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SUMMARY"

Experience has shown that propellers designed from the
theory of a moderately loaded propeller are underpitched.

An attempt is made in the following discussion to trace the
‘feason for this discrepancy between theory and experience
and, further, to develop relations from which the additional
pitch may be approximately determined.

A. Introduction

In its present state, the theory of the screw
propeller is developed on the assumption that the boundary
condition which is introduced by the blades may be neglected.

This amounts to replacing the blades by lifting lines instead
of by lifting surfaces. The information on the flow obtained
from lifting line theory is incomplete since merely the

angularity of the flow is established whereas its curvature
remains undetermined.

To approximately supplement the theory the
boundary condition is introduced afterwards. That is, vortex
sheets are introduced for the blades after the angularity has

been determined on a basis of lifting line theory. Then, the
downwash and the curvature of the flow may be ascertained

at each station of the chord length of a blade section from
lifting surface theory. However, even this step by step
procedure of correcting for the boundary condition is compli-
cated. A solution exists only for the curvature of the flow
at the half-way point of the section in the special case that

the bound circulation is constant over the chord length. The
problem of change of curvature over the chord is left open

within this solution, which is due to Ludwieg and Ginzel"
(12,31

In spite of these limitations, the existing
theory of the curvature of the propeller flow provides
valuable information. It follows, for instance, that the
curvature at the half-way point arises essentially from self

interference. The effect of the other blades, which tend to
reduce the flow curvature at the blade under consideration,

and also the effect of the free vortex sheets on the curvature

’References.are.listed on Page 15
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are small.. Further, the curvature depends on the radial
distribution of the bound circulation and, for an equal
distribution, on blade outline and advance coefficient.
From these results, it follows that the nature of the
curvature of propeller flow is essentially different from

that of two dimensional cascade flow. The application of
conclusions from cascade flow to propellers, which is

sometimes recommended in literature, is therefore, not
justifiable. .
Assuming for a moment that the downwash is

known at each station of the chord would enable us to correct
a thin section such that its properties, particularly the
pressure distribution and the curve ¥lift coefficient versus

effective angle of attack", are approximately equal in
curved propeller flow and in straight two-dimensional flow.
The correction would result in a distortion of the camber

line at each station. For practical purposes, the distortion
midy be approximated by-an additional curvature of the camber
line correspondlng to the flow curvature at the half-way

point and by an additional angle of attack corresponding to
the change of the curvature over chord. For instance, when
the curvature is smaller at the leading edge and greater at
the trailing edge than at the half-way point, a positive

angle of attack becomes necessary to correct for the change

of curvature. Since this change is unknown, only the first
correction, viz, that for the camber is applied in designing

a propeller. The neglect of the additional angle of attack
is considered to be the reason for propellers designed on a
theoretical basis to be underpitched.

In the following parts of this note, expressions
for the order of magnitude of the additional angle of attack
are derived. No attempt has been made to introduce lifting
surfaces for the blades.  The considerations are based on a
simplified lifting surface theory as proposed by Weissinger
[4] . Combining the correction for the flow curvature as known
from the Ludwieg-Ginzel Theory with the correction for the
angle of attack a better approximation for the boundary

condition may be expected than applying only one of these
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corrections. Future effort will be directed towards a rigorous
'solution of this problem.
" 'B. Simplified lifting surface theory
Weissinger considers a twisted plate of finite

.span: in a flow arising from the velocity of approach and from

the bound and free vortex sheets. The problem is to determine
the spanwise distribution of the bound circulation. This

distribution follows from the boundary condition of the relative

flow, viz, that the velocity component perpendicular to the
plate be zero. To simplify this problem the bound vorticity is

assumed to be concentrated at the one-quarter point of the chord
length. Further, the boundary condition is satisfied only at
one specified station of the chord length which is chosen at the
three-quarter point of the chord. The justification for these
simplifications and a comparison between results from the
simplified theory and from experiments in the case of plan forms
are.given in [5].

In the case of propeller design, the problem is
reversed since the bound circulation is known (from lifting line
theory) ‘and the twist is to be determined such that the bound
circulation is generated.. Applying Weissinger;s method at any
radius of the propeller, one obtains the angle of attack of a
flat plate,a;, relative to the velocity of approach with which
angle thée required lift coefficient is produced within the
propeller flow. The velocity of approach is that which does not
include any induced velocities, i.e., the velocity V* in
Figure 1.

Let (w,) be the sum of the velocity components
perpendicular to V* which are induced at (0.75c) from the bound
and free vortices. Then, the boundary condition is satisfied
at (0.75c) if the plate is given the following angle of attack:

(1) @=(¥n/V¥) = (wp/V¥)p + (wa/V*);

Assuming that the gradient of the lift-angle curve of the
section at the radius under consideration equals that of a flat
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plate, ¢' is identical with the angle of attack of the line
of zero lift of the section. Therefore, the angle of attack

of the chord line of the section relative to V* equals (a'-ag),
see Figure 2. For a pitch correction, we are interested in the

angle of attack of the chord line relative/rggu gant relative
velocity V. This angle equals

(2) Aa=a'-(ap*aji)
In this relation, a, and ¢; are known quantities. 1In order
to ascertain oq', the components perpendicular to V* of the
velocities are determined which are induced at (0.75c) both
from the free vortex sheets and from the bound vortices of

the propeller.

(a) Velocity combonents induced from the free vortex sheets.
Since the bound vortex is assumed to be situated at the
one-quarter point,c/4, a discontinuity of the tangential
component occurs at this Point. The tangential component is

zero in front of this point and equals wy behind. The axial
component varies c@ontinuously over the chord length. This

variation is appreciable and can not be neglected in these
considerations. The radial component does not enter sﬁgéi,the
flow in the tangential plane is considered.

Let (%a)g. 25. be the axial component of the induced velocity
at (0.25c), which is known fﬁgm lifting line theory, and (Wa)0,75

that at (0.75c). Then,
h = (Madg. 75 /(“’a)oozs

which numerically is between 1 and 2. Assuming optimum flow,
ize., that the resultant of the axial and tangential induced

velocity components is perpendicular to V at station (0.25c),
see Figure 1., it develops that the part of o' which arises
from the free vortex sheets is approximately represented by

(5) (Wn/V*)gdo; 2
' 1+ coszpi(%il)

The difficulty in applying this relation lies in making a



Figure 1. Effect of the free vortex sheets at station 0.75c

Figure 2. Definition of angles



sufficiently accurate determination of h. The integration
over the helical vortex sheets to ascertain (Wa)d 7g is

performed in the Appendix, the numerical evaluation of the
integrals, however, requires an appreciable amount of time.

To obtain a simple approximation a propeller with infinitely
many blades is considered. 1In this case, the free vortex

system may be resolved, at any radius, into a semi-infinite

row of ring vortices, which are perpendicular to the axis,

and into straight vortices of semi-infinite length, which are
parallel to the axis. The axial velocity component is generated
only by the ring vortices. To determine its increase over the

cho#d length, an integration over the velocity fields of the
ring vortices is necessary. This integration is easier than

for helical vortex sheets but is still laborious. However, for
the inflew, it is known, that the field of a semi-infinite row
of ring vortices is identical with that of an axis-symmetrical
distribution of sinks over the disc. Further, the velocity
potential of a sink-disc is in compiete analogy with the
gravitational potential of a solid disc the latter being known
from text books.

The scheme of a sink-disc enables us to approximatel;
determine the dependence of the axial component of the induced
velocity on position for the flow in front of the disc. To
obtain information on the flow behind, the tentative assumption

is made that the rate of increase of the axial component is
symmetrical about the disc. This assumption complies with the

general character of the axial component, viz., continuous
increase from zero far in front to a value in the ultimate wake
which is twice the value at the disc.

On a basis of this assumption, it develops from the velocity

potential of a sink disc that

h=2- [ ——t—— 'sing+ U cosg]
(Yado.2s Madg 25
where
“x_ D



and where

v = 1 [R¢ P' -1 [RR P' + 5 [Re P'...
("a), ., K3 &J * Tp &J ‘4 128 s
q>R
). u = 1 ﬁz °_~1(3)‘ P+ i(%)'s P,...
(wa)u.zsv 2 q 814 16
v = P' - 1 [q\P'' + 1 P'...
GRS - R 1 I

<

<Ry - P =(q) P+ 1(%9,,,-,
——— 2 — b
(Wa)y . 2

Within these expressions, q represents the distance from the

origin to the point of reference and ¢ the angle between g and
the axis (spherical coordinates). The functions P,, which
depend on cos 9, are the Legendre polynomials and the prime
means the derivative relative to §.
For x = 0,7, the function h is represented on Figure 3 on

a basis of §. The underlying calculations do not take into
account the dependence of (wa)cuzson radius, therefore, they are
sufficiently accurate only at one certain radius. Including the
dependence into the considerations causes considerable additional
numerical work which does not seem justifiable for these approxi-
mations.,

(b) Velocity components induced from the bound vartex lines.

The bound vortex lines are assumed to be straight lines which
are situated in a plane, i.e., effects from rake and skew back
of the blades are neglected.. Further, the sections are assumed
situated on straight lines instead of on circular arcs.

According to simplified lifting surface theory, the induced
velocities are calculated at (0.75c), the position of the bound
vortices being at (0.25c)- For such configuration the integral

by Biot-Savart yields the results that (see Figure 4)
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.The function h for x=0.7
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Figure 4. Effect of bound vortex lines at station P = 0.75¢
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GL) 51n ﬁ sin (P, Xq) jl] G(xg) dxg
v R " ‘(p/R)s

where

2
(ﬁ) = (%o cos u - g cos B;)" + (xosin ur x + (frsin gi)’

Within these and the following expressions, the pitch angle of a
section is approximated by Bji-
The component gf'w which is perpendicular to V¥ is obtained from

the following relations;.

¥n = :i (cos A sin B; - €Os vy cos Bi)
V¥ [ V¥ b

cos A= F sin p; siny

-sin(p, Xo0) %%

c .
. x cos y - €°S Bi sin y
cos y=

p

sin(p,xo)
R
Introducing the expression for (w/V#), one obtains .
7 Wn _ sin B{:E%% sin L - X cos i cos %) ( G(%o) dxo]
V* b 2 (D/R)
| Xh

In these relations, the position of a bound vortex line is
fixed by the angle p (Figure 4). The formula gives. the induced

.veloc1ty at the three-quarter p01nt P at any radius x of a blade

which is in the position y = 90 , from any other bound vortex

line in position p .- That is, for p = 90° the self interference
of the hlade follows. The mutual inductions are obtained when
introducing .the proper values of | for the rest of the blades.

For instance, .for a Sebladed propeller, the angles are u = 210
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and p = 330°, respectively. The total induction at P is,
then, the sum of the 1nd1v1dual 1nduct10ns in whlch summation
the right signs follow from the formula.

(c) Additional Pitch

‘The formulas (5) to (7) permit an approximate determination
of the quantity ', equation (1), when B; and a; are known from
lifting line theory. The integral which accurs in (7) is
calculated by numerical integration for each of the blades.
It follows then from (1), (2) and (5) that:

1-cos23, (%-1) - ag

(8) Aa%(f’g) _— :
V¥ b 1+ 2 2.
cos Bi (h 1)

The angle a, depends essentially on the camber line of the section.

For the a=1 camber line
az0.12¢cy (radians)
and for a circular arc camber line
a50°. 13cp (radians)
Both of these numerical values are taken from [6].

With the expression (8) for Aq the édditional pitch becomes
tan(Bi+ Aa) . 1

(9) A(P/D) = _ '
P/D tan By

Aa (tan Rj+

i

1

tan Bj

)

T

Aq being introduced in radians.

C. Numerical results

From reasons mentioned before the accuracy of this
approxlmate theory is not sufficient to determine the dependence
of the addltlonal pltch on radius.' .The followxng numerical
calculatlons are petformed at the radius x=0.7. For this radius,
an average of the additional pitch A(P/D) is obtained which is in
satisfactory agreement with test results. '

Two different propellers are considered of which the design
conditions, the type of circulation distribution, the type of
camber line aﬁd the expanded blade area ratio are listed in the
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following .table.

No. Design Conditions. Cir¢ulati0n Camber Line
Iy cr z | EAR Distribution

1 .301 | .465 6 .91 Non-optimum a=0¥8 o
. 268 | .'500 4 .82 Non-optimum .a=1

In the design of these propellers, allowance .has been made for
the curvature of the flow at the half-way polnt of a section .as
known .from [1] to [3] With this allowance, test results showed
a lack of pitch which is given in the last line of the following
taple The additional pitch has been determined as follows:

EQUATION NO. 1 _NO..2
Bi 27.0 24.6
¢j (radian) . Lifting line theory . 0647 ..0639
cp .'1180 .108
6 (6) 77.5 74.2
h | Fig. 3 1.249 1.308
(Wn/V*)p | (7) . 0082 .0072
0y (radian) (6) . 0160 .0'126
Ae (radian) (8) .0'152 .0'196

o/0
A‘g(g / (9) 3.8 5.2
A(P/D) o/o Test 3.2 4.9
P/D

D.: Conclusions

Comparison of the last two lines shows that the average of
the additional pitch as determined by s1mp11f1ed lifting surface
theory is slightly greater than follows from test data in order
to meet the design conditions. Since these dlfferences .may be
explained by the approximations introduced, the rgsult enables
us to conclude that the lack of pitch of lifting line theory
arises from the boundary condition at the blaqes‘which is not
satisfied within this theory.. The allowance for the curvature
of the flow at the half-way point of & section is insufficient
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to approximately . satlsfy the condltxon In addition, an angle

of attack must be’ Lntroduced to obtain a sufficient approximation.
With these two correctlons for the boundary condition, lifting
lxne theory provxdes a reliable basis for the desxgn of a
propeller, However, a rigorous letlng surface theory is de-
sirable to‘accufately determine the necessary distortion of

the camber line both at each station of the chord and at each

.radius of the propeller.

APPENDIX

Rigorous expression for (w,)g 75

The axial component of the induced velocity (wy)y: 5gfollows,

at any ;adlus, from the Lntegral by Biot- Savart when 1ntegtat1ng
over a symmetrical. system of z helical vortex sheets, .see[7].

These "sheets orlglnate at - (0 25c) and go to 1nf1n1ty The ax;Fl
companent of the velocxty induced by these sheets is determined

at the point-(0.75c) of a section at radius x=r/R which point is
situated on one of the vortex sheets.

It devélops,vthen,,that the ratio hz(wa)0°75/(wa)0}é5 is represented
_by .the following expression:

I

(%a/V)o. 25

h= 1 +

belng known . from llftlng line theory and I being

(wa/v)é““, .
) 25 x cos(@ ) 1]dg
defined by o o
1 ;b d
1 dG :: x
. - X 4 2
I32% Xo axo — - 2(—-)-(—) cos(q?m+{:)+ (Z:tanﬁic) )
Xh m=1 3 o

Pm= (m-l)-gg‘y mel, 2 ...

C
=3 cosﬁi

X
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By .the sum of the inner integrals, .the effect.of .a system. of z
symmetrical vortex lines of radius X, at the three-quarter
poini of the section at radius x is represented.: By the .outer
integral, the integration over all the vortex lines is performé
and the effect of the vortex sheets at the three-quarter point

is obtained.

A numerical evaluation of the inner integral is made
somewhat difficult if m=1 and ¢=0." For this combination of
variables, the integrand has a singularity’'when x=x,

W

which necessitates to introduce an indﬁgtion factor” as dis-

cussed in [7j°

List of Main Symbaks

T thrust
D= 2R propeller diameter
p pitch
z number of blades
c chord length of .pany section
x=r/R non-dimensional radial co-ordinate
Xph non-dimensional radius of the hub
v speed of advance
a axial component of induced velocity
Wi tangential component of induced velocity
n revolutions per second
A=v/rnD. advance coefficient
cr= I‘ - thrust loading coefficient

pR nv

2 |
cL lift coefficient of any section
T circulation
G=T"/nDv n0n~dimeh§ional circulation
o | angle,of attack
do angle between chord line anq zero lift linge

of any section
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