The Lead Program

Gerro de Pasco Corporation - New York INTER-DEPARTMENT MEMORANDUM

Date: July 31, 1951

To: R. Pe Koenig
From: Lawrence Addicks
Subject: Lead Program

1. The subject of your memorandum of May 30th covers a very wide field and the coments I offer are naturally tentative. I also appreci. ate that the men resident at Oroye are in a better position to appraiae many of the angles than I am. With these reservations I outline my first reactions.
2. Offhand the eventual building of a new lead smelter at la Fundicion, many miles from Oroya, does not appeal to me. The principal reasons are the additional altitude, the divided management, the doubtful water supply and the railroad belance. The last would require study but I should guess that the total ton-miles of raws semi-finished and final products would favor Oroya. The gains are mostly in a claim that Oroya cannot do a good job on the tonnage required. Mr. Higgs ${ }^{0}$ letter of June 21st shows careful thought and sets up conclusions which will have to be demolishod before granting necessity for remoyal.
3. Aside from purely lead matters the equivalent ainc capacity must more hand in hand because our goal, and in low markets our necessity, will be to treat all concentrates products in Peru.
4. The lead refinery at Huaymanta has potential capacity to taks care of any tonnage contemplated. Anode scrap melting clearly belongs within this unit. The samo metal accounting reasons as in the copper refinery apply here and to my thinking far outweigh any adventages from ballast metal at the anode casting end.
5. Our metal loss record bas been so confused that we need a definite policy of wherever possible consolidating distinct metallurgical operations as separate units, so that loss responsibility may be definitely placed.
6. As time goes on we shall probably beve an increasing number of intermediate products in the complicated copper-zinc-lead relationship and it is well to bave the means of dealing with these at band without introducing transportation problems which, all else aside, always involve metal losses.
7. In judging these matters we must keep in mind that we may not continue to live in the present metal market paradise.

Cerro de Pasco Corporation - New Yorr INTER-DEPARTMENT MEMORANDUM

Date: July 31, 1951
To: R. P. Koenig
Trom: Lawrence Addicke
Subject: Lead Program

1. The subject of your memorandum of May 30 th covers a very wide field and the comments I offer are naturally tentative. I also appreciate that the men resident at Oroya are in a better position to appraiss many of the angles than I am. With these reservations I outline my first reactions.
2. Offhand the eventual building of a new lead smelter at La Fundicion, many miles from Oroya, does not appeal to me. The principal reasons are the additional altitude, the divided management, the doubtful water supply and the railroad balance. The last would require study but I should guess that the total ton-miles of raw, semi-finished and final products mould favor Oroya. The gains are mostly in claim that Oroya cannot do a good job on the tomnage required. $11 r$. Higgs ${ }^{0}$ letter of June 21st shows careful thought and sets up conclusions which will have to be demolished before granting necessity for removel.
3. Aside from purely lead matters the equiwalent ainc capacity mast move hand in hand because our goal, and in low markets our necessity, will be to treat all concentrates products in Peru.
4. The lead refinery at fuaymanta bas potential capacity to take care of any tonnage contemplated. Anode scrap melting clearly belongs within this unit. The same metal accounting reasons as th the copper refinery apply bere and to my thinking far outweigh any advantages from ballast metal st the anode casting end.
5. Our metal loss recond has been so confused that we need a definite policy of wherever possible consolidating distinct metaliurgical operations as separate units, so that loss responsibility may be definitely placed.
6. As time goes on we shall probably bave an increasing number of intermediate products in the complicated copper-zinc-lead relationship and it is well to have the means of dealing with these at band without introducing transportation problems which, all elss aside, always involve metal losses.
7. In judging these matters we mast keep in mind that we may not continue to live in the present metal market paradise.

Lima, May 30, 1951

MIGYOR ANDUM to: A. R. Mers Q. Reinberg
From: \quad R. Po Koenig
Subject: Lead Program, Middle- and Long-Term View

2. The production of lead cone entrates from the Corporam tion's mines and from independent properties in Central Peru is inoreasing. There is exce?lent evidence that Contral Poru has many as yet undeveloped deposits containing lead (and zinc). The statistical position of lead on a worldwide and long-term basis would appear to be favarable for the contemplation of investing eapltal fonds in order to incrense production of elamental lead. Thus active constderation of an aggressive program leading towards increasing the production of refined lead by the Corporation is in order.
3. The purposes of this memorendum ares
(a) to outline the general terms of reference within which I feel the inerense in the production of lead should be considered, and
(b) to initiate a coordinated effort leading to ascertaining if an in erease in cepenity is technologicelily feasible and economically attractive.
4. It would appear to me that for planning purposes the objective of the lead program as it can be seen today is to have a first-clese plant from start to finish. This plant should be the last word technologically as well as mechanically. It should contemplate, among other things, in its basis of design -
(a) capseity of $160,000 \%$ pounds of refined lead of "Cerro" grade per annum;
(b) provision, from the beds or otner storage facilities through to the casting of anodes, for future expansion to not less than $24,0,000,000$ pounds of refined lead per annum.

> The "Greater Cerro Project", if it develops, might well result in an increase in lead from the Cerro de Pasco Mine of $60,000,000$ pounds per annum. This is based on a possible production of 5,000 tons per day of ore containing 3.5 percent lead。 The possibilities of this project making sense are sufficiently good so that design of facilities such as the additions to or modiflcation of the existing lead plant should be done in a manner that will aid rather than interfere with the increase to the above ultimate rate of production。
4. Thus the long-term objective would be to have a modern plant capable of increase without having to rebuild that which may be built in the relatively near future - $e_{0} g_{0}$, new blast furnaces, bag house, revamping of sinter plent, etc. Within the framework of this objective as set out in $3 \infty(\mathrm{a})$ there is a middle-term view: to inerease lead capacity to, say, $145,000,000$ to $155,000,000$ pounds per annum by the modification of existing facilities and the addition of cextain new facilities that would fit into the long-term objective. This would probably entail, among other things,
(a) installing one or more new sintering machines, these to fit into the ultimately new sintering planto A. bag house may well be installed in this phase.
(b) complete installation of BscherWyss Blowers (currently available) for furnishing air to the existing blast furnaces.
(c) modify and increase anode casting and related equipment (if necessary, see $4=$ (e)
(d) Modify tank house and add to its supply and distribution of electrical energy. The size of the existing tanks permits more anodes per tank than are currently boing used; the present ampere density is below the known critical point; and present anode spacing is wi der then that previously used, again opening up pose sibilities of the addition of still more anodes per tank.
(e) add well-designed and proporly loeated scrap anode melting and casting equipmont to the teall reminory, thus perhaps obviating the motirioatit.on of present Oroya easting setup ($4-6$). This suggestion has previoudly been made by Oroyre and It would seom that It Is now germane to Inctule it in this overall coordinated progrem. The desi,gn of this facility to be predtestesid on the most efiflalent hendting of haticrial posstble.
(1) add eddt ti onal melting and oanting equipmant for reflned lead.
arrenge the snolter duat goili stitigg equi.pment, both bag houses and Cottro12s, so that dusts collected from the coppor ofrcult ero lept commletety semarnated from duats eolleotod from the 1and cf \% cult. Only in this wry can accurase motallurgical control on the lead elrm cuft be eatebl4ehed. Only with eecurate Hotallurgio mi control ma corts can propor oustew oze purnhees contracter b estaili hod. Pactilties for tret thtns and sampling the dustis cefigineting in both edrevite shomld, of cosurec, the mide availaable.
5. While sufficiont power for this Increase in rofinod lead oupacity will quite probably be available when Paucartambo is ellitistot, the prosent stwades heting mode by the Myive Danartment and Ehasco mey indicete that enough powar could be squeesed ont to do this oven prior thereto. Cortainly during the raing season there should be e good chance of flinding surficient power and thus the plant increage from its presently contemplated ecpecity -a 730 or 130 millian nounde now annum to $145-155$ milliton of ght zum durling the phast yoers or two for, sed, soven monthe rathar than for twelve months.
6. Should the total lead production inerease to $14,5-155$ milion pounds par annum from recent paet 11 gures of 75 to 85 Intion pounds fith to correcmondeng innmesce in cormare foed sand, thus, wth no corresponding inerease in leady intermediate produots originating in the coppor eircuit, which productir contain a highers percentrage of biamuth, antimony, and araonie than do moat loed conm centrates, then the sitne forming lmpuritiea in the load anodes mi mht well dempasae hy a mimlpicant dearea. Whille the total mrom duction of bisuuth would inereese, the ratio of blamuth to land would probably deorease.

This may well permit the casting of heavier anodes (Trail) which are less apt to be bent and with which proper current offlciency can be maintained with cluser snode spacing (Trail). This in turn might result in a smaller percentage of scrap lead returned from the refinery in the form of corroded anodes for remelting. higher overall efficiency, and lower costs. It is logical to conelude that lead recovery from material smelted in the leak blast circuit is sufficiently higher than from lead contained in feed to the copper circuit. The latter is recovered from the copper circult in the form of flue and Cottrell dusts and is then subsequently put through the lead blast furnace circuit. Thus the final recovery is subject to the losses experienced in both circuits. As the figures on recovery are at present only available on an overall basis, io the lead recovered is related to the total lead intake within the lead of the copper efreuits, the increase of lead intake into the lead furnace may well result, in a higher overall recovery. The effect of this on the "margin" should be significant and thus not only increase profit but permit the Corporation better to compete with custom smelters in the United States and Europe.
7. It is requested that both Oroya and New York Engineering comment to me on the feasibility of increasing the production of refined lead to $145-155,000,000$ pounds per annum. Then the future course of action can be determined.

RPK=tg
es NYO (5)
(cps
(WC
(TBS
LO (2)
ARM (6)

Crrro de Pasco Corporation - New Yorix INTER-DEPARTMENT MEMORANDUM

To: Ro Po Koenig
From: Lawrence Addicks
Subject: New Lead Smelter
2. Following your request of yesterday I have discussed uith Mr. Smith the findings of the recent group tour of the snelters. No major difference of opintion seems to have amsen es to the eignificance of the observations made.
2. Asfar as sintering is concerned practice has crystallised in such a definite pattern that there is not much to argue sbout. The first step already authorized for rebuilding the lead smelter covers only this item. I think a second one to provide proper drossing fecilities should be undortaken immediately. Given a good sinter and efficient withdrawal of othorwiso circulating impurities by drossing, almost any kind of a blest furnace will. do good metallargical work.
3. The drossing dopastment is a relatively small one and shorald rapidly pay for itself. There is moore for arguaent whether or not to use soda and s.s to replacing oll fuel whth electricity. I ahould cut this knot by putting both ideas into operation, discarding the loser after demonstration. This might save endless delays and later discontent. The net lead output of the blast furnaces is badly cut by an unnecessary and metallurgically thoroughly undeszrable circulating load.
4. As to blast fumace design, to come up later, there will always be universal diaagreement. Each man always has his pet shape and all of therr seer to work. My judgment would be to accept any design the local staff recomuond. We have a unique factor in that the altitude requires a greater volume of ajx to get the same weight of oxygen. Oxygen exrichant may come if we have time enough in our building operations. In the meantime the actual furneces are probably the least of our womies.
5. I think the size of the blast furnace requires some thought. An overgsized unit sometimes gives trouble in fitting its capacity to the load where two smaller ones would be more flexible.
6. In general I think we need a somit of flywheel storage of intermediate products for smoother management. For instance there should be a nomel. figure for stock of say anozes to carry a refinaty over an energency failure of the process behind it and so on. We have too many bottlenecks followed by floods in the attempt to sush metels to maxicet.
7. Another peculiamity of Cermo, perhaps not directly connected with what we are discussing, is the linicage of several metallurgical systems with inter-
locking by-products. For example the Sterling process is going to produce iron with copper and silver values, and in a 200 ton-a day zinc plant the tonnage will be considerable. Presumably we can sell the iron as pig and waste the values, work it into the lead charge, into the copper charge, or use it for cementation of copper from solution. The fact that the zinc system has to solve this problera does not rean it should be forced on one of the others - or at least it should be charged for without mercy if harminl or paid for if beneficial. Otherwise it is hard to hold a man personally responsible for his costs.

LA:JC

Cerro de Pasco Corporation - Lima CORRESPONDENCIA INTERDEPARTMENTAL

Fecha
February 24, 1952
A: Io Ho Angel hard
De: Re Po Koonig
Materia
New Lead Smelter at Trail Consolidated Mining \& Smelting Company

Herewith some information which I have picked up on the new Lead Sinelter at Trail. This has to do principally with refinements of design, a matter which I consider of much importance. Once the basic design is decided on then the refinement ts are those things that add to the efficiency of the plant and to the overall climate within which good operating and maintenance practices can be insisted upon.

Although the Trail installation introduces nothing particularly new in the way of operating practice, the construction is said to be as modern as it is possible to mace and all the latest ideas have been used. Instrumentation has boon employed as far as practical for control and recorders keep a running story of the performance and conditions throughout the plant. Instruments will be grouped along with motor controls in orderly. and attractive arrangements as is the modern practice. The designers have gone to great lengths to design a plant that will be clean. As smelters are notoriously dirty places and, therefore, working conditions are most unpleasant, it is thought that the now Lead Plant at Trail will set new standards for efficient. operations.

1. Hag House Dust Handling

A puller kenyon duet pump returns dust to be mixed with the sinter charge for blast furnace feed. This is thought to be a great improvement over the old system where the dust was trammed back to the amelter in open cars allowing much of it to bo swept off into the afr.
2. Bag House.

In the pew Cominco installation, any dust that escapes in and around the bag house will not be permitted to stay around for long. Apparently all corners and obstructions where dust might hang up have been removed. On the "I" beans, for instance, cement is used to pill in between the flanges. (You will recall that I brought to your attention that at Port Pixie the "II" beans are covered with a gabled sheet iron "roof".) The roof of the sinter plant is to be suspended from trusses outside the building, thus eliminating the network of steel member's under the ceiling winch ordinarily would hang up large quantities of dist. Cement floors are sloped to provide

easy drainage for frequent washings.

The sintering plant building will be approximately 120 feet by 310 feet. It will have three large sintering machines which are being built by the Dominion Engineering Company in the Consolidated workshops at Trail. Each machine will be 10 feet wide with 60 feet wind boxes, and the three will do the work that is now accomplished by fourteen smaller ones. The advantages of having a few big machines instead of a number of small ones include the fact that maintenance and operating costs should be sharply reduced. Also with a fewer number of machines there is less opportunity for excess air to be drawn into the sinter gas, and therefore it would be possible to feed a higher grade of gas to the sulphuric acid plisut.
3. The only break in the Trail Nlow sheet which will interfere with the automatic movement from the time the ore or concontratog arrive at the plant and lead comes out at the other end is between the sintering plant and the blast furnaces where it w111 be necessary to transport the sinter a short distance in open cars.
4. Capacity.

The capacity of the new lead melter will be about the same as the present one; that is, it will be able to turn out around 750 tons of lead bullion a day - (approzinately twice as large as our target of $220,000,000$ pounds of lead per year)。

As a matter of fact the Lead Smelter is currently running well below capacity and lead ores and concentrates are particulariy sought on a customs basis, as we know from the competition we are receiving from Trail here in Peru.

The eventual scheme for the new Lead Smelter involves the erection of a new furnace building, but that is not included in the present programs one angle that is betng investigated is whether electric furnaces would do the job botter and more economically than the ordinary blast furnace type. Not much is yet known about this development. The should try and follow it particularly as we are confronted with a problem of finding enough coking coal. If low volatile coal will do in an electrie furnace (and I should think low volatile is preferable to high volatile in this type installation) the coking conl problomit might largely disappear.

CERRO DE PASCO CORPORATION

40 WALL STREET, NEW YORK 5. N. Y.

MEMORANDUM
No. 2-52

To: The Directors

January 3, 19
From: G. P. Sawyer
Subject: Rehabilitation and Expansion of Present Lead Plant

At the meeting of the Board to be held January 8, 1952, there will be presented a request for an A.F.E. in the amount of $\$ 1,350,000.00$ to cover the purchase and installation of a new sintering machine and certain auxiliary equipment for the lead plant at Oroya. This request represents the first stop in a plan for the modernization and expansion of the present lead plant-a matter which has been under study for some time --and the following information is presented in advance in order that you may have a clear idea of the objectives and the programme proposed to accomplish them.

As supplementary information there is enclosed a brief history of the Corporation's lead smelting and refining operations, as well as a short description of the present plant. The latter has been prepared with emphasis on the deficiencies of the present plant rather than on the details of its equipment.

The ultimate long term objective is a modern lead plant from ore receiving to finished product with a planned capacity sufficient to handle the foreseeable future production of the Corporation's mines as well as that of mines operated by others which are geographically located so as to wake shipment of their production to Oroya. economically feasible.

The problem is to accomplish this objective and yet maintain uninterrupted production from the existing facilities.

The program proposed is to approach the ultimate objective in orderly steps, making use of such elements of the present plant as are desirable and to purchase and install such new equipment as is required to meet the needs of the relatively near future and which can be expanded or added to without rebuilding.

Present production from the Corporation's own mines is about $45,000,000$ pounds of recoverable lead per year and that of potential custom shippers is about $60,000,000$ pounds, making a total of about $105,000,000$ pounds annually.

By 1955-56 it is expected that the production from the Corporation's own mines will be in the nelghborhood of $72,000,000$ pounds and the total available to the Oroya smelter about $135,000,000$ to $145,000,000$ pounde. This figure has been chosen as the capacity of a lead plant capable of hendling the lead that will be availeble in the relatively near future.

Certain long range possibilities such as production from Yauricocha, the Greater Cerro Project and increased production from independent producers make it advisable to set a higher figure for the ultimate nlanned capectty, and $21,0,000,000$ pounds of recoverable lead enmally is being used for purposes of long range planning.

Production from the present lead refinery at Huaymanta, for several months last year, was equivalent to an annual production of about $135,000,000$ pounds of refined lead. By increasing the current density, a refining capacity of $150,000,000$ pounds per year can be expected without major changes. If supplseu with suitable charge, the present blast furnaces can produce $145,000,000$ to $155,000,000$ pounds of lead, but some provision mast be made for smelting coppen dross, thus relleving the lead furnaces of this burcien and improving metellurgy.

The present sintering unit lacks adequate charge preparation and materials handling facilities and is incapable of producing sinter of the necessary quality for maximum output from the lead furnaces. This circumstance has limited lead production to the equivelent of about $100,000,000$ pounds anmelly, and the correction of this deficiency is the logical first step to take in the rehebilitation and expension program. The age, size and mechanical condition of the present sintering machines and related facilities preclude the possibility of economically modernizing them without substantial additions of new equipment.

It is therefore proposed to purchase and install in the present sintering unit new bins, conveying equipment, a new sinter crushing unit and new charge preparation facilities. This equipment would have sufficient capacity to handie the ultimate recuirements and is necessemy to provide the blast furnaces with a proper sinter which is essential for good lead smelting. In addition, it is proposed to purchase and install at this time one new $72^{n} \times 401$ sintering machine to increase the capacity of the sintering unit to the equivalent of about $150,000,000$ pounds of recoverable lead annually.

A preliminary estimate of the total cost of these improvements is submitted below:

> Blending, Mixing \& Conveying Equipment
> Sinter Crushing, Screening \& Conveying. Equipment
> One 72π
> Dust Collection Sinter Mechine \& Auxiliary Equipment
> Structural \& Builaneral Plant Services
> Total FoA S.
> Freight \& Importation
> Peru Expense
> Sub-Total
> Enginering \& Contingencies (15\%)
> Total

$$
\begin{array}{r}
90,000 \\
285,000 \\
160,000 \\
60,000 \\
185,000 \\
\hline 780,000 \\
160,000 \\
235,000 \\
\hline 1,175,000 \\
\hline 175,000 \\
\hline 1,350,000
\end{array}
$$

Page 3

Once this installation is complete, the lead plant as a whole would be able to produce about $150,000,000$ pounds of recoverable lead annually at high operating efficioncy. This will be sufficient to take care of the estinated intake of lead bearing materials available to the Oroya smelter In the relatively near future. Additional steps can then be taken toward the ultimate goal as deemed advisable. The next logical step would be to provide smelting facilities for the copper dross and successively to replace the prosent old sintering machines with lerger ones.

The improvements covered by the request for A.F.E. under review are dictated by maintenance requirements alone because it is necessary to begin the rehabilitation of the sintering unit in some form imediately. These inprovements as proposed accomplish both the problem of rehabilitation and that of expension.

It will be noted that the capacity of the present plant does not meet the expected nearby future intake by about $40,000,000$ pounds of recoverable lead ennually. This corresponds roughly to the treatment of 40,000 tons of concentrates per year. The additional net profit to be derived from the treatment of this tomage of concentrates would more than pay for the cost of the proposed improvements in two year.

CPS: wbg Encls.

To: Messrs. D. H. Allen
H. Bancroft
E. W. Bourne
W. A. M. Burden
E. A. Fish
L. C. Graton
R. P. Koenig
D. IT. Motaugh in
F.F. Fussell
G. P. Sawyer
R. M. Stewart
cc: M. D. David
R. F. Mitchell
H. D. Starr
A. H. Engelharit
J. D. Suith

HISTORY OF LEAD SMELTTNG AND EEFTNING OPERATIONS AT OROYA

Lead smelting operations were started in Oroya in 1928 employing a rewodeled copper blast furnace and the sintering equipment originally installed in the Oroya smelter for the agglomeration of fine copper ores. Two fumaces were added Iater, one being purchased and the other converted from one of the copper blast furnaces.

The bullion produced contained excessive amounts of antimony, arsenic and bismuth and as it was exported for refining, very high refining charges were incmured.

Early in 1930, T. E. Harper, Jr. and Guatave Reinberg, Jr. developed an olectrolytic refining process which made possible the economical treat. ment of lead bullion with high impurity conteat. A pilot plant utilizing thie process was put into oporation in 2934 and was replaced in 1937 by a larger plant heving a capacity of 110 tons of refined lead per day. This latter plant operated until the early part of 1951 when it was replaced by the new lead refinery at Huaymanta.

DESCRIPTION OF PRESENT LFAD PLANT

The essential elements of the present plant ares

1. Bedding Unit
2. Sintering Unit
3. Blast Fumaces.
4. Melting, casting and drossing
5. Refinery

Bedding Unit

The charge for the lead blast furnaces is bedded on two of the beds originally installed in the Oroya smelter for the handling of copper bearing material. While not ideal, this arrangement is adequate ond provides an excellent method for proper blending of the charge.

Sintering Unit

The sintering unit consists of ten aintering machines each $42^{\prime \prime} \times 22^{1}$. All of the machines are at least thirty jears old, some having been moved from the old smelter at Le Fundicion and additional ones purchased when the present smelter was erected in Oroya. The draft fans are of smaller capacity than required for lead sintering and the present equipment used for blending and charge preparation is wholly inadequate for the production of good sinter.

Blast Furnaces

The three lead blast fumaces, two of which were converted from copper blast fumaces, are all of different sizes. These fumaces are poorly arranged and the charging equipment is cumbersome and wasteful of man power on the charge floor. Since they were converted from copper blast furnaces, the tops permit on excessive amount of smoke and fume to escape at the feed floor and a heavy dilution of fumace top gas with air resulting in poor fume-collecting efficiencies. Air supply has been furnished by two Root type blowers moved to Oroya from La Fundicion, but these are now being replaced with modem blowers available from existing oquipment not being utilized in other operations.

Melting, Casting and Drossing

The present plant is lacking in facilities for the separate treatment of the copper dross resulting from lead operations, and these are currently recirculated through the blast furnaces.

Refinery

The present lead refinery occupies one half of the original copper refinery at Huaymanta. It is a modern, well equipped plant except for minor deficiencies in anode cleaning and washing facilities which are now being corrected.

GPS: wbg
1-3-52

Cerro de Pasco Corporation－Nbw York INTER－DEPARTMENT MEMORANDUM

Date：Februaxy 18， 1952
To：R。 P。 Koenig
From：H．O．Smith
Subject：Lead Plant Sinter
During the last thirty－four years I have had occasion to visit most of the lead smelting plants in the United States and Mexico several times．During this period definite trend in the thinking of the lead metallurgists have been apparent．These may be listed as followe：

1．The necessity of finer crushing or grinding of the various components．

2．Hore complete mixing of the charge prior to the first－over aintering．

3．The use of larger anounts of first－over sinter or fines from the second－over sinter in the first－over mix as a diluent for sulphus．

4o The elimination of sulphur in the fecond－over sinter to 1 －1 巻 percent．2
5．Ail firstoover sinter is being cxushed to at least $\frac{1}{3}$ ，preferably $\frac{1}{6}$＂， before going to the second－over operation．

A fer yeame ago cmehing the charge to the first－over from $I / 2^{\mathrm{m}}$ to $5 / 8^{n}$ was considered ample．Today the tendency is to crush and grind to more or less 10 －mesh．
with this fine crushing，pelletizing of the first－over charge is definitely advantageous，if not necessary．Experimental work at Bunker Hiil and Sullivan and Trail．plants have indicated that by fine crusning，good mixing and pelletizing，extremely high production rates on the first－over machines can be obtrined．

The present tendency is to crush the first－over sinter in two stagess first，through corrugated rolls，followed by large－diameter，srooth－faced rolls．Midvale smolter has screons in closed circuit with the gmooth ro21s to insure proper sizing of the second－over feed and they have been for years， and are，producing the best secondeover sinter of any snelter we saw．

For Oroye，it would seom to be particularly fmportant to fine－grind the limestone component of the lead bads before its addition is made to the beds．

I believe that Higgs，Joknson，Schellinger and Smith are all agreed
W.C.S. to R.P.K., 2/18/52
that the desired equipment for Oroya would bes
a. Fine grinding of limestone and other coarse material prior to bedding.
b. Passing the reclaimed bed material through a hammer will in order to disintegrate any lumps such as concentrates or dust calcines.
c. A large storage tank, sufficient for 8-10 hours operation. This would permit the use of reclairoing machines on other beds without interruption of the sinter plant feed.
d. A large mixing table, followed by
-. Pelletizing drums.
The first-over sinter can be thoroughly wot with water and handled on rubber conveyor belts. It should then pass through corrugated rolls, through smooth roll a and then screened, the oversize material going back to the smooth rolls, except for a small percentage which can be separated and bedded on the sinter grates in order to prevent the finer material from sifting through.

The second-over sinter should be handled by means of pan conveyors until it has been cooled sufficiently to be handled by rubber belt conveyors.

A screen to remove the fines from the second-over sinter prior to its being sent to the furnaces may be necessary. However, many plants which produce really good sinter do not remove the fines. We believe that provesion should be made for this screening operation at Oroya.

The lead fumaces will almost run themselves if given good sinter.
The above recommendations have been discussed with Messss. Reinberg, Begs and Strong.

WCS:JC
ce: REK, Lima (1)
GR(1)
JDS (1)
AHE (8)
Cen. File
Clii. File

