®
A Base For The Definition Of

« Computer Languages
e (Richard K. Bennett)

'

SIGNATRON, Inc.

research and consulting areoa code B17 « TEL. BE2-3365

MILLER BUILDING « 584 MARRETT ROAD « LEXINGTON, MABESBACHUBETTS 02173

A BASE FOR THE
DEFINITION OF
COMPUTER LANGUAGES

by

Richard K, Bennett

October,: 1967

This research was supported in part under Contract F44620-68-C-0007
: ce of Scientific Rescarch ffice of Aerospace

J

TABLE OF CONTENTS

BSTRACT

INTRODUCTION

=
|
[y

BACKGROUND

2.1 Definitions
2.2 Evolution of Software and Languages

NN DN N NN
|
Do WK NP

2.2.1 Machine Languages and Assemblers
2.2.2 User Languages and Compilers

|

Current State of Software and Languages
Background of the Present Research
The Need

I

TECHNICAL APPROACH
3.1 The Language Base

W w
I
=

|
w

Characters and Symbols
Reading vs. Writing Rules
Symbol Delimitation
Symbol Meaning

Quote Forms

Syntactic Statement Forms
Argument Interpretation
Recursion

L]
. .
oo wNE
|

|
OO0 bD W

.
.

1

L]
R B B e
L]

3
2
3
3
3.
3
3
3

W WWwwwwwww
|

BB H

1
'...J

Definitional Capabilities

New Data Types
Structure/Element Reference
Constants
Complexity Level
New Converstion Routines
for Existing Operators

I

.
.

1

i
el el el

St b b W

.
.

.
.

1

.
®

L]
.

New Operators
Controlled Diagnostics

I
I o
~J

WWwwwwwww
I

WWwwwwwww
L .
NN NNDNDNDN
" » .
O~NdoubwnE

W
1

The Software Base

3.3.1 Structure of Software Base
3.3.2 Coding the Translator

3.3.3 Hand-Translating the Translato:

W W W
I
NN
H WO

- -

a
|
\

APPENDIX I

ex
|

=

APPENDIX II

BIBLIOGRAPHY

ABSTRACT

This presentation investigates and describes certain pro-

mising ideas for the design of computer languages ang translatd}s.
By isolating ang utilizing the fundamental elements of computer
languages ang the fundamental mechanisms of assemblers ang compilers,
this approach Provides 'a very flexible and powerful base for de-

fining languages ang their translators.

Throughout the approach, the user's needs are emphasized in

& studied and analytical manner. The approach seeks to give the

Special-purpose languages.

The purpose of this approach is to achieve simplification,
unification, and standardization of exXisting languages so they
may all be built on one universal base andg may all be handled by

general translator. At the same time, this universal base ang
translator will engourage the orderly ang rapid development of
These new
Programming effort required in
these areas, coulg help solve the Programming bottleneck,
could further the development of some of the really challenging
applications of the digital computer,

SECTION 1
INTRODUCTION

A basic approach to the design of computer languages and
their translators is presented. This approach will give pro-
grammers, at all levels, greater power than present systems and
should unify the structure of languages to a point where one

general translator would handle all language reguirements.

This method is based on the identification of certain funda-
mental elements common to all programming languages and trans-
lators (i.e., assemblers and compilers). This approach was
developed, over the past several years, as the outcome of dealing
with the practical production of large, varied, and complex pro-
grams and was further refined by specific research into this

ared.

An attempt at achieving flexibility, power, and extendability
has been and continues to be the motivating factor of our work on
programming languages and translators. For example, DECAL (for the
PDP-1 compiler) — the earliest implementation of this point of
view . — provided the user with the ability to define
new operators, This feature was not tacked ony; it was
the method used in building the Original operators of the
compiler/assembler.

m

‘The essence of the study in question is to provide the

user with a universal base for computer languages, so that any

number ofiéxtendable'languages may later be created, 1In the

following text, this base is referred to as BUILD (Base for

Uniform Language Definitions).

BUILD is not itself a language, but rather a set of ground
rules and primitives upon which a class of languages can be
defined, The definitional brocess 1s much the same to the user

as the process of defining a set of subroutines,

BUILD is backed up by a general 'software base' which

encompasses all of the program mechanisms which are currently

in use, These mechanisms include the manipulation of

strings, structured lists, partial words, logical information,

tables, arithmetic expressions, etc. By using suitable de-
finitions, these mechanisms are combined to create the capability

to translate any language built on the language base.

By attacking the man-to-machine communication problem at the
fundamental level, the definitional capabilities are provided in
a simple and natural way. Statement syntax has been simplified
to a point where the definer in general does not have to think
about it. He specifies only the names of his new operators or
functions, what they are to do, and the parameters they require.
In defining the new operators, he may call on any previously de-

fined operators and facilities, whether defined by him or others.

T is believed that this basic approach to language and
translator design is the best way to attack the general program-
ming problem, that it promises greater power and utility for
computer users of all types and levels than provided by current
approaches, and that it can lead the way to the solution of
“today's software confusion, When this approach is put into
general use and programmers gain experience with its capabil-
ities, they will build up a library of language facilities that
will enable them to write large-scale programs in a fraction of
the time it now takes, The programming bottleneck would be broken
and the door opened to more rapid progress on sophisticated com-
puter applications, The BUILD approach lays a sound basis for

an orderly advancement towards achieving more powerful facilities,

SECTION 2
BACKGROUND

2.1 Definitions

It may be helpful at the outset to define several terms

which are used in a special way in this presentation,

Language: Any programming or user language which is
used to communicate from man to machine.

Langquage A set of rules for defining a class of
Base: languages.

& communicacion in a “lapguage,! interpre-
£Ifnig the meaning of the communication, and (/
carrying out the actions requested. The
usual task of a translator is to produce a
binary wversion of a computer program which
will perform the functions indicated in the
input. " An embler, a compiler, and

interpreter are speclal cases of a transla-

tor.

Translator: A computer program which accepts as _digpput

Character: The basic element of input.
A sequence of characters.

An entity represented by a (short) string

of similar characters, for example: ARBC2,
DY F*

Mechanisms: The data-manipulative device created by &
particular programming technique, for example:
a symbol-table search.

H
()]

Expression: A sequence of symbols representing operat
and operands, together with parentheses
indicate intended groupings. he
are generally binary, with the operator
ing between the two operands, according
so-called "in-fix" notation. Operator-o
association is controlled by rules of
dence" and parentheses. 2An expression
essentially the FORTRAN or ALGOL arithmetic
expression, generalized to include non-arithmetic
operators and non-numerical operands.

g w
()
ol)

(Dfll ot

=
e 3
@
0
g
(I
[}
f
ct
3 ¢t U Q ¢t
(oM =1

an

Evolution of Software and Languages

In order to place the current investigation in its proper
perspective it may be useful to review the background and evolution

of programming languages and their translators.

2.2.1 Machine Langquages and Assemblers

In the early days of the digital computer, pro-
grammers coded their programs in numerical form. In the process

of writing their programs, however, they found it helpful to use

mnemonic symbolicT for the machine instructions and data
a . rogram was finished, the data addresses were

assigned values by counting memory words, and the program was

hand translated to numerical words acceptable to the machine.

It was soon recognized that this translation was a job for
the computer itself, and assemblers were born. The first assembler

writer was undoubtedly a programmer who wearied of the of hand-
translating his programs. Little attention needed to

language considerations. The assembler simply read a

symbolic machine operation codes, each followed by a symbolic or

numeric address.

It was soon found that information other than instructions
was required to control the assembly process and to introduce data
at assembly time. This was accomplished by including in the
'language' symbolic 'pseudo-operations,' which were written just
like machine operations, but which did not produce binary output,
but rather caused some assembly-time function (such as resetting
the simulated location counter). The 'syntax' of the pseudo-
operation statements was generally made the same as for ordinary

(machine) operations.

Not much attention was given to the details of language
design. As assemblers were written for different computer
seemed to be little reason to be concerned with the form of the
language. The rules of input followed what the assembler writer
thought would be easiest to implement and/or easiest to use.

Each writer had a different view, and consequently a variety of

different and often conflicting rules resulted.

2=2

For example, some assemblers used a variable-field card
mat, with the fields separated by a blank or comma. Others used
a fixed-field format. Still others determined the parts of the
instruction word implicitly — for examplef caa?2 meant '"clear and
add" (ca) the word at location "a2" (no separation between '"ca"
and "a2" was required). The use of the space or blank varied
widely. In some assemblers it was ignored; in others, it was
not permitted. In between these extremes, the blank could serve

as a symbol delimiter, but be otherwise ignored.

2.2.2 User Languages and Compilers

Somewhere in the mid-fifties, the interpretation and
translation of algebraic equations was tried and proved feasible.

Underlying the experiment was the concept that computer users

should be able to write their programs in a language similar to

their usual notations, rather than in the strange language of the

computer,

FORTRAN was the first such language for engineers and mathe-
maticians, which was made generally available. One of the
obvious decisions of the committee designing it was to avoid the
mistake of some of the earlier assembler designers in subordina-
ting the user's interest to the effort of implementation. Thus
the design of the FORTRAN language was undertaken primarily to
help the user with little regard to how this language would be

later translated.

FORTRAN, however, has proved beneficial in several important
ways. First, it has reduced costs of mathematical programming
by at least a factor of two and, in some cases, even ten.
Second, it has resulted in a much wider use of the computer b
the scientific community. Third, it has established the impor-

tance of user-oriented languages.

Unfortunately, the FORTRAN language has some serious design
flaws which limit its usefulness and, more important, its ex-
tendability. Some of these flaws are widely recognized and have
been eliminated in subsequent languages (but not in later ver-
sions of FORTRAN). Others are not generally recognized and have

been perpetuated.

FORTRAN compilers (that is, software programs to translate
user-programs written in the FORTRAN language) have been written
using a variety of techniques. The first FORTRAN compiler was
written by IBM for their 704 at a cost of about 25 man-years
effort and 200 hours of computer time. It consisted of about

25,000 instructions.

FORTRAN compiler writers have found some of the syntactic

complexities of the language difficult and awkward to cope with.

Nevertheless, compiler-writing has progressed to the point where

FORTRAN compilers can now be turned out typically with less than

one man-year of effort.

Despite the general success and acceptance achieved by
FORTRAN, many users have found that it was not suitable for their
problems. Due to the lack of extendability in the FORTRAN lan-
guage, these users were forced to develop their own languages

and compilers or to use those developed by others.

Over the years many languages were designed and translators
(compilers) built for them on one or more computers. Each of
these languages has certain features and characteristics which
distinguish them from one another, but most of them overlap in
capability. 1In general, in spite of occasional similarities,
these languages are incompatible with each other and encompass
a variety of conflicting rules. Furthermore, the design of most
of the languages has resulted in complex and awkward syntactic

structures.

Consider an example illustrating the difficulties encountered

when the statement structure is syntactically complex.

DO 15 = 1,15

This FORTRAN statement is a well-formed statement. However,

the following well-formed?

DO 15

(The difference is that the comma has been replaced by a period.)
Surprisingly enough, this second statement is also well-formed.

By removing the blanks,which - FORTRAN totally ignores, it is seen
that the second statement. is the arithmetic assignment statement

DOLST = i .18

The syntactic complexities here require the translator — or the

user for that matter — to read as far as the comma or period

before it can be decided whether the statement is a DO or an a sign-
ment statement. Thus, with this structure, even a small change can
cause confusing interpretation, and can also make language exten-

sion extremely difficult.

2.3 Current State of Software and Languages

The many dozens of assembly and compiler languages
developed during the last few years constitute today a "tower of
Babel" problem, which appears to be getting worse rather than
better. Each user must pick among the available languages on
the particular machine he is using. In almost every case he must
select a language which is fixed. If he does not select FORTRAN,
he may not find the language available on other machines, should

he wish to transport his program.

In general, the user must stick with one language for his
rogram. Occasionally, the user is permitted to combine both
sembly-language and FORTRAN or COBOL subroutines at load time.

s
But the user cannot combine the capabilities of the several lan-

guages which may be available on his computer; their compilers

are distinctly separate programs.

We can illustrate what this means to a Programmer or computer
Let us take, for example, string substitution. The user
uld be able to say in effect: Wherever you see “xyz", sub-
stitute in its place "rx5,(". An experienced programmer will

recognize that such an ability is of proven value in special

areas, In fact, several string manipulation languages (e,g_,
SNOBOL, TRAC) and their compilers have been designed and built,
However, this ability should be generally available to all
brogrammers and users, not as a separate language, not as an

imbedded language, but as a basic capability, whlch they can

use together with all the other facilities they now have or

would like,

2,4 Background of the Present Research

The BUILD approach is an outgrowth of earlier work in
assemblers and compilers. This work was directed to providing
more powerful programming tools and to improving the design of
compilers.

Skeleton Compiler Approach

The early approach to compiler design involved the construc-—
tion of a skeleton which pOssesses the ability to read input,
handle symbols, and recognize basic operators, These operators
permit the definition of machine instructions and of other Oper-—

ators, Thus, one can construct & compiler from its own input,

The resulting compiler can be extended at any time by con-
tinuing the definitional process, Also, one compiler can be
replaced with another by substituting a second set of operator
definitions,

Although the approach has since evolved to a peint where the
skeleton concept is no longer considered important, the use of

definitional operators has been continued and extended,

Action Operators

The basic method of defining and extending the

the use of Action Operators,

which, when encountered by the co

place immediately, The action occurs at compile time and is thus
& compiler action,* Since the action occurs as a result of a
svmoo1 in the input program, AO's provide a very general method

The pseudo-operations (assembler-commands) in an assembler are
essentially built in Action Operators.

a

of compiler construction. 20's are defined very simply. The
compiler is given the command to define an AO by -calling the 20
definer (itself an AO) and giving it the name of the new 20,
together with the coding of an associated routine. This routine
will later be executed upon every encounter of the name of the

new AO.
DECAL

The practical application of this skeleton approach occurred

in 1960 with the construction(ﬁfDECAﬂl)forthe Digital Eguipment

Corporation's PDP-1 by the author, DECAL is a oOne-
pass combined assembler and algebraic compiler which retains the

open-ended capability of the skeleton.

The skeleton approach made it possible to write a powerful
compiler with a very modest effort. Only the "skeleton" of 1197
instructions was coded by hand. From this skeleton, DECAL was

written in its own language using Action Operators.

Use of BE-FAP Macros

\ployed in BE-FAD 2/

The method em
is Eiaracter string substitution, The great power of
this ma CIIITY was used tO extend the capabildi

of BE-FAP, when writing a large-scale simulator. e conditional

assembly and symbol concatenation features of BE-FAP permitted

to realize its macro facility

the realization of major new facilities within the FAP language.
By this means he was able to construct compile-time threaded

lists and provide for partial-word manipulation.

The simulator émployed these new facilities to great advan-
tage. The program was far more flexible and error-free than
would have been possible without these facilities. Furthermore,
the facilities were so constructed as to produce code as efficient

as hand coding.

However, it was found that, as powerful as the string sub-
stitution mechanism may be to construct new facilities, some
facilities cannot be practically realized by this method, and
others can be realized only with great effort and at great cost
in compile time. For instance, in realizing the threaded. lists,
macros were nested as deep as fifty levels, and the compilation
of the simulator required over one-half hour of IBM 7090 computer

time.

In most cases, Action Operators would have realized these
nctions much more efficiently and with less programming
or
SET
(3)

SET was an extension of the experience with DECAL and
applied to the IBM 7094, To the basic capabilities of DE
added the string substitution facility of BE-EARmdip-—e—eemsielic

generalized form. In addition, major improvements were made

the processing of symbols by "type," and a very general and power-
Y gener E

,‘!-"'-‘_—-_-7 F . - . { -
ful approach to the handling of arguments was introduced. Also,

=

several general facilities were added to provide for the use of
threaded lists, tables, fields (partial words), and dispatches.
These facilities were integrated with the basic translator mecha-

nism.
2.5 The Need

The need today is for a complete reappraisal of the language
and software situation. O0ld methods must be critically reviewed
to determine their good and bad parts, and new methods must
developed. In viewing the old, it is clear that user
have done much to help the user. However, it is also
they have at the same time introduced a .great deal of
The existing languages and compilers certainly have over
capability, and much can and should be done to simplify and

them.

There are two general approaches in vogue today which pur-

port to be improving the situation. One of these is to build

translato to translate all of the many existing languages.

The second one is to design a universal language (e.g., PL/I)(4)

which will satisfy the needs of all users, hopefully for all

time.

Unfortunately, neither of these approaches is in
fact solving the problem, The first approach perpetuates
the problem by retaining the existing set of languages
with their attendant flaws, complexities, and incompatibil-
ities; At Dbest this approach tries to accommodate the
problem — 4t dees . nok eclarify” the picture nor really
help the user, It does, however, recognize the need for more

than one language,

" The second approach does not recognize this need.

to realize that the great variety of existing and future
cations requires: a corresponding variety of languages.

guage, no matter how good, cannot hope to accommodate all needs.

The need today is to develop a new approach which could
simplify, unify, and standardize existing languages, so tha
could all be handled by one general translator, and at the
time provide for an even wider variety of languages than exists

today.

SECTION 3
TECHNICAL APPRCACH

A careful analysis of the devices and mechanisms which
give existing languages, assemblers, and compilers their power
has resulted in an understanding of the fundamentals of these
processes. The BUILD appreocach draws upon this understanding to
establish a language base and a software base, on which any

number and variety of languages and translators may be built.

The languages constructed upon this base possess a suffi-
cient richness and variety that they can encompass all of today's
programming requirements, while at the same time providing the
framework for accommodating as yet undefined needs. Since all
the languages would be built on the same base — the same set of
rules — the languages would be consistent and compatible. And
since the base would be general, a host of new languages could
be readily defined to cover many areas not properly serviced

today by existing languages.

The BUILD Approach vs a Universal Language

The BUILD approach differs radically from that of developing
2 universal language. The universal language provides just one
language, which has a fixed set of capabilities. In constrast,

the BUILD approach establishes only the rules for the languages

(and even these can be changed). Thus the BUILD approach allows,

and actually encourages, the creation of an unlimited number of

user languages.

The best way to see the difference between these two appr
is to compare language facilities to subroutines. The BUILD
which establishes a base for language definition, is like an
able library for subroutines. The library is a framework in which
subroutines can be stored and made available. The library may be
originally equipped with one or more sets of subroutines, but the

user can also add his own.

In contrast, the universal language approach is like a
fixed library of subroutines. Although the set of subroutines
may be made as complete as its designers know how, the library

is fixed and the user cannot add to it.

Language Definition

Now, this comparison goes further than merely illustrating

the openness of the BUILD approach. A language built on this

base i1s actually defined by the set of subroutines (or algorithms)

which perform (or specify) the functions of that language, for the
purpose of translation. Another set of subroutines in the library

would translate another language. The user can introduce his own

set to give him his own language or can add to a given set to

extend one of the existing languages.

The library would be originally equipped for translating
several standard languages, some of which would look much like
the languages in current use. Later in this section we give an
example of how FORTRAN could be re-cast to permit its simple

translation.

Relation of Lancuages and Translators

This view, that a language is defined as the set of algorithms
which translate it, reveals the fundamental relation between lang-
uages and their translators. A language is defined as a
algorithms, and its translator consists of those subrouti
implement these algorithms. 1In this way, the elements of
base are related to the mechanisms of the translator an
two sides of the same coin. This fact can be visuali
ing the names of the mechanisms as the verbs in a

e

conversely, the verbs in a language as the names of the mechanisms

which translate the language.
In the sections that follow, languages and translators will
be discussed separately, although they are merely different views

of the same process.

The Base for Lanquage Definition

The BUILD approach to the design of a particular computer
language is to view this design as a small part of the much
larger problem — the design of all computer languages. This
approach starts with a set of general rules and definitional
capabilities, which serve as a base for such languages. (Current

ractice, in contrast, is to design each language separately,

with separate — and often conflicting — rules and conventions.)

Briefly, the base consists of the following components

and rules:

A character set.

Symbols as groups of characters.
Symbol-delimiting rules.
Assignment of symbol meaning.
Quote forms.

Syntactic statement forms.
Argument interpreting rules.
Recursion.

Definitional capabilities.

These rules are described in detail in the following sub-

sections.

3.1.1 Characters and Symbols

The purpose of a (computer) language is to provide
the user with a precise means of unambiguously stating his
commands and introducing his data to the computer complex. The
English language is not good for this purpose, since it is not
precise and since it cannot be translated by computer, However,

languages which are useful
Th

ones are the use of the alphabetic characters

e 'words.' A 'word,' it should be noted, consists
xr

articular group of characters, 'which is assigned a mea

In BUILD, the first task is to establish the character set.
The user would have the ability to introduce new characters. This
will permit using the language base in any computer environment.
The user could group and employ the characters as he wishes,

although preferred groupings are recommended.

The second task is to establish the rules for forming the
'words,' We should state here that instead of the term 'word, !
we use the term 'symbol, ' in keeping with the terminology of
assembly languages, Therefore we will speak of the rules of
symbol formation,

3.1.2 Reading vs,. Writing Rules

At this point, it would be well to pursue a
which may well lie at the root of the philosophical differ
between our approach of building languages on a language base
and the current practice of designing languages from a supposedly

user's point of view,

We were just talking about symbol formation —
one forms a symbol as he writes his program, Later,

turn this around and talk about symbol delimitation,

how the translator delimits symbols, as it reads the input
character String, The question is what is the relationship
between reading rules and writing rules, and which should be

treated as basic,

This same question comes up later when we discuss statement
syntax, Should we develop the rules from the point of wview of
reading or of writing — and what is the difference.

It is believed that the reading rules whould be treated as
basic, since in the last analysis the user must write in such a
way that the resulting text has the desired meaning when it is

read and interpreted according to the reading rules.

If we treat the reading rules as bisic, we will design the

rules on this basis and end up with simple reading rules. For

example, we might say that symbols are delimited by blanks and

o

by characters in classes different from that of the characters
3-4

in the symbol. As another example, we might say that if a
symbol is of the type, Subroutine, it will be checked to see if

®
it expects an argument list, and if so, the next Quote will be

interpreted as an argument list,
Giving the reading rules makes it easy for the user to
etermine exactly what his text means. Similarly, the trans
ules — being identical ‘to the reading rules — will be
nd the translator will be fast, Since the language rules
the translator rules are now identical, the link between a lanquage

and its translator becomes easier to see and understand,

In contrast, if we treat the writing rules as basic — in
the name of being user-oriented — we find the picture inverted.
When reading, we must look at all writing rules to see which ones
apply. In some existing languages, we may have to follow

writing rules for some distance until all but one

what was written, The FORTRAN example in Section 2
s

example of this, Here the writing rules are almost

— that is, it is almost possible to be ab
Cerent statements with different meanings
We do not know what was meant, in the statement in the examp

until we hit the comma (,) or period (.).

Starting with a set of writing rules, then, makes
cult and confusing to interpret the text, It is even
to design a language which has inconsistent writing
best, translation is time wasting, and the design of
becomes a matter of controversy. Different people buil
lators in different ways, with different properties, for
same language, Also, a new set of translators must be built

each new language,

However, by working with the rules for
implicity of expression and interpretation
and the translator's point of view, The resulting simplici
permits the unification of many existing forms of expression,
including the integration of the assembly and compiling func-

tions, the call of open subroutines (macros) and closed

*The term Quote is defined later,

3-5

g *
subroutines, and the call of run-time and translate-time

functions,

3.1.3 Symbol Delimitation

The most important task in establishing a solid base
for language design is to delineate a simple, symmetrical, and
general approach to symbol delimitation. By symbol delimitation
we mean the breaking up of a character string into a sequence of

symbols.

In considering the rules for symbol delimitation, we have

emphasized the following factors:

1. Human, The rules should result in text that
looks natural to the eye, The symbols (words)
that the computer uses should be the same ones
that the eye sees,

Simplicity, The rules should be simple and
consistent,

Symmetry, The rules should apply generally to
all characters,

Precision, The rules should be precise, with
no possible chance of ambiguity.

Flexibility, The rules should permit change
within wide limits,

These factors have led to a simple set of rules (given in the
Appendix) which permit the delimitation of a symbol in the input
string by reading ahead no farther than one character beyond the
end of the symbol, Thus, the precision requirement of Point 4
is achieved, for if we had to read ahead any distance (as in
the FORTRAN example of Section 2) in order to delimit a symbol,

we open the door to ambiguity.

It should be pointed out that these rules provide essen-

tially what most programmers would consider to be the normal
intex pret tion of their text, We have simply codified and
ed the rules which are followed by most assemblers and

(FORTRAN excepted),

ize
S

er

rms ‘'run-time' and 'translate-time' are defined late
1scussing the translator,

3-6

3.1.4 Symbol Meaning

The "meaning" of a symbol is divided into two part

Type and Specification. The Type might be Variable, Operator,

Subroutine, etc. (The Type, Variable, is further broken down
cmp

into the various data types, such as: Integer
Double-Precision, Array, etc,) The Specificatio
information which is specific to the particular

tion, For some types of symbols, it might be a numerical
lence; for others it may include a considerable amount of

descriptive information,

Some of the symbol types may appear as the first, or prin-
cipal, symbol in a statement of the prefix notation form, For
these symbols the Type, together with the Specification of the
particular symbol, specifies the syntax of the remainder of the
statement, For example, a symbol of type Subroutine would
carry in its Specification the information as to the number of
arguments expected and their names, modes, and 'default' wvalues,
(A 'default' value is the value to be used if the user 'defaults’
by not giving a value for an argument, when calling the sub-
routine,) This information would uhen determine the syntax of
the remainder of the statement — in this case, the argument
Liat]

To achieve the desired clarity, we have found it important
to require that the first symbol in a statement be pre-declared.
In this way, there is no question as to the type and syntax of
the statement, either from the user's or the translator's point
of view. Thus each principal symbol carries definite meaning
and establishes the syntax of the remainder of the statement which
it introduces. This is in contrast to the currently popular approach
where it is often necessary to analyze the syntactic structure of a

statement in order to properly interpret it.

®
The prefix notation syntactic form is discussed later.

Pre-declaration has become a controversial subje
many, it is an unnecessary requirement. However, pre-d

a

is necessary for complete generality and precision

in
but special rules can be introduced into special purpose lan

to relax the requirement. In this way the user could have auto-
matic declaration of symbols, say, where it would save him time

and yet would have precision of expression when he needs it.

3.1.5 Quote Forms

There exist several instances where a piece of the
character string must be marked for the purpose of quoting, or
grouping, the contained material. For example, character strings
must be gquotéd for macro skeletons, macro arguments, sub
arguments, and subroutine argument lists. Grouping (bracketing)
is required for expressions in an algebraic statement and for
statements in a compound statement. Current usage generally
employs different forms to accomplish these several purposes.

The Quote Form described here has been developed to accomplish

all these purposes with one unified form.

The user may pick the one which best suits his
A precise definition of a Quote and of th

in Appendix 2.

.1.6 Syntactic Statement Forms

It is not possible, either now or in the foreseeab
future to use unrestricted English as a computer language.

we must restrict ourselves, it would be well to start with si

syntactic forms and gradually progress to more complex forms.

we ascend the scale of complexity we should
gr ity y what the additional complexity buys £
However, by and large, languages have been desi
regard for their syntactic structure, Linguist
trated on the resulting complex syntactic structures,
understandable reason that syntactically-complex computer lan-

uages do in fact already exist.,
- —— .

Let us look at some simple statement forms, The simplest

1Sis
Action Argument Argument ...

The "Action" is the name of an action, function,
it may be a word or symbol which directly implies the
For example, @$RG, BSS, DO, IF, GOTO, &An argument (par
may be a number, symbol, word, expression, string,

Or an argument may be a complete statement, This
bility produces a recursive definition, implying unlim

nesting,

Since the arguments may in general be complex in structure,
let us separate them with commas:

Action Argument, Argument, ...

We can also put a comma between the Action and th

and enclose the whole statement in parentheses, or we cou
c

enclose the parameters in parentheses:

(Action, Argument, Argument, ...)

Action (Argument, Argument, ,..)

The above are several manifestations of the "prefix" nota-

s

form. All of these are employed today some place in the

compilers and assemblers. They all state an action to
performed, together with the parameters which make specific
otherwise general action.

Analysis shows that the simple statement form (14) above

any of its listed variants) can actually accommodate almost

reguirements that exist today. The principal exception is

expression, which requires the so-called "in-fix" notation:

Argument Action Argument (23

T -
-

where the action is an operator and the arguments are the or

ands, which may be complete statements, of the same form. This

definition is recursive, permitting the usual algebraic eguation

form (assignment statement) of FORTRAN, ALGOL, ete. Operator

recedence and parentheses rules control the association of
with operators.

two statement forms (1) and (2) might be mixed. As an
the Function in FORTRAN is a prefix form, used as an

of an in-fix form.

Because complex syntactic structures are in such
use, some people may fear that simple syntactic
inadequate to specify all operations, However,
ment forms (1) and (2), recursively nested,
expression of all types of statements, includ
assembler facilities (pseudo-ops), the
commands, executive commands, user commands,
complex syntactic forms can accomplish the same
is by no means clear that more-complex syntactic forms
benefit the user. As a matter of fact, no case is known wh
the two simple form (1) and (2) would not provide the

with a facility as good as or better than that provided

the use of a more complex syntactic form.
P

To illustrate how the BUILD approach would utilize the
basic forms to simplify existing languages, consider the FORTRAN

c
DO statement. In present FORTRAN, one would write

DO 16 T =

2)
Statement 1.
2
3

L ' 3
Statement

15 Statement

in order to iterate the three statements for successive values
of I, ranging from 2 through 17, in steps of 3, In our approach
we would simplify or standardize the syntax so that the user

would write

Do (2,2, 1708

(Statement 1

2

Statement 2

Statement 3)

to accomplish the same results as above,
prefix form for stating the main action
The 'range'! of the DO statement
ment (in this case, compound). This
'range' is neater and more precise

number (15), as FORTRAN presently requires

ment Interpretation

BUILD provides extensive facilities
Bach argument may have a name
t-interpretation mode.
names are provided so that the user
arguments by name instead of by their position in argument

Eizt, eature makes it unnecessary for the user to remember

the order of the argument list and it is also gquite valuable
in those cases where a user may be giving one or two arguments

out of a list of many. This feature is optional.

Default values are provided so that the user may omit

stating those arguments which have standard values.

Argument interpretation modes are provided to allow various
ypes of arguments. These modes include run-time expressions
as in compiler languages), translate-time expressions (as in
ssembly languages), structured lists (trees), strings, symbols,

nd several others.

When the user defines a new facility, he specifies the mode
i

of each of its arguments. In addition, he gives each rgument
a name and the default value. During definition, the

any information, in which case standard modes, et

Recursion

Complete recursive capability will be assum
BUILD rules. (By recursion is meant the process wherei
of

or where a subroutine may call itself.)

Definitional Capabilities

definitional capabilities are inherent in
It will be possible to create even the
ns with the basic definitional capability.

tion to being neat and self-consistent, allows the

modify or delete existing functions, as well as add new ones.

To employ any of the definitional capabilities, the user
would call the appropriate defining operator. The information

and format will be designed to be simple and natural to th

=1
=

consistent with thb flexi

la— "

that the user need give only inf

value will be provid

to him, The user will be able

if he desires a different case

2.1 New Data Types

The user will be able to introduce
the presently used

there

considering

it becomes apparent that are two fact

grea
in

g these two factors

Data Structures

M
0]
pers
H
o
o

The first factor i
as arrays, Lrlangula, ma
lasts (trues) etc,
structures the user wou‘d
structures, Each data stru
later reference, and rules

structure to location in mem

=0
g - Fh

o4 & B
o)

(9]
[o)]

o
0
O -
Q
s
0}
0O 4 |cr
I"\J
e Sl
d~n o

T

HKCO P
H
M cf

4

)

jo gl =8

0
g)
[l it © 2 o 2 L

fo I o TH Zike il M {1)]

e)
=g 0 cdein
to]

e
i
5
=
£

v
E
]
O

- o ct

H
(0]
[4))
t

¥

Data Types
The second factor is
types will e those
fixed number of words of
REAL, twoj COM:
elght; etc,

the type of
which can be
storage,

L=

might require one word; .
DPCOMPLEX (double-precision),

-

language base would provide th
defining a new data type by,

and stating thc number of
In addition, the user would spe
f the new type (see below).

4
e

(J’)

o

O th
D LR RN ()]
0L K
H-Q
@ D

o
(0]
(M

b3
O

el

atest flexibility will be obtained by consi

(6}

0w
3 o
Ko
(%))

(o)]
s
o 0
o

-~

Fh (@ o o

O ct~
I
3 O -
el © T &
3
Wi
o)
m
=

>
-

=
3 H

t
)—l.

0O v
Sao
He 0

o]

t O
(1]

e
-

ct
=

.

¥

N K
=
-3

5'H O

o o
-

3 <

de l-l.
3
«Q

]
ct
I

<
()]

Q, '_..l -
n O

) H

D
H
@

2 Structure/Element Reference

A syntactic problem reguiring investigation
when the user wishes to be able to refer to both the
a data structure and the data structure as a whole,
instance, the user may wish to add matrices or elements of

matrices, He might like to say

to mean the addition of matrices A and B, and to say

A(I,J) + B(K,L)

to mean the addition of their specified elements,

The method of distinguishing the two cases sl
whether or not subscripts appear) is not synt
therefore introduce unanticipated la
Another approach would be to intro
of the two forms by an operator, Our a

limitation and definition allcws the

at
habetic or composed of special characters,

For example, the matrix as a whole could be
symbol delimiting

Thus, the £irst
be written:

//B + [//B

Constants

After defining a new data type, the user shoul
to state how a constant of this type will be recogniz
how it will be mapped into a storage cell of proper si

Constants should be handled when they appear both in expre

nd in data-storing statements (c.f, the DATA statement in

FORTRAN 1IV). :

3.2.4 Complexity Level

When defining a new variable type, the

s su sted above, indicate its relative level of
ug ’

es
he purpose of

types so that mixed expressions could be handled simply and
telligently, For example, take the three types: INTE GER,
COMPLEX, in that order of complexity. 1In a
less complex type would be converted to the
in the addition of an INTEGER and a REAL,

be converted to REAL and "real" addi

3.2.5 New Conversion Routines

Mixed-mode expressions would be handled in
way. The user would provide for the conversion of data from one
type to another by defining those conversion routines which ?
wishes included in the compiler. he would want
include at least two for each new 4@ The first
convert from the next less-complex type to the new type; tl
secon from the new to the next more-complex type.
the chain of conversions would be complete, going
to any more-complex type. Thus any combination of

be used in mixed-mode expressions,

In addition, the user may wish to give conversi
in the other direction, that is, from more complex
plex (say, REAL to INTEGER), If he does,
statement could be handled with the less-complex type on
side of the equal sign,
If the user does not equip a particular conv
because he forgets to or because he does not c
ful — the translator would give a diagnostic when
& mixed-mode expression which requires that particu

sion,

In addition to equipping conversions between data

may wish to equip (for
efficiency) other paths, For example, he may wish

conversion from INTEGER-to-COMPLEX, The compil

er
then would not have to perform the conversion in the two steps

INTEGER-to-REAL followed by REAL-to-COMPLEX,

3.2,6 New Operations for Existing Operators

The user should be able to define new operations for
exXisting operators, that is, he should be able to equip an
existing operator so that it can handle new types of operands,

The user would give the operator and the name of the oper-—
and types. Then he would state the cperations in terms of any
previous capability he had available, including existing var-

iable types and operators,

After a user defines a new data type he should define the
Operations for that type of operand for all operators of
interest, If he later uses the new data types with operators

not so equipped, the compiler would give a diagnostic,

The meaning of the binary (in-fix) operators is dependent
on the operand types., 1In general, the operator may have a
different meaning — that is, perform a different operation
lifferent combinations of operand types,

S where the operands are of the same
mixed operands would be handled by convertin
the more complex,

-

The more general capabi
operator "+" may be defined f
(INTEGER, INTEGER), (INTEGER,
REAL), if the user wishes

the mixed

3.2.7 New Operators

The user should be able to define a new (in-fix)
tor by giving its symbol (name) and it The

era
eécedence permits writing

(The "*" carries a higher precedence than

After ‘the user has defined this operator, he would define
the operations for the different operand types which he wishes
this operator to handle, as described above under "New Opera-

tions for Existing Operators,"

3.2.,8 Controlled Diagnostics

As indicated above, the compiler should give dia-
gnostics whenever it cannot:match operand types with operation
either directly or by successive conversions, In addition, th
user should be able to specify any combinations which to him

are illegal and therefore should produce diagnostics,

3.3 The Software Base

In the BUILD approach, the base for language d
backed by a general software base.
both the translating and operating function

this discussion, wewill treat the software

of its role as a translator.

that the mechanisms of the
enough to provide most, if

for the other software functions,

The software base, in this approach,

which the basic programming mechanisms are embe
with certain special facilities built upon
In addition, it would have built-in definitiona
abilities which would permit the user to create whatever
ities he desires,
The basic mechanisms are the primitives and include:
String manipulation

Partial-word manipulation

.
]

eaded-List Facility
Table Facility
Dispatch Facility

lacro Facility

Subroutine Facility

Recursive subroutine calls.,

'hese mechanisms form a basis, at a level above the machine in-
tr

uctions, for all programming, onsequently, they would

&
rovide for a translator of great power, including the power of
Xisting assemblers and compilers,

The special facilities include those for the definiticn
manipulation of symbols and the 1d 14 L arguments, run-time
exXpressions, and translate-time i . Symbols can b
troduced to a central symbol t : A symbol can be defin
iving it a meaning, which incl s a Type and a Specification

The symbol can later be retrieved, together with its meani

facility which handles arguments is called
T

th
t includes the machinery to set up argumen

defining a new function, and to use these
the process of interpreting

new function is called,

The definitional capabi
new machine instructions, n
commands), of new statements,

data types, new operators, and

Tines new functions, statements,
defining a new language., The language would
in much the same manner as a user would define

ssembler or subroutines to a compiler,

defined once and
for all, to be made aila ' the Ser automatically, EHe
could view these as fixe as extendable, according to
whether or not the definitional capability was removed before

making the translator available to him,

Structure of Software

The basic structure of
w diagram of Fig,
the next symbol,
symbol of the statement 'l rules of symb
described in Appen il oyed here, In
substitution mechanism is built in this box to provide
ery general macro-like facility,
The symbol is found in the symbol table and

its Type is executed. Each symbol Type has its own

ng routine, Four examples are shown in Fig,] Tf

is an Action Operator (20),
the subroutine corresponding
If the symbol is a Subroutine
and a calling seguence
the symbol is of Type, Word
The WD type includes machine

words, etc,

form,

ithmetic

and very powerful,

design principles of the language base.

™

Find in Symbol Table

Dispatch on Symbol Type

%

)

Read

Arguments

Generate

Subroutine
Calling

Seguence

ified Flow Diagram

hese primitive
on tests on

object comput

extent that this approac es f ble, it will

necessary to recode the

ent computer,

machine-langua
orking, this version will

-

the good version of

SYMBOL DELIMIT

the purpose of

o
have no effect on

le exception that
a

S a number.
The specific rules used

A Self-Delimitin hara is one which always
forms a one-charac I It never combines
with any other cl 2 1 to

form a multi-chara

Except for Self-Delimiting

of the same class concaten

Blanks (spaces) ar
that they delimit symbo
classes, but are themselves

printing format.

As an example of the use of
made in SET is giwven.
imitation very close to

ers of the

4
L a

2

P

the symbols

according to these rules.

APPENDIX 2

RULES OF QUOTES

Quote (or Quotation) is a particular piece of
er

ct string, which has been quoted for the
We have developed three methods
equate for all uses: the normal,
1l methods, the guote marks used to

not themselves part of the Quote.

s no ambiguity is introduced, a Quote
including (of course) the guotation

This capability is recursive to any deptl

The normal method of quotation is to use matched
te marks. This method is precise with regard to lec

ling blanks and is completely general,

The simple method of quotation is to use only
The Quote, then, starts 'here' and continues
the terminating comma. The purpose of
w arguments to be guotes, without requiring
n enclosed in parentheses. Matched parenthe
mitted within a Quote of this form, so that an algeb

would be a.Quote, but would need not to be encl

consider a few examples of these two quote forms.

"A + B" by either

3 cT

We would normally use the la orm only in an arc

such as

In this example, we

X*Z, A+B,

The three inner Quotes are, of course

The next example shows the use of p

“

to group two statements into a

In FORTRAN, statement
would be accomplished
BEGIN and END:

method of quotation

any symbol declared to

then used to the left

IS

create a set of matched parens.
1

(" we would write

()L1

his meth
be arbitrari
to its generality, the labeled
an unlimited number of levels of
Oor diagnostic purposes. In comparis

N END

ly two levels: the first is the BEGI

the second includes both [] and (

Ll

purposes.

-

