Dear Editor:

Mr. Donald B. Russell of the National Institute for Research in Nuclear Science, Chilton, England, has shown me the courtesy of sending me a copy of his letter on Suip. I much appreciate the opportunity he has thus created for me to say a few words about the current state of the system and its various implementations.

Let me say first that all of his comments and observations are correct and proper. I would also want to add, however, that except for the errors pointed to in the published Slip listing, the main point of his discussion is that Fortran is not an entirely ma-chine-independent language. This is certainly true. Part of the attractiveness of Slip is that it may be imbedded in any algebraic language which permits the calling of closed subroutines. It is of course obvious that SLip is entirely host language-dependent. A Fortran-based Slip will look quite different from a MAD-based Suip, for example. A given host language is in general also dependent on the machine for which it is implemented and even, in some cases, on the monitor system within which that language is exercised. One must therefore look at the documentation of Suip as represented by the paper [Weizenbaum, J. Symmetric list processor. Comm. ACM 6 (Sept. 1963), 524-544.] as a guide, not as a set of codes which can be taken over bodily and run blindly. In any event, a Suip system which is intended for very wide and repeated use should have all its major functions (e.g. NUCELL, RCELL, LIST, NAMTST, the sequencing and advance operations, NEWTOP, POPTOP, NEWBOT, POPBOT, etc.) coded in assembly language. My own current version of Slip which is MAD-based is so constructed and is therefore quite considerably more efficient than a similar but primitive-based system would be. The details of various implementations may differ considerably. But the general strategy of one SLip system should closely resemble that of any other. This is not to say that any Suip program should be executable under all Slip implementations. After all, SLip is not a free-standing language.

A more important point is that Mr. Russell is the fourth person to have gone to the trouble of implementing a Suip system relying
entirely on the original ACM publication, i.e. without any reference to any other Slip implementer or to me. It happens that the Atlas people in London, England obtained a Slip deck from me some time ago, a deck from which the errors pointed out by Mr. Russell had been removed. I don't know the fate of that deck. Perhaps no attempt was ever made to put Slip on the London Atlas. In any case, I think Mr. Russell would have saved himself some trouble had he known of the parallel efforts of his countrymen. A number of people in this country have implemented Suip for the 7090 family of machines, each stumbling over the difficulties introduced by the fact that the original SLip listing was for the CDC 1604 machine and that it contains the errors pointed out by Mr . Russell.

To my knowledge Suip currently exists on the 704-709-7090-7094 systems imbedded in Fortran II and in MAD, on the 7040 in Fortran, on the CDC 1604 and 3600 in Fortran '63, and on the Q32 in Jovial. There may be other implementations I know nothing about. It may well be a service to silent workers in far corners of the computing world if an inventory of Scip systems were now to be taken and published. I volunteer, by means of this letter, to act as a clearing house for such Suip inventory information for the next month or so. At the end of that time, I will submit the inventory to the Communications of the ACM.

As I have already indicated, I am currently maintaining my own Slip system in MAD. In that system certain functions have been eliminated and certain new ones (particularly in the areas of input/output and text manipulation) added. In addition, I have an interpretive version of SLIP operating in the M. I. T. (MAC) timesharing environment. Any such additions and changes made by others should be included in the inventory. Communications should be addressed to me at the address given below.

May I offer my compliments to the several individuals who, like Mr. Russell, have struggled through my original manuscript with such great diligence and persistence as to find out how Suip works.

Joseph Weizenbaum
M. I. T. Project MAC Cambridge, Mass.

Dear Editor:
Mr. Donald B. Russell of the National Institute for Research in Nuclear Science, Chilton, England, has shown me the courtesy of sending me a copy of his letter on SLip. I much appreciate the opportunity he has thus created for me to say a few words about the current state of the system and its various implementations.

Let me say first that all of his comments and observations are correct and proper. I would also want to add, however, that except for the errors pointed to in the published Scip listing, the main point of his discussion is that Fortran is not an entirely ma-chine-independent language. This is certainly true. Part of the attractiveness of SLIP is that it may be imbedded in any algebraic language which permits the calling of closed subroutines. It is of course obvious that SLip is entirely host language-dependent. A Fortran-based Suip will look quite different from a MAD-based Slip, for example. A given host language is in general also dependent on the machine for which it is implemented and even, in some cases, on the monitor system within which that language is exercised. One must therefore look at the documentation of Slip as represented by the paper [Weizenbaum, J. Symmetric list processor. Comm. ACM 6 (Sept. 1963), 524-544.] as a guide, not as a set of codes which can be taken over bodily and run blindly. In any event, a Slip system which is intended for very wide and repeated use should have all its major functions (e.g. NUCELL, RCELL, LIST, NAMTST, the sequencing and advance operations, NEWTOP, POPTOP, NEWBOT, POPBOT, etc.) coded in assembly language. My own current version of Slip which is MAD-based is so constructed and is therefore quite considerably more efficient than a similar but primitive-based system would be. The details of various implementations may differ considerably. But the general strategy of one SLip system should closely resemble that of any other. This is not to say that any Suip program should be executable under all Slip implementations. After all, Slip is not a free-standing language.

A more important point is that Mr. Russell is the fourth person to have gone to the trouble of implementing a SLIP system relying
entirely on the original ACM publication, i.e. without any reference to any other Slip implementer or to me. It happens that the Atlas people in London, England obtained a Slip deck from me some time ago, a deck from which the errors pointed out by Mr . Russell had been removed. I don't know the fate of that deck. Perhaps no attempt was ever made to put Slip on the London Atlas. In any case, I think Mr. Russell would have saved himself some trouble had he known of the parallel efforts of his countrymen. A number of people in this country have implemented Suip for the 7090 family of machines, each stumbling over the difficulties introduced by the fact that the original Suip listing was for the CDC 1604 machine and that it contains the errors pointed out by Mr . Russell.

To my knowledge SLip currently exists on the 704-709-7090-7094 systems imbedded in Fortran II and in MAD, on the 7040 in Fortran, on the CDC 1604 and 3600 in Fortran '63, and on the Q32 in Jovial. There may be other implementations I know nothing about. It may well be a service to silent workers in far corners of the computing world if an inventory of Scip systems were now to be taken and published. I volunteer, by means of this letter, to act as a clearing house for such SLiP inventory information for the next month or so. At the end of that time, I will submit the inventory to the Communications of the ACM.

As I have already indicated, I am currently maintaining my own Sulp system in MAD. In that system certain functions have been eliminated and certain new ones (particularly in the areas of input/output and text manipulation) added. In addition, I have an interpretive version of SLIP operating in the M. I. T. (MAC) timesharing environment. Any such additions and changes made by others should be included in the inventory. Communications should be addressed to me at the address given below.

May I offer my compliments to the several individuals who, like Mr. Russell, have struggled through my original manuscript with such great diligence and persistence as to find out how SLIP works.

Joseph Weizenbaum
M. I. T. Project MAC Cambridge, Mass.

Dear Editor:
Mr. Donald B. Russell of the National Institute for Research in Nuclear Science, Chilton, England, has shown me the courtesy of sending me a copy of his letter on Slip. I much appreciate the opportunity he has thus created for me to say a few words about the current state of the system and its various implementations.

Let me say first that all of his comments and observations are correct and proper. I would also want to add, however, that except for the errors pointed to in the published Suip listing, the main point of his discussion is that Fortran is not an entirely ma-chine-independent language. This is certainly true. Part of the attractiveness of Slip is that it may be imbedded in any algebraic language which permits the calling of closed subroutines. It is of course obvious that SLip is entirely host language-dependent. A Fortran-based Slip will look quite different from a MAD-based Slip, for example. A given host language is in general also dependent on the machine for which it is implemented and even, in some cases, on the monitor system within which that language is exercised. One must therefore look at the documentation of Slip as represented by the paper [Weizenbaum, J. Symmetric list processor. Comm. ACM 6 (Sept. 1963), 524-544.] as a guide, not as a set of codes which can be taken over bodily and run blindly. In any event, a Slip system which is intended for very wide and repeated use should have all its major functions (e.g. NUCELL, RCELL, LIST, NAMTST, the sequencing and advance operations, NEWTOP, POPTOP, NEWBOT, POPBOT, etc.) coded in assembly language. My own current version of SLIP which is MAD-based is so constructed and is therefore quite considerably more efficient than a similar but primitive-based system would be. The details of various implementations may differ considerably. But the general strategy of one SLip system should closely resemble that of any other. This is not to say that any Suip program should be executable under all Sup implementations. After all, Slip is not a free-standing language.

A more important point is that Mr. Russell is the fourth person to have gone to the trouble of implementing a SLip system relying
entirely on the original ACM publication, i.e. without any reference to any other Slip implementer or to me. It happens that the Atlas people in London, England obtained a Suip deck from me some time ago, a deck from which the errors pointed out by Mr. Russell had been removed. I don't know the fate of that deck. Perhaps no attempt was ever made to put Slip on the London Atlas. In any case, I think Mr. Russell would have saved himself some trouble had he known of the parallel efforts of his countrymen. A number of people in this country have implemented Slip for the 7090 family of machines, each stumbling over the difficulties introduced by the fact that the original Suip listing was for the CDC 1604 machine and that it contains the errors pointed out by Mr . Russell.

To my knowledge Suip currently exists on the 704-709-7090-7094 systems imbedded in Fortran II and in MAD, on the 7040 in Fortran, on the CDC 1604 and 3600 in Fortran '63, and on the Q32 in Jovial. There may be other implementations I know nothing about. It may well be a service to silent workers in far corners of the computing world if an inventory of SLIP systems were now to be taken and published. I volunteer, by means of this letter, to act as a clearing house for such Slip inventory information for the next month or so. At the end of that time, I will submit the inventory to the Communications of the ACM.

As I have already indicated, I am currently maintaining my own SLip system in MAD. In that system certain functions have been eliminated and certain new ones (particularly in the areas of input/output and text manipulation) added. In addition, I have an interpretive version of SLIP operating in the M. I. T. (MAC) timesharing environment. Any such additions and changes made by others should be included in the inventory. Communications should be addressed to me at the address given below.

May I offer my compliments to the several individuals who, like Mr. Russell, have struggled through my original manuscript with such great diligence and persistence as to find out how Suip works. Joseph Weizenbaum M. I. T. Project MAC Cambridge, Mass.

Dear Editor:
Mr. Donald B. Russell of the National Institute for Research in Nuclear Science, Chilton, England, has shown me the courtesy of sending me a copy of his letter on SLip. I much appreciate the opportunity he has thus created for me to say a few words about the current state of the system and its various implementations.

Let me say first that all of his comments and observations are correct and proper. I would also want to add, however, that except for the errors pointed to in the published Slip listing, the main point of his discussion is that Fortran is not an entirely ma-chine-independent language. This is certainly true. Part of the attractiveness of Slip is that it may be imbedded in any algebraic language which permits the calling of closed subroutines. It is of course obvious that Slip is entirely host language-dependent. A Fortran-based Slip will look quite different from a MAD-based Slip, for example. A given host language is in general also dependent on the machine for which it is implemented and even, in some cases, on the monitor system within which that language is exercised. One must therefore look at the documentation of Suip as represented by the paper [Weizenbaum, J. Symmetric list processor. Comm. ACM 6 (Sept. 1963), 524-544.] as a guide, not as a set of codes which can be taken over bodily and run blindly. In any event, a Suip system which is intended for very wide and repeated use should have all its major functions (e.g. NUCELL, RCELL, LIST, NAMTST, the sequencing and advance operations, NEWTOP, POPTOP, NEWBOT, POPBOT, etc.) coded in assembly language. My own current version of SLip which is MAD-based is so constructed and is therefore quite considerably more efficient than a similar but primitive-based system would be. The details of various implementations may differ considerably. But the general strategy of one SLIP system should closely resemble that of any other. This is not to say that any Slip program should be executable under all Slip implementations. After all, Slip is not a free-standing language.

A more important point is that Mr. Russell is the fourth person to have gone to the trouble of implementing a SLip system relying
entirely on the original ACM publication, i.e. without any reference to any other Slip implementer or to me. It happens that the Atlas people in London, England obtained a Slip deck from me some time ago, a deck from which the errors pointed out by Mr . Russell had been removed. I don't know the fate of that deck. Perhaps no attempt was ever made to put Suip on the London Atlas. In any case, I think Mr. Russell would have saved himself some trouble had he known of the parallel efforts of his countrymen. A number of people in this country have implemented Suip for the 7090 family of machines, each stumbling over the difficulties introduced by the fact that the original Suip listing was for the CDC 1604 machine and that it contains the errors pointed out by Mr. Russell.

To my knowledge Slip currently exists on the 704-709-7090-7094 systems imbedded in Fortran II and in MAD, on the 7040 in Fortran, on the CDC 1604 and 3600 in Fortran '63, and on the Q32 in Jovial. There may be other implementations I know nothing about. It may well be a service to silent workers in far corners of the computing world if an inventory of Slip systems were now to be taken and published. I volunteer, by means of this letter, to act as a clearing house for such Slip inventory information for the next month or so. At the end of that time, I will submit the inventory to the Communications of the $A C M$.

As I have already indicated, I am currently maintaining my own Slip system in MAD. In that system certain functions have been eliminated and certain new ones (particularly in the areas of input/output and text manipulation) added. In addition, I have an interpretive version of SLIP operating in the M. I. T. (MAC) timesharing environment. Any such additions and changes made by others should be included in the inventory. Communications should be addressed to me at the address given below.

May I offer my compliments to the several individuals who, like Mr. Russell, have struggled through my original manuscript with such great diligence and persistence as to find out how SuIP works. Joseph Weizenbaum
M. I. T. Project MAC Cambridge, Mass.

Dear Editor:

Mr. Donald B. Russell of the National Institute for Research in Nuclear Science, Chilton, England, has shown me the courtesy of sending me a copy of his letter on SLip. I much appreciate the opportunity he has thus created for me to say a few words about the current state of the system and its various implementations.

Let me say first that all of his comments and observations are correct and proper. I would also want to add, however, that except for the errors pointed to in the published SLIP listing, the main point of his discussion is that Fortran is not an entirely ma-chine-independent language. This is certainly true. Part of the attractiveness of SLIP is that it may be imbedded in any algebraic language which permits the calling of closed subroutines. It is of course obvious that SLIP is entirely host language-dependent. A Fortran-based Slip will look quite different from a MAD-based Slip, for example. A given host language is in general also dependent on the machine for which it is implemented and even, in some cases, on the monitor system within which that language is exercised. One must therefore look at the documentation of Suip as represented by the paper [Weizenbaum, J. Symmetric list processor. Comm. ACM 6 (Sept. 1963), 524-544.] as a guide, not as a set of codes which can be taken over bodily and run blindly. In any event, a Suip system which is intended for very wide and repeated use should have all its major functions (e.g. NUCELL,
RCELL, LIST, NAMTST, the sequencing and advance operations, NEWTOP, POPTOP, NEWBOT, POPBOT, etc.) coded in assembly language. My own current version of Suip which is MAD-based is so constructed and is therefore quite considerably more efficient than a similar but primitive-based system would be. The details of various implementations may differ considerably. But the general strategy of one SLip system should closely resemble that of any other. This is not to say that any Suip program should be executable under all Slip implementations. After all, Slip is not a free-standing language.

A more important point is that Mr. Russell is the fourth person to have gone to the trouble of implementing a SLip system relying
entirely on the original ACM publication, i.e. without any reference to any other Slip implementer or to me. It happens that the Atlas people in London, England obtained a Slip deck from me some time ago, a deck from which the errors pointed out by Mr . Russell had been removed. I don't know the fate of that deck. Perhaps no attempt was ever made to put Slip on the London Atlas. In any case, I think Mr. Russell would have saved himself some trouble had he known of the parallel efforts of his countrymen. A number of people in this country have implemented Slip for the 7090 family of machines, each stumbling over the difficulties introduced by the fact that the original Slip listing was for the CDC 1604 machine and that it contains the errors pointed out by Mr. Russell.

To my knowledge SuIP currently exists on the 704-709-7090-7094 systems imbedded in Fortran II and in MAD, on the 7040 in Fortran, on the CDC 1604 and 3600 in Fortran '63, and on the Q32 in Jovial. There may be other implementations I know nothing about. It may well be a service to silent workers in far corners of the computing world if an inventory of SLIP systems were now to be taken and published. I volunteer, by means of this letter, to act as a clearing house for such Slip inventory information for the next month or so. At the end of that time, I will submit the inventory to the Communications of the ACM.

As I have already indicated, I am currently maintaining my own Sulp system in MAD. In that system certain functions have been eliminated and certain new ones (particularly in the areas of input/output and text manipulation) added. In addition, I have an interpretive version of SLIP operating in the M. I. T. (MAC) timesharing environment. Any such additions and changes made by others should be included in the inventory. Communications should be addressed to me at the address given below.

May I offer my compliments to the several individuals who, like Mr. Russell, have struggled through my original manuscript with such great diligence and persistence as to find out how SLip works.

Joseph Weizenbaum
M. I. T. Project MAC

Cambridge, Mass.

Dear Editor:

Mr. Donald B. Russell of the National Institute for Research in Nuclear Science, Chilton, England, has shown me the courtesy of sending me a copy of his letter on SLip. I much appreciate the opportunity he has thus created for me to say a few words about the current state of the system and its various implementations.

Let me say first that all of his comments and observations are correct and proper. I would also want to add, however, that except for the errors pointed to in the published Slip listing, the main point of his discussion is that Fortran is not an entirely ma-chine-independent language. This is certainly true. Part of the attractiveness of Slip is that it may be imbedded in any algebraic language which permits the calling of closed subroutines. It is of course obvious that SLip is entirely host language-dependent. A Fortran-based Slip will look quite different from a MAD-based Slip, for example. A given host language is in general also dependent on the machine for which it is implemented and even, in some cases, on the monitor system within which that language is exercised. One must therefore look at the documentation of Slip as represented by the paper [Weizenbaum, J. Symmetric list processor. Comm. ACM 6 (Sept. 1963), 524-544.] as a guide, not as a set of codes which can be taken over bodily and run blindly. In any event, a Slip system which is intended for very wide and repeated use should have all its major functions (e.g. NUCELL, RCELL, LIST, NAMTST, the sequencing and advance operations, NEWTOP, POPTOP, NEWBOT, POPBOT, etc.) coded in assembly language. My own current version of SLiP which is MAD-based is so constructed and is therefore quite considerably more efficient than a similar but primitive-based system would be. The details of various implementations may differ considerably. But the general strategy of one SLip system should closely resemble that of any other. This is not to say that any Suip program should be executable under all Slip implementations. After all, Slip is not a free-standing language.

A more important point is that Mr. Russell is the fourth person to have gone to the trouble of implementing a Slip system relying
entirely on the original ACM publication, i.e. without any reference to any other Slip implementer or to me. It happens that the Atlas people in London, England obtained a Suip deck from me some time ago, a deck from which the errors pointed out by Mr . Russell had been removed. I don't know the fate of that deck. Perhaps no attempt was ever made to put Slip on the London Atlas. In any case, I think Mr. Russell would have saved himself some trouble had he known of the parallel efforts of his countrymen. A number of people in this country have implemented Suip for the 7090 family of machines, each stumbling over the difficulties introduced by the fact that the original SLip listing was for the CDC 1604 machine and that it contains the errors pointed out by Mr . Russell.

To my knowledge Suip currently exists on the 704-709-7090-7094 systems imbedded in Fortran II and in MAD, on the 7040 in Fortran, on the CDC 1604 and 3600 in Fortran '63, and on the Q32 in Jovial. There may be other implementations I know nothing about. It may well be a service to silent workers in far corners of the computing world if an inventory of Scip systems were now to be taken and published. I volunteer, by means of this letter, to act as a clearing house for such SLip inventory information for the next month or so. At the end of that time, I will submit the inventory to the Communications of the ACM.

As I have already indicated, I am currently maintaining my own SLIP system in MAD. In that system certain functions have been eliminated and certain new ones (particularly in the areas of input/output and text manipulation) added. In addition, I have an interpretive version of Slip operating in the M. I. T. (MAC) timesharing environment. Any such additions and changes made by others should be included in the inventory. Communications should be addressed to me at the address given below.

May I offer my compliments to the several individuals who, like Mr. Russell, have struggled through my original manuscript with such great diligence and persistence as to find out how SLip works.

Joseph Weizenbaum
M. I. T. Project MAC Cambridge, Mass.

Dear Editor:
Mr. Donald B. Russell of the National Institute for Research in Nuclear Science, Chilton, England, has shown me the courtesy of sending me a copy of his letter on Slip. I much appreciate the opportunity he has thus created for me to say a few words about the current state of the system and its various implementations.

Let me say first that all of his comments and observations are correct and proper. I would also want to add, however, that except for the errors pointed to in the published Scip listing, the main point of his discussion is that Fortran is not an entirely ma-chine-independent language. This is certainly true. Part of the attractiveness of SLIP is that it may be imbedded in any algebraic language which permits the calling of closed subroutines. It is of course obvious that Slip is entirely host language-dependent. A Fortran-based Slip will look quite different from a MAD-based Slip, for example. A given host language is in general also dependent on the machine for which it is implemented and even, in some cases, on the monitor system within which that language is exercised. One must therefore look at the documentation of Slip as represented by the paper [Weizenbaum, J. Symmetric list processor. Comm. ACM 6 (Sept. 1963), 524-544.] as a guide, not as a set of codes which can be taken over bodily and run blindly. In any event, a Slip system which is intended for very wide and repeated use should have all its major functions (e.g. NUCELL, RCELL, LIST, NAMTST, the sequencing and advance operations, NEWTOP, POPTOP, NEWBOT, POPBOT, etc.) coded in assembly language. My own current version of Slip which is MAD-based is so constructed and is therefore quite considerably more efficient than a similar but primitive-based system would be. The details of various implementations may differ considerably. But the general strategy of one SLIP system should closely resemble that of any other. This is not to say that any Suip program should be executable under all Slip implementations. After all, SLip is not a free-standing language.

A more important point is that Mr. Russell is the fourth person to have gone to the trouble of implementing a SLIP system relying
entirely on the original ACM publication, i.e. without any reference to any other Slip implementer or to me. It happens that the Atlas people in London, England obtained a Slip deck from me some time ago, a deck from which the errors pointed out by Mr . Russell had been removed. I don't know the fate of that deck. Perhaps no attempt was ever made to put Slip on the London Atlas. In any case, I think Mr. Russell would have saved himself some trouble had he known of the parallel efforts of his countrymen. A number of people in this country have implemented Slip for the 7090 family of machines, each stumbling over the difficulties introduced by the fact that the original Suip listing was for the CDC 1604 machine and that it contains the errors pointed out by Mr . Russell.

To my knowledge Suip currently exists on the 704-709-7090-7094 systems imbedded in Fortran II and in MAD, on the 7040 in Fortran, on the CDC 1604 and 3600 in Fortran '63, and on the Q32 in Jovial. There may be other implementations I know nothing about. It may well be a service to silent workers in far corners of the computing world if an inventory of Suip systems were now to be taken and published. I volunteer, by means of this letter, to act as a clearing house for such SLip inventory information for the next month or so. At the end of that time, I will submit the inventory to the Communications of the ACM.

As I have already indicated, I am currently maintaining my own Slip system in MAD. In that system certain functions have been eliminated and certain new ones (particularly in the areas of input/output and text manipulation) added. In addition, I have an interpretive version of Slip operating in the M. I. T. (MAC) timesharing environment. Any such additions and changes made by others should be included in the inventory. Communications should be addressed to me at the address given below.

May I offer my compliments to the several individuals who, like Mr. Russell, have struggled through my original manuscript with such great diligence and persistence as to find out how SLip works.

Joseph Weizenbaum
M. I. T. Project MAC Cambridge, Mass.

Dear Editor:

Mr. Donald B. Russell of the National Institute for Research in Nuclear Science, Chilton, England, has shown me the courtesy of sending me a copy of his letter on SLip. I much appreciate the opportunity he has thus created for me to say a few words about the current state of the system and its various implementations.

Let me say first that all of his comments and observations are correct and proper. I would also want to add, however, that except for the errors pointed to in the published Slip listing, the main point of his discussion is that Fortran is not an entirely ma-chine-independent language. This is certainly true. Part of the attractiveness of Slip is that it may be imbedded in any algebraic language which permits the calling of closed subroutines. It is of course obvious that SLIP is entirely host language-dependent. A Fortran-based Slip will look quite different from a MAD-based Slip, for example. A given host language is in general also dependent on the machine for which it is implemented and even, in some cases, on the monitor system within which that language is exercised. One must therefore look at the documentation of SLip as represented by the paper [Weizenbaum, J. Symmetric list processor. Comm. ACM 6 (Sept. 1963), 524-544.] as a guide, not as a set of codes which can be taken over bodily and run blindly. In any event, a Suip system which is intended for very wide and repeated use should have all its major functions (e.g. NUCELL, RCELL, LIST, NAMTST, the sequencing and advance operations, NEWTOP, POPTOP, NEWBOT, POPBOT, etc.) coded in assembly language. My own current version of Slip which is MAD-based is so constructed and is therefore quite considerably more efficient than a similar but primitive-based system would be. The details of various implementations may differ considerably. But the general strategy of one SLIP system should closely resemble that of any other. This is not to say that any Suip program should be executable under all Slip implementations. After all, Slip is not a free-standing language.

A more important point is that Mr. Russell is the fourth person to have gone to the trouble of implementing a Slip system relying
entirely on the original ACM publication, i.e. without any reference to any other Slip implementer or to me. It happens that the Atlas people in London, England obtained a Suip deck from me some time ago, a deck from which the errors pointed out by Mr. Russell had been removed. I don't know the fate of that deck. Perhaps no attempt was ever made to put Slip on the London Atlas. In any case, I think Mr. Russell would have saved himself some trouble had he known of the parallel efforts of his countrymen. A number of people in this country have implemented Suip for the 7090 family of machines, each stumbling over the difficulties introduced by the fact that the original SLip listing was for the CDC 1604 machine and that it contains the errors pointed out by Mr. Russell.

To my knowledge Suip currently exists on the 704-709-7090-7094 systems imbedded in Fortran II and in MAD, on the 7040 in Fortran, on the CDC 1604 and 3600 in Fortran '63, and on the Q32 in Jovial. There may be other implementations I know nothing about. It may well be a service to silent workers in far corners of the computing world if an inventory of SLip systems were now to be taken and published. I volunteer, by means of this letter, to act as a clearing house for such Slip inventory information for the next month or so. At the end of that time, I will submit the inventory to the Communications of the ACM.

As I have already indicated, I am currently maintaining my own Slip system in MAD. In that system certain functions have been eliminated and certain new ones (particularly in the areas of input/output and text manipulation) added. In addition, I have an interpretive version of SLIP operating in the M. I. T. (MAC) timesharing environment. Any such additions and changes made by others should be included in the inventory. Communications should be addressed to me at the address given below.

May I offer my compliments to the several individuals who, like Mr. Russell, have struggled through my original manuscript with such great diligence and persistence as to find out how Slip works.

Joseph Weizenbaum
M. I. T. Project MAC

Cambridge, Mass.

> Marvin Ratner
> c/o Computer Science Dept.
> 311 North Park Street
> University of Wisconsin
> Madison Wisconsin

Dear Mr. Weizenbaum,
In response to your letter in the recent ACM Communications I wish to inform you as to the state of SLIP at the Univ. of Wisconsin and all errors that I have discovered y up to date in the system. As of now SIIP is on the Library tape on the 1604 and is being used (and taught) in two computer science courses. Next semester I will attempt to write a general manual on SLIP to supplement to documentation in the Communications . If any work has been done in this vein I would appreciate information about said . To \dot{x} put the SL IP system on the library tape we added dq to the end of each entry point in the system to avoid conflicts with we users who might have subroutines with names such as"TOP ".

The following is a list of errors which I have found and corrected to date .

1. Function lxxexy LSSCPY ---- after line 559 add if (LNKR (W) - LPNTR(LR) laxysy 6, 7, 6
$7 \mathrm{X}=\operatorname{ADVLWR}(\mathrm{LR}, \mathrm{K})$
GO TO 5
$6 \operatorname{IF}(\operatorname{LNKR}(W(20-\operatorname{LPNTR}(\operatorname{LR})) 5.8 .5$
$8 \mathrm{X}=\operatorname{ADVLWR}$ (LR, K)
The above takes care of the case when the list which is being copied happens to be either $W(\mathbb{I})$ or $W(2)$. A similiar correction is needed for the subroutine LSTEQL when either of the lists being comparee is W or $W(2)$.
2. Function LSSCPY … after line 534 add
$\operatorname{IF}(\operatorname{LNKR}(W(2)-\operatorname{LPNTR}(\operatorname{LRA})) 41,12,41$
41 IF (LNKR (W) - LPNTR (LRA)) $11,12,11$
12 XA $=$ ADVLWR (LRA, KA)
III IF (LNKR (W) - LPNTR (LRB)) 42, 13, 42
42 if $(\operatorname{LNKR}(W(2)-\operatorname{LPNTR}(\operatorname{LRB})) 8,13,8$
$13 \mathrm{XB}=\operatorname{ADVLWR}(\mathrm{LRB}, \mathrm{KB})$
3. Function \mathbf{X} LSSCPY -.-. After line 562 add

L $L=\operatorname{LNKR}(\operatorname{CONT}(W(2)))$
CALL $\operatorname{STRIND}(0, L+I)$
Call $\operatorname{SERTIND}(0,-1,-1, L)$

This correction prevents the List copy which has just been created from being returned to availatle space when the top cell of $W(2)$ which contains it in name format $\dot{x} x x$ and has been deleted comes up to the top of LAVS
4. Function LVLRVI --- li ne 434 should read
$\operatorname{IF}(\operatorname{LNKR}($ CONT (LVLRVII +1 фो) $2,3,2$
5. function LVLRVT -- Line 423 should read zo政

1 IF (LNKR (CONT (LVLRVT + I))) 2,3,2

If you wish to correspond over the summer, please address said correspondence to Dr. Ralph Lomdon . Computing Science Dept. UNiv of Wisc. the faculty member under whom I am working sax as I shall not be here over the summer .

Yours tryly

Marvin Tatner
P.S. errors continued
6. functions INLSTL AND INLSTR (M,N) -....... After lines 152 and zita 166 add

IF (LISTMT (L)) 2.1.2
This corrects the error of putting a cell on the list with an ID of 2 when you insert an empty list onto the host list .
P.S.\#2 Correction number 3 causes the created cipy list to have a reference count of 1 rather than 0 by virtue of its being put on $W(2)$. This however seems more in line with normal list creations by the programmer .

MAY 21, 1966

$$
\text { LISTING OF } 1620 \text { SLIP SYSTEM }
$$

DILK SITES
DAVID P. KELLEHER

E 3470	DC 1,1
E 3680 QQ	DAC 6, CONT
E 3690	DVLC, 5, CONT

E3691 DAC 6,SETIND,
DVLC,5,SETIND
$\begin{array}{ll}\text { E3694 } & \text { DAC 6,STRIND } \\ \text { E3696 } & \text { DVLC,5,STRIND } \\ \text { E } 3700 & \text { DC } 2,1\end{array}$
$\begin{array}{ll}\text { E3694 } & \text { DAC 6,STRIND } \\ \text { E3696 } & \text { DVLC,5,STRIND } \\ \text { E3700 } & \text { DC } 2,9\end{array}$
$\begin{array}{ll}\text { E3694 } & \text { DAC 6,STRIND } \\ \text { E3696 } & \text { DVLC,5,STR IND } \\ \text { E3700 } & \text { DC 2,1 }\end{array}$
E3696
DS,$Q Q-1$
E3710LENGTHDS
E 3720 DEND
合
+101010

F2100 CF FAC-2
F2110 B7 *+20
F2120 SF FAC-2
F2130TEST2 BNF SETL,-LNKL
F2135 B7 TEST3
F2140SETL MA FAC-5,-LNKL
F2150TEST3 BNF SETR,-LNKR
F2155 B7 DQNE
F2160SETR MA FAC,-LNKR
F2170D®NE TFL -CELL,FAC
F2180 B7 1-ENT
F2190LENGTHDC 2,1

```
- OEND M
```


G2204 DVLC,5,INITAS
G2210 DC 2,1
G2220LENGTHDS ,QQ-1
G2230 DEND

$\square \rightarrow+150 \quad$ Lic ?
c
b
AD Vink int 0pyo
e

c)


```
- l15250KGO SF RMSW
I1540NORKM TF FAC,-PDINT
11550 CM FAC,70,10
11560 BL *+32
I1565***** NUMERIC = 12
11570 TFM BETA,12,10
I1580 BT DQNE
I1590 CM FAC,41,10
I1600 BL *+32
I 1605**** ALPHABETIC = 04
II670 TFM BETA,04,10
I1680 B7 DDNE
I1685**** NEITHER -- USE TABLE LØ\varnothingK-UP
I1700 BLX *+12,FAC(A1)
I1710 BX *+12,FAC(AI)
I1720 TF BETA,TABLE(Al)
I2010DØNE CF FAC-1,,10
I 202ODEVIC DS ,*
I 2030RMSW DS ,*-2
12040 CF BETA-1
I2050 MF BETA,RMSW
I2060 CF RMSW
I20700UT TF -NC\varnothingDE,BETA
I2180 BSBB1-ENT
I2194LENGTHDC 1,'
I2200 DEND
$DEØF DEFINE END OF S.P.S. PRØGRAM FILE -- D.P.K.
```

$22 \quad$ LCNTR 0637
ZZFøR
*FANDK0810
*LDISKLCNTR 0637
FUNCTIØN LCNTR (LST) LCNTOO10
LCNTR=LNKR (CONT (LST+1))

```
        ZZ LSTNAM 0639
        ZZFDR
        *FANDK0810
        *LDISKLSTNAM0639
        FUNCTION LSTNAM (LST)
        LSTNAM=LNKL (CONT (LST+1) )
                                LSTNOO10
        CALL SETDIR (O,LSTNAM,LSTNAM,LSTNAM)
        RETURN
                                LSTN0030
                            REND
LSTN0040
LSTN005O
*
*
\frac{z}{0}
```



```
*
*
*
7
*
```



```
O
```


$2 Z \quad$ INTLBL 0649
ZZFøR
*FANDK0810
*LDISKINTLBL0649
FUNCTI®N INTLBL (I) INTLO010

INTLBL $=1$	INTLOO20
RETURN	INTLO030

RETURN
INTLO030
INTLO040

```
ZZ FLTLBL 0651
    ZZFQR
```

 *FANDK0810
 *LDISKFLTLBL0651
 FUNCTI®N FLTLBL (X)
 FLTLBL \(=X\)
 FLTLOO10
    ```
- - 
```

ZZ NUCELL 0653
ZZFQR
*FANDK0810
*LDISKNUCELLO653
FUNCTIØN NUCELL (X) NUCE0010
$K=1$
$10 \quad \mathrm{M}=\mathrm{LNKR}(\operatorname{CONT}(-1))$
$\begin{array}{ll}10 & M=\operatorname{LNKR}(\operatorname{CONT}(-1) \\ & \mathrm{IF}(M) 2,4,2\end{array}$
4 Gø TD $(6,8), K$
$6 \quad K=2$
CALL INITAS (X)
GØ Tø 10
CALL INITAS (X)
$G \varnothing$ Tø 10
$\begin{array}{ll}8 & \text { TYPE } 1 \\ 1 & \text { FORMAT (18HNØ MØRE FREE SPACE) }\end{array}$
$\begin{array}{ll}8 & \text { FOPE } 1 \\ 1 & \text { FØRMAT (} 18 \text { HND MØRE FREE SPACE) }\end{array}$
CALL EXIT
$\begin{array}{ll}2 & \text { IF(ID(CONT } M) 1-1) 12,14,12 \\ 14 & \text { CALL IRALST }(C D N T(M+1))\end{array}$
$\begin{array}{ll}2 & \text { IF(ID(CONT } M) 1-1) 12,14,12 \\ 14 \quad \text { CALL IRALST }(C D N T(M+1))\end{array}$
12 CALL SETIND $(-1,-1, \operatorname{LNKR}(\operatorname{CONT}(M)),-1)$
CALL STRIND $(0, M)$
CALL STRIND $(0, M+1)$
CALL STRIND $(0, M)$
CALL STRIND $(0, M+1)$
NUCELL=M
RETURN
END
NUCEOO20
NUCEOO30
NUCEOO40
NUCE0050
NUCE0060
NUCE0070
NUCEO080
NUCE0090
NUCEO100
NUCEO100
NUCEO110
NUCEO120
ZZ NUCELL 0653
2 N
1 FORMAT (18HN® MORE FREE SPACE)
NUCEO130
NUCEO140
NUCEO150
NUCEO160
NUCEO170
NUCEO180
NUCEO190


```
Z2F0R
    *FANDK0810
    *LDISKRCELL 0655
                            SUBRØUTINE RCELL (CELL)
                            RCEL0010
                                    CALL SETIND (-1,-1,CELL,LNKL(CONT(-1)))
                                CALL SETIND ( }-1,\mathrm{ CELL, -1, -1)
CALL SETIND (-1,-1,0,CELL)
RETURN
END
RCELO030
RCELO040
RCELO050
RCELO060
```


-

-

```


- ZZ IRALST 0659
    Z2FOR
    *FANDK0810
    *LDI SKIRALST0659
        FUNCTION IRALST (LST) IRALOO10
        \(L=L \varnothing C T(L S T) \quad\) IRALO020
        CALL SETIND \((-1,-1\), LCNTR(L) \(-1, L+1)\)
        I RALST=LCNTR(L)
        IF(IRALST) \(2,4,2\)
        \begin{tabular}{lll}
4 & CALL MTLIST \((L)\) & IRALOO50 \\
\hline IRALOO60
\end{tabular}
        \(N=L S T N A M(L)\)
        IF \((N) 6,8,6\)
    6 CALL SETIND \((1,-1,-1, L)\)

    8 CALL STRIND
        RETURN
        I RALOO30
        I RALO 040
        I RALO 050
    IRALO060
    IRALO070
IRAL0080
    I RALO100
    IRALO110
    IRALO130
        END
    I RALO140
    I RALO150
\begin{tabular}{ll}
\hline & ZZ LDUMP 0661 \\
& ZZFOR \\
& *FANDK0810 \\
*LDISKLDUMP 0661
\end{tabular}
FUNCTIØN LDUMP (N1,N2) LDUMOO10

EQUIVALENCE \((\mathrm{XW}, \mathrm{IW})\)
LDUMOO11
\begin{tabular}{ll} 
\\
\(C \quad\) & \(I T=2-N I+N I / 2 * 2\) \\
\(I T * I=\varnothing D D P \varnothing S I T I V E, \quad 2=E V E N, 3=\varnothing D D\) NEGATIVE.
\end{tabular}

LDUMOO12
IT.. \(1=\varnothing D D\) PøSITIVE, \(2=E V E N, 3=\varnothing D D\) NEGATIVE.
LDUMOO14
\(L L=L N K L(C O N T(-1))\)
LDUMOO16
\(\operatorname{LR}=\operatorname{LNKR}(\operatorname{CONT}(-1))\)
LDUMOO18
PUNCH 3,IT,N1,N2,LL,LR
LDUMOO20
3
FØRMAT(I1,5X,19HLDUMP OF SLIP-CELLS,I6,7H THRU,I6,
LDUMOO30
LDUMO031
LDUMP \(=0\)
LDUMO040
Gø Tø \((4,6,6)\), IT
LDUMOO 42
6 PUNCH 5
LDUMOO44
5 FQRMAT (65H
ADDRESS ØF FIRST CELL MUST BE ØDD AND PØSITIVE--LDUMLDUMOO 46
IP OMITTED)
RETURN
\(4 D \varnothing 2 I=N 1, N 2,2\)
LDUMOO47
LDUMO050
\(L L=L N K L(C \varnothing N T(I))\)
\(L R=\operatorname{LNKR}(C \otimes N T(I))\)
\(I X=I D(C \oslash N T(I))\)
\(X W=\operatorname{CDNT}(I+1)\)
LDUMP \(=\) LDUMP +1
LDUMO060
LDUM0080
LDUM0090
LDUMO100
LDUMO120
2 PUNCH \(1, I, L L, L R, I X, I W, X W\)
LDUMO122
8
FØRMAT \((1 X, I 5,3 X, 5 H L N K L=, I 5,3 X, 5 H L N K R=, I 5,3 X, 3 H I D=, I 2,3 X\),
LDUMO130
LDUMO140
LDUMO150
RETURN
END
LDUMO160
LDUMO200

ZZF \(\varnothing R\)
*FANDK0810
*LDISKLISTMT0667
FUNCTION LISTMT (LST)
LISTOO10
FUNCTI®N LISTMT (LST)
L=LøCT(LST)
\(L=L \varnothing C T(L S T)\)
LISTOO20
LISTMT = IQUAL(CØNT(L), CØNT(LNKR(CONT(L))))
LIST0030
RETURN LISTOO40
END
eon
-
-
-
8


```

m* LOCT 0671
FUNCTI\otimesN LOCT (LST) LOCTOO10
IF(NAMTST(LST)12,4,2 LOCTOO20
L\varnothingCT=LST LOCTOO3O
RETURN
TYPE lgLST
FORMAT (16HØPERAND NOT LIST,I11)
CALL EXIT
END
LØCT0040
L\varnothingCTO050
LQCT0060
L\otimesCT0070
LØCT0080
\$DEØF DEFINE END ØF FØRTRAN PRØGRAM FILE -- D.P.K.

```
```

 ZZ KPUT 0694
 ZZSPS
 *STARE REL\emptysetADABLE
 *LIST CARD
 *ASSEMBLE REL\varnothingCATABLE
 *NAME KPUT
 *ID NUMBER 0694
 ***** KPUT 0694
 Q DS ,*+101
 DC 6,987898,5-0
 DAC 6,KPUT ,7-Q
 DVLC22-Q,5,LENGTH,2,8,2,10,5,ENT-6,5,0,30,0
 DSC 17,0,0
 DQRGQ-100
 FAC DS ,2492
 FXZ DS ,3099
 BETA DS ,2630
 IPNT DS 5
 ICHAR DSA
 WORD DSA
 LST DSA
 DC 1,
 DS 5
 ENT TFM TF+6, ICHAR-4
 AM TF +6,4,10
 AM ENT-1,5,10
 TF CF+11,1-ENT
 BNF *+36,CF+11
 CF CF +11
 CF+11,-CF-11
 TF ,CF+11
 AM TF +6,1,10
 BNR ENT+12,-TF-6
 AM ENT-1,2,10
 BSBA*+12
 CM -WØRD,,10
 BNE *+24
 TFM IPNT
 AM IPNT,2,10
 CM IPNT,12,10
 BNE NØT
    ```
```

 TM **+11
 NEWBOTDS ,*-5
 DSA -WØRD
 DSA -LST
 TF -W@RD,FXZ
 TFM IPNT,2,10
 NØT BLX *+12,IPNT(A1)
 TF FAC,-W\triangleRD
 TF BETA,-ICHAR
 TD FAC-11(A1),BETA-1
 TD FAC-10(A1),BETA
 SF FAC-9
 TF -WØRD,FAC
 BSBB1-ENT
 DAC 6,NEWBDT
 DVLC,5,NEWBDT
 DC 2,'
 LENGTHDS ,QQ-1
 DEND
 $DE\varnothingF DEFINE END ØF S.P.S. PRØGRAM FILE -- R.L.S.
 *
 *)
 *
 c
 c
 L
 *
 C
    ```
un
```

L0 TZ TQP 0677
~ ZZFOR
*FANDK0810
*LDISKTØP 0677
FUNCTIØN T\varnothingP(P)
T\emptysetP=CONT(LNKR(CONT(LDCT(P)))+1)
RETURN
END

```

    ZZ PØPTøP 0681
    ZZFOR
    *FANDK0810
    *LDI SKPØPTØP0681
        FUNCTIØN PØPT\varnothingP(P)
        PØPTDP=DELETE(LNKR(CØNT(LØCT(P))))
        RETURN
    END
```

```
    ZZ NEWTOP 0685
    Z2FOR
    *FANDK0810
    *LDISKNEWTOPO685
        FUNCTI ON NEWTOP(P,Q)
        NEWT|P=NXTRGT(P,L\varnothingCT(Q))
        RETURN
    END
```


$\infty \quad$ ZZ NXTRGT 0689

 NXTRGT=IR
 \(L R=\operatorname{LNKR}(\operatorname{CONT}(A))\)
 CALL SETIND (-1, IR, -1, LR)
 CALL SETIND \((-1,-1, I R, A)\)
 CALL SETIND (O,A,LR,IR)
 IF (NAMTST(M) \(11,2,1\)
 2 CALL SETIND $(1,-1,-1$, IR)
CALL SETIND $(-1,-1, \operatorname{LCNTR}(M)+1, M+1)$
1 CONTINUE
CALL STRIND (M,IR+1)
RETURN
END
-
(4)
er
*
4.
-
v
-
-


```
\sigma
    ZZ DELETE 0693
    ZZFOR
    *FANDK0810
    *LDI SKDELETE0693
        FUNCTIØN DELETE(K)
        IF(ID(CONT(K))-2)1,2,1
            2 \text { PRINT 100}
        100 FØRMAT(4OHATTEMPT T\varnothing DELETE HEADER. ZER\varnothing RETURNED.)
        DELETE=0.
            RETURN
        1 DELETE=CONT (K+1)
        LL=LNKL(CONT(K))
        LR=LNKR(CØNT(K))
        CALL RCELL(K)
        CALL SETIND(-1, -1,LR,LL
        CALL SETIND(-1,LL,-1,LR
        RETURN
        END
    *
    *
    4
    -
    *
    *
    *
    *
    *
```

```
ZZ LISTRD 0695
    ZZFOR
    *FANDK0810
    *LDISKLISTRDO695
        FUNCTI|N LISTRD(LST,IN)
        EQUIVALENCE (NUM,WDRD)
        CALL KGET(-1,ICØDE)
        I SUB=1
        10 ICHAR=KGET(IN,ICDDE)
            IF(IC\varnothingDE-10)10,20,10
        20 LISTRD=LST
            CALL NEWTOP(LST,LIST(STACK))
            40 IDELSW=0
            NUM=0
            IFLTSW=0
            IS INSW=0
        50 ICHAR=KGET(IN,ICDDE)
            IF (ICØDE) 51,51,54
    C END ØF LIST
            51 IF(IDELSW)53,53,52
            5 2 \text { CALL NEWBØT(WØRD,TØP(STACK))}
            5 3 \text { CALL IRALST (STACK)}
            RETURN
            54 G\varnothing T\varnothing (110, 120,130,140,150,160,170,180,190,200,210,220,230,
            1 240),ICODE
    C EQUAL SIGN
        110 IF(IDELSW)112,112,111
        111 CALL NEWB\varnothingT (WORD,T\varnothingP(STACK))
    112 NUM=0
            CALL KPUT(ICHAR,WØRD,TØP(STACK))
            CALL NEWB\varnothingT(WØRD,TDP(STACK))
            G\varnothing T\varnothing 40
    C MINUS SIGN
    120 IF(IDELSW)121,121,111
    121 IDELSW=1
        I SINSW=-1
        CALL KPUT(ICHAR,W\varnothingRD,TØP(STACK))
        G\varnothing TO 50
    PLUS SIGN
        130 IF (IDELSW)131,131,111
        131 IDELSW=1
```



```
                                    ZZFOR
    ZZ SEQRDR 0697
    *FANDK0810
    *LDI SKSEQRDR0697
            FUNCT&ION SEQRDR(LST)
            SEQRDR=CØNT (L\varnothingCT(LST))
                                    RETURN
                                    END
```



```
m SZ SEQLL 0701 
```

 FUNCTI®N SEQLL(Z,N)
 \(L=L N K L(Z)\)
 \(Z=C \varnothing N T(L)\)
 SEQLL=CØNT \((L+1)\)
 \(\mathrm{N}=1 \mathrm{D}(\) Z \()-1\)
 RETURN
 END
 \(0^{\frac{0}{u}}\)
 \(\circ\)

SAMPLE PROGRAM + DATA

| 10 | 85 | LNKL $=$ | 83 | LNKR = | 87 | $I D=$ | 0 | DATUM $=$ | 1 | OR | . $10000000 E+01$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 87 | LNKL $=$ | 85 | LNKR = | 89 | $I D=$ | 0 | DATUM $=$ | 3300000000 | $\emptyset R$ | . $33000000 E+10$ |
| \bigcirc | 89 | LNKL = | 87 | LNKR = | 91 | $I D=$ | 0 | DATUM = | 5644440000 | QR | . $56444400 \mathrm{E}+10$ |
| Cr° | 91 | LNKL $=$ | 89 | LNKR= | 93 | $I D=$ | 0 | DATUM $=$ | 5756624963 | θR | . $57566249 E+10$ |
| N | 93 | LNKL $=$ | 91 | LNKR = | 95 | $I D=$ | 0 | DATUM $=$ | 4965450000 | QR | . $49654500 E+10$ |
| | 95 | LNKL = | 93 | LNKR = | 97 | $1 D=$ | 0 | DATUM $=$ | 2300000000 | θR | . $23000000 E+10$ |
| \bigcirc | 97 | LNKL $=$ | 95 | LNKR = | 99 | $I D=$ | 0 | DATUM $=$ | 2 | θR | . $20000000 E+01$ |
| | 99 | LNKL = | 97 | LNKR = | 101 | $I D=$ | 0 | DATUM = | 3300000000 | QR | . $33000000 \mathrm{E}+10$ |
| N | 101 | LNKL = | 99 | LNKR = | 103 | $1 D=$ | 0 | DATUM $=$ | 4565455500 | QR | . $45654555 \mathrm{E}+10$ |
| 0 | 103 | LNKL $=$ | 101 | LNKR = | 105 | $I D=$ | 0 | DATUM $=$ | 2300000000 | θR | . $23000000 E+10$ |
| | 105 | LNKL = | 103 | LNKR = | 107 | $1 D=$ | 0 | DATUM $=$ | 3 | θR | . $30000000 E+01$ |
| | 107 | LNKL = | 105 | LNKR = | 109 | $I D=$ | 0 | DATUM = | 3300000000 | QR | - $33000000 E+10$ |
| - | 109 | LNKL $=$ | 107 | LNKR = | 111 | $I D=$ | 0 | DATUM $=$ | 5644440000 | QR | . $56444400 E+10$ |
| | 111 | LNKL = | 109 | LNKR= | 113 | $I D=$ | 0 | DATUM $=$ | 5545474163 | QR | . $55454741 E+10$ |
| | 113 | LNKL= | 111 | LNKR = | 115 | $I D=$ | 0 | DATUM $=$ | 4965450000 | $Q R$ | . $49654500 E+10$ |
| ${ }^{\circ}$ | 115 | LNKL $=$ | 113 | LNKR = | 117 | $I D=$ | 0 | DATUM $=$ | 300000000 | $\emptyset R$ | . $30000000 E+09$ |
| | 117 | LNKL $=$ | 115 | LNKR = | 119 | $I D=$ | 0 | DATUM $=$ | 5344645470 | QR | . $53446454 \mathrm{E}+10$ |
| | 119 | LNKL = | 117 | LNKR = | 121 | $I D=$ | 0 | DATUM $=$ | 7071740000 | QR | . $70717400 \mathrm{E}+10$ |
| | 121 | LNKL = | 119 | LNKR = | 123 | $1 D=$ | 0 | DATUM $=$ | 5353000000 | QR | . $53530000 E+10$ |
| | 123 | LNKL= | 121 | LNKR = | 125 | $I D=$ | 0 | DATUM $=$ | 3300000000 | QR | . $33000000 E+10$ |
| | 125 | LNKL $=$ | 123 | LNKR = | 129 | $I D=$ | 0 | DATUM $=$ | 5355525300 | QR | . $53555253 E+10$ |
| Q | 127 | LNKL = | 137 | LNKR = | 133 | $I D=$ | 2 | DATUM $=$ | + 2 | θR | . $20000000 E+01$ |
| | 129 | LNKL = | 125 | LNKR = | 143 | $I D=$ | 1 | DATUM= | 12700127 | QR | . $12700127 E+08$ |
| | 131 | LNKL= | 3 | LNKR = | 165 | $I D=$ | 1 | DATUM = | 12700127 | QR | . $12700127 \mathrm{E}+08$ |
| | 133 | LNKL = | 127 | LNKR = | 137 | $1 D=$ | 0 | DATUM $=$ | 4356556300 | $\emptyset R$ | . $43565563 E+10$ |
| | 135 | LNKL = | 141 | LNKR = | 141 | $I D=$ | 2 | DATUM $=$ | 2 | $\emptyset R$ | . $20000000 E+01$ |
| | 137 | LNKL = | 133 | LNKR = | 127 | $I D=$ | 1 | DATUM = | 13500135 | QR | . $13500135 E+08$ |
| \bigcirc | 139 | LNKL $=$ | 3 | LNKR= | 131 | $I D=$ | 1 | DATUM $=$ | 13500135 | QR | . $13500135 \mathrm{E}+08$ |
| | 141 | LNKL $=$ | 135 | LNKR = | 135 | $I D=$ | 0 | DATUM = | -1 | QR | -. $10000000 E+01$ |
| | 143 | LNKL = | 129 | LNKR = | 145 | $I D=$ | 0 | DATUM = | 5344645470 | θR | . $53446454 E+10$ |
| \bigcirc | 145 | LNKL $=$ | 143 | LNKR = | 147 | $I D=$ | 0 | DATUM $=$ | 7071760000 | QR | . $70717600 E+10$ |
| | 147 | LNKL = | 145 | LNKR = | 149 | $1 D=$ | 0 | DATUM $=$ | 5359000000 | $Q R$ | . $53590000 E+10$ |
| | 149 | LNKL $=$ | 147 | LNKR = | 151 | $I D=$ | 0 | DATUM = | 3300000000 | QR | . $33000000 E+10$ |
| - | 151 | LNKL $=$ | 149 | LNKR = | 155 | $I D=$ | 0 | DATUM $=$ | 5355525900 | θR | . $53555259 E+10$ |
| | 153 | LNKL = | 163 | LNKR = | 159 | $1 D=$ | 2 | DATUM = | 2 | QR | . $20000000 E+01$ |
| | 155 | LNKL = | 151 | LNKR = | 169 | $I D=$ | 1 | DATUM = | 15300153 | $\emptyset R$ | . $15300153 \mathrm{E}+08$ |
| Ј | 157 | LNKL = | 3 | LNKR = | 211 | $I D=$ | 1 | DATUM $=$ | 15300153 | DR | . $15300153 \mathrm{E}+08$ |
| | 159 | LNKL = | 153 | LNKR = | 163 | $I D=$ | 0 | DATUM $=$ | 4356556300 | QR | . $43565563 E+10$ |
| | 161 | LNKL $=$ | 167 | LNKR = | 167 | $1 D=$ | 2 | DATUM = | 2 | QR | . $20000000 E+01$ |
| 0 | 163 | LNKL = | 159 | LNKR = | 153 | $1 D=$ | 1 | DATUM $=$ | 16100161 | θR | . $16100161 E+08$ |
| | 165 | LNKL = | 3 | LNKR = | 157 | $I D=$ | 1 | DATUM $=$ | 16100161 | θR | . $16100161 \mathrm{E}+08$ |
| | 167 | LNKL = | 161 | LNKR = | 161 | $1 D=$ | 0 | DATUM = | -1 | DR | -. $10000000 E+01$ |
| \bigcirc | 169 | LNKL = | 155 | LNKR = | 171 | $1 D=$ | 0 | DATUM = | 5344645470 | QR | . $53446454 \mathrm{E}+10$ |
| | 171 | LNKL = | 169 | LNKR = | 173 | $1 D=$ | 0 | DATUM = | 7071780000 | $Q R$ | . $70717800 E+10$ |

| 8 | Makta | 12 | 14K8 | +151 | 10= | 8- | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 521 | LNKL $=$ | 519 | LNKR = | 523 | $I D=0$ | DATUM = | 2300000000 | σR | . $23000000 E+10$ |
| 523 | LNKL = | 521 | LNKR = | 525 | $I D=0$ | DATUM = | 4900000000 | $\emptyset R$ | . $49000000 \mathrm{E}+10$ |
| 525 | LNKL = | 523 | LNKR = | 527 | $I D=0$ | DATUM $=$ | 2300000000 | OR | . $23000000 E+10$ |
| 527 | LNKL = | 525 | LNKR = | 529 | $I D=0$ | DATUM = | 5353000000 | θR | . $53530000 E+10$ |
| 529 | LNKL = | 527 | LNKR = | 531 | $I D=0$ | DATUM = | 2300000000 | OR | . $23000000 E+10$ |
| 531 | LNKL $=$ | 529 | LNKR = | 533 | $I D=0$ | DATUM = | 5359000000 | θR | $.53590000 E+10$ |
| 533 | LNKL = | 531 | LNKR = | 535 | $I D=0$ | DATUM $=$ | 2300000000 | $\emptyset R$ | . $23000000 E+10$ |
| 535 | LNKL = | 533 | LNKR = | 537 | $I D=0$ | DATUM $=$ | 4967000000 | QR | . $49670000 E+10$ |
| 537 | LNKL $=$ | 535 | LNKR = | 539 | $I D=0$ | DATUM $=$ | 2300000000 | QR | . $23000000 E+10$ |
| 539 | LNKL = | 537 | LNKR = | 541 | $I D=0$ | DATUM = | 4966000000 | θR | . $49660000 E+10$ |
| 541 | LNKL = | 539 | LNKR = | 543 | $I D=0$ | DATUM $=$ | 2300000000 | θR | . $23000000 E+10$ |
| 543 | LNKL = | 541 | LNKR = | 545 | $I D=0$ | DATUM $=$ | 6766000000 | OR | . $67660000 E+10$ |
| 545 | LNKL = | 543 | LNKR = | 547 | $I D=0$ | DATUM $=$ | 5344645470 | $\emptyset R$ | $.53446454 \mathrm{E}+10$ |
| 547 | LNKL = | 545 | LNKR = | 549 | $1 D=0$ | DATUM $=$ | 7173700000 | QR | . $71737000 E+10$ |
| 549 | LNKL $=$ | 547 | LNKR = | 551 | $I D=0$ | DATUM $=$ | 1 | $\emptyset R$ | . $10000000 E+01$ |
| 551 | LNKL= | 549 | LNKR = | 553 | $I D=0$ | DATUM $=$ | 4656595441 | θR | . $46565954 \mathrm{E}+10$ |
| 553 | LNKL $=$ | 551 | LNKR = | 557 | $I D=0$ | DATUM $=$ | 6300000000 | $\emptyset R$ | . $63000000 E+10$ |
| 555 | LNKL $=$ | 649 | LNKR = | 561 | $I D=2$ | DATUM $=$ | 2 | $\emptyset R$ | . $20000000 E+01$ |
| 557 | LNKL = | 553 | LNKR = | 651 | $1 D=1$ | DATUM = | 35500555 | ØR | . $55500555 E+08$ |
| 559 | LNKL $=$ | 3 | LNKR = | 5 | $I D=1$ | DATUM $=$ | 55500555 | $\emptyset R$ | . $55500555 E+08$ |
| 561 | LNKL $=$ | 555 | LNKR = | 563 | $I D=0$ | DATUM = | 67000001 | θR | . $67000001 E+08$ |
| 563 | LNKL = | 561 | LNKR = | 565 | $I D=0$ | DATUM $=$ | 2300000000 | QR | . $23000000 \mathrm{E}+10$ |
| 565 | LNKL = | 563 | LNKR = | 567 | $I D=0$ | DATUM = | 4975000000 | θR | . $49750000 E+10$ |
| 567 | LNKL = | 565 | LNKR = | 569 | $I D=0$ | DATUM $=$ | 2300000000 | QR | . $23000000 E+10$ |
| 569 | LNKL = | 567 | LNKR = | 571 | $I D=0$ | DATUM $=$ | 67000003 | ØR | . $67000003 \mathrm{E}+08$ |
| 571 | LNKL $=$ | 569 | LNKR = | 573 | $I D=0$ | DATUM = | 2300000000 | $\emptyset R$ | . $23000000 \mathrm{E}+10$ |
| 573 | LNKL $=$ | 571 | LNKR = | 575 | $I D=0$ | DATUM $=$ | 48535552 | $\emptyset R$ | . $48535552 \mathrm{E}+08$ |
| 575 | LNKL = | 573 | LNKR = | 577 | $I D=0$ | DATUM $=$ | 5300000000 | $\emptyset R$ | . $53000000 E+10$ |
| 577 | LNKL = | 575 | LNKR = | 579 | $I D=0$ | DATUM $=$ | 3300000000 | QR | . $33000000 E+10$ |
| 579 | LNKL = | 577 | LNKR = | 581 | $I D=0$ | DATUM = | 2300000000 | $\emptyset R$ | . $23000000 \mathrm{E}+10$ |
| 581 | LNKL $=$ | 579 | LNKR = | 583 | $1 D=0$ | DATUM = | 4975000000 | θR | . $49750000 E+10$ |
| 583 | LNKL = | 581 | LNKR = | 585 | $I D=0$ | DATUM = | 2300000000 | $\emptyset R$ | . $23000000 E+10$ |
| 585 | LNKL $=$ | 583 | LNKR = | 587 | $I D=0$ | DATUM = | 67000003 | θR | $.67000003 E+08$ |
| 587 | LNKL = | 585 | LNKR = | 589 | $I D=0$ | DATUM = | 2300000000 | QR | . $23000000 E+10$ |
| 589 | LNKL = | 587 | LNKR = | 591 | $I D=0$ | DATUM $=$ | 48535552 | QR | . $48535552 \mathrm{E}+08$ |
| 591 | LNKL = | 589 | LNKR = | 593 | $I D=0$ | DATUM $=$ | 5900000000 | $\emptyset R$ | . $59000000 E+10$ |
| 593 | LNKL $=$ | 591 | LNKR = | 595 | $I D=0$ | DATUM $=$ | 3300000000 | QR | . $33000000 E+10$ |
| 595 | LNKL = | 593 | LNKR = | 597 | $I D=0$ | DATUM $=$ | 2300000000 | $\emptyset R$ | . $23000000 E+10$ |
| 597 | LNKL $=$ | 595 | LNKR = | 599 | $I D=0$ | DATUM $=$ | 4975000000 | QR | . $49750000 E+10$ |
| 599 | LNKL $=$ | 597 | LNKR = | 601 | $I D=0$ | DATUM $=$ | 2300000000 | θR | . $23000000 E+10$ |
| 601 | LNKL = | 599 | LNKR = | 603 | $I D=0$ | DATUM $=$ | 67000003 | QR | $.67000003 E+08$ |
| 603 | LNKL = | 601 | LNKR = | 605 | $I D=0$ | DATUM = | 2300000000 | QR | $.23000000 E+10$ |
| 605 | LNKL = | 603 | LNKR = | 607 | $I D=0$ | DATUM $=$ | 48494403 | QR | . $48494403 E+08$ |

ままFORX
$\therefore F$ ANDKO 810
J0324 LENGTH
59999 NEXT COMMON
END OF COMP I LATION
EXECUTION

| | | | |
| :---: | :---: | :---: | :---: |
| LIST | 24 | 574 | LOADED |
| EL | 工2098 | 01096 | LOADED |
| DUMP | | －1750 | LOADED |
| C | | 2 | LO |
| S | 6 | J1028 | LO |
| LISTRD | I6584 | －3164 | LOADED |
| SETDIR | － 9748 | ¢0374 | LOADED |
| I QUAL | $\underline{2} 0122$ | 00618 | LOADED |
| SETIND | 20740 | O0 | LOADED |
| LNKR | 21012 | ¢0110 | LOADED |
| CONT | 21122 | J0158 | LOADED |
| IRALS | 21280 | 00822 | LOADED |
| IJ | $\overline{2} 2102$ | 00158 | LO |
| STRIN | 22260 | 00242 | LOADED |
| LINKL | $\overline{2} 2502$ | $\overline{0}$ | |
| | | | |
| TOP | 24356 | | － |
| KPUT | 24718 | － | LO |
| POPTOP | 25102 | 00344 | LOA |
| LCNTR | $\begin{aligned} & 25446 \\ & 25808 \\ & 2616 \end{aligned}$ | $\begin{array}{r} 0362 \\ 0352 \\ -0302 \end{array}$ | LOADED |
| ATLIST | 2 6462 | J0948 | LOADED |
| LSTNAM | 27410 | J0350 | LOADED |
| NXTRGT | 2776 | －1014 | LOADED |
| NXTLFT | 28774 | 21014 | LOADED |
| DELETE | 29788 | －0900 | Lo |
| NAMTST | 30688 | 50762 | LOADED |
| UT | | | LOADED |

INITIALIZED．

$$
4-25-66
$$

Kelleher and Situe

| 92 TF AVSLL,AVSLR | | |
| :---: | :---: | :---: |
| E1294 | SM | AVSLL,5,10 |
| E1300**** | PERF | ORM CHAININ |
| E1301**** AFTER SETTING BLKN AND RETN+6. | | |
| E1310XXX BTAMSLADR, 78 | | |
| E1312BLKN | DS , *-4 | |
| E1315 | TF | ${ }_{\text {FAC }}^{*}{ }^{\text {F }}$ FX1 |
| E1316 | TD | FAC-4, BLKN |
| E1317 | CF | FAC-4 |
| E1318 | TF | -AVSLR,FAC |
| E1319 | MA | -AVSLL,-AVSLR |
| E1320 | TD | MES $1+12, B L K N$ |
| E1330 | WATY | YMES 1 |
| E1380LøणP | AM | 99,10,10 |
| E1390 | AM | FAC, 2,10 |
| E1400 | TF | -99,FAC |
| E1410 | AM | 99,10,10 |
| E1430 | TF | -99,FXZ |
| E1440 | AM | -AVSLL,2,10 |
| E1450 | | 99,UPRLM |
| E1460 | BNE | L $\varnothing \varnothing$ P |
| E1462 | SM | 99,10,10 |
| E1464 | TF | -99,FXZ |
| E1470 | TF | BETA,-AVSLL |
| E1472 | SF | BETA-3 |
| E1473SAVE | DS | ,* |
| E1474 | MM | BETA,5,10 |
| E1480 | TNF | MES $2+8,98$ |
| E1485 | TF | SAVE,98 |
| E1490 | WATY | YMES2 |
| E1500 | SM | -AVSLL, 2,10 |
| E1501 | MA | FAC, SAVE |
| E1505RETN | B7 | 1-ENT |
| E1525NEXT | H | 2 |
| E1999 | B7 | $1-E N T$ |
| E2000**** | | TERNALLY CALLED UTILITIES |
| E2011* | ALLING SEQUENCE $=$ BTAM,SLADR,SLIP-ADURESS, 78 / RETURNS | |
| E2012**** | | |
| E2013**** | | MACHINE ADDRESS IN 99 AFTER POSSIBLY |
| E2020 | DAC 3,... | |
| E2022SLADR | TF 99,LWRLM | |
| E2025 | BNC3NØTRP | |
| BNCI*+24 | | |


```
E3692 DVLC,5,SETIND
E3694 DAC 6,STRIND
E3696 DVLC,5,STRIND
E3700 DC 2,'
E3710LENGTHDS ,QQ-1
E3720 DEND
```



```
G2060 DSA -10
G2070 DSA -LNKL
G2080 DSA - LNKR
G2090CELL. DSA
G2180 B7 1-ENT
G2190QQ DAC 6,SETDIR,
G2200 DVLC,5,SETDIR
G2202 DAC 6,INITAS,
G2204 DVLC,5,INITAS
G2210 DC 2,'
G2220LENGTHDS ,QQ-1
G2230 DEND
```


H2192 DVLC, 5, INITAS
H2194
DC 2,1
H2200 DEND

$Z 2$ KGET 0672

*NAME KGET

* ID NuMber 0672

11030 DAC 6, KGET, $7-Q$

22 LCNTR 0637
ZZFOR
*FANDK 0810
*LDISKLCNTR 0637
FUNCTION LCNTR (LST)
LCNT0010
LCNTR = LNKR (CONT (LST+1))
LGNTOO<O
RE TURN
LCint 0030
END
LCNT0040

$Z Z$ $Z Z F \varnothing R$

*FANOK0810
*LDISKLSTNAM0639
FUNCTIØN LSTNAM (LST) LSTIVO010
LSTNAM=LNKL (CONT (LST+1)) LSTNOOLO
CALL SETDIR (0 , LSTNAM, LSTNAM, LSTNAM) LSTNO030
RETURN
LSTN0040
END

```
ZZ INTLBL 0649
ZZFOR
*FANDK0810
*LDISKINTLBL0649
FUNCTI\varnothingN INTLBL (I) INTLOOIO
INTLBL=I INTLO020
RETURN INTLO030
END
INTLO030
INTLO040
```

| ZZ FLTLBL 0651 | |
| :--- | :--- |
| ZZFØR | |
| *FANDKO810 | |
| *LDISKFLTLBLO651 | FLTL0010 |
| FUNCTIØN FLTLBL (x) | FLTL0020 |
| FLTLBL=X | FLTL0030 |
| RETURN | FLTLO0040 |

ZZ NUCELL 0653

ZZFのR
*FANDK0810
*LDISKNUCELLO653
FUNCTIØN NUCELL $(X) \quad$ NUCE0010
$K=1 \quad$,

NUCE0020
$10 \quad M=\operatorname{LNKR}(\operatorname{CØNT}(-1))$
IF (M)2,4,2
NUCEOO30
NUCE0040
4 GØ TD $(6,8), K$
$6 \quad K=2$
CALL INITAS (X)
Gø Tø 10
NUCEOO50
NUCE0060
NUCE0070
NUCE0080
8 TYPE 1
1 FØRMAT (18HNØ MØRE FREE SPACE)
NUCEOO90

CALL EXIT
NUCEO100
NUCEO 110
NUCEO120
14 CALL IRALST (CØNT $(M+1)$)
12 CALL SETIND $(-1,-1, \operatorname{LNKR}(\operatorname{CDNT}(\mathrm{M})),-1)$
CALL STRIND $(0, M)$
CALL STRIND $(0, M+1)$
NUCELL $=\mathrm{M}$
RETURN
NUCEO 130
NUCEO140
NUCEO150
NULEO 160
NUCE0170

END

```
Z2 RCELL 0655
    Z2FØR
    *FANDK0810
    *LDISKRCELL 0655
    SUBRØUTINE RCELL ICELL
    CALL SETIND (-1,-1,CELL,LNKL(CDNT(-1)))
    CALL SETIND (-1,CELL,-1,-1)
    CALL SETIND ( }-1,-1,0,CELL
    RE TURN
    END
RCELOO10
RCEL0020
RCLL0030
RCEL0040
RCLL0050
RCEL0060
```


*FANDKO810
*LDISKIRALST0659

| FUNCTION IRALST (LST) | IRAL0010 |
| :--- | :--- |
| IRALOOC0 | |

$\mathrm{L}=\mathrm{L} \varnothing C T(L S T) \quad$ IRALOOLO
CALL SETIND $(-1,-1, L C N T R(L)-1, L+1)$ 1RAL0030
IRALST=LCNTR(L) IRAL0040
IF(IRALST)2,4,2 IRAL0050
4 CALL MTLIST(L)
IRAL0000
iRAL0070
IF $(N) 6,8,6$ IRAL0080
6 NEW=NUCELL (x)
IRAL0090
CALL SETIND $(1,-1,-1$, NEW $)$
IRALO100
$\begin{array}{ll}\text { CALL STRIND (N,NEW) } & \text { IRALO110 } \\ \text { CALL RCELL(NEW) } & \text { IRALOL } 20\end{array}$
8 CALL RCELL(L)
IRALO130
2 RETURN
IRALO140
IRALO150

| ZZ | IQUAL 0665 | |
| :---: | :---: | :---: |
| ZZFOR | | |
| | | |
| *FANDK0810 | | |
| *LDISKIQUAL 0665 (${ }^{\text {a }}$ | | |
| FUNCTI®N IQUAL (K,L) 1 UUAOOL | | |
| | IF (LNKL $(K)-L N K L(L)) 2,4,2$ | IQUAOO20 |
| 4 | 1F(LNKR(K)-LNKR(L))2,6,2 | IQUAOO30 |
| 6 | IF(ID(K)-ID(L))2,8,2 | IQUA0040 |
| C8 | IQUAL $=K-L$ | IQUAOO50 |
| 8 | IQUAL $=0$ | IQUA0050 |
| | RETURN | I GUA0060 |
| 2 | I QUAL $=1$ | IQUA0070 |
| | RETURN | IQUA0080 |
| | END | 1 QUA0090 |

```
ZZ LISTMT 0667
ZZFOR
*FANDK0810
*LDISKLISTMT0667
FUNCTION LISTMT (LST) LISTOOLO
L=LøCT(LST)
- ZZ \(\quad\) ZZFのR \(\quad 0669\)
    *FANDK0810
    *LDISKNAMTST0669
        FUNCTION NAMTST (L) NAMTOOLO
        IF(LNKL(L)-LNKR(L))2,4,2 NAMT0020
        IF (ID(CøNT(L))-2)2,6,2
    NAMTOO30
    NAMTOO40
    NAMTO060
    NAMT0070
    NAMTO080
    NAMT0090

ZZ LIST 0675
ZZFOR
*FANOKO810
*LDISKLIST 0675

FUNCTIDN LIST(K)
LIST=NUCELL(Z)
CALL SETDIR \((0, L I S T, L I S T, L I S T)\)
CALL SETIND ( 2, LIST,LIST,LIST)
IF(IQUAL \((K, 9)) 2,1,2\)
2 CALL SETIND \((-1,-1,1, L I S T+1)\)
\(K=\) LIST
1 RETURN
END
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
```

ZZ TOP 0677
ZZFøR
*FANDK0810
*LDISKT\varnothingP 0677
FUNCTIØN TØP(P)
T\oslashP=CØNT(LNKRICONT(LOCT(P)))+1)
RETURN
END

```
```

 ZZ BØT 0679
 ZZFØR
 *FANDK0810
 *LDISKBØT 0679
 FUNCTIØN BØT(P)
 BDT=CØNT(LNKL(CONT(LOCT(P)))+1)
 RETURN
 END
    ```

\(Z 2 \quad\) PØPTØP 0681
ZZFgR
*FANDK0810
*LDISKPØPTØP0681
FUNCTIØN PøPTøP(P)
PØPTØP=DELETE(LNKR(CØNT(LDCT(P))))
RETURN
END

\(\bullet\)

\(\theta\)\(22 \quad\) РØРBøT 0683
A ZZFOR
9 *LDISKPØPBØT0683
                                    FUNCTIØN PØPBOT(P)
                                    PøPBØT = DELETE(LNKL(CDNT(LOCT(P))))
                                    RETURN
                                    END
```

ZZ NEWTØP 0685
ZZF\varnothingR
*FANDK0810
*LDISKNEWTOP0685
FUNCTION NEWTøP (P, Q) NEWTøP=NXTRGT(P,LøCT(Q)) RE TURN
END

```
                                    FUNCTIØN NEWBØT \((P, Q)\)
                                    NEWBDT \(=N X T L F T(P, L \varnothing C T(Q))\)
                                    RETURN
                                    END

```

O
22 LISTRD 0695
ZZFøR
*FANDK0810
*LDISKLISTRD0695
FUNCTIØN LISTRD(LST,IN)
EQUIVALENCE (NUM,WØRD)
CALL KGET(-1)
I SUB=1
10 ICHAR=KGET(IN,ICDDE)
IF(ICDDE-10)10,20,10
20 LISTRD=LST
CALL NEWTDP(LST,LIST(STACK))
40 IDELSW=0
NUM=0
IFLTSW=0
ISINSW=0
50 ICHAR=KGET(IN,ICDDE)
IF (ICODE) 51,51,54
C END ØF LIST
51 IF(IDELSW)53,53,52
5 2 ~ C A L L ~ N E W B Ø T (W O R D , T \varnothing P (S T A C K)) ,
53 CALL IRALST(STACK)
RETURN
5 4 \mathrm { GD } \mathrm { TD } \mathrm { (110,120,130,140,150,160,170,180,190,200,210,220,230),1CWUL }
C EQUAL SIGN
110 IF(IDELSW)112,112,111
111 CALL NEWBDT(WORD,TOP(STACK))
1 1 2 NUM=0
CALL KPUT(ICHAR,WØRD,TØP(STACK))
CALL NEWBDT(WØRD,T\varnothingP(STACK))
GD TD 40
C MINUS SIGN
120 IF(IDELSW)121,121,111
121 IDELSW=1
ISINSW=-1
CALL KPUT(ICHAR,WӨRD,TOP(STACK))
G\varnothing T\varnothing 50
C PLUS SIGN
130 IF (IDELSW)131,131,111
131 IDELSW=1
IS INSW=1

```

ISINSW=0 IDELSW=1
IFLTSW=-1
NUM \(=(\) I CHAR -70\() *\) ISIGN
Gø TD 50
224 IF(IFLTSW) \(225,140,226\)
225 NUM \(=10 *\) NUM \(+(\) ICHAR -70\() *\) ISIGN
GØ Tø 50
\(226 \mathrm{VAL}=\mathrm{ICHAR}-70\)
\(W \oslash R D=W \oslash R D+S I G N * V A L / D E C\)
DEC=DEC*10.
GØ Tø 50
C CØMMA
230 Gø Tの 110
```

- $\quad 2 Z$ DELETE 0693
2 PRINT 100 IF 2 -211,2,1
$\theta^{\frac{2}{\frac{0}{6}}-}$


```
    ZZ SEQLL 0701
    ZZFOR
    *FANDK0810
    *LDISKSEQLL 0701
        FUNCTIØN SEQLL(Z,N)
        L=LNKL(Z)
        Z=CØNT(L)
        SEQLL=CØNT (L+1)
        N=ID(Z)-1
        RETURN
    END
```



```
0
FUNCTION SEQSL(Z,N)
    IF(ID(Z)-1)4,5,4
    5 L=LNKL(CØNT(CØNT(LNKL(CONT(LNKR(Z)))+1)))
        G\varnothing Tø }
        4L=LNKL(Z)
    3 IF(ID(CØNT(L))-1)1,2,1
    1 SEQSL=CØNT (L+1)
        Z=CØNT(L)
        N=ID(Z)-1
        RETURN
    2 L=LNKL(CONT(CONT(L+1)))
        G\varnothingT\varnothing }
        END
    SDEOF DEFINE END OF FØRTRAN PRØGRAM FILE -- R.L.S.
```



```
    AM IPNT,2,10
    CM IPNT,12,10
    BNE NOT
    BTM ,*+11
NEWBOTDS ,*-5
    DSA -WØRD
    DSA -LST
    TF -WØRD,FXZ
    TFM IPNT,2,10
    NOT BLX**12,IPNT(A1)
    TF FAC,-WGRD
    TF BETA,-ICHAR
    TD FAC-11(A1),BETA-1
    TD FAC-10(A1),BETA
    TF -WORD,FAC
    BSBB1-ENT
    QQ DAC 6,NEWB\varnothingT,
            DVLC,5,NEWBDT
    DC 2,'
LENGTHDS ,QQ-1
    DEND
```

\$DEØF DEFINE END ØF S.P.S. PRØGRAM FILE - R.L.S.

```
ZZFORX
    *FANDK0810
    10 CALL LISTRD(LIST(K),5)
        CALL LDUMP(1,99)
        CALL IRALST(K)
        GØ TØ 10
            END
    XXX (11 2 3 3 4 555 6 7.0 8 0.9 10 ) ZZZZZZZZZ
        (123.456 +123.456-123.456 123+456 123-456)
        (ABC DEF GHIJ ABCDEFGHIJ $ * G\varnothing.N\varnothingW)
    (INHALT=CØNT(LIST,ARG). DØN'T Y\varnothingU THINKSØ+ ND)
    (A-B=A+B. A+B=A-B. A+3 N\varnothingT=A +3. NEITHER A+3. END)
    ((A/B A,B (SUB3S , TEX5T,NUM 3) Z)
```

sutip $\left.\right|^{2085}$

THE ENGLISH ELECTRIC COMPANY LIMITED
 Nelson Research Laboratories

TELEGRAMS
ENELECTICO STAFFORD
TELEPHONE :
STAFFORD 3271

STAFFORD

Prof. J. Weizenbaum,
Project MAC, MIT,
545 Technology Sq.,
Cambridge, Mass.
U.S.A.

Dear Sir,
I would be grateful if you could send me more information about SLIP. Could you please inform me how I might obtain a programming manual for this language?

Head of System Programming

HEP

NEWARK COLLEGE OF ENGINEERING

323 HIGH STREET

NEWARK, N. J. 07102

Dr. Joseph Weizenbaum
M.I.T. Project MAC

Cambridge, Mass.
Dear Dr. Weizenbaum:
By way of response to your letter in the Communications (ACM, May 1965), I'm writing to inquire whether you know of any implementations of SLIP for any IBM 1620 FORTRAN system -or, indeed, if you know of any insurmountable difficulties in that direction.

I really don't intel this as a firm declaration of intent because we aren't sure we can get the time or the help, but we would like to.

Sincerely yours,

Dr. Phyllis Fox Associate Director
c.c. Mr. Hub Seward

PF:hv

THE UNIVERSITY OF BRITISH COLUMBIA

VANCOUVER 8, CANADA
Professor J. Weizenbaum,
Electrical Engineering,
Massachusetts Institute of
Technology,
Cambridge 39,
Massachusetts. 02139 .

RECEIVED PROJECT MAC DEC 28 IMO

Dear Professor Weizenbaum:
Thank you for your letter of October 8th, suggesting where I might obtain a 7040 version of SLIP. I have now received such a system on magnetic tape from the Computer Center at the University of Pennsylvania. My original contact was with Professor John W. Carr at the Moore School, but the tape and related correspondence were sent by Mr. Paul Wolfgang at the Computer Center. Mr. Wolfgang also informs me that they are preparing a manual on the use of SLIP.

Perhaps this information will be of use to you.
Yours sincerely,

JRHD/1s.
J.R.H. Dempster.

February 10 th, 1965.

Mr. Donald B. Russell
National Institute for Research In Muclear Science Atlas Computer Laboratory Chilton, Didcot, Berkshire England

Dear Mr. Russell:
Thank you for your letter on SLIP. I am forwarding it for publication in the Communications of the ACM.

$$
\begin{aligned}
& \text { Yours truly, } \\
& \text { CfY } \\
& \text { C. c. Gotlieb } \\
& \text { Editor-in-Chier } \\
& \text { Comn. ACM }
\end{aligned}
$$

cc: Miss M. R. Kellington Prof. J. Weizenbaum

P.S. to Prof. Weizenbaum:

Russell's letter only came yesterday via surface mail because the stamp must have fallen off. I hate to say I told you so but this is why I argued so hard, but unsuccessfully, with you and Tom Cheatham for omitting the program listings on SLIP. Not withstanding, the SLIP paper was an excellent contribution.

UNIVERSITY OF MARYLAND
 College Park 20742

August 19, 1965

RECEIVED PROJECT MAC解 $23^{3} 965$

Professor J. Weizenbaum Project MAC Massachusetts Institute of Technology Cambridge, Mass.

Dear Professor Weizenbaum:

In order to encourage the use of SLIP at our Center several staff members familiar with the package have produced some documentation intended for use by programmers whose lack of familiarity with list processing inhibits their learning the system through the technical publications.

The work done to date would seem to form a good basis for an introduction to list processing based on SLIP. Before investing further efforts along these lines, we would like to insure that we are not duplicating efforts which are being made elsewhere.

We are writing to you to determine whether or not you know of work being done to produce an introductory "use rs manual" for SLIP. For your convenience, we are enclosing one of our reply cards which you may use to indicate any projects that you may be aware of.

We will greatly appreciate any help that you can give us in this matter. Thank you for your assistance.

Very truly yours,

ssw
enc.

NORTH AMERICAN AVIATION, INC. M. A. Holly D/196-210, EA43

Mr. J. Weizenbaum Computer Laboratory General Electric Company Sunnyvale, California

Dear Sir:
I am currently interested in using your SLIP programs on the 7040-44. I would appreciate any information you might have concerning the availability of SLIP decks for this machine.

Sincerely yours,
NORTH AM ERICAN AVIATION, INC.

M. A. Holly Advanced Applications Information Systems
sb

Leicester Colleges of Art and Technology
 LEICESTER, ENGLAND
 REGISTRAR: A. MARTIN, E.C.I.S.

10th March 1966 PGR/BS

Prof. JoWeizenbaum, Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge,

Mass,

 U.S.A.

Dear Sir,
Could you please let me have an up-to-date listing of the SLIP system.

Yours faithfully,

(P。G。Raymont)
Director of Computing Laboratory.

Prof. J.Weizenbaum, Department of Electrical Engineering,
\qquad Massachusetts Institute of Technology....
\qquad Cambridge,
\qquad
\qquad

Sender's name and address:....... Director of Computing labor Leicester Regional, Dollege of Technology, Leicester, Eñglañ.	

AN AIR LETTER SHOULD NOT CONTAIN ANY ENCLOSURE:
IF IT DOES IT WILL BE SURCHARGED
OR SENT BY ORDINARY MAIL.

Form approved by the Postmaster General, No. 71995/2E

Dr. Joseph Weizenbaum M.I.T. Project MAC Cambridge, Mass.

Dear Dr. Weizenbaum:
In response to your request in the Communications of the ACM (May 1965), I would like to briefly give some information on our implementation of your SLIP system.

If you recall, Mr. John L. Pfaltz wrote you a letter in December of 1964 stating our intention to use SLIP. Since then, I have worked with Mr. Pfaltz in preparing most of the programs listed in the Communications of the ACM (September 1963). The Computer Science Center here at the University of Maryland, has an IBM 7094/1401 complex. The programs for the 7094 have been written in FORTRAN IV. In addition to the errors mentioned in the Communications of the ACM (May 1965), we have found for the function NAMEDL that the instruction should read

$$
\text { NAMEDL }=\text { LNKL (CONT (LOCT (L) +1)). }
$$

Furthermore, the function DELETE fails to decrement the reference counter of the sublist when the cell deleted is a "name" cell.

Some cautions might also be mentioned as potential mistakes. When testing a cell by NAMTST, only the double address convention and the "supposed" header is checked to insure that the cell is referring to a "name". For PRLSTS and in similar situations, if one uses the list alias as a piece of datum (ID=O), PRLSTS will consider it as if the $I D=1$. This necessitates a simple test of the ID portion of the cell in PRLSTS (note, not in NAMTST).

Modifications and additions to your system have been written; we incorporated, for example, variable spacing (to indicate sublevels) in PRLSTS and a new
program to print a list "linearly". Also being developed are systems to store and process general tree-like structures using SLIP. To further simplify and to extend the capabilities of SLIP, other routines are being written. By the summer, we hope to have a paper describing SLIP for users at the University of Maryland. This will include technical and non-technical sections.

We would be most interested in other groups using your system and, therefore, are looking forward to such a list appearing in the Communications of the ACM as you suggested.

Thank you for your time and interest.

Sincerely yours,
Robert M1. Lieberman
Robert N. Lieberman
Research Graduate
Assistant

RNL: ag
C. C. GOTLIEB, Editor-in-Chief

MYRTLE R. KELLINGTON, Executive Editor,
LIN S. WILLIAMS, Advertising Manager

REPLY TO:
INSTITUTE OF COMPUTER SCIENCE McLennan Laboratory
University of Toronto
Toronto 5, Canada

February 8th, 1965.

Prof. Joseph Weizenbaum
M.I.T. Project MAC

Room 809
545 Technology Sir.
CAMBRIDGE 39, Mass.

Dear Joe:

I am forwarding your letter on SLIP for publication. I am also including a note from Robert Novak who has been working with SLIP here. Dr. J.M. Kennedy of the Atomic Energy Company Limited, Chalk River, Ontario, mentioned to me some time ago that he too had implemented SLIP on their Bendix G20 computer. It might be worth your while bringing your letter to his attention and inviting a submission from him too.

Best regards,
Patron op that

CCG/ez
c.c. M.R. Kellington

SLIP System at Institute of Computer Science, University of Toronto R. Novak

SLIP at the University of Toronto for the I.B.M. 7094/II is a primitive based system. The primitive functions (ID, LNKL, LNKR, C \varnothing NT, INHALT, MAD $\varnothing \mathrm{U}$, SETDIR, SETIND, STRDIR, STRIND) were written in MAP assembly language for the 7090. (They have not been changed for the 7094.) Most other functions are FORTRAN IV versions of those listed in the Communications (C.A.C.M. September 1963 p. 524).

Included are some routines from the SLIP version supplied by North American Aviation (i.e. the linear advance routines and some text manipulation routines). The only additions made were to include two primitive functions to make use of unused bits.

The routines that allow for recursive calling of functions are not implemented directly, but arrangements have been included to allow for recursive call of subroutines in the system for algebraic manipulation for which SLIP is being used.

LEARNING RESEARCH AND DEVELOPMENT CENTER
UNIVERSITY OF PITTSBURGH•PITTSBURGH•PENNSYLVANIA 15213
MAIN OFFICE: 302 AMOS HALL•PHONE 621-3500 EXT. 7226-7227
LABORATORIES: UPPER CAMPUS•PHONE 683-1620 EXT. 2422-23-24

February 8, 1965

Dr. Josef Weisenbaum
Mass. Institute of Technology
Cambridge, Massachusetts
Dear Dr. Weisenbaum:
I am writing to inquire about the current status of SLIP and to ask advice in terms of implementing it on our computer. Rumors concerning the status of SLIP vary from "Weisenbaum had abandoned it" to somewhat more optimistic statements. I attended your course last year and I'm intrigued with SLIP's potential. I know, however, that several bugs were detected subsequent to publication and that you added, as I recall, several more functions. Do you have a listing of the corrections and additions that I might have?

In terms of the second matter, I have made only one abortive attempt while at Harvard to use SLIP; thus, I am not really familiar with the amount of core that the system requires, etc. Shortly, we will have a PDP 7 with at least 8 K memory (18 bit words). We may augment this by the time the computer is delivered either by purchasing more core and/or a drum. In view of the obvious restrictions, e.g. limited command structure, 18 bit words, etc., is it feasible to try to implement SLIP on the PDP? I think that it would be a very useful tool to add to our soft ware.

Thank you for your consideration.

/jim

AERO-SPACE DIVISION • P.O. BOX 3707 . SEATTLE, WASHINGTON 98124

September 24, 1964
IN REPLY REFER TO
2-5305-3-783

Professor J. Weizenbaum
MIT Computation Center Cambridge, Massachusetts

Subject: SLIP List Processing Language

Dear Professor Weizenbaum:
Mr. Michael R. Quamme of our Engineering Data Systems Group has asked us to coordinate his request for the subject program. The availability of the SLIP Program was confirmed in a telephone conversation, September 16, between Mr. Quamme and your Mr. D. G. Bobrow. We are sending you a blank tape for this program transmittal.

We would also appreciate any supporting written information in the following two areas:

1. Program documentation and program teaching aids.
2. Requirements for program implementation on a three channel, eighteen tape unit IBM 7094 having IBSYS 9 available as executive monitor.

Please direct the tape and any further correspondence to the Applied Mathematics Information Center, Organization 2-5305, Mail Stop 22-75, 2.01-2 Building, Bay L-9.

Yours truly,
THE BOEING COMPANY
Aero-Space Division

W. S. Lagen Applied Mathematics Information Center

North Building B017 Indiana University Bloomington, Indiana 29 June 1964

Dear Joe,
At present I am doing research at the U. of Indiana with a Language Data Processing seminar sponsored by the Air Force. A number of people here are interested in programing languages for linguistic problems and through my encouragement have obtained an interest in SLIP. (The people here are faculty members from about 12 different universities who are doing or are planning to do computer-aided research.) Do you have any additional literature on SLIP other than the G.E. manual which you gave me about a year ago and the ACM article which you wrote?

Sandy Elvin mentioned a few months ago that you had coded a SLIP system for processing COMIT-like statements.l I don't recall if he sad he heard this from you or from someone else.) If you have done this, could I possibly obtain from you a listing of the system? Also, can 709 users obtain SLIP source decks from SHARE? Several people here may want to try SLIP on Indiana's 709.

Besides^these questions, I would be interested in hearing about your programming work in general, if you have the time to describe it. At present I am working on spelling-to-sound relationships in English. The work is geared towards a reading machine for the blind and towards the improvement of the teaching of reading. At the end of August I will return to Stanford where \mathbb{Z} I have about 6 more months of work for completing my Ph.D. in linguistics.

346-4040 • CABLE ADDRESS LITTIND
June 5, 1964

Mr. Joseph Weizenbaum
General Electric Computer Laboratory
P. O. Box 1285

Sunnyvale, California
Dear Mr. Weizenbaum:
I am writing you in regard to SLIP which appears in Communications of the ACM, September, 1963.

The subroutines TERM, VISIT, and INT GER are not easily understood by me in terms of return linkage of the function subroutines. Our compiler generates a load card sequence at the end of FUNCTION ISTEQL card \#551. In card \#667 VISIT is a subroutine with a single valued argument in contrast to a function with 2 values in card \#531.

Could you help me clear this up, as we are eager to use the Slip system? A listing of the three subroutines (functions) should be adequate if they are I. B. M. oriented. Would you send any information you collect to my home address:
R. A. White

20509 Schoenborn Street
Canoga Park, California

> Sincerely,

Richard A. White

RAW:nam

Les Fires do Saint- Gabriel
 ADMINISTRATION PROVINCIALE 5638, rue Canterbury Montreal 26.

November 29, 1964

$$
\begin{aligned}
& \text { Professor J. Weizenbaum } \\
& \text { M.I.T. } \\
& \text { Cambridge, Mass., U.S.A. } \\
& \text { Professor, }
\end{aligned}
$$

Would you be so kind as to let me know where I could get full information about the SLIP programming language, that could lead to a complete training in the use of that intermediate language for the electronic treatment of linguistic problems.

Early in 1965, the University of Montreal will be equipped with a CD 3400. The Department of Linguistics intends to make use of the facilities offered by the Computational Center for intense research in Automatic Translation and various types of Linguistic Structures.

I am told that the SLIP programming language will be used by tire Department of Linguistics for such purposes. I would greatby appreciate receiving full details about the literature available on SLIP.

Yours sincerely,

Ernest Faubert, professor.

UNIVERSITY OF COLORADO

BOULDER. COLORADO

GRADUATE SCHOOL

Joseph Weizebaum
General Electric Computer Laboratory
P. O. Box 1285

Sunnyvale, California

Dear Mr. Weizenbaum:
After reading the Sept. 63 issues of the communications of the ACM I became interested in SLIP. When I started to implement it on the Universities 709 I found that several routines were not included in the appendix to the above article. Was this intentional or has a page (s) been omitted from the appendix? The routines I need, unless there have been some keypunching errors, are: SQIN, SQOUT, CRDBU, EQUAT, VISIT, IAANORM, SHIN, TERM, INTEGER.

Any additional information an SLIP would be most welcome.
Sincerely

David Schultz
Programming Advisor

CARNEGIE INSTITUTE OF TECHNOLOGY
 SCHENLEY PARK

PITTSBURGH, PENNSYLVANIA 15213

GRADUATE SCHOOL OF
TELEPHONE: 621-2600
INDUSTRIAL ADMINISTRATION
June 16, 1964

Mr. Joseph Weizenbaum
General Electric Computer Laboratory
P.O. Box 1285

Sunnyvale, California

Dear Mr. Weizenbaum:
I am very much interested in using SLIP in developing a model of the list-processing structure of the New York Stock Exchange, and would be most appreciative if you could send me any further documentation on the system beyond that contained in your September 1963 article in the ACM Communications. I would also be most appreciative if I could get a source program deck for the FORTRAN/FAP version of the system so as to avoid using the slower all-FORTRAN version reprinted in the appendix to your article and having to program primitives. I will be using the system on a 7090 at the University of Pittsburgh -or rather, will be through Ted Van Wormer, who will help in any modifications which might be required.

Thank you.
Sincerely,

John Bossons
JB/jlb

SUN OIL COMPANY
 1608 WALNUT STREET
 PHILADELPHIA 3.PA.

Mr. Joseph Weizenbaum General Electric Computer Laboratory P. O. Box 1285

Sunnyvale, California

Dear Sir:
Would it be possible to get a source deck of your SLIP language? We are currently developing a general information system which will require a list processing language. SLIP looks particularly interesting because of its Fortran compatibility and the promising speed advantages from symmetry. With the deck as a starting point, we can investigate its potential, what modifications might be required, and so on.

Thank you.

1 ap

?

November 5, 1963

Mr. R. W. Elliott
1103-A Brackenridge Apts. Austin 3, Texas, 78703

Dear Mr. Elliot:
I am currently at M.I.T. and will remain here for the rest of the academic year. My moving about accounts for the loss of your earlier letter. I do apologize for the poor service.

Since I have access to only a 7094 here-i.e. not a 1604I am in a very poor position to send out copies of the SLIP deck for the 1604. I have arranged to have a copy of the deck you want in the hands of Dr. Sandy Elkin at Control Data in Palo Alto. The whole system should soon become part of the COOP 11 brary in any case. For the present. I suggest you write to Sandy and get him to send you a tape or a copy of the deck.

Another drawback is that I have added to the system in the 7090/7094 context. My current system is therefore somewhat more powerful than the published version. I plan to integrate the whole thing one day by means of having a SLIP meeting (probably on the Rast Coast) to which all interested individuals will be invited. I mention this now in order to get your reaction to this idea and to solicit from you a statement as to the optimum time and place for such an event. The question on the length of such a meeting is also open.

Sincerely yours,

JW/jep
J. Weizenbaum
Visiting Assoc. Prof.
M.I.T. - Project MAC
M.I.T. - Project MAC

Dr. Joseph Weizenbaum
General Electric Computer Laboratory
P. O. Box 1285

Sunnyvale, California
Dear Dr. Weizenbaum:
I wrote to you about a month ago but have received no reply so I will assume that my previous letter was lost somewhere along the way.

We here at the University of Texas are interested in implementing your SLIP system on the CDC 1604 in our computation center. It is my understanding that you have already implemented a SLIP system on a 1604. If possible we would like to obtain a punched deck from you.

In addition, any additional information, especially a programming manual, that you could provide would be appreciated. We have funds to purchase any items that are available.

Any reply, either to myself or to Dr. R. K. Lindsay, Computation Center, University of Texas, will be appreciated.

Thank you.

