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NOTATION

A Constant

a(a,,a,,a,) Acceleration vector (a,)

a, Convective acceleration

a; Local acceleration

B Constant

b() Arbitrary functions

c Constant

c Drag coefficient

F Wetted area

F() Arbitrary function

() Arbitrary function

G() Arbitrary function

g() Arbitrary function

H() Arbitrary function

K Constant

k Constant

k, Added mass coefficient in the x-direction
L Characteristic body dimension
m Mass

o subscript Boundary or initial value (z, ¢;)
P Body force per unit volume
P() Arbitrary vector function

P Pressure

R() Arbitrary function

7 Radial coordinate

7(2,y,2) Position vector (z,)

S Generalized Strouhal number
T() Arbitrary function

t Time

U Free stream velocity
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v, Radial velocity component

ug Angular velocity component
v(u,v,w) Velocity vector (v,)
w Vorticity vector
z,y,2 subscript Space derivatives (ur = g—:)
o Constant
¢ Vorticity
0 Angular coordinate
A Second coefficient of viscosity
N Ordinary coefficient of viscosity
v Kinematic viscosity = —”p—
P Density
¢ Potential function
v Stream fynction
w Angular velocity
ov, C . . ..
oz, artesian velocity derivative tensor (®;,;)
Dot Time derivative (22i = ic)
ot






GENERALIZATION OF THE DIMENSIONLESS FREQUENCY
PARAMETER IN UNSTEADY FLOWS

by
V.G. Szebehely, Dr. Eng.

ABSTRACT

This report presents some theoretical results in connection with the un-
steady flow research program at the David Taylor Model Basin. The complex
and relatively unknown field of time-dependent hydrodynamic phenomena is ap-
proached from a general point of view. Only a few special flows are discussed
emphasizing the diversity of unsteady flow problems. Since time effect occurs
only in the acceleration term of the momentum (or Navier-Stokes) equation, an
analysis of the two types of acceleration is presented in detail. A dimension-
less ratio of the local and convective accelerations is introduced. It is shown
that with the magnitude of this ratio, the unsteadiness of the flow can be de-
scribed and characterized. Previously published results on hydrodynamic impact
represent one limiting case for the above ‘‘measure of unsteadiness’ (S » ).
Steady (time-independent flows) are associated with zero value of this measure
(S =0).

A detailed report on flows with intermediate values (0 < S < ©) is
under preparation, It will be published in the near future in connection with
recent oscillator experiments.

A short discussion of accelerationless flows is included.

INTRODUCTION

The dimensionless parameter governing oscillation tests in hydrodynamics is the
well-known Strouhal number or dimensionless frequency.! For nonoscillatory motions, a
Fourier analysis furnishes the spectrum with which the problem can be analyzed.? The main
problem of this report is to find a quantitative measure of unsteadiness which is applicable
to any fluid motion and which therefore includes oscillation as a special case. Apart from
any possible immediate application (maneuvering of bodies immersed in a fluid), the need of
a generalized measure of unsteadiness seems to be justified since it forms a basis for sys-
tematic study of time-dependent fluid motions.

The acceleration vector @ consists of two parts, the local g; and the convective a_

accelerations. The local acceleration shows the time dependence of the velocity vector;

1References are listed on page 21.



the convective part is connected with the space dependence of velocity field. The total
acceleration is often introduced as the *“substantial derivative’’ of the velocity. This con-
cept seems to be unnecessary since, considering the velocity a function of the time and
space, the acceleration is defined as the total derivative of the velocity with respect to the
time. The ¢*? component of the acceleration is

_ d’v" (xl, Loy Zg; t)
“= dt

and the i‘® component of the velocity is

v.=ﬂ’l".
toodt

The acceleration in expanded form becomes

a; =

v, . . ov; . .
The _67L term is the local acceleration; the a—x' v; part is called the convective
J
part. For time-independent flows, the local acceleration is zero. For uniform (space-
independent) flows, the convective part is zero. Several other expressions exist for the ac-

celeration vector, for instance in vector form:

a=7 +%grad62 -7 x.eurl?v

or in scalar form:

a, = %+ uu, +vu, + wu,
a, = v+ uv, +vv, + wo,

a, =+ uw, +vw, + ww,
The generally applicable measure of unsteadiness proposed in this report is the dimension-
less ratio of the magnitudes of the local and convective accelerations:

S=

—;— grad v — 7 x curl®

dvg
ere 3% =v;, ; represents the Cartesian velocity derivative tensor. In computing the v, ;Y term, the

summation convention is used, i.e,,

3
iy 5= ,21”1',:‘ vj
J:



or

Vo, v,

Vi, kv, 10,9, %

S

The quantity S will also be referred to as the generalized Strouhal number since it can be
shown that it reduces to the conventional Strouhal number for linearized oscillatory flows.

In addition to an analysis of this measure of unsteadiness, two fundamental problems
might be indicated at this point:

1. “‘Direct” problems refer to those in which the time and space dependence of the meas-
ure of unsteadiness is prescribed and inquiry is made about flows which satisfy this given

unsteadiness.

2. Indirect or “inverse’’ problems are those in which given flows are analyzed and the
generalized Strouhal numbers are computed.

ANALYSIS OF THE GENERALIZED STROUHAL NUMBER
RANGE OF UNSTEADINESS

A few definitions will be given before investigating the limiting values of the measure.

1. Steady flow is defined by the property that the velocity at every point in the flow,
at any time, is independent of the time, i.e.,
X
i 0
2. Unsteady flow has the property that at some point(s), at certain time(s), the velo-
city depends on the time, i.e.,
8y

5#0

3. Uniform flow is characterized by the property that the velocity at any time is the

same at all points in the fluid, i.e.,

ov;

63:,- =0

4. Nonuniform flow is associated with the property that at some point(s), at certain

time(s), the velocity gradient is different from zero, i.e.,

a'vi
o3, +0
There are four combinations of the possible space and time dependencies. It will be
shown presently that the generalized Strouhal number is well defined in three cases; the

fourth is of no interest.



1. For steady nonuniform flow, S = 0,

2. For unsteady uniform flow, S = o,

3. For unsteady nonuniform flow, 0 < S <

4. For steady tdiform flow, S is not defined; this flow, however, is of no interest.

Generally the measure of unsteadiness depends on the time and on the position of the
point at which the unsteadiness is computed i.e.,

S =8(71t)

There is no reason to expect a constant unsteadiness, Two flows might be equally
unsteady at one time and at a certain point in the flow, and they might show quite different
unsteadiness at different times and/or at different points. There are some important flow
problems for which the measure of unsteadiness takes its limiting values. For instance, in
the case of a hydrodynamic impact phenomenon,  is very large and 9% =~ 0. This results in
MR

UNIT OF UNSTEADINESS AND ACCELERATIONLESS FLOWS

An accelerationless flow possesses the property of having zero acceleration at any
time at any point in the flow, i.e.,

a=¢7,c+iil=0

Steady uniform flows satisfy this condition, but there are much more important solu-
tions. Fram the above definition of accelerationless flow it follows that

3| = |

il

and so

Gl

]

ol

S=12_y

Kl

An accelerationless flow, therefore, has unit unsteadiness. It might be remarked that
while accelerationless flows result in S = 1, these are not the only unsteady flows with this
property. For instance, flows with acceleration and satisfying the condition

3]

6l=ac=5

also have unit unsteadiness. This ambiguity can be eliminated by introducing quantities
which are ratios of local and convective acceleration components and which take signs into
consideration. This way, however, the simplicity and the usefulness of the measure is re-
duced. Investigations presented elsewhere® showed little advantage in introducing the quan-
tities (elements of the Strouhal matrix) mentioned above.

*An impact is a ‘‘very unsteady’’ phenomenon.



Geometrically, unit unsteadiness means that the total, the local,
and the convective accelerations form an isosceles triangle (Figure 1).
This geometrical representation of unit unsteadiness is gener-
al. The a = 0 case corresponds to accelerationless flow (@, = —a,);

. . — = a
the a = m case is equivalentto @, = @; = 2

Despite the very special importance of accelerationless flows,
very little is known about them.* For viscous fluids, the inertia for-
ces (acceleration) are in equilibrium with the outside (or body) forces
plus the pressure gradient plus the viscous forces. According to the

Navier-Poisson-Duhem’ equation:

pa;, =—p ;+ P+ (A+uw)v; ji+tuv,;; Figure 1

For incompressible viscous fluids

pa;=—p;+P +pv;

In accelerationless flows, therefore, the outside forces, the pressure gradient, and the shear
stresses are in equilibrium. If the fluid is ideal and the body forces are neglected, the con-
dition for accelerationless flow is space-independent pressure.**

At this point it seems advantageous to repeat that only important accelerationless
flows are under consideration here, i.e., flows for which a_ and El are different from zero and

a@,= —@,;. The velocity of a one-dimensional accelerationless flow [% = u (z)]

satisfies the differential equation
u+uu, =0
The momentum equation for this case is
e+ (A +2p)u,, =0
or
p=(A+2u)u,+ f(t)
The continuity equation for a one-dimensional flow is
ptup, +u,p=0

For barotropic fluid flow, the pressure density relation is represented by the relation

p =R (p)

*A study of the literature revealed a few sentences in Nemenyi’s papet,4 a study by Merllns using the
Lagrangean method, some remarks by Hopf., etc. In what follows, only some interesting and characteristic re-
sults will be mentioned. A complete study of accelerationless flows is forthcoming,

At the time this report went to the printer, the writer’s attention was called to B. Caldonazzo’s paper, ‘‘On
Free Motion of a Continuous Medium,’’ Ann. Mat. pura appl., 1947, Ser. 4, Vol. 26, pp 43-55.

**The pressure is not constant in time.



Accelerationless flow of an incompressible fluid in one dimension is trivial since, for
this case, the continuity equation gives «_ =0 or u = u(¢). Now, from the equation of zero
acceleration, it follows thatif v =0, % = 0, then u = constant. The pressure will depend only
on time

p=f(t)
and no effect of viscosity is observed.
For compressible nonviscous fluids
u,#0
Again the pressure depends only on the time p = f(¢).
Because of the p = R (p) relation, the density depends on time alone,

p=RIf(t)] =g(t) and Pz=

From the continuity equation

or
u=G(t)e+F(t)

and

p = poe—fttoc(t)dt

The condition for zero acceleration is:
w+uu,=2(G+G)+F+GF =0

Therefore, the two differential equations for G(¢) and F(?) are:

G+Gt=0 and F+GF =0
From these,

-and so the velocity is

The density becomes



and the pressure is
P =R7(p)

Finally for compressible viscous fluids, the pressure is

p=MA+2p)u, +f(t)
and the density
p=RUN+2Zu)u,+ f ()]

Substituting this in the continuity equation and also satisfying the condition for zero accel-
eration results in the velocity as a function of time and position.
The general solution of the differential equation % + wu, =.0 is obtained by the meth-

od of characteristics:

= ut+ f(u)

or
u=g(x—ut)

0 the solution is w = f—:—%“— , as found previously.* A much
more complex flow is obtained if 0

Choosing f () =t u —

Fluy =10 g2
xo

The velocity becomes multivalued, and two flows are possible:
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SPECIAL UNSTEADINESS DISTRIBUTIONS
Generally the measure of unsteadiness depends on the position and time, i.e.,
S=S8(%,t)
A d’Alembert type of unsteadiness is defined by
S(F,t) = (P g(t)

For one-dimensional flow, this assumption results in the following differential equation:

*It is not the purpose of this report to discuss the problem of accelerationless flows. The above short analy-
sis was presented to show that there are flows with unit unsteadiness or zero acceleration which are not trivial.
In this connection, it might be mentioned that a generalization of the above ideas for three-dimensional flows,

considering a velocity distribution of the type

v; = “i'“)’”j

J

will be presented in the near future.



|
[uu,|

= f () g (¢)

For accelerationless flow, u + uu, = 0 , and therefore S = 1. Consider now £ and T,
new variables which are related to 2 and ¢ by the following equations:

_ dx
= f(z)

and
T=[g(dt

A simple calculation shows that the velocity distribution which has d’Alembert-type unsteadi-
ness is given as before by

u=G(E—-uT)

U =G[ Ti%—ujg(ﬂdt]
or

% = ng(t)dt+F(u)

Here G and F are arbitrary functions; f and ¢ are given. Choosing, for instance, F(u) = u,
the velocity is
da
i
1+ jg (t)dt
Ifg(t)=1, flz) = 1,
7Y

I,

as previously found. The simplest type of variable unsteadiness is

S(z,t) = =t

for which case \
K2

_ In (xo)

U=—3_—52

t ty

The velocity is not generally separable, but is separable only if F(u) = constant, or if
F(u) = constant u.
For the general case [S = S(x,t)] consider the differential equation:

w+S(x,t)uu, =0

The solution can be obtained again by the method of characteristics,

u=H[x—uIS(x,t)dt]
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This solution, of course, reduces to the previously discussed cases if the proper as-
sumptions are made.

EVALUATION OF THE MEASURE OF UNSTEADINESS FOR CERTAIN
UNSTEADY FLOWS OF SPECIAL INTEREST

d’ALEMBERT FLOW

Separable or d’Alembert flows are defined by the following velocity distribution:
v (7, t) = T () u(F)

The generalized Strouhal number becomes

s=|gz )

where
A

f(F) =

l%gmd uz—ﬁxcurlz‘tl

The unsteadiness of a separable flow is also separable. The reverse is not true, however,
since d’Alembert-type unsteadiness might come from a nonseparable flow, as shown previously.

The measure of unsteadiness is time-independent if, with C = constant,

aT _ ~ne
dt CT
from which
A
T= 1-ACt

where 4 is a constant of integration and, in fact, 4 = T(0). If C <0 and 4 > 0, T varies from
A to zero as 0 » £ » «. It is an important property of the d’Alembert flows that the stream-
lines are pathlines and the streamline pattern is steady. The unsteadiness is constant in
time for d’Alembert flows if the velocity is inversely proportional to a linear function of the

time. For oscillatory d’Alembert flows, let
T (t) = Asinwt+B = A(sinwt + &)

where 4 and B are positive constants and a is equal to B/A. Considering a fixed point in

space, if o = 1, the function 7T(¢) and, therefore, the velocity are zero at ¢t = —:;’—Z— + 22” s

with n = 0,1,2... If @ >1, then T (¢) > 0 and the velocity is unidirectional. If
0 < a <1, the direction of the velocity alternates. For large values of a, i.e., a >1,

the time dependence of the velocity is represented by a large constant plus a small oscilla-

tory part (Figure 2).
The velocity has its maxima at
T 2nm
2w + w

t, = n=10,1,2...
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T Unsteadiness| and its minima at
3 2n
t2=§—w+ wn, n=0,1,2

The factor governing the time varia-

tion of the measure is

T W cos wi

B If @ # 1, the unsteadiness is zero at

¢y and ¢,, i.e., when the velocity is maximum
Unsteadiness . . . .
or minimum, If a = 1, the unsteadiness is

zero when the velocity is maximum and is

infinite for zero velocity (= minimum veloc-
ity).
Velocity For e > 1,

D U V7 )
e \ ' F(t)=Ao¢2 cos wt

0 12w J 32w 2mw

pg[v:)
"

the maximum unsteadiness lags behind the
minimum velocity by #/2« and the minimum

unsteadiness leads the minimum velocity
by #/2w. This lag and lead approach zero

as o > 1.

Figure 2 - Oscillatory d’Alembert Flow, Figure 2 sho7wrs the lag for the case
a=10anda=1 a = 10 to be 0.870n and Figure 3 shows

the lag to be 0.44 -7 for o« = 2.
2w

In fact, the occurrence of the extreme values of unsteadiness satisfy the equation
Z
sin wt = % - (%) +2
The maximum and minimum unsteadiness are symmetrical with respect to the minimum veloc-
ity point.
For d’Alembert flows with exponential decay, the time dependence of the velocity is
given by
T (t) = Ae K%t

and the factor governing the unsteadiness is

_T- Kzexzt
T2 A

The unsteadiness increases exponentially in d’Alembert flows with exponential decay.

F(t) =
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o.22m |
© ]
0 A T 28T BT iz 2m 1
2w w w (7] w w

Unsteadiness

Figure 3 - Oscillatory d’Alembert Flow, a = 2

UNSTEADY JET
An example is furnished by a special potential flow of the d’Alembert type,

30}
2

which represents a jet impinging against a flat plate (Figure 4).

6= (x2+y2%2—222)

The velocity components are
u=6()x; v=>5()y; w= —2b()z
and the acceleration components
z

ax=5x+b2:c; av=l'>y+b2y; a = —2bz+ 4b%2

The Strouhal number is

S____'i;_\ 22+ Y2+ 422
b Va2 + y2+ 1622

which is constant in time, if ﬂ = Cb2, where C is a dimensionless constant. The solu-

. dt
tion is again
A

b(t) = 1-ACt

where 4 = 5(0). The time-independent Strouhal number is then
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_ Ju2+ y?+ 422
§ = 'Cl"ac2+y2+16z2

The Strouhal number is space independent
on the z = 0 plane (where w = 0 and which

is, therefore, the plane of impact) and on
the z axis (where w = » = 0 and which is
the center line of the jet). At any given

\ >y time, the above measure has its maximum
in the plane of impact(z = 0,2 #0, y # 0),
_ sl

max ?

Minimum

S

Maximum\Unsteadiness . .. .
and its minimum on the z axis (z = y = 0,

2+ 0),
1
Spai =§Sm“

Figure 4 - Three-Dimensional Jet o

and Flat Plate Returning to the case where the measure
is time independent, it is seen that if #0) = A is positive, w < 0 for z > 0 and the flow ap-
proaches the plate. The variation of ¥(¢) with time is shown in Figure 5 for ¢ > 0 and C < 0.
The C = 0 case is equivalent to zero Strouhal number and to b(¢) = 4, i.e., to steady flow
conditions. The case C > 0 gives increasing velocity from £ =0 to ¢ » 1/4AC. As the time
approaches 1/4C, the velocity » . The case C' < 0 represents decreasing velocity from
t=0to ¢+ . Ifthe investigation is extended only to the range 0 £ ¢ and no infinite veloc-
ity is allowed, then ¢ < 0. For this case, now, if |C | > |C,|, then the flow corresponding
to ¢, will approach zero velocity quicker than the flow corresponding to C,

The Strouhal number is equal to |C| on the (z,y) plane. In the problem under consi-
deration, therefore, it may be concluded that large values of the Strouhal scalar are associ-

ated with large changes in velocity. As a matter of fact, a negative C is associated with a

\ A I
ry b Lc >0 ,
N lincreasing Velocity
| I
BN |
| c:=0
} A}{ } ' Steady Fiow
r |
| »~ |

/‘r C <0

i : : Decreasing Velocity
”~
| __,i -t
1 [

26~ ¢ ]

Figure § - Time Dependence of Jet with Constant Unsteadiness
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velocity decrease and a positive C' with a velocity increase, but the latter case, as is seen
in Figure 5, involves infinite velocity.

DISSIPATION OF VORTICITY

1t was shown by Kampéde Fériet? that there are only four possible two-dimensional
flows of incompressible viscous fluids for which the stieamlines are isocurls, i.e., the vor-
ticity is constant along streamlines. These are flows for which the vorticity is time and
space independent, parallel flows, and G.I. Taylor’s two solutions, which are to be discussed
in detail. Flows with constant vorticity are not considered interesting. For parallel flows,
the incompressibility condition always results in zero convective acceleration. The third
and fourth flows given by Taylor are those in which the streamlines are concentric circles
or in which the eddies form celis. The stream function for the former case is!®

The tangential velocity is

and the vorticity is

_ 9w 1oy _ A r?y orh
b=~ 3y rdr  vt? (1 4vt)e ’

The local and convective accelerations in the tangential and radial directions are:

. Ar ry _r2
= = — - — T
@)=ty = =55 (2= g37) € ™
(ag),= 0
(a,.)l =0
1 2 A%r _ r2
(@) = =5 (o)== e ™
With these values,
2, 2
S = tz"t (2 __r_) D

This is zero on a circle of radius

r,=V8vt

The radius of zero unsteadiness (r,) increases with time, and it is always larger than the
radius of maximum velocity (r,),

Ty, = V2vi
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<>
—-|n
—

3Ve /

2 b
@

£

> b=

= o

o [

s a

L (=

> =1

E

: :

E =

o (=4

s =

—>
0 [ V2 2 V8 _r_
vt
Figure 6 - Unsteadiness of a Circular Eddy
At the origin (r=0), for 4 > 0, ¢ > 0,
4vt
S=2""
A
i.e., the unsteadiness increases linearly with time. On the radius of maximum velocity
S — 3Ve vt
A

Inside the circle of zero unsteadiness, the unsteadiness is greatest at

r, = V4vt
This maximum unsteadiness is
2ev
Smax = A t

The maximum unsteadiness corresponds to zero vorticity and maximum dissipation per unit
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Zet (Minimum) Un ”‘“"ness

V2Vt vavt

s
ry® rs3 = V4y r,=»/8v7f

Unstead;
you® Nes
wot

. om v.'OCify
v

Zero Vorticity

Minimym vorticity

Figure 7 - Characteristics of a Circular Eddy

volume; see Figures 6 and 7.
Taylor’s!! second solution also represents an example of separable flows. This so-

lution is more general than the previous one since both velocity components are different

from zero. The stream function is

b = F (z,y) 2"
or for a special case

- 2
Y =Ccosaxcosaye 2ve?

where
a = 3‘

Trivial streamlines are given by z = T 2”;1 d and y = + 2n2+1 d (Figure 8), The

sign of C determines the direction of rotation. The velocity components are

u = ——g—z’- = Ca cos ax sin aye'““zt
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and
v = a—f = —Casinaxcos ay ¢ 2ve’t
The vorticity is
Ov _du _ 4y — 2
{= o2 ay 4Y = —2a%

so the streamlines are isocurls.

The velocity and the vorticity approach zero as ¢ ; the motion dies out quickly for
large values of v. On the other hand, the unsteadiness of the flow increases with time. The
local and convective accelerations are both decreasing but the convective part dies out fast-
er than the local component and in this way the ratio, which represents the unsteadiness, is
increasing,.

In fact, the Strouhal scalar is, with C— 0,

5= 2ve2"°'2‘ cos?ax sinay + sin?az cos2ay
Cc cos’az sinazx + sinfay coslay
2pe2re’t .
Now S > — at the origin. For y = + g,
S = 2ve2va2t
Cc

Atz =0,y = i% andat y =0, 2 = +d, S » «, Tixerefore, it is concluded that
the unsteadiness is largest at points where the velocity is the largest (points 4, B, C, and
D).

TRKAL’S AND HAMEL'S SOLUTION

Trkal’s!? generalization of Taylor’s solution is
v = (z,y,2) e "k

The Navier-Poisson-Duhem equation is

o,
P(at‘ + vy, ; ’Uj) =-—-p,;+ A+ ) V5 HY + P,

Taking the curl of this equation, and assuming incompressible fluid and conservative external
force, one obtains in vector form

curl v — curl (v x curl @) = vA curl@
A«suming a Beltrami flow (¥ x cur! v = 0), and substituting the Trkal solution, it is
found that o '

—k%®u = Au

which shows the analogy between Taylor's iy and Trkal’s %.



17

The measure of unsteadiness is time

dependent and shows the same peculiar beha- y=3

vior as was discussed in connection with the |
decay of vorticity. The streamline pattern :
is constant in time. The unsteadiness in- 8 L D
creases as ¢ » « and |v| » 0.
Hamel’s!3 solution gives an interest-

ing example for two-dimensional spiral flow
viscous incompressible fluid. The stream

function is given by

p=Co+e"f (r)

where C is a constant and f (r)is chosen to

satisfy the kinematic compatibility equation.
fy . P v ed Figure 8 - Cells of Vorticity
The velocity components are

uy = —e™ £, (r)
and
Up = -
The tangential velocity is time dependent and the radial velocity is time independent.
As ¢ becomes large, the Strouhal number § becomes time independent, differently, however,
with positive or negative n. For if n < 0, S becomes 0 as time increases without bound, but
if n > 0, S becomes a function of r only which is in general not zero.
If the stream function is of the form
y=A({)B(r,0)
then of course A(¢) must satisfy the differential equation

dA(¢)

== ? 2
2t constant A° (t)

(as was shown before) in order to obtain time-independent unsteadiness.

PSEUDO FLOWS

A pseudo plane flow of the first kind is defined by the velocity distribution14

u=f(x,y,2;t), v=g(2,y,2;1t), w=20
i.e., the trajectories are in planes parallel with the (z,y) plane. The local acceleration com-

ponents are given by f, g', and 0. The convective acceleration has the components

ff,+9f,. f9,+99, and 0.



18

Therefore, the acceleration takes place in planes parallel to the (. 2,y) plane,

The Strouhal number is:

S="/ f‘z_‘_g']z
(L f+ 0+ (g, f+g,9)°

A very special case of the above is the general Poisseuille flow [u = f (y, z; t),
v =0, w = 0] which is a rotational, non-Beltrami flow, with zero convective and one-
dimensional local acceleration. The unsteadiness is infinite. For the ‘‘slow motion’’
(Stokes) unsteady problems, and for impact problems where the convective acceleration is
neglected, the measure becomes infinite. For a pseudo plane flow of the second kind, the
motion is identical in planes parallel to the (z,y) plane and it is defined by v = f (x, y; t),
v=yg(x,y;t), w= h(x,y;t). The Strouhal number is again generally not zero and
finite.

Rotational symmetric flows show the same behavior with respect to the measure as
the pseudo plane flows. A pseudo rotational symmetric flow of the first kind is given by:
v,=f(r,0,2;t),v,=0 and v,= h(r,6,2;t). The pseudo rotational symmetric
flow of the second kind [v, = f (r, z; ¢), vy=g(r,2;t) and v,=h(r, z; t)] shows
perfect analogy with the corresponding planar case and the measure is, in both cases,
generally not zero and finite. For the notation, see Figure 9.

‘ZP LINEARIZED FLOW
§ 2 If a small perturbation velocity v is
> SO vg superimposed on a constant flow velocity U,
N the actual velocity becomes
\ T =9+U, or v, = v, + U,
z Vy

>V where |7|2 < |U|2.
p The actual acceleration is

, Bv; R
a; = FY; +1;,”jvj

The linearized acceleration becomes

Figure 9 - Coordinate System for Rotational
Symmetric Flows

a; =v; +v; ;U

The Strouhal number is
— } 7}7, ?}z
Yo,k Vi, ¢ Ur Uy

S

If the constant flow is along the z-axis, then

U1=U; U2=U3=O
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and
Vo; v;
S = —-—‘/__.————-;
U V;,1 'Uj,l
where
_ 9
Vj,1 . dzx

This measure of unsteadiness is generally time and space dependent.
If we further assume a special perturbation where

u=v=0 w= Axe'“?

the measure of unsteadiness becomes
X
S = —
U

Substituting a characteristic length (L) for #, the conventional Strouhal number or di-
mensionless frequency ratio is obtained,

=Lw

5=

The following facts should be emphasized:
1. The acceleration was linearized,
9. the perturbation was not of the d’Alembert type, and

3. the measure of unsteadiness depends on z.

INERTIA METHOD FOR SHIP RESISTANCE MEASUREMENT

The inertia method of measuring ship resistance can be connected with the analysis
of the following differential equation:

dv _ P
(1+kx)mdt = czuF

where m is the mass of the ship and u is the instantaneous velocity of the body in the direc-
tion of motion.

The actual experiment suggested by W. Froude consists of a deceleration test during
which the velocity decreases from u, = 4(0) to v = 0. The above equation assumes that the
drag coefficient ¢ is independent of the acceleration, i.e., the instantaneous velocity alone
gives the drag which is independent of higher order derivatives of the velocity and so
¢ =c (u). Thisis, of course, not the case since from dropping experiments Lunnon!5:16
has shown that the drag computed from the instantaneous velocity is less than the actual
drag in accelerated motion. There is also little reason to believe that the added mass is in-
dependent of the acceleration in a viscous fluid.17-19 Assuming furthermore c(u)= ¢, = con-

stant , the solution is:



U = Yo
1+Bu,t
where o
B —2'F(,’0
S (I+k)m

A comparison with the discussion on pages 12-13 shows that v, corresponds to 4, and B to
—-C. Since B is essentially positive, C < 0, which means that the velocity is decreasing.
Assuming that a d’Alembert flow can represent the flow occurring in connection with the in-
ertia method, the conclusion is made that the assumptions made in the inertia method are
equivalent to assuming a time-independent unsteadiness.

The purpose of the above analysis was to investigate the inertia method from the point
of view of the measure of unsteadiness and not to discuss the method generally. There are,
of course, several very important details in connection with the method which were not men-
tioned at all.

RECOMMENDATIONS FOR FUTURE RESEARCH

A thorough study of accelerationless flows is strongly indicated, since for these flows
the unsteadiness is constant, i.e., space as well as time independent. The investigation
should be extended to two- and three-dimensional velocity distributions. Further examples
should be given for three-dimensional incompressible unsteady flows. At the present time
it seems that an analysis of compressible fluids is in some respects simpler than that of in-
compressible fluids. The theoretical investigation presented in this paper should be connect-
ed more strongly with the motion of submerged bodies. In this respect, a rather encouraging
fact is that the generalized Strouhal number reduces to the conventional dimensionless fre-

quency parameter if certain linearizations are performed.

CONCL.USIONS

The unsteadiness of a nonuniform flow can be measured by comparing the local and
convective parts of the acceleration. The measure is generally space and time dependent.
Separable flows with hyperbolic decay of the velocity show constant unsteadiness in time,
increasing unsteadiness for exponential decay of the velocity, and oscillatory unsteadiness
for sinusoidal velocity variation. Linearized flow shows time-independent unsteadiness for
harmonic oscillation and gives the conventional dimensionless frequency ratio as the meas-
ure of unsteadiness.

Three examples are discussed in detail: an unsteady jet, the decay of vorticity, and
the inertia method of measuring ship resistance. An unsteady jet striking a plate has maxi-
mum unsteadiness on the plate and minimum unsteadiness on the axis of the jet. The two
types of vorticity dissipation studied are fundamentally different. A circular eddy is
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represented by a nonseparable velocity distribution and a set of ‘‘rectangular’ vortices by a
d'Alembert flow. The velocity dies out and the unsteadiness increases with time in both
cases. The assumptions made in the inertia method of measuring ship resistance are equiva-
lent with assuming time-independent unsteadiness. The conventional dimensionless frequency

ratio is obtained by linearizing the generalized measure of unsteadiness.
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described and characterized. Previously published results on hydrodynamic impact represent
one limiting case for the above ‘‘measure of unsteadiness’ (§ + ). Steady (time-independent
flows) are associated with zero value of this measure (§ = 0).

A detailed report on flows with intermediate values (0 < S < ) is under preparation. It will
be published in the near future in connection with recent oscillator experiments.

A short discussion of accelerationless flows is included.
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