APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

PLCGP. 349
Gcuthantia?

COPYNO. 2 G345
Hemorancun $H-108$ changed to $\mathrm{Im}-1$

Face 2 of 27

Froject Wivilwind Servorochanisns Laborstory Hassachusetts Institute of Technology Uembridge, Massachugettis

This cocurrent contains infrmation aflecting the natoial detenco ef tho United States wiltia the mearirg cf the Ejaiconare Att, 50 U. S. C., 31 ard 32 . its transmiss on or the revelation of its contents ia ary manner te an unauthorized person is prohi,bited by lave.

SUHVDCT: DIGITAL COHPURATTON YOR AVGI--SUBMARI NE PRORLZM
To: Director, Special Derices Center
Erom: $\quad \mathcal{A} y \mathrm{~W}$. Forrester and Hobort R. Everett
Date: October 1, 1947

As an illugtration of the use of digital computers es control and gimulation devices, we have made a brief study of a simplified version of the anti-subnarine problsm. The objectite of this study has been to estimnte the storage copacity and compubing time ranulred in a digital machine and no serious atiompt has vern made to ashieve completoness or eccurecy. Examplos are for ths purpose ol illustration only. Coding for the control of a surface ship has :een worked ou: in some detatl and the results extreppleter to the cale of the submarine. Relative radar positions of one sutface creft with respect to each other surfece craft have been cooed undig a straighiforward but vary inefficient method. The rader resulten havo heen axtrepolated to tha sonar problam. Both the rader and sctar codes repr: sent substantially more computation than wollid probsbly bo used in a large probien. Surface ships hevo been provided oth two types of depth charges. Computing programe have been esilmatel far charges wilh pre-set depthe as well as charges with proximity-fuses
S.bmarines in this particular exrmpls have been provided with no prrtment and oni.y with sonar for comunication and infurmation gathering wion below the surface and with the aded poesibility of radar data then on the urface.

Storage capacity and computing spaed are compnzed hi th the Whirluind I tigitel computer, and it is shown that for the simplified problem eelented, the whrlwind I computer is antirely adequato for e problem involving 20 ships, 5 submarines, interconnecting rade: and sonar data, and depth charges in any number up to 20 pre-set uaite nat 20 proximitynfise units in the water at one tive.

SUAPAix: In evaluating any simulation problen, it is Imperative that tio $11 m^{\prime}$.tationg of the particular forms of similation are understood. here ure very iew liritintions imposed on the

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
UNCLLASSIFIED
$-2-$
gimulation problem by a digitel computer except those dictated hy the storage capacity of the mochine and the avelleble computing ilme.

For the purposes of this example, a destroyer is illustrated in Figo i. The controls and indicators in this sketch represent the only facilities available to the destroyer personnel. It will be noted In Fig . 2 that controls are available for Euder posilion, propeller rop.m. and copth charge release and depthateting. Indicators are available for beentiti, ship's speed, rader data, sonar data, letitude, longitude, rudder position, and propeller $x_{\circ} p_{0} \mathrm{I}_{\circ}$. As sot up in this oxample, no other features ace avelleble in the destroyer, and exteneion to computation of depth charge release point or for more roallstic gimulation of the destroyer or data presentation will require additional computing progran and computing time.

The submarine in this example would have available the controls for epead, turn and cilmio angle and Indicators for radar and sonar information.

In the following table storage is celculated in numbers of registers, of which there will be approximately 2000 in the Whirluind i computer. The table is a summary of the storage registers and computing time for the different elements boing zimulated. A computation time of 20 mlcrosecond e for each control order is assumed, and the numerical ralues are cerived from the programs and sketches toward the end of this menorandum.

		Program Storege Reashors	Data Reghatera	Storage Hegistors for _oach undt	$\begin{gathered} \text { Computing t1m3 } \\ \text { per } \\ \text { punt } \\ \hline \end{gathered}$
1.	Ship Fosition	100	100	10	2 m1111s30
2.	Subrarine Position	(100*	30	12	m1111s90
3.	Relative Radar Positions	740	10	-	0.5n mil11 3eo
4.	Relative Sonar Fositions	30**	20	-	1.On millisec
5.	Dre-se\% Depth Charge	220	100	6	m1111 soc
6.	Proximity Depth Charge	260	100	8	2 millisec
		750	350		

* In addition to the ghip program which would be used for submarines also.
s* In addation to the radar program which would be used for soner elso.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Memorandum M-108 changed to $\mathrm{I}=1$.

- 3-

It will be obsorved from the firat line of the table that approximately one hundred control orders are required for calculating the X-position, the Y-position, the bearing, and the speed of a ship, and in sddition the correction of these control orders for computation of the next ship. Data necessary in the ship computation will require approximately one hundrad registers for coefficiente, index numbers, and a table of sine and cosine values. The progran and data etorage if required only once regardless of the number of ships employed in the problen.

In addition to program storage, each ah1p will require some 10 atorage reglstars for storage of sh1p's beexing, spoed, X coordinate (longitude), Y coordinate (latitude), turn rate, number of depth charges remeining, demage, oto.

From the last entry of the first line, 2 milliseconde are required for calculating the preceding data about a single ahip.

Submarine information in the second line has been estimatod to require abcut one hundred control orders in addition to those used. for ships. A ship program would be used for finding X and Y coordinates of the submarine. Additional orders would be ueod for calculating depth and for the necessery indoxing orders. Additionel data storage of nbout 30 entrios would be requifrad and oach submarine might require 12 atorage registers for retaining baring pltch, speed, X coordinate, Y coordinste, depth, turn rate, pitch rate, and damage. Computing time is estimated at 4 milliseconde per submarine.

A Nelative rader positions for this example has been set up on a rather inefficient basis. As programmed, it requires 40 control orders, 10 data storage ragisters, no storage for asch individual ship since this date is avallable in the ahlp storage, and a computing time at esch ship equal to $1 / 2$ millisecond times the total number of ehips. Soner information is estimated on a aimilar basis.

This control code is establlshed on the basis that redar and soner scopes will write targets at random times and in randor order and will not sweep in the normal radial fachion. Additional equipmont would be required for production of radial ecops stroep.

Computing programs for depth chargen include automatic selection of any targets within range as woll as calculation of damage according to a table of tabular entries.

Prozimity and damage computation take into account tho cylindrical shape of the submarine. Calculation of pre-set depth charges will require a progran of about 220 entries, a table of data of 100

UNCLASSIFIED

6345
Memorandum M-108 changed to Im2

- 4-
entries, and a storage of 6 entries for each depth charge which has been launched and which has not yet exploded. An average computing time of l/2 millisecond will be required for aach depth charge which is atill sinking. More storage for program and substantially more computing time is required for the proximity-fuge depth charge because the firing location cannot be predicted ahead of time but must be continually examined for proximity of a target.

The tabulation ${ }^{\prime}$ indicates that 750 program orders would be required and about 350 data entries. Setting up the problem, therafore, requires 1100 of the available 2000 storage registers. The remaining storage registers are therefore avallable for storing the data of individual ahips, aubmarines, and depth charges.

The table below ehows the storage requirement and computing time for a tactical problem involving 10 ghips, 5 submarines, and, at any one time, 20 pre-set depth oharges, and 20 proximity depth charges having the characteristics sumarized previousliy. If such s problem were set up on the Whiriwind I computer which has a 16 binary digit register length, all quantities would be used at this register length except for latitude and longitude which will require more senaitivity and which would be calculated to 32 binary digits or approximately 10 docimal places.

Units	Storaca	$\begin{gathered} \text { Computing } \\ \text { T1ma } \\ \hline \end{gathered}$
10 shtps	100	20 millis saconde
5 submarines	60.	$20-$
20 pre-set depth charges	120	10
20 prodmity depth cherges	160	40
Hedar	-	50
Sonar	-	125
Total	420	265 milliseconds
Prograin and Data	1100	$\underline{\square}$
Total	1540 registers	0.26 second

It will be seen from the tabulation that the proposed problem will require 1540 storage registers of the availablo 2000 and will require a computation time of approximately $1 / 4$ second. The assumption has been made in this tabulation that depth charge positions will be calculated at twice the irequency of shlp and aubmarine positions. In other words, the poeltion of each ship and submerine will be calculated each quarter second and the position of each depth charge, each $1 / 8$ seoond. This computation frequency is probably four times as high as necessary.

DIMALIS OF COMPUTING PROGRAMS: FMgure 2 illustrates the general

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Momorandua M - 108 changed to L-1.
$-5=$
procedure in solving the control and almaletion computation under conalderation. Boginning at the point marked "atart", the new poultion of the first ship is computed, based on aradilabie data regarding 1 ts provious position and 1 te speed and beanine during the previous time interval. After computation is complete for the first ship, the control orders are indexed to the position of the gecond ship and the same progrean of computation is rēpéáteă for the second ship. Repetitions of this computing program are continued until all ships have been calculated, after which a conditional program order transfera the computing operation to loop 2 for submarine position. New positions of all submarines are likewise caloulated, and the control is shifted to the program for radar relative locations in which each ship is positionod uith respeot to every other ahip and the proper data fed to a radar acope. Computation of relative sonar positions are then calculated and control is ahipted to the computing operations required for depth charge location, evaluation, and danege computation. For the problem of 10 ahips and 5 submarines, this computing program requires about $1 / 4$ eecond aftor which control is roturned to the beginning end the entire cyole and all subcycles aro repeated.

Mgure 3 has shown the overall approach to the compueation problem with the major and first minor cycles of computation shown. We will now exanine in more detail the computations indicated in the box marked "Ship Position" and the loop 1 circuit. Mgure 3 ehows the steps required in computing ship position. From the start order, we first calculate a now X (longitude) poeition for the ship, continue to a Y (latituda) position, then calculate a nev bearing and finally a nov ship's speed. At this point, a choice or comparison must bo made by means of a conditional progras order to determine whether or not all ahip positions have been calculated. If all positions have been calculsted, control is shifted to the submarine cycle. If all positions have not been colculated, the control orders are indexed to a new ship leeation and the cycle anptet for enother surface shlp.
gone theorsh
We can now consider in still more detail the exact computer control operations required in each of the boxes indicated in Fig. 3 . Before doing this, a definition of flow diagran symbols and a dofinition of computer control operations will be required. The following computer control operations taken from the Whirlwind I Computer 3lock Diagram Report No. 8-127 by Everett and Swain are included. It is probable that Report R-127 must be studied before the remainder of this memorandum can be effectively understood. A discussion to follow presumes an understanding of the basic computer operations and how they are handled.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345

UNCLASSIFIED

Menorandum M-108 changed to $L=1$

- 6 -

Symbols	
AC	"Accumulator" ragister of Art thmetic in emeat
AR	"Am-Register" of Arithnotic Klement
BR	"B-Registar" of Arithmotic Mlement
$\mathrm{S}(\mathrm{x})$	Storage Register x, where x is identifying number of the storage register to be used in the computing opsration.

Operation Code Dosignation
 Desoription
 Meaning

ca
$a c$.

su
$m r$
mh
dv
ts
er:
clear and add.

Add.

Clear and Subtract.

Subtract.

> Multiply and round off.

Multiply and hold full product.

Divide.

Trangfer to Storago.

Shift right.

Clear AC and add the contents of repister: $S(x)$ into it.

Add the contents of register $S(x)$ to whatever $1: 2$ already in $A C$.

Clear AC and subtract the contents of register $S(x)$ into 1t.

Subtract the contents of reglster $S(x)$ from whatevor is alreedy in $A O$.

Multiply the contents of register $S(x)$ by whatever is in AC and round off the result to one regl ster length。

Multiply the contents of register $S(x)$ by whatever is in AS but do not round ort.

Divide the contents of AC by What over is in register $\mathrm{S}(\mathrm{x})$ 。

Transfer the contents of AC to reghater $S(x)$.

Shlft the contents of $A C$ and $B R$ to the right the number of digits designatad by the number In the register number section 1 the ardar.

UNCLASSIFIED
6345
Memorandum $\mathrm{M}-108$ chenged to $\mathrm{L}-1$
－7－

Operation Code Dogienation
s．

81
op
td
tx
Deacription
Shift left．
Subprogram
Conditional
Yrogram

Tranafor digits．

Transfer oxternally．

Mean！ng
Shlet the contents of $A C$ and 7 娟 to the left the number of digits designated by the number in the register section of the order．

Transfer the register number $S(x)$ to the progrem counter．

Tranefer the reginter number $\mathrm{S}(\mathrm{x})$ to the progrem counter if the number in $A C$ is non－ negative。

Transfer the left－hand 11 digits in $A C$ to the register position section of the order in $S(x)$ ．

Similar to ts except that the transfer is made to a location external to the computer．These external locationg are 1dentified by register numbers as are storage reghaters．

Mgure 4 illustrates the gymbols to be used in the detailed flow diegrame thnt follow．

In Fig．4a we have a symbol indicating that orders 1 and 3 have been exeouted by the computer．In ceneral the circle may be thought of as representing the arithmetic element of the computer．In 7igo 4 b is ahom a storage register as a rectangle with the register identification number in orackets beneath．Text in the box 18 descriptive of the quanisty being storsd．Dotted lines extend to and from storage boxes to avoid con－ fusion with flow lines in the computations which are shown solid．Fisure 4c shows a syabol indicatizg traneltion from one computing operation to the next but without transfer of numerical quantities residing in the arithmetic elewont．Double lines of $\mathrm{H}^{\prime} \mathrm{C}$ ．4d 21 kew se lead to the next operation but indicate that numerical values of the previous computation are carried over into the next cycle．The syabol for a conditional subprogram is shown in 否g．40 where a choice in computing paths in available．The choice of alternate output channels is made on the basis of positive or negative numbers in the arithmetic element．The broken ling of Fig． 41 is uged where necessary to indicate the source of a control

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

Cumen

UNCLASSIFIED
6345
Nemorandum Mol08 chenged to $\mathrm{L}=2$

T $\gg 8$
$+8=$
order. In this memorandum such indfcation is necessary only as a result of the digit transfer order tid where the computer generatos lis own control orders. A transfer operntion is show in Fig. ig where operatione I and i tranefer a number from reglster 276 to the erlthmetic element and thence to repister 47. Operations involving incoming arrova always take place before operatione involving outgoing arrows. A more complicnted operation is show in Fig. 4h. A number rosulting from tho previous operation 1s added by order 1 to the number in rep, ister 49 and the resulting sum is stored in register 88 . The result of this computation is not used in the next operation as indicated by the oingle flow line leading from the operation circle. A still more compliented. sequence is illuatrated in Pig. 41. Nunerical valuns are not retained from the previous operation, ad represente al add order oarried out by operations 1 and 2 bringing the contents of ragisters 27 and 63 into the arithrietic element and storing the resuit in register 90 . The sum residing in the arithmetic element after thie operation is used os the basis of e conditional subprogram as represented by the triangle. A negative number in the arithmetic element results in continuation of the program through orders 4 and 5 while a positive number in the arithnotic element trensfers the control to sorne other order, for ezample, 28. A td operation involving transfer of dighta such as night be required in interpolation is ghown in $\mathrm{H}_{\mathrm{g}} \mathrm{G}$. j 。 Orders 1 and 2 add the contents of ragisters 99 and 143 and transfer the left-hand or register identification digits to register 4. In this case the order constructed by operation 3 is used immediately as operation 4 , for extracting a value from a series of stored functions here referred to as a table of sines. The value of the sing is then carried over to the next operation.

W4 gure 5 is a detailed operetion-by-operation flow diagran for the X-position computation indioated in the ship oycle calculation of F_{g} 。 3.

The following equations are solved to obtain the nev X coordinate for the ship.

(Rate in X) (Solution time Intervai.) $=$ Increment in X -position
(X Increment) + (01d X-position) $=$ new X-Position 2

The first twalve operations are requirad for obtaining the gine of the ship's bartag angle. Operation 13 multiplies sine bearing by ship's speed. Operation 14 multiplies this quantity by the solution tine intervel. to obtain the increment in X-position. Operation 25 adds the old X-position to obtain the new X-position. Operations 16 and 27 tranemit the now X-poeition to the sterage and to the externel indicator at the deatroyer control.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

 UNCLASSIFIED

6345
Memorandun M-108 changed to $\mathrm{L}-1$

Order numbers in the following tabulation egree with tho 3 on the flow diagrams

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Memorandum M-109 changed to L-1 - 10 -

A similar computing program is followed for calculating the
ate) -position of the ship,
$Y(10$ (5)
Figure 6 illustrates the computing flow diagram for the
\% calculation of turn rate and shan in of the chip. B quine of s ship is calculated as a double exponential function in which the ship exilbits an exponential approach to the steady state turn rate and in which the turn rate is integrated to obtain the new ship's needinise The exponential and integrations are approximated by straight line segments of the curves. The following equations ere solved for turn rate and besinim:

$$
\begin{aligned}
& (T R)_{S S}=D_{R}[(X \times \text { speed })+(B \times R M M)] \\
& \left.(T H)_{1}=(T R)_{0}+\text { (constant }\right) \quad\left[(T R)_{S S}-(T R)_{2}\right] \\
& (\text { Cymene })_{1}=(\text { Course })_{0}+(\text { constant })(\text { IR })_{1} \\
& \text { and pubden position (right Mnden berg poitit }
\end{aligned}
$$

The first equation defines the steady state turn rate as a function of speed, propeller RPM, The second equation sets the new turn rate at the old turning rate plus a constant times the difference between the old rate end the steady state rate. Equation three defines the ship "s

 the order fabulation-beiow

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Memorandum M-103 changod to Lm.

Oxder Number	Registor Numbor	Operation	Description
1	$\mathrm{s}(\mathrm{C}+1)$	ca	These orders store the
2	261	mr	product A times the
3	100	ta	speed in register 200.
4	s (c) x	ca	We obtain the product B
5	262	mr	times RPM,
6	100	ad	The quantity Atimes speed is acided.
7	$s(0+1) x$	mr	Result of the previous computation is multiplied by rudder position to oitaln stesdy state turn rate.
8	$\mathrm{s}(\mathrm{C}+4)$	su	Od turn rete is subtreoted.
9	263	$m \mathrm{r}$	Difference is multiplied by oxponential constant to give increment in turn rate.
10	S $(C+4)$ $S(C+4)$	ad	Old turn rate is added to
12	259	mr	The new turn rate is multipliou by the solution timo interval factor to obtein bearing increment.
13	S(c)	ed	Bearing increment is added
14	S(c)	\%	to old bearing position to

Computation now proceeds to the calculation of ship ${ }^{1} \mathrm{~s}$ speed.
Mgure 7 show the computation flow diagram for calculating ahip's speed and also the comparison necessary to determine if all ship's positions havj been completed and the alteration orders necessary for indering the ship computation progran to the next ship position. The representation for ship speed has beon taken as an exponential approach to 1 ts steady state value. The following equations have been assumed:

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
Hemorandum $\mathrm{M}-108$ changed tw $\mathrm{L}=1$ - 12 =

$$
\begin{aligned}
& \text { Spoed }_{\text {SS }}=C(\text { LKM })-D(\text { absolute Value of Morn Fate }) \text { (Speed) } \\
& \text { Spoed }_{2}=\text { ppeed }{ }_{0}+(\text { Constant })\left(\text { Speed } \text { SS }- \text { Speed }_{0}\right)
\end{aligned}
$$

The following orders are required for calculation of epeed:

Order lumber	Replater Number	Operation	Description
1	$\mathrm{s}(\mathrm{C}+1)$	ca	These orders reult in the
2	$\mathrm{S}(\mathrm{C}+4)$	5	storoge of aunntity D
3	264	mr	times turn rate timen
4	100	ts	speed.
5	265	ca	These orders result in
6	$\mathrm{s}(0) \mathrm{x}$	mr	the quantity C trmes RPM 。
7	100	ธu	This subtract order produces the steady state speed t1me.
8	$s(C+1)$	su	Subtracte the previous ehip's speed.
9	266	I2P	Nultiplies by the exponential. constant
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & s(c+1) \\ & s(c+1) \end{aligned}$	$\begin{aligned} & \mathrm{ed} \\ & \mathrm{ts} \end{aligned}$	Result in now ship"s speed.
12	267	ca	These orders edd to the
13	268	ed	Inder location of the
14	368	ts	ship under consideration the difference or interval in storage required to reach the next ghip storage
			location. The new index is stored in ship index register 268.

We next compars the new ship index number with the maxlmm number of ahipa being congldered to see if the computation has yet reached the last ship in the serles.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
UNCLASSIFIED
Hemorandum M-108 chenged to $\mathrm{L}-1$

- 13 -

Oxder Number Replster Number Operation Degcription
15
269
gu

16
271
ad
Subtrect maximun number of ghipa.

Compare to aee 11 number in arithretic element is positive or negative.

Abstract

Alternate programs in the above comparison lead either to the gubmarine program, if all ehips have beon considered, or back to the boginning of the ship computation cycle after the required correction of control. ordere. If all shipe have been considered, the ship inder number must be resot to the first ship before continuing with the submarine program. This is accomplished in orders 17 end 18. | 17 | 273 | td |
| :--- | :--- | :--- |
| 18 | 271 | td |

This tranafors firet ahip index number from reglstor 270 to register number 268.

Asouming now that the new location and bearing and gpeed have not boen computed for all ahips, we follow the other alternate leading to a new order sequence arbitrarily ohosen as boginning at 126. In the following set of operations, the ship index number from register 268 is transforred into the operation control orders for the previous sequence. Por exemple, referring back to the oxiers for calculating the X location of the ship, the number $S(C)$ nuet be substituced into orders 1 and 17 and into corregponding locations of the other control cycles.

126	268	C8	Transfore sin1p 2ndex number to arthmetic element.
127 to 133		tc	mranafers numbers $S(0)$ to control order location, such as orders I and 17 10 the progran for X location.
134	371	ad	Adds 1 to ship index number.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345
UNCLASSIFIED
Mamorandum K -108 changed to Lol
-14

Qxdor Number
Regiater Number
Operation

135 to 142
td

Description

Transfer number to all program ordors requiring $\mathbf{s}(\mathrm{C}+1)$ euch as order 23 of X location program.

Orders 243, 146, and 149 index in a sinilar manner to the numbern $S(c+2), S(c+3)$ and $S(c+4)$ and plece these order numbers in their proper register locations.

Ordor 154 is a subprogram command returning the machino oontrol back to order 1 of the x-poeition cycie to start with e now ship.

The previous diecuesions dispose of the ahip ${ }^{0}$ s position and bearing computation. Solution of the eubmarine problem would be similar with extension to the computation of depth. We will consider next the calculation of relative radar position.

RADAR COMLUTATION: This computing proerram is relatively inoffioionte Ships ere selected one by one as loosl ahips and the positions of all othere calculated with reapect to the looal ship for presentation on the radar PPI. In Fig. 8 loop 1 ls traversed once for each remote thip during the computation of a particular radar scope pattern. When all remote ships have boon located. loop 2 is traversed to index the computer to a new locel ship for caloulation of a second radar soope pattern. Two comperison orders are indicated by triangles, the first to determine if all remote ships have been calculated for a particular PPI pattern and the second conditional program is used to determine if all PYI patterns have been computed. After all patterns are computed, the control is transferred to computation of soner patterns. Figure 9 is a detailed flow diagram for the radar and control orders tabuleted below:

Order Number	Regist.er Number	Operation	Degerintion
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{r} 272 \\ 5 \end{array}$	$\begin{aligned} & \mathrm{Cu} \\ & \mathrm{td} \end{aligned}$	Egtablleh a control order meking possibie extraction of the remote elaly X-coordinete
$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 273 \\ 8 \end{array}$	ad td.	The ship indez number is increased by one giving a control order for extraction of the Y-coordinate.
$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	$\frac{x}{274}$	ca su tx	The differences in X-position between remote and loosl khips are calculated and trantmitted to the scope deflection circulta.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345

Memorandun M-108 clanged totimel
-16-

Order Number
35
Realstar Numbar
Cperation
Doscription
278
03
Local ship index is retrurned. to its beglnalug velue。

Ordar Number	Registor Number	Oporation	Desoription
$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{array}{r} 279 \\ 32 \end{array}$	$\begin{aligned} & \mathrm{ca} \\ & \mathrm{td} \end{aligned}$	Orders aro genersted for extracting the X coordinate of a ney local shlp.
28	273	ad	Orders are gonerated for
29	30	td	extracting the I coordinate
30	Y	ca	of a now local ship.
33	275	ts	I coordinate of a local sh1p is transferred to register 276.
32	x	ce	The X coordinate of a now
33	274	$t 8$	looal ship is transforred to register 274.
34	1	85	Th1s is a subprogram order returning control to order at the beginning of the redar computing cycle.

SONAR: Sonar oomputation would be cons in e manner similar to radar with such additions as nocessary to give depth readings.

DKPTH GHARGBS $F 1 \mathrm{~g}$, 10 shows a solution oyole schematio for pre-set dopth charges. This echomatic if of the same nature as shown in Fig. 3 for calculation of ship position. Figa。 21 and 22 illuatrate tho calculation cycle schomatio for proximity firing depth charges. Control

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

6345

UNCLASSIFIED
Nomorandum 1:-10B changed to $\mathrm{L}=1$
crders for the handling of dopth chargee have not boen worised out in detail Information is handled in the following general manner.

Conglder first the depth charge with pre-set firing dopth. When a dopth charge key in ons of the destroyers is fired, the code muber of the destroyer and the depth seting of the charge ere trangforred into the computer. The computer, knowing the ship position, bearing and speed, and knowing the depth setting of the charge can noy compute the X and Y coordinates, the depth, end the time at which explooion will occur. This explosion time is then observed at all subsequent major cyches of the computation unt12 explosion time has occurred.

At the timo of explosion each submarine is examined for position to see if it is within the possible region of damage. If a submerine is within the poselble region of demago, it is examined more closely as to bearing and is treatod as a cylinder in ghape to see if it is actually within the damage zone. If no submarine is within the damage sone, the depth charge is removad from the computer etorage. If damage can occur the probable damage is observed in a table of vaines and multiplied by a statistical probability factor to arrive at actual damage. Damage is then added to the damage regieter of the submarine and the depth charge is removed from the computation.

Depth charges with proximity-fuzes ere initiated in the same manner as premeet charges. The computer initially calculates the time of filight through air and the $X Y$ coordinatos and the time of impact 02 the water. On successive computation cyoles, the computer observes impact time until the dopth charge reaches the water eurface. At this time en examination in XY coordinates is made to find if eny submarines are close enough that thoy might posaioly reach the path of the sinking dopth chargo. If no submarines are gufficiently close, the depth cherge is removed from the computation at this point. If posible submarines oxist in the area, thoir code numbers are stored elong with the depth cherge data. At each mejor cycle of the computation, the nev dopth of the charge is calculated and its distance from all submarines previousiy identified is obsorved. If a zubmarine lies within the maximum detootion sphere, the true distance and cylindrical shape of the sabmarine are taken into aocount to see if fuze operation can occure if the charge is within the detection range, damage is calculated as before. If the proximity controlled charge reaches a maximum specifled depth without being fired, it is automatically removed from the computation.

Heure	Drawing	11gure	Draviag
1	B-30977	7	B-30983
2	A-30978	8	B-30984
3	A-30979	9	B-30985
4	B-30980	10	B-30986
5	B-30981	11	B-30987
6	B-30982	12	B-30988

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

DESTROYER INDICATOR AND CONTROL PANEL
pulpent

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

FIG. 3. SHIP CYCLE SCHEMATUNCLASSIFIED

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

B-30980

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

B-30982

Pwintury
UNCLASSIFIED B-30982

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
B. 30985

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

