
i LOD
165 YUN

YUN

TRA,'(la Ca> ds

Figure 64 - Program to Obtain a Dump at Location 165 and a Post-Mortem Dump

For information concerning other snapshots, see Reference 2, under the heading "Post-

Mortem and Snapshot Dumps."

Notice that in the above program you place the data after the TRA card, whereas pre-

viously you had been storing the data into the core units by means of the pseudoinstruction

DEC. Storing data within the program by means of the DEC instruction carries with it the

disadvantage that the program must be reassembled with SAP each time the data is changed.

By including in the program the calling sequence for an input read routine and allowing the

data cards to follow the TRA card, you can provide for many sets of data being processed

with the same binary (or symbolic) program. For example, suppose you are doing matrix mul-

tiplication of two 10 x 10 matrices and assume that each element is an integer. You could

read in the data with the XINPUT routine of the Bell System as shown in Figure 65.

4
8, 210, 250 Sna abhot Dump

Post-Mortem Dnmp

8, 144, 510

)

.UIIYYII 0111 ii lilYilliiri YIYUI iUII i i iiil ii1411i,11911111I les IMli

"I-- ~ I II I - I I II -~ _1-~----- _~--~

Salti mi lll UIIYY IY IIII1 i iY11I I IINIIYIIIII

SHARE 704 Symbolic Coding Form

Figure 65 - Program to Multiply Two 10 x 10 Matrices, A and B

The computer will first assemble the above program, then load the binary program in the mem-

ory from tape 4, and finally begin to execute the instructions. The first three instructions

cause the computer to read in the data and place it in core units A through A+199. Then the

computer continues with the remainder of the program.

Two other ways to check a program will now be discussed. Most problems involve
either a few calculations and a great amount of data or a great number of calculations and a

relatively small amount of data.

If a program involves a great number of calculations, it is good practice to print inter-

mediate results during the checkout of the program and check these with hand calculations.

Also, if a problem runs a very long time, it is advisable to provide for dumping on tape the
necessary part of the memory (core storage) at approximately 10-minute intervals. This can

be done by the instruction "Write Block on Binary Tape N"

WTB N,A,B

which will write the contents of the core storage from core Storage A through core Storage B
in binary form on tape N. This enables you to restart the program with a loss of, at most, 10
minutes of computer time by reading tape N into the memory and using the values of the param-

eters at that time. It is wise to alternate between two tapes, if possible, in taking such dumps,
thereby guarding against complete loss of restart information in the event of a tape failure.

Thus if something goes wrong near the end of the problem, you will not have to go back to the

beginning but can restore the memory to its previous state as given in the snapshot just before

the error occurred.

IBM 0.,. Proe...i Di..on

On the other hand, if a problem consists of much data and a few calculations, a snap-

shot may not be so important for usually you read data as you need it. Thus, to rerun a prob-

lem with much data, you can reset the instructions to their original form and run the program

with the unused data.

x _____- .

" t- -~ .- ~11 111 1~T~----p I I I IIIill --gllllllI I a I oil WIN .111M~ -

I, IN MNIIWM 11101' 11111~-'~ 1 ~~ IIIIIIIYIIYIIIIII

SUMMARY - Chapter XI

When you compile a program with SAP, the pseudoinstructions are translated to machine

language (binary) and punched on cards. These cards can contain as many as 22 instructions.

Each card contains a check sum which the computer recomputes and checks when reading the

cards. This affords you a check to see that the correct instructions are being placed into the

memory. If an error is found in a binary deck, it can be corrected by an OCT, DEC, or BCD

correction card as explained below.

If you want to check the contents of specific core units at any given time, you can take

a snapshot dump of the core units. This dump may be conditional or unconditional and may be

either in octal, fixed-point, floating-point, or BCD form. Dumps are useful when running a long

problem because this makes it possible to rerun a problem at any intermediate point in which a

memory dump has been taken.

The following pseudoinstructions are used for correcting a binary deck.

L OCT A Octal Correction

A is the corrected octal code of the word to be stored in Octal Loca-

tion L.

L DEC N Decimal Correction

N is the correct decimal form of a fixed-point or floating-point number

to be stored in Octal Location L.

L BCD H BCD Correction

H is the new Hollerith word to be stored in Octal Location L.

If a dump is to be made at the end of a program, it is called a Post-Mortem Dump, and

all such dump cards should be preceded by a card with YPM in the operation columns.

The following pseudoinstructions are used to obtain snapshot dumps at octal location

L of core units from A through B. The dump is obtained before the instruction at L is exe-

cuted. Two of the more important restrictions are: L may not be a location occupied by the

instructions of the Bell System, nor may L contain a TXI instruction with a zero tag or a TSX

instruction with any tag. S in the instruction below may be either 8 for octal, F for floating-

point decimal, BCD for Hollerith, or Pn for a fixed-point decimal number where n is a decimal

integer specifying the assumed position of the binary point in the computer word.

L YUN S,A,B Unconditional Dumps

Dumps core units A-B on output tape 9.

L YMI S,A,B Conditional Dump

Dumps core units A-B if accumulator is minus.

L YZE S,A,B Conditional Dump

Dumps core units A-B if accumulator is zero.

L YPL S,A,B Conditional Dump

Dumps core units A-B if accumulator is plus.

YPM This card must be inserted before the first of the Post-Mortem Dumps.

You also have learned how to write a block of information in the binary mode on tape N.

This instruction is

WTB N,A,B Write Block on Binary Tape N

Writes the contents of the core block A to B, inclusive, on tape N.

This block is followed by a check sum.

To run a symbolic program with dumps or a binary deck with corrections and/or dumps,

place the cards as indicated in Figure 66.

IBM Data Processing Division

Problem

Cod For Symbolic Deck

H I Location Op Addreas. Tag Decrem

1 2 6 7 8 10 11 12

S Sna
I Post-

JOI B
SAP

ibolic D

LOD
lot Dum
irtem D

TRA

ata Car

k)
4

,ards

p Cards

IB1M Data Processing Division SH.
Problem

Coder For Binary Deck

H I Location Op Addres. Tag Decrement

1 2 6 7 8 10 11 12

Sn--a-

JOB

LOD

inary I
'rection
hot Dun

ortem r

Data -C

:k)

trds

Cards

np Cards

is)

Figure 66 - Programs to Run a Symbolic Deck with Dumps or a Binary Deck with
Corrections and/or Dumps

78

,________~n___ --------n-------~~-~-4~n.

EXERCISES - Chapter XI

1. Obtain a SHARE subroutine that will do matrix multiplication and find the product of

two 5 x 5 matrices, A and B, and print the results on tape 9. Use the input routine of the Bell

System, XINPUT, to read the data in. Plant a snapshot dump after the read routine to obtain

the elements of A and B. Also obtain an unconditional octal post-mortem dump of all the core

units used except for those of the subroutine.

Check the results and, if necessary, correct the binary deck and rerun the problem.

2. Using the binary deck of Exercise 1, run Exercise 1 with different data.

CHAPTER XII

READING AND WRITING ON TAPE

As previously noted, information can be stored on tape in binary form or binary-coded

decimal (BCD) form. If the tape is to be printed, however, the information must be in BCD

format.

Here you will see exactly how information is stored on tape and how to read or write

on a tape in either the BCD or binary mode.

Information is stored on tape, six bits at a time, placed laterally across the tape, plus

a redundancy check bit. The six bits are referred to as a frame (see Figure 67). Thus six

frames constitute one computer word.

x
x
x xxxxxx = 6 bits
x
xX
x
y y = redundancy check bit

Figure 67 - One Frame on Tape

When the information is

if the group of six bits xxxxxx

l's is odd. Otherwise, y is 0,

a check bit and an odd check.

When the information is

y is a 1 if the six bits contain

Figure 68.

in binary form, the redundancy check is an odd check. Thus,

contains an even number of l's, y is a 1, so that the number of

again making the number of l's odd. The y bit is also called

in the BCD form, the redundancy check is an even check; i.e.,

an odd number of l's and a 0 otherwise. This is illustrated in

1 0 1 1 0 1 x
0 0 1 1 1 0 x
0 0 0 1 0 1 x
0 0 1 0 1 1 x
1 0 0 1 1 1 x
0 1 1 1 1 1 x
0 1 0 1 0 1 y

Figure 68 - BCD Mode of Tape

In keeping payroll information, a company may have a man's name, his number, rate of

pay, etc., all written on one card. This is called the payroll record of the particular employee.

To put this information on tape may require, say, ten computer words. Thus, you say that

every ten words on this tape constitute a record. A record can be of any length. At the end

~B11 ~e~- ~IIII Ir II I I r(ll II I- I I ~~ Lsl~b~%LI,

of each record, there is a longitudinal redundancy check, which is always an even check.

Suppose you have a tape which consists of two word records. Figure 69 shows what a typical

record on this tape might look like.

0 1 1 1 0 0 1 1 0 1 1 0 1 x

10000 1 1 0 0 1 1 1 0 x

Direction of 0 1 1 0 0 0 0 0 0 0 1 0 1 x

tape motion 1 1 0 0 1 1 1 0 0 1 0 11 x

11100 0 1 1 0 0 111 x
0 1 1 0 1 1 1 0 1 1 1 1 1 x
1 1 0 1 0 1 1 0 1 0 1 0 1 y
- /, \\ ,,, ,

check second word first word
frame

Figure 69 - Longitudinal Check

Of course, each employee's record is only one of several in the employee's file. Sim-

ilarly on tape, a file may contain several records. To designate an end of a file on tape, there

is an instruction "Write End of File"

WEF N

which will make a special mark at the end of file on tape N. A tape may contain more than

one file. Each tape is 2400 feet long and holds 200 frames per inch, or 331/3 words per inch.

The length of interrecord gap is 3/4 inch, and the length of an end-of-file gap is 4% inches

which includes one end-of-record gap. Thus a tape can hold as many as 5,760,000 BCD char-

acters or about 960,000 words.

To read or write on a tape, you must select the tape desired and specify in which mode

(binary or BCD) the information is to be read or written. To prepare to read one record of in-

formation from tape N, which is in binary mode, use the instruction "Read Tape Binary"

RTB N

To prepare to read one record of information from tape N in the BCD mode, use the in-

struction "Read Tape Decimal"

RTD N

After the tape is selected, you must copy each word from the tape and store it in loca-

tion Y of the core storage. You do this with the instruction "Copy and Skip"

CPY Y

This will copy one word from the tape specified by RTB and place this word first in

the MQ, and then in core location Y. If an end-of-record gap is detected during a CPY order,

this order is not executed. Instead, the computer skips the next two instructions following

the CPY instruction and proceeds from there. If during a read order an end-of-file mark is

detected, the computer skips the first CPY instruction and proceeds from there. These in-

structions are illustrated by an example.

_ _I __ _^ _ I ~ *_ I~~

Suppose tape 8 consists of 1000 10-word records in binary form followed by an end-of-

file mark. Place all those records into the memory, beginning at core location X.

The flow chart for this problem is given in Figure 70.

A B

E F

Figure 70 - Flow Chart to Copy 1000 10-Word Records from Tape to Memory

The program associated with the above flow chart is given in Figure 71.

Ulla I r a r I I I IIIY - I _ _III IYLLI

Problem

Code John Smith IDatSeptember 19, 1959 Page 1 of 1

S 6I O I . DAeded
Ceee 7 -7lon

A

B

I

K

ZERO

TEN

DSETi C

-4--------------4-------
ZER

-- 4
DSE

JOB

CAL
SLW

RTB

PY
TXI
TRA

CAL

bri
__perfo

DEC

EC
CPY

ID

TR. .

Figure 71 - Program Associated with Chart of Figure 70

To prepare to write one record of information on tape N in binary mode, use the instruc-

tion "Write Tape Binary"

WTB N

To prepare to write one record of information on tape N in

struction "Write Tape Decimal"

WTD N

Either of the above instructions will prepare the computer

information on tape number N. Then the instruction

the BCD mode, use the in-

to write one record of binary

CPY Y

will place one word from memory location Y into the MQ and then write this word on tape N.

At the end of the copy loop, the computer writes the longitudinal check bits and end-of-record

83

100

DSET -J.
D
ZERO, 1 0-1.

2 Positions tape 2 for reading.

X. I ith word- x + i + J.
*-1, 1-1 If no EOR, i+lI- i, goes to D.
K If no EOF, goes to K.
D
TEN If EOR J+10--e J.
D
A Goes to location A.

g of instructions to be
ed after all records are read.

0
10
X. 1
100
4

IBM Data Pocessing Division SHARE 704 Symbolic Coding Form

gap and disconnects the tape. After writing the last record, you can make an end-of-file mark

on tape N with the instruction

WEF N

For example, suppose you do the reverse of the previous problem; i.e., copy 1000 words

from core storage in units of 10-word records onto tape 8. Assume that the first word is locat-

ed at X. The flow chart in Figure 72 and the program (Figure 73) following it are the solutions

to this problem.

B

Start 0--j 10 - 1Prepare tape
OH for writing. 2

D No E

G L

H

J

K

Figure 72 - Flow Chart to Copy 1000 Words from Core Storage in Units of 10-Word
Records onto Tape

r, ~~________~____ *____~__~~rrrr~*sl-- ,a~ _ _,_ ~L~ ~ra~ sraarr*-sPrra~s~ --~

SHARE 704 Symbolic Coding Form

Figure 73 - Program Associated with Flow Chart of Figure 72

IBM Data Processing Divison

After any copy order (when writing on tape) you are able to do other operations which

do not involve the MQ before the next copy and EOR gap are made on tape, for the computer

does not write the longitudinal check bits and end-of-record gap until 336 microseconds after

the last copy order. Thus you can do any operation not involving the MQ after any copy in-

struction, provided the total time elapsed before the next copy does not exceed 336 micro-

seconds. (For the timing of instructions, see Reference 1.) If another copy is given within

this time, no EOR gap is written on the tape. However, if another copy is not given within

this time or if a new write order of the same tape is given, the longitudinal check sum and

EOR gap are written on the tape.

To rewind a tape N, use the instruction

REW W

All tapes used in a problem should be rewound before the problem is finished.

It is also a good idea to rewind tapes before using them, to be sure they are positioned

at the beginning.

You can move tape N backwards one record with the backspace tape instruction

BST N

However, if tape N is at the load point, the instruction BST is interpreted as no operation.

If you are writing a large number of records on a tape or reading a nearly full tape, you

do not want to pull the tape from its reel, so when the physical end of a tape is reached or

when the tape breaks, an indicator and light, called the "tape indicator and light," are turned

on. To test for this condition, use the instruction "End-of-Tape Test"

ETT

Also, when reading a tape, the computer recomputes the lateral and longitudinal check sum.

If there is a mistake, an indicator light called the "tape-check indicator and light" is turned

on. This indicator can be tested with the instruction "Redundancy Tape Test"

RTT

For full details of these last two instructions, see the summary at the end of this

chapter.

Information can be transferred from cards to tape, or vice versa. In transferring from

cards to tape, the computer writes the longitudinal check sum automatically on tape when it

has read the last card.

I I ~'C _, I ~r~lC Ilrr~r 1 11111~

SUMMARY - Chapter XII

Information is stored laterally on a tape, six bits at a time plus another bit which is

the lateral redundancy check. For BCD information this check is an even check, and for bi-

nary information it is an odd check. At the end of each record there is a longitudinal check

which is an even check.

When reading a tape, these check sums are automatically recomputed, and if one of

these new sums does not agree with the corresponding one on the tape, the tape check indi-

cator and light are turned on.

When reading and writing tape, the tape number and mode of information must be spec-

ified because BCD words are stored on tape differently than in memory. This is explained

in detail in the Reference 1 under the heading "Character Alteration in BCD Mode."

The following instructions were explained in this chapter, but they by no means con-

stitute all the read and write instructions. (See Reference 1, pp. 26-28.)

RTB N Read Tape Binary

Prepares to read one record of information from tape N in the binary

mode.

RTD N Read Tape Decimal

Prepares to read one record of information from tape N in the BCD

mode.

WTB N Write Tape Binary

Prepares to write one record of information from tape N in the binary

mode.

WTD N Write Tape Decimal

Prepares to write one record of information from tape N in the BCD

mode.

REW N Rewind Tape

Rewinds tape N.

WEF N Write End of File

Writes end of file on tape N.

BST N Backspace Tape N

Moves tape N in a backward direction one record. If the tape is at the

load point, no operation is performed.

CPY Y Copy and Skip

Transfers one word of information between location Y and the tape N

as specified in the read or write order which precedes this instruction.

If an EOR gap is detected when reading from a tape, the computer

does not execute this instruction but skips the next two instructions after

the CPY order and proceeds from there. If an EOF gap is detected in read-

ing from tape, the computer does not execute this instruction but skips the

next instruction after the CPY and proceeds from there. If another read in-

struction is given after a CPY instruction, the computer skips the first CPY

instruction after this read order plus the next instruction following the CPY

order and proceeds from there.

RTT Redundancy Tape Test

If the tape check indicator and light are on, the computer turns them off

and takes the next instruction in sequence. If the tape check indicator and

light are off, the computer skips the next instruction and proceeds from there.

ETT End of Tape Test

This instruction must be given after a read or write order and before

the tape is disconnected. If the tape indicator and light are off, the computer

skips the next instruction and proceeds from there. If the tape indicator and

light are on, the computer turns them off and takes the next instruction in

sequence.

~~air - II IL I I II 1 II I --- I -- ---rr~ i

EXERCISE - Chapter XII

1. Place enough BCD characters to fill up 100 core storages on cards. Then read this

into memory and write this data into 10-word records in the binary mode on tape 6. Then copy

this data back into memory and, finally, write the data in the BCD mode on tape 9. If you

have done this exercise correctly, the printout from the tape should be exactly the same as

the input.

CHAPTER XIII

FORTRAN, AN AUTOMATIC CODING SYSTEM

As has been observed, the machine language of the 704 is binary. To actually program

a problem in binary form would certainly be time-consuming and error prone. Therefore, we

have been using pseudo-operations, which a prewritten program, SAP, translates into machine

language, and which the computer then executes. However, since it is desirable to have a

language which is more similar to descriptive English and algebraic symbolism than the Bell

and SAP languages are, a computer program called FORTRAN (Formula Translator) has been

written.

FORTRAN enables you to write a program for a problem in a relatively few statements

similar in form to algebraic formulae. These statements are punched on cards and then read

into the computer. The FORTRAN translator, which is stored on tapes 1 and 2 when used

with the Bell System, then causes the 704 to change these statements into a program in ma-

chine language which the computer can execute. The 704 writes the new program on tape 5

and punches it on cards. At the same time, it writes a SAP-type listing on tape 9. If the as-

sembly is successful, the translated program can be immediately loaded into memory and exe-

cuted.

A short example will now be given, using the FORTRAN lan uage.

Given that the norm of an n x n matrix A = (aij) is norm A = a 2
2, write a

J i, j i i/

FORTRAN program to evaluate the norm of a matrix A, where

123
A= 456

789'

The program to do this is reproduced on Figure 74 on a standard FORTRAN coding

form. The statements are written on this sheet first and then punched on cards. Notice that

columns 1-5 are reserved for the statement number and columns 7-72 for the statement. If a

character is written in column 6, it means that the statement on this line is a continuation of

the statement on the previous line.

The first statement identifies the program that follows. A c is punched in column 1

to indicate that this statement is not to be interpreted as an instruction. The computer will,

however, always print out the first statement of a FORTRAN program, whether it is an in-

struction or not.

The next two statements (JOB and FOR) are the Bell System control cards which load

the FORTRAN program into the memory. They are punched in columns 8, 9, and 10.

The DIMENSION statement says to reserve 3 x 3 or 9 core units for the matrix A.

The READ statement says to read in the elements of the matrix A, which is punched

on cards and placed after the TRA card and has the format as given by statement 1.

I YIIIIYIYIIYIIIIIII111 IIYi

rl LIII~ II-i II I U I I r

Ild WoIIIll n i ih il

8Iw FORTRAN CCDING FORM
PRNC-40 kj 10 D8

NORM of Matrix A John Smith Jeptember 19, 1959

- - -,- -- -"1 1

C4
FORTRAN STATEMENT

C NORM of Matrix A, John Smith, September 19, 1959

AJOB

AFOR

DIMENSION A(3,3)
READ1, ((A(I, J)J=1,3), I=1,3)

1 FORMAT (5E14. 8)

SUMSQ = 0.0

DO 2 I=1,3
DO 2 J=1, 3

2 SUMSQ = SUMSQ + A(I, J)* A(I,J)

PRINT 3, SUMSQ

3 FORMAT (8HASUMSQ = AE25.8)

- XNORMA = SQRTF(SUMSQ)

PRINT4, XNORMA

4 FORMAT (8HANORMA = AE25. 8)

AEND

ALOD ----

AM FNR2, a subroutine needed with all FORTRAN programs)

(BE QlT, a subroutine needed with this program)

A crwith 9 punched in column 2)
ALODA5

ATRA--t --

Figure 74 - A FORTRAN Program to Evaluate the NORM of a Matrix

FORMAT statement 1 says that each element of A is written in floating-point deci-

mal form with a field width of 14 and 8 places after the decimal point, and that 5 elements

appear on a card. (See Figure 75.) Format and dimension statements are not executed.

+. 100OOOE+O1t. 2000000E+01,+. 30000000E+011+. 4000000E+01
II II

ooogggggggoogo
01311111111113
1 2 3 4 5 6 1 8 9 10 11 12 13 14

22222222222222

33333333333333

44444444444444

55555555551555

66666666666666

77777777777777

8U888888888888

99999999 999999
12 3 4 5 6 891 0 II 12 13 14

00ooog011 0oo01
15 16 17 10 19 202 21 22 23 24 25 26 27 21

22122222222222

3i333333333333

44444444444444

55555555551555

66666666666666

77777777777777

81888888888888

999999999999
15 67 18 19 20 21 22 '3 54 25 26 27 2

II II

00ooog1110oo0
29 30 31 12 33 34 35 36 37 38 39 40 41 4111111111!

22222222222222

313333 333333333

44444444444444

5555555555155 5

66666666666666

77777777777777

83888888888888

99999999999999
52031 32 33 34 3, 36 37 38344041 42

I I

ooolllllilooio
43 44 45 46 47 48 49 50 51 52 53 5435 54

22222222222222
3333333333333i

44344444444444

55555555553555

66666666666666

7777777777777711

81888888888888

99999999999999
5 4 44 5 4 49 50 51 52 53 54 55 50

+. 5OOQOOOOE+Ol

ooogllgllloolo
57 58 5 9 60 61 62 6 A 65 67 68 69 7

22222222222222

3|333333333333
!

44444 4 4 4 4 4 4 4 44

55555555551555
666666666666661

77777777777777!

81888888888888

99999999999999
57 59 6 62 63 6 655 65 6 6 659 70

Figure 75 - Data Card with Format 5E14.8

ooooooooo
II 72 73 14 75 16 717 16 79 801111111111

2222222222

3333333333

4444444444

5555555555

6666666666

7777777777

8888888888

9999999999
5 75 53 54 15 755 75 5 85

'' -~--------~--~

1 9 9
9 9

9 9
9 9

9 9

------ - ---- ---~I--" L~~~-~

The next statement sets the quantity SUMSQ equal to zero.

The first DO statement means to do all the statements through statement 2 for I = 1, N.

The next DO statement is similarly interpreted except that the running variable is J and not I.

Statement 2 gives the formula for the quantity SUMSQ. It reads that the SUMSQ is equal

to the preset value of SUMSQ plus the square of each element. The two DO statements form

the sum of those products.

The next statement says to print the sum of the squares according to the FORMAT

statement 3.

The statement XNORM4 = SQRTF(SUMSQ) says that the NORM A is equal to the square

root of SUMSQ. The next two statements print the value of the NORM A.

The END statement signifies the end of the translation.

The LOD statement loads the next subroutine AMFNR2, which is needed with all

FORTRAN programs, and the subroutine, BESQRT, which is needed for this program. These

subroutines come immediately after the LOD card.

The final two cards are Bell control cards. The LOD 5 loads the binary instruction

from tape 5 into the memory and TRA causes the computer to begin executing the program.

It is noted that if any FORTRAN statements are not written as specified in the

FORTRAN manuals, the computer will print a diagnosis of the mistakes and not punch a bi-

nary deck.

Also the above program is only a simple example and by no means illustrates all the

statements available in FORTRAN. See the FORTRAN Primer, 4 FORTRAN Reference Man-

ual, s and the FORTRAN II Reference Manual 6 for a full discussion of this automatic coding

system.

"I I I I I I' b Irr~

SUMMARY- Chapter XIII

FORTRAN is an automatic coding system similar to descriptive English and algebraic
symbolism. FORTRAN statements are punched on IBM cards in columns 7-72 and the state-

ment number, if desired, in columns 1-5. Column 6 is the continuation column.

To compile and run a FORTRAN program on the IBM 704, using the Bell Operating

System, use the following cards in the order given:

JOB
JOB Bell System Control Cards

FOR

(FORTRAN Program)

END) Bell System Control Cards
LOD

(AMFNR2, a subroutine needed with all FORTRAN programs)

(Any other subroutines needed)

(A card with 9 punched in column 2)

LOD 5 Bell System Control Cards
TRA)

ACKNOWLEDGMENTS

The author wishes to express his thanks to all those who read the manuscript and of-

fered many valuable suggestions, most of which were adopted. In addition, the author is in-

debted to Mr. Ernest Hairston, Mr. Dennis Hardy, and Mrs. Sharon Good, who always so kindly

answered the many questions that occurred during the writing of this manual. Finally, the au-

thor is especially grateful to Mr. Kenton Meals, without whose assistance and encouragement

this manual could not have been written.

I I I I II I _~

APPENDIX A-OPERATIONS BY ALPHABETIC CODE
Alpha Code Octal Code Operation Page

ACL +0361 Add and Carry Logical Word 61
ADD +0400 Add 3
ALS +0767 Accumulator Left Shift 69
ANA -0320 AND to Accumulator 62
ANS +0320 AND to Storage 64
ARS +0771 Accumulator Right Shift 69

BST +0764 Backspace Tape 86

CAL -0500 Clear and Add Logical Word 61
CLA +0500 Clear and Add 3
CPY +0700 Copy and Skip 81

DCT +0760...012t Divide Check Test 49
DVH +0220 Divide or Halt 13
DVP +0221 Divide or Proceed 49

ETT -0760...011t End of Tape Test 86

FAD +0300 Floating Add 51
FDP +0241 Floating Divide or Proceed 51
FMP +0260 Floating Multiply 51
FSB +0302 Floating Subtract 51

LDQ +0560 Load MQ 10
LLS +0763 Long Left Shift 63
LRS +0765 Long Right Shift 63
LXA +0534 Load Index from Address* 18

MPY +0200 Multiply 10

ORA -0501 OR to Accumulator 69
ORS -0602 OR to Storage 64

REW +0772 Rewind 86
RTB +0762,221-232tt Read Tape Binary 81
RTD +0762,201-212tt Read Tape Decimal 81
RTT -0760...012 Redundancy Tape Test 86

SLW +0602 Store Logical Word 61
STA +0621 Store Address 60
STO +0601 Store 3
STQ -0600 Store MQ 10
SUB +0402 Subtract 8

TIX +2000 Transfer on Index** 18
TNO -0140 Transfer on No Overflow 48
TNX -2000 Transfer on No Index** 20
TOV +0140 Transfer on Overflow 48
TPL +0120 Transfer on Plus 25
TQO +0161 Transfer on MQ Overflow 49
TRA +0020 Transfer 20
TSX +0074 Transfer and Set Index* 36
TXH +3000 Transfer on Index High** 54
TXI +1000 Transfer with Index Incremented** 20
TXL -3000 Transfer on Index Low or Equal** 54

WEF +0770 Write End of File 81
WTB +0766,221-232tt Write Tape Binary 75
WTD +0766,201-212tt Write Tape Decimal 83

*Not indexable.

**Not indexable but contains a decrement part.

tThese instructions require the indicated numbers in the last three octal positions.

ttThe second number is the address of the instruction and specifies the tape unit. See p. 27 of Ref. 1.

-- Ylllli

APPENDIX B-INSTRUCTIONS TO THE SAP AND BELL SYSTEMS

SAP SYSTEM

Code Pseudo-operation Page

BCD Binary-Coded Decimal or Hollerith Data 30, 56, 57, 58

BSS Block Reservation 8, 27

DEC Decimal Data 5, 34, 53

END End of Program 33

OCT Octal Data 72, 77

ORG Origin 4, 8

BELL SYSTEM

Code Pseudo-operation Page

FOR Load FORTRAN 90

JOB Beginning of Job 32, 34, 72

LIB Library Routine 38, 43

LOD Load Program 33, 3472, 92

SAP Load SAP 32,34

TRA Transfer to first instruction of program
to be executed. 33, 34, 72, 92, 93

YMI If c(AC) is minus, dump core storage. 73, 77

YPL If c(AC) is plus, dump core storage. 73, 78

YPM Post-Mortem Dump Cards follow. 73, 78

YUN Unconditional Dump 73,77

YZE If c(AC) is zero, dump core storage. 73, 77

N IIM 10

"~b---.------ *--o7----- _ III I I 'C ~ Ir ,

ll ll I ii M IIIYIYIY I IYIIII i ll i, i

APPENDIX C-DECIMAL, BINARY, AND OCTAL NUMBER SYSTEMS

DECIMAL SYSTEM

In the decimal (or base 10) number system, any number can be represented by using

the ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, where each digit can occupy any position in the num-

ber. Each position is associated with a power of ten. In particular, the integer 53712 in dec-

imal notation represents

5 x 104 +3 x 103 + 7 x 102 + 1 x 101 +2 x 100

The positions from right to left in an integer are spoken of as the units, tens,

hundreds, thousands, etc., digits.

BINARY SYSTEM

Using this same scheme, a binary (or base 2) number can be represented by using the

digits 0 and 1 where each digit may occupy any position in the number. Each position is now

associated with a power of 2. Some examples of binary integers and their decimal equivalents

are given in Figure 76.

Binary Number Binary Formula Decimal Equivalent

101 1x2 2 +0x2 1 +1x2 0 5

1011 1x2 3 + 0 x2 2 + 1 x21 x20 11

1110 1x2 3 +1x2 2 +1x2 1 +0x2o 14

Figure 76 - A Few Binary Integers and Their Decimal Equivalents

To use any number system, you must know how to add and multiply any two digits.

Thus at an early age, you learned the multiplication and addition tables of the decimal num-

bers from 0 to 9. These each consist of 100 entries. However, in the binary system each

table has only 4 entries because there are only 2 digits, 0 and 1. To add and multiply in the

binary system, you must use for each digit of the number the tables given in Figure 77.

+ 0 1 0 1

0 0 1 0 0 0

1 1 10 1 0 1

Addition Multiplication

Figure 77 - Addition and Multiplication Tables for Binary Number System

To illustrate the use of these tables, multiply 6 by 7 using binary arithmetic. (See

Figure 78.)

Figure 78 - Multiplication of 6 by 7

OCTAL SYSTEM

In a manner similar to the decimal and binary number systems, a number in the octal,

or base 8, number system can be represented by the digits 0, 1, 2, 3, 4, 5, 6, 7 in positions

associated with powers of 8. Since 8 = 23, every octal digit can be written as a binary num-

ber with three or less digits. Hence, if the digits of a binary number are grouped by threes,

the octal equivalent can be immediately written down. Figure 79 illustrates the equivalence

of a few binary, octal, and decimal integers.

Binary Number Octal Number Octal Formula Decimal Equivalent

00100100 144 1 x 82 + 4 x 8 1 + 4 100

010011010001 2321 2x 83 + 3 x 82 + 2x8 1 + 1 721

100111110 476 4 x 82 +7x8+6 318

Figure 79 - A Few Binary Integers with Their Octal and Decimal Equivalents

The multiplication and addition tables for the octal number system are given in

Figure 80.

11 I II -l- I I -. r l- - -.-- - 11

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 10

2 2 3 4 5 6 7 10 11

3 3 4 5 6 7 10 11 12

4 4 5 6 7 10 11 12 13

5 5 6 7 10 11 12 13 14

6 6 7 10 11 12 13 14 15

7 7 10 11 12 13 14 15 16

Addition Multiplication

Figure 80 - Addition and Multiplication Tables for Octal Number System

Here is an example using the above tables to multiply 100 x 318 using octal arithmetic:

Decimal System Octal System

318 476
100 144

31,800 2370
2370
476

76070

An integer can be represented in a number system with any base, b, as follows:

bn bn-1 . . . b2 b bo

where

0 < bi b-1(i=0,1,...,n)

Its value is given by the formula

bnbn+ bn- 1 bn-+ b2 b2 +b 1 " b+b 0

In discussing the different number systems, only integers have been considered here.

The next question is how do you interpret numbers after the decimal or binary point. If you

consider a number to the base b

0-b_ 1 b_ 2 b_ 3 b_n

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

10 1 2 3 4 5 6 7

2 0 2 4 6 10 12 14 16

3 0 3 6 11 14 17 22 25

4 0 4 10 14 20 24 30 34

5 0 5 12 17 24 31 36 43

6 0 6 14 22 30 36 44 52

7 0 7 16 25 34 43 52 61

it is represented by the following formula

Sb-1 b-+b-2 b- 2 + . . . + b-n b-n

For example, the binary number 0.111 is equivalent to

1-2-1 + 1.2-2 + 1.2-3 = 0.500 + 0.250 + 0.125

= 0.875

The above discussion gives the definition of numbers with different bases. Now will

be discussed some practical methods to convert from one system to another and to convert a

floating-point* octal number to a decimal number.

INTEGERS

Decimal to Octal or Octal to Decimal

Use the table of Appendix C of the IBM 704 Reference Manual. 1

Decimal to Binary

First convert the number to octal; then write the binary equivalent of each digit.

Binary to Decimal

Change the binary integer to octal, then to decimal, using Appendix C of the IBM 704

Manual.' 1

FRACTIONS

Decimal to Octal

This method is illustrated with

fraction 0.957.

1) Write the number as a fraction:

an example. Suppose you wish to convert the decimal

0.957 -957

1000

2) Multiply and divide the fraction by 8:

957 8 7656
1000 8 80001000 8 8000

100

*See Chapter VIII.

ill -I I I I I I -- a

3) Divide the result into 2 parts, thusly:

7656 7000 656 7 656
- - + - +

8000 8000 8000 8 8000

The numerator of the first fraction is the first octal digit, namely 7.

84) Multiply the second fraction of step 3 by-:
8

7 656 8 7 5248- + X- ----- -- -

8 8 x10 3 8 8 82 x10 3

5) Break the second fraction of 4 into parts to obtain the second octal digit:

7 5248 7 5 248
- + --- ++

8 64,000 8 82 82 x10 3

6) Repeat the above process to obtain as many digits as desired. For the number of your
example, its octal equivalent to 6 places is 0.751770.

You can also convert from a decimal fraction to an octal fraction using Appendix D of
the IBM 704 Manual.

Decimal to Binary

Change the decimal fraction first to octal, then to binary. Or if you wish, use the same
method as for changing a decimal fraction to octal except use the multiplicative factor 2/2 in-
stead of 8/8.

Octal to Decimal

Appendix D of the IBM 704 Reference Manuall is an octal-decimal fraction conversion
table. Notice that the biggest octal fraction is 0.377. However, this represents no difficulty,
for if the number you are converting is bigger, you can split it up into parts. Thus to convert
the octal fraction 0.751770, find the decimal equivalent of each part as indicated below:

Octal Decimal

0.300000 0.375000

0.300000 0.375000

0.100000 0.125000

0.051000 0.080078

0.000770 0.001922

0.751770 0.957000

101

Binary to Decimal

Change the binary number to octal and then to decimal form.

Floating Point Octal to Decimal

As explained in Chapter VIII, a floating (F x2 n) point number is stored in the memory

in three parts. The first bit represents the sign bit; bits numbered 1-8 represent the char-

acteristic of the number; and bits 9-35 represent the fraction F. The characteristic is 128

(decimal) plus the exponent of two (n + 128) or 200 (octal) plus the exponent of two (n + 200).

Now to convert a floating-point number to a decimal number, first change the fraction

to a decimal fraction. Then multiply this result by 2n .

For example, suppose you have the floating-point binary number as it would appear in

an octal printout

+ 210751770000

where 210 is the characteristic and 0.751770000 is the fraction.

The fraction 0.751770000, as shown above, is equivalent to 0.957000 (decimal). The

characteristic 210 represents n = 8. Thus the above floating-point number is equivalent to:

0.957000 x2 8 = 244.992000

For your convenience, Table 3 gives a list of characteristics from 131 to 247 with

their equivalent exponents n of two and the decimal equivalent of 2n

102

C '' Illlr L 1 I I ~"'

TABLE 3

The Octal Characteristics from 131 to 247 with the Corresponding

Exponent (n) of Two, and 2n

Octal Exponent (n) 2n
Characteristic of Two

131 -39 0.000 000 000 001

132 -38 0.000 000 000 003

133 -37 0.000 000 000 007

134 -36 0.000 000 000 014

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000
0.000

0.000

0.000

0.000

0.000

0.000
0.000

0.000

0.000

0.000
0.000
0.000

0.000

0.000
0.000

0.001

0.003

0.007

0.015
0.031

0.062

818 989 403 545 856 475 830 078 125

637 978 807 091 712 951 660 156 25

275 957 614 183 425 903 320 312 5

551 915 228 366 851 806 640 625

103 830 456 733 703 613 281 25

207 660 913 467 407 226 562 5

415 321 826 934 814 453 125

830 643 653 869 628 906 25

661 287 307 739 257 812 5

322 574 615 478 515 625

645 149 230 957 031 25

290 298 461 914 062 5

580 596 923 828 125

161 193 847 656 25

322 387 695 312 5

644 775 390 625

289 550 781 25

579 101 562 5

158 203 125

316 406 25

632 812 5
265 625

531 25

062 5

125

25

5

175 - 3 0.125

176 - 2 0.25

177 - 1 0.5

103

TABLE 3 (Continued)

Octal Exponent (n) n
Characteristics of Two

204

205

206

207

210

211

212

213

214

215

216

217

220

221

222

223

224

225

226

227

230

231
232

233

234

235
236

237

240

241

242

243

244

245

246

247

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

30

31

32

33

34

35

36

37

38

39
__ __ _ Li

104

111 1 I I I _

REFERENCES

1. "IBM Reference Manual, 704 Data Processing System," International Business Ma-
chines Corporation, New York (1958).

2. "704 Input-Output and Monitor System - BE SYS 2," Bell Telephone Laboratories, by
George H. Mealy, Murray Hill, N. J. (May 1959).

3. "704 Symbolic Assembly Program UA SAP 3-7," Bell Telephone Laboratories, by
George H. Mealy, Murray Hill, N. J. (Jan 1958). (Revision of UA SAP 1-2, United Aircraft

Corporation, Roy Nutt, Hartford)

4. "Programmer's Primer for FORTRAN," International Business Machines Corporation,
New York (1958).

5. "FORTRAN Reference Manual," International Business Machines Corporation, New

York (1958).

6. "FORTRAN II Reference Manual," International Business Machines Corporation,
New York (1958).

7. "704 Snapshots," Applied Mathematics Laboratory Bulletin, David Taylor Model Basin,
Carderock, Maryland, Vol. 1, Nos. 1-18 (1958-1959).

8. Hastings, Cecil, Jr., "Approximations for Digital Computers," Princeton University

Press, Princeton, N. J. (1955).

BIBLIOGRAPHY

1. Eckert, J., and Jones, Rebecca, "Faster, Faster," McGraw-Hill Book Company, Inc.,
New York (1955).

2. McGee, W.C., "Generalization: Key to Successful Electronic Data Processing,"
Journal of the Association for Computing Machinery, Vol. 6, No. 1 (Jan 1959).

3. "Programming for the UNIVAC System," Remington Rand UNIVAC, New York. Chapter

10(1953).

4. McCracken, D.D., "Digital Computer Programming," John Wiley & Sons, Inc., New

York (1957).

5. Alt, Franz L., "Electronic Digital Computers," Academic Press, Inc., New York (1958).

6. Gorn, Saul, "Standardized Programming Methods and Universal Coding," Journal of the

Association for Computing Machinery, Vol. 4, No. 3 (Jul 1957).

7. "Faster than Thought," Edited by B. V. Bowden, Sir Isaac Pitman & Sons, Ltd.,

London (1955).

105

_I I _

1~--^-- ^ym-~ -- -~*ir^

8. Vazsonyi, Andrew, "Scientific Programming in Business and Industry," John Wiley

& Sons, Inc., Boston (1958).

9. Kemeny, J.A., et al., "Introduction to Finite Mathematics," Prentice-Hall, Inc.,

Englewood Cliffs, N. J. (1957).

106

INNON L1,l I.W'. r iiiil IYIYI YIIYYI ii ii ii ill ill

I - I ~I~C *rll I ' r I I Il L - rr*

Accumulator, 3, 47

Addition:
fixed-point, 3, 46, 60
floating-point, 47, 51

Address:
definition of, 6
modification of, 15, 60
symbolic, 26

Alphabetic code for operations, 54, Apps. A, B

Alphabetical characters, 55-57
octal code for, 57

Arithmetic operations:
fixed-point, 3, 47
floating-point, 47, 51

Assembly, 26

Automatic programming, 26-30, 90-93

Bell Telephone System, 32-35

Binary coded decimal, 56, 57
table of, 57

Binary corrections, 72

Binary number system, 46, 47, App. C

Calling sequence, 36-38

Card:
binary, 71
IBM, 5, 6, 71, 91
reading, 3, 74

Carry, 61

Characteristic, 46, 49

Check sum, 72

Compiler, 26

Computational flow symbol, 21

Connector:
nonvariable, 22
variable, 38, 40, 41

Control instructions, 16, 20, 21

Copy loop, 81

Core storage, 3, 46, 47

DEX

Corrections, 72, 77

Counting symbol, 22

Decimal system, App. C

Decrement, 6, 16, 54, 55, 58

Divide check light and indicator, 49, 50, 51

Division:
check indicator, 49, 50
fixed-point, 11
floating-point, 47

Dumps:
conditional, 73, 74
Post-Mortem, 73, 74
Snapshot, 72, 73, 74
unconditional, 73, 74

End of file, 81, 82, 84

End of record, 81

End of tape, .86

Errors, 71

Extractors, 62, 64, 65, 66, 67

File, 81

Fixed-point numbers, 46, 49

Floating-point numbers, 46, 47, 49
normalized, 46, 47

Flow charts, 21, 22, 24

FORTRAN, 90-93

Fractional part of a floating-point number, 46, 47

Frame, 80

Ilollerith characters, 56, 57

IBM card, 3, 5, 6, 71, 91

Index registers, 15-20

Input, 3, 32, 74, 90

Instruction location counter, 15

107

Instruction register, 15

Instructions:
indexable, 15, 20
nonindexable, 15, 20
Type A, 54, 55
Type B, 54

Lateral check of tape, 80

Location counter, 15

Logical choice symbol, 21

Logical operations, 60-71

Longitudinal check of tape, 81

Magnetic tape, 4, 80-89

MQ register, 10, 11

Multiplication:
fixed-point, 10
floating-point, 46

Normal return, 36

Normalizing floating-point numbers, 46, 47

Numbers:
Fixed-point, 46, 49
floating-point, 46, 47, 49
Integers, 5, 46, App. C

Octal code, 54, 55, 65

BCD characters, table of, 57

Octal number system, 55, App. C

Output, 3, 4, 32, 57, 92

Overflow, 47, 48, 49
AC, 47, 48
MQ, 49

Packed word, 61, 62, 64

Physical arrangement of data on tape, 80, 81

Physical end of tape, 86

Post Mortem, 73, 74

Printer, 4

Program, 5

Record, 80, 81

Redundancy check bit, 80, 81

Registers:
accumulator, 3, 47
MQ, 10, 11
storage, 3, 46, 47

Rewinding tapes, 86

SAP, 26, 32

Snapshots, 72, 73, 74

Storage, 3, 46, 47

Storage register, 3, 46,47

Subroutines, 36-45, 92

Subtraction:
fixed-point, 8, 9
floating-point, 47

Symbolic programming, 26

Symbols, definition of, 26

Tag, 6, 15, 54, 55

Tape, 4, 32, 36, 57

Tape-check indicator and light, 86

Tape indicator and light, 86

Variable connector, 38, 40, 41

Variable field, 32

Write end of file, 81

Writing tape, 4, 32, 37, 92

Word, computer, 46

XINPUT, 74

XPRINT, 57

108

11111101,11o i ANII I IIIY Iiiilr

* a I _ I I I r I I *Illlbrac**rrar~lll Illa~

INITIAL DISTRIBUTION

Copies

9 CHBUSHIPS
3 Tech Info Sec (Code 335)
1 Tech Asst to Chief (Code 106)
3 Electronic Computer Div (Code 280)
1 Asst Chief for Field Activities (Code 700)
1 Asst Chief for Nuclear Prop (Code 1500)

2 CHBUWEPS

1 CHBUSANDA

1 CHBUCEN

1 CHONR

1 CDR, NAVSHIPYD BSN

1 CDR, NAVSHIPYD CHASN

1 CDR, NAVSHIPYD LBEACH

2 CDR, NAVSHIPYD NYK
1 Material Laboratory

1 CDR, NAVSHIPYD MARE

1 CDR, NAVSHIPYD NORVA

1 CDR, NAVSHIPYD SFRAN

1 CDR, NAVSHIPYD PHILA

1 CDR, NAVSHIPYD PTSMH

1 CDR, NAVSHIPYD PUG

1 CDR, NAVSHIPYD PEARL

1 CO & DIR, USNBTL

1 CO & DIR, USNEL

1 CO & DIR, USNRDL

1 CO & DIR, USNAVTRADEVCEN

1 CO & DIR, USNMDL

1 CO & DIR, USNUSL

1 CDR, USNWL

3 CDR, USNOTS, China Lake
1 Michelson Lab (Code 5038)
1 Attn: Library

1 CDR, USNOL, White Oak

Copies
1 DIR, USNEES

1 DIR, USNRL

1 DIR, Natl BuStand

109

~U"urrrrurnsucmunr~ ~ ---------uj

D
av

id
 T

ay
lo

r
M

od
el

B

as
ip

.
R

ep
or

t
13

68
.

T
R

A
IN

IN
G

M

A
N

U
A

L
O

N
 P

R
O

G
R

A
M

M
IN

G
 F

O
R

 T
H

E
 I

BM
 7

04
,

by
 C

ar
l

L
.

T
ib

er
y.

A

pr
 1

96
0.

vi

,
11

0p
.

il
lu

s.
,

ta
bl

es
,

re
fs

.
U

N
C

L
A

SS
IF

IE
D

T
hi

s
tr

ai
ni

ng
 m

an
ua

l
co

ns
ol

id
at

es

th
e

es
se

nt
ia

l
in

fo
rm

at
io

n
fr

om
 t

he
 I

B
M

 7
04

 R
ef

er
en

ce

M
an

ua
l,

th
e

B
el

l
T

el
ep

ho
ne

 L
ab

or
a-

to
ri

es
 I

B
M

 7
04

 I
np

ut
-O

ut
pu

t
S

y
st

em
-B

E
 S

Y
S

2,
 a

nd
 t

he
 U

ni
te

d
A

ir
cr

af
t

SA
P

3-
7

P
ro

gr
am

m
er

's

N
ot

es
 i

nt
o

on
e

pr
es

en
ta

ti
on

,
fr

om
w

hi
ch

 t
he

 m
at

he
m

at
ic

ia
n

ca
n

le
ar

n
to

 w
ri

te
 a

 p
ro

gr
am

fo

r
th

e
IB

M
 7

04
 u

si
ng

 t
ho

se
 s

ys
te

m
s.

A
m

on
g

th
e

to
pi

cs
 c

ov
er

ed

ar
e

fl
ow

 c
ha

rt
in

g,

m
ac

hi
ne

 l
an

gu
ag

e,
sy

m
bo

li
c

pr
og

ra
m

m
in

g,

su
br

ou
ti

ne
s,

 i
np

ut
-o

ut
pu

t
op

er
at

io
ns

,
an

d
FO

R
T

R
A

N
,

an
 I

B
M

 a
ut

om
at

ic
 c

od
in

g
sy

st
em

.
E

ac
h

ch
ap

te
r

in
-

cl
ud

es
 s

im
pl

e
ex

am
pl

es

an
d

ex
er

ci
se

s.

1.

D
ig

it
al

 c
om

pu
te

rs
 -

IB
M

 7
04

 -
In

st
ru

ct
io

n
m

an
ua

ls
2.

D

ig
it

al
 c

om
pu

te
rs

 -
IB

M
 7

04
 -

Pr
og

ra
m

m
in

g
3.

D

ig
it

al
 c

om
pu

te
rs

 -
IB

M

70
4

-
O

p
er

at
io

n
I.

T

ib
er

y,
 C

ar
l

L.

-
m

,,
I

-
a

_

D
av

id
 T

ay
lo

r
M

od
el

 B
as

in
.

R
ep

or
t

13
68

.
T

R
A

IN
IN

G
 M

A
N

U
A

L
O

N
 P

R
O

G
R

A
M

M
IN

G

FO
R

 T
H

E
 I

B
M

 7
04

,
by

 C
ar

l
L.

T

ib
er

y.

A
pr

 1
96

0.

vi
,

11
0p

.
il

lu
s.

,
ta

bl
es

,
re

fs
.

U
N

C
L

A
SS

IF
IE

D

T
hi

s
tr

ai
ni

ng
 m

an
ua

l
co

ns
ol

id
at

es

th
e

es
se

n
ti

al

in
fo

rm
at

io
n

fr
om

 t
he

 I
B

M
 7

04
 R

ef
er

en
ce

M

an
ua

l,
th

e
B

el
l

T
el

ep
ho

ne
 L

ab
or

a-
to

ri
es

 I
B

M
 7

04
 I

np
ut

-O
ut

pu
t

S
y
st

em
-B

E

SY
S

2,
 a

nd
 t

he
 U

ni
te

d
A

ir
cr

af
t

SA
P

3-
7

P
ro

gr
am

m
er

's
 N

ot
es

 i
nt

o
on

e
pr

es
en

ta
ti

on
,

fr
om

w
hi

ch
 t

he
 m

at
he

m
at

ic
ia

n
ca

n
le

ar
n

to
 w

ri
te

 a
 p

ro
gr

am

fo
r

th
e

IB
M

 7
04

 u
si

ng
 t

ho
se

 s
ys

te
m

s.
A

m
on

g
th

e
to

pi
cs

 c
ov

er
ed

 a
re

 f
lo

w
 c

ha
rt

in
g,

 m
ac

hi
ne

la

ng
ua

ge
,

sy
m

bo
lic

 p
ro

gr
am

m
in

g,

su
br

ou
ti

ne
s,

in

pu
t-

ou
tp

ut
 o

pe
ra

ti
on

s,

an
d

FO
R

T
R

A
N

,
an

 I
BM

 a
ut

om
at

ic
 c

od
in

g
sy

st
em

.
E

ac
h

ch
ap

te
r

in
-

cl
ud

es
 s

im
pl

e
ex

am
pl

es
 a

nd
 e

xe
rc

is
es

.

D
av

id
 T

ay
lo

r
M

od
el

 B
as

in
.

R
ep

or
t

13
68

.
T

R
A

IN
IN

G

M
A

N
U

A
L

O
N

 P
R

O
G

R
A

M
M

IN
G

 F
O

R
 T

H
E

 I
B

M
 7

04
,

by
 C

ar
l

L
.

T
ib

er
y.

A

pr

19
60

.
vi

,
11

0p
.

il
lu

s.
,

ta
bl

es
,

re
fs

.
U

N
C

L
A

SS
IF

IE
D

T
hi

s
tr

ai
ni

ng
 m

an
ua

l
co

ns
ol

id
at

es

th
e

es
se

n
ti

al
 i

nf
or

m
at

io
n

fr
om

 t
he

 I
B

M
 7

04
 R

ef
er

en
ce

 M
an

ua
l,

th
e

B
el

l
T

el
ep

ho
ne

 L
ab

or
a-

to
ri

es
 I

B
M

 7
04

 I
np

ut
-O

ut
pu

t
S

y
st

em
-B

E
 S

Y
S

2,
 a

nd
 t

he
 U

ni
te

d
A

ir
cr

af
t

SA
P

3-
7

P
ro

gr
am

m
er

's
 N

ot
es

 i
nt

o
on

e
pr

es
en

ta
ti

on
,

fr
om

w
hi

ch
 t

he
 m

at
he

m
at

ic
ia

n
ca

n
le

ar
n

to
 w

ri
te

 a
 p

ro
gr

am

fo
r

th
e

IB
M

 7
04

 u
si

ng
 t

ho
se

 s
ys

te
m

s.
A

m
on

g
th

e
to

pi
cs

 c
ov

er
ed

 a
re

 f
lo

w
 c

ha
rt

in
g,

m

ac
hi

ne
 l

an
gu

ag
e,

sy
m

bo
li

c
pr

og
ra

m
m

in
g,

su

br
ou

ti
ne

s,

in
pu

t-
ou

tp
ut

 o
pe

ra
ti

on
s,

 a
nd

FO
R

T
R

A
N

,
an

 I
BM

 a
ut

om
at

ic

co
di

ng
 s

ys
te

m
.

E
ac

h
ch

ap
te

r
in

-
cl

ud
es

 s
im

pl
e

ex
am

pl
es

 a
nd

 e
xe

rc
is

es
.

1.

D
ig

it
al

co

m
p
u
te

rs
 -

IB
M

 7
04

 -
In

st
ru

ct
io

n
m

an
ua

ls
2.

D

ig
it

al

co
m

p
u
te

rs
 -

IB
M

 7
04

-

P
ro

gr
am

m
in

g
3.

D

ig
it

al

co
m

p
u
te

rs
 -

IB
M

 7
04

-

O
p
er

at
io

n
I.

T

ib
er

y
,

C
ar

l
L

.

1.

D
ig

it
al

 c
om

pu
te

rs
 -

IB
M

 7
04

 -
In

st
ru

ct
io

n
m

an
ua

ls
2.

D

ig
it

al
 c

om
pu

te
rs

 -
IB

M
 7

04
 -

Pr
og

ra
m

m
in

g
3.

D

ig
it

al
 c

om
pu

te
rs

 -
IB

M
 7

04

-
O

p
er

at
io

n
I.

T
ib

er
y,

 C
ar

l
L

.

0

.
0
 0
 6
 0
 0
 0
 0
 0

.
.

.
.

.
.
.
.
.

""
""

""

"

"
''

~;"

'
"

'"
'

1

"
,"

."

,'"

CONTROL CARDS

The control cards in the pocket are to be used with the exercises in this manual. The

cards should be in the following order:

INT
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

(Notice that the label is in columns 73-80.)

Then:

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER

EXERCISE
EXERCISE
EXERCISE
EXERCISE
EXERCISE
EXERCISE
EXERCISE
EXERCISE
EXERCISE
EXERCISE
EXERCISE

1
2
2
3
1
2
1
2-1
2-2
1
2

FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN
FIN

110

j I I Ir

-.

-
1-

'1

~

=
'E

~
L

,i
J
'

17
 T
P

9-
1

00
__

_

o
_

_

3

_
_

r

