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Introduction

Textbook writers! who set for themselves the problemn of discussing

potential as it applies to electrical problems usually encounter difficulties
if they ignore the basic concepts put forward by Langmuir? when he coined

the work "motive'' and defined its principal use. His definition is: "The

motive is best defined as a scalar quantity whose gradient in any direction

and at any point represents the force component per unit charge which must

be applied to an electron or an ion to hold it in equilibrium at the given point.

The gradient of the motive is the "motive intensity," and it is therefore a

vector which measures the force per unit charge on an electron at the point

in space at which the gradient is taken.

It is to be noted that this definition differs from that of "electrostatic

potential’ and of "electric intensity” in that definitions for them are given

as the limit of the time average of the work or force respectively per unit

charge as the charge approaches Zero.

Sect. 1 Definitions

The principal use that is nade of motive functions is that associated with

potential energy distributions in space which are either invariant with the time

or else change so slowly that the transit time of the electrons or ions can be

neglected. Such a system is classified as a "conservative systen." in that

the total energy of an ion or electron can be considered as the sum of its

kinetic energy and its potential energy. Except insofar as the particular

electron or ion receives or delivers energy to or from other bodies including

light quanta its total energy remains constant, Thus in the passage of an elec-

tron across a material boundary it is the motive function and not the electro-

static potential which establishes the potential energy of the electron and where

this changes, the compensating change in kinetic energy takes place to hold

its total energy constant.

The similarities and the differences between electrostatic potential and

motive can be made more explicit with the help of defining equations. The first

of these appligs to electric intensity and is written as
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sect. 1 Definitions
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The electric intensity vector £ is thus defined as the limit of the force per

unit charge which acts on a charge q as the magnitude of the charge approaches

zero. The units used here give the electric intensity in volts per meter with

the force expressed in newtons and the charge q in coulombs. The permitivity

of free space is € .
The basic difference between the motive intensity and the electrostatic

intensity is best illustrated by the equation
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Here again the vector force that acts on a charge q is related to the motive

intensity by an equation which is completely analogous to Eq.l:l except in

that the motive intensity is the force per unit charge when the charge is that

existing at the point in question. An electron or an ion can be thought of as

being acted upon by an electrostatic field produced by a distribution of charges

so far away from the point in question that the defining charge q does not

disturb the distribution of the charges that create the field sufficiently to make

a distinguishable difference between the electrostatic intensity and the motive

intensity. If the ion or electron is in the immediate neighborhood of matter

such as atoms, molecules, material surfaces such as metals, semiconductors

and insulators, they create polarizations or redistributions of charge which

result in forces generally proportional to the charge itself and inversely

related to the distance between the electron or ion and the material inhomo-

geneity. Clearly, the motive intensity can include "mirror-image forces"

which play the dominating part in the motive function as an electron either

approaches a conducting surface or leaves it while some electron emission

phenomenon is being examined such as the thermionic emission of electrons

the photoelectric emission of electrons, or even the field emission of elec-

trons. Not only are electrons acted upon by these forces, but also ions are

accelerated toward surfaces if they are free to move as a result of induced

charge distributions which are completely absent when the electric intensity

at the point in question is defined as in Eq. 1:1. The distribution of motive

intensity in space as defined by Eq. 1:2 is an operational one broad enough to

include the induced effects.



sect. 1 Definitions

The general concept of "potential energy’ in a conservative field implies

that energy is required or delivered to transfer an object, such as an electron.

from one point in space to another. A difference in potential or a difference

in motive is readily defined. There is no absolute value of either these scalar

quantities except in the sense that some arbitrarily chosen region in space

can be declared to be at the reference potential relative to which all other

potentials or motives pertinent to the problem can be evaluated. The two

equations used to define a difference in electrostatic potential and a difference

in motive are given as:
 3

J
3 - :

no 1.
lim g=9

”
1 24

Since Eq. 1:3 gives the line integral of the force per unit charge as the charge

approaches zero, forces which depend on the charge itself such as mirror-

image forces can contribute nothing to the difference in the electrostatic

potential between the space point a and space point b joined together by

a line in an electrostatic field. Since the difference in motive depends on

the line integral of the force function that actually applies when the charge

is that of the electron or ion, the change in the motive at b relative to that

at a is the useful quantity which can include charge displacements that take

place as the charge q moves from position a to position b.

The differential forms of Eqs. 1:3 and 1:4 may be writtens
-

Io) 5 = 1:5

well

I, = b1.6

Here the electric intensity is expressed as the negative of the gradient of the

electrostatic potential and the motive intensity is expressed in a like manner

as the negative of the gradient of the motive. The application of Gauss' law
to Eq. 1:5 yields Potente equation which is
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Sects. 1 and 2 Mirror Image Forces

This equation is applicable only in regions of space sufficiently far away
from material boundaries so that the electron or ion itself does not disturb

the average electrostatic potential as it does when the electron or ion approaches

a material boundary. There is no meaning to the corresponding equation for

v'M except in regions far from material boundaries. When space charge is

present at a sufficient density to give an electrostatic intensity comparable

with the mirror-image force at the point in space, then a superposition of the

two may be used.
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Sect. 2 Mirror-Image Forces Considered Guantitatively

Consider, for the purposes of calculation, that an electron is approaching

the face of a relatively large single crystal of a conductor positively charged

to an amount equal to that of a single electron. It is necessary also to specify

that the single crystal be constructed so as to exhibit a single crystallographic

orientation. Thus a tungsten crystal in the form of a dodecahedron could be

made to evaibit only surfaces which have normals in the (110) direction. For

comparison, the (100) direction could be chosen and a cube would be the

idealiz~d shape of this crystal. These restrictions are placed in order to

avoid the presence of local electrostatic fields which would otherwise be

present due to equal and opposite surface charges that would result from the

presence of surfaces of unequal work-function.

Depending on the size of the crystal, there will be a distance such that

the induced surface charge of opposite polarity will result in a force of

attraction acting on the electron which can be made vanishingly small and

yet not precisely zero. An electron released with essentially zero kinetic

energy at this point will be acted upon by this force and accelerated toward

the surface over which an equal and opposite surface charge has been induced.

As the electron approaches the surface, the force increases and the electron

velocity toward the surface increases in such a manner as to keep the total

energy of the electron constant. This force is measured as the motive intensity

and the line integral of the motive intensity from the starting point to any

point on the trajectory represents the change in motive and is a direct measure

of the increase in kinetic energy. At distances larger than 4 or 5 times the

interatomic spacing of the atoms in the conducting surface, the force function

is independent of the exact nature of the conducting surface provided the re-

strictions mentioned above are satisfied. This force function is given by:
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In this expression, x is the distance in meters from a fictitious surface just

inside of the real surface. The real surface may be defined as that surface

perpendicular to the direction identified as the x direction and containing the

time average location of the nuclei of the last exposed layer of atoms of the

idealized crystal. If Eq. 2:1 is integrated to obtain the change in motive as

the electron moves toward the surface from a very great distance to a specific

location x, some 4 or 5 interatomic distances away or more from the real

surface. the result is given by
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The insertion of suitable units in Eq. 2:2 gives the change in motive in volts.

This is the convenient unit in electronics which when multiplied by the charge q

expressed in coulombs gives the change in potential energy expressed in joules.

Equation 2:1 shows that the mirror-image force function approaches infinity as

the distance x from the fictitious surface approaches zero. In like manner,

the change in motive as given by Eq. 2:2 also goes to infinity at zero distance.

Perhaps one of the most significant experimental demonstrations that

the motive function changes by a finite quantity as the electron is accelerated

by the mirror-image force finally to enter into the interior of a conducting
surface depends on the experiment of Davison and Germer. 3 Briefly, their

experiment involved the delivery of electrons to a single-crystal nickel

surface at normal incidence. These electrons were launched by an electron

gun at various electron energy values between 64 volts and 586 volis. A

small number of the electrons interacted with the atoms of the crystal lattice

to become refracted as electron waves and subsequently were re-emitted,

with no loss in energy, in specific directions depending on the wavelengths

associated with the electrons and the space distribution of periodic motive

function within the crystal.The table of values computed by Hartree and
published by Fowler® shows that for the 6 different launching energies used

by Davison and Germer, the augmented energy which had to be added to the

launching energy in order to establish agreement between theory and experi-

ment for the refraction coefficient was 18 electron volts. Although Fowler

considered this change in motive from the exterior to the interior of the
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nickel crystal a reasonable value for nickel, it could very well have been

slightly high unless consideration was given to experimental details which

would require the removal of a surface layer of oxygen impurities and a

correction for the actual work-function of the emitter used. These corrections

should not be more than 2 or 3 volts. Therefore, to attribute as much as 15

volts to the change in motive for the nickel surface is firmly established by

these experiments.
Although the interior of a metallic conductor such as tungsten must

be thought of as a region of constant average motive, even though it will

have a periodic character, the change in motive between the interior and the

exterior will depend on the crystal structure of the surface that bounds the

crystal. For the tungsten crystal, cut as a dodecahedron and exposing only

(110) surface, the change in motive is likely to be close to 13 volts; whereas

the tungsten crystal cut to expose only (100) surface will have a change in

motive close to 12 volts. A single crystal of tungsten which has both of these

surfaces exposed will have electrostatic fields of easily measurable magnitude

out to distances away from the crystal comparable with the linear dimensions

of the surfaces involved as a result of the local distribution of surface charge.

The total amount of negative charge is exactly equal to the total positive charge

if the crystal as a whole is electrically neutral. As a result of these local

fields the change in motive from the crystal interior to a point far away from

this isolated crystal will fall between 12 and 13 volts depending on the relative

proportions of (110) and (100) surfaces exposed.

The main purpose of this discussion is to indicate that an electron upon

approaching a surface is acted upon by the mirror-image force until it is
within a few atoms distances (1 0? m). Between that point and the interior

of the metal the actual motive intensity is weaker than the mirror-image

intensity. The rougher the surface atomically speaking, the weaker the force.

The adsorption of polarizable atoms such as cesium or thorium on tungsten

contributes also to a significant alteration of the integral of the motive

intensity because of the presence of strong localized electrostatic fields which

are present. The integrated change in the motive due to an adsorbed polarized

layer of atorns is generally expressible in terms of the average dipole moment

per unit area of the adsorbed filin. Depending on the direction of polarization.

an adsorbed film can either reduce or increase the step in the motive function

from the interior of a conductor to the region well outside of it-
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Sect. 3. The Fermi Level and Its Relation to Fermi Energy

The problem that describes the motive function that connects the

interior of a conducting crystal with an isothermal cavity with dimensions

large compared with atomic dimensions is the only electronics problem involving

motive changes that can be discussed rigorously. For the purposes of this

discussion imagine two slabs of crystalline conducting material such as

tungsten large enough so that a cavity can be cut in each one to a depth of

approximately 5 x 107° m and with lateral dimensions over the surface of

10% m by 1072 m. If the (100) direction is chosen to be perpendicular to

the cavity surface, then the cavity can be rectangular and no surface will be

exposed except the (100) surface. The two slabs of tungsten may be placed
together to form in this manner a cavity 107% m across withkross-sectional

dimensions 100 times greater than this. The purpose in being this detailed

with rezard to the description of the cavity is that the analysis can best be

carried through on a "one-dimensional" basis as we deal with the change in

motive from the interior of the conducting crystal through the cavity at its

center and back into the conducting material. An imagingry closed boundary

surface can now be drawn through the crystal body itself and completely

surround the cavity. Within this imagingry boundary the net charge must

remain continuously zero at all temperatures. Although the analysis can
be applied even though the cavity might contain ionizable gas such as cesium’

it will simplify the discussion to assume that the temperature range will not

be so excessive that an appreciable number of positive ions in comparison

with the number of electrons will be found in the cavity space. It is also

assumed that the concentration of neutral atoms in the cavity space will be

sufficiently small so that the electron flow will be governed entirely by the

combination of mirror-image forces and electrostatic forces which in turn

depend on there being a uniform distribution of positive charge over the

interior of the cavity precisely equal to the total space charge of electrons

within the cavity. Thus, the discussion will not be limited to a treatment of

the problem in the absence of space charge, but full consideration will be

given to its influence.
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Crystals formed of n:aterials that are found to be good conductors of
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electricity generally correspond to elements that have one or two electrons

in the outerniost quantun. states of the atom. Upon the formation of a crystal,

the actual physical space surrounding the nucleus of an individual aton. needed

to accon.modate one or more of these valence electrons is so large that when

the atoms are brought together to forn. the crystal, the "overlap" of the space

needed for these electrons is so severe that individual electrons are no longer

associated specifically with individual ato cores, but fill in quantuin states

related to the crystal as a whole as though it were a gigantic molecule. This

"molecule" must have quantum states both occupied and unoccupied available

to the electrons in excess of the total number of these "free" electrons which

were originally the valence electrons of the crystal’s atoms. The distinction

between the free electrons and the bound electrons is that the former are free

to circulate throughout the entire crystal and respond to a very siuall motive

gradient to give good electrical conduction. They must be considered to be in

a state of motion even at the absolute zero of temperature. The bound elec-

trons do not contribute appreciably to the electrical conductivity since their

quantum states do not have available empty states associated with a small

increase in kinetic energy. Exceptions occur as for example in silicon if

there is a distribution of impurity atoms such as aluniinum or boron present

that can accept electrons as the terperature is increased and provide sone

empty levels inter-niixed with the higher of the filled levels.

Under isothermal conditions, and no externally applied potential dif-

ferences, the net current across any boundary within the conductor averages

to zero because the total random current in any particular direction is exactly

offset by the corresponding random current in the opposite direction. An elec-

tron in n.otion has associated with it kinetic energy. As was indicated by the

Davison and Germer experinient, the increase in kinetic energy as an electron

traverses an external boundary with no loss in energy into the lattice, is a

direct measure of the total change in the motive of a free electron as it enters

the metal. As it traversed the space across the surface boundary to occupy

a quantum state within the crystal, there was no change in total energy.

The vast majority of electrons that are delivered to a surface in this manner

from an external source lose energy rapidly soon after they enter the crystal

because they at first occupy quantum states which under the conditions of

the experiment would not normally be occupied. The fact that some electrons

in the Davison and Germer experiment were refracted under the influence
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of the periodic variation in the motive within the crystal and yet lost no

energy indicates that for most purposes the location of the average value

of the motive within the crystal compared with its average value outside of

the crystal is a mneasure of the average kinetic energy associated with that

quantum level within the crystal.

The occupation of available quantum states within a crystal which is

very large compared with atomic dimensions is governed by Fermi statistics

Associated with each quantum state is an extension in space to be multiplied

by a range in associated momenta such that the product of these two is ha.

[teoordinate range) x (momentum Pn 3 .. y3

Each of the quantum states of a free electron described in this manner

accommodates only two electrons of opposite spin. It follows, therefore,

that, if the coordinate space available to accommodate a very large number

of elzctrons is limited then a correspondingly wide band of energies must be

inciuded to provide the required number of quantum states to provide for

the high density of freed valence electrons.

The occupancy of the quantum states by electrons can be discussed in

the language of statistical mechanics. In this analysis, an "undetermined

multiplier" may be introduced to assist in the discovery of that distribution

of the electrons to the quantum states that corresponds to thermodynamic

equilibrium at any particular temperature for any specified number of electrons

moving in completely random motion within a space of constant average potential

or mofive. In order to determine the value of this multiplier, the sum of all

of the occupied quantuimn states (including two electrons in each) must add up

lo be equal to the total number of free electrons within the space. In principle,

there is no difference in the way of computing this multiplier dependent both

on the temperature and the density of the electrons. However, arithmetical

convenience necessitates the use of two different formulas depending on whether

the concentration of electrons is higher than 1027 electrons per cubic meter

or less than 1044 electrons per cubic meter. For the intermediate densities

between these limits, numerical evaluation is quite possible by means of

formulas containing more terms than are needed for the extremes. In general,

the undetermined multiplier is best expressed in an exponential form by
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In this equation, A is a pure number, being the undetermined multiplier

mentioned above, applicable to a particular problem of a specified density

of electrons in a field-free space at a temperature T. The product (kT)

is an energy expressible in joules. There is, therefore, a corresponding

energy also expressed in joules of €p which when inserted into Eq. 3:1
gives the required value of the undetermined multiplier A. Having defined

this energy by means of Eq. 3:1, no statement has been made which limits

its value to positive numbers only. Large values of A obviously call for a

positive number for € 5 whereas small values of A which may be considerably

less than unity, call {or negative values of € pe

The culmination of this statistical approach is the Fermi factor given

as follows:

Fermi Factor - -
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This fuctor is also a pure number and is a direct measure of the probability

that the ith quantum state which has associated with it the total energy ¢j will

be occupied. This energy must be related to the same frame of reference as

that which determines the numerical value of the Fermi energy €p Thus,

if €; is the kinetic energy associated with an electron within the interior of

a conductor of uniform average potential, then the energy €p must be measured

from the same reference which is the average motive within the interior of

the crystal. It follows from this definition that in any solid in which there is

a quantum state at the energy level €; equal in value to the energy “rp

established basically by Eq. 3:1, the probability that this quantum state will
be occupied is (1/2). All quantum states of lesser energy will have an ex-

pectancy of occupation which approaches unity very rapidly as this energy

difference increases. If the quantum energy exceeds €r the probability of

occupancy falls very rapidly and approaches zero.

If ‘F happens to be zero, and is referenced to the motive function so

that €; represents kinetic energy, then no states available to such a low

density of electrons will have a probability of occupancy greater than (1/2).

For values of €. referred to the motive function that are numerically negative.
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as it will be in an isothermal cavity within a conductor, there is no elec-

tronic state at that level and yet the Fermi factor of Eq. 3:2 nevertheless

expresses the probability that a given quantum state of a definite kinetic

energy will be occupied.
This discussion leads to a very practical and at the same time

correct means of identifying the Fermi level expressed as “pr relative
to the motive function and applicable to electron densities for which it is

zero or numerically positive. The Fermi energy ‘cr is equal to the energy

associated with the quantum level that has a 50 per cent probability of

occupancy under the condition of thermodynamic equilibrium.

Sect. 4. Flow Equation for Free Electrons and Their Fermi Energy

Even though ihe electrons within a conductor are acted upon by a

very complex, nearly periodic motive function which itself varies with time

because of the a‘omic vibrations, the average value of the electron's total

energy as it moves over distances many times the inter-atomic distance,

is constant unl:ss a non-conservative interaction alters the energy level

occupied by the electron. With this picture in mind, the flow of electrons

across bouncaries depends on the average momentum associated with an

electron muving in a specified direction normal to the boundary of interest.

Even thouzh the life-history of an individual electron cannot be followed,

thermodynamic equilibrium demands that the rate of loss of electrons from

a narrow band of quantum states associated with the range of momentum from

p, top, + dp, is equal to the return of electrons to these states. If equilibrium
is digturbed by the imposition of a temperature gradient or the application of

some external electric field then an electric current can flow or a thermo-

electric potential (Thomson EMF) may appear.
The energy distribution function derivable from Fermi statistics and

applicable to the free electrons in the cavity described in the previous section

is given by

f.-Ydxdvdz dp do_dp_ =~
dxdydz dp, dp_.dp,
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In this equation, e is the total energy of an electron localized anywhere in

the cavity within the range of coordinates dxdydz which is sufficiently small

so that the potential energy of the electron, that is, its motive can be specified

by the coordinatesX,y and z. The total kinetic energy may be expressed by

4

Kinetic energy
p.2  + Py?y + P22

nN To
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If the Fermi level is expressed relative to the motive at the particular space

point x, ¥}» Z; then the energy € may be identified as the kinetic energy of
the electron at that point. The number density of electrons in the range of

coordinates dx, dy, dz and their temperature determines the appropriate

value for “cp which will generally be a negative number within a cavity.
The flow of electrons across a boundary of unit area in unit time demands

that they have a component of velocity or momentum perpendicular to the

boundary. If the x direction is the normal to the boundary, and we are

interested in those electrons within a narrow range, in the x component of

the momentum, then we must include by integration with respect to Py and P,
all of the electrons that have a particular value of Pye If we know this number

of electrons and multiply the number by the velocity defined as (p,/ m), the

resulting equation is

2@rmkr?22(2rmkT)”
—

In this equation the factor (2rmkT)* 2 is the direct result of the integration

of Eq. 4:1 with respect to either Py or p, over the entire range of -® to +83
This factor is squared and written as shown in order to call specific attention

to the fact that these two integrations have been completed. The kinetic energy

associated with the momentum p_ is defined by

E
i

A restatement of the raeaning of Eq. 4:3 is in order. The number of electrons,

which cross a boundary in the positive or the negative sense per unit area

in one second with kinetic energy between €, and €. +t de when the temperature

is T, is given by this formula. The net current across the boundary within

this narrow energy band is zero because the current in positive direction is



ject. 4 Flow Equation for Free Electrons

“Y

precisely balanced by the current in the negative direction.
Although the model used for the derivation of Eq. 4:3 depended on the

cavity problem as stated, the result is generally applicable even to the interior

region of the metal since it represents a space of constant average motive.
Within a distance of the order of 1078 m from the surface, the motive will

have changed from its average interior value to that value which in the

absence of space charg: would have been the motive across the gap of the

cavity. Since space charge will always be present in cavities associated

with materials and ‘emperatures of interest, the motive will rise to a

maximum at the center of the cavity with a gradient depending on the distance

from the surfaces. Its variation is a measure of the space charge present at

any specified point. Since in spite of the great change in motive, first sharp

and then gradual, the net current across any boundary must be zero in any

isothermal cavity and its surround.

The diagram of Fig. 4:1 serves to illustrate the significance of Eq. 4:3

and tbe fact that in spite of material inhomogeneity, the total absence of

current in the isothermal case is associated with the statement that “the

Fermi level is continuous." This continuity of Fermi level is only possible

oy having different values of the Fermi energy ¢n which is expressed relative
to the local motive function. The electron density and therefore the Fermi

energy €n at any region in space connected to some other region is dependent
on the motive function. In this diagram, the total electron energy associated

with the x direction of motion, is measured in the vertical direction. The

positive x direction is measured from any arbitrary boundary well within

the interior of the metal. The average value of the motive at that point will be

taken ‘as the reference to which the kinetic energy associated with the motion

in the x direction is added to indicate that the electron is in a quantum level

within the band of width de. ate..This value of kinetic energy in the metal
is identified by the arrow e_,. In the irnmediate neighborhood of the surface,

the motive function is shown to change very rapidly an amount designated

by Wg. In a conservative system, the total energy of the electron in passing

over this region will remain constant but the proportion of this energy

associated with kinetic energy versus potential energy will change as

indicated so that the new kinetic energy will be represented by the arrow e 5

If the electron proceeds to the center of the cavity, electrical forces due to
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space charge will continue this slowing-down process to give the electron

its minimun. kinetic energy of € ec” This n.inimum in kinetic energy is

associated with the maximum in the motive function. This motive change

from the interior of the metal to the center of the cavity is shown as W _.

In order to satisfy Eq. 4:3 quantitatively at all peints along the motive

line it is necessary to have the means of relating the local Fermi energy to

the local electron density. If the motive function is known and the electron

density is known in any single connected region then the correct value of the

local Fermi energy can be computed. This computation establishes the position

of the Fermi level on the motive Sisgrain. Figure 4:1 is a typical example.
There it was assumed thatyeffective density of free electrons in the meta.

was known. Had the deusity of free electrons in the center of the cavity been

known instead of that in the metal, the location of the Fermi level could have

heen accurately established relative to the motive function at the cavity center.

Since the Fermi level must be continuous and the Fermi energy is always

the energy difference between the Fermi level and the motive function, the

alectron density in any connected region is determined and varies from place

to place depending on the local separation between the motive function and the

Fermi level. In order to make such computations quantitative, the basic equation

that ties the Fermi energy to the temperature and the number density of electrons

will be presented. It will be formulated so as to be applicable for any density

and any temperature. This basic equation nay be approximated by simplified

forms that yield numerical results adequate for nearly all purposes. They are

nrepared for use to determine the local number density of electrons in terms of

the local Fermi energy or to determine the local Fermi energy in terme of the

local density.
In any region in which the flow of electrons across a boundary is to be

evaluated, it is necessary to know the average electron density and the kinetic

energy distribution. The appropriate Fermi energy is found by a direct integration

of Eq. 4:1. When energy is expressed relative to the local value of the motive

at the coordinate position x, y and z, and the number of electrons in the region

dxdydz is dn, the number densitv n of the {ree electrons there is

£ rt
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This equation establishes a unique relation between n and ¢p at any specified
temperature if the random flow of electrons across boundaries is to balance

exactly to give no net current in the absence of applied potentials or te:nperature

gradients. Thus if the effective electron concentration n is known, the Fermi

energy “pat that location is determined by Eq. 4:5. This equation applies for
211 temperatures and all realizable densities of free electrons.

The following substitutions are useful

ol P J

&gt;mk'l 4.4

4

5

Lguation 4:5 takes the form

.

Cd

3 =a
‘

ccm

v

 {2 mk TY

Three examples of the use of this ear~'Icn ~ro of interest:

Case I. F negative and a ~nd therefore ef 7. 0.3.

" ar lo (promt vr

This eguation mo
a - - -

to give

T Lode w

«2!

=

% 4
L

* ~  102) 3/2
ns

4 - G

4 o 4 3

4:1} 0

4-102

The Fermi energy in joules is then €p = (kT} F and may be expressed in

2lectron volts as Eqn = V ¥. The electron-voli equivalent of temperature is

defined bv

7 wg &lt;T = 172%a = 8.61 0 1
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Case II F=20

The intr~oral of Ea. 4:8 has a definite value of 0.3390 independent of the

temperature. The equation then becomes

0g nr 4m @mkTY/? 0.3390
n=

&amp; 3 604 x neh mT

| 4: 2d

| 4:12a
A coraoparison between Eq. 4:12 and Eq. 4:9 shows that if the actual

density of electrons is less than ni Eq. 4:12 may be used and the error in F

will not exczed 0.25 kT and will generally be much less.

Case III F positive and F &gt; 10

Over the range of S from 0 io F2. following approximation may be
ssed since e F is so small.

x

{
o

1? TT hy
a

3 2 (2emkT)3/2
Jr

di.

a fo  | 4

The contribution to the densitv for §

we have

Ly 7
i&amp; verv small. Upon integration

Apry = 2
i.

bss
Jr

2°"

2rrnk TY © p72
= Infr: (2m))~ x 3,

€ wn | 4:14
a1e  oz

l4- 1

 2?
Here the energy is in joules and Nyy in el/m”

This equation may be solved fc’ the Fermi energy to obtain

a 1
2 ERE

cw.

a cules |4:15a
=a D°-

vo la.150

oc is in the range 1 to 1° a more exact equation is

——. (1 - 2
—

A Y

J

u  =~ oa i rained from vt
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A comparison of Ey. 4:14 and Eq. 4:12 shows that with concentrations

greater than that given by Eq. 4:12 as Bey the Fermi energy coinputed by
Eq. 4:16 will not be in error in the high side more than 0.2 kT and in general

the error will be much less.

This analysis shows that the first step in the formulation of quantitative

relations is to use Eq. 4:12 to establish the number density of electrons corre-

sponding to the specified temperature. Table 4:1 has been prepared for this

purpose. For a number density of electrons less than that recorded in the

table, £q. 4:10 applies and for higher densities fg. 4:15 supplemented °

needed by Eq. 4:16 is used. The table shows that the critical range in electron
density is 102° to 5 x 1026 el/m&gt;. Equation 4:10 is used for densities below

this range and Eqs. 4:15 and 4:16 are used above i’.
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Table 4:1

Free Electron Censity for Zero Fermi Energy as a Function of Temperature

T ar: 3/2
Oy

nip \
el/m’ eV

300

350

400

450

500

550
600

650

700

750
860

850

$00

950

1006

1050
i100

1150

12¢¢C

1250
1300

1350

1400

1450

1500

1550
1600

1650

1700

17.32

18.708

20.000

21.213

22.36!
23.452

24.495

25.495

26.458

27.386
28.284

29.155

30.000

30.727

31. °°

32.404
33.164

33.912

34.641
35.555
36.056

36.742

27.31%

38. 07¢
38.

39.004
40, 000
40.620

47

5.196x10°
6:548x°
8.000x 1

9.546 &gt; °

1.118

1.290 ~

1.470 =

1.657 x °

1.852 ~ °

2.054:
2.263

2.478

2,700

2.92°7

3.402.
3.648 .

3.900 x _

4.157 2 1

4.419

4.687

4.960:

5.438 1

5.521

5.81"

6.040
6.400 _

6.702 x tv

7.009 « 10%

1 @ ©? = 0.0258

0.0302

0.0344

0.020°F

0.07"

0.0474

0.0517

0.0560

6.0"

 0

Lore

2

1775

3.0

"05

J.0948

0.0991

0.1027

Yipee

0

3

16

Leol79

C.1&lt;22

0 i A

tO a

2. 357

. AF

&lt;b
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T

ok

"1750
1800

1850

1900

1950

2000 44.7;
2050 45.27"
2100 45.82¢

2150 46.368

2200 46.904

2250 47.424
2300 47.958

2350 48.477

2400 48."

2450 49.

2500 50.
2550 50,47"

2600 50.59

2650 51.478

Table 4:1 continued

3/2
P11

el/m’

Vv

G

7.321 x °°

7.637 =

71.957

8.282 °°

8.61) -
8.94*
9.28"

9.62:

9.9¢~

1.032
1.067 x

1.103 x °°

1.139 x 1¢

1.176 x 10°

1.212
1.250 £6r 0.2154
1.288 x i 4.76 5° 0.2197
1.326 x 10~ 4.90 = 10%V 0.2240

1.364 x 10° 5.04 x 102° 0.2283

2.70%"' 0.1509
2.82 x" 0.1551

er” =: 0.1594

3.06 x 10° 0.1637

218x177 0.1680
2.30 x 0.1723

3.43 x I. 0.1766

3.55 x 10~ 0.1809

3.68: 10° 0.1852

3.81% 102° 0.1896
3.94x 0.1939
4.07 0.1982
ar © 0.2025
2.0 = 0.2068

“r n_2111
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Figure Captions

Fig, 4:1 Energy diagram showing motive from the interior of a conductor
through a cavity.

Fis. 4:2 Fermi energy dependence on electron density and temperature.
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