

1. MODEI. The model, $1 / 16$ scele, furnished by the Iockheed Airareft Co., Burbank, Celifornia. Ming flof ts were mounter on wing strbs in such menner the their rosition could be varied both verticelly ant horizontelly. The floet axreneement is shown in the photograph annended.
2. TMST DATA.

As Amphtibian
Gross Load Fodel 2.025 lbs., F.S. 8500 Ibs.
Getaway speq " \quad : 23.24 knote F.S. 61 F.P. H.
As Flying Boat
Gross Load Model ?.383 lbs., F.S. 10,000 lbs.
Getaway sfeed " 15.19 knots T.S. 7OM.T. T.
Center of gravity as rer rlan Mo. 7-XH-1. Corres onding trim by exreriment 2.1° by stern as amphibian, 2.0° br the stern as Plying 30at。

Tow roint and nivot st the C.G.
Losdet any sreed equals gross losd minus lift ruplien.
Lift eprilien, $y=$ for $^{2}, \quad " f "$ heing Aetermined from the known valne of "y" et the petaway sreed and gsanmed constent for other sreas, no correction being arplien for terietion in trim.

No correction mede for lift or areg effect of the wing stubs.

The lift wes errlied antometioelly by meang of a vane towed under water independent of the model but attached to snme through overhead pulley. The vane wes calibrated before the test and set to exebt a pull downward at the getaway speed
ocusl to the gross lopd et rest. At intermediate speens the lift varied as the equafe of the reed.
3. NATURE OF TEST.
(a) Free to trim, model uncontrolled, free to assume ne turel trim when under wey - De to bteined for curves of resistance, trim, and ohnge of dfryt $\forall s$ apeed.
(b) fixeत trim, model controllan underway - Dats obtainad for enves of resistonee, ptohing menents, and orence of dreft, *s syef. By fitching moment is maant the eqomt of eantrol necessary to muintain the angle of trim selectea,
(c) Stability - Date obte fnef for curves of ript ting moments vs fingle of trim and roll, zoro sfeen. Curves of G.M. derived from momont orrves.
4. TESTS.

Tests I to 7 inclnsive were preliminary, to determine the rosition to set the side floats for the min tegts. The rosition indicrteत bo the linas scriber on the model was taken as a reference for the several varistions tried. In each case the water Ine or the float was kert farallel to the sssumed yosition.

1. Iest 1 with side flosts in the essumet rosition showe the nead 0 extending the grroy stripe sft to the step. A. bliater from the mein hull lay yed up egsinst the under side of tra ine et spees of 5 and 5.5 knots. The side flonts were ce tching 9 lot of surey from the mein hull. At these speens the sry wis lesving the hull ebeft the brass strips. At lower gyeeds they were very effective.
2. Test 2 was identical with 1 except that the conventional tyoe of srrey strip was put on the model, extending from the hrass atrips to the step. This caused a slight increase in resistance at the hump but a decided improvement in spray conditions, the wing floats being clean and the blister below the wing.
3. In test 3 the floats were doing very little work being too high out of the water.

4 \& 5. Submerging the floats deeper resulted in a small refuction in resistance whers the models is getting up on the step but at lower syeeds the flos were wetter, in test 5 the float throwing up a wave thet almost reache $\begin{gathered}\text { a the wing. }\end{gathered}$
6. Test 6 with the floats moved forwerd geve results very similer to teat 2.
7. In test 7 the iloets were too far aft, the nose being rimht sloppy due to waves from the main hull.

As an amrhibian the floats could be locatei vertically as in test 4 if deaired, though the assumed rosition is considered the better. As boat hull it is not adviseble to submerge the floats deeper then test 2 . The floats could be moved forward as much as for test 6 without any detrimental effect.
5. The general performance of the model was better as an emphibian then as a flying boat. On the latter test the blister at hump speeds rose apgingt the under side of the wing at speeds between 4.5 and 5.75 knots. Just prior to the petaway the increase in resistance is due to sprey from the step larping up against the chine just abaft the step. The step is a little

Shellow for begt results at high speeds.
The general efficiency of the hull could be imroved by locsting the step further aft, about 2 ft . full size. $1-1 / 2$ inches on the model. The present length of water line forwerd of the step is only obout 50 percent of the totgl length which 18 not long enough for best results at hump speeis. A step 3 inches deep is suggested for this fore and aft nosition. The profortion of totel water line length to beam is about rieht.

There wes a little tendency to rorroise at syeads around 5 knots but the controls in the full size plane should reedily damren it out.

Wr. Fohy was present and took pictures तuring the test at the hervier loading which should aive you an idee of the rerformance at hump speeds.

REPORT NO. 221 SHEET I

