

54240 Grouparts 910 Cherry Machin ~/15/30

9/6 20

a best

350 4 1400 1.4×10-6

h. The then phtrol. angle the be connot sefore ions

he Persona 8 round

i the

ally

8.8×10-9

2,2×4×107

.09

tubes ps with om better ves have 104D

irature lengthired, informaised to leter to iture as

possible.

...

9/15/30

Vacuum Tube Committee Meeting September 15, 1930

Present: Messrs. Dike, Nottingham, Peters, Behr

CC - Mesars. Stein and Doyle

Williams described the 60 cycle amplifier at some length. The most serious difficulty was the coupling of the galvanometer to the output. The galvanometer stability was considered satisfactory when the electrical control did not exceed one-third the mechanical control. A satisfactory circuit for the galvanometer has a leading phase angle of 0.2 degree and this angle should be constant to 0.1 degree. The shunt inductance of a transformer would cause the phase angle to be about twenty degrees, and if this is to be reduced by means of a condenser, a rather precise balance is necessary, which is moreover not constant because of the effect of d.c. plate current on the transformer characteristics. A resistance capacity coupling has therefore been used, as this is not sensitive to comparatively wide variations (10%) in the elements.

The work on the Ives optical pyrometer has been principally a study of the properties of the important elements, including the high resistances, vacuum tubes, photocell and voltage regulator.

High Resistance. The thin metal film resistances have a high temperature coefficient and questionable stability. Wire wound resistances, in units of 2-1/2 megohas, can be purchased for about \$8.00. Their temperature coefficient is 0.0001 per degree C and the guaranteed accuracy is 1 %. A group of four is to be used to obtain ten megohas.

<u>Vacuum Tubes</u>. When it became necessary to replace the tubes in the amplifier it was impossible to find any in the radio shops with a sufficiently small grid current. Tubes have been obtained from Westinghouse, however, similar to a 250, but apparently with a better vacuum and these are satisfactory. Bell Telephone representatives have informed us that well evacuated tubes similar to 101D, 102D and 104D are being made. We have not yet received them, however.

<u>Photocell</u>. We are principally interested in the temperature coefficient and the change with time in the shape of the wave lengthsensitivity characteristic. From what information can be gathered, the temperature coefficient is apparently small. No definite information is available in regard to the second point and it is proposed to check up on it here, by using the photocell as an optical pyrometer to measure black body temperatures over as wide a range of temperature as possible.

July 3, 1930.

MW TO: Messrs. J. V. Adams L. Behr A. J. Williams, Jr.

FROM: C. S. Redding

Re: Record of Invention No. 127 -"Two-Speed Drive System"

You will be interested in learning that we have instructed Mr. Ehret to proceed with a patent application covering Record of Invention No. 127 - "Two-Speed Drive System". In preparing this application, Mr. Ehret has been requested to have in view the following records of invention:-

- No. 128 "Armature for Quick Acting Electromagnetic Brake" - Adams
- No. 129 "Microphone Detector Amplifier" Williams
- No. 132 "Elimination of Pickup in Low Range Potentiometer Circuits" - Nottingham
- No. 134 "Special Shielded Core Type Transformer" -Williams

No. 136 - "A Circuit for Tandem Power Tubes" -Behr and Williams

C. S. R.

P

ce Mr. W. B. Nottingham

Vecuum Tube Committee Meeting September 29, 1930

Present: Mesers. Dike, Nottingham, Peters, Behr

CO- Messrs. Stein and Doyle

In regard to the Ives optical pyrometer the following figures were given for photo-call current versus temperature of source:

	Current - Am	ps. x 10	_
Temperature	Cas Filled	Vacuum	
of Source	Cell	Call	
1800 °F.	38	-	
2200 °F.	190	5.+	
2600 °F.	540	34	
3000 °F.	1100	180	

Some photo-cells have been ordered from General Electric and it is intended to put these and some Westinghouse and Western Electric cells through an aging test.

The "dc-ac" amplifier using a chopper has been set up. With a pointer type ac. galygnometer in the output circuit the sensitivity is 5 mv. per whette for input impedances not exceeding 10 megohms. The sensitivity goes down as the input impedance increases and with 50 megohms the sensitivity is 10 mv.

The next meeting of this Committee will be held on October 13th.

R

October 20, 1930

X-389 - Vacuum Tube Committee Meeting of Oct. 20, 1930

Present: Messre. Dike, Nottingham, Petere, Williams and Behr

CC- Messrs. Stein and Doyle

Some of the high vacuum amplifier tubes, referred to in the minutes of September 15, have been received and their characteristics measured. Three Western Electric D 86326 tubes, similar to the 101D, gave grid currents of 4.5, 5 and 14 x 10-9 amperes with 90 volts on the plate, approximately -4. volts on the grid and with 3 milliamperes in the plate circuit. Two Sectinghouse 593428 tubes, similar to the 250, gave grid currents of 3 and 6 x 10⁻⁹ amperes with the plate at 90, the grid at -8. volts and with a plate current of 6 milliamperes. The mutual conductance of the Sectorn Electric tubes is about 450 and of the Mestinghouse tubes 600 micro-shos.

The apparatus for the photocell tests is about set up and the tests should get under way at an early date. The voltage regulators on order with Ward Leonard have not yet been received.

The chopper type de-ac amplifier has been provided with an additional stage of amplification resulting in a sensitivity of 100 micro-volts per mm. With a 10 megoha resistance this means 10⁻¹¹ amperes per mm. However, the stability is bad, the interrupter being under suspicion. The immediate plan of attack is to try various contact materials.

There was a general discussion of the use of the thyratron in conjunction with a photocell, particularly as regards the effect of the thyratron grid current.

At the meeting of June 30, it was pointed out that Bonn's capacity bridge was not suited for an industrial limit bridge because of poor stability and that further work on this problem should logically await the completion of the 60 cycle amplifier. The 60 cycle amplifier having been completed, it is intended to start on the limit bridge as soon as the other active jobs permit.

The next meeting of this Committee will be held on November 3.

Voltage Regulator. The voltage regulator has been a source of trouble because of its short life. The difficulty is apparently due to poor design rather than wrong principle of operation. Ward-Leonard are to supply us with three regulators for test which are to meet the following specifications:

> Output voltage 114-116 volts, input 105-125 volts, frequency 59-61 cycles, load 50 watts unity power factor.

The next meeting of this committee will be on September 29.

L. B.

HU

media 228

W. B. Nottingham

Voltage Hagulator. The voltage regulator has been a source of trouble because of its short life. The difficulty is apparently due to peer design rather than wrong principle of operation. Markleonard are to supply us with three regulators for test which are to meet the following specifications:

.5

Output voltage 114-118 volts, input 105-125 volts, frequency 59-51 cycles, load 50 watte unity power factor.

The next meeting of this committee will be on September 29.

石缸

L. H.

s. . 1 No Copiality 1.389 5/20/29 Calculations on D.C. amplifin. of Balanced type. $\frac{-(i_4+i_q)}{3R_2}$ R.3 Rs JR7 fig1 given Rg = 1400 ^w R# = 3000 ^w ig = 5×107 per step $\mathcal{R}_{4} i_{4} = i_{q} (\mathcal{R}_{q} + \mathcal{R}_{s})$ where Rs = combination of Rs, Ro, «Ry Perstip $R_{4}i_{41} = 5 \times 10^{7} (1400 + 100) = 7.5 \times 10^{-4} = 7.5 \times 10^{-4}$ $i_{41} = \frac{7.5 \times 10^{-4}}{3.0 \times 10^{3}} = 2.5 \times 10^{-7}$ For 400 steps 14 = 10# amp. Ry 14 = 3000 x 10" = 0.3 volt max IR Jake Eg = 1.5 R5 = 150 00 $i_7 = \frac{0.3}{150} = 2 \times 10^{-3}$ amp. $R_7 = \frac{1.2}{2 \times 10^3} = 600 \ \omega$

Bridge problem to find relation between galvonometer current and circuit resistances Rower Ra $i_1R + (i_1 - i_g)R_2 = E$ i2 R, + (i2+ig) R2 = E $ig R_{g} + (i_{q} + i_{2}) R_{2} + (i_{q} - i_{1}) R_{2} = 0$ Solution of these gives $i_{g} = \frac{E(R_{1}-R)R_{2}}{R_{2}^{2}(R_{1}+R) + 2RR_{1}R_{2} + (R_{1}+R_{2})(R+R_{2})R_{g}}$ This solution shows that the bridge circult shown in fig I will not be compensated for changes in E be cause the 14 of that circuit which is analogous to ig of the simplified circuit is a linear function of E.

of the recorder operated some compunsating

cur

tre

e

3 5/20/29 mechanism in the input accuit to bring about the balance then a compensation for plate battery changes would be possible. Such a circuit is the following. (Meehanical) C. RR 3 AT (m) This count will be compensated for A" and "B" battery changes and will be independent of the exact amplifuation factor of the vacuum tubes once they have been balanced for power changes ete. The appacent limitations are :-1.) Re must be small enough to make the "IR" drop due to grid laakage current 2) a contact at " is appaintly necessary small. but since this is a high resistance circuit. the disadvantage should not be quate

4 The following analysis of the balanced tube problem shows more definitely the possibilities , and the limitations of this method of , amplification c. (intig) ig Rg C_2 C_2 One form of the tube equation which of course is only an approximation is $i = k + \frac{1}{2}(E + \mu C)$ (1)with i = plate current E = " voltage C = impressed grid voltage 11 = voltage amplification factor I = tube impedance "defined so that Z is the slope of the i vo E curve at the point of operation. & = the interself on the current axis of the tangent drawn with slope 'z at the point of operation when G=0 C=+1 C=0 C=-1 On case the (i-- E) curve with constant c is enved than k = f(E) and Z = F(E) and and not constants. $\frac{1}{100}$ tan $\theta = \frac{1}{7}$

5 Using the notation in the figure we have $i_{1} = k_{1} + \frac{1}{Z_{1}}(E_{1} + \mu_{1}C_{1})$ $i_{2} = k_{2} + \frac{1}{Z_{2}}(E_{2} + \mu_{2}C_{2})$ (2) (2) $E_{1} = E_{1} = (i_{1} + i_{q})R_{1}$ $E_{2} = E_{1} = (i_{2} - i_{q})R_{2}$ (\$) (5) R₁(i, + iq) + iq R_q - R₂(i₂ - iq) = 0 (iq(R, + R₂ + Rq) = i₂R₂ - 1, R, E, and E₂ can be eliminated and the equations (6) solved for ig as follows: $i_{,} = k_{,} + \frac{E_{,}}{Z_{,}} - (i_{,} + i_{g})\frac{R_{,}}{Z_{,}} + C_{,}\frac{M_{,}}{Z_{,}}$ Solving for i, we get $i_{1} = \frac{Z, R, +E}{Z, +R,} - ig \frac{R}{Z, +R} + C, \frac{R}{Z, +R},$ Ano the same way $i_{2} = \frac{Z_{2}k_{2} + E}{Z_{2} + R_{2}} + i_{g}\frac{R_{2}}{Z_{2} + R_{2}} + C_{2}\frac{\mu_{2}}{Z_{2} + R_{2}}$ $iq(R_1 + R_1 + R_q) = \frac{Z_1 + R_1 + E}{Z_1 + R_2} R_1 + C_2 \frac{u_1 R_2}{Z_1 + R_2} + iq \frac{R_2^2}{Z_1 + R_2}$ $=\frac{2, R_{p}+E}{2, +R_{i}} R_{i} - C_{i} \frac{M_{i}R_{i}}{2, +R_{i}}$ $+ ig \frac{R_{,2}}{2, + R_{,1}}$ Collecting terms we get $iq\left(R_{1}+R_{2}+R_{q}-\frac{R_{1}^{2}}{Z_{1}+R_{1}}-\frac{R_{2}^{2}}{Z_{2}+R_{2}}\right)=-\frac{R_{1}}{Z_{1}+R_{1}}\left(Z_{1},k_{1}+\mu,R_{1}+E\right)+\frac{R_{2}}{Z_{2}+R_{2}}\left(Z_{2},k_{2}+\mu,R_{2}+E\right)$ Y

6 $(\mathbf{R}, + \mathbf{R}, (\mathbf{R}, + \mathbf{R})) =$ R,Z,Z_+R,Z,Z_+RqZ,Z_+R,Z,R_+ &Z,R_+ RqZ,R_2 R, R, 22 + R, R, 22 + R, R, 22 + R, R, R, + R, R, 2 + R, $-R_{1}^{2}Z_{2} - R_{1}^{2}R_{2} - R_{1}^{2}Z_{1}$ -R2R, (2,+ P,) (2,+ R) = $R_1Z_1Z_2 + R_2Z_1Z_2 + R_1R_2Z_1 + R_1R_2Z_2 + R_q(Z_1+R_1)(Z_2+R_2)$ (+R.)(Zye) = (R22,+R,R2)(Z, k2+C2/12+E) - (R, 22+R, R2)(Z, k2+C, M, +E) $i_{g} = \frac{(R_{2}Z_{1}+R_{1}R_{2}/2,k_{1}+C_{1}\mu_{1}+E) - (R_{1}Z_{1}+R_{1}R_{2})(2,k_{1}+C_{1}\mu_{1}+E)}{R_{1}Z_{1}Z_{1}+R_{2}Z_{1}Z_{1}+R_{1}R_{2}Z_{1}+R_{1}R_{2}Z_{1}+R_{2}R_{2}+R_{2}R_{2}+R_{2}R_{2}+R_{$ $i_{g} = \frac{(R_{2}Z_{1}+R_{1}R_{2})(Z_{2}k_{1}+C_{2}\mu_{2}) - (R_{1}Z_{2}+R_{2}R_{2})(Z_{1}k_{1}+C_{1}\mu_{1}) + (R_{2}Z_{1}-R_{1}Z_{2})E}{R_{1}Z_{1}Z_{2}T}$ (8) This equation shows that ig is indefendent of the plate & batting supply when R₂Z, - R, Z₂ = 0 Jhis conclusion requires that over the range that E is permitted to change Z, k, and w must be indefendent of E. Under this condition R, 2, = R, 2, = W² 9) (10) $iq = \frac{\left(1 + \frac{R_{i}R_{2}}{W^{2}}\right)\left(2_{y}k_{z} + c_{y}\mu_{z} - 2_{j}k_{i} - c_{i}\mu_{i}\right)}{R_{i} + R_{z} + 2_{i} + 2_{z} + R_{g}\left(\frac{R_{i}R_{2}}{W^{2}} + \frac{Z_{i}Z_{2}}{W^{2}} + 2\right)}$ (11)

If it were possible to select tubes with I, = Z, and k, = k, and µ, = µ; and we adjusted R, = 2, = R2 Iden $(ig) = \frac{1}{2} \frac{\mu(C_2 - C_1)}{(Z + R_g)}$ (12) × This equation shows that the sensitivity is $\begin{pmatrix} s \\ s \end{pmatrix} = \frac{i_q}{c_2 - c_1} = \frac{1}{2} \frac{u}{(Z + R_q)}$ (13) 0 Since in general Z) Rg we see that S= 1/2 = 1 Gm where Gm is the (14) (8) "mutual conductance" of the tube use and we see that the sensitivity of the "bolanced bridge" circuit is expactly '2 that of the straight amplifue circuit. (9) Genual considerations of sensitivity and stability when the bridge type of circuit is not used. Assume the tube equation (1) $i = k + \frac{1}{2}(E + \mu C)$ (1) (1) (10) S = $\frac{\partial I}{\partial C} = \frac{\mu}{Z} = G_m$ showing that sensitivity is proportional to the mutual conductance under (11) the usual conditions. <u>Di</u> = $\frac{1}{2}$ which is thus a measure of the instability

of a goo tube. In an application we should use the maximum 9m consistents consistent with the stability required. as given by instability = \$= Z 15) This gives for the product S.S = M. Z = M (15) Showing that considering both the sensitivity and the stability the value of "" can be taken as a measure of the value of a tube for direct - current amplification circuity. The following table of tube characteristics shows that the UX 112 tube should have the maximum sensitivity leut would be instable with power. The UX 222 is only 5 as sensitive but should be about 200 times as stable.

1										-		
	TYPE	USE	"A" B4T V.	TERM "A" V.	FIL CURRENT	Det "B." V.	1 8,	07.	PLATE CURRENT V	PLATE RES.	MUT.COND, Gran MICRAMOHS	Vortree AMP
	U X-199	amh Det	3.0 T=4.5	3.3	.063	22.5 tr 45.0	45.0 67,5 90.0	.5-1.5 1.5-3.0 4.5	1.0 1.7 2.5	19,500 16,500 15,000	320 380 415	6.25
	UX-120	ÂMP	4.5	3.3	.132		90 135	16.5 22.5	3.2 7.0	7,700	428 500	3.3
2	UX-201A		6.0	5.0	.25	45	45 67.5 90, 135.	.5-1.5 1. 3 -3.0 4.5 9.0	0.9 1.7 2.0 2.5	18,500 14,000 10,000 10,500	430 570 725 760	8.0
	UX-240		6.0	5.0	.25	90	90 135 180	1.5 3.0 4,5	0,2 0,2 0,2	150,000 	200	30,0
	UX112		6.0	5.0	.25	45	90 135 157 180	4.5 9.0 10.5 13.5	4.8 5.8 7.9 7.8	5,300 5,000 4700 4700	1500 1600 1700 1700	8.0
	UX 226		A.C	1,5	1.05		90 135 180	6,0 12,0 16,5	3.7 3.0 3.8	9,400 10 000 9400	870 820 870	8.2
-	UX222			3,3	.123		135			1,100,000	300	330
	3	Take	n f	ion	-							
			C	ins	ing	har 192	n -	Tube	Dat Price	62 Bo	ok	
			han									

10 When a bridge circuit is used then equation 8 shows that the circuit is perfectly stable with plate voltage when R2Z, = R, Z2 This result depends on the constanting of "Z" for stammale changes in E and C. Dependance of sensitivity Son the fitate resistance in the flate circuit R. $\frac{From equation (8) we have$ $(1+\frac{R_{i}R_{2}}{W})(Z_{2}, k_{2} + C_{2}\mu_{2} - Z_{i}, k_{i} - C_{i}\mu_{i})$ $ig = \frac{(1+\frac{R_{i}R_{2}}{W})(Z_{2}, k_{2} + C_{2}\mu_{2} - Z_{i}, k_{i} - C_{i}\mu_{i})}{R_{i} + R_{2} + Z_{i} + Z_{$ (8) assume Z, = Z=Z; k,= k,; µ,= /2; and R, = R_2 = R $i_{q} = \frac{(1+\frac{R}{2})(c_{2}-c_{1})u}{2R+2Z+R_{q}(\frac{R}{2}+\frac{Z}{R}+2)}$ (17) $S = \frac{\mu(1+\frac{R}{2})}{2R+32+R_{q}(\frac{R}{2}+\frac{Z}{R}+2)}$ (18) of there is value of R for which S is a max. we find it As by os = 0 $\left[2R+22+R_{q}\left(\frac{R}{2}+\frac{Z}{2}+2\right)\right]\frac{m}{2}-\mu\left(1+\frac{R}{2}\right)\left(2+\frac{R_{q}}{2}-\frac{Z}{R^{2}}\right)=0$ (19) Solving this equation for R we get R = = V-Z which shows (20) that for positive values of Z and R there is no max.

11 For small values of Recompanies with 2 $S = \frac{u R}{2(2R+Rq)} \vee$ T (21) For large values of R we see that S approached a value given by (22) which is independent of R. Let $\vec{X} = (1 + \frac{R}{2})\mu$ Let $X = (1 + \frac{R}{2})u$ $Y = 2R + 2Z + R_q(\frac{R}{2} + \frac{Z}{R} + 2)$ $\begin{pmatrix} \frac{d}{dR} \\ \frac{d}{R} \end{pmatrix} = \frac{1}{Z} \\ \begin{pmatrix} \frac{d}{dR} \\ \frac{d}{R} \end{pmatrix} = 2 + \frac{R_q}{Z} \\ \begin{pmatrix} \frac{d}{R} \\ \frac{d}{R} \end{pmatrix} = 2 + \frac{R_q}{Z}$ $(S) = \frac{M \frac{1}{2}}{2 + Rg} = \frac{M}{2Z + Rg}$ (22) It is of interest to compare this with that of (S) when R=Z given in equation (13) 7) $(S)_{R=Z} = \frac{\mu}{2Z+2R_g}$ 8) it Now that we see the general way in which 5 depends on R we canget a more useful expression by letting R = m Z where in general applications m (1. Equation (18) then reduces to the following 19) (23) $S = \overline{2Z + R_g(\frac{m+i}{m})}$ $\frac{(S)_{R=mZ}}{(S)_{R=\infty}} = F$ 20) Let us define a quantity Fas y.

12 This "F" is then the fraction of the quatest possible sensitivity which will be obtained with a given value of m = $\frac{R}{Z}$ Using equations (22) and (23) $\frac{2Z + R_q}{2Z + R_q \left(\frac{m+i}{m}\right)} = F$ (24) From which we can calculate F from given values of m. Solving this equation for "m" we get $m = \frac{R_q}{2Z + R_q} \times \frac{F}{1 - F}$ (25) af we introduce M = Rg $we get M = \frac{F}{2M+1} \times \frac{F}{1-F}$ (26) Jaking M = Z and L = R we find from (24) that $F = \frac{1}{1 + \frac{1}{L(2 + \frac{1}{M})}}$

13 Since 100 (- 1) is the too in sensitivity in fucent we have could realize by Laving R = 00 AMARKARANTARA () Possible gain in sensitivity = $100(f-1) = 100(S_{\infty} - S_{R})$ Percent gain = $\frac{100}{L(2+\frac{1}{M})}$ (27) which is shown in the attached grafh. CURVE GOOD 50 ALL VALUES OF $M = \frac{Z}{R_g} = \frac{FROM}{7} \frac{10}{10} \frac{UP}{P}$ 40 3 JE RE Rg M=130 20 BY M 10 0 20 50 0 30 10 40 R = L

14 One interpretation which can be made on the basis of this calculation is that the value of R which it is practical to use is determined primarily by the value of Rg. Therefore if Rg = 1000 " then R need not exceld 10,000 to 20,000 so long as 4/10,000 ° Numerical example:-Given with circuit slown in figure on p. 3. (1) galvanometer resistance with profus shunt Rg = 1000 " (i.e. about 1500" coil with 3000 " shimt) (3) Min. useful deflection produced ley 5×10-7 amp. Lake R = 20,000 which will give within about 98% the max possible sensitivity Using equation (23) in terms of L+M since m= # $S = \frac{1}{2Z} + R_g \left(\frac{L+M}{L}\right)$ Case I - UX112 L = 20 approx M= 5 EB=300volto IB=16 mils Z = 5000 ~ Ec = - 9 oolto 10m = 8 S_= 10000 + 1000 == = 7.1 × 10 -4 (IA= 0.5 amp -7 -7 -4 (IA= 0.5 amp. fer volt LA= 0.5 amp. Min. useful voltage _____ = 7×10 volt

15 Thus the voltage "amplification" of this circuit is 1000 × 5 × 10-7 (Va)min dy = 1000 × 5 × 10-7 7 × 10-4 = 0.71 which min of course an actual loss. The current amplification on the other hand is given by (iche = 7×10⁻⁴ = min useful voltage (igmin^c = 5×10⁻⁷ = min gak. current $a_c = \frac{x_c}{ic} = \frac{5x_c^{-7}}{7x_c^{-4}} R_c = \frac{7.x_{*10}^{+4}}{7x_c^{-4}} R_c$ Kince & can be as high as 100 mere in many applications with plotocede, etc. Xc = 7,×10 + + 7,000 witz $(i_{e})_{min} = \frac{7 \times 10^{-4}}{R_{c}} = \frac{7 \times 10^{-10}}{P_{c}}$ where Ro is expussed in "megs." $d_{c} = \frac{19}{i_{c}} = \frac{5 \times 10^{-7}}{7 \times 10^{-10}} = 710 \times R_{c}'$ eto WX-112 Rc dc (1c) min b Venter 400 Steps 7×10-4 .28 voet · Maria / 710 7×10-10 10 7,100 100 71,000 7×10" 7×1012 * (1 C 7×10'3 1000 710,000

16 Case II - UX 222 approx. $E_B = +/60 \text{ volts}$ $I_B = 3 \text{ mils}$ L=20 M = 300 M = 1000Z = 106 Ec = - 1.5 00lts TA = .3 amp. 1.46×10 - 4 amp/oot $S = \frac{300}{2 \times 10^6 + 1000 \left(\frac{1020}{20}\right)} =$ Min. useful voltage = 34.2 × 10-4 Voltage for 406 steps = 1.368 volto. UX-222 Ré de (1c) min 3.4×109 1 146 3.4×10-10 10 1,460 3.4×10" 3.4×10" 100 14,600 1000 146,000 " Handle is there 2

17 Problem of the two stage amplifier ts o Ito volt Assuming the tube equation and that grid current in = k, + ± (E, + M, C,) in the tubes of in the tubes of the second stage in = kn + 1/2 (E12 + Min Cin) can be neglected. $E_{II} = E - i_{II}R_{II}$ $E_{IZ} = E - i_{IZ}R_{IZ}$ $Z_{11}L_{11} = Z_{11}R_{11} + E - I_{11}R_{11} + M_{11}C_{11}$ $i_{11} = \frac{E + Z_{11} k_{11} + M_{11} C_{11}}{R_{11} + Z_{11}}$ $\dot{L}_{12} = \frac{E + Z_{12} \cdot k_{12} + \mu_{12} C_{12}}{R_{12} + Z_{12}}$ $V_{c2} = i_{12}R_{12} - i_{11}R_{11} = R_{12} \frac{E + 2_{12}k_{12} + M_{12}C_{12}}{R_{12} + 2_{12}} - R_{11} \frac{E + 2_{12}k_{13} + M_{11}C_{11}}{R_{11} + 2_{11}}$ morder that Vez be independent of E we must have $E\left(\frac{R_{12}}{R_{12}+Z_{12}}-\frac{R_{11}}{R_{11}+Z_{11}}\right)=0$

18 Idatio $\frac{R_{12} + Z_{12}}{R_{12}} = \frac{R_{11} + Z_{11}}{R_{11}}$ $\sigma \cup R_{11}Z_{12} = R_{12}Z_{11}$ which we see is exactly the same condition as was found for the one stage amplifice in equation (9). In order to calculate the response, let $Z_{I_1} = Z_{I_2} = Z_{I_1}; k_{I_1} = k_{I_2} = k_{I_1}; M_{I_1} = M_{I_2} = M_{I_1}; R_{I_1} = R_{I_2} = R_{I_1}$ ANG $V_{c2} = \frac{R_{i} \mu_{i}}{Z_{i} + R_{i}} \left(C_{i2} - C_{ij} \right)$ $S_{i} = \frac{R_{i} \mu_{i}}{R_{i} + Z_{i}}$ We can conclude from this that if R,)Z, then the amplification is M, but if Z, R, we have R, Gm as the amplification factor. et we again take m= K, we have $S_{im} = \frac{m_i}{m_i + 1} \mathcal{M}$ The maximum possible S is So = 10 when R = 0

For a grien value of R we userge P = SR 100 as the ferent of the

maximum possible sensitivity.

 $\frac{S_R}{S_{\infty}} = \frac{m}{m+1}$

			The second se
m= 2	P	SR	The sensitivity of the
0,1	9.1	.091 M	complete amplefu
0.2	16.7	,167 "	is then
0,4	28.6	. 786 "	State Person Bandichart
0.6	37.5	. 375 -	$S_{12} = S_{1}S_{2}$
1.0	50.0	. 500 "	The Real Provention of
1.5	60.0	.6 "	
2.0	67.0	.67	
		2016-015	

 $5_{12} = \frac{m_{,}}{m_{,}+1} \mu_{,r} \frac{m_{2}}{2Z_{2} + R_{g}(\frac{L_{2} + M_{2}}{L_{2}})}$

when (m, = R, Z, $\int L_2 = \frac{R_2}{R_q}$ $M_2 = \frac{Z_2}{R_g}$

20 Case III - UX222 + UX112 Jake $R_{,=} 400,000^{\omega}$ $Z_{,=},000,000^{\omega}$ Jen $m_{,=} 0.4$ $S_{,} = .286\mu = 86$ Voltage amplification of entire system is now $\alpha_{y}S_{,}=0.71\times86=61$ Current amplification is Ric Xcourse (ic)min 61,000 8,1×10-12 1 10 610,000 8.1×1513 8.1×1014 6.1×10 100 8.1×1015 6/×10° 1000 Case IV - UX 222 + UX 222 Voltage amplification of system is now $x_{y}s_{z} = 12.5$ Current amplification is Ric Re (ic)min 1 12,500 3.96×10" Using Rig = 3000 and a galvanometer sens of 2000mg 10" amp should give 1 cm at one meter. ×10¹² 125,000 10 1.2×10° 100 1014 12×10° 1000

22 Photoelectric current as a function of temperature Current = 1 Light energy from source of wave length between x and x + dx = Ldx This is given by Planks equation $L dx = \frac{C_i}{\lambda^5} \cdot \frac{i}{e^{k_A T}} - 1$ c = vecoury of light k = Boetymannio gas const. A = Plank's constant N = wave lingth in metion T = Jempiratur Kelvin. Let C2 = ch On all cases of interest in photo dection applications \overrightarrow{k} / and \overrightarrow{k} // $\frac{d}{dx} = \frac{C_1}{\lambda^5} e^{-\frac{C_2}{\lambda T}} d\lambda \quad \text{when} \quad C_2 = \frac{C_1}{\lambda}$ Since our interest is in the variation of Ldx when x is fixed and T is varied we can write ! i=mLdx=cext when m is a proportionality constant and C= constant as long to the wave lingth is not changed.

23 5 273 546 C_ = 14,330 - when dois Cy = 143.3×10° when X is given in Å and T in °K (See Int. Cuit. Jabes vol v p 239.) On order to use common log instead of natural we must take ,+343× C2 Twich is 62.235×10 $L = C / 0 - \frac{62.235 \times 10^6}{\lambda T}$ It T is given in absolute "F instead of "K. we take $\frac{112 \times 10^6}{\lambda F}$ $F^{\circ} = f^{\circ} + 460^{\circ}$ Jake case of photocurrent at 1600°F compand with 1400°F $\frac{112 \times 10^6 (1 - 1)}{112 \times 10^6 (1 - 1)} = 10$ $\frac{112 \times 10^6 (1 - 1)}{1860 - 2060}$ assume $\lambda = 9000 \text{ Å}$ $\frac{1600}{1400} = 10^{65} = 4.47$ $\frac{80}{7} = 23^{60}$
24 If we adjust the slide wine current and the end coil resistance to give 1400°f for o and 1600 Hat 80 on the slide we can calculate the resistance of the end coil since 1,600 = r+80 r 1,400 $\Gamma = \frac{80}{\frac{11600}{11400}} = \frac{80}{3.47} = 23^{100}$ $\frac{i_{1800}}{i_{1600}} = 10$ $\frac{535}{= 10} = 32.9^{10}$ $\frac{10}{2.428} = 32.9^{10}$ Anorder to compute the per position for a given temperature & mode in terms of the temperature to we have $\frac{l_f}{l_0} = \frac{R+r}{r}$ $R = r\left(\frac{lf}{l_0} - l\right)$

25 for example take f = 1500° on F = 1960° X = 23 00 to atrid for = 1400° giving for = 1600° 3415 $\frac{i_{1500}}{i_{1400}} = 10$ 5376344 5102041 0274303 = 2.198 R = 23(2.198-1) = 27.5 $\lambda = \frac{112 \times 10^6 \left(\frac{1}{F_1} - \frac{1}{F_2} \right)}{\log_1 0}$ Q'

		A site			and a submitted the second of the
					2222
q	wers	2=	= 40	R,=	5200
. 1				2	$R_1 - R_1$
R,	1600 R.	RI-LLes RI	R2	Riti	
40	40	0	00	00	
42	38.1	3.9	87.0.	20,5	
44	36.4	7.6	47.1.	1.0,55	1
48	33.3	14.7	21.8.	45.4	
60	26.7	33.3	9.61.	2.60	
80	20.0	60.0	5.3.4	1.667	
100	16.0	84.0	3.81	1.381	
160	10.0	150.0	2.1.3	1.133	
240	6.67	733.3	1.322	1.057	
300	5.33	294.7	1.09	1.0363	
00		10. 1. 1	0	1.00	
	1	1.1.1.1.1			
41	39	2	1600	40.0	2.9.
40.5	39.5	1	3200	80.0	
40.25	39.75	.5	6400	160.0	Relative secondaria
	-			- Marine	
		A Completion		THE REAL	and the second
		-	Strained 1	<u></u>	
			Ray	121	
	1 Al alarta		E. Charles		
	1	1	1.		

27 Computation of an "H" type artificeal line. Sympthic Rr $A = \frac{k_2}{k_1}$ $R_1 \neq R_1 \neq Z$ $A = \frac{k_2}{k_1}$ Condition :- Input sesistance to AA shall be equal to Zo $\frac{1}{Z} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2} + \frac{1}{R$ $= \frac{R_{1}R_{2} + R_{1}Z + R_{1}Z + R_{1}Z + R_{1}Z}{R_{1}^{2}R_{2} + R_{1}R_{2}Z + R_{1}^{2}Z}$ $R_{1}^{2}R_{1} + (R_{1}R_{1} + R_{1}^{2})Z = Z(R_{1}R_{1} + R_{1}^{2}) + Z^{2}(R_{1} + 2R_{1})$ $Z^{2} = \frac{R_{1}^{2}R_{2}}{2R_{1}+R_{2}}$ $R_2 = \frac{2Z^2R_1}{R_1^2 - Z^2} \longrightarrow$ Remembring that the input to AA has the resistance Z we see that the ration of the input current is to the load current is is $\frac{i_0}{i_2} = \frac{R_1 + R_1}{4 R_1} = 1 + \frac{R_2}{R_1} \qquad \underbrace{i_0 = 10}_{1_2 = 10}$ The relation between the current ration and the transmission unit is given by

28 $a = \frac{mq - R}{m + 1}$ mR - g6 $C = \frac{m}{m^2 - 1} \left(\frac{R + q}{4} \right)$

29Note on the nonsynetice T" type network Consider the hall Consider the problem of a golvenometer of usistance g and external critical damping resistan R connected in a curcut of rescana R. 20 it possible to work out a network Which well work for this comit to change the golvanometer current without changing the curuit current or the dame pring. 3R/E 30 239 $q = a + \frac{c(q+b)}{c+q+b}$ mg-R $R = b + \frac{c(a+R)}{c+a+R}$ $\int Ic = ig(b+c+g)$ $\frac{I}{iq} = m = \frac{b+c+q}{c}$ If ese equations can be colved for a, b, c to get. $a = g(\underbrace{m(m+1)}_{m(m+1)} - \underbrace{R}_{m+1} - \underbrace{m(m+1)}_{m(m+1)} - \underbrace{m(m+1)}_{m(m+1)} + \underbrace{m(m+1)}_{m(m+1)}$ $b = \underbrace{R m - g}_{m+1}$ $c = \underbrace{m}_{m^2-1}(R+g)$ When m=1 a=-b if R/g resutance"a" is negative "R<g "5" "

30 since in the usacal case R) g there is a certain limiting values of AMMAM M. for which this network will function. This can be found by setting a = 0 and solving for m. a = mg-R mti $(m^2+i)g = m(R+q)$ $m^{2}+1 = m\left(\frac{R}{q}+1\right)$ 0 = mg-R $m^2 - m(g+1) = -1$ (m'= g + sign because m) 1 $m \neq \frac{R+q}{2q} + \left(\frac{R+q}{4q}\right)^2 + 1$ Limiting For m mit is possible to design a metwork to control 1 2 thetinuit as stand. 2.67 5 5.83 10 10.91 15 15.94

			1 44						•				
R		Ra										20	
75	. 1				1.519		Frid	13	2 mg		6.4	C	
D	1400	0	1860	53	7634		0	Ag	y &			1,0	
3.65	20	0.22	1880	V3	1915	0	03719	,07/1	.08		1.110	1.7	
9.5	40	2.11	1000	12	6316	0	11310	. 141	,1002		1. 201	1.54	
12.1	00	20 il	20	11	0833	0	16801		.1500		1902	1.12	
19.0	80	10.9	40	1/	5464	0	22110	. 116	, 31		1,000	2.115	
229	1500	26.4	80	11	0 204	0,	22 - 8	3 101	104		254	256	
12.0	40	73,7	2000	5	0001	0	371.34	1702	, 10		1121	33(
536	60	550	2000	UG	5050	0	47.584	(2	596		3385	294	
659	80	24.0	40	47	0100	0	47438	130	.664		5,000	1411	
80.0	1600	800	60	48	5437	0	52 197	15	.731		4.47	(28	
960	20	945	80	10	0769	0.5	1865	SUL	.701		610	62.5	
10.0	10	1.4	00	40	0/0/	00	6060	, 100	. 196		940	0.74	
	17.5		S.	= AT	80	= 18 2	5 W					•	
	4400		.8		4.38								
	-		X.	5 -	80	= 73.	, w						
	a Frail		. 9		3.41								
	1600		2060	48	5437		0						
	20		10.00		1000	02	28.68						
	40	dian 1											
	60				1.50	<u>8</u>							
	80												
	1700						1. 1. 2.						
J	20				EYUR	D							
20	40		100										
n's	60												
(no.	80				CONTRACTOR OF	in the second							
20 11	1800		2260	44	2478	04	+29 59	.534	.601		3.42	3.986	
14	20		1 1 2 0	Dec. NA			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					01100	
					12 12 16	266-246			ne nation l				
									Million and				
					6748	10321							1.
		Ra					1 Carl		Xa	NS	79	28	
	1800	0	2260	38	4615	44247	8	0	6	0	1	1	
	20	4.96	2280	75	1679	43859	6 0038	82	0484		1.118		
	40	11.0	7300	31	18788	4347	8300760	15	.0957		1.247		
	60	220	20	3	15940	111221	17781	Sizer.	in rob		122		
	80	24	40	25	23/34	42735	001510	.8	,188		1.54		
	1900	315	60	27	10370	4237	90187	49	, 233		1.71		
K.	20	29.4	80	3	2647	42016	8 0223	10	12775		1.891		
yx.	40	48.5	2400	31	64964	4166	2 0258	11	,321		2,092	1. Call	
1 5	60	58.2	20	50	023/19	41327	3 0297	155	364		7,31		
8/8 m	80		40	3:	59912								
R a 1	2000	80.0	60			40650	4 0359	74	448	.504	7.8	3.19	
. 18	20	97.2	80			4037	16 0392	52	.488		3.075		
And the second se										A LAND CORE			

tod x to 8 50 x to 8 50 x to R 50

r. L 31

R		Ra										1.
Xg		,									19	~*
D	1400	0	1860	53	1634			A9	λ_8			1,0
3.65	20	4.1	1880	V3	1915	0	05719	.07//	.08		1.118	1.2
9.5	40	8.11	7000	12	6316	0	11318	. 141	,1582		1. 281	1.52
15.1	60	an it	20	12	0833	0	16801		.2350		. 902	1.12
14.0	80	10.4	40	51	5464	0	22170	. 7 16	,31		1,082	2.04
23.9	1500	2(.1	00	1/	0204	0,	27430	e dal	1304		244	1.42 ACC
72.0	40	92.9	00	VO	VOV/	0	32000	,905	,446		1127	2 21
42.1	60	560	2000		10000	0	17 58 11	12	596		2281	5.76 5 all
150	20	11.0	10	49	VUNO	0	42007	12.0	1.1.4		1,000	2.14
80.0	1600	80 D	60	40	5427	0	57 197	15	721		447	4.61
960	20	aus	80	40	0751	0.	51815	200	701		610	625
-10.0	10	J.,0	00	40	0/0/		6060	, 100	. 196		3.40	0.20
									12.21			
			S.		80	= 18 7	5w		1111			
			18	Ē.	4.38	10.7	3		N. M. A			
			X.	-	80	= 73.	, w		1112.18			
			. 9		3.41							
	1600		2060	48	5437		0					
	20		10.00		,		Desident.		1.000			
	40						$(\mathcal{F}_{i}) = \mathcal{F}_{i}$					
	60								Sell and			
	80											
	1700						11. 11.		MARKET			
3	20				1.1				Pel-Crast			
20	40								Area Sta			
3,8	60								S. Barris			
ca de.	80											
10 11	1800		2760	44	2478	0.	42959	,534	.601		3.42	3.986
14	20				a Seven		L'Andersteine		1.0.1.60			
									12 set 2			
		0					NBG DA		A BROWN			
		Ra			11		a attempt		ra	NS	rg.	78
	1800	0	2260	38	4615	4424	18	0	6	0	1	1
	20	4.96	2280	28	1679	43850	16 00388	32	.0484		1.118	
	40	11.0	7300	37	8788	4347	8300769	15	.0957		1.747	
	60	1024	70	3	15940				1157851		S. S. S.	
	80	24	40	26	73/34	4273.	5001517	.8	.188		1.54	
	1900	31.5	60	37	10370	4737	290187	19	. 233		1.71	
K,	20	39.4	80	3	2647	42016	8 0223	10	1775		1.891	
Nr. L	40	48.5	2400	30	04964	41661	0758	11	,321		2.092	12-21
80% .6	60	58.2	20	36	013/19	4133	13 0297	155	.364		7.31	
in the main of the second seco	80		40	3:	19712		1		1.10		a. 11	
Ra 1	2000	80.0	60			40651	4 03 59	74	440	.504	7.8	3.19
. 28	28	41.2	80			4037	10 10392	12	.488		2.013	

R		R										
N		Aq					oip.			T In L	λ.	X
	2000		2460	40	6504		r 0	~8	~9		8.1	19
	No		2500									
	80		40						1.1			
	2120		80		1.6.1.1		1.20.00					
	60		2620			11.11	1 States		u di di di di			
25.5	2200	27,3	60	- 37	5940	0	30564	.427	. 38		2.67	2.395
	40		2700									
	80		40									
	2320		80									
	60		2820									
	2400		2860	34	9650	03	6854	.795	.706		6.24	J.08
	40		2900							~		101
										(=	15.75	19.6
	2400		2860	34	9650		0					
	40		Den Ber									
	80											
	2120											
(A of	60	1 - 2	0.1		1000			-	-0115			1022
m.v	2600	50.3	3060	32	6797	0.	12853	.32	.7843		7.09	1.913
	40											
	80								-			
	1120											
	60		2.1	-	12,10		12000	1.	122		3.98	5.11
	1000		2760	30	6/40	Q	72902	,60	.123		9.10	3. 1
	40									r	26.8	かろう
											10.0	11.1
	3		•									
	* - 7											1.000
	The second											
and the	12130	A.									Jik B	
	2800		3260	30	67118		0		1-1-1-1			101.1
	7000	1	5700	10	0140		U		1.12.1.1			
	1777				NY TA							
	S-MARKS		are the				2.8				6. C. 1	
		1.2.2										
216	3000	220	3460	28	9017	1	117721	2.48	2206		177	1.66
51.4		1.1.0	0100	10	101/		11131				1.11	1.00
							18.10					
					1.1. 1.2.20							
	1		2									1623
	3700		3660	27	3224	0	33524	.469	.416		x.94	2.6
	40											11/15-3
										r=	41.1	50.0
												1.12

2° 0 + 1 - -3660 27 3274 0 3200 × 1 28,7 3600 30.2 4060 246305 026919 .377 .335 x2.38 x2.16 4460 22 4215 .049 009 .686 .61 4.85 4.07 4000 r 30.8 26

31 Use of an "L" type net work in the plate conclut of a balanced bridge amplifier. 312 12 + 12 + 13 = t = it = it antiping resulting $S_{may} = \frac{q_m}{2(1+\frac{r_q}{R_{cd}})}$ Adjust "a" and "b" to decrease the sensitivity by the ratio _ 5max = n and beck the damping concit by making $R_{cd} = a + \frac{R_{cd}b}{R_{cd}+b} \qquad \therefore a = \frac{R_{ca}^2}{R_{cb}+b}$ $b = \frac{R_{cd}(R_{cd}-a)}{a}$ $S' = \frac{b G_m}{2(a+b+r_g)(1+\frac{b(r_f+a)}{(a+b+r_g)R_{cd}})}$ $= \frac{b G_m}{2(a + b + r_G + \frac{b (r_G + A)}{R_{cd}})}$

32 $m = \frac{(a+b+r_{g})R_{cd} + b(r_{g}+a)}{(R_{cd} + r_{g})b}$ $\alpha = \frac{R_{cd}^2}{R_{cd} + b}$ $n = \frac{a(R_{cd} + b) + b(R_{cd} + f_{G}) + f_{G}R_{cd}}{(R_{cd} + f_{G})b}$ $= \frac{R_{cd}(R_{cd}+T_{G}) + b(R_{cd}+T_{G})}{(R_{cd}+T_{G})b} = \frac{R_{cd}+b}{b}$ $a = \frac{R_{cd}}{\frac{R_{cd}}{R_{cd}} + \frac{R_{cd}}{m-1}}$ $b = \frac{R_{cd}}{m-1}$ $a = R_{cd} - \frac{n-1}{n}$ Ro a and b are thus independent of the galvanometer resistance just as to is do not base the condition in This was that a + b = constant as is it care for the autoto shout and therefore a two constant risistan box is nearray.

33 o onono ·1 • 01 • 001 Rononon Equations for ayrton shout. RAI 30 JOG Remust be very great compared with atta $a + b = R_{c.p.x.}$ I = constant ing = Rcdx Rcdx+g = ms ig (a+b+g) $i_{1q} = \frac{b}{R_{cdx} + g}$ at bra = Repx + Reox $\frac{i_{1}q}{i_{1}q} = \mathcal{N} =$ $\therefore b = R_{CDX} \left(\frac{1}{m} \right)$ $\alpha = R_{CDX} \left(\frac{m - h}{m} \right)$ ł .

annary of ayston shunt. a 29 3R 36 A e

$$Ib = iq(a+b+g)$$

$$I = \frac{e}{R + \frac{b(a+q)}{a+b+q}}$$

$$i_{g} = \frac{eb}{(a+b+q)R + b(a+q)}$$

where $a = 0$
and $b = b_{0}$

$$\frac{i_q}{i_{qmax}} = m = \frac{b_o}{b} \times \frac{(b_o + q)R + b(a + q)}{(b_o + q)R + b_o q}$$

Condition of aypton ahunt.

$$b_0 = m$$
 $a+b = b_0$
 $b_0 = m$ $a = b_0 \left(\frac{m-1}{m}\right)$

34

35 "A" "G" $\frac{Jlm}{R} = b_0 \frac{1-\gamma}{\gamma(\frac{b_0}{q}+1)}$ the perm of the term "A and" B" is a negative number. ". For agive value of y the volue of R will bre less than that for m = 0. Take the the equation with m= 00 $k_{\infty} = b_{0} \frac{1-y}{y(\frac{b_{0}}{g}+1)}$ af the current division is to be accurate to 1% R g $P_{-} = \frac{qqb_{o}}{\frac{b_{o}}{q} \neq 1}$ 49.5 00 . . 33.0 bo 2 9.0 bo 10 4.700 20 2.400 40

O"H" R_{1} R_{2} R_{1} R_{1} R_{2} R_{1} R_{2} R_{2 $e_{o} = i_{o}R_{1} = i(R_{2} + R_{i}) = \frac{e}{R_{i}}(R_{2} + R_{i})$ e=iR1 $G = \frac{e_0}{e} = \frac{R_2 + R_1}{R_1} \Rightarrow \frac{3}{2}R_1$ 3R, 3Z X TZ= $\frac{1}{Z} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_1} + \frac{1}{R$ $\frac{L}{Z} = \frac{L}{R_1} + \frac{R_1 + 2}{R_1 + R_2 + R_2}$

Z = 30 $R_{1} = 100$ $G = \frac{1800}{10,000 - 900} \neq 1 = \frac{1800}{9100} \neq 1 = 1.198$

R= 100 = 19.8

$$e_{0} = 100i_{1} - 100i_{2}$$

$$0 = -100i_{1} + 219.8i_{2} - 100i_{3}$$

$$0 = 13 - 100i_{2} + 130i_{3}$$

$$\overline{Z} = \frac{20}{i_{1}}$$

November 11, 1929

Dr. Leo Behr

CC - Dr. W. B. Nottingham

From:

To:

I. M. Stein

Subject: X-389 - Characteristics of Vacuum Tubes and Their Applications

I understand that under this job you have produced what appears to be a stable amplifier setup for use with photoelectric cells.

Will you please prepare a preliminary report covering this part of your work under X-389, so that this can be turned over to Dr. Dike for his work in connection with the development of the Ives optical pyrometer under X-426.

I understand that the vacuum tube amplifier developed for use with the photoelectric cell is representative of the various problems which require a high current sensitivity D.C. vacuum tube amplifier.

I understand that Dr. Nottingham will take up next the development of a satisfactory vacuum tube amplifier having high voltage sensitivity in D.C. circuits.

Auch w

HU

Analysis of Balanced Tube Circuit

for Plate Battery Stability and Amplification

An approximate form of the tube equation is

When i = plate current E = " voltage C = impressed grid volts μ = voltage amplification Z = tube impedance = $\frac{\Delta E}{\Delta i}$

k = constant

Over wide ranges of 1, E and C, the values of *m*, k, and Z are not constant. The following analysis holds only over the range for which these three are constant.

For the balanced circuit, we have

$$\begin{pmatrix} i_1 = k_1 + \frac{1}{Z_1} (E_1 + m_1 C_1) \\ \end{pmatrix}$$
 (2)

$$i_2 = k_2 + \frac{1}{Z_2} (E_2 + \mu_2 C_2)$$
 (3)

$$(E_1 = B - (i_1 + i_g) R_1$$
 (4)

$${\bf E_2 = B - (i_2 - i_g) R_2}$$
 (5)

$$0 = R_1 (i_1 + i_g) + i_g R_g - R_2 (i_2 - i_g)$$
(6)

The solution of these five equations gives :-

$$i_{g} = \frac{(R_{2}Z_{1} + R_{1}R_{2})(Z_{2}k_{2} + C_{2}Z_{2} + B) - (R_{1}Z_{2} + R_{1}R_{2})(Z_{1}k_{1} + C_{1}Z_{1} + B)}{R_{1}Z_{1}Z_{2} + R_{2}Z_{1}Z_{2} + R_{1}R_{2}Z_{1} + R_{1}R_{2}Z_{2} + R_{g}(Z_{1} + R_{1})(Z_{2} + R_{2})}$$
(7)

or

or

$$i_{g} = \frac{(R_{2}Z_{1} + R_{1}R_{2})(Z_{2}k_{2} + C_{2}m_{2}) - (R_{1}Z_{2} + R_{1}R_{2})(Z_{1}k_{1} + C_{1}m_{1}) + (R_{2}Z_{1} - R_{1}Z_{2})}{R_{1}Z_{1}Z_{2} + R_{2}Z_{1}Z_{2} + R_{1}R_{2}Z_{1} + R_{1}R_{2}Z_{2} + R_{g}(Z_{1} + R_{1})(Z_{2} + R_{2})}$$
(8)

To make ig independent of B, we must have

$$R_{2}Z_{1} - R_{1}Z_{2} = 0$$

$$\frac{R_{1}}{R_{2}} = \frac{Z_{1}}{Z_{2}}$$
(9)

In case it is required that $i_g = 0$ when the circuit is balanced, there is a second condition on the ratio of $\frac{R_1}{R_2}$ which is

 $i_1R_1 - i_2R_2 \neq 0$ (10)

$$\frac{R_1}{R_2} = \frac{i_2}{i_1} \tag{11}$$

The two conditions can always be met and the straightforward way of doing this is the following:-

Choose
$$E_1 = E_2 = E_0$$

After the tubes to be used have been "aged" determine the grid floating potentials V_{10} and V_{20} and the corresponding plate currents i_{10} and i_{20} .

The impedance is determined by $Z_{10} = \frac{\Delta E_{10}}{\Delta i_{10}} = \frac{E_0 - E_1}{i_{10} - i_1}$

The grid voltage on one tube should be made more negative until the condition

$$l_2 = i_{10} \frac{Z_{10}}{Z_2}$$
 (12)

We then have

$$\frac{i_2}{i_{10}} = \frac{Z_{10}}{Z_2} = \frac{R_1}{R_2}$$
(13)

We then have the conditions for balance and for zero galvanometer current met and have the grids equal to or negative with respect to their floating potentials.

In order to determine the sensitivity of the circuit, let

$$R_{1} = R_{2} = R$$

$$Z_{1} = Z_{2} = Z$$

$$k_{1} = k_{2}$$

$$m_{1} = m_{2} = m$$
(14)

$$i_{g} = \frac{(1 + \frac{R}{Z}) (C_{1} - C_{2}) \mathcal{M}}{2R + 2Z + R_{g} (\frac{R}{Z} + \frac{Z}{R} + 2)}$$
(15)

Define sensitivity as

$$\frac{i_g}{C_1 - C_2} = S = \frac{m(1 + \frac{R}{2})}{2R + 2Z + R_g \left\{\frac{R}{Z} + \frac{Z}{R} + 2\right\}}$$
(16)

Certain points of interest can be seen by making the following substitutions:-

Let
$$L = \frac{R}{R_g}$$

 $M = \frac{Z}{R_g}$
 $N = \frac{L}{M} = \frac{R}{Z}$
(17)

then

$$S = \frac{u}{2Z + R_g \left(\frac{N+1}{N}\right)}$$
(18)

from which we see that with Z and R_g given, the value of S is increased by increasing N. We have for N = ∞ i.e. for R very large compared with Z.

$$S = \frac{1}{2Z + R_g}$$
 (19)

and with $Z \gg R_g$ we have for the maximum possible sensitivity

$$S = 2 = \frac{1}{2} = \frac{1}{2} G_{\rm m}$$
 (20)

where G_m = mutual conductance.

Consider the percentage increase in sensitivity which would always be possible in any given case by allowing R to go from $R = R_1$ to $R = \infty$. This would be

$$P = 100 \frac{S - S_1}{S_1}$$
 (21)

where S_1 = the sensitivity with $R = R_1$.

Using equations (17) and (18), we get

$$P = \frac{100}{L \left(2 + \frac{1}{M}\right)}$$
(22)

KEUFFEL & ESSER CO , N. Y. NO. 359-11 20 20 to the inch This represents the percentage by which the sensitivity can be increased by making $R = \infty$ compared with $R = R_1$; for example, take

$$L = \frac{R}{R_g} = \frac{5000}{1000} = 5$$
$$M = \frac{Z}{R_g} = \frac{10,000}{1000} = 10$$
$$P = \frac{100}{5 (2 + 0.1)} = 9.5\%$$

By increasing R from 5000 $^{\omega}$ to 5 megs, we could not gain more than 9.5% in sensitivity.

Analysis for the Two-Stage Amplifier

Assuming ill >> grid current of tube 21 and il2 >> grid current of tube 22, we have

$$\begin{cases} i_{11} = k_{11} + \frac{1}{Z_{11}} \left\{ E_{11} + m_{11} C_{11} \right\} \\ i_{12} = k_{12} + \frac{1}{Z_{12}} \left\{ E_{12} + m_{12} C_{12} \right\} \\ \left\{ E_{11} = B - i_{11} R_{11} \\ E_{12} = B - i_{12} R_{12} \end{cases}$$
(23)
$$\begin{cases} E_{11} = B - i_{11} R_{11} \\ E_{12} = B - i_{12} R_{12} \end{cases}$$
(23)
$$Z_{11} i_{11} = Z_{11} k_{11} - i_{11} R_{11} + m_{11} C_{11} + B \\ i_{11} = \frac{B + Z_{11} k_{11} + m_{11} C_{11}}{R_{11} + Z_{11}} \\ i_{12} = \frac{B + Z_{12} k_{12} + m_{12} C_{12}}{R_{12} + Z_{12}} \end{cases}$$

The potential applied to the grids of the second stage is:

$$V_{c2} = i_{12} R_{12} - i_{11} R_{11}$$

= $R_{12} \frac{B + Z_{12} k_{12} + Z_{12} C_{13}}{R_{12} + Z_{12}} - R_{11} \frac{B + Z_{11} k_{11} + Z_{11} C_{11}}{R_{11} + Z_{11}}$

For Vez to be independent of B, we must have

$$\frac{R_{12}}{R_{12} + Z_{12}} - \frac{R_{11}}{R_{11} + Z_{11}} = 0$$
 (24)

that is

$$\frac{R_{11}}{R_{12}} = \frac{Z_{11}}{Z_{12}}$$
(25)

which is the same condition as was found for the single-stage amplifier.

Letting
$$R_{11} = R_{12} = R_1$$

 $Z_{11} = Z_{12} = Z_1$
 $k_{11} = k_{12}$
 $w_{11} = w_{12} = w_1$
and $S_1 = \frac{V_{c2}}{C_{12} - C_{11}}$
(26)

we have

$$S_1 = \frac{R_1}{R_1 + Z_1}$$
 (27)

This shows that the maximum possible amplification of the first stage is \mathcal{M} and is realized only when $R_1 \gg Z_1$.

Let N =
$$\frac{R_1}{Z_1}$$
 as before
and define P = 100 $\frac{S_R = R}{S_R = 0}$
P = $\frac{N}{N + 1}$ 100

we have

$$S_1 = \frac{R_1}{R_1 + Z_1} \mathcal{M}_1$$
 (27)

This shows that when $R_1 \gg Z_1$ we have the maximum possible amplification, which then gives

$$S = M$$

$$R = \infty$$
Let $N_1 = \frac{R_1}{Z_1}$ as before

we have

$$S_{1} = \frac{N}{N+1}$$
(28)
$$= P M$$
$$P = \frac{N}{N+1}$$
(29)

This is shown by attached curve.

W. B. Nottingham

HU

Mulder and Razek¹ have shown that the effective mutual conductance of a three element "vacuum" tube can be greatly increased by operating the tube in a grid circuit containing a high resistance. Their treatment of the problem does not show clearly the conditions which must be met in order to obtain this high sensitivity without a discontinuous and non-reversible part in the characteristic.

With the plate voltage and the filament current in a three element tube constant, the plate current and the grid current are related to the grid voltage as shown by Figs. 1 and 2. The first of these is of course perfectly familiar and needs no explanation. The second is a composite of three currents. For very small values of grid voltage the current is predominating by electron current from the filament. This of course falls off rapidly as the grid is made more and more negative with respect to the filament.

There is the leakage current over the base of the tube and the other external parts. This current is usually negligible if the surfaces are clean and the tube is kept in a dry atmosphere. This leakage current increases as the grid voltage is made more negative. The third and important component depends on the presence of gas in the tube. It is this component which plays the all important part in the type of amplifier under discussion. The positive ion current to the grid <u>decreases</u> as the grid is made more and more negative because the number of positive ions decreases as the electron current from the filament to the plate is decreased. As the subsequent discussion will show, it is the point of inflection (A) in the grid current characteristic that is of primary interest. This characteristic in the immediate neighborhood of the point of inflection can be represented very accurately by the equation

	16	-	-i _o - mE	(1)
where	10	-	constant	
	m	-	a constant (the slope at (A))	
	16	-	the grid current	
and	E		" " voltage	

1.

The corresponding part of the plate current characteristic can also be represented by a straight line

$$I = I_0 + gE$$
 (2)

where

8

g = " (mutual conductance or slope at A' of Fig. 1)

I = plate current

Referring to the circuit sketched in Fig. 3, we have a third relationship given by

$$V = Ri_{R} \neq E$$
(3)

These three equations can be solved to give

$$I = I_0 - \frac{gRi_0}{1-mR} + \frac{g}{1-mR} V$$
(4)

which expresses the relation between the plate current and the "C" battery voltage V. We see at once from the equation

$$\frac{\Delta I}{\Delta V} = \frac{g}{1-mR}$$
(5)

that the effective mutual conductance

$$g^{l} = \frac{g}{l-mR}$$
(6)

can be made very large if we make

$$R = \frac{1}{m}$$
(7)

It is at once obvious that in order to make use of this high effective mutual conductance severe requirements must be met as regards filament, plate and grid batteries and also the tube must be so constructed that the amount and kind of gas does not change with time. It is thought that this requirement can be met if the tube is so designed that the metal and glass parts can be thoroughly baked out under good vacuum conditions and purified argon or some other inert gas is introduced to produce the required gas pressure. The "balanced bridge" circuit could probably be used to make battery maintenance a little easier.

Applications:

The most important application to which a tube of this character can be applied is to the amplification of thermocouple potentials since this type of amplifier is in a sense really "voltage sensitive", that is, its sensitivity does not necessarily depend on producing the voltage as an "IR" drop as in the usual photoelectric cell application which has become so popular.

From the preceding discussion, it is not at once obvious that there would be any advantage in this type of tube for photoelectric or other high resistance problems. The following analysis shows that here too an advantage can be realized under certain conditions.

Referring to Fig. 4, we can write the following equations:

$$V = E + R (i_g - i_x)$$
 (From Fig. 4) . (8)

 $I = I_0 + gE$ (From Fig. 1) (9)

$$i_{\mu} = -i_{0} - mE$$
 (From Fig. 2) (10)

These equations are essentially the same as (1), (2) and (3) above. In this case, V is to be constant and the relation between i_X (the photoelectric current) and I (the plate current) is of interest. Solving these equations, we have

$$I = I_{o} * \frac{g (V * Ri_{o})}{1-mR} * \frac{g}{1-mR} Ri$$
(11)

This can be more simply written

$$I = K + g^{*} Ri$$
 (12)

where K = constant

and
$$g^{1} = \frac{g}{1-mR}$$
 (13)

Again the sensitivity is represented by

$$\frac{\Delta \mathbf{I}}{\Delta \mathbf{i}_{\mathbf{X}}} = \frac{gR}{1-mR}$$
(14)

and this is very large when

From the equations, we see that for values of R less than $\frac{1}{m}$

the circuit has no discontinuity and is stable for all values of V or i_x as the case may be. On the other hand, if R 1 there will be a

discontinuous region which can be marked out on the grid current characteristic by locating the two points of tangency of the line of slope $\underline{1}$ with the grid current curve. The region between these points \overline{R}

of tangency is that in which a discontinuity is certainly to be found.

to the sector we concerned the transform YE

8) C.s. There any systematic took work on the study of photoelute celes that would be of interest? Some of this work can be worked in along with the tuting of the prosent amplific.

R. za Fe inra 6 R.

Fig 8

September 26, 1929

To: Mr. E. D. Doyle

Yom Behr & CC. Mr. Notingham Ww. N. pt. From: F. H. Wyeth

From: F. H. Wyeth

Mr. C. J. McCarthy of Electrical Research Products mentioned to me on his recent visit that an article appeared in the QST for June, 1929 entitled "Photo-electric Cells and Methods of Coupling to Vacuum Tubes" by Thornton P. Dewhirst, and that the information contained might be of some interest to us in our application of the photoelectric cell as a radiation pyrometer.

F. H. W.

F. Hu

The style of the article is a typical QST wording but the subject matter in regard to the use of a tube may be of some slight interest to you.

F

Sensitivity (see card.) Stability :. 1) Julies (201-A on 101-F satisfactory) 246-A and 248-A conductut)) a. Plata Arant batting adjustment van he mode so that 1% chang will not produce a stip. b) Eilament unnert must be constant to better than 0.1 To for no step. b.1) compusation can lu introduced to make this toleman quater, mithed under test. c) Stide win comment requirements are the same as in any recorder. 3) Resistances :-Nothing has been done to study the effect of tempuation and humidity m the visistances in the grid in an inter a print. I study should be undertaken to select the best type of usustance for the range . 5 to 100 mego and these should

questions: ... ") What for of fower supply is prefered? 3) When slould a model be attempted ? 3) Who can study the residance question and when ? *) Would it be advisable to select one or two applications which are I quatrat interest and carry through the development completely so as to give an actual test on the over all system : s) what are the application in which volatage sensitivity" as such is wanted and what is lacking in the present methods of recording in these fields? 6) Should the attention be divided and some work started to show the possibilities and limitations along these lines, and ?) to there my work with A.C. the Amplifin which should be undertake and for what puppe?

