CARROLL LOUIS WILSON MC 29 BOX 54 F 2057

Independent Qctivities Period, Jan 1973 OK

Draft Statement for Publication by
Carroll L. Wilson, Decembex 30, 1972

SOIE IMPLICATIONS OF ENERGY CHOICES

Raxely can the future effects of present national policy choices be seen so clearly as they can today in relation to energy. SCIENCE has become the leading forum for the debate on energy. The main scenarios can now be sketched.

Choice \#1 might be called "full speed ahead," relying on oil imports to fill the gap - estimated at 10 milizon bol. faay or over 50% of domestic oil demand by 1980. Most of this imported ofl would have to come from the Middle East in direct competition with Western Europe and Japan who must depend largely on these sources. The payments flow to these countries would rise from the present $\$ 8$ billion/year to at least $\$ 32$ billion/year (double the amount - double the price) with profound effects on the balance of payments and uncomfortable prospects as to the use some of the exporting countries may make of such untold wealth. Also, do we want to put those countries in a position so that acting together, as they now do, they could bring our economy to a halt by shutting off the flow of oil.

Choice 范2 would place great reliance on nuclear energy. We would shift to electricity for much more of our residential and industrial demand and aim to put a severe limit on oil imports. A tiny band of knowledgeable critics is now challenging the gigantic atomic energy complex on the issue of nuclear reactor safety. The real debate is just opening. I expect the evidence is likely to show that a failure of the coolant system in watercooled types of reactors is plausible, that such a failure would lead to melting of the intensely radioactive fuel core, that this molten mess would burn through the containers and foundations and "starc for China" - except for 20% which is gaseous which would probably break into the atmosphere and drift downind producing casualties by the thousand or million depending upon population densities in its path. One such disaster would generate demands for immediate shut down of similar plants. Several other aspects of Choice 非2 are unattractive. Each 1000 MN(e) reactor produces 250 Kg of plutonium per year and 100 such reactors are forecast for 1985. Plutonium is one of the most poisonous substances known and the maximum life-time allowable body dose is set by the AEC at less then $10^{-6} \mathrm{gm}$. A leading AEC official has said we must expect unaccountable losses of plutonium
to be as high as 1\%. Assuming a two-year fuel cycle this "loss" amounts to 125 kg . of plutonium a year or 500 times the allowable body dose for the entire U.S. population. In addition there is the clandestine weapons problem. Annual plutonium loss would be enough to make about a couple of dozen Nagasaki type weapons if a mixture of $P u^{239}$ and $P u^{240}$ is useable for weapons as recently reported. Stealing this much or more out of the transportation system would not be difficult for a determined thief. Still another problem is the perpetual custody and care of radioactive wastes. Is this the kind of world we should bequeath to all future gencrations if we have saiter choices?

The only safe course I see for present and future generations is Choice 非 which might be called energy conservation and development of new technology. A recent Government study defines many possible measures to reduce demand and waste without serious interference with lifestyles. Such conservation measures would reduce energy demand in 1980 by the equivalent of 7.3 million bbl./day. This is about one-fourth of the present energy useage. Such conservation would give us time to develop new technology and to assess whether heat from man's use of energy is likely to change the global climate. Today we
use in the United States about twice as much energy per capita as Great Britain, three times as much as France. In neither of these countries is life austere, nor would many people claim that the quality of life in the United States is 2-3 times better than in Britain or France. In new technology we should do several things. Firstly, we should develop and build enviromentally acceptable plants to produce oil and gas from our vast coal reserves. Secondly, we should begin massive $R \& D$ on solar, geothermal and fus ion energy systems to create an energy base for the 21st century. Thirdly, as an interim measure to reduce risks we should put all nuclear power plants at least 500 feet underground.

Choices $\|_{1} 1$ and $\# 2$ are unacceptable; Choice $\# 3$, energy conservation and new technology, is the only safe course. We should adopt a national goal of reducing energy use per capita by one half by 1985 instead of doubling it as we now seem headed towards doing. We probably could achieve this goal if we decided it was necessary, and as a result we would find ourselves and future Americans in a vastly safer and more comfortable position than by fol-

Proposal - To use the energy crisis and the proposal

 of a goal of halving U.S. per capita energy use by 1985 as a test case for instruments and institutions to achieve such a goal.- See statement on Implications of Energy Choices as text.

Steps - How to dramatize, develop consensus re dangers of Choices 非1 and 非2?

- Who has long-term strategic interest and motivation?
- Dues ii lequile ciiizen movemencs like Common Cause, Nader, Environmental to focus on long-term goals?
- How much is it essential to invoke fear e.g. Arab oil shut-off, nuclear accident, plutonium world, etc.? that are forces pro/con - strength?
- May it be necessary to have a diasaster before public is aroused (as compared with private special interests)?
- Where to find allies? A national defense issue (Naval oil leases - committees of Congress, etc.)
- Analysis of measures in EEP report different scales - time lags in introduction?
- Scenarios of different energy use levels see Freeman Study Guide.
- Whose problem is it?
- Series of studies taking each issue Re 判1 - projections re U.S. vs. Europe/ Japan re Middle East (OECD report)
- Sulnocymences le pilice - sihil-diowh when 15×10^{-6} bbl./day
- Estimates of amounts of oil needed from each Middle Eastern or African (Nigeria) supplier
- Effects of price rises due to U.S.l E.J. competition on fuel costs to LDC's (claims for adjustments by LDC's)
- Policies re cost pass on to consumers - accent or buffer?
Re 非2 - Hearing by Joint Committee on
Atomic Energy
- Where to get support for intervenors -past precedents
- Formidable AEC Complex- How to reach the electric powercompanies (current alternatives inthe Power Gas Combined Cycle -4500 MV on order)
- Impact of accidents will fall onpower company - only indirectly onmaker (GE, West, Comb E)
- Public study of plutonium spread consequences of rail accidents- Comparison of different reactortypes re hazard - HTGR Vs. PNR/BWRvs. LMFBR - who to do- Delays and cost escalation ofnuclear plants - effects of reducedpower levels on economics- Disposal of A/a wastes - positionand importance
Re Choice 非3 - Conservation and Technology
 - Major measures in OEP/ORNL Reprints
 - Contrasts U.S./Europe
 - OECD study re oil - differential
action U.S. Europe - elements of a
clash
 - Technology options now - Power Gas
Combined Cycle; later - Coal Gas dif
high and low gas
 - Gas supply position - models?
 - Technology of conservation
 - Insulation
 - Reduced air cond.
 - Urban car (solves 2 problems)
 - Systems of conservation
 - multiple use of private vehicles
(OECD studies)
 - reduced needs for people movement
 - videophone, etc.
 - study of trade-offs of underground
nuclear (or other) power plants
tunnelling technology
- How to apply Daly's depletion
coupons to energy crises
- in U.S. and Europe?

How it would work - e.g. reduced total of BTU coupons each year let price. float with Government take of differential over certain fuel prices - use take to push conservetion measures and new technology

- Fuels may be first and easiest case to apply Daily depletion coupons -
block out questions to probable .-
decision-making processes
- How else to achieve goal of use reduction? twee

Possible Elements for Second Semester Program

Basic Framework
 Daly - Transition tó steady-state system
 - Critique of growth fallacies and suggestion for National Materials Policy
 - Book (if available) toward a steady-state economy
 Boulding - Writings including marketable baby
 license coupons
 Other - which?
 Picardi - Goals and Policies for Sustainable Growth 22 October paper

Develop model/scenarios of Daly's three institutions-Distributist, marketable licenses to have children, and Depletion Ouotas. Study steps by which such a society would reach consensus, establish institutions to achieve purposes, some critiques of new societiel forms (e.g. Willums "Segment-Centralized" system).

I shall write to Professor Daly enlisting his interest and assistance and try to arrange for him to meet with us once or more during semester. Professor Boulding may

TO: Members of Seminar 15.965
FROM: Professor Carroll Wilson
DATE: December 27, 1972
RE: Schedule for Independent Activities Period

Monday, January 8, 1973
9:30-12:30 Meet in Room E52-365
$12: 30-1: 30$
Lunch at the Faculty Club
$1: 30-3: 30$
Meet in Room E52-365

Tuesday, January 9, 1973
$2: 30-5: 30$
$5: 30$

Wednesday, January 10, 1973
$9: 30-12: 30$

Meet in Room E52-365
Dinner at the Faculty Club

Meet in Room E52 - 365
George Cabot Lodge will atttend

A supplement as to the scheduling of other guest participants will be mailed shortly.

MEMORANDUM

T0: Members of Seminar 15.965
FROM: Professor Carroll Wilson
DATE: December 27, 1972
RE: Schedule for Independent Activities Period

Monday, January 8, 1973
9:30-12:30
Meet in Room E52-365
12:30-1:30
Lunch at the Faculty Club
1:30-3:30
Meet in Room E52-365

Tuesday, January 9, 1973
2:30-5:30
Meet in Room E52-365
5:30
Dinner at the Faculty Club

Wednesday, January 10, 1973
9:30-12:30
Meet in Room E52-365 George Cabot Lodge will attend

A supplement as to the scheduling of other guest participants will be mailed shortly.

Mack-s'Wediskefigiuls
LNA-Essw: Anparo Statement

Scrivce Pribii diter Primak a van tfeptel ST aiffand Wiew anturny Dours - Publishnterest quagazune
Sci AmencanEnengy a Pamen

Dr. Mayy - Repant
Paul Trlluh - Rove Pamen rgusicie (1)
fohnBennett - sunuranizen Chusian Ettias.
Chunsian Etiver a soevil Paliry (a socis Respansulutity)
Rietand Rembeld Viechur
beo Cabaitadye - Eugmes yy Change
Rogews $\sqrt{ }$ Commerateons of. Annavation
Thaddor - Dormestay sypdrome Solge Bonnto - Levens of chnupe cm'US Soirety
D. O) Wiggien
-soudy of Landuedos us
Na/XRC
(indenground)

Zodye 10 gaul
Mannhein - Man of dealogy

* The inhole cirll Y ake cone of itself if you loak elarely oo the prarts Bumerie pants
flenlasophens shaved loak of cubiale

Tadge gan 10
Cenenal Mators
1908
aruneus? 1.5×10^{6} shancholdens 1973
$\$ 5$ \% anso interois ete
SEC Delan Ansulate Managens from orancos
Shauchaldews dani cuanto be aumens - juro unesiano - sell if dussacrofred
GMin drep Ihelas trauble questionable legetrinacy of $\operatorname{sig} \mathrm{g}$ g.
Cth Cend - Ecanouri acínity hraken and of whol
20 ceno - muso he caro proud of tho whole Burhaps - Xoder as an evauple.

A new palitaal"
Ravel - Whhraur maux o Jesus

Do we contimice to soay open

- 12 your let the Engines I charize wouk - or suppriess
Whe enisis efficienth Dinsiae
Dinvial Pro Pe al cuisir
Pannarytaitic
Clarige fren oy hlood
Shap oshury - Sacke nedocre oservio
Reader affoes vs Chas II oxarode
Tecomer PReechnunter Noutanin' Caud

Sastge Saulo

- Lalce - auvaraus of real warld

Chu Ramls- Hheovy of fustice
$\frac{\text { Atamnheur }}{\text { Ldeoff UPAtix }}$
Growth Aleology came
vì betwien
Turn off to tap of growth A your iutuoduce arathen major elemend
ws has aud no explemeures
vinth bainddances
Lunts defneeas a4heday
<Defrie idenitety-quality/Divicts

Draft Statement for Publicacion by

Carrol1 \%. W11son, Deceuber 30, 1972

SORE TMOETCAMOUTS OF ENTROY CHOTCES

Rarely can the futume effects of preseme motionat policy choices be seen so clearly as they can today in welation to enciry. Scmung hes beoone the leading. Socura fon the dobate on enemsy. The main scenarios can now be sketched.

Chotce "1 might be canled "full specd ahead," relying on oil Inports to fill the gap - estimated at
 By 1980. Most of this impocted oil would have to cço from the middle peot in clirect competition with Westerm Wurope end Jpon tho must depend Icirgely on these sounces. Whe paymonts flon to these coumtries would rise from the present \$s billion/yens to ac lease द32 billion/year (touble the mount:- double the price) with profound effects on the balance of paymonts and uneonfortable prospects as to the use some of the emporting countries may mako of such untold wealth. Also, do we want to put those countries in a pooition so that acting, together, as thoy now do, thay eould buing our econony to a halt by shometins oft: the Elow. os oth.

Cholce th would place great reliance on nuclear energy. We would shift to electricity for much more of our residential and industrial demand and aim to put a severe 1imit on cil tmports. A tiny band of knonlodgeable critics is now challenging the gigantic atomic energy; comples on tho issua of nuclear renctor safety. The real debate is just proming. I expect the evidence is likely to show that a failure of the coolant system in watercooled types of reactors is plausible, that such a fallure vould load to melting of the intensely redioactive fuel core, that this molten mess mould burn through the containers end Soundulions onj "slawh Sut Chinia" - except for 20% which is gaseous which would probably break into the atmosphere and drift domwind producing casualties by the thoueand or million depanding unon population donsitios in its path. One such di ater would Enerate-. denands for immodiate shut dom of sinilar plants. Several other aspects of Choice 22 are unattractive. Each $1000 \mathrm{NH}(\mathrm{e})$ reactor proluces 250 Ng of plutonium per year and 100 such reactors are forecast for 1085 . plutoniun is one of the most poisonous substances knom and the morinum life-timo allomable body dose is set by the $A B C$ at less than 10^{-6}. A lending $A E C$ official has said the must empoct viaccountable losses of plutonium
to be as high as 1%. Assuming a two-year fuel cycle this "loss" amounts to 125 Kg . of plutomium-a yeas or 500 times.-... the allonable body dose for the entire U.S. population. In addition there is the clandestine meapons problem. Ammal pluconiuni loss vould be enough to make about a couple of dozen logasaki type wopons if a mizture of Ru 239 and $R u^{240}$ is useable for weapons as recently reported. Stealing this much or more out of the transportation systera would not be difficule for a determined thief. Scill another problem is the perpetnal custody and cane of radiosctive vastes. Is this the lind of world we ohould begucath to all futuio generaitons if we have safer choices?

The only safie course I see for present and future generations is Cholce \#3 which might be called energy consarvation and development of new technology. A recent Government study defines many possible measures to reduce demand and waste without serious interference with. lifestyles. Such conservation measures would reduce energy demand in 1980 by the equivalent of 7.3 million bbl./day. This is about one-fourth of the proscht energy uscage. Such conservation would give us time to develop nen technology and to essess whether heet from man's use of. energy is likely to change the global climate. Today we
use in the United states about twice as much energy per capita as Great Britain, three times as much as France. In neither of these countries is life austere, nor would many people claitn that the quality of Iife in the United States is $2-3$ times better than in Britain or France. In new technology we should do several things. Firstly, we should develop and build envixomentally acceptesle plants to produce oil and gas from our vast coal reserves. Secondly, we should begin messive R \& D on solar, geoChemal end fusfion energy systems to create an onergy bose for the 21 st contury. Thirdly, as an interim measure
 at least 500 feet underground.

Choices \#1 and $\% 2$ are unacceptable; Choice $\# 3$, energy conservation and new technology, is the only safe course. Te should adopt a nacional goal of reatucing energy use per capica by one half by 1985 instead of doubling it as we now seem headed towards doing. We probably could achieve this goal if we decided it'vas necessary, and as a result we would find ourselves and future Americans in a vastly sefer and more comfortable position than by following Ghoices $\#_{1}$ or $: 2$.

