Correspondencia Interdepartamental

> Fecha: October 1, 1952.

A: A. H. Engelhardt
De: T. R. Wright
Copper Dross Treatment - Economics
Materia:

- Recirculation vs. Separate Smelting -

Please refer to RoP。Koenigis cablegram of September 11 on the above subject. The basic information on dross-furnace operation versus the recfrculation of copper dross through the blast furnaces was furnished by H.W. Hfggs - see his memo of September $20_{2}$ at tached hereto。

The accumulated stock of copper dross is now being treated in the blast, furnaces along with the current dross, and it is expected that the copper-dross stock will be consumed by the end of the year.

This economic analysis disregards the proposed construction of new blast furnaces. Reason: By treating copper dross in a separate smelting unit, new blast furnaces would not be essential to smelt the known lead ores \& concentrates that will be avallable during the next ten yearso

Also disregarded herefn are the capital expenditures for the necessamy exvansion of mining, mililng, sintering, refining, and coking facilitles; expansion of these facilitles, required in any case, would have no bearing on the warrantability of a dross-smelting furnace.

The justification of constructing additional by-product coke ovens: instead of producing bee-hive coke, was covered by HoW. Higgs in his memo of September 25.
(I regret the delay in submtting this analysis; I misjudged the amount of work and time necessary to complete the job.)

## Summary of Pindings

Since the economic study involved many factors, this detalled report is quite long. In consequence, a sumary of the findings is advisable, vizo:
I) Based on $100 \%$ 2vailability of custom lead ores \& concentrates from the regions tributaxy to Oroya, and taking into account the known plans for increased production of lead concentrates, the lead-plant intake during the next ten years is not likely to exceed $190,000,000$ pounds of lead per year. (See page y)
2) This new-feed intake, available in 1958 , would yield $180,000,000$ pounds of refined lead (net recovery: $95 \%$, approx.)
3) The corresponding quantity of lead bullion could be produced by the existing blast fummaces if the copper dross is eliminated from the blast-fumace feed. This is the considered opinion of HoW. Higgs and other members of the smelter staff. It is based on a blast-fumace capacity of 700 short tons of sinter per day (presupposing adequate production of good sinter). (See page 3)

4）Based on the availability of lead ores \＆concentrates and the limiting capacity of the blast furnaces，the potential intake from 1955 onward is estimated as follows：

Copper dross treated separately
Gopper dross circulated
Difference
Mean Monthly Intake，Ores \＆Concxntrates
1955－1957
1958 et seq．

| $\frac{\text { DST } / \mathrm{mo}}{33,050}$ | $\frac{\text { DST／mo．}}{15,500}$ |
| :---: | :---: |
| $\frac{12,050}{1,000}$ | $\frac{12,900}{2,600}$ |

（See pages 4 to 7）
5）The comparative unit costs of lead smelting－dross circulation vso separate treatment－would not vary to a marked degree．

Mean Unit Cost of Lead Smelting Per DST Oreecon．Per DST Ore－Con． $\frac{1955-1957}{\frac{\$ 16.04}{\$ 16.23}} \frac{1958 \text { et seq．}}{\$ 15.08}$
（See pages 9 to 10 ）
6）In relation to the copper assay of lead ores \＆concentrates，and with separate treatment of copper dcoss，the unit smelting cost may be expressed as follows：

1955－157（mean divisor： 13.050 DST／mo．）：$\$ 15.00 \div \$ 0.95 \times \% \mathrm{Cu}_{0}$ per DST。
$1958^{\circ}$（mean divisor： $15,500 \mathrm{DST} / \mathrm{mo}$ ．）：$\$ 14.18+\$ 0.95 \times \% \mathrm{Cu}$ ，per DST。 1955－158（mean divisor： 13,660 DST $/ \mathrm{mo}$ 。）：$\$ 14.76+\$ 0.95 x \% \mathrm{Cu}$ per DST。

These expressions include the cost of treating dross－furnace matte and spelss in the copper－plant converters．（See pagell）

7）The potential increased throughput of metals made possible by a dross－furnace installation，as estimated for a boyear period beginning with 1955，is as follows：
1955
1956
1957
$\frac{1958}{1955-1958}$（et seq．）

| Copper，Lbs． |
| :--- |
| $1,560,000$ |
| $1,560,000$ |
| $1,560,000$ |
| $\frac{1,735,000}{6,42,000}$ |

Lead，Lbs：
$10,900,000$
$10,900,000$
$10,900,000$
$\frac{28,4,00,000}{61,100,000}$
$\frac{\text { S1．2ver，Ozs }}{1,224,000}$
$1,224,000$
$1,224,000$
$\frac{1,663,000}{5,335,000}$
Gold，Ozs．
$\frac{1,800}{1,800}$
1,800
$\frac{2,000}{7,400}$

For the $1955-157$ period，the increased throughput would derive from the additional custom lead－copper concentrates；for $1958^{\circ}$ ，the throughput would be further increased by additional Paragsha lead concentrate Cplus some extra Matagente ore）．（See page i2）

8）A dross furnace would jmprove the recoveries of copper and silver from lead ores $\%$ concentrates．Interms of feed－assay units，the loss of copper would probably be $0.26 \%$（versus $0.37 \% \mathrm{Cu}$ at present）and the loss of sliver would be cut to 0.6 ozAg （versus $0.80 z A g$ ）．For example，from a feed component assaying $1.30 \% \mathrm{Cu}$ and 10.0 ozAg，the percentage recoveries would be：copper． $80.0 \%$（vs．71．5\％）；silver， $94.0 \%$（vs． $92.0 \%$ ）．The effect on the assays of the blast－furnace slag would be more striking，vizo： 0.25 FGu （vs。 $0.66 \% \mathrm{Cu}$ ）； 0.3 ozAg （vs． 0.8 ozAg ）．（See page 13）
9) Regarding the transference of metals to the copper plant in the form of matte, the comparative situation would be as follows:

Annual Transference of Metals
Lead Plant to Copper Converters Copper, Lbso Lead, Lbso SAlver, Ozso

Blast-furnace matte \& speiss Dross-fuxnace matte $\&$ spel.ss Net change with dross fumace
$\begin{array}{r}2,299,000 \\ 4,421,000 \\ \hline+2,122,000\end{array}$
(See page24)
10) When the dross furnace is in operation, and we actively bid for custom lead-copper concentrates, the 'copper' terms of our present tariff will be revised. Compared with Hochschild's current tariff for lead-copper concentrates, our revised tarife terms would result in a substantially equal net Ifquidation. But on the basis of the custom shippers' net returns, the results in most cases would favor sale to Cdep because of the freight differential (freight to Oroya vso freight to Callao) and other factors. (See page 15)
11) The additional intake made possible by the installation of a dross furnace would yield a contribution in excess of $\$ 2,000,000$ over a 4-year period (1955-1958). After deducting "load" and income taxes, the net would be more than $\$ 1,000,000$. (See page 20)

This outcome is based on lower metal prices than obtain at present (see page 16) Depending upon the actual metal prices and the actual operating costs during $1955-1958$, the actual net after taxes may be somewhat less or somewhat more than $\$ 1,250,000$.

In any case, the capltal expenditure for a dross=fumace installation would be returned within 3 to 5 years after the furnace is in operation.
12) Item VFM (Foxtrot) in RoP。Koenigis cablegram of Sept. 11 secondary drossing of copper by the addition of sulphun - cannot be properly evaluated at this time. Experimentation will be necessary to determine the disposition of the various elements - perticularly the minor elements: tin and indium. However, certain aspects and benefits of secondary arossing with sulphur are discussed by D.A。Ricketts in his memo of Sept. 18 and by HoW. H1ggs in his memo of Sept. 20. Both memos are attached hereto.

## Lead Smelting Capacity

By treating the lead-plant copper dross in a separate furnace, instead of circulating the dross through the lead blast fumaces (current practice), the existing blast furnaces would have sufficient capacity to smelt 700 short tons of sinter per day ( 350 tons per furnace-day), or 21,000 short tons per montho of course, this is predicated on adequate sintoring facilities for the production of first-class sinter.

Currently, wth only a small amount of lead-copper concentrate in the smelter intake, the normal monthly tonnage of copper dross circulated through the blast furnaces (i.e.g new dross plus circulating load) is approximately equivalent to: T $\times 0.25+200$, I belng the monthly tonnage of laad ores \& concentrates.

Note: This formula applies to continuous treatment of copper dross (1.e., no storage of dross).

The monthly tomnage of sinter is approximately equivalent to： $T \times 1,32+550$ ．Consequently the connage of sinter plus copper dross equals：$(T \times 1.32+550)+(T \times 0.25+200)=\mathrm{T} \times 1.57+750$ 。
（Note：If anyone concerned desires an explanation of the formulas given herein，this offsce will be pleased to submit the derivationso）

As pointed out in $\mathrm{H}_{\mathrm{o}} \mathrm{W}$ ．Higgs：meno of September 20 （attached）． every ton of copper dross fed to the blast furnaces displaces a potential ton of sinter．With good sinter，and with sintermplant bottlenecks elim－ inated，the present blast furnaces could therefore treat 21,000 short tons per moth of combined sinter and copper dross．Thus，with a revamped sinter plant but with no addftional copper in the lead－plant intake，the monthly capacity of the lead plant in terms of lead ores \＆concentrates would be： $T=(21,000-750) / 1.57=20,250 / 1.57=12,900$ DST。

But with the copper dross treated in a separate furnace， $T=(21,000-550) / 1.32=20,450 / 1.32=15,500$ DST per month．In other words，the elimination of copper dross from the blast－furnace feed would permit the smelting of an additional 2,600 tons per month of lead ores \＆ concentrates $(15,500-12,900=2,600)$ ．Moreover，this additional tomnage could include the custom lead－copper concentrates which，at present，we are forced to exclude from the intake．

A monthiy intake of 15,500 DST of lead ores is concentrates having a mean grade of $50,0 \mathrm{qPb}$ would yiold $176,700,000$ pounds of refined lead annually．Adding the lead recovered from copper ores \＆concentrates，the total refined lead production per year would be $180,000,000$ pounds．

## Iead－Plant Intake

The dross－furnace installation in confunction with a revamped sinter plant）could probably be completed by the end of 19540 The poten－ tially avallable intake of new feed for the lead plant（lead ores \＆con－ centrates plus leady dusts from the copper circuit）is estimated at $158,000,000$ pounds of lead for 1955 and 1956 ；for $3957,173,000,000$ pounds： for 1958 et seq． $190,000,000$ pounds．

Inasmuch as the yearly intake of lead will not be constant from 1955 to 1958，the data pertaining to future operations（with separate treat－ ment of copper dross）are based on a）the estimated mean anual intake for the years 1955，＇56\＆ 157 ；b）the estimated intake for 1958 ．Note：The in－ take for 1958 is considered to be close to the limit，both in respect to availability and to blast－furnace capacity。

For the $1955-: 57$ perlod，the estimated mean annual intake of＂newn lead would be 163 milion pounds（ioe．g one－third of $158+158+173=163$ ）． The composition of the intake would be as follows：

Mean Annual Intake，1955－1957
（Separate treatment of copper dross）
Company \＆Leased：
Matagente ore
Paragsha con． Casapalca con． $\frac{1}{2} / 4$
$\frac{4}{3}$
$\frac{4}{5} /$
Total Co．\＆Leased

| $\frac{\text { DST }}{}$ | $\frac{\text { \％Pb }}{18.5}$ |
| ---: | ---: |
| 20,000 | 50.0 |
| 37,000 | 60.0 |
| 16,000 |  |
| $\frac{5,000}{7,000}$ | $\frac{60.0}{1,000}$ |

$\frac{\text { Lead Content，Lbso }}{3,700,000} \begin{gathered}37,000,000 \\ 19,200,000\end{gathered}$
San Cristobal \＆ East Moro．con．
West Moro．con．

$$
\begin{array}{r}
6,000,000 \\
3,600,000 \\
\hline 69,500,000
\end{array}
$$



Whth the addition of limerock plus the circulating load of lead－ plant dusts（i．eo，leadmplant dusts roasted with pyrite），the mean annual lead－bed mix for the 1955 ＇ 57 period would total about 218,000 DST and the grade of the bed mix would be $41 \% \mathrm{Pbb}$－close to the permissible maximum for sinter－plant feed．

1／Matagente ore，containing $0.15 \% \mathrm{Cu}, 8.008 \mathrm{Ag}, 0.005$ ozAu。 In view of the anticipated Increased intake of lead concentrates，the indicated ton nage of Matagente ore would consltute necessary siliceous flux to obtain a proper fron－to－insol ratio and to dilute the grade of the bed mix to the proper lead assay．
2／Paragsha lead con．containing $0.50 \not \mathrm{Cu}_{2} 25.0 \mathrm{ozAg}, 0.015$ ozAu．The mean annual tomage for $1955-157$ is based on the following： 32,000 DST in 1955 and in 1956；47，000 DST in 1947。
3／Casapalca lead conas containing l． $75 \% \mathrm{Ku}, 56.0$ ozAg， 0.005 ozAu．Concen－ Erate tonnage based on milling of 25,000 tons per month of $4 \% \mathrm{~Pb}$ ore． San Cristobal i East Morococha lead cono，containing 1．00 \％\％u，25．0 ozAg。 $\overline{0} . \overline{0} 50$ OzAv．Tomnage of concontrate based on milling 18,000 tons per month of mixed San Cristobal and East Morococha ores at the Mahr concentrator； average composite mill feed： $2.0 \% \mathrm{~Pb}$ 。
Wegt Morococha＿lead cono，containing $1.50 \% \mathrm{Cu}_{2} 25.0 \mathrm{ozAg}, 0.005$ ozAu。 Tonnage of concentr̄ate based on treating a total of 60,000 tons per year of $4 \%$ ore in a series of milling campaigns at the Morococha concentrator Atacocha＿lead como，estimated intake for 1953； $1.00 \% \mathrm{Cu}_{\mathrm{m}} 4.7 .0 \mathrm{ozAg}, 0.125$ ©zĂ．
7／Cercapuquio lead conen estimated intake for $1953 ; 0.05 \% \mathrm{Cu}_{2} 4.0$ ozAg． CoIquíirca Tead＿cong，estimated intake for 1953；3．00 \％Cu，73．0 ozAg， 0.005 ozÃo

Huaron 1ead conos $100 \%$ of production； $1.50 \% \mathrm{Cu} 58.0$ ozAg， 0.125 ozAv． Pichita CaIuga lead ore，estimated intake for $2953 ; 0.15 \% \mathrm{Cu}_{3} 5.0 \mathrm{ozAg}$ ． Yauli Iead cono，estimated intake for $1953 ; 2.75 \% \mathrm{Gu}_{2} 62.0$ ozAg， 0.050 ©zAu－
12 ＂Other Current＂，same as Nother Purchasedn estimated for 1953；3．00 \％Cu． 65.0 ozAgs 0.100 ozAu。
$13 /$ Additional＿lead－copper concentrates；based on former receipts，vizo：
Custom lead－copper concentrates，additional．By the end of 1949， the Corporation had largely discontlnued the purchase of lead－coppex con－ centrates due to the lack of adequate facilities for smelting such material． The following table lists the additional custom lead－copper concentrates which presumably will be avallable for purchase．With certain exceptions （as noted below），the tonnages and grades are comparable to former receipts．

Additional Lead－Copper Concentrates．Cusizom

Rio Pallanga
Castrovirreyna Obradoufich Proano，LioA。 Caudalosa Grande Enane（Gubbins） Other＂Banco Minere＂

Lead－Copper Conso Total per year
DST

$$
\frac{\text { Per Yeas }}{\substack{4,200 \\ 1,800}}
$$

efight
35.00

| 1.700 | 15.00 |
| :--- | :--- |
| 1.2 .17 |  |

$1.200 \quad 10.00$ $\begin{array}{rr}1,300 & 10.83 \\ 600 & 5.00\end{array}$

| \％Cu | \％ Pb | $9.2 n$ | 02 Ag | 02 Au |
| ---: | ---: | ---: | ---: | ---: |
| 6.0 | 47.0 | 7.0 | 110.0 | 0.075 |
| 4.0 | 45.0 | 9.0 | 105.0 | 0.550 |
| 4.0 | 50.0 | 6.0 | 35.0 | 0.010 |
| 7.5 | 50.0 | 6.0 | 35.0 | 0.1 .140 |
| 16.0 | 25.0 | 7.0 | 220.0 | 0.140 |
| 5.0 | 60.0 | 8.0 | 220.0 | 0.220 |
| 5.0 | 45.0 | 6.0 | 45.0 | 0.050 |
| 6.5 | 45.5 | 7.0 | 102.0 | 0.150 |

Chungar concentrate is not included because we are advised that Sr．Mateo Galjuf plans to discontinue treatment of his lead－copper ore and， in its place，to mill a straight lead－zinc ore，

Rie Pallanga is producing closer to 4,500 tons per year than the 4,200 cons indicated，but we are now receiving token shipments of about 25 tons per month．

Since Neg．Min。Reynaldo Gubbins plans to build a concentrator，the tonnage of＂Gubbins＂concentrate will doubtless be greater than the 600 tons per year produced at the Banco Menero concentrator（Sacracancha）．

The potential tonnage of＂Other＂Banco Minero＇Lead－Copper Cons．＂－ 1。e．，from concentrators at Sacracancha，Huachocolpa and Ia Virreyma－may be somewhat greater than indicated；in the past，annual tonnages of miscell－ aneous types of lead－copper concentrates were quite vaxiable．

For the 156,600 DST of lead ores \＆concentrates estimated as the mean annual intake for 1955－15\％，the grade would be as follows：

$$
\begin{array}{cccc}
\% \text { Cu } & \text { \% Pb } & \text { az Ag } & \text { oz A2 } \\
1.46 & 50.9 & 39.8 & 0.053
\end{array}
$$

Intake for 1958．Except for Matagente oro and Paragsha lead concen－ trate，the estimated intake for 1958 would be cornosed of the same tonnages and grades of ores ic concentrates as ilsted for 1955－15\％．The changes in in－ take for 1958 would be as follows：

DST ${ }^{5}$

|  | Per Year $(1958)$ | \％Pb | Toad Content Libs． |
| :---: | :---: | :---: | :---: |
| Matagente ore | 12，400 | 15.0 | 3.7008000 |
| Paragsha con． | 64,000 | 50.0 | $64,000,000$ |
| Total | 76,400 | 44.3 | 67，700，000 |

As compared with the mean annual intake for 1955－157，the above totals represent increases of 29,400 DST ore－con．and $27,000,000$ pounds of lead．

The tonnage of Paragsha lead concentrate corresponds to the miling － 2,000 tons per day of Cerro lead－zine ore．

Owing to the increase in the tonnage of pyritic Paragsha lead concentrate in 1958, an increased tonnage of siliceous Matagente ore (but at a lower grade) will be required as fiux to adtust the iron-to-insol ratio and lead grade of the lead-bed mix.

The estimated intake of new feed for the lead plant in 1938 is as follows:

Lead ores if concentrates
Mean annual intake 1955-157
Increase in 1958
Ores ic concentrates, 1958
Coprer-plant dusts (roasted)

| DST | \% Pb | Iead Contont Lbse |
| :---: | :---: | :---: |
| $1.56,600$ | $50.9$ | $\begin{array}{r} 159,400,000 \\ 27,000,000 \end{array}$ |
| 186,000 | 30.1 | $186,400,000$ |
| 6,000 | 30.0 | 3,600,000 |
| 192,000 | 1.9 .5 | 190,0008,000 |

Of the total lead intake for $1958,50.8 \%$ would derive from Corpore-tion-mined eres; $47.3 \%$ from custom ores \& concentrates; $1.9 \%$ from copperplant dusts.

The 186,000 wton intake of lead ores \& concentrates for 1958 would have a mean grade as follows:

| $\% \mathrm{Cu}$ | $\% \mathrm{~Pb}$ | 2 Ag | Oz Au |
| :--- | :--- | ---: | ---: |
| 1.30 | 50.1 | 38.2 | 0.048 |

## Lead Smelting Costs

For comparative preposes, the current innlt cost of lead smelting (whether on a monthly or year-tomdate basis) is inapplicable because the divisor is inapplicable. In comparing smelting costs (present dross treatment vse proposed treatment), the are \& concentrate divisor to be used in relation to the present smeliting procedure should, theoretically, be the potential maximum of 12,900 DST per month - see page 4 g second paragraph. But since the 12,000 DST of additional lead-copper concentrates included In the mean amual intake for the 2955 - 57 period could not be treated by the present smelting procedure, the annual tonnage of creatabie ores \& concentrates would be: $156,600-12,000=144,600$ or 12,050 DST per month.

Under normal circumstances (no unusual operating expenses) certain components of the total cost of smelting are directly proportional to the tonnage of ore \& concentrate treated. On a unit basis, such cost items may therefore be considered as substantially constant, vizo:

Feed preparation
Sintering

| $\begin{array}{r} \$ 2.25 \\ 2.50 \end{array}$ | per | $\operatorname{DST}_{n}$ | ore-con |
| :---: | :---: | :---: | :---: |
| 2.00 | " | " | " |
| 3.75 | 17 | " | n |

Note: The year-to-date costs are distorted by unusual and heavy ex. penditures in the feed-preparation section (recolving, crushing, bedding \& reclaiming) and in the sinter plant. Conversely, the costs for the month of August appear too low to represent average costs. The above figures are consequently higher than the corresponding figures for August, but lower than the year-te-date figures; they are thought to be reasonable approximations of the mean costis.

Since the indfcated cost for fuel 2 fluxes may seem out of line，an explanation is in order．Because coke must be previded to smelt the circum lating coppen dross as well as the sinter，the effective divisor for the fuel i flux cost is the tonnage of ore \＆concentrate plus the tomage of circulated copper dress．Fer August，the cost of fuel \＆f1ux was $\$ 50,226.73$ and the combined tonnage of ore \＆concentrate and dross was 15,013 DST \％ giving a unit cost with this divisor of ${ }^{3} 3.34$ per con。 The corresponding Year－to－date cost for fuel ic flux is $\$ 4022$ per cono）As a mean figure for the cost of fuel ar flux，$\$ 3.75$ is taken as applicable per ton of ore \＆con－ centrate treated or par ton of copper dress circulated．

Other lead smelcing costs are more or less fixed and largely inde－ pendent of the tonnage smelied．These costs may be taken as follews：

$$
\begin{aligned}
& \text { Blast furnace operation: } \\
& \text { Labor \& supervision } \\
& \text { Malntenance \& repalio } \\
& \text { Cottrelling proportiong } 60 \% \% \\
& \text { Indirect operacing expense }
\end{aligned}
$$

$$
\begin{array}{r}
13,000 \\
14,000 \\
14,000 \\
10,000 \\
\frac{32,000}{\$ 69,000}
\end{array}
$$

＊Cottrelling cost proporcion： $40 \%$ now charged to lead smelting and $60 \%$ te copper smelting；but in viow of the future increase in lead－plant intake and decrease in copper－plant intake it would be more reallstic to charge $60 \%$ of the central cottrell costs to lead smelting and $40 \%$ to copper smelt－－ ing。

The monthly fuel in flux cost for smelting the circulated copper dross equals $\$ 3.75$ times the tomage of circulated dress，or： $\$ 3.75 \times(T \times 0.25+200)=\$ 0.9375 \times T+\$ 750$ 。

Under the present method of operatien，the total cost of lead smelt－ ing per month would equal：$\$ 9.50 \times T+\$ 69,000+\$ 0.9375 \times T+\$ 750=$踿10． $4375 \times T+\$ 69.750$ ，and the mean unit cost therefore equals： $\$ 10.44+\$ 69,750 / \mathrm{T}$ mere $I$ is the monthly tonnage of lead ores is concentrates．

Substituting in the unitwoost formula the limiting ore ic concentrate connage for the present method of operation（i．e． 12,050 DST per month－ see page 7），the result would be：$\$ 10.44+\$ 69,750 / 12,050=10,44+5.79=$ \＄3．6．23 per DST ore \＆concentrate－lead smelting cost at the limiting through－ put under the present operating procedure．

Smelefng costs，proposed treatment．For the $1955-157$ period，of course，the mean component costs of lead smelting may be quite different from those that now obtain．Bat in establishing the warrantability of treating copper dross in a separate furnace，the component costs common to the present and proposed smelting procedures must be held constant．In respect to the separate treatment of copper dross，the costs would be as follows：
a）Sub－total smelting costs as above：\＄9． 50 per DST ore－con Note： The cost of supplies for the coppersdress furnace are included in the oper－ ating cost for this unit－see below．
b）Pixed costs as above：\＄69，000 per month．In his memo of Sept．20， Higgs estimates that 20 men would be required to operate the copper－dross furnace，but that these men would replace 36 others now required to handle copper dross through the lead blast furnaces，thereby resulting in a net saving of $\$ 634$ per month in labor cost．It is Higgs opinion that no extra shift bosses need be engaged to supervise dross－furnace operations．To be
conservative，however，it is thought advisable to consider the potential saving in over－all labor cost as being offset by an increase inpupervision cost．
c）Exclusive of labor cost，Higgs estimates the probable operating cost of the drossmtreatment unit at $\$ 10,707$ per 1,110 tons of original copper dross，which is equívalent to ${ }^{\$} 9.65$ per DST of original copper dross．
d）In this cosi summary，an amortization charge for the dross fur－ nace installation is not included because the time required to pay for the installation is indicaced in the final section of this memo。

The mean annual content of copper in the copper dross for the 1955－157 period is theoretically estimated as follows：

|  | DST | \％Cur | $r$ |
| :---: | :---: | :---: | :---: |
| Blast fumace feed： |  |  |  |
| Lead ores ic concentrates | 156，600 | 1.46 | 4，572，000 |
| Roasted cottrell dusts | 37，300 | 2.00 | 1，492，000 |
| （Other feed components disregarded） | －－－ | －－ | －－ |
| Total | 193，900 | $\overline{1.56}$ | 6，064，000 |
| last furnace slag | $78,300 \%$ | 0．25\％＊＊ | 392,000 |
| Lead－plant copper to dross furnace（theoretical）5，672，000 |  |  |  |

＊BF slag tonnage at $50 \%$ or ore concentrate tonnage。
＊＊Br slag conpor assay as per MoW．Miggs＇prognostication when treating copper dress in separate furnace（see HWH memo of Sept．20）．

At a dross assay of $14 \% C u$ ，the tonnage of copper dross would be： $5,672,000 / 14 \times 20=20,260$ DST per year，or 1,688 DST per month．The cost of treating the copper dross（exclusive of labor \＆supervision）would there－ fore be：${ }^{(9)} 9.65 \times 1,688=\$ 16,300$ per month

As noted，the mean annual tonnage of ores \＆concentrates for 1955－ ＇ 57 is estimated at 156,600 DST，or 13,050 DST per month．Consequently，com－ bining the component costs given above，the mean monthly cost of lead smelt－ Ing for the 3 －year period would be：$\$ 9,50 \times 13,050+\$ 69,000+\$ 16,300=$ $123,975+69,000+16,300=1209,275$ ．The mean unit cost would therefore be： \＄209， $275 / 13,050$－ 16 ，04 per DST ore \＆concentrate。

This unit cost is $\$ 0.19$ under the comparative unit cost for opera－ tions on an＂as is＂basis，but the total amount of the smelting cost per month would exceed the potential amount on an＂as is＂basis by $\$ 13,700$ ，viz．：

| Ore \＆Con． <br> Divisor | Unit Cost | Smelting Cost |
| :---: | :---: | :---: |
| DST／mo． | $\frac{\text { Per DST }}{}$ | Per Month |
| 13,050 | $\$ 16.04$ |  |
| $\frac{12,050}{1,000}$ | 16.23 |  |
|  |  | $\frac{195,575}{\$ 13,700}$ |

During the $1955-157$ period，the tonnage differential favoring separ ate treatment of copper dross would pertain solely to the additional intake of custom leadmcopper concentrates．Over the 3 year period，the additional 36,000 tons of lead－copper concentrate would yield a fair contribution．But considering the source of the extra revenue（custom business），the net re－ turn for the first 3 years would probably be insufficient to recover the high capital cost of the drosswtreatment installation。

Smeiting costs for 1958．As indicated on page 7 ，the intake of lead ores \＆concentrates in 1958 would total 186,000 DST or 15,500 DST per month． But if the copper dress were circulated through the blast furnaces the ton－
nage of eres \＆concentrates would be ilmited to 12,900 DST per month（see page 4），and the unit smelting cost would be：$\$ 10.44+\$ 69,750 / 12,900=$ $10.44+5.41-185.85$ per DST ore－con．

For 2958，the content of copper in the dross is estimated as follows：

|  | DST | $\% \mathrm{Cu}$ | Copper Content． |
| :---: | :---: | :---: | :---: |
| Blast fummace feed： |  |  |  |
| Lead ores \＆concentrates | $186,000$ | $1.30$ | $\begin{array}{r} 1+8836,000 \\ 7,728,000 \end{array}$ |
| Reasted cottrell dusts ${ }^{\text {（Other feed components disregarded）}}$ | $43,200$ | $2.00$ | $1,728,000$ |
| （Other feed components disregarded） | $\frac{-0 .}{229,200}$ | $\frac{-0}{10.43}$ | 6，564，000 |
| furnace slag | 93，000 | 0.25 | 14，65，000 |
| Lead－plant copper to dress furnace（theoretical）6，099，000 |  |  |  |

The tonnage of dress，at an assay of $14 \% \mathrm{Cu}$ ，would be： $6,099,000 / 14 \times 20=21,780$ DST per year，or $1,815 \mathrm{DST}$ per month．The cost of treating the copper dress（exclusive of labor \＆supervision）would then be：$\$ 9.65 \times 1.815=\$ 17,500$ per month。

The total monthly omelting cost，with copper dross treatied separately （but exclusive of anortization），is therefore equal to：$\$ 9.50 \times 1,5,500 \div$ $\$ 69,000+\$ 17,500=147,250+69,000+17,500=\$ 233,750$ ．The unit cost： $\$ 233,750 / 15,500=\$ 25,08$ per DST Or＇e－con。

This unit cest is $\$ 0.77$ under the comparative unit cost for re－ treatment of dross in the blast furnace．The comparative situation in respect to operations for 1958 1s as follows： Ore \＆Con．

| 1958 | Ore \＆Con <br> Divisor <br> DST／mo． | Unit Cost Per DST | Smelting Cost Por Month |
| :---: | :---: | :---: | :---: |
| Copper dress treated separately | 15，500 | \＄15．08 | \＄233．750 |
| Copper dross circulated | 12,900 | 15.85 | 204，2450 |
| Difference | 2，600 |  | \＄29，300 |

Aside from the principal fact that a dross furnace will make it possible to smelt an extra 2,600 tons per month of lead concentrates（in 1958），it is worth noting that the oxtra tomnage can be treated with on increase fonly $\$ 29,300$ in smelting costs．

Smelting cost in relation to copper content of feed．With separate treatment of copper dross，the unit cest of lead smelting woulc be equival－ ent to：$\$ 9.50 \times T+\$ 69,000+\$ 9.65 \times(T x \% C u+T \times 0,40+1,000-T \times 0.225) / 14$ divided by T $=\$ 9.69+\$ 0.69 \times \% 6 u+\$ 69,690 / T_{9}$ in which $\% C u$ is the copper assay of one or more feed components and I is the menthly divisor of lead eres is concentrates．

Fer the 1955 －＇ 57 peried，with a mean monthly diviser（IT）of 13,050 DST，the unit cest of lead smelting would be：$\$ 9.69+\$ 0.69 \times \% \mathrm{Cu}+\$ 5.34=$ $\$ 25.03+\$ 0.69 \times \$ \mathrm{Cu}\left(1955\right.$－$^{157}$ ）。

For 1958，with a mean monthly divisor of $15,500 \mathrm{DST}_{2}$ the unit cost of lead smelting would be：$\$ 0.69+\$ 0.69 x \% \mathrm{Cu}+\$ 4.49=\$ 14.28+\$ 0.69 \times \% \mathrm{Cu}$

Te obtain the total cost of smelting lead－copper material，it is necessary to add to the lead smelting costs the cost of converting the dress－furnace matte．（Noee：The reported unft cest of converter operation per ton of matte cannot be uged because the diviser includes the circu－ lating load of matto．）The cost of cenverter operation is approximately क 26 per ten of＂new＂copper in the intake to the copper plant。Consequently，
per DST of lead－plant intake，the cost of converting the dross－furnace matte \＆speiss weuld be：$\$ 0.26 \times(\% C u-0.125)=\$ 0.26 \times \% C u-\$ 0.03$.

Thus the smelting cost per ton of copper－bearing lead ore or con－ centrate would be as follows：
1955 m 57 （mean divisor： $13,050 \mathrm{DST} / \mathrm{mo}): \$ 15.03+\$ 0.69 \times \% \mathrm{Cu}+\$ 0.26 \times \% \mathrm{Cu}-\$ 0.03$ $=\$ 15.00+\$ 0.95 x \%$ Cu per DST．
1958 （mean diviser： $15.500 \mathrm{DST} / \mathrm{mo}$ ）：$\$ 14.18+\$ 0.69 x \% \mathrm{Cu}+\$ 0.26 x \% \mathrm{Cu}-\$ 0.03$ －${ }^{[14} 0.15+\$ 0.95 \mathrm{x} \% \mathrm{Cu}$ ，per DST。 1955－158（mean divisor： 13,660 DST／mo）：$\$ 9.69+\$ 0.69 \times \% \mathrm{Cu}+\$ 69,690 / 13,660+$ $\$ 0.26 x \% C u-\$ 0.03=\$ 14076+\$ 0.95 x \%$ un，per DST。

## Costs Other Than Smeleing

Since a subsequent section of this analysis deals with the contri－ bution from the additional intake，it is necessary to establish all relevant costs．

Purchasing of custom concentrate－see page 17.
Mining costs for Cerro lead ores．In August，the total tonnage mined at Cerre was approximately 54,000 DST．By 1958，the mean monthly mining rate for all Cerre ores ofll exceed the rate for August．This may result in a lower unit cest for mining cerre lead－zinc ore。 To be consorvative，however． the cests for August 1952 are considered to apply，vizo：

> Mining cost per DST Paragsha lead cono $\$ 18.91$
> Mining cost per DST Matagente are

Milling cost，Paragsha lead con．Including I．O．E．，the reported year－to－date cost for milling is $\$ 8.02$ per DST lead concentrate produced； for Auguse，${ }^{\text {W9．}} 23$ per DST．Certain of the unft－cost components will decrease When the mill feed is doubled（in 1958）．But to be conservative，the applic－ able milling cost is assumed to be $\$ 8.50$ per DST lead concentrate produced．

Frelght cost，Cerro to Orova．On Paragsha lead concentrate，the frelght cost is taken at $\$ 1.40$ per DST concentrate；on Matagente ore，$\$ 1.30$ per Dism。

Refining 2：shipping costso Since the production of lead and silver will increase，the respective unit costs for refining may decrease somewhat． However，the effect of a greater divisor on the unit costs of refining is disregarded．Fxeept in the case of silver，the current（reported）unit costs are used herein。

The reported unit cost for silver refining is considered unrealistic．
Reason：Owing to accounting instructions issued by the New York Office in 1949，silver bears $100 \%$ of the cost of anode－residue smelting．In our opinion，the actual refining cost per ounce of silver produced is closer te $3.00 \%$ than the reported cost of $4.85 \%$ 。A silver refining cost of $3.00 \%$ per ounce is therefore used in computing contribution．
（Nete：Bismuth is not taken into account in this study；the disposi－ tion and ever－all recovery of bismuth will be affected，but to an unknown degree，by proposed changes in operating procedure．See memos by DoA。R1ck－ etts and W．H．H1ggs，attached hereto．）

|  | Copper d/1b. fo2.3.Callao | $\begin{gathered} \text { Lead } \\ \text { //1bo } \\ \text { I.S.S.CaI1ao } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Silver } \\ \text { \%/ozo } \\ c_{0} \mathbf{I}_{0} \text {. New York } \end{gathered}$ | $\begin{aligned} & \text { Gold } \\ & \text { f/oz。 } \\ & \text { c.s. } \mathrm{L} \text {. } \mathrm{ma} \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Refining | 1.250 | 0.450 | 3.000 | 40,000 |
| Shipping | 0.505 | 0.380 | 1.325\% | 10.000 |
| R \& S | 1.755 | 0.830 | 4.325 | 50.000 |

* Freight \& insurance on silver based on price of 75 cents per ounce.

The ex-Callao costs against copper and lead are taken as follows:

** See section on metal prices, page 16 .
Increased Throughput of Metals
By treating the copper dross in a separate furnace, the throughput of metals in the lead plant would increase materially. As noted above, the increase in tonnage of concentrates for the 1955-157 perfod would constitute the additional intake of custom lead-copper concentrates, the lead content of which would increase the annual throughput of lead by $10,900,000$ pounds isee table: MMean Annual Intake, 1955-157". page 5).

In 1958, the increased intake made possible by separate treatment of copper dress would be 2,600 DST per month, consisting of 1,000 DST of additional custom lead=copper concentrates, 1,400 DST of Paragsha lead concentrate, and 200 DST of Matagente ore. The increased throughput of lead for 1958 would therefore be:

| Custom lead-copper con. | 1,000 | 12000 |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1,000 | 12,000 | 45.5 | 10,900,000 |
| Paragsha lead con. | 1,400 | 16.800 | 50,0 | 16,800,000 |
| Matagente ore | 200 | 2,400 | 15.0 | 700,000 |
| Total | 2,600 | 31,200 | 45.5 | 28,400,000 |

Note: this increased throughput would also apply to 1959 et seq.
The estimated increase in the throughput of copper, lead, silver and gold, beginning with 1955, is as follows:

| Year | Cepper, Lbs. | Lead, Lios. | Silver, Ozs | Gold, Ozs. |
| :---: | :---: | :---: | :---: | :---: |
| 1955 | 18560,000 | 10,900,000 | 1,224,000 | 1.800 |
| 1956 | $1,560,000$ | $10,900,000$ | 1,224,000 | 1.800 |
| 1957 | 1,560,000 | 10,900,000 | 1,224,000 | 1.800 |
| 1258 | 1,235,000 | 28,4,00,000 | 1,663,000 | 2,000 |
| 1955-1958 | $6,415,000$ | 61, 100,000 | 5,335,000 | 7,400 |

## Recovertes if Transference of Metals to Copper Plant

As pointed, in Higgs' memo of September 20 , experience indicates that separate treatment of copper dress versus the present procedure would decrease the blast-furnace slag assays from $0.66 \% \mathrm{Lu}$ and 0.8 ezAg to 0.25 \% Cu and 0.3 ozAg。 Purthermore, it is Higgs' opinion (based on experience) that the dross furnace would yield a matte-speiss product having a copper-to-lead ratio of 5:1 as compared with the present low ratio of 1.6:1.

Cepper recovery. Under MLead-Plant Intaken, it was estimated that the mean annual intake of new feed for $1955 w^{\prime \prime} 57$ (lead ores \& concentrates plus copper-plant reasted dusts) would be 162,600 DST assaying $1.48 \%$ \% But in relation to current practice, the 12,000 DSt of additional custom lead-copper concentrate (at $6.50 \% \mathrm{qu}$ ) could not be treated. Deducting the additional custom lead-copper concentrate, the net applicable to present practice would be 150,600 DST of new feed at $1.08 \% \mathrm{Cu}$, or a mean annual new-feed copper content (for $1955 \mathrm{c}^{2} 57$ ) of $3,253,000$ pounds.

With copper dross circulated, the recovery of copper would therefore be deternined às follows:

Gopper Dress Circulated
Wew copper in lead-plant feed
Copper in blast-furnace slag:
$144,600 \times 0.50 \times 0.66 \times 20$
Lead-plant copper in BF matte, etc.
Lesses on re-treatment, etcer $2 \%$
Net copper recovered

Mean Annual
Copper Content, Lbs。
1955-1957
3,253,000

Resultant net recovery of copper: $100 \times 2,338 / 3,253,000=65,7 \%$
copper less ( $c$ ) as assay unfts of new feed: $(1.08-c) / 1.08=0.657$; $c=0.37 \% \mathrm{Cu}$.

With copper dross treated separately, the mean annual intake of new feed $(1955-157)$ would be $162,600 \mathrm{DST}$ at $\overline{\mathrm{I}} .48 \% \mathrm{Ku}$, equivalent to $4,813,000$ pounds of copper, and the recovery would be:

Mean Annual
Copper Content, Lbs.
Copper Dross ?reated Separately.
1955-1957
New copper in lead-plant feed $4,813,000$
Copper in blast-fumace slag:
$156,600 \times 0.50 \times 0.25 \times 20$
Lead-plant copper to dross furnace, etc.
$\frac{392,000}{4,421,000}$
Losses on re-treatment, etcer $10 \%$
Niet copper recovered
$\frac{442,000}{3,979,000}$
Resultant net recovery of copper: $100 \times 3,979,000 / 4,813,000=82.7 \%$
Copper loss (c) as assay units of new feed: $(1,48-c) / 1.48=0.827$; $c=0.26$ \%Gu.

Note: Copper losses, expressed in terms of assay units of new feed, would be the same if computed on the basis of the estimated 1958 intake.

Matte production \＆transference of metals．The production of matte from lead－plant feed would be substantially the same whether figured on the mean annual intake for 1955－i57 or on the intake for 1958．Using the data for 1955－157，the theoretical production of matte would be as follors：

| Cepper Dress Circulated： <br> Blast－fumace matte \＆speiss （2，299，000 Ibs．copper avallablel | $\begin{gathered} \text { DST } \\ \text { Per Year } \end{gathered}$ | Assays $\% \mathrm{~Pb}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 5.750 | 20.0 | 12.5 | 20.0 |
| Copper＿Dross Treated＿Separately： |  |  |  |  |
| Dress－furnace matte \＆speiss （ $4,421,000$ Ibs．copper availablo） | 5.525 | 4.0 .0 | 8.0 | 40.0 |

The theoretical quantities of metals transferred in matte \＆speiss from the lead plant to the copper converters would then be：

## Alternative Products：

Blast－firnace matte \＆speiss Dress－furmace matte \＆spelss Net change with dress furnace

| Copper，Lbso | $\frac{\text { Lead．Lbso }}{2,299,000}$ | $\frac{\text { Silver，Ozso }}{1,437,000}$ |
| :---: | :---: | :---: |
| $\frac{4,81,000}{+2,122,000}$ | $\frac{884,000}{-553,000}$ | $\frac{221,000}{+106,000}$ |

Nete：Although the respective quantities transferred ennvaliy are theoretical（and therefore somewhat higher than actual），the difference Ifgures，or net change in transference，should be fajrly accurate．

Lead recovery。 In respect to the lead transferred to the copper converters via lead－plant matte \＆speliss，the ultimate recovery would be rather low Fer nomal lead concentrates，i。e。 low in copper（under $2 \%$（u） the loss of lead in terms of feed－assay units may be taken at $2.5 \% \mathrm{~Pb}$ ．In the case of lead－copper concentrates，however，part of the lead reporting in the matte is lost in the copper circuit，and the lead lesses in terms of feed－assay units would be higher．Omitting the arithmetic，the lead lost from lead－copper concentrates is found to be approximately as follows：

Lead＝Cepper Concentrates：
Copper dress circulated
Lead Losses
Feed－Assay Units
Copper dross treated separately
$3.5 \% \mathrm{~Pb}$

Exampla：of two concentrates，both of which assay 45.0 g Pb ，one is low in copper and the other is a typical lead－copper product．The recovery of lead from the low－copper concentrate would be： $100 \times(45.0-2.5) / 45.0=$ $94.5 \%$ from the h1gh－copper concentrate，and with copper dress circulated； $100 \times(45.0-3.5) / 45.0=92.2 \%$ ；ixom the h1gh－copper concentrate，but with copper dress treated soparately： $100 \times(45.0-3.0) / 4.5 .0=93.3 \%$

Silver recovery．In the case of silver，recoveries would be at high levels in both the lead and copper circuits．Consequentiy，it is not neces－ sary to differentlate between low－copper and high－copper concentrates as in the case of lead．The recovery of silver from lead ores if concentrates is determined as follows：

Copper_Dress_Circulated:

## Silver Content, Ozs.

 1955-1957New gilver in lead-plant feed $(150,600 \mathrm{ngT}$ at 34.9 ozAg$)$ Silver lesses: Blast-furnace slag: 144, $600 \times 0.50 \times 0.8=57,850$ Treatment of matte: $5,750 \times 0.6=3,450$ Unaccounted-for: 1\% of new feed $=52,500$

$$
s=0.8 \mathrm{ez} / \mathrm{DST} .
$$

Copper Dross Treated Separately:
$\begin{aligned} & \text { New silver in lead-plant feed } \\ & (162,600 \text { DS? at } 39.8 \text { \#Ag })\end{aligned} 6,478,400$
(162,600 DST at 39.8 \% Ag )
Silver losses:
Blest-fumace slag: $156,600 \times 0.50 \times 0.3=23,490$
Treatment of matte: $5,525 \times 0.6=3,320$
Unaccounted-for: $1 \%$ of new feed $=\frac{64,780}{6,386,810}$
Percentage recevery of silver: $100 \times 6,386,810 / 6,478,400=28,6 \%$
Silver less ( g ) as assy units of new feed: $(39.8-\mathrm{s}) / 39.8=0.986$; $s=0.6 \mathrm{ez} / \mathrm{DST}$.

## Custom Lead-Copper Concentrates - Competitive Position

At the present time, purchase of lead-copper concentrates is not warranted because increased intake of copper in the lead plant would increase the circulating load of copper dross through the blast furnaces, thereby decreasing the sinter throughput.

Cdep smelting tariff. By treating the copper dross in a separate furnace, we could again enter the market for lead=copper concentrates, Our present smelting tariff could remain in force except in respect to the terms for copper. It is suggested that we pay for copper on the following basis: Up to $13.0 \%$, deduct 1.3 units from the assay and pay for $100 \%$ of the remainder; over $13.0 \% \mathrm{Cu}$, pay for $90 \%$ of content. The RRD charge on copper would be revised to a flat 6\& per pound liquidated. In addition to the treatment charge as specified in our current cariff (i.e., $\$ 24.50$ per DST less $\$ 0.10$ per unit of lead), it is suggested that we impose a surcharge of $\$ 0.25$ per unit of copper.

Competitive tariff (Hochschild). The Lima ore buyers" terms vary somewhat, but their respective net liquidations are substantially the same. Our competiters may try to establishla competitive edge when we enter the market for lead-copper concentratcs. But in the absence of premium prices, Hechschild et al do not have much leeway for competition.

At the present time, our competitors terms result in a net return to the shipper which is comparable to the amount he would receive under our current tariff terms. Example: At current metal prices, and taking into
account the cost of trucking concentrate to Callao Sin。Min。Rio Pallanga＇s net retum $\operatorname{frem}$ sale to Hochschild is computed at $\$ 182.71$ per DST；but our prosent tarfff terms would give Rio Pallanga a net of \＄182．76 per Dgmo

Hochschild＇g current terms fer lead－copper concentrates are as follews：

Payment：
Copper：Deduct 2.3 units from assay and pay for $100 \%$ f remainder at the ERMHJ quotation for foreign copper less $5.00 \% / 1 \mathrm{~b}$ ．
Lead：Deduct 1.5 units from assay and pay for $95 \%$ of remainder at the formy quotation for domestic lead（NEW Yorit）less 2．80\＆／1b。
Silver（over $100 \mathrm{oz} / \mathrm{DST}$ ）：Pay for $96 \%$ at the FaMd quotation for forcign silver less 2．00p／oz。（Not over $100 \mathrm{oz} / \mathrm{DSI}_{8}$ pay for 95\％）
Gold：Pay for $96.75 \%$ at $\$ 34.9125 / 0 z$ 。
MMerman： $2 \%$ 。
MMaquila＂（treatment \＆export charges）per DST delivered at Callaos equivalent to：$\$ 30.25-\$ 0.25 \times(\% \mathrm{~Pb}-40)$ 。
Penalties：
Zinc： $10 \%$ free，excess at 35 per unit．
$\begin{array}{lllllll}\text { Arsenic：} & 1 \% & \text { free } & n & n & 50 \% & n \\ \text { Antimeny：} & 1 \% & n \\ \text { iree } & n & n & 50 \% & n & n\end{array}$
Bismuth：0．03\％free $\%$ n $50 \%$ per pound。
Sacks furnished free（except for freight charges）。
（Nete：All tariffs except eurs impose a high penalty on bismutho）
Future metal prices．To avoid overstating the increased revenue which will derive from the future increased intake of lead and lead－copper concentrates，the assumed average metal prices for the 1955－1958 pertod should be lower than current prices．But the forecasts of longwterm prices used for ore inventories（1．e．， $18.5 \%$ copper， $12 \%$ lead． $70 \%$ silver）seem too low as 4 －year averages for the period indicated．For the purpose of this meme，the mean BrMy quotations for 1955－1958 are assumed to be as fol－ lows：copper（foreign）， $25.00 \% / 1 \mathrm{~b}$ ；lead（domestic）， $14.00 \% / 1 \mathrm{~b}$ 。；silver （foreign），75．00／／oz。；gold，$\$ 34.9125 / 0 z$ ．

In relation to the assumed quotations for copper and lead，the cor－ responding foaso－Callao prices would be：copper， 23.850 ／$/$ Lbo；lead， 11.920 \＆／1b。

Based on the foregoing E\＆MJ quotations，our net metal prices for custom purchases would be as follows：copper，18．885f（25．000－6．115）： lead，11．272d／1b．（14．000－2．728）；silver，70．275d／0z．（75．000－4．725）； gold，$\$ 33.4125(34.9125-1.5000)$ 。

Custom shippers＇comparative returns－sale to Hochschild versus sale to Cdep．Instead of computing the comparative returns for each indi－ vidual lead－copper concentrate，it will suffice here to apply the Hochschild tariff and the proposed CdeP tariff to the welghted composite of the addi－ tional lead－copper concentrates on which we shall bid in 1955 lsee table： ＂Additional Lead－Copper Concentrates＂，page 6），viz．：1，000 DST per menth of lead－copper concentrate having a mean grade of $6.50 \% \mathrm{Cu}_{3} 45.5 \% \mathrm{~Pb}, 7.0$朁n， 102.0 eg Ag， 0.150 ezAu。

In relation to the assumed mean prices of metals for 1955-158 (see previous page), the shippers' comparative returns would be as follows:

Payment per DST concentrate: Copper Zead Silver Gold Total payment Deductions per DST concentrate divdo: Herma, $2 \%$ of payment
Treatment charge
Treatment surcharge (for copper)
Penalties: nil (assumed)
Total deductions
Ilquidation before $4 \%$ levy
Hechschild
Cdep
Cdep
(current ) (tariff)

| $\$ 20.800$ | $\$ 14.820$ | $\$ 19.640$ |
| ---: | ---: | ---: |
| 93.632 | 89.049 | 89.049 |
| 71.482 | 65.946 | 65.946 |
| 5.067 | 4.051 | 4.511 |
| $\$ 190.981$ | $\$ 174.326$ | $\$ 129.146$ |

Under the terms of our proposed tariff (increased payment for copper), a competitive advantage of $\$ 3.30$ per DST over Hochschild's current terms should be sufficient to get the business.

Even if the comparative returns were at a stand-off, the general advantages in selling to CdeP - prompt settlement, shipment in bulk, mining o supply privileges, technical assistance - wuld, in most cases, tip the scales in our faver.

## Return on Investment

The fustification for a coppermdross furnace rests on the amount of additional revenue to be derfved from the installation.

Additional intake. As indicated on page 12 in the section on increased throughput, the addithonal intake for the $1955-1958$ period-1.e.e, additional intake made pessible by the installation of a dross furnaceweuld censitute the following:

|  | Additional Intake DST Per Month |  | $\begin{gathered} \text { DST } \\ 1955-158 \\ \hline \end{gathered}$ | Assays |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Custom lead-copper con. | 1,000 | (1955-158) | 48,000 | 6.50 | 45.5 | 102.0 | 0.250 |
| Paragsha lead cen. | 1,400 | (1958) | 16,800 | 0.50 | 50.0 | 25.0 | 0.015 |
| Matagente lead ore. | -200 | (2958) | 2.400 | -0.25 | 15.0 | 88 | 0.005 |
| Total additional intake | 2,600 | (2958) | 67,200 | 4.77 | 45.5 | 79.4 | 0.1.11 |

Value of production. Based on the factors established in the fore-
going sections of this meme, the value of production in respect to the components of the additional Intake would be as follows:

Custom lead-copper concentrates:
Copper (callã):-(6.5-0.26)×20×0.23850 $=$
Lead (Ca11a0): $(4,5.5-3.0) \times 20 \times 0.12920=$
Silver (New York): (102.0 0.0 .6$) \times 0.75000=$
Geld (Lima): $(0.150-0.002) \times 34.091250=$
Vale of production per DST custom con.

$$
\begin{array}{r}
\text { Per DST } \\
\hline \text { 莹 } 29.765 \\
101.320 \\
76.050 \\
5.167 \\
\$ 212.302
\end{array}
$$

Value of production for 48,000 DST custom con．（1955－1958）：$\$ 10,190,500$
Paragsha lead concentrabe：
Copper（Callao）：
$\left(\begin{array}{l}(0.50-0.26) \times 20 \times 0.23850= \\ (50.0=2.5) \times 20 \times 0.21920=\end{array}\right.$
$\frac{\text { Per DST }}{1.145}$
Lead（Callae）：$\quad(50.0=2.5) \times 20 \times 0.11920=113.240$
Silver（New Yoxk）：（25．0－0．6）x $0.75000 * 18.300$
$\frac{\text { Gold（Lima）：}(0.015-0.002) \times 34.91250}{\text { Value })}=\frac{0.454}{}$
Value of production per DST Paragsha cono \＄133．139
Value of production for 16,800 DST Paragsha con。（1958）：

## Matagente ore：

Copper（Calla0）：nil
Lead（Calla0）：$(15.0-2.5) \times 20 \times 0.11920=$

## Per DST

Sliver（New Yerk）：（8．0－0．6）x $0.75000=$
Geld（ 11 ma ）：$(0.005-0.002) \times 34.91250=$
Value of production per DST Matagente re
4 29,800

Value of production for 2，400 DST Matagente ore（1958）：

$$
\begin{array}{r}
5.550 \\
\quad 0.205 \\
\hline 35.455
\end{array}
$$

Total value of production from additional intake for 1955－1958：
$\$ 2,512,200$
Costs against additional intake。 The allecable costs against the re－ spective components would be as follows：
\＄1，211，600

Paragsha lead concentrate：
Mining
Milling
Freight io Oroya
Smelting：$\$ 14.150+\$ 0.475$ sub－tetal cests

## Custem＿1ead－copper＿concentrates：

Purchasing divd．Oroya（before $4 \%$ levy）
Smelting：$\$ 14.761+\$ 6.175$ sub－total costs
Refining \＆shipping：
Gopper（Callae）： $124.8 \quad$ lbs。 $\times 0.01755$
Lead（Callao）： 850.0 lbso $\times 0.00830$
Silver（New York）：101．4 ezs．x 0.04325
Gold（Lima）：$\quad 0.148$ \＆zso $\times 0.50000$
AIlocable costs per DST custom concentrate
Per DST

$=$| $\$ 157.268$ |
| ---: |
| $=$ |
|  |
| 178.236 |
| $\$ 178.204$ |

－ 2.190
$=7.055$
－ 4.386
$=0.074$
Allocable costs on 48,000 DST custom con．（1955－1958）：

Per DST
$=\frac{\text { Per DST }}{\$ 18.910}$
－ 8.500
－ 1.400
$=\frac{14.625}{43.435}$

Refining \＆shipping： Copper（Callae）： Lead（Cal1a0）． 4.8 1bso $\times 0.01755$

Allocable costs on 16， 800 DST Paragsha lead cono（1958）：

## Matagente ere：

## Carried ferward：

Allecable costs on 48,000 DST custom cen。 $(1955-1958): \$ 9,211,600$
Allocable cests on 16,800 DST Paragsha lead con。（1958）：

Matagente lead＿ore：
Mining
Freight to Oreya
Smelting：$\$ 140.150+\$ 0.143$ sub－total costs
Refining on shipping： Copper（Callao）：nil Lead（Calla0）： 250.0 2bs．$\times 0.00830=2.075$
 Gold（Lima）：$\quad 0.003$ 0zs．$\times 0.50000$
Allocable costs per DST Matagente lead ore
nllecable cests on 2，400 DST Matagente lead ore（1958）：
$=0.320$
－ 0.002

Total allocable costs on additional intake for 1955－1958：
＊Matagente ore，smelting cost：Owing to the increased ionnage of pyritic
Paragsha jead concentrate，the Matagente ore would coistitute necessary
siliceousfor the Paragsha concentrate；thus the Matacente ore would be
charged with a nomal smelting cest（ioe．o no extra pyitite required；
hence no extra smelting cost）。
Contribution from additional intake。
Custom＿lead－copper concentrates：
Value of production
A7100
Contribution per DST custom con。 $\% 20.393$
Contribution on 48，000 DST custom con。（1955－1958）：
\＄ 978,900
Paragsha lead concentrate：
Value of production
Allecable costs
Contribution per DST Paragsga con。
PQ2：DST
$=\begin{array}{r}133.139 \\ = \\ 52.665 \\ 81.674\end{array}$
Centribution on 16，800 DST Paragsha lead con．（2958）：
Matagente Iead ore：
Value of production
Allocable cosis
Contribution per DST Matagente ore Per DST
（2）25．425
Contribution on 2,400 DST Matagente lead ore（2958）：
Total contribution from aditional intake for 1955－2958：

Gross margin \& net return on additional intake for 1955-2958.

## "Load" computation:

Total costs on additional intake:
$\$ 10,141,000$
Purchasing cost of custom lead-copper concentrates: $\$ 157,268 \times 48,000$ DST $=$
7.548900

Allocable costs subject te lead factor
2,592,100
Leads at $10 \%$ :
\$ 259,200
Note: Since the total amount of operating costs for all mining s milling, melting and refining activities will increase with the increased production of lead and zinc, the lead percentage for the 1955-1958 period should be less that at present. Hence the $10 \%$ lead factor.

Total contribution from additional intakes 1955-1958:
Lad
Gross margin from additional intake:
Income taxes etces at $4.0 \%$ of gross margin:
\$2,371,200
252,200
\$2,112,000
844,800
Estimated net return during 1955-1958, excluding amortization of dressmfumace installation:

Depending upon the actual metal prices and the actual operating cesta during 1955-1958, the actual net retum within the 4 -year period may be somewhat mere or somewhat less than the estimated net return.

Amortization charges will depend upon the type of dross furnace used. In any case, it is evident that the capital expenditure for the dress-furnace installation will be returned within 3 to 5 years after the furnace is in operation.


```
CC: AHE (5)
    RPK (10) New York
    RPK Ifma
    WCS N.Y.
    GR
    JWH
    ILB
    JTM
    HWH
    DAR
    RRvE
```


## Correspondencia Interdepartamental

Fecha: Sept. 18, 1952
A : T. R. Wright
De : D. A. Rickette

## Materia: COPPER DROSSING OF LEAD BULLION Possible Effects on Refineries

Drossing of lead bullion, with the method in use, results in a. bullion running from .05 to $.15 \% \mathrm{Cu}$ with .06 to $.07 \% \mathrm{Cu}$ as normal.

Cold drossing with addition of sulphur should result in a bul1.ion with max. copper not over . $01 \%$.

## read Refinemy

Through the many years of lead refining here it has been noted that if the bullion consistently carries over. 08 to . $09 \%$ Cui a spotty or patchy deposit appears on the cathode which is both loose and quite rough. When this takes place efficiency drops through direct shorts and lead is lost fram the cathode to the bottom of the cell. The condition was never allowed to continue for extended time so further detrimental effects are not known.

The results to be expected if the bullion were to run $.01 \% \mathrm{Cu}$ or under are not known but we would assume they would be beneficial to refining and at the same time hard to evaluate.

Anode Residue Plant
The builk of the copper intake, in this section follows the bismuth through to the kettle stage where it is drossed off. This dross is then treated in a reverb, with pyrite, and copper eliminated as a matte for return to the smelter copper circuit.

Matte shipped from the plant during the first seven months of this year amounted to 208.191 dry s.tons and carried the following values:

| Cu | lbs. | 42,362 |
| :---: | :---: | :---: |
| Pb | $\pi$ | 96,800 |
| BI | n | 38,340 |
| Ag | Ozs | $246,578.8$ |
| Au | n |  |
|  | 180.46 |  |

Intake of copper for the same period was 14,198 lbs. With copper slimes and 41,181 lbs. with lead slimes for a total of $55,379 \mathrm{lbs}$. on this basis for each pound of copper intoke the drag out in matte for smelter treatment 1s:

| 6 | per | Ib. | Cu | 1.75 | lbs. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B1 | 吾 | , | " | . 69 |  |
| Ag | " | \% | n | 4.45 | 085 |
| Au | " | " | " | . 0033 |  |

Assuming copper in bullion to have been. $01 \%$ instead of $.06 \%$ then during this seven months period the coppor intake from lead slimes would have been 6864 lbs. or a reduction of $34,317 \mathrm{lbs}$. which in turn
would have increased direct metal production by:

| Bi | lbs | 23,679 |
| :--- | :--- | :---: |
| Ag | $0 z \mathrm{~s}$ | 152,711 |
| Au | m | 113.2 |

The copper in following the bismuth is removed, in the greater part, from the silver during the cupel operation. Some improvement would be forthcoming with a lighter conner load at this point and would probably show as more capacity due to less time required for copper removal. This in turn should show some saving on furnace linings, fuel oil and nitre.

On kettle operations the copper dross load is now 50 to $60 \%$ of feed from bismuth reduction reverb. This causes a heavy recirculation load in the plant and a tie-up of bismuth while retreating. Reducing copper intake would definitely cut down this load and allow for more direct production of bismuth, less work on kettles \& less operation of reduction reverb. Recoveries would be improved.

## General

In an overall discussion with Higgs, he feels that our present sate production might better be treated through the lead circuit. I agree in that this would cut any losses on bismuth which would be present between the copper and the lead circuits. The shorter tieup on Ag and Au is apparent.

Experimental work should be carried out as regards copper removeal before tin crossing. On the face of it this seems possible because of the low temperature and if true would eliminate the time and costs required for cooling and reheating of bullion if tin is removed before final copper by sulphur.

D. A. Pickets

```
cc: AHE - 2
    JWH
    TmTH - 12
    ILB
    JMN
    HWH
    DAR
```

Correspondencia Interdepartamental

Fecha: September 20, 1952

To: J. M. Mortimer
From: H. W. Hisgs
Subject: DROSS FURNACE JUSTIFICATION
(Cable R.P.K. to A.H.E. Sept.11, 1952)
The following information describes the metallurgical improvements to be expected following the installation of dross smelting facilities.All calculations are based on performance obtained during the first seven months of 1952 as compared with probable performance with an operating dross furnace assuming the same intakes of ores, concentrates and dusts. The data is arranged in the same order as the questions in the above mentioned cable.

1.     - Alfa Intake of copper into the lead plant from 211 sources amounted to $2,338,376 \mathrm{lbs}$. during the seven month period. Based on an assay of $18 \% \mathrm{Cu}$ and not accounting for copper losses this is equivalent to a production of 926 tons of dross per month, yet while accurate figures are not available, at least 3000 tons of dross were treated per month in order to matte the copper and circulating load of ever $200 \%$ is indicated. It is estimated that this 3000 tons per month could easily be replaced by additional sinter plant production if dross smelting facilities were available No additional cost would result at the Blagt Furnace since this tonnage is presently being handled and fuel charged against it. Assuming no other improvements to arise while removing the dross and pyrite (source of sulphur for matte formation) from the charge an additional capacity of $28,800,000$ lbs of lead per year would be obtained at the Blast Furnare with a 1.0 \% lead sinter charge.

Of the $2,338,376 \mathrm{lbs}$. of copper entering the lead circuit it is estimated that $2,182,356 \mathrm{lbs}$. would be available for treatment in the dross furnace the balance being lost in the Blast Furnace slag. This copper would make 1,110 tons per month of dross at $11 \%$ copper availabie for treatment in a dross furnace and, assuming a $50 \%$ recirculation of dross from the dross furnace, a total of 1,670 tons would be actually treated.

On the basis of treating 1,670 tons per month the following direct costs for dross furnace operation have been assumed.

## Costs per Month



Fuel at $19,300 \mathrm{BTU} / 1 \mathrm{~b}$ 。 \& $\$ 18.00 / \mathrm{T}$ usage of $2,500,000 \mathrm{BTU} / \mathrm{T}$. Dross 108 T at $\$ 18.00 / \mathrm{T}$.
Arch repairs 6000 brick every six months Brick at $\$ 500 / 1000$

$$
=1,944
$$

Other repairs, Bodega charges, etc $=1,500$
Total \$ 10,707

It is also estimated that twenty men per day will be required to operate this furnace. Four per shift for direct operation tapping, charging etc. for a total of 12 , and 8 for loading and handing matte, and repairs. Against this we believe that the present blast furnace and drossing crews can be reduced by 36 men per day due to reduction in men needed to charge dross to furnaces and the fact that furnace operations should improve greatly with the removed of dross from the charge.

Feed floor (charging dross) 4 men/shift 12 men
Operating floor (tapping(settlers etc.) 6 men 18 men
Dross drum crew 2 men/shift 6 men
Total 36
Therefore the net result is the elimination of 16 men per day with a cost of $\$ 634$ per month at $\$ 1.32 / \mathrm{man}$ day.
2.- Bravo Actual receipts of copper for the seven month period were $2,338,376$ lbs. Slag losses amounted to $409,286 \mathrm{lbs}$. With copper in the slag ( 31,204 T.) assaying $0.66 \%$. Copper losses would be reduced to $0.25 \%$ with removal of dross and pyrite from the furnace charges resulting in slag losses of $156,020 \mathrm{lbs}$. A direct saving of $36,181 \mathrm{lbs}$. of copper per month is indicated.

During the same seven month period 25,083 weve lost in the slag experince indicates that silver losses could be reduced to . $30 \mathrm{oz} / \mathrm{T}$. resulting in a saving of 2,69 oz per month.
3.- Coca Matte transfered to the copper plant during the period carried lead to the converters at a ratio of 1 lead to 1.6 copper. Since $2,338,376-409,286($ slag loss) $=1,929,090$ lbs. of copper were available for matting it is indicated that $1,205,680 \mathrm{ibs}$ of lead were transfered. Since a ratio ofllead to 5 copper is reasonable for products transfered from the dross furnace, and since $2,338,376$ $-156,020$ (assumed copper loss) $=2,182,356 \mathrm{lbs}$ of copper would be available, a transfer of 436,471 lbs. of lead is indicated.

It is therefore estimated that the reduction in lead transfered to the converters would be $109,900 \mathrm{lbs} /$ month. The retreatment of this lead is expensive and again increases the recirculating load in the plant resulting in less Hew tonnage. 4 Delta see \#Alfa Above.
5. Foxtrot. The process of decopperizing bullion with sulphur is complicated by the presence of tin in the bullion, and the desire to recover this tin
(a) One suggested procedure is to make a preliminary copper drossing, followed by reheating, and tin crossing followed by cooling, cold copper drossing and sulphur drossines. Th is process involves one extra heating of all the lead and would require additional kettle capacity
(b) The possibility exists, since tin drossing requires a high temperature that tin could be drossed following our present procedure with the insertion of the sulphur dressing procedure after the regular cold copper dressing. This method would be satisfactory if the tin did not come up with the copper dross resulting from the addition of sulphur, and would require less man power fuel and capital expenditure. At present there is a large circulating load of tin in the dross indicating that most of the tin will enter the dross furnace in the eycle of opertions irregardless of this sequence of dressing o Some possibility exists that this tin could enter the speiss and be lost from the lead circuit, and this fact should be considered as a possible financial loss when opera ating the dress furnace However the consensus of opinion is that it will remain with the bullion and return to the kettles

It should be possible to determine the proper sequence of dressing and the tin balance to be expected in the dross furnace by small scale research and I strongly recommend that we do this before deciding on a final procedure

CC: AHE (2)
JWH
TRWJ(12)
IL
DAR
HWY

$$
\begin{aligned}
& \text { 24.w. } 24 \text { iso } \\
& \text { Ho WoHiges }
\end{aligned}
$$

GERRO DE PASCO CORPORATION - LA OROXA
Correspondencia Interdepartamental .

Fecha: November 6, 1952
A:
Des:
Materia:
A.HoEngelhardt, Manager of Opierations
J.WoHanley, Assistant Managez of Operetions

TEAD PROGRAM - DROSS REVERBS

While in the United Stateas in 1949, I had the occasion to see Mr. E.P.Fleming, Metallurgist for the American Smelting \& Refining Company, who has done considerable work with the dross reverb. Now that. we are seriously considering a aross reverb operation, at the oroya Smelter, the information given me by Mx. Fleming at that time may be of some interest to our operating and engineering departments. Attached to this memorandum you will find quite a complete ilst of specifications on the dross reverb fumneces at Chihuahua, Mexico and El Paso, Texas, These speciflcations give both furnace construction data and operating data as to fuel, draft, tomperature, gas analyses, and capacity.

In discussing dross reverberatory furnaces with Mr. Fleming he estimated that the cost of the EI Paso furnace in the united States, in 1949, wculd mun about $\$ 35,000$ for the furnace proper, not includinf building, eranes, flue connections, ete. From this figure a furnace of the RI Paso type, exected in Oroya in 1949 , would have cost approximately $\$ 46,000$, allow ing $30 \%$ for freight, duty, consular fees, etc. A furnace of this type erected today in Oroya. would probably cost in the neighborhood of $\$ 60,000$.

Also attached find a drawing of the dross reverb at the Shelby Plant of the American Smelting R Refining Company. While there is no data or speciflcations available for this furnace the drawing may be of general interest.

## JWH/wgs.

Enc- 2 (Incl. 1 Drwg.)
cc: A A P ( 6 - with I Encl. to each )
GR - 1 Encl.
ITB - 1 Encl.
JMM - I Encl.
FWII - 1 EncI.
FILE (JWII)

[^0]全

Arch：

## Chihuahua

$13-1 / 2^{11}$
Arco - $\mathrm{I}_{0} \mathrm{R}_{0} \mathrm{Co}_{0}$
$70 \% \mathrm{Al}_{2} \mathrm{O}_{3}$
S1111manite
150 days

Thickness
Brand \＆Manuf．
Material
Mortar
Lffe
nside $9^{\text {n }}$ Brick Water jacket
Arco $\mathrm{G}_{0} \mathrm{I}$ 。 CO ．
$70 \% \mathrm{Al}_{2} \mathrm{O}_{3}$
Slllimanite
1.50 days

At Bath Line－Thickness Water Jacket $\ddagger 9$ Mag．
Material
Mortar
Life
$86 \% \mathrm{MgO} \mathrm{H} 8 \mathrm{CW}$
2．Chrome
300 days
Below Bath Inne－Thick．
Brand \＆Manuf。
Material
Mortar
Life
Bottom：Double or single Thickness
Brand \＆Manuf．
Material
Mortar
Life
Uptake：
Uptake：
Furnace
Measurements

Thickness
Brand \＆Manuf．
Material
Mortar
Life
Length－Inside
WIdth－Inside
Het ght at Drop Hole
Height between Bath and Arch
Area of Fumace
Area Cross Section Combustion Zone
Area of Exit of Pumnace
Depth of Bath

Hard Burnt Mgo
H\＆W
86\％Mgo
Q Chrome
Incomplete

St．Louis－GoRoCo．
Fire Brick Ojihaya
Incomplete

## $9^{\prime \prime}$

Arco－ $\mathrm{G}_{0} \mathrm{R}_{\mathrm{C}} \mathrm{CO}_{0}$
$70 \% \mathrm{Al}_{2} \mathrm{O}_{3}$
Saireset
150 days
$24^{\prime} 0^{11}$
$9^{\circ} 6^{\prime \prime}$
616＂
$218 \pi$
228 sq．ft．
25.3 sq．ft．
$14.5 \mathrm{sq} . \hat{\mathrm{f}} \mathrm{t}$ 。
$46^{\circ}$
$13-1 / 2^{11}$
Arco－GoR．Co．
$70 \% \mathrm{Al}_{2} \mathrm{O}_{3}$
Sillimanite
463 days
$23-1 / 2^{17}$
Alumex－Mexico，Ma．
$70 \% \mathrm{Al}_{2} \mathrm{O}_{3}$
Sillimanite
4.63 days

Water Jacket $+9^{\prime \prime}$ Mag。
$86 \% \mathrm{MgO} \mathrm{H} \& \mathrm{~W}$
Grefeo
463 days
$18^{11}$
Hard Bumt Mgo
$\mathrm{H} \& \mathrm{CW}$－ OR ．CO。
$86 \% \mathrm{MgO}$
Grefco
Thermolith at Bath
3 － 4 years

## 18＂Double

Fire Brick－Pueblo S－1．
Fire Brick
Hiloset：
3－4 years
97
ARCO－G．R．CO
$70 \% \mathrm{Al}_{2} \mathrm{O}_{3}$
S111 imanit e
463 days

## $27^{177}$

$8^{1} 2^{n}$
（ $612^{\prime \prime}$
$7^{1} 2^{17}$
$2^{11} 0^{n}$
$3^{197}$
225 sq ．ft．
21.8 sqo ft．
$16.5 \mathrm{sq} ft.$.
$45^{\prime \prime}$

## DROSS REVERBS

Combustion Data:

| Type of Fuel | 1 | Gas |
| :---: | :---: | :---: |
| Type of Burner | Low Pressure D.F.C. | Force Draft |
| Number of Butmers | 2 | 2 |
| Temperature of Fuel | $14.5{ }^{\circ} \mathrm{F}$ |  |
| Amt. Fuel burnto Hr 。 | 50 gal . | 11,000 CoFo |
| Draft in Purnace during smelting | $.06=.08$ | $.05-.06$ |
| Height of burner |  |  |
| above bath | $2^{19}$ | $12-3 / 8^{\prime \prime}$ |
| Inclination of |  |  |
| burner to bath | 70 | 70 |
| BoIou. Value of Fuel | 14.931 | 1090 |
| Pressure at Bumer | 44085 | 10.0 |

Gas Analysis:

$$
\begin{aligned}
& \mathrm{O}_{2} \\
& \mathrm{CO} \\
& \mathrm{CO}_{2}
\end{aligned}
$$

1.2
12.8
2.5

0
20.0

Temperature:


CERO DE PASCO CORPORATION - LA ORIYA
Correspondencta Interdepartamenta?
Fecha: November 3, 1952.
A: AsH. Engelharde, Manager of Operations
De: To P. Wire git Assistant to Manager

Material:
Separate Smelting of Copper Dross - Net Returns Ref: Cable of Oct. 29, Koenig to Engelhardi.

In my memo of October 21 on the above subject, the net-return calculations did not take into account the potential. revenue that would derive from the increases in recoveries of copper, lead and silver from the regular intake of copper- and silver-bearing lead concentrates. This revenue increment was disregarded for two reasons: a) the cabled directive of October 16 was misinterpreted; b) the misinterpretation conformed to my view that economic analyses should be conservative-parifcularly so In the case of proposed operations for which factual data are lacking. Consequently, the net-returm calculations (Oct。21) ware limited to the additional throughput of custom ores \& concentrates that would obtain with separate dross-smelting facilities.

By disregarding the revenue increment in respect to the regular intake, the estimated net returns from a dross-fumace installation are protected by an economic safety factor. Since the safety factor was fairly large in this instance, the net returns reported in the memo of October 27 are admittedly on the low side.

In his cablegram of October 29, RoP。Koenig stresses the point that full credit should be given for the potential increases in recoveries as applied to the regular intake. In line with this wewpoint, the net returns are re-amended horentith.

## Increases in Recoveries, Regular Intake

Lead recover is not affected by the method of treating copper dross except In the case of concentrates that assay fairly high ib copper ( $2 \%$ Cu or higher). In relation to the regular intakes the high-copper concentrates are the following:

$$
\begin{aligned}
& \text { Colquiflroa } \\
& \text { Yauli }
\end{aligned}
$$

$$
\begin{array}{llll}
\text { "Outs } & 3,001 \\
& 6,000 & 3.00 & 45.0
\end{array}
$$

(Note: these figures correspond to those on page 5, memo of October 1.)
As given on page 14 of the original memo (oct. 1), the net logs of lead from lead-copper concentrates, in terms of feed-assay units, is:

$$
\begin{aligned}
& \text { Copper dross circulated: } \quad 3.5 \% \mathrm{~Pb} \\
& \text { Copper dross treated separately:3.0 } \% \mathrm{~Pb}
\end{aligned}
$$

Thus, with separate treatment of copper dross, the additional lead recovered annually from the above concentrates would be:
$(4,800+3,600+6,000) \times(3.5-3.0) \times 20=24,4,00 \times 0.5 \times 20=224.000 \mathrm{ibs}$. lead.
(As stated, the respective lead losses, or feed-assay units, are approximations - to the nearest tenth of a unito If the actual difference In feed-assay units should be 0.486 instead of 0.5 , the additional lead recovered world be $11,0,000$ ibs. ner year.)

Since the difference in lead recovery depends upon the amount of lead transferred to the copper plant in the form of lead-plant matte, the additional lead recovered from the regular intake of lead-copper concentrates may be computed by an alternative method. Referring to page 14 of the orfginal memo, the amual transference of lead in the form of blastfurnace matte is $1,437,000 \mathrm{lbso}$; in the form of dross-furnace matte, $884,000 \mathrm{lbs}$. The respective losses of lead on re-treatment of the matte would then be:

Annual Lead Loss. Lbs.

Blast furmace matte, $12.5 \% \mathrm{~Pb}$;
loss: $100-75 x(12.5-0.6) / 12.5-28.60 \%$; $0.2860 \times 1,437,000=$
Dress-fumace matte, $8.0 \% \mathrm{~Pb}$;
Ioss: $100-75 \times(5.0-0.6) / 8.0=30.63 \%$;
$0.3063 \times 88 \% .000 \mathrm{~m}$
Decrease in loss increase in recovery .

## 411,000

This alcernative method of computation gives substantially the same result as the first method。Consequently, from 1955 onvard, the annual increase in lead recovery from the regular intake may be taken at 140,000 pounds.

Copper recovery, lead-plant foed, Without a dross furnace, the net loss of copper in terms of feed-assay units is taken at $0.37 \%$ Cu; with a dross fumble, the not ioss is essumbed to be equivelent to $0.26 \% \mathrm{Gu}$ (See page 13, memo of 0ct. I.)

For the 1955-1957 period, the mean amual intake of regular feed (1.00, restricted feed without a dross furnace) is estimated at 150,600 DST; for $1955^{\circ}$ and subsoquent yoars $260,800 \mathrm{DSm}$ (seo pager 2 \& 3 , memo of Oct. 21). With separate smelting of copper drosss the increase in recovery of copper from the regular intake would then be:

Copper Recovered, Annual Increase
from
Regulax Intake
1955-2957: $\quad 105,600 \times(0.37-0.26) \times 20=105,600 \times 2.2=$ 1958 et seq.: $160,800 \times(0.37-0.26) \times 20=160,800 \times 2.2=$ 232,000 16s. 354,000 2bs.

Silver recovery, lead-plant feede Without a dross furnace, the silver loss in terms of feed-assay units is taken at 0.8 ogAg; with a dross fumace, the loss is assumed to be equivalent to 0.6 ozAg (aee page 15 , memo of Oct. 1). Whth soparate smelting of copper itoss, the apparent increase in recovery of silver from the regular intake would be:

Si3.ver Recovered,
Annual Increase froill

1955-1957: $\quad 105,600 \times(0.8-0.6)=105,600 \times 0.2=$
Reguiar Intake
1958 et seq. : $160,800 \times(0.8-0.6)=160,800 \times 0.2=$

## Net Returns from Additional Recoveries on Regular Intake

Value of production. Using the same metal prices and ex-Callao deductions as given in the memo of Det. I, the value of production in respaci to the additional racoveries would be as follows:

## 3255-1957:



## 1058 et sego:

 Copper (Callao): 354,0001 bso $\times 0.23850=$ Lead (Callao): 140,000 lbso $x 0.12920=$Silver (New York):
32,200 ozso $\times 0.75000-$

| Inorease |
| :---: |
| In |
| Annual Value |
| $\$ 5,300$ |
| 16,700 |
| 15,800 |
| $\$ 87,800$ |

B 84.400
16,700
24,200
$\$ 125,300$

Allocable costs. As applied to the additional production of metals from the regular intake, the production costs would constitute the refining \& shipping costs plus the cost of converting the additional copper. (Note: The lead-smelting cost would not change significantly; $i_{0} e_{0}$, at the low copper content of the regular intake, the cost per ton of feed would be substantlally the same with or without a dross furnace.) The cost of converting the additional coppor may be takon at $1.350 \%$ por pound, which would give a corbined cost of 3.105 f per pound for converting, refining \& shipping copper.

1955-1957:


## Increase. <br> in

Annual Costs
\$7,200
1,200
900
\$9,300

## .958 et seg:

| r | (Callao): | 000 1bs. $\times 0.03105$ | 11,000 |
| :---: | :---: | :---: | :---: |
| Lead | (Callao): | 140,000 1bs. $x 0,00830$ | 1,200 |
| Sllver | (New York): | 32,200 ozs $\times 0.04325=$ | 100 |
| total |  |  | 23,600 |

Gross margin and net returns on additional production of metals from regular fintake:

Value of produetion

| - Annual $1955=1957$ | Amounts 1958 et seo |
| :---: | :---: |
| \$ 87,800 | \$125,300 |
| 9,300 | 13.600 |
| 78,500 | \$111.700 |
| 900 | 1,400 |
| \$77,600 | \$110,300 |
| 31,000 | 446, 100 |
| 46,600 | \$66,200 |

Return on Investraent
Combining these netwreturn increments with the net returns on extra
custom intake (as given in the memo of Oct. 2l), the over-all net returns would be as follows:



```
cc: AHE (5)
    RPK (10) New Tork
    RPK IIma
    WCS N.Y。
    GR
    JWH
    ILB
    JMN
    HWH
    DAR
    RRvE
```

La Oroya,
July 23, 1951.

To : Mr.A. R. Merz, Manager of Operations, Oroya.

From : J.W. Hanley, Superintendent.

## Treatment of Copper Dross

Attached find a report by Mr. Higgs on the above, also electric furnace work done, and a report by Mr. Millican on his experiments.

As Mr. Higgs points out, the decision as to a dross furnace is very importand to our over-all lead expansion program, and is definitely indicated. We should reach a decision as ouickly as possible as to the type of furnace and process to be used. Should further research work on the project be necessary, and it seems indicated from Millican's work, this should be done.

In connection with the above, we see no reason why the experimental furnace (copper dross) should not be torn down and the materials salvaged since it has not been in use for over six months and we have no plans for its operation in the future.

We would aporeciate comments from the New York Staff on the attached reports.

/s/J.W.Hanley<br>Superintendent

```
encls.
CC: ARM - 3
    HWH
    ILB
    f.
```

La Oroya, July 23rd, 1951.

To : Mr. J. W. Hanley, Superintendent, La Oroya.

From : H. W. Higgs Asst. Supt., Lead Smelting, La Oroya.

Subject: Treatment of Copper Dross
1.- The problem of the treatment of copper dross in Oroya has been met in the past by resmelting through the blast furnaces with sufficient sulphur to insure matting of the copper in the charge. The necessity of expanding operations in the future, imnroving metallurgical work and providing the most economical installation possible make it mandatory, for the following reasons, that separate dross smelting facilities be installed.
a) The large circulating load of dross (several thousand tons per month) displaces similar tonnages of sinter which will become available if contemplated sinter plant expansion proceeds.
b) In order to matte the copper it is necessary to leave considerable amounts of sulphur in the sinter or to add sulphur to the furnaces in the form of pyrite. This has several bad effects on operations as a whole.

1. It is almost impossible to control sulphur in sinter to any set limits. Good operation requires continual effort toward producing low sulphur sinter of excellent physical quality. Deviations from this practide result in production of poor quality sinter with subsequent fumace difficulties.
2. The addition of sulphur in any form may result in the formation of crusts, alnost certainiy increases copner and silver losses in the slags and is recognized to prohibit fast furnace speeds.
c) Smelting of dross in the blast fumace is not economically justifiable compared with other methods when consideration is given to all factors involved. These include actual cost of smelting, loss of tonnage on the blast furnace, additional metal losses in lead furnace slags and increased lead losses in the copper plant caused by poor ratios of lead to copper in the furnace matte.
2.- Two methods are used extensively at other smelters for treating this dross. Both involve smelting in small gas or oil fired reverberatory furnaces and can be described as follows.
a) Smelting with a silica-lime slag。 Using this method the dross is charged into the furnace with sufficient sllica and limerock to form a fluid slag with the oxidized portions of the dross. Three products are formed. Slag which is usually returned to the blast
furnace. Speiss which is shipped to copper plants and bullion which is returned to the lead kettles. This is a fairly high temperature operation and the circulating load of copper between the dross furnaces and the kettles is of isen of darge magnitude. Lead to copoer ratios vary considerably in the speisses produced and devend upon the ratios of copner, arsenic, antimony and iron present. This process is often modified by the addition of metallic iron or blast furnace speiss to the furnace charge. Under optimum conditions very excellent ratios ( $20-1$ copner to lead) can be obtained. However the process in practice has been found difficult to control and all American Smelting and Refining Co. Plants have adapted the Fleming Process developed by Mr. Fleming of that company.
b) The Fleming Process utilizes soda ash as a flux and produces three products. A Matte-Slag combination containing most of the iron which is shipoed to copner plants. A high copner speiss also shipped and a bullion for retum to the lead kettles. This is essentially a low tempersture oper-tion and the bullion oroduced is low in copper.
3.- The choice of processes must be based on economic considerations and the advantages and disadvantages of each are listed below.
a) Advantages of Silica Iime Process.
3. Cheapness of flux.
4. Simple operation to mun.
b) Disadvantages of Silica-Iime Process.
5. High fuel cost (high temperature operation)
6. Short furnace life (high temp. operation)
7. Usually poor or erratic copper lead rotios.
8. When ratios are good copper assay is low.
c) Advantages of Soda Ash process.
9. Low fuel cost (low temp. operation)
10. Good furnace life (low temp. operation)
11. Uniformily good copper lead ratios over a wide range of compositions.
12. High assay copner products formed.
d) Disadvantages of Soda Ash process.
13. Cost of flux.
14. Difficult oper-tion (removal of matte necessary at definite intervals or oxidation and magnetite formation takes place. Constant charging necessary to prevent oxidation and clost control of bath temperatures necessary to obtain good copner lead ratios)
15. Expedience of other plants indicates that tin oxidizes seadily if present with formation of refractory crusts.

Insufficient data is available at present to enable us to reach a decision as to which process should be used however both can be conducted in the same furnace with nearly identical handing equipment and the decision could be based on actual full scale operational results.
4.- All dross smelting furnaces with which I am familiax have used elther gas or oil as fuel. I can see no reason why this type of operation could not be carried on in an electric furnace of a type which heats from the top of the bath. In both operations (slag and soda ash) the melting temperatures of the various oroducts are highest for the light materials and drop as the oroducts get heavier therefore top heating is essential. When consideration is given to the use of electric furnaces vs. ofl fired the following factors must be considered.
a) Original cost of installation.
b) Cost of fuel, oil vs. electricity plus electrodes.
c) Iffe of furnace brickwork.
d) The foct that electric furnaces have not yet been proven for this Work and so far as I know are still in the process of exnerimentation.
e) Other oper tional costs, handing etc. should be about equal.
5.- The test work so far performed on dross smelting consists of three years trial smelting using the soda ash process and test smelting in a carbide furnace and the Detroit rocking furnace.

Soda ash smelting in the dross reverb was discontinued in November 1950. This operation was never successfull due to the location of the furnace. Reasons for discontimuing this operation are given in my letters to you of April 22, 1950, NDross Furnace Operation ${ }^{\text {m }}$ and October 10, 1950 "Operation of Present Dross Reverb. Furnace. Smelting in the carbide furnace was covered in my report of November 28, 1950, "Copper Dross Smelting". I am attaching a copy of the pertinents parts of that report to this. Mr. H. M1111can's full report covering the experimental work performed in the Detroit rocking furnace is also attached.

Both the carbide furnace and Detroit rocking furnace experiments indicnted that our dross contains an excess of collector (arsenic plus antimony) and that excellent copper lead ratios could be obtained by the addition of scrap iron. These tests as they were performed gave results similar to those obtained using the silica lime slag process and comparable results could probably be exvected when using this pracess in either oil fired or eceltric furnaces. It is probable that the soda ash process could be used in the electric furnace also.

It was found impossible to obtain any data on the consumption of electricity per unit of dross smelted in either test. The Detroit rocking furnace used excessive amounts but was lined with only $4^{\text {M }}$ of magnesite brick.
6.- The balance of Mr. Millican's renort concerns the work he performed trying chloride fuming and smelting dross with litharge slag to effect the removal of tin. Chloride fuming results were largely negative, however, the experimental work, while admittedly scanty, indicates that tin could be quantitatively removed if high Iftharge slags can be produced and used.
7.- Smelting dross using the ordinary processes in either an oil or electric furnace will result in loss of most of the tin into the copper circuit. Mr. Millican's litharge slag smelting nrocess apmarently offers a solution to this nroblem and additional experimental work should be done immediately to determine the true possibilities of this method.

The actual installation of dross smelting facilities, I feel, should be considered as part of the overall smelting exnansion program. This installation would best be located under the nresent lead plant craneway where dxoss could be charged hot directly from the ketties. Cohstruction of new furnaces and the dismantling of \# I Blast furnace would provide room for this.

If the litharge slag smelting proves unsuccessfull a decision must be reached as to the use of electric furnaces or oil based on the factors mentioned oreviously.

If plans are made to proceed with smelter expansion in the near future it would be far better to install dross smelting focilities as part of this project than to proceed at oresent however if this expansion is to be postponed for some time then dross smelting facilities must be installed regardless. In the meantime we will continue to smelt in the blast furnace.
H. W. Higgs

Asst. Supt. - Lead Smelting
ce: JWH-4
ILB
HWH
f.

HWH/af

## Excerots letter HWH to JWH of Nov，28，1950．

Subject：Copper Dross Smelting．

During the latter part of July at Mr．Reinberg＇s suggestion we tried smelting dross in one of the carbide furnaces with the object in view of determining the possibility of developing a process using this type of furnace．At that time overations were conducted on day－ shift only．All products were tanned through a single tap hole into a small transfer ladle with an apnroximate copacity of 350 pounds． The material was allowed to freeze in the not which was subsequently dumped and various products separated cold．In practice it was often found necessary to dumb the not before the lead had frozen but this should have had little effect on the analyses of matte，slag and speiss．

We first attempted to smelt dross in the furnace using ho flux of any sort．Dross was charged around the electrode and products tapped at frequent intervals．We immediately started producing speiss and lead but also produced a slag which was extremely viscous and of the fol－ lowing assay：－
$\mathrm{Cu} 5.65 \%, \mathrm{~Pb} 33.0 \%, \mathrm{~S} 10211.6 \%, \mathrm{Al} 2033.3 \%$ ，Fe $12.7 \%, \mathrm{CaO} 2.9 \%$ ，As $4.5 \%$ ， Sb 4．3\％．
In view of the lead content of this slag and the possibility that this le d might exist as litharge we statted to add fine conl but this did not change the characteristics of the slag．At the time assays were not avallable and later some burnt lime was added to the charge to flux any silica present but this also give no relief．Speiss anc lead oroduced during this period liquated nicely and froze in distinct lyyers in the pot．Visual observation disclosed two layers of speiss with the follo－ wing assays：－
Top layer Cu $50.2 \%$ ，Pb $27.7 \%$ ，As $2.67 \%$ ，Sb $1.45 \%$ ，Fe 1．5\％，$\$ 3.28 \%$ ． Bottom layer $\mathrm{Cu} 48.9 \%$ ， $\mathrm{Pb} 19.9 \%, \mathrm{As} 17.6 \%, \mathrm{Sb} 7.01 \%, \mathrm{Fe} 0.2 \%, \mathrm{~S} .28 \%$ ． The bottom layer is a true spelss but the top layer is a product of questionable origin．The best ratio of copper to lead existed in the bottom layer of speiss with a ratio of 2.46 to 1.

The slag formed was proving almost imnossible to remove from the furnace．It was then suggested that granulated reverberatory slag be adred to the charge since it easily melts and it was felt that it had sufficient latitude in composition to flux the stillunknown slag being formed from the dross．By using comparatively large quantities of this reverberatory slag we abtained a slag which gave little trouble and had the following comnosition．
$\mathrm{Cu} 2.75 \%, \mathrm{~Pb} 2.4 \%, \mathrm{~S} 10235.4 \%, \mathrm{~A} 12033.8 \%, \mathrm{Fe} 28.3 \%$ 。
A comparatively minor amount of matte was produced assaying as follows： $\mathrm{Cu} 41.95 \%, \mathrm{~Pb} 14.8 \%$ ， $\mathrm{Fe} 17.9 \%$ ， $\mathrm{S} 19.0 \%$ 。
A Speiss was produced assaying
$\mathrm{Cu} 34.9 \%, \mathrm{~Pb} 22.5 \%, \mathrm{Fe} 20.4 \%$, As $12.1 \%, \mathrm{Sb} 6.1 \%$ ．
Results from this test indicated that the dross was deficient in iron to form a good slag so it was decided to try the addition of iron to the charge．This was done br adding shavings etc．to the charge． With iron alone the slag trouble returned so the run was finally conduc－ ted using slag in addition to the iron．Slag，matte and speiss were ob－ tained with the following comnositions．
Slag Cu $0.70 \%, \mathrm{~Pb} 0.2 \%$ ， $810241.8 \%, \mathrm{~A} 12030.4 \%$ ，Fe $23.6 \%, \mathrm{CaO} 7.5 \%$ 。 Matte Cu $39.00 \%$ Pb $10.6 \%, \mathrm{Fe} 21.3 \%, \mathrm{~S} 21.4 \%$ ． Speiss Cu $18.00 \%$ ， $\mathrm{Pb} 1.2 \%$ ，Fe $47.8 \%, \mathrm{As} 19.2 \%, \mathrm{Sb} 5.2 \%$ ．

At the time I started working in Erst Helena in 1941 the plant was treating drosses in the following fashion. The charge consisted of all dross produced olus all blast furnace speiss (added to the charge hot) plus sufficient silica and limerock for fluxing. At that time East Helena was receiving fairly large quantities of arsenic in gold ores and it was their practice to use large amounts of scran iron on the blast furnaces (5\%). As a result they produced large quantities of irony blast furnace speiss. Metallurgical results in the dross furnace were excellent and a speiss was produced assaying about as follows. $\mathrm{Cu} 20 \%, \mathrm{~Pb} 1 \%$ to $2 \%, \mathrm{Fe} 45 \%, \mathrm{As} 24 \%$.

The final soeiss oroduced in the c rbide furnace closely resemblod the speisses being produced in East Helena in 1941. The condition that brought this about was undoubtdy the addition of metallic scrap iron to the charge along with sufficient arsenic in the dross so that it was possible to duplicate the conditions obtained in East Helena by the addition of blast-furnace speiss to the reverberatory furnace charge. When such conditions can be obtained it is possible to nroduce speiss with better copper led ratios than can be obtained with the soda ash process.

The carbide furnace fails for sevoral reasons. A liduid bath is maintained above which charging takes place. Smelting occurs at the face of the bath. Lead and speiss are liquated sbove the bath and are heated in passing through the slag layer. Consequently they are tanned hot with a large absorption of speiss in lead and lead in speiss. Slow colling in the pot allows the products to senarate to some extent but senaration of the products cold is very difficult and impossible on a large scale. Also the speiss and lead passing through the slag layer terd to cool it and this effect is orobably partially responsible for the trouble we had in removing slag.

To : Mr.E.H. Gates, Director of Research
From : Herman Millican

## Subject: Treatment of Copner Drosses

Much of the material covered in this report has been included in preVious reports, but will be covered here for the sake of completeness.

The Fleming process for senaration of lead and copner in copper dorsses had nreviously been tried in the smel.ter, but with generally unsatisfactory results. It was decided to try various other schemes, in the hope of finding a process which could renlace the Fleming one. A secondary consideration was recovery of tin and indium from the copner dross. In the Fleming process, all of the tin and indium go to the matte and speiss layers and are eventually lost.

Ecuipment first used was the Detroit Rocking Furnace usually employed for tin dross reduction, and several small portable casting pots borrowed from the Bismuth Plant. A series of preliminary runs was first made to determine the optivn weight of copper dross to charge into the furnace each time. It fas found that 200 kg . of dross would fill the furnace fairly well and would yield about three-fourths of a pot of product. All work done at the rocking furnace was with a charge of 200 kg . of dross. All weights of fluxes are here reported as percentages of the weights of the cooper dross chrged.

When no flux was used with the copper dross, there was a certain amount of floating clinker which did not melt, even at a temperature of $2600^{\circ} \mathrm{F}$. It was decided to try varying quantities of limestone and silica to obtain a fusible slag. Test muns were made with $2-1 / 2 \%$ silica and $5 \%$ IImestone, $3-3 / 4 \%$ silica and $3-3 / 4 \%$ limestone, $5 \%$ silica and $2-1 / 2 \%$ limestone, $5 \%$ silica and $10 \%$ limestone, $7-1 / 2 \%$ silica and $7-1 / 2$ limestone, and $10 \%$ silica and $5 \%$ limestone. For some reason still not ap"arent, none of the mixtures produced a fusible slag, but greatly aggravated the problem of the cilnker. The accretions had to be chipped out of the furnace after almost every run.
$5 \%$ iron was added to another fusion of dross, and $2-1 / 2 \%$ charcoal to still another. These, too, failed to give any noticeable improvement in melting efficiency.

It was observed that if heating were continued long enough and at a high enough temperature, a certain amount of the clinker seemed to be absorbed by the matte layer. The matte layer was very thin, so it was decided to add extraneous sulfide to the charge. This would thicken the matte layer, thereby increasing the capacity of the layer to absorb the clinker, and possibly improving the copper-lead separation.

An addition of $10 \%$ Paragsha lead concentrate was made to one charge of copper dross, with a resulting great increase in melting efficiency. A molten product, almost devoid of clinker, was obtained at 22000F. It was then decided to run a series of quantitative tests, using $p y-$ rite flux instead of leed concentrates, since weight for weight, pure
pyrite contains almost four times as much sulfur as pure galena.
Six melts were made in the tests--bland, $5 \% \mathrm{FeS2}, 10 \% \mathrm{FeS2}, 15 \% \mathrm{FeS2}$, $20 \% \mathrm{FeS2}$, and $5 \% \mathrm{FeS} 2-5 \% \mathrm{Fe}$. Asseys of speisses and mattes are tabulated below.

Product

| Cu, <br> $\%$ | Pb, <br> $\%$ | $\frac{\mathrm{Cu}}{\mathrm{Pb}}$ | Fe, <br> $\%$ | S, <br> $\%$ | AS, <br> $\%$ | Sb, <br> $\%$ | SIO2, <br> $\%$ | CaO, <br> $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 49.0 | 22.4 | 2.18 | 2.3 | 10.2 | 6.1 | 1.5 | 0.6 | 0.1 |
| 32.5 | 24.3 | 1.33 | 12.8 | 11.7 | 1.5 | 0.7 | 6.0 | 1.2 |
| 38.8 | 28.7 | 1.35 | 7.4 | 16.5 | 1.8 | 0.6 | 0.8 |  |
| 34.3 | 31.0 | 1.11 | 11.2 | 17.0 | 1.6 | 0.7 | 0.6 | 0.5 |
| 26.3 | 33.6 | 0.78 | 15.3 | 15.7 | 2.0 | 1.0 | 2.2 |  |
| 40.6 | 18.5 | 2.19 | 14.1 | 19.4 | 1.1 | 9.6 |  |  |

Blank
$5 \% \mathrm{FeS} 2$
$10 \% \mathrm{FeS} 2$
15\% FeS2
20\% FeS2
5\% FeS2
$\therefore 5 \% \mathrm{Fe}$
Speiss

Blank
$5 \% \mathrm{FeS} 2$
10\% FeS2
15\% FeS2
$20 \% \mathrm{FeS} 2$
$5 \%$ FeS2
$\div 5 \% \mathrm{Fe}$

| 49.8 | 17.6 | 2.83 | 2.1 | 2.2 | 12.2 | 6.6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40.6 | 21.3 | 1.91 | 4.9 | 1.6 | 14.1 | 5.2 |
| 41.2 | 24.2 | 1.69 | 2.8 | 1.9 | 13.8 | 5.4 |
| (No sample | taken) |  |  |  |  |  |
| 14.5 | 62.1 | 0.23 | 2.8 | 2.5 | 7.8 | 4.8 |
| 39.3 | 25.0 | 1.57 | 6.9 | 2.2 | 11.1 | 5.8 |

When $15 \% \mathrm{FeS} 2$ and $20 \% \mathrm{FeS} 2$ were added to the charge, there were only two layers--a matte layer and another layer which seemed to combine the physical properties of speiss and metallic lead. As can be seen from the assay of "Speiss--20\%FeS2" the bottom layer was apnarently a speiss and the metal layer had completely disapneared. As might be expected, the quantity of matte produced increased with the quantity of pyrite added, until the fusion with $20 \%$ FeS2 contained approximately half matte.

The addition of pyrite, though it made the fusion of the charge much easier, had such an adverse effect upon the copper-lead separetion that the experiments were dropned. On the other hand, the metallic iron which was added in the last fusion seemed to increase the separation of copper and lead, so it was decided to investigate more thoroughly the effect of varying percentages of iron upon the cop-per-lead separation.
Instead of using pyrite or a made-up charge of Iimestone and silica to flux the charge, it was decided to try granulated reverberatory slag. After several experimental runs, it was found that the addition of a minimum of $20 \%$ reverberatory slag would give complete fusion of the charge at $2400^{\circ} \mathrm{F}$. Allsucceeding fusions, blank and with varying amounts of iron, were made with this addition of $20 \%$ slag. It is quite possible, that, in a larger furnace, smaller additions of a better-balanced slag could be made. Four melts were made for assay purposes-a blank, $5 \% \mathrm{Fe}, 10 \% \mathrm{Fe}$, and $15 \% \mathrm{Fe}$. Assays of slags, mattes, speisses, and metals are lísted below.

| Product | $\mathrm{Cu}_{\text {\% }}$ | $\begin{gathered} \mathrm{Pb}, \\ \% \end{gathered}$ | $\frac{\mathrm{Cu}}{\mathrm{~Pb}}$ | $\begin{gathered} \mathrm{Fe}, \\ \% \end{gathered}$ | S, | $\begin{gathered} \text { As, } \\ \text { \% } \end{gathered}$ | $\begin{gathered} \mathrm{Sb}, \\ \% \end{gathered}$ | $\begin{gathered} \mathrm{SiO2}, \\ \% \end{gathered}$ | $\mathrm{Ca}, \mathrm{O}$ | $\underset{\%}{\mathrm{~A} 1203,}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slag |  |  |  |  |  |  |  |  |  |  |
| Blank | 11.55 | 4.0 |  | 35.8 |  |  |  | 27.2 |  |  |
| $5 \% \mathrm{Fe}$ | 0.50 | 1.2 |  | 38.7 |  |  |  | 29.4 | 4.2 | 5.5 |
| $10 \% \mathrm{Fe}$ | 3.90 | 0.8 |  | 40.3 |  |  |  | 23.2 | 3.2 | 4.4 |
| $15 \% \mathrm{Fe}$ | 1.50 | 0.8 |  | 41.2 |  |  |  | 26.6 | 3.5 | 4.8 |
| Matte |  |  |  |  |  |  |  |  |  |  |
| Blank | 42.3 | 24.2 | 1.75 | 7.3 | 16.8 | 2.4 | 0.5 |  |  |  |
| 5\% Fe | 42.3 | 15.7 | 2.69 | 13.5 | 15.7 | 3.1 | 0.6 |  |  |  |
| 10\% Fe | 39.8 | 17.5 | 2.24 | 15.7 | 19.2 | 1.7 | 0.5 |  |  |  |
| $15 \% \mathrm{Fe}$ | 35.5 | 9.8 | 3.62 | 20.7 | 19.8 | 1.3 | 0.6 |  |  |  |
| Speiss |  |  |  |  |  |  |  |  |  |  |
| Blank | 41.2 | 29.6 | 1.51 | 3.0 | 2.3 | 10.8 | 4.5 |  |  |  |
| $5 \% \mathrm{Fe}$ | 39.6 | 20.7 | 1.91 | 8.2 | 3.0 | 12.2 | 4.4 |  |  |  |
| 10\% Fe | 34.3 | 18.6 | 1.84 | 16.1 | 3.8 | 9.7 | 4.1 |  |  |  |
| 15\% Fe | 24.2 | 4.2 | 5.76 | 36.4 | 3.7 | 13.5 | 4.0 |  |  |  |
| Metal |  |  |  |  |  |  |  |  |  |  |
| Blank | 0.35 | 93.2 |  |  |  | 0.3 | 2.4 |  |  |  |
| 5\% Fe | 0.35 | 94.3 |  |  |  | 1.5 | 2.8 |  |  |  |
| 10\% Fe | (NO | mole | taken. | Butto | fros | n to | t.) |  |  |  |
| 15\% Fe | 1.00 | 95.3 |  |  |  | 0.1 | 0.9 |  |  |  |

It can be seen from the assays that, though the percentage of copper in the matte and the speiss decreases when met lilic iron is added, the ratio of copner to lend show a steady improvement.

When the encouraging conner-lead ratios were obtained with the addition of metallic iron to the charge, it was decided to have the various products assayed for tin, to see. whether the iron had reduced the in to the metallic state or not. Assays are listed on the next page.

| Slag | 0.99 | 1.23 | 0.84 | 0.60 |
| :--- | :--- | :--- | :--- | :--- |
| Matte | 0.11 | 0.25 | 0.69 | 0.27 |
| Speiss | 0.38 | 1.44 | 2.29 | 1.34 |
| Metal | 0.82 | 0.35 |  | $0.31 \quad(3.01)^{\circ}$ |

- Metal assaying $0.31 \% \mathrm{Sn}$ was taken from the bottom of the buttor after it had solidified. Metal assaying $3.01 \% \mathrm{Sn}$ was taken from the top of the button.

It can be seen, then, that the additwon of metallic iron does not have any great effect upon the proportions of tin in the slag, the motte, the speiss, and the metal.

It was then decided that, since stannous chloride is very volatile at the fusion temperature of copper dross, it might be possible to fume the tin from the melted dross with common salt. Runs were made as follows: blank, $2 \% \mathrm{NaCl}, 5 \% \mathrm{NaCl}$, and $10 \% \mathrm{NaCl}$. Assays are listed below.

|  | $-4-$ |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Blank, <br> $\% \mathrm{Sn}$ | $2 \% \mathrm{NaCl}$, | $5 \% \mathrm{NaCl}$, | $10 \% \mathrm{NaCl}$, |
|  |  | $\% \mathrm{Sn}$ | $\% \mathrm{Sn}$ | $\% \mathrm{Sn}$ |
| Fume |  | 9.92 | 5.39 | 3.47 |
| Slag |  | 8.00 | 7.44 | 2.46 |
| Matte |  | 0.31 | 2.93 | 0.47 |
| Speiss |  | 0.47 | 2.39 | 1.03 |
| Metal |  | 0.73 | 1.46 | 0.33 |

No weights were obtained, except in the case of the fume. For $2 \% \mathrm{NaCl}$ the fume weighed 3 Kg ., for $5 \%, 9 \mathrm{~kg}$., and for $10 \%$, 10 kg . The contained tin in the fume was roughly 0.3 kg . for $2 \%$ salt, 0.5 kg . for $5 \%$ salt, and 0.35 kg . for $10 \%$ salt. The vercentage of recovery was on the order of 10-20\% in each case.

The larger percentages of salt seemed only to nroduce more fume and lower the percentage of contained tin in the fume without improving the extraction of tin, so the experiments were dropped. It should be noted that temperatures of $2700-28000$ were reached in the fusions, and that it would probably not be practical in a large-sele furhace to go to any higher temperntures.

It was noticed that, when salt was used as a slagging agent, the percentage of tin in the slag increased greatly, possibly because of some oxidetion reaction catalyzed by the chloride. It was decided to try a combination of salt and litharge to see if all of the tin could be oxidized and taken into the slag layer. For the preliminary tests, two melts were made-one with $5 \% \mathrm{NaCl}$ and $10 \%$ litharge (fines from Betts Plant hammermill), and the other with $5 \%$ salt and $25 \%$ litharge. Assays are listed below:

| $\mathrm{Sn}_{\%}$ | Cu, | Pb, | $\frac{\mathrm{Cu}}{\mathrm{Pb}}$ |
| :---: | :---: | :---: | :---: |

$5 \% \mathrm{NaCl}, 10 \% \mathrm{PbO}$

| Slag | 8.87 |
| :--- | :--- |
| Matte | 2.74 |
| Speiss | 2.06 |

4.99
19.1

Speiss 2.06
46.0
29.5
1.56

Metal
1.01
$5 \% \mathrm{NaCl}, 25 \% \mathrm{PbO}$

| Slag | 3.53 |
| :--- | :--- |
| Matte | 0.68 |
| Speiss | 0.10 |
| Metal | 0.02 |

3.00
34.4
$52.8 \quad 25.2$
2.10

Speiss
0.02
51.3
22.3
2.30

The assays for copper and lead were made to see if the oxide slag had any effect upon the conser-lead ratio in the matte and the speiss. The tests tended to show that the tin would go into the slag, and that the copper-lead separation would be improved, at least slightly, so it was decided to investigate the possibilities of the scheme more thoroughly. Since it would be very difficult to obsain the litharge needed to treat 40 to 80 tons of copoer dross per day, it was decided to use refinery slag from the Bismuth Plant converters. This slag contains roughly $50 \%$ lead $20 \%$ antimony and small percentages of copper, arsenic, and silver,
all as oxides. It was also decided to try to use the refinery slag alone, since salt increased the amount of fume formed.

A preliminary fusion was made with $30 \%$ refinery slag. There was so much oxide slag left floating on top of the fusion, however, that it was decided to cut down the amount of slag used. No samples were taken of this preliminary fusion. Four fusions were made for assay purposes-blank, 5\% refinery slag, $10 \%$ refinery slag, and $15 \%$ refinery slag. Assays are listed below and on the next page.

|  | $\mathrm{Sn},$ | $\begin{aligned} & \mathrm{Cu}, \\ & \% \end{aligned}$ | $\mathrm{Pb} \text {, }$ | $\frac{\mathrm{Cu}}{\mathrm{Pb}}$ |
| :---: | :---: | :---: | :---: | :---: |
| Blank |  |  |  |  |
| Matte | 1.72 | 44.1 | 30.0 | 1.47 |
| Spelss | 0.07 | 46.3 | 26.2 | 1.87 |
| Metal | 0.02 |  |  |  |
| 5\% Refinery Slag |  |  |  |  |
| Fume | 12.4 |  |  |  |
| Slag | No sleg | layer present |  |  |
| Matte | 0.38 | 48.7 | 29.6 | 1.65 |
| Speiss | 0.97 | 4,9.1 | 21.9 | 2.242 |
| Metal | Trace |  |  |  |
| 10\% Refinery Slag |  |  |  |  |
| Fume | 10.2 |  |  |  |
| Slag | 3.81 | 23.7 |  |  |
| M-tte | 0.64 | 46.3 | 31.3 | 1.50 |
| Speiss | Trace | 50.9 |  | 2.54 |
| Metal | 0.01 |  |  |  |
| 15\% Refinery Slag |  |  |  |  |
| Fume | 8.93 |  |  |  |
| Slag | 2.69 | 1.73 | 46.8 |  |
| Matte | Trace | 48.9 | 28.7 | 1.70 |
| Speiss | Trace | 47.8 | 23.0 | 2.08 |
| Metal | 0.01 |  |  |  |

The fumes, though containing a high percentage of tin, were of such low weight as to be relatively unimportant. The weights of fume were 2 kg . for $5 \%$ refinery slag, 3 kg . for $10 \%$ refinery slag, and less than 1 kg . for $15 \%$ refinery slag.

Not weights of slags were taken except in the case of the final melt ( $15 \%$ refinery slag), which weighed 2.3 kg . The refinery slag was apparently more effective in sligging the tin than was oure litharge, probably because any of the antimony oxides contains more oxygen oer unit weight than does litharge.

It was then decided to try blowing the copner dross in a converter, to see if the copper-lead ratio could be further improved. A small converter at the antimony plant was renovated and used for this work. The converter was oil-fired rather than electrically hented, so the work was done with somewhat lower temperntures than were used in the rocking furnace. Since the converter had a somewhat larger capacity than the
rocking furnace, 500 kg . of dross was charged each time instead of 200 kg .
On the first run, it was decided to turn off the burner while the blow was in progress, since otherwise there was a great deal of fuming. As a result, the furnace became somewhat cold, since the heat of formation of litharge did not completely counteract the cooling of the converter by radiation. There was no matte obtained, but a sample of the speiss was taken and sent to the laboratory. It assayed $57.6 \% \mathrm{Cu}$ and $9.8 \% \mathrm{pb}$, for $2 \mathrm{Cu} / \mathrm{Pb}$ ratio of 5.88 .

On the second charge it was decided to ignore the fuming and keep the burner on while the charge was being blown, so that the dross would stay hot. Two sets of samples were taken--one after 15 minutes of blow, and the other after 30 minutes of blow. Assays are listed below.

|  | Cu, <br> $\%$ | Pb, <br> $\%$ | Cu <br> Pb | Sn, <br> $\%$ |
| :--- | :--- | :--- | :--- | :--- |
| After 15 minutes |  |  |  |  |
| Slag | 1.11 | 47.6 |  | 1.30 |
| Matte | 52.6 | 27.4 | 1.92 | 0.01 |
| Speiss | 52.8 | 18.2 | 2.90 | 0.01 |
| After 30 minutes |  |  |  |  |
| Slag | 3.29 | 50.1 |  | 0.80 |
| Matte | 59.0 | 20.8 | 2.84 | 0.01 |
| Speiss | 56.7 | 14.3 | 3.97 | 0.01 |
| Metal | 0.09 | 99.3 |  | Trace |

It was then decided to determine what length of blow was necessary to obtain good results without getting an excessive amount of slag. Results were very puzzling. In one melt, for instance, samples were taken after 15 minutes, 30 minutes, one hour, and an hour and a half. After 15 minutes, the matte assayed $22.6 \% \mathrm{pb}$; after 30 minuted $21.9 \% \mathrm{~Pb}$; after one hour, $22.5 \% \mathrm{~Pb}$; and after an hour and a half, $21.7 \% \mathrm{~Pb}$ and $58.2 \% \mathrm{Cu}$. Two samples of speiss were taken. That taken after 30 minutes assayed $15.3 \% \mathrm{~Pb}$, and that taken after an hour and a half assayed $19.5 \% \mathrm{~Pb}$ and $56.9 \% \mathrm{Cu}$. In other words, the lead content of the matte was more or less constant, and that of the speiss was apparently increasing with continued blowing.

It was then decided that possibly the temperature was the controling factor. A charge was blown for thirty minutes, a sample of the speiss was taken, and the converter was allowed to chill until the crust started forming on the oxide slag ( $\dot{\text { flo }} 50$ F). A sample of both matte and speiss was taken, and all three samples were sent to the laboratory. Assays were as follows: Hot speiss, $15.0 \% \mathrm{~Pb}$ and $60.1 \% \mathrm{Cu}$, for a ratio of 4.01 ; cold speiss, $7.1 \% \mathrm{~Pb}$ and $66.5 \% \mathrm{Cu}$, for a ratio of 9.37 ; and cold matte, $17.9 \% \mathrm{~Pb}$ and $57.3 \% \mathrm{Cu}$, for a ratio of 3.20 . There was some freezing of the matte when the sample was taken, however, so pouring would probably have to be done at a somewhat higher temperature in practice. Incidentally, a small amount ( 10 kg . or $2 \%$ ) of silica was added to this charge, with the result that the slag, instead of becoming viscous, remained fluid right down to its freezing temperature.

It was then decided to try using refinery slag again, without blowing the charge. Apparently the melt was allowed to cool too much before cooling, since no matte was obtained, and there were some solids left in the furnace after pouring. Assays of the products are listed below: (10\% refinery slag was used.)

| Cu, | Pb, | Cu |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\%$ | $\%$ | Pb | Sn, <br> $\%$ | Fe, <br> $\%$ | As, <br> $\%$ | Sb, <br> $\%$ |
| 3.54 | 53.1 |  | 0.85 | 6.1 | 6.74 | 7.16 |
| 58.2 | 12.1 | 4.81 | 0.01 | 0.6 | 18.0 | 6.03 |
| 1.14 |  |  | Tr. |  |  | 1.55 |

From the admittedly scanty evidence, then, it would seem that the following are true: That the oxide slag treatment will give copper-lead separations about as good as the Fleming process (Average of the Fleming furnace copper-lead ratios for the period January-August 1950 are as follows: slag, 3.47; speiss, 3.14; and matte, 2.73.); that tin and possibly indium can be extracted quantitatively from the matte and the speiss (An assay for indium of one of the oxide slags has just been finished. The slag contained $0.30 \% \mathrm{In}$, which would indicate that probably all of the indium is in the oxide slag.); that the treatment does not need any special fluxes, such as the Fleming process does; that the oxide slag can be furnished either by blowing or by adding refinery slag, though blowing seems to be somewhat more efficient; that an oxide slag of $10 \%$ of the weight of the dross charge is sufficient; that probably $75 \%$ of the lead present in the dross can be recovered as metallic lead, the rest being in the matte and speiss "which go to the copper circuit and in the oxide slag which returns to the blast furnaces; that the matte and the speiss will contain around $50-60 \%$ copper; and that a treatment temperature of 1800-19000 is sufficient, as compared to the metallic-iron treatment temperature of 22000 F .

It is not known whether there would be any eventual problem of either liner corrosion or accretions forming, but there was no evidence of either one in the short time in which the furnace was operating. If it is decided to do further development or operations work on this process, I will gladly answer any questions that I can. Mr. Gates has my home address.

Yours truly,

Herman Millican
Extra copy HWH/af


[^0]:    Original signed by A. H. Engelhardt

