Como de Pasco Corpolazzon

$$
\text { Date: July } 14,2952
$$

To: No Bo Koanig $1-51$
From: Io Addiciks
Subject: Concentrating Practice

1. I should like to see the question put to our Concentrator Deportment as to what changes would result in the net recoveries of values and the grade of concentrates produced if the mills were permilted to make a Soul middlings product. I am not trying to ster anything at the moment for we certainly have our hands full enough with new projects but the answer to the question might have a bearing on future poller. I give the reasoning below.
2. We have three major circuits, copper, lead and zinc, and our complex ores result in making us feed lead ores in the copper furnaces, copper-zine material to the lead plant and so on. Could a better soperatron be effected at the concentrators, cheaper costs and better recoveries would result at the smelter.
3. We tend to think of metal losses as a melting problem but really We should consider overall recoveries between the mineshaft and the marsot. The current May "Report on Operations" shows the following tailing 10ssess

Could a lower tailing be made if middlings were permitted?
4. The question follows of what we mould do with the middlings, the whole modern trend in concentrating having been toward avoiding intermediates. In the meantime, however, metallurgy has been changing. The new Sterling process will presumably take messes and make a fine end product with good separations of the impurities. The now process sponsored by the Gyanamid people with leaching under heat and pressure and fractional precipitation by hydrogen will presumably do likewise (incidentally ammonium sulphate is a by-procuct in some cases).
5. So, making any and all assumptions necessary, would there be a financial margin to work with, viewed Prom this new angle?

Lawrence Addicks
lis G. P. Sawyer, Vice Pres., Genro de Pasco Copper Dorp., 40 wall Street, Mew York City 5

Dear It Sawyer: CMMO MrCgISIOR ORB.

Noting Hr Wright's question in his letter of March 10 th regarding the effect of altitude upon the oxidation of copper minerals in Excelsior ore, my own view is that altitude may vol interpose alfficulties. This Is the same question that was brought up when we considered flash roasting of zinc onountrates several years ago. Trail argued that altitude would not enter but I never thought they made out a ease.

Mr Smith has made the right suggestions in the tests he recommends. Practical tests are the best answer. Probating the air to the roaster would seam to bo indicated plus a longer tine in contact. Very truly yours,

April 9, 1945

American Cyanamid Company Stamford, Connecticut

Attention: Mr. S.J. Swainson

Gentlemen:

We are submitting herewith two copies of Mr. Wright's comments relative to your report of January 8, on tests of Excelsior ore.

The second paragraph under "Hydrometallurgical Tests" page 4 of Mr. Wright's letter raises the question of oxygen concentration of air at Oroya and its possible effect on roasting of the copper minerals in the fore. Would it be possible to repeat your experiment under roasting conditions approximating those at Oroya, namely at an oxygen concentration of about 14% by volume at sea level? We estimate that roasting the ore in a mixture of two parts air and one part nitrogen should give this condition.

Meanwhile we are suggesting that Mr. Wright repeat his tests using an air plus oxgyen mixture at Oroya, which will be equivalent to sea level oxygen concentration.

The experimental work is for our benefit and the cost of same should be invoiced to us. Kindly give us an estimate of this cost.

We wish to thank you for your cooperation and await your comments.

Yours truly,
CERRO DE PASCO COPPER CORPORATION

W. C. Smith
Metallurgist

WCS/RL
Enes.

La Oroya,
March 10, 1945

Mr. V. L. McCutchan, Assistant General Manager, La Oroya.

Dear Sir:

- Cerro Excelsior Ore Tests by American Cyanamid Co.

We acknowledge receipt of the American Cyanamid Co's report of January 8, together with covering letters from our New York Office, on the metallurgical testing of the Excelsior dump ore. This report by Messrs. Kentro and Davis is indeed excellent; it is comprehensive, straightforward and concise and the photomicrographs are impressive.

Flotation Tests. It is unfortunate, however, that the flotation tests were not made at the time the A.C.Co. received the sample, for it is evident that the sample had deteriorated considerably during the intervening months. The flotation results obtained by the A.C.Co. doubtless represent the true amenability of the sample at the time it was tested, but the results are decidedly inferior to those obtained by this laboratory in testing a duplicate sample in December 1943. (Note: The or iginal sample was split, and the A.C.Co!s portion was shipped from Oroya in December 1943; it was received by the A.C.Co. in Feb., 1944 but their flotation tests were apparently postponed until the end of 1944. Incidentally, it is quite possible that the sample was adversely affected by heat while in transit through the tropics; we have found that samples of Cerro copper ore deteriorate rather rapidly when stored in a warm room.)

For comparison, the following tabulation shows the results of: a) the A.C.Co's best flotation test, Test N° 2, using copper sulphate and sodium Aerofloat; b) the A.C.Co's test using our reagent combination (i.e., Test $\mathbb{N}^{\mathrm{O}} 4$, with potassium amyl xanthate as collector); and c) our test on a duplicate sample, made in December 1943.
a) A.C. Test $\mathrm{N}^{2} 2$, Cu cleaner con.
b) A.C. Test $\mathrm{N}^{\mathrm{O}} 4$, Cu cleaner con.
cl) CdeP Test $\mathrm{N}^{0} 3$, Cu cleaner con.
Ratio
Conct Cu

| AuRecoveries
 Ag
 Ag
 Cu
 Fe |
| :---: | c2) do Cu rougher con. $7.58 \quad 9.35$

$5.15 \quad 5.44$
11.5015 .40

33.7	37.8	79.3
32.4	36.3	70.3

14.6
$32.4 \quad 36.3 \quad 70.3$
$33.0 \quad 44.2 \quad 87.4$
$40.9 \quad 51.5 \quad 90.2$
26.6
7.8
15.7

The test conditions as applied to \underline{b} and $\underset{c}{ }$ were as follows:

Grind,\% minus 200-mesh pH , flotation pulp
Reagents, 1 lb ./tonore: $\mathrm{Ca}(\mathrm{OH}) 2$, to ball mill NaCN , to ball mill

Reagents, $1 \mathrm{~b} . /$ ton ore(cont.): $\operatorname{PAX}(Z-5)$, to conditioner $\operatorname{PAX}(\mathrm{Z}-5)$, to rougher flot. Pine oil, to conditioner Pine oil, to rougher flot. Weight of sample, grams
Flotation time, roughing minutes
Flotation machine
0.15
0.025
0.025
600
8
agergren

The flotation method was substantially the same in both cases (b and c). The degree of grinding was finer in the A.C. test than in our test, but it is not likely that overgrinding was the cause of the inferior results. The fact that twice as much lime had to be used in the A.C. test to obtain the same pH^{H} is significant; it substantiates our contention that the poor results of the A.C. Co's tests were due to the deterioration of the ore sample-1.e., a greater consumption of lime indicates greater decomposition (oxidation) of the ore and, consequently, inferior amenability to selective flotation. Our flotation tests, of course, were made on a fresh sample.

We had investigated the efficacy of the various American Cyanamid reagents (Aerofloats, etc.) in the flotation of Cerro copper ores, but amyl xanthate proved to be the most suitable collector; that is, for the same percent age recovery, amyl xanthate produced a higher grade concentrate, . Incidentally, the current milling of Excelsior dump ore, employing the lime-cyanide-pine oil-amyl xanthate reagent combination, recovers 85% of the copper in a concentrate assaying $16 \% \mathrm{Cu}$ - and the mill feed assays only 1.2% Cu.

In tests on fresh samples, the use of copper sulphate as an activator in copper flotation had no beneficial effect. We have not tried such reagents as sodium bisulphite, calcium bisulphite and ammoniacal copper sulphate in conjunction with the Aerofloats. To determine the effect of these reagents combinations on the flotation of fresh samples of ore, we shall repeat the A.C. Co's tests.

Gold. With regard to gold, of particular interest was Mr . Davis ${ }^{\text {dis }}$ scovery of electrum ($\mathrm{Au}-\mathrm{Ag}$ alloy) in a panner concentrate of Cerro pyrite. Although we knew from indirect evidence that a portion of the gold was liberated from the pyrite by fine grinding, we have never detected native gold nor electrum in specimens of Cerro copper ores. Since the patticles of electrum
are minute - not readily revealed at magnifications below 1000X - and probably too small for determinative tests, and since electrum is isotropic and exhibits a pale yellow color similar to pyrite, it is assumed that identification was based on visual indications of softness, such as relief in polished section. In this assumption correct, jor was the identification of electyum confirmed by positive tests?

Our investigation of the distribution of gold in the Mrcelsior dump ore indicates that, after grinding to 80% minus $200-$ mesh, 10% of the gold is free, 20% is associated with the copper minerals, and 70% remains locked in pyrite. (Note: this percentage distribution is based on the gold content of a large number of products obtained in superpanning 'infrasized' fractions of flotation concentrates, middlings and tailings; and the distribution of gold has been verified by scores of tests in which the actual gold assays checked closely with the calculated assays. See News Letter for April 1944.)

There are several generations of pyrite in the Cerro copper ores, and it is not likely that each generation is equally auriferous - in fact, some of the pyrite may even be barren. However, in none of the tests made to date has been any positive indication of a separation of high-gold pyrite from low-gold pyrite; i.e., for a particular sample of ore, pyrite concentrates representing high and low ratios of concentration always assay the same in gold. Thus, the lower ratio of concentration the higher the recovery of gold. There has been no exception to this relationship in any of our tests.

Despite the high alkalinity of the flotation pilp, our investigations give strong evidence that practically all of the free gold reports in the copper concentrate - at least in the case of fresh samples.

Contrary to the results obtained by our latoratory in hundreds of tests, the A.C. Co. found (in four tests) that the recovery of iron varied from 11.2% to 26.6% while the recovery of gold remained substantially constant. If this anomaly is not due to errors in assaying, then the only plausible explanation we can offer is that the deterioration of the ore sample impaired the floatability of the free gold. Referring to the tabulation of comparative results on page one of this letter, and applying our figures for the distribution of gold, the predicted recoveries of gold would be:

$$
\text { A.G. Co. A.C } \frac{b}{c o} \quad \mathrm{C} \frac{\mathrm{c} 1}{\mathrm{de}} \mathrm{p} \quad \frac{\mathrm{C}}{\mathrm{de}} \mathrm{P}
$$

Test $\mathrm{N}^{\circ} 2$ Test $\mathrm{N}^{\circ} 4$ Test $\mathrm{N}^{\circ} 3$ Test No 3 cleaner con. cleaner con. cleaner con rougher con

Au, free	10.0\%	10.0\%	10.0\%	10.0	\%
Au in Cuminerals	15.9	14.1	17.6	18.0	
Au in pyrite	10.2	18.6	5.5	11.0	
Au recovery, precicted	36.1\%	42.7\%	33.1\%	39.0	\%
Au recovery, by assay	33.7\%	32.4\%	33.0\%	40.9	\%
Difference: loss of free gold?	2.4	10.3			

Note: $A u$ in Cu minerals $=0.2 x$ recovery of copper; $A u$ in pyrite $=0.7 \times$ recovery of iron.

But we are inclined to believe that the apparent lack of conformity of the gold recoveries in the A.C. Co's tests is due to assay discrepancies; a difference of 0.005 $\mathrm{oz} / \mathrm{ton}$ in the gold assays of the flotation products could account for the apparent discrepancies in gold recovery. In this connection, it is noted that the calculated feed in A.C. Test $\mathbb{N}^{\circ} 1$, as derived from the assays of the products, is 0.033 oz . Au, whereas the calculated feed in A.C. Test $\mathrm{N}^{\circ} 4$ is 0.054 - an apparent difference of 64% in gold content.

Hydrometallurgical Test. The resumts of the A.C. Co's hydrometallurgical test - roasting \& acid-leaching followed by cyanidation - were supprisingly good: high extractions of copper \& gold and low consumption of cyanide. Roasting \& leaching tests made here on a duplicate sample failed to yield satisfactory results; only 80% of the copper was extracted by an acid leach of the roasted ore, and the residual copper (plus other cyanicides) caused an excessive consumption of cyanide.

After receiving the American dyanamid Company's report, we endeavored to repeat their test, but the results were poor: low extractions and high consumption of cyanide. It is obvious that something was amiss. Either our technique was faulty, or the atmospheric conditions prevent adequate oxidation of the copper minerals to CuO and CuSO_{4}. We do not like to blame the altitude for our poor results, but it is possible that the low oxygen pressure at Oroya may tend to produce more cuprous oxide ($\mathrm{Cu}_{2} \mathrm{O}$) in the calcine then would be produced at sea level. of course, if either cuprous oxide or cupric ferrite are pr esent in the calcine in appreciable amounts, a simple acid leach will result in a low extraction of copper and a correspondingly high consumption of cyanide in the subsequent cyanidation operation.

What are the opinions of Messrs. Addicks and Smith regarding the possible formation of cuprous oxide and cupric ferrite when roasting Excelsior dump ore (65% pyrite, 3% enargite) at an atmospheric pressure of 9.6 psi and at a temperature of $430^{\circ} \mathrm{C} 5^{\circ}$ in a well-ventilated muffle furnace with frequent rabbling of the charge? We should also like to ask the American Cyanamid technicians whether they were able to extract 90% of the copper from the Excelsior dump ore consistently and without difficulty in successive roasting \&acid-leach tests.

Our experiments along these lines, I.e., low-temperature roasting and hydrometallurgical treatment of the calcine, will continue. If we can duplicate the A.C. Co's results, and if these results can be readily obtained by practicable means, the benefication of the low grade Cerro Copper ores would be enhanced consi derably.

To effect dissolution of the cuprous joxide (assuming that the presence jof $\mathrm{Cu}_{2} 0$ is responsible for our poor results), tests are now under way employing a ferric sulphate-sulphuric acid lixiviant and a long leaching period.

We take this opportunity to thank Messrs. Kentro and Davis of the American Cyanamid Company for their excellent report.

Yours truly,

Theo R. Wright
cc: BTC

New York, December 28, 19 28

MR. C. V. DREW:
The follo ing is a preliminary estimate of possible saving at Cerro de Pasco properties by milling the coper ores $r a t h e r$ than smelting direct as now practiced.

Assuming a similar tonnage of ore as was smelted in 1927 but excluding the Exceleior ore, that due to its auriferous pyrite, can not be concentrated to as high a degree, a 2000 ton a day mill will suffice. This mill could be built at an outside cost of $\$ 2,000,000$, or $\$ 1,000$ a ton day capacity.

Judging by previous mill operations at Morococha the ratio of concentration should be 4 into I on a 5% ore. This with a tailing loss no higher than the present slag loss - e.g. . $32 \% \mathrm{Cu}$. and .56 oz . in Ag (1927 figures). The tonnage of tailings so produced would be 75% of the total, equaling the tonnage of slag now being produced.

Estimated costs for milling, freight and smelting each reduced to ton of original ore are:

Morococha - 5\% Ore Milling:

Concentration
Preight o $\$.95$ per ton
Smelting \$2.25 per ton Total per ton of crude ore $\$ \frac{.51}{1.81}$ 5\% ore smelted:

> Freight
> Smelting

Saving by milling
1.00
. 24 .57
-
.95
$\frac{2.25}{3.20}$
\$ 2.39

Cerro de Pasco 5\% Ore Milling:

Concentration
Freight \$1.65
Smelting $\$ 2.25$
\$ 1.00
.42
.57
$\longdiv { 1 . 9 9 }$

Smelting Direct:

Wreight	$\$$	1.65
Smelting	$\frac{2.25}{3.90}$	
	$\$$	1.91

Aside from the above further additional benefits will be felt in the form of

1. Cheaper mining costs
2. Relief from smoke troubles
3. Lower smelting costs due to high grade initial charge
4. Increased smelter capacity
5. Increased ore reserves by making profitable ores now abandoned or used as stope fillings

The estimated savings do not include the slag loss from smelting the higher grade concentrates that in my opinion can be more than offset by reducing the tailing losses from that shown. This has been the experience at Anaconda where their actual poundage of copper lost as been decreased by adoption of selective concentration before smelting.

In reference to increased ore reserves a copper ore of 1.5% Cu. would show a propit provided mining costs could be kept below $\$ 1.00$. This wouls likely be possible at Morococha rather than at Cerro. Assuming copper in the form of $20 \% \mathrm{Cu}$. concentrates to be worth 10 cents a pound with copper selling at 15 cents the following estimate would hold:
$\begin{array}{lr}\text { Milling } & \$ 1.00 \\ \text { Amortization } & \text { Total } \\ & \$ 1.4 \frac{.42}{2}\end{array}$
1.50% ore Cu. 10 cents -
90% recovery - $\$ 2.70$
Total net from which mining costs must be deducted is \$1.28

CPL/G

Mr. Harold Kingsmill, Ceneral Managor, Cerro de Pasco Copper Corporation, İima, Perub

GBRRO DE PASCO THAD-ZIHC ORES
Dear sir:
Seventy six samples of this class of ore have been tested both singly and as composites by selective Plotation for the separation of the values contained.

Without exception all samples showed signs of either one or both 61 two types of oxidization.

FTRST:- Impregnation with soluble salts, sulfates or zinc and iron predominating.

SBCOMD:- Decomposition of the gangue minerals with a resulting exeess of primary slimes. In the second instance oxides of the metals contained were eise shom to be present on microscopic examination indicating high heat decomposition.

The samples in most cases having been taken from old stope faces possibly show a higher degree of decomposition than would normally be expected had they all been taken from actively producing mine. In view of this fact it is reasonable to assume that when the mine is in production most of the difficulty eneountered in these tests will be automatically eliminated. The second type of oxidization has proven to be the chief cause of difficulty in treating these ores. On checking the source of examples and corelating the age of exposure of the faces from which samples were taken the results obtained from tests were in respect to recovery and grade in airect ratio to the age of exposure, indicating that the degree of oxidization of the ore both as to sulfides and gangue minerals was directly responsible for metallurgical results obtained. This fact is asain bowrn out by the detorioration of the samples in the laboratory in that the ore orushod to minus 10 mosh after standing for four weeks shows gractically no possibility of soparation on samples that have given commercial results whon treated within a few days after being taken.

As a concrete eaxample of the above the samples from the 300 level, numbers 55 to 69 inclusive all showed signs of prolonged or high heat aecomposition due to this section having been opened for a period of years. A typical test on a sample from this level shows the effect of its resuiting high prima,ry slime content that militates against a commercial separation of values viz:-

In direct contrast to the above the freshly opened ore on the 200 level, where the effect of prolonged exposure of the faces has not been felt but where oxidization in piace would be expected to a more pronounced degree, gave the following typical separation on the same class of oxe:-

ASSAYS
 RECOVFRTMS

You will note the aifference in recoveries of values as well as the high recovery of insoluble in the fixst instance indicating that the higher primarglalime content had interfered with proper selection and recoveries.

To cite on extreme case of the effect of this decomposed grange material the following assays from a test on sample number 67 that had been ${ }^{2}$ standing for two weeks in the laboratory showed little separation:-

	$\% \mathrm{Cu}$	0z.Ag.	\% Fe.	8 Ins.	\% Pb.	\& Zn .
Pb. Gonct.	. 24	11.6	24.1	6.8	14.3	13.3
Zn. Conet.	. 20	6.5	13.0	21.6	8.6	25.0
Tail\%	.20	2.0	10.2	63.2	$3 \cdot 4$	2.7

Here again you will note the high insoluble content of the concentrates produced, due solely to the primaxy slimes containod and the ir effect on the distribution of values.

Briefly the effect of these urimary or collodidal silmes is one of absorbing reagents added to the ore pulp and thereby inhibiting their effectiveness in obtaining the separation for which they wrere added. Due to this fact ores of a high slime content that show little or no decomposition of the sulfides are often of no commercial value because of the impossibility of obtaining a physical separation of the mized values contained.

In regerd to the soluble selts that all Cerro ores appear to be impregnated with auitable reagent combinations have overcome this cause of former aifficulty to a large extent, These soluble salts in the ore pulp cause a precipitate of the heavy metal salts formed by the addition of any activating reagents such as Xanthate, Thiocarbanalid, Phosocresylic acid, Sodium Sulicie and the like. Research work has shown that in cases of ores carrying a high sulfate contont that a small quantity of sulphuric acid added after the addition of activating reagents again releases the active principle of these reagents and the desired effect is obtained without resorting to an excessive amount of reagents and obtaining the attendent bulk concentrate.

For example of the above, ore sample number 31 showed no separation with the usual reagent combination until treated with 3 pounds per ton of sulfuric acid, after the addition of Xanthate which alone did not proce effective. This change in reagents gave a 91% recovery of lead and 75% recovery of the silyer in a rougher concentrate assaying 29.30 oz in silver,
38.4% in lead and 6.3% in zinc. This followed by a rougher zinc concentrat 38.4 \% in lead and 6.3% in zinc. This followed by a rougher zinc concentrate assaying 52.5% in zinc and 0.9% in lead, as against a negative commercial recovery of values with out the sulfuric acid.

In all cases where a high sulfate ore was treated the use of sulfuric acid as a re-activating agent was found to be beneficial and to overcome to a large extent the deleterious effect of the contained sulfates.

The removal of these soluble salts by washing was also tried in several cases but with improvement in results so alight, that until this can be tried out under continuous operating conditions in the pilot mill ami the economics determined, no recommendation as to this type of treatment can be made.

In classifying the samples and test thereon as to ore bodies there is littie difference to be noted as to their origin in this respect. The only relation between metallurgical results and souxce of the sample has been the time of exposure of the face from which the sample was taken, This can be regarded as a temporary condition and in my opinion the poor resuits obtained on the samples from long oxposed faces discounted. In pilot mill testing on oar lots this condition will be, to a large extent, eliminated in that a tomnage sample will involve going into the ore body to a greater aepth.

Anothor condition that has been apparent in testing these ores is the relation of the copper content of the sample to the rinc content of the lead concentrate. The higher the copper content of the heads the higher the zinc content of the lead product. This relation is obvious when the effect of the soluble copper salts on the rate of float of the zine sulfides is considered. Copper suifate is added during fiotation to inorease the rate of Kloat of the zine sulifies but with the a high copper content of a partially oxidized ore there is contained in the ore itseif suificient copper sulfate to activate the zinc minerals to a degree where, unless an abnormal amount of depressent is used, an unusual amount of zinc is floated with the read. For oxsmple sample number 75 assaying, 54 \% in copper gave a rougher lead concentrate assaying 20.3% in zinc whice sample number 73 from the same level with head assay of $.05 \%$ in copper gave a rowher lead concentrate assaying only 4.4% in zinc. These are of course extreme cases used to illustrate the point. In making up composities it was found that a head assay in copper of under $.20 \%$ did not materfally raise the zine content of the lead product but any material excrease over that quantity resulted in an increaszed zine contont. This condition I again regard as temporary, in that on pentration into the orebodies on active production, the decrease in oxidizafion of the copper minorals will oliminate the high percentege of copper sulfate in this class of ores.

Testing on the 76 samples submitted was carriea out unie er standarid conaitions E. G. grinaing in steel ball mill to $80 \%-200$ mesh and treating in a suba type flotation machine with standard reagent conditions in preliminary tests, and varied reagent conditions on composite sa mples. Composi tes were made up as sufficient number of samples were refoived to avola long standing and deterioration. All known successful reagent combinations were tried on the composite samples as well as suecessful processes now in commercial use. of these tests not all were assayed as the chracter of products produced evidenced the failure of the treatment employea. A total of some 200 odd tests were made of which some 100 were assayed for record.

This survey of reagents and types of treatment resulted in the adoption of a treatmont scheme similar to that employed at Casa palca with the exception of the use of acid as before noted.

$$
-4-
$$

Some trouble was experienced in the control of the lime alkalinity of the zinc circuit but with the recomnended use of the P. H . control epparatus in the pilot mill this difficulty should be eliminated. The Kraut machine was tried out on several tests but did not show any advantage in small scale testing over the IF.S. suba machine used on the major portion of the tests. There has been a Kraut unit oxdered for the pilot mill to further investigate the possibilities of this apparatus. Ily opinion is that this machte could be us ed to advantage as a cleaner due tho its nicety of air control.

With few exceptions all tests were made with only rougher products shown. The reason being that under proper selective conditions a commercial product should be obtained in a rougher concentrate without resorting to several recleanings to prove the effectiveness of a process of this kind. This also eliminates the question of distribution of values in the middings resulting from rebreatment. The treatment of these ores in the pilot mill will, due to retreatment, show a higher grade finished product aná eliminate any question as to aistribution of midaling products. A typical test on a composite sample that in my opinion can be used as a guide to the grade of concentrate that can be expected. gave a inished lead concentrate assaying $.68 \%$ in Gu., 22.8 Oz . in Ag., 8.9% in Fe, 1.2\% in Insol., 55.8% in Pub, and 8.3% in zn . This was followed by a zinc concentrate assaying 28% in $\mathrm{Cu} .$, 2.6 Oz . in Ag, 10.8% in $\mathrm{Fe}, 1.2 \%$ in Insol, 1.1% in Pb , and 55.5% in Zn . In both cases the rougher products were retreated once with no excessive values containea in the midaling products indicating that no 10 ss in recovery would result from retreatmont to obtain the grade products showm. Nxcluaing the excessively oxidized samples, that, unless taken from the Pacos-Sulfide contact zone, only represent a smail tomnage (a few feet in depth of the present faces) the freshly mined ore as represented by eighty percent of the samples submitted should under propor treatment show the following metallurgical results:-

On the basis of the estimated tomage taken from the 1928 report of ore reserves including both in sight and proiable ore there is $1,822,941$ tons of ore of the grade shown. Discounting this figure by 20% to exclude the tomnage represented by the badly oxidized samples there remains some $1,450,000$ tons of high grade ore that can be assumed to yield the products shown. This would give on treatment 194,000 tons of lead concentrate and 348,000 tons of zinc concentrates of the grades shown. Ily understanding is that these ore reserves have been considerably increased by the past year's development and that all the present reserves are the result of Copper ore development so that any active carmaign for this type of ore woula result in a very material increase over these figures.

In regara to treatment costs the fact that no unusual quantity of reagents or method of treatment has been employed I can see no reason for any increase in direct milling cost over \$1.25 per ton when molern milling methods are considered and the tonnage milled maintained at 1,000 tons a day or better. This figure of course does not include the indirect costs such as a ortization and the other usual indirect operating expenses.

Considering a 1,000 ton mill am applying costs on similar plants in Hexico, a preliminary figure for a plant of this size, excluding the necessary trackage, houses, etc., would be \$1,200,000 U.S.CY.

COTCIMSIOMS: -
(1)- The Cerro Lead-Zinc ores offer no difficulty in treatment by proper selective conaitions aside from their parifally oxidized condition that in all probability is superficial in extent.
(2)- The effects of the contained soluble saltg can be overcome by proper reagents.
(3)- The primary slimes contained in the highly oxidized ores prevent these ores Arom yielding commercial products. Such ores should be excluded ir on ore estimates and be regerded as waste until the extent of this charactor of oxidization can be determined.
(4)- Iong exposius of ore before treatment results in decreasca recovery and grade.
(5)- Mining methods in view of the above, should be employed that will have a minimum of ore in the stopes at all times.
(6)- Pilot mill tests on Cerro ores will be required to determine the distribution of intermediate or midaling products as well as grade of final products.
(7)- Tonnage samples for pilot mill tests should be taken wi tha view of penetration of the ore body to overcome the superficial oxidization of the exposed faces and to determine the dopth of such deterioration.
(8) The tomnage of ore now developed would warrant consideration of a mill at least 1,000 tons per day.
(9)- Due to the relatively high rate of decomposition of these ores delay in their treatment results in an ultimate economic loss.

A complete tabulation of the samples tested. is attached hereto. Very truly yours,

Mr. Harola Kingsmill. General Manager, Ifima.

Dear six:
 GASAPALCA COMCHNPRTMS

In reference to the separation of the lead. and. copper values contained. in the ab or c product, a number of tests have been made with this in view and while a soparation of the Chalconyrite and Galena were made, the assays of the uitimate products did not show the segregation of the values desired.

The mixed concentrate now produced ai Casapalca doos not contain over 40% of its copper as Chalcopyrite. The remaining 60β is presont in the form of Complex silver-copper-Lced minerals that due to their chemical combination cannot bo soparated by any physical process.

The ore now being ieveloned from the lower tunnel is showing a higher percentage of copper as Chalcopyrite and at the time this ore is treated there may be a possibili.ty of a separation of the major pant of the copper from the lead present as calena.

The type of separation desired on this concentrate, and as practiceă atUtah Apex, is baseả on the retaríing action of cyanide on the iron contained in the copper-iron minorals (dalcopynite). Copper mescnt in other chemical combinations is not alfected so that this treatment will not appiy to sulfides of copper and leed other than chsicopymite ana Galena.

I would recommend thet this treatmont be again considered when lower level ores are to be tieated.

Very tauly yours,

Page No.4,
July 30 th. ,1928.

GASAPATGA MITI

This mill was visited during the first and the latter part of the month during both visits suggestions as reagent were made. Sufficient data as to results from these ohanges is not as get available for quoting any oxact figures as benefits derived. However indications from several shifts assays point to the possibility of obtaining the following soparation:

By the substitution of soluble reagents for progressively soluble or only partially soluble chemical reagents it is quite possible to overcome the effect of and change in temperature of the mill circuit, without resorting to heating of the pulp. Xanthate substituted for 验ic has to date given as good or becter results on the 12 to 8 shift as on the other two shifts indicating the loss in effectiveness of., Mio was a ue to its decreased solubility in the colder circuits whereas Kanthate being added as a solution suffereal littie or no ill effecta due to drop in temperature.

In regurd to the separation of oopper and lead contained in the Casapalica concentrates; testa have been made at puiulacooha but with neg ative results to date due primarily to lack of equipment to give the proper preagitation perio requireă for this treatment. Suitabie apparatus is being made at oroya and on its completion further invesigation along this line will be made. Whis ooppor-lead separalion or more correstiy speaking Chaloopyrite-galena separation as practiced at Utah-apex was developed by myself in 1925 using a oirouit strong in oyanide to dopresa the ohaicopyrite while floaing tha galena with proper reagents. It oocurs to mo that the use of a strong oyanile oirouit in treating the Casapalca concentrates may result in a solution loss of the contained gilver that weald more than overcome the advantage gained by the base metal separation. Another point to be determined is the bohavior of the complex copper-lead minerals containeă on these concentrates. h e lead concentrate produced on the 12-8 shift of July 26 th. shows 9.30% oopper and 3.4 pe. Indicatirg some 60% of the copper present in minerals other than chalcopjrite. "he behavior of the omplex oopper-1ead and oppporsilver minerals can only be determined by experimentation and will be reporteă on as soon ae apparatus is available. Howovor I do not expect as complete a separation of base metals as would be possible with a concontrate composed of chalcopyrite and galena alone.

Page No. 5 .
July 30 th. .1928.

In reforence to both mills now in operation I would suggest that recoveries be reported as economic recoveries rather than the presont form of recovery reports where grade of product produced is not takon into oonsideration Bonomic recoverios figured on fixed metals prices of v , kess in the ore divided into metals recovered figured at the same base vaiues under terins of smeter contracis will give a better index of mill operation that the present method now in use.

Very truly yours.
C. P. Jewis.

Oroya,
Oct 3rd 1928.

Mr. Harol d Kingsmill, Goneral Manager, Cerro de Pasco Coppor Corp. Kima.

Dear sir;- Gasapatoa untr.
Horewith is my roport on the above mill both as to motallurgical progress made to date as well as recommendations for future improvement.

COURSS GRUSHTNG: The present practice of crushing to approximately two inches for the ball mill feed is to be condemmed because of the resulting high fine grinding costs in small diameter mills, Mills of the size used $(64-1,2)$ (Yarcy) in the primary grinding section should have a foed no larger than $1 / 2^{* 1}$ inch. The present duty of thfistmilis can be perfomed at under half the cost by crushing dry to $3 / 8$ or half inch. To correct this I would recommend that a 3 or 4 foot Symond ${ }^{\text {s }}$ Cone Crushor be installed ahead of the present elevators that discharge into the mill fine ore bins. The two gyratory crushers now instalhed there are not in use and can be removed to provide space for this equipment. A 3 foot cone would give the required capacity but a four foot cone would be recomended to provide the margin of safety In eapacity that is to be desired in case of breakdown and future increase in mill capacity. The cost of this installation would pro= bably be approximately $\$ 10,000,00$ and the savings resulting therefrom would return the cost within twelve months.

PIN GRTNDTNG AND GH:SSTMCATMOX : Due to the fact that this mill has been romodelled several tines the location as woll as types of machinos in this dopartment are not all that could bo desired.

DHisy: The primary mills using 5 inch balls are doing work more economically accomplished by up to date dry crushing.

S300XD: The rod mill used as a secondary grindor is boing rum undor its normal officient operating load. This causes metal to metal contact with high steel consumption as well as over sliming.

THIRD The Allis Chalmors mill section due to small size of tho units and the small classifiers are high steol consumors due to lack of ${ }^{\text {dcirculating load passing through them. }}$

FOMRTH: All classifiors on hand and in uso lack the dopth thatis necessary to provide classification without too much dilution. The present overdilution of the classifier overflow has beon found necossary to insure proper grinding but in return resulted in a shortoning of the treatment period by reason of larger volumes of pulp handled.

As a remody for the above I would recomiond that the second large classifior on hand be installed near and slightly above the rod mill classifier. This second unit to receive the discharge from the two primary ball mills aftor they have been converted into fine grinding units by reducing the size of the feed to them as well asfethe use of 3 inch balls rathor than 5 inch. The sands from both classifiors to return by gravity to the rod mill and constitute its feed. This will eliminate the entire Allis Chalmers mill section atbthe present tonnage rate or provide for m increased tonnage of 100 to 150 tons per day should this be desired, as woll as reduce steel consumption and overdilution of the greator portion of the pulp as obtained.

LSAD BLOTATIOX CTRCUTY: The lead circuit consisting of Inspiration type Gallow machines both in the rougher and cleaner sections is producing good results from a metallurgical standpoint but with high costs both as to power and repaírs.

No unit costs are available so exact figures can not be quoted. The power consumed is approzimately 40% above what would be required by mechanical machines producing equivalent results, altitude considered. Fstimated savings here would not justify any change when the age of the mill as well as possibility of a new mill on a different site are considered.

ZTNC M.OTATION GTRCUTT: From a metallurgical and operating standpoint there is little fault to be found with this section. Under proper control excellent results are produced with the exception of thoes periods when water shortage results in lack of air from the turbe blowers.

PII, OT TABHMS:- Both these tables are now being run on tailings as pilots for the ontire operation. I would recomend that one be used as a pilot on zinc concentrates to more closely control the iron content of this product.

GMNRPM, The flotation circuits as a whole are lacking in proper emalsification or contact of reagents. To remedy this I recomended last July that two 2 cell agitators be built to insure proper agitation of the pulp before it entered the flotation circuits. These I understand are now being builtt and should be installed sometime within the coming month.

As mentioned in mypprevious report on this mill various reagent changes have been made that are reflected in comparing the following two tabukations of motallurgical results:-

AVRRAGE OF JANUARY TO YAY 1928.

	\%ou	0xalg	fib	$2 \times n$	Cu	Ag	Pb	$2 n$
Heads	. 954	20.75	5,06	8,35	100	100	100	100
Pb cts	8.62	200.96	43.65	10.34	81.1	88.4	84.4	11.4
zn core	. 77	10.44	2.40	52.8	10.0	6.3	6.3	78.8
Tail.	.11	1,35	. 56	1.05	8.9	5.1	9.2	9.8
AVERAGS AUCUST 21st to 31st 1928								
	A S SAYS				RECOVBRIES			
			Pb	9m	Ou cu Ag		pb	In
Heads	1.076	21.81	6.51.	10.2	100	100	160	100
Pb Cone	8.69	180.46	48,56	10.2	84.2	92.7	89.0	11.1
2 n Cts	. 60	4.04	. 90	59.5	7.2	2.6	2.0	80.3
Tails	.13	1.38		1,2	8.6	4.7	9.0	8.6

You will note in the above that while the final tailing is about the same the distribution of the values is better by seyeral percent.

I find fromy visits to this plant that the chiof difficulty encountered in maintaining the best results, lies in theffact that very close operation is required and the personal factor plays too prominent a part on that acount. Close attention tan produce results at this plant second to none but with the present flow oheet more than usual attention is required. The Gasapalca ores are remarkably amonable to selective flotation treatment and they should yield products and recoveries unequal ed anywhere.

I have hesitated in recommending any mechanical changes until I was sure that the best results had been obtained with equipment and flow sheet in use on my arrival. The recomended changes contained herein can all be made wi thout loss of mill time and with no greater capital outlay than would be justified considering the life of the mill.

Trusting you will find the foregoing in order I romain,

Yours very truly,

C. P. Lowis.

> oroya, Perú,
> July 30th. ,i928.

Mr. Harold Kingsmill, Goneral Manager, Cerro de Pasco Copper Corporation, Casilla 2412. IIMA.

Dear Sir:
The following is a brief summary of my activities since my arrival in Peru on June l9th.

The interval between June 2lst, and July 6th. was spent in viaiting the various camps and becoming familiar with the concentration problems presented by the concentrators now in operation and the prospective problems in the ores now being smelted direct as well as these developed incidental to the mining of direct smelting ores.

QUIUTACOOHA MIT,L

I visited this mill from the 6 th. to the 2znd. incl. as peryour verbal request made while in Lima.

During this interval three major changes were made there Viz:

MTRST: The flow was changed from a counter current concentrate flow to a conourrent flow for the following reasons:lst, a counter ourront flow entails the lifting of the more refractory sulfides several times before they can be oliminated as concentrates.
2nde a counter current flow results in the inclusion of an excess amount of wash water that results in an over-dilution of the pulp to a point where selective flotation at the lower ond of the oirouit is impossible. As a case in point of my arrival the density at the thead of the circuit was 40% solids by weight with the tailings 7% solids - this with an avarage elimination of only 20% of the total weight of the ore in the form of concentrates.

To overcome this obvious fault all midaling froths and cleaner tailings were returned to the classifiers where the contained water was used as make-up water at that point and to provide the more refractory sulpides with another opportunity to come in contact with fresh flotation reagents.

SBCOND: From the soreen analysis of the tailings and their ansays it was apparent that the most of the recoverable losses wore in the $\& 200$ mesh material. The - 65 and +20 mesh product showing on an average of twice the silver content of the - 209 mesh product. Investigation showed that the primary mills were discharging a partially ground product, the major portion of

Tage No. 2
Juiy 30 th. . 1928.
Which was being overflowed from the alassifiers without being sufilioiently ground to expose fresh gulfides suriaces. To remody this defect and to ingure suficientarightening of the gulfies the discharge f rom the prinary mills was sent direct to the secondary mills without olassification. This apparentiy not only accomplished the deaired result but in adition oorrected the underloaded condition of the secondary milla that has undoubtediy caused excesaive steel congmption as well as trouble in maintainance of these units -

THIRD: Resgent chenges were made during the first 10 days in an endevor to both incroase the recovery and grade of concenirates as well as reduce the excessive quantities of reazents used This work was handicapped to some extent by an occasional erronious gample so that several days were lost before an acourate estimate of roagont functions could be made. It was found that in teeating the partially axidized dump ores from the Colquijirca mine that any material increase in grade of product was obtained at an unwarrented sacrifice in recovery. That is a 60% lead concentrate was accompanied by an 8 to 10 oz . ailver tailing.

With the above in mind the reagents were changed to give a concentrate of from 45 to 50% in lead at which point it was apparent no sacrifice in tailings was necossary and recoveries materially increased over previous operations on this gane class of ore The grade quoted can be increased by careful operation under aupervision of qualified shift bosses. Results during the month of July can be said to have suffored to some degree due to lack of this olass of supervision thru out the 24 hourg of the day.

To summarize the following are the average results for June when treating the dump ore including five days after my first visit there whgre a miner reagent change resulted in an approximate increase of 10% over former recovery:-

RHCOVERTHS BY FORMULA

Cu.	$72.2, \%$
$\mathrm{Ag} \cdot$	72.7%
$\mathrm{~Pb} \cdot$	76.5%
Zn.	59.8%

Page №.3.
July 30th.,1928.

After the 18 th , and until my departure while a definate reagent program was adhered to and after all the changes had been completed the average results for 18 shifts were as follows:-

RECOVERIES BY ROMAULABB

Cu.	88.5%
Ag.	82.0%
Pb.	89.3%
Zn.	60.8%

As far as I have been able to learn since leaving this plant the results to date have of the same cosder as above with some variation in grade of concentrates due no doubt to changes in ore and also an occasional high tailing due to shut downs because of mechanical difficulties and power interuptions.

In comparing these figures $y o u$ will note the similar grade of concentrate produced with a reduction of 2.20 z . of silver in the tailings as well as a 1.6% reduction in lead.

As to reagents the following table will serve to illustrate the reduction in quanui wy per ton of ore treated under conditi ns prevailing on July 7 th. and those under which the last quoted results were obtained:

Reagents July 7 th. Thio-carbanalide Zinc sul fate Sodium byanide Harawood Creasote Pine $0 i l$ Xanthate Soda Ash Black Ash Petroleum

It is to be expeoted that further familiarity on the part of whe operators with this changed style of operaciun will result in a gradual further betterment both as to grade and recovery and that these ohanges will also result in improved recoveries and grade when treating the mine ore during the ensuing month.
cERO de pasco Lead Zinc Ore Samples Assays.

RESEARCH DEPARTMEITT
 MONTHIY NEWS IRITIER OCTOBER 1929

Ore wressing section Report for September and Ootober

Mar. B, T. Colley
Metallurgical Engil ear
Anore:

Dear Sir:
Due to lliness, no report of operations was made last month, This report, therefore, covers the worx done from first of Suntenher to ante.

Pilot Concentrator

 Which time the carpenters were occupied on more urgent work, the construetion of the pllot eoncentrator has prosfresed eteadily?

The amashing and groinaing minite are proctioolvor completed. Bins, coarse ore feeders, faw orusher, oone crusher, ball. mill, end elascifier instelletions are finished.

The plotabion sections are well advanced. The 14-cell Moso maohize is now being equipped with its agitator mechanism and the last of the Forrester machines is heing escembled mheme ame yet to install the 3-cell Kraut and the 10-1t. Maokintosh machine. The latter has not been received from the States to date but its arrival is expeoted during the next month. The Kraut machine was shipped completely sssembled so that it will only be necessary to
 as double cleaners following the M. S meohine.

The thiakening and filtering units are finished except for piping, and the unit for the conditioning of the lead and zino pulps is noering camletion. mhe only mefor machine installstion to be made is that of the two low pressure blowers together with their connecting bustle pipes. The minor inatellations jat to be made oonalet of pumpe, pilot tables, sampling equipment, the MactIntoch and Krent pletetion meehines mentionea above, ort feecter from fine bins, reagent feeders, short belt onvejor, and line shafts。 Due to the lack of sufficient head room, and the desire to make the sampling of the mill heads as fool proof and acourate as posible, a sampler of the binaret tune will be subetytuted for the Tezin sampler whioh was to be instollea originelly,

Koumher ztine Concentors te

$$
\begin{aligned}
& \text { Bowighex } 21 \text { no Coneentrate: }
\end{aligned}
$$

The zino recoveries are actualin the eher thea thase of silven or leed, whe ther total ar economie recoverlas epe oonstiered.
 as to the canse of the nigh mali inilings that wepe grevalient, at the Quiulaoche Comeentreation. Preliminary teats ow tallings inileateg quite conclusively that the ore was not being erourid suflicientily
 goheme, ordy is \& oonsequencts the metallurytopl vesul合s have materialhy ingurovei.
 September 21sthand 22nth

$$
\begin{array}{ccccc}
\text { O28. } \mathrm{AB} & \text { \& } \mathrm{Pb} & \text { \% znsey } & \text { \& Fo } & \text { \& Insol. } \\
8.2 & 2.9 & 10.9 & 7.8 & 58.8
\end{array}
$$

A wet sersen anemyla made on this sample gave the following results:

A1thomah 67% of the tailing is minus 200 mesh, about 60% of the total silver and 48% of the total. lead is in the plus 200 mbeh meterial.

Aside from the segregation of tho valuable mineralsin the coerser and consequently less flotable, the miorosoope reveals leadu zino (and probebly silver mineral) aggregates. Tn othep wonds, finer grinding is neoescany in ozaer to bettor prepare the minerals for flotation and also to unlook the individual mineral grains.

In regrinding and flosting the lesd tails the silver wos reduced from 8.2 to .7 ounces and the lead from 2.9 to .3 per oento In this test no eifort whs made to seleotively separiete the zine of to mpie a high-grade product, the sole sim being to detexmine the epfeet of fither gritiainse mhe cepecoey of finer eminaing is treny ampamant.

In a later tost on the same tailing sample, an effort was made to reeover the maximum amount of values in the iesst possible bulk. the wesults follort:

Considering the per oent weight of the silver-lead ooncen= trate, the recoveries in the form of this product are quite good. The
high o ontrmination of zine, insol。 and iron is primaxily due to the relatively low content of lead which makes a clean separation very aifpienlt to ettain. mhe silver-leed comeantrete comla undoubtealy be greatiy bemefiolated by elaaningo

A test was made at a later date on the final mill tails Results in the mill had improved somewhat by this time and the tails were approoiablj lower. The following tabulation gives the results:

Produet	\% Weight	Oz.AB	\% Pb	$\begin{aligned} & \text { Assays } \\ & \% \mathrm{zn} \\ & \hline \end{aligned}$	\% Fe	\% Insol.
Peads Concentrate Tailing	$\begin{array}{r} 100.0 \\ 3.1 \\ 96.9 \end{array}$	$\begin{array}{r} 3.2 \\ 70.6 \\ 1.2 \end{array}$	$\begin{array}{r} 1.0 \\ 11.3 \\ .2 \end{array}$	$\begin{gathered} 10 \\ 23.9 \\ 7 x \end{gathered}$	$\begin{array}{r} 4.6 \\ 13.2 \\ 4.2 \end{array}$	$\begin{aligned} & 81.7 \\ & 36.8 \\ & 83.0 \end{aligned}$
Produet	AS	\% Pb	\% \% $2 n$	$\begin{gathered} \text { tribut1 } \\ \text { \& Fe } \end{gathered}$		\%. Insol.
Heeding Concentrate Nailing	$\begin{array}{r} 100.0 \\ 65.4 \\ 34.6 \end{array}$	00.0 64.8 35.6	$\begin{array}{r} 100.0 \\ 99.9 \end{array}$	$\begin{array}{r} 100.0 \\ 9.1 \\ 90.7 \end{array}$		100.0 3.4 98.6

The high concentration of silver is of pertioular interest.
In thin ebove teets the reagent eamhtuetion was the same .as in use at the quiviacoeha Concentrator with the exception of potascinem amyl xanthate which was used as the oollector. whe primary difference in treatment lay in finer grinding. In each case the sample was eround to pass 200 mesho A secondary iffeeremce in conititloms, but one whith had a marked influence on the grade of lead concentrate produced, was that both tailing samples ware oontaminatad with copper sulphate. The conner grinhate oalation ig meale ot the miti inpian to the gommling of the lead ta11s. Naturally there was a strons tendeney for the zine to float with the lead. This accounts for the high zino eontent in the soavenger lead concentrate.

As stated previously, finer grinding has now been instituted at Quiulacocha and the results show a marked improvement. Iater on, further tests gan be made to detemmine if the ore aan be fuxther bene-
 The economio advisability in this csse, however, of extremely fine grinding is rather doubtiul.

Proinntson af comnommntin rime concentrates. The treet twent of the lead-zinc-cadmium ore from Cercapuquio for the purpose of producing 100 pounds of zinc concentrate is still in progress. This work should be finished some time bhis month.

Phe partiewlar sample that we ere treating offers no particular metallurgical aiffioulties but there are sextain physiosl charac-
 Both the lead and the zino are very highly diacemina tod throuthout the ore and the onystallization 1 s extremelf fines Jous of zine shows no orystalline strueture whatever but appeare to be mome phous. Fine grinding is essential in orier to inlook tha perena ghd
 produced. The slimes, composed ohiefly of celeiumi carbonetorane he amorphous zing, produce a collotlal puly that we haye thas amable to suocesafully floceulate. As a lesult, the athe froth ie. reng thing, voluminous and diffioult to break down The frothine pomiod fory consequentily lone. Turthermore, the colloidal ohamatare af the munt makes filtretion difficult Roughly the fll tering period is thirty times longer per unit weizht when ifiteriln Ceccapugito gino aont centrates than when filtering an arerage zine concentrate.

Inasmuch as this asmole was purboselv taken from in
 ore body as a whole. Former samples from Coxaapughita ahowea a hith colloidal dispersion but mot to suoh si aegree as essista in the sample now be ing trested. In any ense however, if a mill ta eyer built to treat this ore the uroblems of henal ina a voluminomat stionue proth

Various measurss are being taken to overcome these diffloulties, but, on the whole, they have not pet with muoh duocess. Sou dium silicate and lime, thé customary flocoulating ceagenits, hat tro effect in deoreasing the collolan property. Time, on the contrars, inoreased the dispersion. Sulphurio acia was tried in verions ancounts. $\mathbb{N e}$ apprecinble bene fit was notioed until 300 noumde ner ton of acíd were used. With this amount of soid all of the caloiun cerbonate pres converted to oaloium sulphate and the pulp edidified. rhe pulp, due to the production of aelolimm sulphate, was very thick and fhe froth more heavily 1adon. Such a high consumption of acid, however, is nat prastical machanically, if economically. The asse of iscia ata not materially reduse the filtering period. The sext step was to usea denser pulp: This produced a faixly well laden froth dume the kind float but the stigkiness and diffigulty of fil tration sifill paraistea. Changes in reagent combinations had littie or no influence on these troublesome physioal features.

This sample of Cercapuquio ore is undoubtedy of higher zino and coamium content than the average ore.

A detalled disoussion of the metsllurgical treatment and results not be given at this time as there are no definite reoommendations formulated. With this sammle, since the atno a onfent bie ec high the per cent molight of zinc concentiate is likenise high and a high degree of conoentration therefore impossible. The roneter head oon
centrate contained a high pereentage of zinc but, es in the tests on previous samples (see January report), jielded a 70% lead produot in one oleaning operation with very littie lossin leas. The lead midaling is of sufficient grade (48 to 50% zino) to be aombined with the zino concentrate. The rougher zinc concentrate, due to the coll.01dal charo aoter of the caloium osxbonate, is contaminated to a considerable extent
 50 per oent. Cleaning brings the grade up to 52 per. oent, the other constituent being chiefly caleium carbonate. The rougher zinc conoentrate contains about 90 per oent of the total zine and 90 per cent of the totel godminm ntoregomating the Aianoattion of the ziwn ana canaminm in the zinc midaling, the oleaned concentrate contains about 85 per ceat of the total zinc and 85 per oent of the totel cadmium in a product assay. ing $52 \% \mathrm{zn}$ and $7.7 \% \mathrm{Cd}$

Phtrue most womk: There is a need for a fucther study of the cercapuguio ores with the Iollowing abjectives.

1. To spead up zino ilotation by arezting a more armored frotho
B. To deorasse the rate of flocoulation of colloids.

亏. mo deorecee the encoz eantent of the zine comeentrete since this mineral intexfores meohanioally and chomioally in the leaching proeass.
mhese pointe $\cdots \mathbf{m}$? 19 be taken up during the ourrent month and an endeavor made to rectify the diffioulties.

Further tests will be made on the oleven samples of Cerro leadzinc ores to tetermine the effect of time on the rate of oxidation and to determine the metellumitenl inelwence of oxtaettion.

There are several samples of lead-zinc ore from the Moroeocha mines whioh have not as yet been studied.

> Respectfully yours,

Theo. R. Wright

