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A

A

Am

A(x)

A*(4)

a
a

b

C

C = 4rC2pg b 4

0 a

Cp =

CS =
S/DLS /rDL

D= 2b
U

F-

FUf -

f

h

K 0 - u2
ou"

L

M
M'

7n,

P

p
Q
q
R

Rt

Rv

With index, a coefficient

Area

Area of meridian section

Sectional-area curve

Dimensionless sectional-area curve

Half length of distribution

As index, antisymmetry

Midship radius of body of revolution

Form parameter coefficient (Reference 7)
Constant

Prismatic coefficient

Wetted surface coefficient

Midship diameter

Froude number

Depth Froude number

Depth of immersion

Wave amplitude

Wave number

Length of body

Auxiliary integral

Auxiliary integral

Auxiliary integral

Auxiliary integral

Intermediate integral

Intermediate integral

Intermediate integral

Intermediate integral

Resistance, wave resistance

Total Resistance

Viscous resistance

Wave resistance

Resistance coefficient

Resistance coefficient



Wetted surface

As index, symmetry

Speed of advance

Longitudinal coordinate

Longitudinal distance of centroid

y

77F'7 A

400
to

p

a(x), o*(4)

Ordinate of the meridian contour

Dimensionless ordinate of the sectional-area curve

Dimensionless ordinate of the sectional-area curve
fore and after body

Dimensionless ordinate of the sectional-area curve
even and odd part

Variable of integration

Doublet distribution

Dimensionless longitudinal coordinate

Dimensionless longitudinal distance of centroid

Density

Source-sink distribution

Prismatic coefficient; afterbody

Prismatic coefficient; forebody
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THE WAVE RESISTANCE OF BODIES OF REVOLUTION

by

Georg P. Weinblum, D.Eng.

ABSTRACT

Following a brief review of prior work on wave resistance of bodies of revo-

lution carried out by Havelock and Weinblum a discussion is presented of the appro-

ximate relations between the shape of sectional-area curves and of hydrodynamic

irregularity distributions. The latter are expressed by polynomials, which lend them-

selves to an evaluation of the basic resistance integrals by computing intermediate

integrals. Values of the functions thus obtained are tabulated in an appendix. These

functions are then used to calculate the resistance of some simple bodies of revolu-

tion. Also investigated is how the resistance is influenced by asymmetry with respect

to midship section. Distributions leading to bodies of least wave resistance are cal-

culated, assuming rather severe restrictions. A rather complete set of resistance

curves is given for an important family of bodies.

1 . INTRODUCTION

When a body moves uniformly and rectilinearly in an unbounded

liquid the only resistance experienced by it is the viscous drag. Our

knowledge as to how this drag depends upon the body form is very limited,

but it is well-established that for streamlined, elongated hulls-with which

we are only concerned-the drag is roughly proportional to the wetted sur-

face and is rather insensitive to reasonable changes in the shape.'* The

well-known airship form with a rather blunt forebody and finer tail appears

to be close to the minimum resistance attainable, although it must be empha-

sized that earlier resistance data obtained in wind tunnels at low Reynolds

numbers are utterly unreliable. But that there is a slight advantage in

introducing some asymmetry with respect to the midship section appears to

be unquestioned, at least when larger end-radii are used. Matters become

different when a body moves close to the free surface; see Figure 1. A

wave pattern is then produced and therefore a wave resistance arises. The

laws governing the wave resistance Rw are quite different from those valid

'References are listed on page 58.

-Problems of cavitation are not considered here.
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_____ for the viscous drag R . Hence, in

- - - - this case forms of least total resis-

tance Rt must be derived from addi-
f

tional considerations and may differ,

..u at least in principle, from the fa-

miliar streamlined forms.

In the present report it

Figure 1 - Scheme of Submerged Body is intended to analyze the wave re-

sistance of a rather wide class of

elongated bodies of revolution, using an integral relation based on the work

of Havelock. The first classical solutions for the circular cylinder

(Lamb)"7 and the sphere (Havelock) 18 have contributed much to the general

understanding of the subject, but these solutions must be applied with great

caution to problems connected with elongated bodies. The reason herein is

the extreme simplicity of the cylinder and sphere; the resistance curves of

these bodies do not show the characteristic interference effects which are

peculiar for prolate bodies of revolution. From physical reasoning we infer

at once that in the latter case two similarity parameters are involved: the

common Froude number F = U/VgL referred to the length L and a parameter

characterising the depth of immersion f, say f/L or the depth Froude number

Ff = U/Vg-, while the shape of the wave-resistance curves for the circular

cylinder and the sphere depend only upon Ff, and the parameter f/L appears

as a scaling factor only. Thus, for instance, the peak of the resistance

curve is located at Ff = 1 for the cylinder and just below Ff = 1 for the

sphere. It can be easily shown that this unity value of the depth Froude

number has no special significance for the wave resistance of a very elon-

gated body of revolution.

Solutions for the spheroid and general ellipsoid due to Havelock
s,'4

lead to results which admit of qualitative and even of quantitative esti-

mates of the resistance of "normal" bodies of revolution. The importance

of the spheroid for general research on the subject cannot be overemphasized.

Using Havelock-s general expression valid for a plane source-sink

distribution,3 formulas were obtained which represent the wave resistance

of a rather wide class of bodies of revolution.5 By these formulas the

resistance of various forms has been investigated;6 especially, some endea-

vors were made to find forms of least wave resistance.5 These forms vary

obviously with the Froude number and to a lesser degree with the depth

parameter f/L. The rather striking results found in this way were checked

experimentally and good agreement between theory and measurements was es-

tablished as to the general trend.

04 -*__WROM" , ~Wru ~~~~ir.



As with surface vessels, theoretical forms of least wave resis-

tance are symmetrical with respect to the midship section. Any departure

from symmetry causes an increase in wave resistance, and this increase can

become appreciable in some ranges of Froude numbers when the asymmetry is

pronounced. The degree of asymmetry can be described in the usual way,

though roughly, by the location of the center of buoyancy x 0 , or the dif-

ference of the prismatic coefficients OF' OA of the fore and afterbody.

For instance, a difference 4F - OA : 0.2 means a large deviation from sym-

metry. Again, the resistance results are qualitatively supported by experi-

ments.6

An extensive hydrodynamic study of bodies of revolution is under-

way at the Taylor Model Basin. It is based on a systematic variation of

analytically defined forms. 2 , 1'1 As an extension of this work it was decided

to make a more comprehensive theoretical investigation on the wave resistance

of bodies of revolution. This is the subject of the present report.

In Section 1 of this report polynomials are discussed which are

suitable for the representation of hydrodynamic singularity distributions

(doublets, sources and sinks); to the first approximation the equation of

the doublet distribution coincides with the equation of the sectional-area

curve except for a scale factor.7,8 A class of curves is selected which in-

cludes the TMB Series 2 generalized by one additional arbitrary parameter.

For this family a set of auxiliary integrals covering a large range of

Froude numbers has been tabulated. The values of these integrals furnish

immediately the variable part of the wave resistance of the simplest forms

(parabolas of the type 1 - 4n). In the general case the wave resistance is

given by a quadratic form of the parameters of the body in which the tabu-

lated values appear as coefficients. Thus the computation of the wave re-

sistance involves only some multiplications and an algebraic addition.

The auxiliary integrals mentioned have been computed by the Bureau

of Standards. A short description of the work involved, contributed by Mr.

Blum of that Bureau, and tables of functions are found in Appendices II and

III.

As mentioned before, the resistance formula for a line distribution

of singularities used throughout this report follows immediately from a more

general expression due to Havelock s ,5 and therefore will be called Havelock's

integral.

Using the tables annexed, resistance curves are plotted for vari-

ous basic forms of sectional-area curves (doublet distributions); they cover

three depths of immersion ratios f/L except for the spheroid where a fourth



f/L ratio has been added. Special investigations are made on the influence

of asymmetry, and some examples of resistance curves refer to forms selected

from the TMB Series.

Following an earlier attempt distributions of least wave resistance

are investigated.5 Former results s are checked and refined. Particularly,

the distributions obtained lead to rather peculiar "swan-neck" forms, for

higher Froude numbers. Finally it is shown how systematic sets of resis-

tance curves can be obtained for families of sectional-area curves (doublet

distributions).

2. THE REPRESENTATION OF SINGULARITY DISTRIBUTIONS

AND SECTIONAL-AREA CURVES BY POLYNOMIALS

2.1. CONNECTION BETWEEN BODY FORM AND GENERATING HYDRODYNAMIC SINGULARITIES

In establishing a relationship between body form and generating

hydrodynamic singularities two well-known problems can be formulated:

a. Given a distribution, find the shape of the body (sectional-area

curve A(x)).

b. Given a body form (sectional-area curve A(x)), establish the appro-

priate distribution.

In the present report we disregard the complications connected

with problem b and treat it in a very approximate way. The contemporary

rudimentary state of knowledge on problems of wave resistance justifies this

procedure to some extent; our investigation deals essentially with resistance

properties of hydrodynamic distributions and merely some assumptions are made

as to the probable shape of the bodies generated by these distributions.

Thus two essential sources of error are involved when investigating

the wave resistance of bodies of revolution:

a. The approximate character of the wave-resistance theory, and

b. The generally admitted approximation that for a given body the

deep-immersion distribution of singularities can be used instead of the

actual distribution valid for near-surface conditions.

The second assumption (b) appears to be a serious one when the

body is close to the surface. It has been proved by Havelock 9 that it leads

to inconsistent results with respect to added masses; however, by following

numerous comparisons between theoretical and experimental results referring

to surface ships it works reasonably well when applied to the resistance

problem.

In the present report the assumption will be made that the shape

of the body generated by singularities moving close to the surface is



5

identical with the shape of the corresponding body generated by the same

singularities in an unbounded fluid.

It is well known that in the latter case one can construct the

contour of a body of revolution for any given Qingularity distribution along

the axis; auxiliary tables for this work are available, 2 , o especially for

cases in which the distribution is given by polynomials. Flat noses-as

discussed by Weinstein 16 - will not be dealt with in the present report,

although it is possible that such forms are advantageous from a point of

view of wave resistance at high Froude numbers. When dealing with "normal"

shapes, the important approximation developed by Weinig7 and Munk 8 holds;

i.e., for very elongated bodies the sectional-area curve of the generating

body A(x) is affine to the doublet distribution p(x). This approximation

will be used throughout the present report although its limitations should

not be forgotten.

Some explanation-if not definition-must be given as to the concept

of a "normal" shape of a doublet-distribution or a sectional-area curve. It

means essentially a curve whose trend is similar to sectional-area curves of

common ocean-going ships; these curves generally are monotonic with not more

than one point of inflection in the fore and afterbody.

Since for closed bodies the source-sink distribution o (x) is the

derivative of the doublet distribution 1(x) the latter is monotonic over the

range of the forebody when o(x) consists only of sources in the same range.

This condition (though not necessarily a required one) is sufficient to ob-

tain bodies such that the circle of curvature at the nose lies inside of the

meridian contour.

We mention some conditions under which the affinity between the

doublet and the sectional-area curve becomes strained:

a. For larger values of the elongation D/L the divergence between the

sectional-area curve A(x) and the doublet distribution p(x) becomes more

pronounced even for "normal" shapes. This divergence can be roughly de-

scribed. First, in the mutual relation of the prismatic (area) coefficients

which are the decisive form parameters of the two curves-the one, d, de-

noting the prismatic or area coefficient of the distribution, and the other,

Os, the corresponding one for the sectional-area curve-the following state-

ment holds for a wide class of normal bodies:
s ,15

for finite D/L

s > d when Od < 2/3

s < d when d > 2/3



The equality d =  s is valid only

A , for the ellipsoid; see Figure 2.

5- A bSecond, in the prismatics a differ-

Sence arises between the length of

_ the body L and the distribution 2a,

E--- a-2a being smaller than L. For the

SL spheroid the relative difference

Figure 2 - Spheroid. Sectional-Area L-2a _ D2  b2

Curve A, Doublet and Source-Sink = 2-2a
Distribution 2a 2L 2  2a

where 4 depends on the shape of the distribution, especially at the ends.

(Since this problem is being thoroughly investigated by L. Landweber of the

Taylor Model Basin, we confine ourselves to these brief remarks.)

b. When complicated "abnormal" distributions like "swan necks" or

curves with very steep ends are investigated (for instance, Rankine's ovoid)

the divergence between these distributions and the sectional-area curve can

become appreciable even for smaller D/L.

2.2. REPRESENTATION BY POLYNOMIALS

2.2.1. General Remarks

In former reports polynomials have been used for the representation

of the generating doublet (source and sink) distribution along the axis
5,'6',10,3

The doublet and source-sink distributions p(x), a(x) can be split

up into dimensional factors #0, ao and variable dimensionless parts pf*(),

OW; Wo = 00W

a(x) =a0 *

with = x/a; see Figure 3b.

The dimensional factors will be established later; in the succeed-

ing discussion the functions 4 *(() and a*(4) will be treated in the same

way as ship lines and their derivatives. Generally following Munk and Weinig

the doublet distribution p*(4) is identified with the sectional-area curve

A*(4) and the symbol n is used for both of them. Actually the resistance

computations refer to given distributions for which the corresponding

sectional-area curves can be easily calculated 2',10 when Munk's approximation

is not accurate enough-as for instance in cases dealt with in Section 5.

The first adequate representation of ship lines by polynomials is

due to Taylor;11 , 12 the equations obtained are, however, suitable for a

separate description of the fore or afterbody only. Taylor locates the

Mrg~rNhbM"n~ o rru~ --- , -~-s~ l~~~"~"~-~h~ML~4~4U~*Ur~+Br "IO
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Figure 3a - Landweber's Axes Figure 3b - Present Axes

Figure 3 - Systems of Axes

origin at the bow or stern. The present writer has proposed 3 , 1 4 other sets

of polynomials referred to a system of axes with an origin located midships.

This approach has definite advantages when investigating the wave resistance.

Landweber 2 has generalized Taylor's equation by adding one more

term and by introducing appropriate boundary conditions; he uses the ex-

pression obtained as the equation of the sectional-area curve of a four-

parameter form.2 The parameters are interpreted geometrically as the pris-

matic coefficient, the location of the maximum section along the axis and

the nose and tail radii of curvature. It will be immediately shown that

Landweber's equation transferred to an origin at the midship section can be

split up into a two-parameter symmetrical and a two-parameter skew part with

respect to this section; thus expressions are obtained for which the wave

resistance can be calculated in a simple way.

2.2.2. The TMB (Landweber) Class of Bodies and Some Generalizations

The TMB (Landweber) class of bodies of revolution is given by the

equation of the sectional-area curve

y2 = a'x + a'x 2 + a'x3 + a'x 4 + a'x 5 + a'x 6

1 1 21 3 1 4 1 5 1 6 1

referred to axes, as shown in Figure 3. We transform the equation of the

body by shifting the origin to the midship section x 0.5, reversing the

direction of the axes, and putting the length of the body equal to 2.

Thus for

x =0 =+ 1
1

x =0.5 4 0
x 1 + 1 -x =+I1=-
1
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The transformation is given by

= -2(x - 0.5) or

x = [2]
1 2

The resulting equation is
2 =A A [35]

y2 = A 1 + A + A22 + A 3 + A4 5 5 6

where 6 a' 6 na 6 n(n a'
A= n A= -Z n A = nn-2 n

n n 2 ~- 2 n1 2 1 2 2 2

n(n - 1)(n - 2) etc
A - - n '

S 3 2 x 3 x 2

Equation [3] can be split up into a symmetrical and an antisymmetrical part

Ys = A + A 4 2 + A 4 + A 6  [4a]
s 0 2 4 6

y2 = Y = Ys + Ya
Ya = A + A +A A 5

5  [4b]

The obtained form [3] has definite advantages when calculating the wave re-

sistance since the latter is the sum of the wave resistance corresponding to

the symmetrical and antisymmetrical part computed independently.

Going further, we derive from [3] the following simple properties

of the Landweber bodies:
6 6Sanxn = Ao0 n

1 1

The coefficient A0 can be factored out and merged into a dimensional constant

which defines the midship section. Thus, the normal form of our polynomial

is obtained
6

-77 Tan4n [4c]

1 -A
with a. =A

1 A0

The symmetrical part of [4c] is a two-parameter family

7s( ) = I - a 22 - a44 - a 6 = 1 - 46 - a (2- 46) - a (4 44-6)

because from the boundary condition

7s(1) = 0

a =1 -a -a
6 2 4



Such families have been called "basic forms" by the present writer 
3 and

designated by (2,4,6;0;t) since the arbitrary parameters a a can be de-
' 2 4

termined by the prismatic coefficient 4 = o 7d and by Taylor's tangent

value t = - 7(I )/O4.

It is thought that the Landweber Series [1 ] meets almost all

reasonable requirements as to wave-resistance properties presented by prac-

tice although only two arbitrary parameters 4,t are at our disposal for the

main symmetric part. The reason for this assumption is that from investi-

gations on surface ships it is well known that area curves of fine ships,

based on the basic family equation (2,4,6;0;t) are advantageous in the range

of high and medium Froude numbers. At low Froude numbers other polynomials

are preferable but there the wave resistance of submerged bodies becomes

rather negligible.

We have, however, introduced an additional term a8 4
8 for which

auxiliary wave-resistance functions are also tabulated in this report; thus

more elaborate investigations can be performed using the polynomial

s = 1 - z ai.i
2,4,6,8

The asymmetric (skew) part is the function

7a = a +a as S + as 5  [4d]

factoring out a , we write

7a = a 7* = a (4 + b 4' + b 45s) [4e]
a 1 a 1 3 5

Obviously the resultant curve n = s + a can have its maximum section out-

side of 4 = 0 and the area of this sebtion will generally differ from one.

This slight complication does not involve any difficulties in actual work.

Let us investigate

* = + bs43 + b 5  [4f]
a 3 5

This trinomial has to comply with the conditions

7a*(o) = 0

* (+ 1 ) = n(- ) = 0

a 

awhence

whence

b = -(1 + b )5 S
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thus

7*= 4+ b 4 - (1+b )45 [4g]a 3 8

The only arbitrary parameter b can be fixed by one additional condition; as
3

such we choose the tangent value t* at the bow (at the stern the correspond-
a

ing value is -t*)a

t* = a = + 4 + 2b
a 4 3

hence

b =- 2 + t*/2 [4h]
8 a

the corresponding tangent value ta of 7a' Equation [4e], is obviously

t = a t*
a 1 a

The table below shows some examples of skew forms. The parameter

S= 7* d4 is an area coefficient referred to the unit square. Plots ofa fo a
S- ,3 45 and some other "skew" forms used in the TMB Series are shown on

Figure 5. The actual skew part na contains additionally the "strength para-

meter" a ; see Equation [4e].
i

t* 0 1 2 4
a

* 4(1 - 42)2 4 - 1543 + 0.54" 4 - ' 4 - 5
a

a7*/aO i - 642 + 544 i - 4.54 2 + 2.544  1 - 342 1 - 54

0* 1/6 = o.166... 5/24 = 0.2083... 1/4 1/3
a

Our numeric evaluations are primarily based on Equations [4c] and

[5]-which are stated below-but the theoretical treatment will be carried

out along more general lines.

Extended investigations have been made by Landweber and Gertler
2

on the influence of an additional term a'x7 on the form of the body when the7

geometric parameters are kept constant.

Using our system of axes it is easy to perform similar investiga-

tions for the symmetric and asymmetric part of [4c]

7o s +a =  - an4n + a ( + b 3  + b5  ).
2,4,6

I _ II
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0 01 0.2 0.3 04 05 06 0.7 08 0.9 10

Figure 4 - Dimensionless Sectional-Area Curves A*( )(Doublet Distributions
p*(4)) of Some Simple Bodies Symmetric with Respect to the Midship Section

*0

4

0

Figure 5 - Examples of the Antisymmetrical (Skew) Parts of Sectional-Area
Curves A*(4) (Doublet Distributions p*(Q)) Belonging

a
to the Family e + b a3 - (I + b )53 3

Curve 007 0 7

0 0533 (1- 2)2

S0600 1-15 2+0.5
4

0 667 1- ?
S0.800 I- 4 Points of Inflection-

( 0857 1-46
S0.889 1- 8

I I_ II
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By adding to n terms with arbitrary parameters a7 7 and as t8 , a manifold

7 = 7 + a 7
7 + a 8 is obtained.

The polynomial [4c] is completely defined by the four geometrical

parameters

2) t
s = - 4

7a(0) a [5]

ana (1)
4) = -a t* =t

'a 1a a

When 71 has to comply with the four equations [5] it can be ex-
pressed by

7, = o + CsAn(4) + CaA7(4) [6]

where An() = ' - 54 + 74 - 34 [6a]

complies with the conditions

fA 7n()d = 0;
o

Oa 7(0) Oa 7(1)
A n(o) =A () = _ 8 =0

and

A4 7() = (1 - 2)2 [6b]
4

satisfies
O =(0) a A (1)

A n(0) =A ?(1)= 4 - = 0
4 4 8 &

Thus, an addition of the functions A3, A to 0 does not influence theS'4

boundary conditions, [5]. The shape of the curves Asn(t) and A4() is
shown in Figure 13. The advantage of this representation is obvious.

While in the equations

7 

=  + 

ora

or

#M= jU*(4 + #*(4)
s a

_ ~ __. _ ___._.1 1 111 IY
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the symmetrical (even) terms us , p* are the main parts, obviously in5

or

*( = o*( ) + c*(4)a s

the odd terms as/4f, o* become the main part.

2.3. CONNECTION BETWEEN STRENGTH OF SINGULARITIES AND BODY SHAPE

The next consideration is to establish the dimension factors 0

and a . The flux through the midship section may be written as

Q = C ( b, p*)nb2U [17 ]

Here the coefficient C(b/a, p*) is, as indicated, a function of the elonga-

tion ratio b/a - D/L and of the shape of the distribution p*. For very large

elongations C(b/a, *) , but for shapes and values b/a used in actual op-

eration C differs from one.

A closer investigation of the coefficient C will be given elsewhere

by L. Landweber; for the present purpose we introduce C as a correction fac-

tor which improves the accuracy of Munk's or Weinig's approximate affinity

theorem mentioned on page 5. The dependence of C upon p*, although apparent-

ly negligible within the range of presently used submarine hull forms, shows

some interesting features. Earlier brief investigations lead to the follow-

ing table for C(b/a, p*) (Reference 5).

b/a D/L

1/4 11i6 1/8 1/10 0

0(4) Od C(b/a,p*)

(1 _42)2 0.533 1.172 1.093 1.060 1.043 1

1 - 42 0.660 1.192 1.092 1.054 1.036 1

1 - 3.08254' + 0.165410 + 1.9175412 0.820 - 1.0124 1.00o8 1

From these results we gather that C(b/a, p*) values for normal

submarine shapes apparently can be estimated from the spheroid; an empirical
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formula C(b/a) 1 + 3b2/a2 may fit the facts reasonably well. For fuller

bodies lower values seem to be suitable.

The constant

S1 - Qo - 47r

is therefore obtained as

C= C( 2, *)b 2U [7a]

The flux [7] or the strength of the doublet distribution at the

midship section must be somewhat higher than the product of the cross section

times the speed of advance.

For the source, we have

= 1c (I, U*) h!U [8]

3. EVALUATION OF HAVELOCK'S INTEGRAL

3.1. GENERAL CONSIDERATIONS

The wave resistance experienced by a continuous doublet sheet A,

distributed over a vertical plane and moving uniformly on a straight hori-

zontal path, has been calculated by Havelock.s Concentrating the distribu-

tion p(x) along a horizontal straight line we obtain immediately

R = 1 6 7pKo P/2  P2 + Q2} sees5 0dO; Ko U2  [9

with

+aP = exp(-K f secp) (x) cos (Kox sec 8)dx = exp(-Kof sec2 6)p [ga]1
Q1 e -o secu,) _

=1 =exp(-Kf sec 2 ) p(x) sin (Kox sec 6)dx = exp(-Kof sec2)q [9b]
a

hence

R = 167rpK f/2 (p' + q2 ) exp(-2K f sec 2
0) sece5 OdO [9c]

Using a source-sink distribution we obtain similarly

R = 167rpK2 /2 (p 2 + q2 ) exp(-2K f sec 2
0) sec 3 OdO [10]

0o

p = a(x) sin (Kox sec O)dx [10a]

+aq = (x) cos (Kx se O)dO [lb]

q = f-a a(x) cos (K 0x sec 8)d0 [10b]

__ IM
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Introducing dimensionless coordinates x = at and the expressions

U(x) = ,o* )

O(x) = o*(4)

various forms of the integral for R can be derived for purposes of numerical

evaluation.

We confine ourselves to the source-sink integral.
10 Splitting up

e*(4) into a main antisymmetrical and a symmetrical part

O*( =c o*() + a*()
=a s

and remembering that an integral taken over an odd integrand between limits

of equal absolute value but opposite sign vanishes, we obtain with the desig-

nation

ga1yo = Koa = ga
U2  2F2

R = C pg b4  2exp[-4 f  sec 2 o] sees3 . [11

Sfa*(1) sin(y o 4sec 0)d 2 + 0*(4) cos (7o  sec O)d2 dO =
•' aoi e[4 f o S0

const 2 exp[-4 f yo sec20] secS6[p*2 + q*2 ]dO [12]

We introduce further polynomials for

*() = 1 - an [131

hence

*() = -n an n-1 [14]

or

o*() = o () + o*(4) = - 2ka 2k-1 - (2m+1 )a 2M+ [14a]as k 2k M2+
k m

with k, m as integers.

For the main antisymmetrical part the intermediate integral p* becomes

P* = a*(() sin (7 sec 0 )d = -22k ak 1 2k-lsin (yo0 secO)d4

= -E2k ak M 2k1(Yo see 0) [15]
k

with

M 2 k1( sec ) = Mk (y) = fI 2  1 sin(y o see 0 )d4 = 12klsin(y)d
[6]2k-1 

0 2k-1 o

[16]



Here for brevity the designation y = Yo sec 8 has been introduced,

For the symmetrical (even) part

q*= o * ( ) cos(yo sec 0 )d4 = - (2m+1
wim

with

M' (Yo sec 9) = M' (Y) = M'
2m 2m 2m

= I 1n cos(7 0

)a M' (7 sec 0)
2m+1 2m 0

f sec 0 )df

[16].

[17]

= [2m cos y d4

P08
inserting [15] and [16] into [12] one obtains

R = 4C 2 Pg ?- exp -4 Yo sec2 2k 2k 2k-

+ (Z (2m+1 )a M' ) 2}
m 2m+1 2m

This formula is suitable for numerical computations above in special cases,

since tables of the functions M2k (7), M' (7) are available and will be
2k-1 2m

published in a TMB Report.

3.2. TABULATION OF RESISTANCE INTEGRALS FOR A

FIVE-PARAMETER CLASS OF BODIES

As mentioned before, auxiliary integrals have been prepared for the

three-parameter symmetric distributions of Equation [5], Pf(l)

in r*())a

-Z
2,4,6,8

an ~" and a () = - 2
2,4,6,8

(asymmetric

na n-l

and the one-parameter skew distribution pu (4) (symmetric in o*(4))
a s

p*(4) = + b 43 - (1+b 5
a 3

and or*() = 1 + 3bs 2 - 5(1+b )4
5 3 3

The computations are based on a slightly different form of R (see Appendix

II). Substituting

7 = 0 sec 0 sec 0 = r7/v tg 0 = (v/vo)2 -1

one obtains

dy = Y0 sec 2 0 sin 0 de;

hence

R = 4C2 7pg b
a exp -4 f I!

I- L YI

Yo sec3 Ode

(/ o)2

(v/v7)2
( 2ka 2M (7)) +

k 2k 2k-1

+ ( (2m+1 )a M' (Y))2m 2m+1 2m

Iin rnYmwImIIu00iII h 1 *EYi i0

L)2 +

see 3 dO [19]

# () = 15

(v/vo) 2 d ,

V(vy/o) 2 _1

7/
o f

f 50

[20]
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putting for abbreviation

4C2 7rpg = const = C

0 )2

e()/r) 12

R =C 0  exp 4f e]f(y) 2i2J a .a M M +
0 l21 2j 2t-1 2j-1

+ , (2r+1)(2s+1)a a M' M' d [21]
rls 2r+1 2s+1 2r 

2
sJ

with i, j, s, r integers. R can be built up of terms of the type

exp -- f(Y)M (Y)M (y)dy = 7n [22]Y2-1 2-1 2i -1, 2j -1

for the symmetrical part of the sectional-area curve

and
exp- 1f(y)N' (y)M' (7)dy = l' [23]

L 2 2s 2r,2s

for the skew part. The final result is therefore obtained as a quadratic

form in the parameters a or, better, nan

R = C 2i 2j a a '? + Z (2r+l)(2s+1)a a 7' [24]
S2i 2j 2i -1, 2j -1 rs 2r+1 2s+1 2r, 2s

with the tabulated integral values ?7 f7 T as main parts of the
2i 1, 2 j"I 2r, 2s

coefficients 2i 2j 2i-1 2j-1' etc.

We mention again the fortunate circumstance that the contributions

to the wave resistance due to the symmetrical and antisymmetrical parts can

be calculated independently and added.

Returning now to a family of distribution curves given by Equation
[4c] but generalized by one additional term as $%:

2 'n+ a 8 - _- -- fal 0,a -i ,7

= 1 - a n+a - n n- + 8a8 7 [4i]
1 1

The wave resistance can be calculated by the functions

11 13 15 17 0 0  n02 04

33 7)135 737 T 22  '24

55 257 44

?177

.IIIIIE imII rnI,



tabulated in the Appendix III. The integral R and the functions 7i and 7

depend upon the two parameters yo = 1/2F2 and f/L. The tables have been pre-

pared for a range 0.5 -< 70 10 and f/L = 0.125, 0.25, 0.50. Additionally,

for )n an intermediate depth of immersion ratio f/L = 0.1875 has been intro-
11

duced. From the wave resistance integral it follows immediately that the

ratio depth of immersion over length f/L is theoretically preferable to the

more commonly used ratio f/D, since f/L appears explicitly as factor of the

exponent of the e-function under the integral. With elongated bodies the

ratio b/a or D/L influences primarily the constant C0 = 4C2 7rpg b4 /a only,

though in a very decisive way. Although the lower speed limit Y = 10

(F = 0.224)-up to which the auxiliary integrals have been computed-is

rather high, it is thought that for normal hulls with 0< 2/3 moving at greater

depths than D, the wave resistance becomes unimportant when F <-0.224. The

low-speed range may, however, be interesting in connection with other research

problems.

In principle the wave-resistance equation, [24], solves the problem

for any sets of an within the family following [4i]. Actually since the

relative error of the tabulated functions is approximately 0.0001, a loss of

accuracy may occur-when the coefficients an reach high absolute values with

alternating signs. It is not probable that difficulties of this kind will be

important in connection with submarine work; besides, they can be overcome

to some extent by plotting suitable simpler resistance curves and by inter-

polating.

4. REPRESENTATION OF RESISTANCE CURVES

4.1. THE DIMENSION FACTOR C AND DIMENSIONLESS REPRESENTATIONS

The dimension factor in Equation [20], C0 = 4C2 rpg b4 /a, has a

rather unusual form, but it will be widely used throughout this report

because of its theoretical merits and the comparative ease with which it can

be connected with more familiar expressions. We rewrite, in terms of the

displacement A,

C = 07rb 2 2apg 2b 2 C2 = A 2b2 C2  [25]
0 ra 2  2a2

R R a o R 2b2C 2

S0 A 2 or rCo = o = A 2b2C2 A o fa 2

1 -111111 11111 1 11 IIYI



Hence we can immediately derive the resistance per unit displacement for a

given b/a and shape when r0 is known.

The introduction of the displacement A in [20] is open to objection

since so far we have not distinguished between the length of the body and the

distribution. We repeat the definitions:

2a is the length of the distribution along the axis

L is the length of the generated body

2b = D is the diameter of the generated body

Obviously for the displacement of the body we must use L = 21. Then

C = 7rpg C2 b4 /a = A 2C 2 b 2a [25a]

Further, the ratio b/1 = D/L is technically more important than b/a; hence

r R 2 a  [25b]
o A 2C 2 b2 1

or

R 2C2(D)2 l[25]
A LJ a o[25c]

Later we shall use another coefficient

r0  R I (L a
r = -T = X )[26]1 2C2  1

One should not, however, overestimate the influence of the length correction.

For the spheroid

a 12

I C2  ( b +(b)) ( + b)

i.e., influences the C2 correction by less than 10 percent. Further, even

the introduction of the more important C factor does not lead to an exhaustive

correction since we know that not only the midship section but the whole

trend of the curves changes with increasing b/a. Thus within the limited

accuracy of the present wave-resistance theory we generally can put I/a 1.

It is of course important to use all approximations in a consistent and

clearly defined way, so that fair comparisons can be made.

We note particularly, that for the spheroid

R = r 3C2 b2/a2

A 0
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For comparison with experiments the coefficients cw referred to the wetted

surface S is advantageous.

We write

cw R = r () 2  [27]
p/2 U 2S o SF2  a

or introducing a surface coefficient S (Reference 17)

CS = S/rDL

c= r =)2 r S \  ' o [28]w 0 C S a T F 2 C S a o

with y = 1/2F 2"  For elongated spheroids CS  0.79.

The importance of the resistance coefficient cw referred to the

wetted surface S justifies a short digression on the calculation of S for

bodies of revolution. Solutions of the exact expression (Equation [29]) can

be obtained in a closed form in exceptional cases only, as for the spheroid.

Of course it presents no difficulties to evaluate the integral numerically,

but a simple approximate formula can be derived at least for the surface area

of a restricted class of very elongated bodies of revolutions complying with

the condition that the end tangents of their meridianal contour do not become

vertical; it is similar to the well-known expression for the length of a

slightly curved arc, see Appendix I.

4.2 RESISTANCE CURVES OF SIMPLE SYMMETRICAL BODIES

Since the presentation and the discussion of resistance curves is

the main subject of the present report, various sets of such curves have been

computed. Essentially, the resistance properties of the following three

groups of body forms (distributions) have been investigated:

(a) A set embracing a wide range of prismatic coefficients, which fur-

nishes a general review of the resistance as function of the form (IV,2).

(b) A set dealing with four TMB models. This raises the problem of

the influence of asymmetry with respect to the midship section (IV,3).

(c) A group consisting of systematically chosen forms belonging to the

two-parameter family (2, 4, 6; 0; t) (VI); for the same family some calcula-

tions of shapes of least resistance are presented (V).

The procedure adopted leads to repetitions which, having in view

the importance of the subject, have been thought to be advisable. Because

of the complicated dependencies involved the interested reader can more

--m
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I 2 3 4 5

I I I I I I

= 0.707 0.500 0.408 0.354 0.316
F U

Figure 6 - Wave-Resistance Coefficients r

Bodies as Defined on Figure

I I I I I
0.288 0.267 0,250 0.236 0.224

R of Symmetrical

4rC2 pg b4 /a
4, f/L = 0.125

easily draw conclusions from the rather comprehensive plots than from any

text.

We are mainly interested in the range of Froude numbers F below

and at the maximum of the large hump in the resistance curve; see, for in-

stance, Figures 6, 7 and 8. Above the maximum the absolute value of wave

resistance decreases comparatively slowly with growing F, but the ratio wave

resistance to frictional resistance drops quickly. Therefore, at high speeds



0

0

c.0

.4 I I '__ _ _

Form Prismatic Resistance Coefficient
No. 17 Coefficientn(t) 4 ro

I (I- 2) 0.533 16 7 - 32 71i3 + 16 7133

2 I - 1.5 2 + 0.5 4  0.600 97h, - 12'Wl 3 + 47733

4?ll(f/L = 0.1875) 3 - 42 0.667 4711
4 I- 4 0.800 1677133
5 i- ?6 0.857 36Ts5
6 I- 0.889 64m)7 7 _).3

6

5

4

Curve 7 represents the resistance coefficient r
for a distribution I - ~2(spheroid) at f/L = 0.1875.

3

.2

4

5 23
6 6 54

2 3 4 5 6 7 8 9 I

0
I I I I I I I I I I

o0 0.707 0.500 0.408 0.354 0.316 0.288
F= _U

0.267 0.250 0.236 0.224

Figure 7 - Wave-Resistance Coefficients of Symmetrical
Bodies as Defined on Figure 4, f/L = 0.25

the wave resistance of elongated bodies such as torpedoes represents only a

small part of the total drag. It has been shown in References 4 and 5 that

in the limit of very large Froude numbers the wave resistance becomes pro-

portional to the square of the displacementor r0 to 2.

In general, throughout the present report calculations have been

extended to F = 1 (7 = 0.5), and to F 1.58 (yo = 0.2) for the parabolic

distributions 1 - f 2 1 - 1 - 6 only. From an approximate investigation

-I--- -H16,
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6 7 8 9 10

I I I I I
i I I I I I0

00 0.707 0.500 0.408 0.354 0.316 0.288 0.267 0.250 C
U

Figure 8 - Wave-Resistance Coefficients of Symmetrical
Bodies as Defined on Figure 4, f/L = 0.5

.236 U.2'4

it appears that the resistance curves R (y ) plotted over o have a vertical

tangent at o = 0, but no attempt has been made to draw accurately the range

of curves below o = 0.5.

To obtain a general idea of the wave resistance for various symme-

tric distributions #(4) (sectional-area curves A*( )) graphs have been plot-

ted for following simple cases:*

*As before, by symmetry we mean symmetry with respect to the midsection.

A~r____ ___ A



1) (1 - (2)2 0.533 0

2) 1 - 1.5 2+ 0.54 0.6 1

3) 1 - 2 2/3 2

4) 1 - f 0.8 4

5) 1 - 6 6/7 = 0.857 6

6) 1 - 8 8/9 8

Figure 4 shows these sectional-area curves and Figures 6, 7 and

8 the corresponding resistance coefficients as functions of yo = 1/2F2 , with

an additional non-equidistant scale for F. The choice of y as independent

variable yields an appropriate picture of the wave-resistance values at high

speeds.

From the Figures 6, 7 and 8 a rather complete understanding of the

wave-resistance properties of various symmetrical forms can be derived. Ref-

erence is also made to Figure 12 and the pertaining discussions in the text.

The influence of the depths of immersion follows immediately from a comparison

of Figures 6 through 8; also, cross curves can be plotted over f/L as the

independent variable. Figure 11 shows this dependency for 47' , which is

the resistance function of a spheroid A*( ) = 1 - fa with y = 1/2F2 as

parameter. We note that with increasing depth the resistance drops more

quickly at small than at large Froude numbers F. This is rather obvious;

it will be discussed later more thoroughly that the most indicative parameter

is the ratio f/X , where X the length of the free wave is X = 27rF 2L.

In Figures 9 and 10 the resistance curves for three depths of im-

mersion have been reduced to approximately the same maximum ordinates. This

rather artificial approach yields a clear idea about the shift of the last

hump (of its steep rise as well as of the position of its maximum) to higher

Froude numbers with increasing depth of immersion; it further emphasizes

again that the rate of decay of the wave resistance with increasing depth is

much higher for low Froude numbers than for high ones.

Figure 12 represents a coefficient r = R/A a 2 /2C 2 b2 = r 0/. For10

approximately constant C2 (very elongated bodies) and given a2/b2 ratio,

r - R/A, i.e., the figure yields a comparison of the resistance per unit
1

displacement for various forms.

The discussion of the various graphs leads to the following summary

results:
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0.7

0.6

.024

.020--_
0.5 

.2

.016

S .011225

0.4 .00-o ... J,S- = 0.25

.004

C0L

X x 30 4.0 5.0 6.0 7.0 8.0 9.0 10.0
" 0 0.3

- -to= 0.125
f 0.5

= 0.25
0.2

0.1

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 I0.0

0 2F 2

I I I I I I I I I I I
S 0.707 0.500 0.408 0.354 0.316 0.288 0.267 0.250 0.236 0.224

F =u

Figure 0 - Comparison of the Shape of Wave-Resistance
Curves for the Spheroid q( ) = 1 - 2; the Curves

are Reduced to Approximately Equal Maxima

A. Small depths of immersion

I1) Within reasonable limits, the peak value of the R/A curve does not

depend too much on the shape of the body,* especially upon the prismatic co-

efficient.

2) The merits of full forms, over a wide and possibly important range

of Froude numbers 0.35 4 F K 0.50, are clearly emphasized, as well as

3) The heavy penalty which has to be paid for high prismatics at

lower F.

*If more elaborate results are desired they can be derived from Figures 28 through 35.
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0.6 R0.6 esistance Functions

16[,i,, + ? - 29,] for f/L 0.125 and -3.48 x 16 [, + - N] for f/L 0.25

f 0.03 -Lz 9.125 .004f= 0.25- 0.125 0.040.5 - 0.125

r 
.25.001

S0. ro 0.02b.5

\L 0 6.0 7.0 8.0 9.0 1CO0.2
f

0 0.25

4.0 5.0 6.0 7.0 8.0 9.0 10.0

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
o : 2F P

I I I I I I I I I I I
0.707 0.500 0.408 0.354 0.316 0.288 0.267 0.250 0.236 0.224

F U u

Figure 10 - Comparison of the Shape of Wave-Resistance
Curves for 7 = (1 - 2)2 Reduced as by Figure 9

B. For larger depths of immersion the dependence of the peak values of

R/A upon € becomes more pronounced; the advantage of high prismatics in the

range mentioned in A(2) is, on the average, reduced.

4.3. RESISTANCE CURVES OF ASYMMETRICAL BODIES

Further curves representing the wave-resistance coefficients of the

four TMB models represented in Figures 14 and 15 are shown in Figures 16, 17

and 18. Before discussing these particular asymmetric models, however, an

investigation must be made of the influence of asymmetry on the resistance.

Figure 5 represents examples of asymmetrical lines belonging to

the family 7* = + b 3 - (1 + b ) s, Equation [4g].
a 3
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The curves Ia to IVa have been derived from the TNB models (Figures
14 and 15) by reducing the coefficient of to unity. The procedure of ob-

taining the symmetric and the skew part from graphs is obvious: The first

one is the arithmetic mean of the fore and afterbody ordinates I = F + 7A

and the latter one the difference F2 or 2 respectively.

The computation of the wave resistance due to asymmetry is based

on Equation [24]:

For the trinomial

r, = a ( + b sS + b s)

A4
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with the derivative

- = a (1 + 3b e2 + 5b 5
4 )

we obtain

= + 9b 2 7771 + 25ba 2 nt + 6b 7711 + 1Ob 47' +30b b 5 M
Ra= Coa [o + 9b 22 + 5 44 3 02 + 5 04 3 5 24]

[33]

Figure 19 shows the functions
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Figure 19 - Wave-Resistance Coefficients roa Due to

Antisymmetrical Distributions Following Figure 5

corresponding to the distributions - 3 and Ia shown in Figure 5,

where curve I* is derived from the TMB body, Figure 14.a
The "amount" of asymmetry which corresponds to the equation 2a =

is very large, but by assuming the strength parameter a < 1 (Equation [4e])' 1

more usual distributions are reached; for these asymmetric terms the wave-

resistance curves are obtained simply by multiplying the ordinates of Figure



34

19 by a2 .
1

The resistance curves in Figure 19 corresponding to - s and I*a
are somewhat similar in the range of the large hump and the ratios of their

absolute values are of the order of 0.5. In the range of the second hump the

ordinates of both curves are small, but it is characteristic that here a much

lower resistance corresponds to the finer line I*, rather than to - .a'
We return now to the four TMB models designated by I, II, III, IV

shown in Figures 14 and 15. In these figures the line A*(e) shows the sym-s
metrical part of a body. The resistance results are plotted on Figures 16, 17

and 18;* in them the lower set represents the contribution due to antisymmetry

Ra
roa = 4pgC2 b 4 /a

the upper set the total wave-resistance coefficient

R + R
=a s

0 4rpgC b 4/a

The computations are made under the assumption that the doublet distribution

1*( ) = A*( ). With the model number rising from I to IV the prismatic in-

creases and the asymmetry decreases. In the important range of Froude numbers

0.50 >, F 0.35 the finer models are extremely unfavorable because of the

low prismatic as well as because of the very pronounced asymmetry.

When comparing the total resistance values a slight departure from

symmetry generally is advantageous because of viscous effects. It has also

been pointed out that small asymmetric terms do not increase appreciably the

wave resistance even in the most sensitive range of Froude numbers, say

0.45 , F , 0.35; this is well supported by our present results, for instance

by Curve IV. Further, the obvious fact must be once more emphasized that an

immediate comparison between symmetrical and asymmetrical bodies-as to their

wave-resistance properties-is only feasible when the sectional area of the

former A*(f) is the even part of the sectional area of the latter
5

A*C) = Af(() + Afl )S a
It is entirely possible to obtain asymmetrical forms with wave-resistance

properties which are superior to the corresponding ones of a poorly chosen

symmetrical form, equal prismatics and principal dimensions being assumed.

Similar computations have been performed for other depths of im-

mersion; some results are listed in Table 2 of Appendix III. Obviously it

is not difficult to investigate the wave resistance corresponding to any

curve of the family defined by Equation 4e] at the three depths of immersion

for which the integrals have been tabulated.

*There is a slight error in the resistance curves R of Model III due to inaccuracy in computations,

but it does not invalidate the comparison. a
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Figure q - Comparison of the Shape of Wave-Resistance
Curves for the Spheroid n(&) = 1 - 2; the Curves

are Reduced to Approximately Equal Maxima

A. Small depths of immersion

1) Within reasonable limits, the peak value of the R/IA curve does not

depend too much on the shape of the body,* especially upon the prismatic co-

efficient.

2) The merits of full forms, over a wide and possibly important range

of Froude numbers 0.35 4 F K 0.50, are clearly emphasized, as well as

3) The heavy penalty which has to be paid for high prismatics at

lower F.

*If more elaborate results are desired they can be derived from Figures 28 through 35.
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Figure 10 - Comparison of the Shape of Wave-Resistance
Curves for 7 = (1 - 2)2 Reduced as by Figure 9

B. For larger depths of immersion the dependence of the peak values of

R/A upon 0 becomes more pronounced; the advantage of high prismatics in the

range mentioned in A(2) is, on the average, reduced.

4.3. RESISTANCE CURVES OF ASYMMETRICAL BODIES

Further curves representing the wave-resistance coefficients of the

four TMB models represented in Figures 14 and 15 are shomwn in Figures 16, 17

and 18. Before discussing these particular asymmetric models, however, an

investigation must be made of the influence of asymmetry on the resistance.

Figure 5 represents examples of asymmetrical lines belonging to

the family 7* = + b 4' - (1 + b ) s, Equation [4g].a3 3
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Figure 13 - Distribution Functions Following Equations [6a] and [6b]

The curves Ia to IVa have been derived from the TMB models (Figures

14 and 15) by reducing the coefficient of to unity. The procedure of ob-

taining the symmetric and the skew part from graphs is obvious: The first

one is the arithmetic mean of the fore and afterbody ordinates I = F A+ 
7A

and the latter one the difference 6 2m or respectively.2 2 respectively.
The computation of the wave resistance due to asymmetry is based

on Equation [24]:

For the trinomial

a 1 = a ( + b 3s + b 55)
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with the derivative

a = a (1 + 3b f + 5b f 4 )
1 5

we obtain

R C a 2 [MI' + 9b 2 7n' + 25b 2 7?, + 6b 71' + 1Ob 71' +30b b 77'
a 0 1 0 3 22 5 44 8 02 5 04 35 24

[331

Figure 19 shows the functions

RaHa
r =

oa 4,rpgC 2 b4/a
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Figure 19 - Wave-Resistance Coefficients roa Due to

Antisymmetrical Distributions Following Figure 5

corresponding to the distributions - , - 3 and I a shown in Figure 5,a
where curve I* is derived from the TMB body, Figure 14.a

The "amount" of asymmetry which corresponds to the equation 
77a =

is very large, but by assuming the strength parameter a < 1 (Equation [4e])' 1

more usual distributions are reached; for these asymmetric terms the wave-

resistance curves are obtained simply by multiplying the ordinates of Figure



19 by a 2 .
1

The resistance curves in Figure 19 corresponding to 4 - 45 and I*a
are somewhat similar in the range of the large hump and the ratios of their

absolute values are of the order of 0.5. In the range of the second hump the

ordinates of both curves are small, but it is characteristic that here a much

lower resistance corresponds to the finer line I, rather than to -a'
We return now to the four TMB models designated by I, II, III, IV

shown in Figures 14 and 15. In these figures the line A*() shows the sym-
5

metrical part of a body. The resistance results are plotted on Figures 16, 17

and 18;* in them the lower set represents the contribution due to antisymmetry

Ra
roa = 4pgC2 b 4 /a '

the upper set the total wave-resistance coefficient

R + R
=a s

r = 4rpgC 2 b4 /a

The computations are made under the assumption that the doublet distribution

*(e) = A*(4). With the model number rising from I to IV the prismatic in-

creases and the asymmetry decreases. In the important range of Froude numbers

0.50 > F > 0.35 the finer models are extremely unfavorable because of the

low prismatic as well as because of the very pronounced asymmetry.

When comparing the total resistance values a slight departure from

symmetry generally is advantageous because of viscous effects. It has also

been pointed out that small asymmetric terms do not increase appreciably the

wave resistance even in the most sensitive range of Froude numbers, say

0.45 > F >, 0.35; this is well supported by our present results, for instance

by Curve IV. Further, the obvious fact must be once more emphasized that an

immediate comparison between symmetrical and asymmetrical bodies-as to their

wave-resistance properties-is only feasible when the sectional area of the

former A*(4) is the even part of the sectional area of the latter
5

A*(f) = A*(4) + Aa*()

It is entirely possible to obtain asymmetrical forms with wave-resistance

properties which are superior to the corresponding ones of a poorly chosen

symmetrical form, equal prismatics and principal dimensions being assumed.

Similar computations have been performed for other depths of im-

mersion; some results are listed in Table 2 of Appendix III. Obviously it

is not difficult to investigate the wave resistance corresponding to any

curve of the family defined by Equation [4e] at the three depths of immersion

for which the integrals have been tabulated.

*There is a slight error in the resistance curves R of Model III due to inaccuracy in computations,

but it does not invalidate the comparison. a

*v irC*~~~.~iJ~~~II



3 0.006

0.004

-- 0.25
L

0.002

f
L- = 0.5

0 I 23 4 5 6 7
=I

2F2
I I I I I I I I

00 0.707 0.500, 0.408 0.354 0.316 0.288 0.267
F U

Figure 20 - Wave-Resistance Coefficients c = p/2 S Referred to the Wetted

f P/2 U2 eerdtoteWte
Area S for the Four TMB Models I-TV, f/L = 0.125 (For Comparison
of Range Single Curves for f/L = 0.25 and f/L = 0.5 are Shown)

To check the order of magnitude of the wave resistance and to en-

able a comparison with experimental data, resistance coefficients cw of the

four TMB models I to IV are shown in Figures 20 to 22, calculated for b/a =1/7

and C = 1.07. In this case the depth of immersion ratios f/L correspond to

the technically more familiar f/D ratios as follows:

f/L 0.125 0.25 0.5

f/D 0.875 1.75 3.5

Assuming a rather high viscous-drag coefficient (cv = 0.003), the

relative importance of the wave resistance at various depths of immersion
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and Froude numbers can be estimated for a comparatively wide span of prismatic

coefficient 0.71 > > 0.59. Attention is drawn to the changes in the mutual

relations between the curves in Figures 20 to 22. These changes are dependent

upon f/L and upon the obvious shift of the peaks towards smaller Froude numbers

as compared with Figures 16 to 18, because of the factor U
2 in the denomina-

tor of cw.

Considerations of wave resistance may play a significant role when

fixing the optimum elongation ratio D/L as long as free-surface conditions

are important. Assuming both V and g to be constant, the surface S and there-
fore the viscous drag vary only with /D while the wave resistance varies3

f ore the viscous drag vary only with I'L/D while the wave resistance varies

Ix~QhC:*Ui ;I~XM-ug,~i~n;r-~l)r~k;l il- r c.i ii.r*~x~Y ' i**



with (D/L)2 multiplied by a complicated function r of F. Restricting F to

a range -0.6 >, F >, 0.35, ro is monotonically and, on the average, heavily
decreasing with decreasing F. Thus any reduction of D/L heavily reduces the

wave resistance.

4.4. LIMITING DEPTH OF IMMERSION

It is important to know below what depths of immersion fo the wave

resistance can be neglected. This limit can be established from such cross

curves as shown on Figure 11; it obviously depends upon:

a. The Froude number F or 7o = 1/2F 2

b. The L/D ratio, and

c. The dimensionless shape of the body, primarily its prismatic coef-

ficient , especially outside of the large hump.

However, some additional simple reasoning may be helpful when curves

R = R(f/L) are not available. We can consider the wave resistance as negli-

gible either when

a. It is a small percentage of a given standard resistance, or

b. It is less than an absolute small value dR.

Some obvious differences in results due to the different approach

have sometimes been overlooked.

a. Assume that for f >, fo the wave resistance becomes less than a

given small fraction E of the wave resistance Ro at a standard depth, for

instance at the immersion of one diameter; fo is derived from a ratio of the

resistances in question. Comparing bodies of equal length, f o depends upon

the Froude number and upon the dimensionless shape of the body, but only very

slightly upon the elongation ratio D/L b/a, since the latter influences

only the constant 40C2pg b4/a, which drops out in the comparison.

b. Assume that the limiting depth fo is derived from the condition

that the wave resistance is less than an absolute value 6R independent of

the standard resistance Ro. Comparing again bodies of equal length fo now

becomes highly sensitive to changes in D/L.

A rough idea of the necessary limiting depth fo of immersion can

be obtained from the decline of the water disturbance with increasing depth

in a plane sinusoidal wave; this estimate normally gives exaggerated values
fo"
f00

Denoting the wave amplitude by hm and the amplitude of the distur-

bance by h one obtains

h=hme X



putting further

S= 2U 2 - 2nF2 L
g

-f

h = hm eLF

and prescribing h/hm' for instance assuming h/hm < 0.01, one obtains

fo >--0.75X

or

fo/L > 1.57rF2

This estimate is superficial for many reasons:

a. The resistance depends rather on the square of the generated wave

amplitudes,

b. The actual problem is three dimensional, and

c. The body shape is neglected.

However, it shows at least that in principle the limiting depth cannot be

expressed as a fraction of the dimensions of the body alone, since it depends

upon the length of the free wave A or the Froude number F.

From practical considerations matters are somewhat different. As

mentioned before, at very high Froude numbers the ratio of wave resistance

to frictional drag is normally very small. Thus the problem of finding an

accurate value of the limiting depth becomes rather unimportant since even

grave errors in computing it do not lead to appreciable errors in the total

resistance.

5. BODIES OF REVOLUTION OF LEAST WAVE RESISTANCE

5.1. TWO-PARAMETER FORMS

In an earlier paper5 endeavors were made to determine distributions

of least resistance for given Froude numbers. The results varied with Froude

numbers and depths of immersion, which is quite natural in the light of such

resistance graphs as represented by Figures 6, 7 and 8.

An important feature is the peculiar "swan neck" form obtained for

higher Froude numbers-equal to and above F = 0.35. Because of the limited

accuracy of these former calculations the problem has been reconsidered here.

The present investigation supports the earlier statements.

The formalism needed is very simple. Some controversy arose as to

how far the application of exact methods of the calculus of variation is

consistent when dealing with surface ships;
5 the results obtained did not
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lead to reasonable ship's forms. However, when we restrict ourselves to fam-

ilies of curves expressed by polynomials with few arbitrary parameters, we

really obtain an ordinary minimum problem and do not need to bother about the

difficulties connected with the application of the calculus of variations.

Take for instance the family (basic form)

77 = 1 - e-a (f2 _ ) - a ( 4 _ ) [341
2 4

with two arbitrary parameters. The wave resistance R is given as a second

degree function in a and a .
2 4

R = 4B a2 + 4B a 2 + 8B aa + 24B a + 24B a + B [35]
22 2 44 4 24 2 4 2 2 4 4

where

B =T1 - 6 + 9k
22 1 15 55

B = 47h - 1271? + 97
44 33 35 55

B = 227 - 37n + 97h - 6Th
24 13 15 55 85

B = n? - 37
2 15 55

B = 2n - 37
4 35 55

B = 3671
0 55

differentiating R partially with respect to a and a , one obtains the min-
2 4

imum conditions

ORO_ = B a + B a + 3B = 0
0a 22 2 24 4 2

2 [36]
BRaR = B a + B a + 3B = 0
aa 24 2 44 4 4

4

whence
3[BB -BB ]

a 2 44 4 24
a =-
2 B B - B2

22 44 24

[37]
3[BB - BB 24]

a = 4 224

4 B B - B2

22 44 24

These equations lead to results which are not applicable to practice

when y = 1 and of restricted interest when y = 2 (f/L is assumed equal to

0.125).
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1.0 f/L = 0.25, 17 1- 11.95f + 31.124 - 20.17 f, 0 2 0.36, t z 20.44

0.8

0
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=0.25

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 23 - Doublet Distribution for Least Resistance,
Two-Parameter Forms, F = 0.408, Y = 3

0

When o = 3 the distributions shown on Figure 23 are obtained. We

note again the difference in the shapes when f/L = 0.125 and f/L = 0.25. Ex-

tending the calculations to o = 4 and o = 5, curves of more and more "rea-

sonable" character are obtained as shown in Figures 24 and 25.

The apparent failure of the theory to yield useful results in some

cases, is often due to lack of suitable conditions imposed. There is no

reason, for instance, to expect a solution which leads to a "normal" prismatic

coefficient if no restrictions as to this coefficient are made. On the con-

trary, it is rather fortunate that one obtains result6 which meet other re-

quirements of practice (i.e., are "reasonable"), without this restriction in

certain ranges of Froude numbers.

5.2. ISOPERIMETRIC PROBLEMS, ONE-PARAMETER FORMS

Introducing a condition 0 = const we obtain an isoperimetric pro-

blem. Then Equation [34] retains only one arbitrary parameter. This can be

w

0 0.1 0.2
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f/L = 0.125, 7 = I- 3.197 2 + 6.667 4 - 4.470e, = 0.628, t = 6.55

f/L=0.25 , ; : I- 4.617 2 + 10.915 4  
- 7.298 6 , $ = 0.601, t = 8.36-

0.0

f 0.1250.6 -

0.4
r 0.25

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.C

Figure 24 - Doublet Distribution for Least Resistance,
Two-Parameter Forms, F = 0.354, 70 = 4

Ito I I 1 14

q = I - 2.447 + 3.461 44 - 2.014 6

10=0.588
t = 3.13

0.8 - 5 0. 25

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 25 - Doublet Distribution for Least Resistance,
Two-Parameter Form, F = 0.316, 7o = 5



interpreted, for example, as Taylor's tangent value t. The resulting equation

is of the type

0 310 4

Here 70 () is a given polynomial complying with the conditi6n 4 = const; its

tangent value t0 may be chosen in such a way that the equation o is as simple

as possible. The function

3[ 2 - 10 4 + = A 7 () [38a]

has the properties:

A 2 7 (1)
1. = -1

2. A2 7 (o) = A27(1) = 0

3. A2 7 (4)d = 0

t' is the variable tangent parameter, the resulting t of the Equation [38]

being obviously t = t' + to .

Assuming = 2/3, 70 = 1 42

61-= -24 - t t' [ -2-4 + 745]

one obtains

R= t '
,2A + 3t'A + 4 [391

OR 9 t'A + 3A =0 [39a]
t' 8 2 1

with
A 400 4 28_ 0

2 33 5 s 3 ~S13 15 - 3 35

A 2 20

1 1 1  -3 1 13 715

hence

8 At = -8A [39b]
2

Another isoperimetric problem is given by t = const and 4 variable.
Although this problem looks somewhat artificial since there are no technical

reasons to keep the tangent of the sectional-area curve rigidly fixed the

Iml
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Figure 26 - Doublet Distribution for Least
One-Parameter Forms, F = 0.408, Yo

Resistance,
=3

Figure 27 - Doublet Distribution for Least Resistance,
One-Parameter Forms, F = 0.408, Yo = 3
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results are interesting. Figures 26 and 27 show that assuming rather differ-

ent t values optimum ship lines with a similar trend may be obtained.

We notice that the optimum area coefficient 0 for a medium depth of

immersion f/L = 0.25 is much higher than for a slight immersion f/L = 0.125.
This might have been inferred from the shift of the resistance curves follow-

ing Figures 6, 7 and 8.
The necessary formalism is again very simple: assuming as before

a curve I o with the fixed t = to value, for example as before, n = 1 - f2

to = 2, and denoting = 0o + o ' ,

7 = 1 -_ 2 + 13.12501( 2 - 24 + 6) [40]

A '7() = 13.125(C 2 - 2 4 + C6) [40a]1

complies with

1. A i(0) = A 7(i) = 0
1 1

2. fA n()d4 = 1

OA17(1 )3 o 1 =3. a =0

from

1 = -2 + 26.250'1 - 4 s + 3C5 ]

we obtain
A'0' = 26.25 A' [11 [41 ]

2

with

A' =n + 16, + 97n - + 67 - 24M
2 11 8 55 13 5 35

A' = 7n 1 47h + 3q

1 11 13 1

6. RESISTANCE CURVES OF THE FAMILY (2, 4, 6; 0; t)

A systematic survey of resistance properties of ship forms can be

obtained by a different approach, i.e., varying the parameters of a given

family of ship lines and plotting the corresponding resistance curves. Re-

stricting ourselves to a two-parameter equation

(2, 4, 6;o; t) = 1 - z an [34]
2,4,6

- 111111 M11111111 ill



Equation [35] can be used for calculating the resistance, or still simpler,

R = 4[a 2 M + 4a 2 
m + 9a 2  + 4a a 74 + 6a a M1 + 12a a 7? ]

2 11 4 33 6 55 2 4 13 2 6 15 46 35

[42]

The parameters a , a and a are connected with the basic form co-
2 4 6

efficientsoand t by the equations

a = 9 - 105 0 +3 t2 8 8

a =-15+2 5- 0- 5 t [43]
44 T

a6 =1 - a - a
2 4

Table 3 contains wave-resistance coefficients r0 for t = 0, I1, 2, 3 and
0.68 > > 0.56 with an interval of At = 0.02 within a range of Froude num-

bers 1 >) F > 0.25 (for t = 0 additionally = 0.50, 0.52, 0.54) at a depth of

immersion ratio f/L = 0.125.

The corresponding curves spaced A0 = 0.04 are shown on Figures 28

to 35 grouped following t and 0. The main purpose of these plots is to dem-

onstrate the dependence of the wave resistance upon t for $ = const; it is

interesting to note that the peak values (of page 24) differ as much as -15
percent for t = 0 and t = 3, in close agreement with results known from stu-

dies of surface ships and the tendency exposed by the minimum calculations.

One should, however, remember that theory tends to overestimate the favorable

interference effects and that viscosity precludes the realization of excessive

angles of run. On the other hand, for very high Froude numbers the relative

importance of asymmetry decreases, so that forms with steep slopes at the bow

and moderate slopes at the stern may be advantageous.

SUMMARY

Using Havelock's basic work and some former investigations by the

present author, a systematic synopsis is made on the wave resistance of bodies

of revolution. Tables evaluated by the Bureau of Standards and graphs are

given which allow the investigator to estimate immediately the wave resistance

of a wide class of bodies of revolution defined by doublet distributions along

the axis expressed by polynomials.

Some discussions refer to the relations between this distribution
p*(4) and the sectional area of the body A*(4). For "normal" shapes of dis-

tribution the usual assumption is made that there is affinity between #*(4)



46

and A*( ). In extreme cases the shape of the body can be calculated by

methods due to Landweber and Amtsberg; no corrections, however, are given for

the influence of the free surface on the shape.

Within the first-order theory the resistance can be split up into

a main part due to a symmetric distribution with respect to the midship sec-

tion and a part due to asymmetry, which can be investigated independently.

Large amounts of asymmetry can influence the resistance detrimentally in

some ranges of the Froude number.

The investigation of the resistance as a function of the body form

leads to conclusions which sometimes are contrary to those derived for sur-

face ships. The choice of appropriate prismatic coefficients varies deci-

sively with the range of the Froude number, as is clearly illustrated by

the numerous graphs. The same applies to the influence of the tangent value

t. Ceteris paribus the resistance is approximately proportional to the

souare of the midship section.

The dependence of the resistance upon the depth of immersion is in-

vestigated; this dependence is best explained by the ratio f/X, where X= 27U 2

g
is the length of the free wave. Thus for common prismatic coefficients the

wave resistance decreases rapidly with increasing f except in the range of

high Froude numbers (large Xvalues). In the range of high F the calculation

of forms (distributions) of least resistance leads sometimes to results bare

of practical applicability; by introducing suitable restrictions such diffi-

culties are avoided. These investigations show important peculiarities of

the distributions.

A set of resistance diagrams calculated for the family (2,4,6;0;t)

gives a survey of the resistance properties of a class of normal bodies.
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APPENDIX I

APPROXIMATE CALCULATION OF THE SURFACE S OF
A CLASS OF ELONGATED BODIES OF REVOLUTION

From Guldin's rule

S = 27r yds = 27r +ay + (y,)2 dx
f f-

a

S = 27 ydx+ y y2 dx = 7 Am + r y y, 2 dx [29]
a a m a

the main part of the surface is given by r times area of the meridian section

Am plus a correction term neglecting higher order terms.

With y = bH

b OH
a Of

the correction term becomes

7 +ay y' 2 dx = rab b 2  + H -,H)2 d =rab b-21 [30]
faj dx2 f_ i d9 b2-a a a2

i.e., the correction term is equal to the area of an ellipse with the axes

a, b multiplied by the square of the elongation ratio and a numerical value

I dependent upon the equation of the curve. To get an idea, with obvious

denotations,

12 = 16/15 H = 1 - f2

I = 128/77 H = 1 - 4
4

2n s  H n
In- (2n-1) (3n-1)

The next term in the expansion of S

7r +,a 7rab b4 +-11
a y y' dx =b f 1HH'4d [31]

with H' = OH/Of is obviously of the order b4/a 4 . However, taking H = 1 -

the factor
-I 2n5

SHH'4 d = K = (n3)(5n3)

grows with n3 when n is large. Provided b/a is not too small, say -1/7, the

error in neglecting all terms except the first (Equation [29]) is only per-

missible as long as n < -5.
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Using Equation [30], various changes in S can be easily estimated

within the range of validity of the formula. For instance, the influence of

an asymmetric term can be discussed as follows:

Ht = Hs + Ha

+1 +1 +1
=is (H + Ha)(Hs + Ha)2 d = I+ HsHt2d + HaHsHa d4

[32]

Where Is refers to the even part following [30]. When the meridian

curve has vertical tangents at the bow and stern (or bow or stern) the pre-

ceding reasoning can be applied in principle to a range 1 - EF > >-(1 - EA),

and the remainder is calculated as the surface area of a segment of the

sphere generated by the radius of curvature at the nose or stern. Such an

approach is, however, only usefal when the integrals involved are of simple

type.
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APPENDIX II

EVALUATION OF THE AUXILIARIES INTEGRALS*

The integral to be computed is given by:

0 0 _ke (7/v'o) 2

ij= I = C0 e o 2 Mi(Y)M (y)dy15 o oo) -1

The functions e Yo and Mi(Y)Mj(y) are well-behaved in the entire interval of

integration. However, the algebraic function (y/y0o)/ o(/)2-1 causes some

difficulty at the lower limit of integration, i.e., at y = v . In the neigh-

borhood of y = y0 , the contribution of I is far from negligible and therefore

an investigation was carried out to determine the asymptotic behavior of the

integral as a function of the upper limit. Specifically, the following func-

tion was examined:

I(e) = of "+) M(y)f(y)dy e > 0
0

where _k Y

M(y) = e 'o Mi(Y)Mj(y)

and
f(Y) )2

Y(y/v0 )2_1

It was found that:

I(e) e-kyo M ()M (v) Y v {1 + 72+ 0(2)}

This asymptotic expression was used to determine the interval of

integration, Ay fdr a numerical integration. This interval was too small to

be practicable, even allowing for subsequent changes in Ay.

A new approach to the problem was sought in a suitable transforma-

tion. The following transformation very quickly presented itself:

7 = Z2 +y

dy = 2Z dZ

The original integral was transformed as given by:

*By J. Blum, National Bureau of Standards



2 k (Z2+ ,Y) (z 2 + o )20e-Y0 0- M i ()Mji(Y) (Z2 + Y 0) dZ
YO !/Z +2 YO

In this form, the integrand behaves properly, (there is no longer

a singularity at y = y ) and the integral converges rapidly.

The integral was actually computed by using the form in [5]. The

numerical integration was performed once using Simpson's rule and a second

time using the trapezoidal rule-for checking purposes. The interval AZ was

taken as 0.1 and the range extended from 0.0 to approximately 3.5. The M

functions were computed from previous tables by using 4-point Lagrangian in-

terpolation. The exponential function was computed from tables and the use

of the approximation e-x = 1 - x + x2/2, x < 0.01. The algebraic function

in the integrand was computed in straight form and fashion. All of this work

was done on the IBM electronic calculator (type 604) and the auxiliary IBM

punch card equipment. All the IBM operations were checked-independently

wherever possible.
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TABLE 2

Resistance Coefficients ros, roa, r o and cw of the

Four TMB Models I, II, III, IV; see Figures 14 and 15

Yo ros r oa rcw

f/L = 0.125 Model I

.5 0.29452 0.0104 0.3049 0.001409

1.0 .48255 .0328 .5153 .004761

1.5 .54304 .0594 .6024 .008349

2.0 .48218 .0817 .5639 .01042

2.5 .34676 .0918 .4386 .01013

3.0 .20136 .0859 .2873 .007964

3.5 .09112 .0669 .1580 .005110

4.0 .02937 .0428 .0722 .002669

4.5 .00572 .0217 .0274 .001131

5.0 .00184 .0081 .0099 .000457

5.5 .00335 .0020 .0054 .000274

6.0 .00370 .0007 .0044 .000246

6.5 .00244 .0012 .0036 .000216

7.0 0.00096 o.ooi6

f/L = 0.125 Model II

.5 0.32962 0.006262 0.335882 0.001478

1.0 .53257 .019503 .552073 .004858

1.5 .58729 .034835 .622125 .008211

2.0 .50553 .047328 .552858 .009729

2.5 .34728 .052235 .399515 .008788

3.0 .18718 .047648 .234828 .006199

3.5 .07449 .035789 .110279 .003396

4.0 .01955 .021718 .041268 .001452

4.5 .00552 .010117 .015637 .000619

5.0 .00855 .003285 .011835 .000521

5.5 .01212 .000792 .012912 .000625

6.0 .01oio86 .000731 .011591 .000612

6.5 .00657 .001227 .007797 .000ooo446

7.0 0.00261 0.001340 0.003950 0.000243

f/L = 0.25 Model I

.5 0.0q3464 o.o0018 0.0952 0.000440

1.0 .158660 .o0066 .1652 .001526

1.5 .163934 .0127 .1766 .002448

2.0 .125729 .0167 .1424 .0026321

2.5 .075703 .0168 .0925 .002137

3.0 .036196 .0134 .0495 .001372

3.5 .013347 .0088 .0221 .000715

4.0 0.003449 0.0046 0.0o080 0.000296

f/L = 0.25 Model II

.5 0.105547 0.001054 0.io66oi01 0.0004690

1.0 .177413 .003961 .181374 .0015959

1.5 .180062 .007542 .187604 .0024760

2.0 .134025 .009821 .143846 .0025315

2.5 .077166 .009683 .086849 .0019105

3.0 .034261 .007564 .041825 .0011041

3.5 .o11oo6 .004751 .015757 .0004853

4.0 0.002118 0.002371 0.004389 0.0001545

f/L = 0.5 Model I

•5 0.025894

1.0 .033468

1.5 .023467

2.0 .011701

2.5 .004499

3.0 .001366

3.5 .000319

4.0 0.000052

f/L = 0.5 Model II

.5 0.029348 0.000207 0.029555 10.0001 300
1.0 .037590 .000597 .038187 .0003360

1.5 .025958 .ooo868 .026826 .0003541

2.0 .012605 .000787 .013392 .0002357

2.5 .004650 .000513 .005163 .0001136

3.0 .001315 .000259 .001574 .0000415

3.5 .000269 .000104 .000373 .0000115

4.0 0.000033 0.000033 0.0000oooo66 0.0000023

YO ros roa r Cw

f/L = 0.125 Model III

.5 0.36498 0.002771 0.36775 0.001559

1 .0 .58143 .009204 .59063 .005o006

1.5 .63080 .016713 .64751 .008232

2.0 .52910 .022700 .55180 .009354

2.5 .34891 .024644 .37355 .007916

3.0 .17596 .021705 .19767 .005026

3.5 .06278 .015373 .07815 .002318

4.0 .01623 .008461 .02469 .000837

4.5 .01234 .003367 .01571 .000601oi

5.0 .02159 .000940 .02253 .000955

5.5 .02589 .000562 .02645 .001233

6.0 .02129 .000997 .02229 .001134

6.5 .01252 .001286 .01381 .000761

7.0 0.00500 .oo1118 0.00612 0.000363

f/L = 0.125 Model IV

.5 0.40102 0.001320 0.40234 o.bo001643

1.0 .62996 .003790 .63375 .005192

1.5 .67440 .006386 .68079 .008367

2.0 .55349 .008096 .56159 .009202

2.5 .35194 .oo8092 .36003 .007374

3.0 .16756 .006369 .17393 .004275

3.5 .05549 .003822 .05931 .001707

4.0 .01863 .001 663 .02029 .000ooo665
4.5 .02534 .000632 .02597 .000956

5.0 .04020 .000668 .04087 .001674

5.5 .04408 .001156 .04524 .002039
6.0 .03429 .001473 .03576 .001758

6.5 .02006 .001343 .02140 .001140

7.0 0.00803 0.000912 0.00894 0.000513

f/L = 0.25 Model III

.5 0.117864 0.000380 0.118244 0.0005011

1.0 .196046 .001796 .197842 .0016769

1.5 .195792 .003625 .199417 .0025354

2.0 .142235 .004787 .147022 .0024923

2.5 .078642 .004667 .083309 .0017653

3.0 .032522 .003527 .036049 .0009167

3.5 .009079 .002087 .0111oii66 .0003312

4.0 0.001301 0.000941 0.002242 0.0000760

f/L = 0.25 Model IV

.5 0.130528 0.000229 0.130757 0.0005356

1.0 .214810 .000823 .215633 .0017667

1.5 .211405 .001496 .212901 .0026164

2.0 .150538 .001820 .152358 .0024964

2.5 .080224 .001621 .081845 .0016764

3.0 .030993 .001ooio86 .032079 .0007884

3.5 .007526 .000532 .008058 .0002311

4.0 0.000940 0.000173 0.001113 0.0000365

f/L = 0.5 Model III

.5 0.032826 0.000052 0.032878 0.0001393

1.0 .041753 .000254 .042007 .0003561

1.5 .028431 .000413 .028844 .0003667

2.0 .013493 .000385 .013878 .0002353

2.5 .004794 .000250 .005044 .0001 069

3.0 .001267 .000122 .001389 .0000353

3.5 .000226 .000046 .000272 .0000081

4.0 0.000010 0.000013 0.000023 O.0000008

f/L = 0.5 Model IV

.5 0.036364 0.000037 0.036401 0.0001491
I.0 .046002 .0001 28 .0461 30 . 0003779

1.5 .030924 .000178 .031102 .0003822

2.0 .014384 .000151 .014535 .0002382

2.5 .004938 .000090 .005028 .0001030

3.0 .001223 .000039 .001262 .0000310

3.5 .000188 .000012 .000200 .0000057

4.0 0.000010 0.000003 0.000013 0.0000004
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