APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
 Memorandum K-2167

Digital Computer Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

SUBJECT: FIRSTORDER CANCELLATIOn RESIDUE IF RECTANGULAR MEMORY ARRAYS
Pos V. N. Paphian
From: Dudley A. Buck
Date: May 25, 1953

Abstract

Aside from all second-order effects, there is an unwanted output voltage inherent in magnetic-memory arrays due to cores whose half-selected output voltages do not cancel. This voltage is due to two cores in the arrays presently in use but can be dis to three or four cores in other rectangular arrays.

In the memory planes built so far, the sensing winding is threaded back and forth in such a way that certain unwanted voltages tend to cancel. These unwanted voltages are the holf-selected output voltages of the cores along the selected row and along the selected column, but not at the inter section. Unfortunately, this cancellation is not quite perfect, for there are always two cores whose half-selected ont mots add rather than cancel. These are the two cores one the selected rom and one on the selected column, which, we might say, would have cancelled with the selected core. The sum of their unwanted outputs is therefore of polarity opposite to that of the selected core. Let us define this unwanted voltage as the first-order sarceliation resicus, oBi.

The purpose of this memorandum is to put on record the observetin that CRI varies as the dimensions of an array are changed. As one leaves the square $8 \times 8: 16 \times \cdots$ or 32×32 arrays one finds that CRI has still the value the as long as one deals with rectangular arrays with an even number of rowe and an even number of columns (Figure 14). If any array is built with an even numicr of rows and an odd number of columns, or vice-versa, CRI has the value one or throes depending on the location of the selected core (Figure 1B). If an array is built with an odd number of rows and an odd number of columns, CRI has the value gere tho ce or four, depending on the location of the selected core (Figure 10).

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

+2	-2	+2	-2	+2	-2
-2	+2	-2	+2	-2	+2
+2	-2	+2	-2	+2	-2
-2	+2	-2	+2	-2	+2

UNCANCELLED HALF - SELECTED VOLTAGES AS FUNCTION OF SELECTED CORE LOCATION
A) EVEN - ORDER ARRÁY (4×6).

+1	-1	+1	-1	+1	-1
-3	+3	-3	+3	-3	+3
+1	-1	+1	-1	+1	-1
-3	+3	-3	+3	-3	+3
+1	-1	+1	-1	+1	-1

B) ODD-BY-EVEN ARRAY (5×6)

0	-2	0	-2	0	-2	0
-2	+4	-2	+4	-2	+4	-2
0	-2	0	-2	0	-2	0
-2	+4	-2	+4	-2	+4	-2
0	-2	0	-2	0	-2	0

C) ODD-ORDER ARRAY (5×7)

FIRST-ORDER CANCELLATION RESIDUE FOR RECTANGULAR MAGNETIC STORAGE ARRAYS

