HAROLD E. EDGERTON PAPERS

MC 25

Series III
Laboratory Notebooks

Number 17

Dated Mar. 30,1946 to June 18,1948

Massachusetts Institute of Technology 4-17 8-05 COMPUTATION BOOK

Course
Used from AAR 30 1946, to JUNE 18

Notebook \# 17

Filming and Separation Record

was/were filmed where originally located between page and \qquad .

Item(s) now housed in accompanying folder.

Hawed E. Efgoran
marde. 30,1946 .

MASSACHUSETTS INSTITUTE OF TECHNOLOGY COMPUTATION BOOK

GENERAL INSTRUCTIONS

Abstract

In all work in which accuracy and ease of reference are important, much depends upon carrying out the computation in a systematic manner. The following instructions, taken from the Engineering Depariment Figuring Book of the Allis.Chalmers Co., serve as a guide in this matter. "All computations, of whatever kind, are to be made in these books, except in cases where special blanks may be provided for specific kinds of computation. Computations may be made in ink or pencil, whichever may be more convenient. Pencil figuring should be done with a soft pencil. All the work of computation should be done in these books, including all detail figuring." "Each subject should begin on a new page, no matter how much space may be left on the previous page. The subject, with the date of beginning it, should be plainly written at the top of the first page of the subject." "Work should be done systematically, and as neatly as consistent with rapidity. The books are, however, intended for convenience, and no unnecessary work should be done for sake of appearance only. Errors should be crossed off instead of erased, except where the latter will facilitate the work. Work should not be crowded. Paper costs less than the time which would be expended in attempting to economize space in making erasures." "Where curves drawn on section paper (or sketches) are necessary parts of a computation, they should be pasted in the book, except where specifically otherwise provided for." "Computations should be indexed, in the back of the book, by the person using the book."

Aualysis of circuits used in Photicell meter. Fint otage.
 equivat cirait.

Enpurt.
Cirait equations.
(1)

$$
\begin{aligned}
&-\mu\left(I_{1}+I_{2}\right) R_{B}=I_{2}\left(r_{P}+R_{1}+R_{B}\right) \\
& I_{1}=-I_{2} \frac{A}{\mu R_{B}} \quad A=r_{P}+R_{L}+\mu R_{B}+R_{B} \\
&=r_{P}+R_{A}+R_{B}(1+\mu) .
\end{aligned}
$$

$$
\begin{gather*}
u\left(E_{i}-\left(T_{1}+I_{2}\right) R_{B}\right)=I_{1}\left(r_{P}+R_{A}+R_{B}\right) . \tag{2}\\
\mu F_{i}=I_{1} A+I_{2} \mu R_{B} .
\end{gather*}
$$

Irour thi abore squations

$$
\begin{gathered}
I_{1}=\frac{\mu A}{A^{2}-\left(\mu R_{B}\right)^{2}} E_{i} \\
I_{2}=+\frac{\mu^{2} R_{B}}{\left(\mu R_{B}\right)^{2}-A^{2}} E_{i} \\
\frac{I_{1}}{I_{2}}=-\frac{A}{m R_{B}}=\frac{-\left(r_{p}+R_{L}+R_{B}(1+\mu)\right)}{\mu R_{B}}
\end{gathered}
$$

$$
K_{1}=\frac{I_{1} R_{2}}{E_{i}}=\frac{\mu A R_{L}}{4^{2}-\left(u R_{B}\right)^{2}} \quad \text { The signal carres }
$$ Rim tubl will

Dougges that $R_{L_{2}}$ be increased ses jutly to compensite for this.

Then with $R_{A_{2}}$ and $R_{A_{1}}$

$$
\begin{aligned}
& A_{1}=r_{P}+R_{L_{1}}+R_{B}(1+\mu) \\
& A_{2}=r_{P}+R_{L_{2}}+R_{B}(1+u) .
\end{aligned}
$$

(1)

$$
I_{1}=-I_{2} \frac{A_{2}}{m R_{B}} \quad \text { or } I_{2}=-I, \frac{\mu R_{B}}{A_{2}}
$$

(2)

$$
\begin{aligned}
\mu E_{i} & =I_{1} A_{1}+I_{2} \mu R_{B} \\
& =I_{1} A_{1}+\left(-I_{1} \frac{\mu R_{B}}{A_{2}}\right) \mu R_{B} \\
& =I_{1}\left(A_{1} \bar{*}\left(\frac{\left(\mu R_{B}\right)^{2}}{A_{2}}\right)\right. \\
I_{1} & =\frac{\mu E_{1}}{A_{1} \bar{*} \frac{\left(\mu R_{B}\right)^{2}}{A_{2}}}=\frac{\mu A_{2} E_{1}}{A_{1} A_{2}-\left(\mu R_{B}\right)^{2}} \\
I_{2} & =\frac{-\mu E_{1}}{A_{1} \overline{\left(\mu R_{B}\right)^{2}}} \frac{\mu R_{B}}{A_{2}}=\frac{-\mu^{2} R_{B}}{A_{1} A_{2} \bar{*} \frac{\left(\mu R_{B}\right)^{2}}{A_{2}}}
\end{aligned}
$$

and $\frac{I_{1} R_{L_{1}}}{I_{2} R_{L_{2}}}=\frac{\lambda}{A_{1} F}$
is equal o. They
Itu's equals,. they
the next stage is balanced.

$$
\begin{aligned}
& I=\frac{R_{L_{1}}}{R_{B}}\left[r_{L_{p}}+R_{L_{1}}+R_{B}(1+\mu)\right] \\
& R_{L_{2}}=R_{L_{1}}\left[\frac{r_{p}+R_{L_{1}}+R_{B}(1+\mu)}{\mu R_{B}}\right]
\end{aligned}
$$

socage gain of each tube

$$
K=\frac{I, R_{L_{1}}}{E_{i}}=\frac{\mu R_{L_{1}}}{A_{1} \frac{\left(\mu R_{B}\right)^{2}}{A_{2}}}
$$

R_{4} for bins for nest stage.

$$
\frac{1.5 \mathrm{v}}{15 \mathrm{mg}}=100,000 \text { ohms }
$$

with 608 tu che. At reduced vologe condition.

It $R_{L}=10^{5}$

$$
\begin{aligned}
& \text { Let } K=X=\frac{30 R_{21}}{\left(50,000+R_{11}+66700(1+30) \mp\left(2.06 \times 10^{6}\right)^{2}\right.} \\
& =\frac{\mu}{\left.\left(50,000+R_{22}+66\right) 00(1+30)\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\frac{30}{\left(\frac{1}{2}+1+\frac{2}{3}\binom{3}{206}\right]\left(30 \frac{2}{3}\right)\left(\frac{30 \times 66,700}{500000}\right.}\right) \\
& =\frac{30}{\frac{22.1-9.1}{\frac{9.1}{13 .}}}=\frac{30}{13}=2.31 \quad \frac{2.060,000}{2.2 \times 10^{6}}=\frac{306700}{2.2 \times 10^{6}}=.91
\end{aligned}
$$

$$
R_{L_{2}}=10^{5}\left(\frac{50000+100,000+66,60031}{30} 66,6000=10^{5}\left(\frac{216,000}{66,000} \frac{31}{30}\right)\right)=10^{5} 3.36
$$

The gain should be $2,3 \times 2=4 / 6$. since the voltage s are out of phase.

4 cont. Out put strge To operste sueter. suesitgt: RCA.

apmilas.
Bely 20 . Exprosme tasto $f 5.6$ oitho Recorbinafiem
Dumont Seupe 341 type 256B. "A"scale rauge Calibstron pipus. $12.2 \mathrm{\mu s}$.

Testo of $\cup R 75^{5}$
in.Bisinikes. Lub $20-236$

6 April2lat6. V-R 75 Regulater tule

Vottage calib 87 volt/fich. tanent calib direct.

$$
I=\frac{87}{300}=0.29 \text { auppe } / \mathrm{mich}
$$

$$
=0
$$

at curreut $=.029$ ampo
atten at $30=0.4$ mich .
colib $\frac{.029}{.4}=.082$ ampo mich.

1. Calib 12.2 ms .
2. Voltorge

Fhotrs on A renge scale were oh with $/$ nec exposure at firin 5.6 on ne ne. recentring film.
15 min. Qeivel in $D 76$? on 4000 mange, the thire wis moreased b' 6 peconds.
put voltaye, apment, and a tivily calid. purve on the same' photognifich.
chech rate of cumentrincrease as a function of the final anent.

Vacuim tube circiit
Aualysis - Push Prull type D.C. commm self-bics resiston witturut by pass cofracitor.

Problem: ti fird the golvanometer cameut Ig in tenins of E_{i} and the constaits of the cincuit. Three circuit equations are needed to solverthe
earnento.
(1) $\mu F_{g_{2}}=-\mu\left(I_{1}+I_{2}\right) R_{B}=\left(I_{1}+I_{2}\right) R_{B}+I_{2} r_{p}+\left(I_{2}-I_{g}\right) R_{2}$.
(2) $\mu E_{g_{1}}=E_{i}-\mu\left(I_{1}+I_{2}\right) R_{B}=\left(I_{1}+I_{2}\right) R_{B}+I_{1} r_{p}+\left(I_{1}+\frac{T}{g}\right) R_{L}$
(3) $\left(I_{2}-I_{g}\right) R_{2}-\left(I_{1}+I_{g}\right) R_{L}-I_{g} R_{4}=0$

Frnu(3)

$$
I_{g}=\frac{\left(I_{2}-I_{1}\right) R_{L}}{2 R_{2}+R_{G}}
$$

which when substituted in $\theta_{0} 1$ and 2 give

$$
O=I_{1} A+I_{2} B \quad \text { where } A=R_{B}(1+\mu)+\frac{R_{L}^{2}}{2 R_{L}+R_{G}}
$$

From which T_{1} and I_{2} can he solved. $\quad B=R_{B}(1+\mu)+r_{P}+R_{L}-\frac{R_{2}^{2}}{2 R_{2}+R_{G}}$ $I_{1}=\mu F \cdot \frac{B}{B^{2}-A^{2}}$ and $I_{2}=-I_{1} \frac{A}{B}=\frac{-\mu F_{1} \cdot A}{B^{2}-A^{2}}$ and $I_{2}-I_{1}=\mu F_{i}\left(\frac{-A}{B^{2}+A^{2}}-\frac{B}{B^{2}-A^{2}}\right)=\mu F_{i} \cdot\left(\frac{A+B}{A^{2}-B^{2}}\right)=\frac{\mu E_{i}}{A-B} . \quad$ since $\quad \times \frac{A-B}{A^{2}-B^{2}}$
$=-\mu E_{i}$

$$
\text { oud } J_{g}=\frac{\left(I_{2}-I_{1}\right) R_{L}}{2 R_{L}+R_{G}}=\frac{\mu E_{1} R_{L}}{\left(\frac{2 R_{1}}{2 R_{L}+R_{G}}-r_{P}-R_{L}\right)\left(2 R_{L}+R_{G}\right)}=\frac{-\mu E_{i}}{r_{P}\left(\frac{R_{G}}{R_{L}}+2\right)+R_{G}} \rightrightarrows \frac{-\mu E_{1}}{\left(2 r_{P}+R_{G}\right)} \cdots \frac{A+B}{A^{2}-B^{2}}
$$

v - 87 velto/nich.

$$
I=\frac{87}{300}=.3 \text { anp/p/inch. }
$$

use 1500 dims.

Seppex20 Voetage acid

$$
\begin{array}{c|c}
140 & 185 \\
\frac{98}{42} & \frac{40}{45}
\end{array}
$$

velt per rica. to gromel, $\times 2$
$\frac{\text { D.C. Deflethin of rocill graft }}{\text { inpui } \downarrow T^{+250}}$

The dired sijual is prut in a A A ngitud and at pind $\sqrt{\text { Buthioh goes }}$ deicity x the CR plete.
Aite, Th oscellognpia dese ís hot $125 \mathrm{~V}=$

10 aprie61946
Stared SEgerton 436 boy.
the osillogrous of breakoun tine of glow regulotm tube show a curve of the followhaiq type as a fun tim of vervalbage.

or

The curve is a function of the repstitim rite of the the thrusient. Sons left firm nitherevirus conditions nifluence the brealedourn.
If seems that the curve coned be matched by on eguatim of the tuple

$$
\begin{aligned}
& t=A\left(v-v_{s}\right)^{b} \\
& \text { or } v=\left(v-v_{s}\right) v_{s}+t^{n} \\
& \log v=\log \left(v_{s}+t^{n}\right) \\
& \log \left(v-v_{s}\right)=\log t^{u}=n \log t . \\
& n=\frac{\Delta \log \left(v-v_{s}\right)}{\Delta \log t .} \\
& n=\operatorname{probably}(-1) ? \\
& i f s o \text {.then } \\
& t\left(v-v_{s}\right)=a \operatorname{cosislant}
\end{aligned}
$$

Ete Ef. Sutec Chur Senbitum.

Delstimie us. in othe thing trav below.

Porit. 2 , inch Tesine coristrux.

$\begin{array}{llllll} & 96 & 1.9 & 32.4 & 3.05 & 110 . \\ 1.2 & 105 & .6 & 2.6 & 1.65 & 1 .\end{array}$
$\begin{array}{lllllll}1,3 & 113 & .45 & 16,2 & 1,10 & 39,6\end{array}$
$\begin{array}{lllll}1.4 & 122 & .35 & 12.6 & .90 \\ 1.5 & 25.2 \\ 1.6 & 140 & .30 & 10.8 & .55 \\ 19.8\end{array}$
$\begin{array}{lllll}1.6140 & .24 & 8.65 & .42 & 15.1\end{array}$
1.6149 .000 R2. 9×677.4 ? $\quad 2.9$? 17.4
$\begin{array}{lllll}1.7 & 148 & 1.4 & 8.4 & 2.4 \\ 1.8 & 14.4 \\ 1.8 & 1.3 & 7.8 & 2.1 & 12.6\end{array}$
tio gives the deloy fime the shart the breale hime the between the
innergaidand the outer grid. innergid an the outer give. tic gines the delay fimm the stax x to tho

12

14 Apmil8,1946.
Naval Engertirn Breakdown V a time
for the Strobotron tube.
the data then tokay in 20.211 with Hinton was periled ups in page is of the book. law. Asounce the dato follows the following

$$
\frac{\left(v-V_{s}\right)}{t^{n}}=A . \quad-v-V_{s}
$$

take $\log s$ of both sides

$$
\log \left(v-V_{s}\right)-\eta \log t=\log A
$$

the dato of page 13 plat was pester b on log (-1) which gins as an espment sahel foltinies. the goleriniz.

$$
\left(\underline{V-V_{s}}\right) t=A \text {. }
$$

Dato was selected at $t=10 \times 10^{-6} \mathrm{sec}$

$$
\begin{aligned}
& V_{S}=13320 \mathrm{le} \\
& V_{S}=80
\end{aligned}
$$

Solving for $A=530 \times 10^{-6}$ volt seconds.
The oguare points an the botturis curve cleon the fit with the curve.

$$
\begin{aligned}
& t \text {. } 4 \mathrm{~ms} 10 \quad 26,5 \\
& \begin{array}{lllll}
v_{V} & 225 & 133 & 100
\end{array} \\
& 145-\frac{70}{53} \quad \frac{90}{20} \\
& a=530 \times 10^{-6} \\
& b=0
\end{aligned}
$$

Notebook \# 17

Filming and Separation Record

___ unmounted photograph(s)
___ negative strip(s)
\qquad unmounted page(s)
(notes, drawings, letters, etc.)
was/were filmed where originally located between page 14 and 15 .

Item(s) now housed in accompanying folder.

14 Opmil8,1946.
Havel Segertors Breakdown Vo time
for the Strobotron tube.
the data taken tokay in $20-211$ with thuntorn was periled ups page is of the book. law. assume the dato follows the following

$$
\frac{\left(v-v_{s}\right)}{t^{n}}=A . \quad-v-v_{s}
$$

take $\log s$ of both sides

$$
\log \left(V-V_{s}\right)-n \log t=\log A .
$$

the dato page 13 peat wasp pester on lo (-1 , which give surfer was found the folerinig.

$$
\left(\underline{V-V_{s}}\right) t=A \text {. }
$$

Date was selected at $t=10 \times 10^{-6} \mathrm{zec}$

$$
\begin{aligned}
t & =10 \times 10 \mathrm{sec} \\
v_{s} & =133 \text { volts. } \\
v_{s} & =80
\end{aligned}
$$

Solving for $A=530 \times 10^{-6}$ vet second.
The ognare points an the Gothros curve dhow the fit with the curve.
t. 4 ns 10 26,5
$\begin{array}{lllll}V_{V} & 225 & 133 & 1000 \\ V-V_{8} & 80 & & 70 & 80\end{array}$

$$
\begin{aligned}
& a=530 \times 10^{-6} \\
& b=0
\end{aligned}
$$

Notebook \# 17

Filming and Separation Record
___ unmounted photograph(s)
\qquad negative strip(s)
1 unmounted page(s)
(notes, drawings, letters, etc.)
was/were filmed where originally located between page 14 and 15 .

Item(s) now housed in accompanying folder.

$$
\log \left(V-V_{s}\right)
$$

a) inil 9, 1946.

Siar Pchar vo tuine Voctige Foutargin $=$ to.

nequitive eurge on the inturegrid.
it loes ous tha anert and donble Graale
Giten-grid gero with 56 ro delms in eenis

1.1	95,5	0.9×300	210
1.15	100	2.3×36	82.5
1.25	109	.9	32.4
1.42	124	.35	57
1.42	124	2.2×6	12.6
1.60	140	1.6	

16 const.
Phite vologe - beloy time.
Qutor giid $+60 \quad 5600$ ohms.
Inver gnial-5000 ohns Xo negothir prulse.

$V g_{2}$ OUTER GRID $=+60 \quad 5600$ OATHS.
$V g$, INNER GRID $=-69.5$ SURGE, 5000 OHMS.
seopoge 8.
Bottorn curve with
 point a 1500 ohums. currenticalib.

$$
e=1500 i^{\circ}
$$

$$
r^{\prime}=\frac{87 \text { voltg/inct }}{1500 \text { olmis }}=58 \mathrm{ma} / \mathrm{mch}
$$

Dinisimoare 0.1 üch $=5.8 \mathrm{ma}$.
gion tuhe voltage point bto ground with calibstim 78 volts pir mich.
$V=1.16 \times 87=10 i$ votts applied. \#4.

$$
t=2.6 \times(6) .1=159 . \mathrm{ms} .
$$

then about 60 us is requirad for cunent to bold upp $\frac{92}{51} \cdot \frac{.22 \times 87}{1500}=1.275$
after $12 \times 61=730 \mathrm{us}$ the voltaye has dropped to. $.8 \times 87=69,5$ vatt.

$$
\text { curment }=\frac{.35 \times 87}{1500}=20 \mathrm{ma} \text {. }
$$

timuRule appie 4 , 1946 . \square

5
万

${ }_{4}^{4}$

 VRT5Seeprog 8.
Bottore curve with
 point a 1500 ohus.
currentcalió.

$$
\begin{aligned}
& e=1500 i^{\prime} \\
& i^{\prime}=\frac{87 \text { voltg minch }}{1500 \text { olnnc }_{0}}=58 \mathrm{ma} / \mathrm{mch}
\end{aligned}
$$

Dinisimo are 0.1 üch $=5.8 \mathrm{ma}$.
Gow iuhe voltage. point bto ground with switch 4 slored. calibratim 18 rolts pir mich.

$$
\text { Veltagrajeter } 600+\mu \mathrm{s}=8 \times 87=69.5
$$

$V=1.16 \times 87=10 \%$ vots. applied. \#4.

$$
t=2.6 \times 6.1 .1=159 . \mathrm{ms} .
$$

after $12 \times 61=730 \mathrm{us}$ the voltaye has emppod $x . .8 \times 87=69.5$ valt.

$$
\text { curnent }=\frac{.35 \times 87}{1500}=20 \mathrm{ma} \text {. }
$$

Irrm Real 2 april 4，1946．

$$
\begin{aligned}
& t=\frac{a_{*}}{\left(v-V_{s}\right)} \varepsilon^{b / s} \\
& \text { Then two vatu.. } t=5 \text { us } v=185 v-\frac{4}{2} \\
& t=80 \\
& \text { Asounc } \mathrm{C} \text { V }=100 \\
& \text { (1) } \quad 5(85)=a \sum^{b / 4}-425=a \sum_{\text {D/105 }}^{\text {D/ }} \\
& \text { 80 } 5=a \varepsilon^{b / 4}=640=a \sum^{5 / 18} \\
& e \varepsilon^{q / v}=\operatorname{about} 500 . \\
& 5=\frac{a}{\left(185-V_{s}\right)} \quad 925-5 V_{s}=a \\
& 80=\frac{a}{\left(108-V_{s}\right)} \quad \frac{865-80 V_{s}=a}{60+75 V_{s}=0} \\
& V_{s}=-1 \text { voct } \text {. }
\end{aligned}
$$

Th 150 V .10 us.

$$
\begin{aligned}
& 10=\frac{a}{\left(150-V_{s}\right)} \quad 1500-10 \mathrm{Vs}=a \quad-\quad 635=65 \mathrm{~V} \\
& \begin{array}{l}
\frac{1500}{995} \\
525 \\
525
\end{array} \\
& v_{s}=97.5 \text { vatt. } \\
& a=525 \text { meto us, }
\end{aligned}
$$

$\rightarrow-122$
$\longrightarrow \mu s$

$01.1 \mu 5$

Roll\#2

$$
\text { Eouter = } 50 \text { wold. }
$$

Them tive swarb us/in oosof Reming E_{p}.

toon 6 a, oovint 1 lamud. 350 stating velage

14. 6. 4mfon condenserdishenge c aud d.

Fel 3.

1. 400064 mf 475 veto amould aud velegec.
2. ". "Anenugrid a 4 outorg gite b.
3.

$$
\begin{aligned}
& i \rightarrow \\
& i
\end{aligned}
$$

$$
q^{\prime}=c \frac{d e}{d t}=\frac{87 \times .2}{30 \times 10^{6}} 2 \times 10^{-6}=10 \text { iouppres, } 3008
$$

The gide $\left(g_{1} t_{0} g_{2}\right)$ breahs dium into aneverf high frequery deimized.
$\leftrightarrow \quad$ Proven tie a fon din toxe tock
 are whire it causes al chenge intel grid
cunnent. therc is also a seight rise of the lignt at then point.

24

Slowbreshdour.

26

Vac. photo all inth defferent load reairtors bhowing floct of the infurt time constawt
$i=\frac{4.587}{.167}=234$ amperes peak. (battru ove.)

$=10^{4}$ oluns.
3
150

APANGL
Uresistor

3100

\section*{| | | | | 1 | |
| :---: | :---: | :---: | :---: | :---: | :---: |}

$+$
3

| |
| :--- | 1 4

50 - La
130

-

\square -

\square

T

\square

Bre
$\square$$1-1$
20 $\square$$+10$
-4 Han $1-36 \mu s \rightarrow 1$ $\mathrm{H}-36 \mathrm{~ms} \rightarrow 1$

Circuit Irmeas prge 26.

Vaciphorts all with defferent load reairtorstshowing floct of the infurt time constant
$i=\frac{4.587}{.167}=234$ amperes peak. (battru ooc.)

CR.amplifier with afjustrble gain sethuy.
food resistry
$=10^{4}$. huvo .

Light outfrnetof 631P1 tube.

note that light peak occurs when the cement beenlies zero.

peate veltige.

Stuploof. Ermane

Sturbolex $\alpha_{p}=40 \mathrm{wh}$.
Sinf with 31 turns of $x, 28 . \angle=20 \mathrm{uh}$.
Cfintero $R 5965322$: Srump 2 2igninitero.
truikte K5965322 Droup. 4. 4igniter. points.

Robt. Sanuider. open Hanse Com.

Nimature stribotrmtest.
Tubes mo 64 and 59.

$$
R C=.01 \mathrm{sec} \quad R=\frac{.01}{0.1} \times 10^{6}=100,00 \text { phmes. }
$$

Thituce gow tar t of 250 unth D.C.upurl
onsope 3 incha $\times 57=270$ volt fir sta t. 1 Prelse put in frim the gind:
cinvit

Sight 0.1 at $0.1 \times 36 \mu \mathrm{~s}$ thin contr N
Vottrys t ftrt deschange $=90$ volts + sunge. $\begin{aligned} \text { deloy live } & =3 \times 36 \mathrm{~ms} \text {. } 1000 \mathrm{volt} \text { on plate. } \\ & =10 \mathrm{~ms} \text {. }\end{aligned}$
S/m 26. EDz\&en coilto, 5
Cilte. $\rightarrow 0.1 \mathrm{mf} 1000 \mathrm{v}$ and seilcil.
squde sec.
locqeles jivi 36 us.
3.6 us zog, joro ayde.

Enput 700 volts 0,1 mif.
Voltage $135 \times 87=$
$7001 / 88^{11}$ sforle on
$\left.\begin{array}{l}700 \mathrm{~V}(3 / 8 \text { "sporle on } \\ 0.1 \\ \text { seconidong. }\end{array}\right)$

Ior nurethoru tib be

32 afrie 261946.
Q laved EEguortorn.
Self fining tube.
One methot of otartur a flashtuhe ith to connect it dinesty to a condenser pesta a
 be obtanad yrin a flas d thbe that an ur cited by an evtermal high vetoge imingizs surge.

D show hov ways of operating flesh tubes with dead leads aild a contemoer suitchuq relay
(1)

The an thentrans
main accorde.
(2)

When the owith is closed, a glow otarting throngh the
afril 271946
Aured 5 Sgertur.
Driturpperas here on the $24 x$ discas electrical flash monie equipment. He shrued us sonat 10,000 pore sond theniof crvitatim bubble when three Algorgen fash wits are fired in oogricuree. He want tapeed upthe surnie sutstia highen rate.

The problem uas dis cuned ot lent th the with semeshansen, sine rud ny deed. We a groed t try o spiced uft the fea a muth by proprop susigntiof the qir suit for spred. Bnglop nugis and to Sofin a helfi with the mers.

Ofte considerible dis annin inte sumus the kist foer drys we suluel the below chivit Gor th ine. The smana fectarns
(I). negotinil bits on the सpongen thyratime.
(2). A filter on the thyintungrie to aborb the bich givien die driver cricunt when the tube gines.
(3) a provampeefier to preceed the driver tube.
(A). Tenctim of the grid resistim of the thysatrane.

contaction. or ose inguit.

Pro. col, syp.
Type 241
calit. 152 verts. $2^{\prime \prime}$ pealitipeate. Duman4 492.
$=\frac{152 x \sqrt{2}}{2}=215$ vetosperninch.
may 4,1946 AE SO ${ }^{2}$ orm.

 FT-14 lamp on 112 mf at 2000 vobs.

Nealso mescenge the oustput of the sylrain bied in their ac. nurdet unitand Find the lig et ouif port =

125
$\frac{512}{12000^{2}} \frac{20}{2 x}=8950$ humen sec standad lanfe. $\frac{32}{105}$ for Syer.tump $\times 8750=2870$ lumisec.
the evergy fritlu oyer nint
wis 2500 v . and $c=(96$ untrec $)$.
thisther ffecieng is

$$
\frac{2870}{96}=30 \text { lumens/uatt. }
$$

Distance 48" Samp to all, h.f.

Tuerectoreckis retifirs aus Bre tmushmin a 28 m t eove trays omer ouffrut $=2000$ ac. a mimptent shobotim wio usel to dinge a newtype coil that Semmo hees givat finisibel.
rinto the plitocull miter wao dessu in ... ferts made of Uu sytnenteta lamp. TS un concenfle that the benter was moro ceded

7aoge, 1446.
Nilthis and Saylor brougtrier a univeflasa photos wire taken of the newtitive curves.
calib FT-14 16×10^{6} l 1.6×10^{6} h. ap.
Mienflach at 20 ft gane 0.6 " def.

$$
\text { beam } p p_{1}=1.6 \times 10^{6} \times\left(\frac{20}{4}\right)^{2} \times \frac{.6}{3}=80 \times 10^{6} \text { beam c.p. }
$$

36 mag 91946.
Hategortm.
Semeshausen 84 spent several haves at Syermin in Bups offere dis mits. Tris a hentwere áncement fir Jash wits. Pro sen twere burp inth a group frim Ao aming \&u quin.

Heintested our Dtendod $\# 14$ against
Thebes R 4330 . The $7,-14$ is senke theirtubes R4330. The $F,-14$ is seine effecient.
Syen eulubitel miterpfith the
exfrosure muter for flad use.

(1) $\mu e_{g}=\mu\left[R_{1}-\left(r_{1}+I_{2}\right) R_{k_{p}}\right]=\left(I_{1}+I_{2}\right)\left(R_{1}+\frac{R_{2}}{2}\right)+I_{1} r_{p}$
(2) $0=\left(I_{1}+I_{2}\right)\left(\frac{R_{2}}{2}+R_{K_{1}}\right)+I_{2}\left(r_{p}+R_{k_{2}}(1+\mu)\right)$
(1) $\mu e_{1}=\left(I_{1}+I_{2}\right)\left[R_{R_{1}}(l+\mu)+\frac{R_{2}}{2}\right]+I_{1} r_{p}$.
(2) $0=\left(I_{1}+I_{2}\right)\left[R_{k_{1}}+\frac{R_{2}}{2}\right]+I_{2}\left(r_{p}+R_{k_{2}}(1+\mu)\right]$
, (1) $\mu e_{1}=I_{1}\left[R_{k_{1}}(1+m)+\frac{R_{1}}{2}+r_{p}\right]+I_{2}\left[R_{R_{1}}(1+m)+\frac{R_{1}}{2}\right]$.
(8) $0=I_{1}\left[R_{k_{1}}+\frac{R_{2}}{2}\right]+I_{2}\left[R_{k_{1}}+\frac{R_{2}}{2}+r_{p_{1}}+R_{R_{2}}(\right.$ im $\left.)\right]$
$\operatorname{Lt} R_{k_{2}}=R_{k}=R_{k_{2}} 2$.

$$
\begin{aligned}
& 0=I_{1}\left[\frac{R R_{k}}{}+\frac{R_{k}}{2}\right]+I_{2}\left[\begin{array}{l}
\left.R_{1} R_{k}+\frac{R_{k}}{2}+r_{p}+R_{k}(1+\mu)\right] \\
R_{k}\left(\frac{T_{2}}{2}+1+m\right)+r_{p} .
\end{array}\right. \\
& I_{1}=I_{2} \frac{A}{B} \\
& I_{2}=\frac{\mu e_{1}}{\left[\frac{A C}{B}+D\right]} \quad=\frac{I_{1}-I_{2}}{2}=\frac{I_{2}}{2}\left[\frac{A}{B}-1\right] \\
& I_{m}=I_{1}-I_{2}=\left[\frac{A}{B} I_{2} \frac{\mu e_{1}}{\frac{T C D}{E}+D}\right]=\frac{A}{2}\left(\frac{A}{B}-1\right) u e_{1}=\frac{\mu e_{1}}{\left.\frac{A C}{B}+D\right]}\left(\frac{A-B}{B}\right) \frac{1}{2} \\
& I_{m}=\frac{\mu e_{1}}{A C+B D}\left(\frac{A-B}{R}\right) \frac{1}{2}=\frac{1}{2} \mu e_{1}^{2} \frac{A-B}{A C+B D}=\frac{1}{2} \omega e_{1} \frac{r_{p}+R_{k}(1+\mu)}{}=
\end{aligned}
$$

Bolanced amplifier
obtain advanyss of balaned operatim with und loocin bay of nuitual condustanse
muter has cuncul value of $/ \mathrm{ma}$.
Dorcinait 2 . Let $I_{p}=$ trma
$e_{\dot{g}}=-1.9 v$.
$R_{k}=\frac{1.5}{\frac{0.811 .5}{2}} 188$ obus. $\times 130 \Omega$
$e_{p}=75$ volts.
For other balance tube.

$$
\begin{aligned}
& e_{g}=0 \\
& e_{p}=75 \\
& z_{p}=7.5 \mathrm{ma} .
\end{aligned}
$$

Let $\bar{R}_{1}=5000$ obus.

$$
R_{2}=5000 \frac{4}{7.5}=2660 \text { dumes. }
$$

$20+75+1.5=9.5$ voet, on anap.
26.5 on p.c.
346.5 tolal ourfut.
 nuetribile. I urged that sie, suake a expaseme nuete for ofrea use. One ${ }_{\infty}^{\text {先 }}$

1. Shos integmatrip condenie.
2. Jlash laupt after openvig dh
3. Open P.C. power supply.
after a con feren ce wilt Wilhims, Suchin, \& Powhing me derided to merke and started dy collest yorking a 6 d 6 minature thide wa suggisted as tum tube to wise. Tlís bes a 5000 value of gm .
cont.
Iremanive ot MiN tonnight and conmeited ufthe follonningeinait

$$
\begin{aligned}
i_{p}^{\prime}=g \frac{m}{2} e_{g} & =1000 \text { ua } \quad g_{m}=5000 \\
e_{g} & =\frac{1100}{2500}=0.4 \text { volt requide. calc. }
\end{aligned}
$$

Eupshowsobut 8 vieto.
The miter went iff scale witithe kole trion inthant refcetst at 15 or 20 for drued a Imf untegsitmiz condenser.
ve. bergit A appeene that a Imforndenuer is

 the scale.
ie. A selensim power supblyslioned be nexy, usefue usth a voltige dovblerfin this pr,blem.

Iolamert th uformon 115-6.3.6aup
 needed for the 6.16 .

Time-deloy flash for shutter testing.

the above sway give tumble of the switch closes mmentanity and then

Inr. Feicht and col. bodband of the phith Dept at Wright Fild calle tibay and ug jed that develipneut wok start here in a motcho if lakuy night photes firm air afof for re umancian el purfinges. a profiosolefor vesand vill be
a Anmpof meh tran shot and Willian co rerebright in by $\Sigma 0$. colon Yoverby Nar. Thimpisin- Prge, ziunford Popt fasism.
colson has talken same peiturn for them of
knitingreedles. the kiniting reedles. 140 g needles pais per seend at 280 rpim. He had blur at 40 us kxpmome inith a FT-i4. the plau is to geardinim in Es a timar Operiol 16 mim ox nesade by the a he higined olestride time del neincuity the trlel ofelay eletrint time del $x y$ circuith the tolal delay tive need nod ex ceed $1 / 30$ sec.
may 15. Phitor were made lastmizht with anFTー 17

$$
\begin{aligned}
& \text { using } 1100 \mathrm{mf} \text { af } 3500-400 \text { walts. } \\
& \text { Filn Daglight } 1 \text { idachrous. } \\
& \text { Filter cc-13. } \\
& \text { destance } 100 \mathrm{ft} \pm \\
& \text { apertine } f=4,5
\end{aligned}
$$

Thin Dso 15.5 with portable of the frint if Milit. Venchinue P 8 . of trees upt to $500 \pm \not \subset$ in count.
$f 3,5$.
$f 16$.
charging time of 1100 mf 4000 ved unit. 2000 U $3 \pi 0035003800$. 18 sec 50

10	26	50	top.	
5	10	20	45	60
5000				

$$
110-1600
$$

Tie abme is hof aftes, a eozen flesles at

$$
P=\frac{C E^{2}}{2} f=\frac{11004.000 \times 10^{-6}}{2} \frac{1}{30}=\frac{8800}{30}=294 \text { ustl, }
$$

$\frac{C E^{2}}{2}=8800$ wn $\$$ tsecmes perflash.

$$
Q=n \frac{C E^{2}}{2}=50 \times 8800=44,000 \text { lemense. }
$$

Selenium laups dedis I'indiam.

$$
\begin{aligned}
1600 \times I & =294 \\
I & =\frac{294}{1600}=0.185 \text { amperee. Averege. }
\end{aligned}
$$

Exprome meter.

$$
\begin{aligned}
Z & =\frac{q_{m}}{2} E_{1} \\
.001 & =2000 E \\
E & =\frac{2000}{1000}=2 \text { volts full seale. }
\end{aligned}
$$

Ser proge 38
Ligat so.time.
FTール \#2.
28 mt . 2000 volts.
Peak light $=1.6 \mathrm{~h} . a, \cdot \times 10^{6}$

$$
F T-14
$$

5 mf .
2000 volt in $B R$. pioposel dow stivbs oope unit.
dungring time of 1100 mf 4000 ved unit.

$$
\begin{aligned}
& P=\frac{C E^{2}}{2} f=\frac{1100 \times 000 \times 10^{-6}}{2} \frac{1}{30}=\frac{820 d}{3 p}=294 \text { watco. } \\
& \frac{C F^{2}}{2}=8800 \text { whemen per pase } \\
& \text { B } \left.\int^{[4<}=80\right] \text { No } \quad Q=n \frac{\sigma^{2}}{2}=50 \times 1800=44800
\end{aligned}
$$

Selencimin laïp stedo I'indiam. $\begin{aligned} & 1600 \times I=294 \\ & \frac{296}{1600}-0.185 \text { ampenae., cinc.age. }\end{aligned}$

$$
\begin{aligned}
Z & =q_{m} E_{1} \\
2001 & =2000 E \\
E & =\frac{2000}{1000}=2 \text { vols full onies. }
\end{aligned}
$$

Ser prge 38
Ligat so. Time.
FT-14 \#2.

28 mt .2000 volts.
Peak light $=1.6 \mathrm{~h} \cdot \mathrm{c}, \mathrm{p} \times 10^{6}$

FT-14
5 mf .
2000 valt in $A R$ perposel slow stubersope unit.

Two trips to the Barden in Bratm hame heern made to get colm shres of the circus.
the fint a $21 / 4 \times 3 / 1 / k$ camera was used wth eaglight a 4×5 canne $c c 13$ filter. the peand, a 8×5 came wn use usid with a $c c 15$ fieter. a suile number of $350=4.5 \times 80$ uas used as istarter. $f 4.5$ m all ahoto.
the Sostman floph nuit unth an ofecula refortem her a quide xo. The Rojectur foctins of the Rost 40 mine. was measencelin the 13 on the nosditfrat we have.

112 mf 2000 volt $n=40$

$$
\begin{aligned}
Q & =224 \times 40=8960 \text { lumensec. } \\
d f & =K \sqrt{Q M} \\
40 & =K \sqrt{8960 \times 13} \\
& =K \sqrt{11,6,000}=K 350 \\
K & =\frac{40}{350}=0.115
\end{aligned}
$$

Jor Beadirwlite. 400 Index ASA $200 \quad d \times f=400$

$$
\begin{aligned}
400 & =K \sqrt{11,6000 x}=K(350) \\
K & =\frac{400}{350}=1.15
\end{aligned}
$$

a suitable exposure factor for a thin nega.tso (50% over-dovolupment) for the FTal/4 subs with 56 microfarad at 2000 volts with film having an A SA speed of 50 has been found to bo about 120 for interior subjoche of average types, 120 (feet x ejerture). A reflector with a per unit increase of light at the center of the field of hows used for this test. Expressed mathematically.

$$
d f=\text { distance } z \text { aperture }: 120=X \sqrt{\text { gM }}=\text { gusde factor }
$$

where distance $=$ distance in feat from abject to lamp
aperture = aperture i number

$$
Q=7 \frac{C B_{2}^{2}}{2}=11 \text { ght in } 2 \text { uman-seconds }
$$

$$
C=\text { capacity in farads }=56 \times 10^{-6} \text { farads }
$$

$E=$ voltage in volts $=2000$ volts
η ? efficiency of the flash t in $212 \pi \mathrm{me} / \mathrm{wat}:=35$, an eve
$H=11$ ght-increasing pow of the reflector at the center of the field $=K_{0} / 6$

All the factors except the arbitrary constant, K, $8 r^{\circ}$ determined. Save ing for K, a value is obtained of

$$
K=0,93 \text { or about } 1.00
$$

sole chow with P.C. Vosuh. circus.

$$
\begin{aligned}
& \text { the } \\
& \text { with Qa }
\end{aligned}
$$

$$
+4.5 \mathrm{~m}
$$

the
specet
ofrect
the 40
nerdidt
112
Q.
d_{1}
40
k
Jor Beaderwhite. 400 Index ASA $200 \quad d \times f=400$

$$
\begin{aligned}
& 400=K \sqrt{11,60007}=K(350) \\
& K=\frac{4000}{350}=1.15
\end{aligned}
$$

The guide number calculation which is outlined above assumes that the exposure is proportional to the light output regardless of the effect five duration of the flash. Actually this is not the case since less exposure is obtained when a short flash is used because of the inabil. Ity of the emulsion to integrate the exposure. However, the effect Ia not usually enough to be considered except when very large extra potations of the exposure data are made. Experimental determination of actual exposure conditions are recommended for conditions where the exposure times are either very short or very long.

It is emphasized that K is not an exsect number since it 'depends upon the guide number that is selected. The guide number for a particular device like that above varies both with the subject sims enviroment, and with the personal whims of the photographer. There K can be age signed values over a range where the smaller value w111 result in a heavily exposed negative.

The equation for the value of K is usaf ul for a preliminary rough eatsmate of the photographic performance when different olactrical values and different reflectors are used. Similar relationships can be ob taine with other flashtubes in various circuits and in various reflect tors.

For other films, the exposure factor and K can be computed since the variation is directly proportional to the square root of the film speed. For example

Chisholm e and Bernice on balcony

 sole chow with P.C. Vosuh.Kodochrmes of Cericut

$$
T_{w}
$$

beer. circus

$$
\begin{aligned}
& \text { the } \\
& \text { with da } \\
& \text { the pea } \\
& \text { with a } \\
& 350= \\
& f 4.5 \mathrm{~m}
\end{aligned}
$$

the
operon
the Re Nos is nurdelt
$1 / 2$
Q-
d
40

Jor Beachswhite. 400 Index ASA $200 \quad d \times f=400$

$$
\begin{aligned}
400 & =K \sqrt{11,6000 x}=K(350) \\
K & =\frac{400}{350}=1.15
\end{aligned}
$$

The guide number calculation which is outiinad above assizes that the exposure is proportional to the 11 ght output regardless of the office five duration of the Slash. Actually this is not the oases since legs exposure is obtained when e short flash is luged beano of the Inabil. d ty of the emulsion to integrate the exposures However, the effect Ia not usually enough to ba considered except ;hon very lease extrapolatjons of the exposure data are made. Expertiontal determination exposure times are esther very short or year for conditions where the If 10 enphasizod that X is not an eascot puanhaz : too it dopeads upon the guide number the is arocotod. Tho guido number for a particular device like that above varies both with the sublyont same exiviroment, and with the personal whins of the photographer. There K can be as se signed values over a range where the mall er value w112 result in a heavily axposad negative.

The equation for the value of K is useful for a preliminary pouch asti mats of the photographic performance when different olactrical values and different reflectors are used. Similar relationships can bo obtwined with other flashtubes in various circuits and in various reflectors.

For other films, the exposure factor and K can be computed since the variation is diractily proportions]. to the square root of the film speed. For example

 $+4.550-70 \%$

Chintelimg erermicem
note chew with P.C. Visual.

Strbolunctest.
Wnin Beglen.
No Sale damue.

1. A 20000 tiniccolib. $12 \mu \mathrm{~s} / \mathrm{jjo}$

2 A 200,000 time calif. 62 us fojig.

4. Deth. shawo long steit dory
5 A 20000010054 Noffectrots.
sed 648 P 1. Cuip.

600
$a, 0$
$\sqrt{500}$
$3 \mathrm{sec}=-$

1800 rpm
12
13
$\begin{array}{lll}3 & 6 \text { ' Tup ned Bop High } \\ 1 & 6 & \text { Top med Bop Aign }\end{array}$
$\frac{3600}{6000}$ тpm.
film 2.

1 A-20000 12 ms pips 10 seceyp, time calibntion.

2	$" 1$		5
3	$" 1$		2,5
4	$"$		1
5	A200000	$62 u_{5}$	5
6	$" 1$	11	1.

17. A200000 setitube FT-14 Ref.nol. $28 \mathrm{~m}+2000 \mathrm{~V} 4 / \mathrm{t}$ dt/ 100. Sir b amnes on same fiem.
8 A 20,000 " onetrace of cume.
9 4200000 strbblinx ${ }^{\frac{4 V}{30}} 6^{\prime}$ Singeefersh Xemem
10470000
30 6' Top mea. S.F Bot.Atigh S.E

11 A 20000
12. A 20000

13
14 ,
15
16 " 3 6 $\begin{array}{r}2500 \\ 3600 \\ 6000\end{array}$ all m tigh. 2200
9000 (?)
17 A 20000 Seltube 28 mf 2000V. Aft AT100.
18 A200000 "i" $28+822000 \mathrm{~V}$ \&fV AT 100

90 vet.finch

OAMS

$\frac{12 u 5}{62.2 \text { us. }}$
6122^{2}
61.2

\#17 Roel 18 p49. 120 Top. Light 38 .10 uf 2000 voet.
maxcirment vo Cap for 2360 and 1500 V witle FT-14

C.	$\frac{I}{I}$	I	$R=\Sigma / I_{\text {max }}$	2360 V.
4.	80	232	1500 V.	18.5
10.	106	290	14.3	10.5
38.	160	315	9.2	7.5
120	165	360	69	9.1

$$
\frac{12 \pi 5}{62.2 \mathrm{us}}
$$

61.2

\#17 Roel 18 p49.
Top. Light $120 \quad 38$." uf 2000 volt.
Bol. Cument ..
maxcionent vo Cap for 2360 and 1500 V witle FT-14

C.	$\frac{I}{1}$	I	$R=E / I$ max.	2360 V.
4	80	232	1500 V.	18.5
10	106	290	14.3	10.5
38.	160	315	9.2	8.7
120	215	165	360	9.1

Sune ${ }^{1946}$.
Poy them Transfumer
2n. M5947. - $6 \mathrm{vad} D . C . t 2250 \mathrm{rtms}$.
2- Hrvect. tranfun are available.
a 926 phitt the ues miansmel by mullar. W.
R2. han. \& 2.3×10^{-12} map es to v Cet inth jual miz.
(1). Filter 398 Acel altmely (thuluingrinee)

Sensto rel.

Tiltán 398 Htal abs.
378 Temon yillou.
trax

$$
398+378 .
$$

15010
-

$$
\theta
$$

$6 / .2 \mu 5$.

white
yerm.

2- I vect. tranfun are avalable.

FT-14 120 mf acouv

If

$$
8
$$

6/,2 us.

$$
\text { FT. } 2120 \mathrm{mf} 2000 \mathrm{~V}
$$

\square us.
450
amp/in/ich.
$1-12,2-1$ 10-38-120 uf. 1500 V us.

$$
\begin{aligned}
& \frac{280 \text { ampo peate. }=}{2}: 140 \text { amppo } 1500 \text { aode } . \\
& \frac{1500}{140}=10.7 \text { olums. }
\end{aligned}
$$

$$
\text { 4-10-38-120. mf } 2000 \text { volts. }
$$

$\frac{9}{15} \times \frac{1}{2} \times 900=\frac{252 \text { ampios }}{\text { peste }}$

$$
R=\frac{3000}{250}=\underline{80 \text { han }}
$$

Tibe desiopn.
The present FT-14 consists of a $10^{\prime \prime}$ length of 5-6 mim pyprextubine in a opinal. Te, 2 show that ift can be used in izo sut at 2000 voeto as in upper livit of evergy ingrit.
d suzgesta lamps onaller by $3 / 4$ in volinine for use of 25 mf zoro vole.

Preliminary desion 4 mm tubing on $1 / 2$ " iuside ofival wath 4tuns. Preserne 10 cm of xexm.

54
FT-1 4 no2? fight\&cumat votive

2
2
2
2
2

450 amps/inch. $K 12,2 \rightarrow 1$ 10-38-120 uf. 1500 V ms.

Tube design.
The present FT-14 consists of a $16^{\prime \prime}$ length of 5-6 min pypextubin in a spinal. Te, $\%$ show that if can be used on 120 mf at 2000 volt as an upper limit of every inprit.
disuzgest a lamp smaller by $3 / 4$ in volinite fin use at 25 mot 2000 volt.

Preliminary design 4 mm tubing on
 10 cm of x eck.

Expansin
of flan dung use will not
break the glass since qu

Leglan firotot Fort with enruhu tort

has low exprauaim chef.

56 Gume 111946
Fired and \& talken os noed this numin abouf a protidele tamp.

Specipication
Length $3^{\prime \prime}$
T.D. $\quad 1.5 \mathrm{~mm}$

Preer 70 cm
Zorm Jpinalon a 1/4 "Jorm axiss of of inial almg refi aris

Tial Sxprosume 20.4236 1 Ranging Soope 341 with screen illimuiatorn new Enstwane $\times x$ film. Exp no sulject.

8 5seconds of dots. $61.1 \mathrm{\mu s}$.
$9 . \quad 50 \mathrm{~V} 5 \mathrm{sec}$ pade.
L. 115 mf 2000 V AT-100 A 200000 swerp. Fight ${ }^{33}$..
/
61.1 us dre 3 secme. Tincuig below zero. cairent 11520000.10 hm shut $90 \mathrm{v} /$ inch.

33
5
1

1	0	5 aec.
2	10	\ddots
3	20	\ddots
4	30	$\therefore .5$ 2er.
	30	1.0 sec.

FT-14. 5. Scale iseo. 30 vec . 115 mt 2000 A 20 groo Lightatiou $6 / \mathrm{ims}$.
5
6. Ditto above excefot Shle Shut for anent. 40,000 and 12.2 us perinch.
i. Imf 2000 . (8 Godue) 4000 R Figlt AT-30. 12.2 us pips.

```
FNet ezeconalee mingy levigram
A Real Dirund
D Divchengegser
Al, 
```


+

$$
61,2
$$

$+$
muly 311246.
a few colored humuningird pliotos were taken at Aolder xoms x NT. on yinizis many tomie and joch mic miman weut along. of if f II uth lamp at 1.5 ff .

Left line 25 for wes thetr formily in bea-h wagm Fint mintot wat kin Slen 4.4. fine 26 at comuing sea warhs.
C.F Atencle aud H. 0.51 .1937 P Soge filters

1. Hoe do 0.51 .193 colod glas imers for refletors.
fuse 23. Ronluiter 4.4 witho Bom. No Me duacio unit uso evamuned int il meadom. photes and mining heriper for bie oo be subming on productin of be taligh Bontan wis thare aithe 28 unthithe $51 / 2$ et partable o omple.
funear nirgerafalls then cleveland whene d fune sa to Dixar all to see silna in the tue sevel fune 29 To lixar dle or see sorna sinte.
foly. Drain theitto navitb is br.

19 Left fond ent over som mon of ite doura
22 chandand with cal soch mos with Born to shoot exp coling.
 FT-24tube in 10 "reflectans were used. The unit ndakes a loid noisi when operited.

Dwas at Raythem yos terfay aud
tried serie in hivitance. in the deforge uricuit. Same as use of in the D-1. The poise ir much les ibvoring \&o than in there worbin woth thy cinctout and descin. of the muts that are the buitr.
cont.
Trausformer 5947 M with rativ of $62-17200$ tumn gave 3000 volt from $a x$ ver latteng and vibstan
 over this wirth chor fecrin yester dayj ve mish a 2000 volt out prit frou a 6 vet fist. deo a vottoge doubler circuir will be used asper belrw.
kew natir f widinin slumld be for half wane

$$
\begin{aligned}
& 3000 \times \frac{6}{4} \times \frac{x}{280}=2000 \text { volt. } \\
& x=\frac{2000}{3000} \frac{4}{6} \times 280=125
\end{aligned}
$$

for a vobloze doubler x shruld equal 70.

Krim says a 300 nua peale can be used with out trinble in this tube.

Stold dikom ${ }^{12 \times 10}=8 \times 0$.
Dita from Hrin. of 100 for thithansfomer.

Bhing m. fister Gound of the Birlogival
uses arrarquent of photo farh bulbs $x_{0} 31$
sothat new oult is numed wht the reflatern as due othe pren bulb beb goes. reflat. Cir culor trock for bulls.

17 Xanfro gine / seemb light
angut 101946
\$lened Scopitm.
I made a trip ro Holdemen uX on cog. 3. Set Z obtain num todach mues af thumiz Bish. tur /avatin unit vere uned fir ligatics a guide fortor of 22 to 32 wos used for dotreupps.

The secmd half of the torm in 6.631 otar ong 5 . with 12 studen Srish shy had this das the fiviv half cobine's brok is the tert. Dicursed deontive and niverters on rum. une. Sane denmstintim in 20820? on zivlay.
$\frac{\text { Ssc ARscope alvibratim. } 300 \text { reprate per secard. }}{86}$ nols perinch
86 volts perinch verticle divest.
Tinal $A 22,00012 / 2=36$ usperiich.

$$
\begin{array}{ll}
4000 & 12.5 / 205=6.1 \\
2000 & 7.5 \\
800 & 2.5 / 2.2
\end{array}=1.4 .
$$

2. Sonizatim tiine of tebe AS. $4 C 35$.

Risetivie of pubse abrut 3 us for 150 valto it

64 Deimizatim tivie Experiment ao shour ang 91946 to 6.63 closs.

The probe suctch was ysed to tipp the tubes in successim. It the tibe divinges tubes in successim. St the tubs derpiges
then they extingiohed when the opposite
twhe wos finep.

Ior thi example the time constant is $R C$ seaonds $=2250 \times .003 \times 10^{-6}=6.7$ us. It wos tomut that one tube did virt dejoncige mitil the bias was mady -20 volls. Dle other deimized unth zero bias at this timi constant.

Asoumin zero brop befire and the otant vattage be 3orn, the detion bive is $.63 \mathrm{RC}=6.7 \times 6.3=4.2 \mathrm{~ms}$.

Aminde some tests w th chas Eichborn on aper experimental trans firmer Jin batting ofperation.
 with a 2 meg load reapled 85% volloge in 7 sec.
baup. pate in de. drmi bitteny. SumPcincaid dureut 20 1.07 ma ofencin into 2 meq bleder.
const.
A series of chavathristic curves were disguned with Eich han, which are to a obtarived frim thu two sawpess which ane due to suade next weele.

1. Lrad valts - load bleader resistance.
2. Shrt cireniteurvent - dividin caprictu.
3. Voltage rise tivie vs time for tippical opplistir.

Light huas. Mush as cushing Horffital. Ismungkave cappl marshall mo. Hohlum?
Sipical comp camen asth Donet whe.

$18^{\prime \prime}$	L^{3}	$1 / 87$	18	$24 t$.
$18^{\prime \prime}$.45	0.	1850	112

66 ay 121946
$\mathrm{SEO}_{\mathrm{s}}$ tor Deloy tests on Helim Stinbitim sygratria sneall Aije nuinature.

test on tube no 64

V_{p}	Sunge E_{p}
1000	130
	135
152	
	178
	113.
	129.

$500 \quad 143$
156
174
178
$\frac{1500}{1500}$
104
120
126
178

$10 \pm j_{3}$ itter bal.
$12 \pm{ }^{2}$.
$2 \pm$
$6 \pm$
$\begin{array}{ll}6 \\ 1.55 & \pm .1\end{array}$

OA5 Surbotrontest.

Thibe 0888 seeffines at 900 U with urhegile commesoit

 delaniturie itter
Twhe 8261

$$
\begin{aligned}
& 47 \times 86 \times \text { x. } 7 \times 36 \text { us } \pm .1 \times 36 \\
& 13 \times 86 \text { vis } 7 \times 36 \text { some stats dens. } \\
& .61 \times 860.5011 \times 6.2 \pm .05 \times 6= \\
& .8 \times 86 \quad .5 \times 6.2=.005 \times 6.2 \text { not olcennele. } \\
& 1.6 \times 86 \quad .5 \times 3.5 \pm 0 \\
& 2.0 \times 86 \mathrm{n}^{\mathrm{V}} .4 \times 3.5 \pm 0 \text { Risetine } 2 \times 3.5 \mathrm{~ms} \text {. }
\end{aligned}
$$

Slow stan ebout 25 viets. Mninave aloo hifehar on ce wher the fow stixts.
If riputt t, ,ol capowith is disconnetid the suain dimpor, no deaxt whe the eatherd gereo sta. 4 .
Tube 07216 biealso doun at 750 valls.
5195i. 750 voles.
8321 ". ." " 800 900 between glasos en niea
8250 "̈l $\because \quad$ " $750=$
chech 8261 swell the $\$ 1500 \mathrm{v}$ -

8145	
8270	
8725	
8180	450
	1150
	600
	780

$1500+$ with artie anis retming to citurde.

cocillator to operste $4 c 35$ grids.

$C=0.1$
$T=$ Ray them train fomer 400 cycle $110-3000-0-3000$.
This circuit appermel th timb oh ot 8500 cquls at partial losi an thu tulls.

1. Ineasure traus Ratio.
2. Neas traus mipedand O.C. and S.S. 1000 cycle
3. Veas cattodlccament on proper in tuhe $\frac{250}{500 p}=50 \mathrm{dus}$.
4. Use bias valtoge
ang 211946
A1. Elgortan
$4 \subset 35$ Suverter.
Difficintly has been expeneinaf in gotexy
the thy rims to fire. Hountm and 2 unduel in aur. on tet ansageneat.

the $4 \mathrm{c3} 5$ tube appomery start and inmednd pirt onit shriss antosc. also the platle voltoge = pin ar
Ahbarantor dis tributed cafraigen has a lot a 4000 ofm resit, croosthe choke will enalle
the tibs start.
An $55 m$ was comnentad as follows. Arinititire dres
 not href oner aud ath ion bote tubes fine.
a $28 \mathrm{~m} t$ ure purfing ponaleelmidh tha ivi.ue fong has ofroit oll zaine? why.

70 Cugz $x 1946$
Vibrim Power Suffly.
A3EDGentro for therey.

FT-3 or fT-10.

CK1013

M11324-2
Bay them
thens.
a nerotinustimern's to be de. Echned oy clys. Echkner at Raythm whing will bane mume shont cincuit cumant.
If will not fane a shield windin, between wiel not liver av tapped will nut hime there taper item are not necesting Byi the nuid tap is mruedrl (appantim chy). ausl therefine are end of the roodo tixu swous ser is quedel.

33 ma. Clytime to 2000 vols - 5 sec usth shortior. two tiws in paralech. one richntas. 2500 $e=\frac{1}{c} I t=\frac{1}{30 \times} \times 10^{6} .025 \times 5=\frac{1}{300} \times 10^{6}=3000$ virts.persere. dintial site. eud med 10ses.

OA5 Sevobturtest Seeprope 66t 67 .

70 Aug 31946 . Vibritm Power Fubblen.
ABSO_{y}
sumgalst C
33 vear a
sumgar

$$
e=\frac{1}{c} I t=\frac{1}{30} \times 1^{+1}
$$

OA5 Serobturn test seepagy 66467 . aruistargen p 66.

2216 Breaks doun between anc de and cathodc arouel outsiche 888. 1000 anz goes between uriea and glaes! I U. 12 nica ypocer.
18261 love l.6-139
$1.75 \quad 152$

6. shows apike.
3.
1.5
..

Special Strobitin for ignition
Sylvamia.

Sridstart delay
noplate

$$
E_{g},
$$

DC pulse
$300+1 \times .87$.
$300+1.2$
2×36
$300 .+1.85$

$$
1 \times 36
$$

$$
\begin{aligned}
& 260+2.1 \times 87 . \\
& 270+2.1 \\
& 300+2 .
\end{aligned}
$$

$$
3 \times 36 \quad 108 \mathrm{~ms}
$$

$$
2 \times 36
$$

$$
1 \times 36
$$

Seffine with + 300 ngind.
nux atout 180 bofore pelf fín;

$$
110+2,1 \times 87=290 \text { volt } \pm .
$$

Dita from Coggies an Sylvain fleerh vied.

$$
\begin{aligned}
\text { at } 15 \text { fol. Eigit prom Reflectin } & =14: 1 \text { stuchis plain } 22^{\circ} \\
\text { Aorizatat light. } & \\
& =4 \frac{1}{2}: 1 \text { with diffuser } .50^{\circ} \\
& =6: 1 \text { ae portable } 60^{\circ}
\end{aligned}
$$

Judis unit. ontfont 16,000 limen second? 250? suf 2000 V ?.
Sefot. 14,1946 . At. Edgerton.
Weut to wrigt field certh Col. Richan Philbrich Sepp. 10 1 30 opm in a B-25. Ducused right pboto
and applicatin 2 th B-29. Considered. and applivatim Co th B-29. Considereb.

1. I refletus in tieil in baukis of 2 at 20° angert vertinal.
2. Two $K-11$ anmeas or 53.5 unth Getter definatim angle 14 to 20 degitale of nerticial for murve tronizontal coner.
Wook the nyilftiain to clevelond to aftend the mortfèt, confesm, afoir at nela Dorle. Saw series of experimétol flas et tibles with Buces ant Steniver and Dais. there are 3090 nure effrcint thin the FT-I4 at 10 mf and 2400 volt. When put in efival for They brop to 20 go more ffocinit a feer the celdhintim celebrithin, the vedidicath of the Jiguting imstute at whih miv, alra schicm spobse, o took the niqkt train for Daytm.
on Sept 12 was in W.F. again on canferences with Jeich't and mungall. Irlens ain! thaft of Prathem wire there also. We descu-s. Dtte B-2a prijest. since wowld be nuch esain i irstall a fow re flectors, if was suggited that a highids minit tothe' tube powed he advantage the evesting FT- 7 lainf be was panctinely tested Gor lige atodiffernents

desiqus would be suode in case any advantoges coned be so gained.

To be stressel in the desing

1. Max efficien at inted load.
2. Inge pone tinpabil it nof
3. Eu so nne tince is not it Anceed 11100 see. at this apeed coupens thin wisth a moring fien is possible.

300 mph. 10 ff motem max malloumbe,

$$
\begin{aligned}
& \frac{300 \times 5280}{3600}=440 \mathrm{fH} / \mathrm{sec} . \\
& 1 / \frac{440}{10}=\frac{1}{44} \text { sec. exposine }
\end{aligned}
$$

a redesijn offthe proner supply was
profsosed watt the following vchanges.

1. Bphase niventer with highvoetage out furt po that trous himmore are Hoand. He, in formed wive thart Teland. He in forraed mive that this sho wed W yoble conth if problem tomen of the con thi priblem. Wisemant chief anquiverial.
2. Selenium rectefinis.
3. Norring film cannera unth interralometer.
4. Simplefied control and test aricinat
5. Photescel trip for tha camera of.

The B-29 coned take 32 copraintory banlis (1200 puf and)

FT-17A lamps. The hinit noed bp

$$
\frac{e E^{2}}{2}=\frac{3212004^{2}}{1^{2}}=301,2000 \text { unth seconds. }
$$

and at 50 limeno/un A.
$Q=307,200 \times 50 \equiv 15,400,000$ limenterevens

$$
\equiv 1,500,000 \text { c.p. Secmal. }
$$

Chongingtinie 2 kw invertens (4).
Maxcument $=\frac{8600 \text { citles }}{4000}=2$ amps. Dy 6 an siar.

$$
\begin{aligned}
i=c \frac{d e}{d t}= & .058 \frac{4000}{d t}=6 . \\
& d t=\frac{.038}{6} 40.00=25 . \text { secones. }
\end{aligned}
$$

at 12,000 If we need for no overlafo about ticis Inine at a speed of 220 ?

$$
\begin{aligned}
& 12000 \times 3 / 4=\text { ploto length. }=9000 \mathrm{fV} . \\
& 300 \mathrm{mph} \times \frac{5280}{3600}=\quad \text { I4to } \mathrm{ft} / \text { over. }
\end{aligned}
$$

$$
\frac{9000}{440}=20,5 \text { seconds. }
$$

Suteral shoued be about 18 for some
overlap.
Double plane operating was discussal
 uith of towsen. Flie Grich was if the of wivin that two planes nuigitt he a prisibility ur Lh mada fer plan planer. ingla an aried the en on two pora muts pir boto. He canera in su ploue inved foash the lapifiris the othed plave. The permespowed ar ibreps unta lanfro and conbedo tifpel toivard each other for best rescelts.

 5.T nues
17.2
12.2
12.2

2terns
16.3
16.2
16.0
15.8
$\begin{array}{llllllllll}16.1 & & & & \\ 16.4 & 15.9 & 15.7 & 15.8\end{array}$
FTIt nos.
13.1
13.2

	1800	30
FT-14 \#5 1800	30	
$1 / 2$ II	2400	10
$11 / 2$	2400	1800
$11 / 2$	2400	30
$F T-14 \# 5$	2400	10
11	1800	30
$11 / 2$	1800	30
$11 / 2$	2400	10

$\frac{16.2}{13}=1.25 \quad 1.7 \times 10^{6}$
$\frac{9.1}{7.5}=1.21$
spexigialle.
A few dymmite cafer were oblanied yesterdaydrim the Dexter chemind Co. eyplidri, in anzu gas an attenpor will.

If nuiut be interestur, to also explode an H_{2} - mixtare in an ar mon aturphere sine there no if would abe to archse a tyonren filled peller in an oryga filled pellet in an anjim tiele ortad a oreako the Minbl.gen contañerand stas the faxkh.

 1800 vole.
me.zened hitht frim a spif and a
Synatite cofter on win jaed ne liter Ko kemen
 sest then to lomen sec. Angn wos tonk and no Effhopido in duve trum cal. ted. theisong viox in alne agfre grouph are dme in on Wedruesdy.

Soxeral tube similis xter hot isitt a/fenerv tuns wie tester lus t wek as 1 functurn of picssuic.

The same foent ouvfintizies frived
 $\begin{array}{ll}3 / 26^{\prime \prime} & 6^{\prime \prime} \\ 31 / 2 \tan & 7 " \\ 1 / 1 / 2 \tan & 12 "\end{array}$
outfunt 3.0 m 1800 nets. Amies.

\qquad
\qquad
Quersinin $20 D 203$ tes t.

prens Fight

$91 / 2$	$.42 .40+.40$
8^{11}	$.39-.38 .39$
$61 / 2$	32.36 .35 .35
$11 / 2$	123

(inmpad

12^{11}	$.42 \ldots .43 \cdots .42$
10	.41 .42 .40
$33 / 4$.25 .25
6.75	.34 .34 .34
9	$.37-.37 .37-$
13	$.38 .39-.47$

FTH14-Stad .35,32,33
thee pokee witt ghar ber
Repaiad on aypetin
folled $z_{0} 10$ "jperent ancosene off.
abme tubs. $.66,66 \quad .66$

$$
F T=14 \quad .55 .56
$$

$80 \operatorname{sep} 122,1946$
thab 5682.
On Nod thi25 a gromp firm anseo were here t test color felm with elective flash hilitury.
the baylight tury slen fim with an a $K-1$, filter at 50 dxt unth 3 Kods seems ure roint colm and erep arnoordiz q foldenen.

Priits were xuade on Priutor in the camera. 2x-209+1\% का ? tovo volt at 4.5 gene a ${ }^{232}$? good ex powne. Nurony other ahits ware made end werie tolken to Biig hawter for Thase prosent. Titcombe
Sevinoteri
herse.

The four Hosh lanifo (15datron tupe) in plides sedvice ware lested with ttel eig at meter.
calib $\frac{30}{38} \mathrm{~m} f 2000$ vols in FTー 4 Ref tule.
 aperature $=1$ mich lince.
Toget reading of heam c.p.sec.

$$
\text { beam cp.s. }=\text { miterna ing } \times \text { Aper. } \times\left(\frac{D}{5.8}\right)^{2} \times 1000 \text {. }
$$

$\begin{array}{ccccccc}\text { Soupp } & M & A & D & \left(D / 5 / 8^{2}\right)^{2} & & \\ 124 & .44 & 4 & 114^{4} & 4 & 7040 & \text { bean. cp.s. } \\ 1 & .52 & 4 & . & 4 & 8320 & . . \\ 2 & 50 & 4 & . & 4 & 8000 & . . \\ 3 & 45 & 4 & . & 4 & 7200 & . .\end{array}$

$$
\begin{aligned}
& 38 \text { limens watt. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } 168 \text { ngps }
\end{aligned}
$$

Lnving Eastman from Raytheon broug ast in the High Power Hlasle unit. Amerde the followine measunemento of liqilt output.
V. conditions
$M A\left(\frac{D}{s} / r^{\prime \prime}\right)^{2}$ Berm cp.s.
3700 llanke 109 int. Bothlemeps. 658 \& Forze tin 10 " spasyen four
3700

Reflectrss with collass weme now substadel so that Un FT-24 would be in the right positin.

There realings moy he in emm due D the "A" numbirs bedaure of bobsge in the plise cell box. Juch an ernow wovel nuele the beafur apiappear to ligh.
Qct.1,1946. Confinith Rive 4 Semenhausen 11-1230. Ho Brrad 5% tested ti power flash unit with liqui sueter. The capnitn teruvical on one of the S.E. 28 vos unicts les go! Repaired todry, and terted aguin. 450 uf 4000 volt, Two laneks int 10 " reflectors.
Light out puit $=64 \times .47 \times 10,000=$
300,800 .
Light onf put $=64 \times, 47 \times 10,000=300,800$. Beam cp.s.
or. $300,800 \times \frac{128,000}{140800}=273,000$ Ream Cps.
convection T

$$
\frac{273,000}{8,000}=34.2 \text { Kodettines. }
$$

Qct: 4,1946.
Lewis has been in a few tims to disuiss thesh eqripsinent. He is nour a student in course vill.
Irgan frim Big Springo tereas may helf thi
 wnt and os foy the aiduesters in the cafracetor banchs.
Od. 7,1946. A senies of ase of light timinve made an ar 5 untel Jogan in $20 B 203$.

$$
\begin{aligned}
& 1.07^{\prime \prime}=5 \times 61.1 \mathrm{~ms} . \\
& 1^{\prime \prime}=296 . \mathrm{ms} . \\
& 100 \mathrm{~ms}=0.34^{\prime \prime} \\
& 1^{\prime \prime}=18 \times 66.1 \mathrm{~ms}=1100 \mathrm{~ms} . \\
& 1000 \mathrm{~ms}=0.91^{\prime \prime}
\end{aligned}
$$

Roll 23.
antput shane be be $\frac{30 \times 2000^{2} \times 10^{-0} x^{2}}{83}$
2013203
dist. Atter Swup. Lamp. © U. Inies $1 Z 20$ upteres.
506 H. 30 20000 A FT-14 30 2000. 50 .
80
garlins.
100 .FT503 14 H000 80

Oct. 4, 1946 .
Lewio has been in a Jew tins to discurs thesh equipsent. He is suour a
student in connse vil.
Irgan Jimm Big Springs teras mang helf this yorn yith thi foash worb. He was out to Ryyum witt me to lon mete the stench cofricetor banhs.

> ODP. 1,1946. A series of osc of light timewere made on arrs untl Jogan in $20 B 203$.

Roll 23.
205203

$$
\frac{9 d 5194 b}{13 e n 750}
$$

dist. Atter Suepp Lamp. © U. Ines ABEUntere.
5.5 H. 30200000 A FT-14 30 2000. 50.
200.

100
123 50
100

$$
123
$$

1004500.

123
123 80 50
$232 \quad 50$ 80

$$
34,80
$$

$$
\begin{array}{ccc}
450 & 4-50 \\
450 & 11 & 80
\end{array}
$$

 611 u5. $24,4,0 \mathrm{~m}$ liniocelif.22232

Oct. 4,1946

Oot.7,1946.

$$
\begin{aligned}
& 1.07^{\prime \prime}=5 \times 61.1 \mathrm{~m} \\
& 1^{\prime \prime}=296 \mathrm{~ms} \\
& 100 \mathrm{~ms}=0.34 \\
& 1^{\prime \prime}=18 \times 66.1 \mathrm{~m} \\
& 1000 \mathrm{~ms}=0.9
\end{aligned}
$$

Oct. 4, 1946.

Od. 7, 1946.
on

$$
\begin{aligned}
& 1.07^{\prime \prime}=5 \times 661 / \mathrm{m} \\
& 1^{\prime \prime}=2 \mathrm{gh} \\
& 1 \text { 100xes }=0.34 \\
& 1^{\prime \prime}=18 \times 61 \mathrm{~cm} \\
& 1000 \mathrm{~ms}=0.9
\end{aligned}
$$

Raptherstrus fomer. Dato by Buklels a.c. M11349-1 transforme.

Tine 122.5^{10} neg Peadk D.C. 2475^{-} cleg time to $85 \%_{0}$ or $2125=4.5 \mathrm{sec}$. Ipeah 7-8 2r. 24 ma. ?

6 volt vilvator Trins fromer on saune cincuit. Mf M 11401-2

Papthenrtans fomer
ac. M11349-1 tranaformer.

Trie 122.5^{50} Pende D.C. 2475°
cleg timets 85 \%or $2125=4.5 \mathrm{ar}$.
Ipeah 7-8 ar. 24 ma.?

Gvolt vilnstm Trums frmer. on saune cincuit.蛹•M11401-2

 0

																		T	
\bigcirc																			
																			FT-28
-																			Fr-28
-																			
0							36						7	2					

$86 \frac{\text { oct. } 16,1946 .}{\text { AS.Esporins. Testo of S.R. Expmetir. }}$

Ber gide cument off ocale ney by $\ddagger 31$ valt.

$$
\text { Jull scale }=-1.45 \text { volt. }
$$

tuhe. Δt for $\Delta \in=0.1$

Lests of SR. Neter to show saturatin of plidtacel.

The meter was opened sothot an auxilliain voltage coned he used in series antle the supply.

240 velt. Realing $0.48 \quad 10.5 \mathrm{mf} 2150 \mathrm{v}$ ints FT-2.

400	.48
37	.22
60	.40
100	.47
120	.44
140	.47
240	.48

This shows that
100 volt is sufficient
to quie a constan reating inth this comps.

$$
i^{\prime}=c \frac{d e}{d t}=3 \text { ura. }
$$

88 30.4. 1946
Farrél, Styerter
I met with Wilkius and Sinclain a wake or thi ago afont the exporne miter. It wos devide that SPR. Was t mahe a fival
 thut day fir shifeding aud for the elimination of an at puchuf in the short ing surtch. at the I was at Rochester last Iniand set at the P.SA. covventim, af gio of gane a paper an nijht reco. phoregraply.
trealing 341 light flash nint from Ray them tr E.K. peopic. ISom, Sandele Sinnol collived th ikphepec. Bom, Sandele Tent cellims Foard as will as collin.

Krdrdhme photos tahenby boo. Wortmff of ins at wellesley on Wed lastur
 130. Dayengt, CC 15 giler.
technifirizh had a peutio and portalde melestion display. al the

Terrizlatb
obrian uns have yesterday to dicicen nigat ploto. He has an f '. camer st fore 'leugth. Ne surgitel its use with a band of firm and z trouga nofleitor.

Hew system for dorging. a serien notir will Erive an act alternatm. Acentijugel tutch orthe sforf will be set to open the fied desinel a seftas atte revitn vill bob thalue desiried a sefaintoriv rensith virill hold eurgen voltezet, suaintain the velige.

Nith this oystem the gevenstern will Ge ofreaturn at high pred at the set of the change cyce. as tul opled de corases neth the ever sy.
 will art arga sharze the cafracitenc. for the
many colm jointor have beentahen in the the 340 mot 4 roo alt 3 lanip ford themit thet thise of the eas now. Three. Ne outh. Entumen has onk, IND anothen, and the thind isherne.
hov291946. Prcistle Joord and canman were horm the 27 the to discum flosh equipment pertinlarg the portaile and ste dio mruel. Ne went $\begin{aligned} & \text { Pryther (Sorstiow }\end{aligned}$
 arepm, bethe suggotad ant ajcu bet or

90 Der 10.1946 ATCOMyols.
Coresm fin B. was here lastweek thes. efri. We confermed wisto Roythen on plugsiete.

Knott was hire from Englaud. (Enstman) He is m the way bach aftes a long stay at Rodust Phorall trip was tried cratay.

The sensitint ty conlle in creased by thi lel Vieg resusten nutil the mity self flasher.
Dec. 13,1946 Ats.sg. A Amnar and murtfelt fim Nela Parle were henet on Dec 11 To dis ans an aque.nun concenit, the aonsultiis and royalit,
 which will be disicensed lolb

- Esto by Bierce and Porter of expasume mueter

FT-2 on 10.5 mf at 2100 vall.
2.R. nurdel. Smf with 63 NT . ' ma meter.

$$
E_{d c}=s_{s} \text { velts }
$$

Dite but binth FT-2 an 112 mf .

$$
E_{d c}=40 \text { vols. }
$$

Supermodel exfrome meter Towens model. $c=0.1 \mathrm{mf}$ ott fult sale $=0.1$? mierigash untt Fde =?

$$
c=A M t-6 S N / m o d e l ~ E d C=50
$$

Jonnh Baman canue tim By Y Z shoot the "call me muster" show now at Che Schabet. We set mp last night in Walker asuig the munalas a bach numd.

For hinat ouked two Ra, thin tizh panen nuits exch of 340 mt af 4000 woll. after a donen wo pirtus the speitacpant in one nut poopel. aftenth we need ank 'desinit. Ithis wistt' phores wioge of the desin of thi misti Phot 5.6 usti the whe mude at
 the blh peajles wrive croztred. as folelents.

PRELIMINARY SPPCIFICATIONS

RAYTHFON HI..PON'R STUDIO FLASH UNIT

Power Unit

Input: - 110 volts, 60 cycles, average current 8 ampores maximwa surge current 29 amperes.
Capacity: - 14 mf at 4000 volts; 112 watt-seconde.
Weight, about 50 pounds.
Either one, two or three lamps can be plugged into the power unit, the total light boing divided between them since the total light is approximately proportional to the watt-seconds of stored energy.
A relay and shorting resistor are installed in the unit to discharge the capacitor when the power is turned of A

Lamp House

The flashtube , FT-503, consists of a xenon-filled quartz helix enclosed in a frosted outer bulb.
Alzak-finish reflectors (10/f diameter) are used which have a 40 odegree beam width. A 50 -hour, 100 watt incandescent modeling lanp is located in the center of the spiral flashtube to assist in directing the beam at the subject. The incandescent lamp is changeable when the FT-503 is removed from the socket. A switch on the back of the lamp house controls the incandescent lamp.
A standard $\frac{1}{4}-20$ thread for a tripod mount is supplied on the bottom of an adjustable holder attached to the lamp house.

Awxiliary Capacitor Banks
Capacity $110 \mathrm{mf}, 4000$ volts, 880 watt-seconds. As many of these as desired can be connected in parallel. The present tentative rated limit of the FTM-503 tube is 225 mfe, at 4000 volts. For optimum flashtube life, it is recommended that not more than two auxilliary banks be connected per tube.
An additional relay and shorting resiator are installed in the case to discharge the capacitors when the power is turned off.
The weight of the auxiliary capacitor bank is about 80 pounds.

Extension Cables

Extension cables can be inserted oither between the power unit and the condenser banks or between the concienser banks and the lamps or between the power unit and the lamps. The length of standard extension cables will be 25 feet.

Charging Time

With the power unit alone the charging time is lese than one second. With 3 banks it is slightly longer than 10 seconds. In general, the charging time will be roughly propertional to the connected capacity.

Plash Duration

The duration with one lamp on three banks is the maximum and is about 1000 microseconds. With two or three lamps in parallel the duration is somewhat less. There is 30.5 -milli= henry inductance in series with each capacitor bank to reduce the noise from the lamp.

This inductance influences the shape of the light-time curve, but does not materially affect the duration. There is no inductance in series with the 1.4 mf in the power unit. The duration with one lamp is about 70 microseconds when flashed from the power unit only. With three lamps in parallel this duration is decreased to about 30 micro-
seconds.

IMPORTANT - The unit will not charge unless all high-voltage outlets are filled. Dummy connectors are supplied to fill unused outlets when ali three lamps are not used The dummy connectors have a circuit between pins b and c to complete the input power circuit.

Spare Parts to Keep on Hand
Flashtubes: Quartz helix type $F T-503$ (General Electric Company, Lamp Department). No life rating as yet assigned by GoE. Preliminary tests indicate a iffe of several thousand flashes when used with 225 mf at 4000 volts.

Modeling Lamps: - Special hard glass 100 watt, 115 volt lamps with double bayonet base. Life; about 50 hours (General Electric Company, Lamp Department, Type 100 T $6 \frac{1}{2}-115 \mathrm{~V}$.)

Rectifier Tubes: - RCA 1616 (available from any radio supply house). Pilot lamps

Fuse: $=20$ ampere glass cartridge type。
Relays are provided in each capacitor bank and in the power unit for discharging the capacitors whenever the filament awitch is turned off.

The life of the rectifier tubes will be increased if their filaments are allowed to heat ten seconds before the plate switch is closed.

Suggested Guide Factors
Professional Daylight Kodachrome film, CCl5 filter, Raytheon Flash Unit, 4000 volts:

For Panchro Press Eastman F1lm: Multiply suggested guide factors and distances by 10 for average subject matter. The total light output can be distributed in one, two or three reflectors according to connections. The guide factor and distances should be decreased if the lamps are widely spread.

94 Dec.31,1946.
a batteng presiti es exponene neter uss Ennnet üf a week on so ogo, the cir unit followo.

note: the 5000 ohma in not envinh to bolunce ol 144 tubes shoned he 10,000 ohm.

Thotituhe saturatim tes bly Sam Digavivo.

$$
\begin{aligned}
& \text { FT-2 lanpe } 10.5 \mathrm{~m}+\mathrm{y} 2000 \text { volt. } \\
& \left.\right|_{100} ^{F T-2 l a m p l} 180 \mathrm{mt} \text { 200valts. }
\end{aligned}
$$

$\tan 61946$
most of last welli was gone ploty guplair toe
be Cofrades in colir. Draed 6 Raytung of the ADove but the 1000 mif 400 vocy wity was unep some. Thili wrs hor on tou 3 at a nehearsal shonint; tour Ne shont sitivit Sat. and lif du 4 Sati. Ne ahort Ethtraíhne cc 33 fietorn and cc15 phuts cc25 m Kodarlm

I was in XY. nestardon with Heriny testen. A Att aincle of canfuril thot matain Jestet serin. I the mmicmit with celaithif an invean jearh tubes.
en 141946. Plistotwhelear: 929 Enveient.

$$
\begin{aligned}
45 \text { wets } & 1.25 \text { minchus. } \\
& =5 \text { dir (1/4mia }
\end{aligned}
$$

Lemp t plistacell $=10 \mathrm{ft}$
FT-14 nol neforence on 28 mf at $=000$ volt.
E ER def.tiv ipe Epc vievin $\times 455=$ vislene 58.5

100	20
200	20
50	1.
80	1.8
60	1.5
40	.8

96

Sill a atzoft.

36 fumens $2860^{\circ} \quad 1.7 \times 4=6.8^{\circ}$
1.6 ma .

Saturates at 100 valt.
mia.

Pakfightsutprest fothe FTi4 no I prom ls\&. Sstar.
$16 . \times 10^{6}$ Immens for 28 net.

$$
\text { candlepower }=1.6 \times 10^{6}
$$

$$
\begin{aligned}
& 1.3 \times 13.13=17.1 \times 10^{6} \text { lamen } \\
& \text { fir } 30 \mathrm{mt}, 2000 \mathrm{~V} .
\end{aligned}
$$

$.66 \times, 25$ m. $5=0.16$ millive. Witter phiststulu nuter fthe belsow desisis
 $c=1 \mathrm{mf}$ for zosecme duft:

This vine minguptoder. Wmes ohe deftit on when $d \cdot b / M$ Mititojiveth bitleng as overngit

Grea of pliot tule $\cong 0.5$ guane inches
the xenow flash with a 9 ± 9 plints Fuble rececin produces hride as much phots canent as a tungsten source af $2750^{\circ} \mathrm{K}$. Gor the same lmen ontfurt.

$$
\begin{aligned}
& f=\frac{c p_{1}}{d^{2}}=\frac{1.6 \times 10^{6}}{10^{2}}=1.6 \times 10^{4} \text { homems fov } N=\text { Pistandes. } \\
& =\frac{16}{144} \times 10^{4}=111 \text { limexis spind et plists tuble when } \\
& \text { FT } 14 \text { at } 10 \mathrm{ft} \text { is } 20 \text { it hed prm }
\end{aligned}
$$

98 Anis 1947 .
Trusmiizin bala from Sandell-Tupper. SK.K.C.

This was seent.to Heman at Pittshirgh Plate Slass at Pitt burgh.

The aforture meter was pintin a box by Duac Toberto with batherie. A polarril pair was used as an apertim. fir adjurtrutot Alin is to be calibsted in apertenefor colm plitt giaply.

Descipu of in ex. pouer supply for the nueter.

Gocycle stirlosofee.
With the new selemims rectifiors it appreans that a 60 cgcle strbrreofe shrued be a convemint item to suahe and use.

0

Alisiguret.
At S. gave the talk mmindy tan 27 in cleveland Nhile there Adinacoled tubs mith Artance. numetelt, noel, Thacker, eto. Frum descensins \& gother that inrf munch develefmint work is goint be dme.
nuato whpped for two do got Poleste whire o woples in tos sufver sevicis mit that Routhern have biiey. A muetring waskeld sia tho Nifthy three prescut Janglu, Oberketter Frol, SJom, Savdele, coltm, tervit. Naplimed Ras then for i bid on the job. Snordentlab fluis bid urs nuarled (and plumed) in Jan complite unit of tiglen fim Berinm. A complete unit of

1 povernit
${ }_{3}$ capraitio fonles
3 Lanifirs inth 10 "r refectors
2 extens ares
in 100 lo'to will cos abaut ${ }^{\$ 1} 500$.
Rontien $\frac{\text { tinn finea }}{\text { ch } \frac{4 v D C X}{} \frac{V 250}{M 11975} \text {. }}$.
chas Sichhm. \quad M. 11975 .

$$
\begin{aligned}
\frac{C E^{2}}{2}=\frac{3.52500^{2}}{2}=11 \text { wht secmols } \\
M=40 \text { lomenoprath. } \\
Q=440 \text { himeus. }
\end{aligned}
$$

$$
\begin{aligned}
& e_{q}=e_{1}-i_{i}^{\prime} R_{k} . \\
& \mu e_{g}=\mu\left(e_{1}-i_{i}^{\prime} R_{k}\right)=i^{\prime}\left(r_{p}+R_{k}\right) . \\
& \mu e_{1}=i_{i}^{\prime}\left[r_{p}+R_{k}(1+\mu)\right] \\
& i_{1}^{\prime}=\frac{\mu e_{1}}{r_{p}+R_{k}(1+\mu)}
\end{aligned}
$$

if $R_{k}=0$ then $i_{i}=\frac{\mu e_{1}}{\gamma_{p}}=\operatorname{gm} e_{1}$

$$
\begin{aligned}
& R_{k}=0 \\
& R_{k}=R_{k}
\end{aligned} \frac{i_{1}^{\prime}}{i_{1}^{\prime}}=\frac{g_{m} x_{x}}{\frac{x_{x}}{1 / g_{n}+R_{k}\left(\frac{1+u}{u}\right)}}=\frac{g_{m}}{1 / g_{m}+R_{k}\left(\frac{T_{m}}{u}\right)}
$$

Lef thissritis be 2. Then $1 / g_{m}+R_{k}\left(\frac{(+\mu}{1)}\right)=2 \mathrm{gm}$.

$$
R_{k}=\operatorname{gin}_{-6}\left(\frac{\mu v}{(x \mu)}\right.
$$

$$
g_{m}=650 \times 10^{-6} \text { amperes/ved. }
$$

$$
\begin{aligned}
& \frac{\lambda^{\prime}}{i^{\prime}}=\frac{g_{m}}{\frac{g_{m}}{1+R_{k} g_{m}\left(\frac{1+\mu}{\mu}\right)}=1+R_{k} g_{m}}\left(\frac{1+\mu}{\mu}\right)=2 . \\
& R_{k}=\frac{1}{g_{m}}\left(\frac{\mu}{1+\mu}\right) \\
&=\frac{100}{600} \frac{13}{14}=1670 \text { ohmo. } \\
& R_{k}=\frac{r_{p}}{1+\mu}=\frac{r_{p}}{\mu}\left(\frac{\mu}{1+u}\right)=\frac{1}{g_{m}}\left(\frac{\mu}{1+u}\right)
\end{aligned}
$$

124 mitertesto
.45 vetr, - 200 man no degen.
1,2 vota full sisle 3500 thmet

102 F20.7, 1947.
Lancel.iogroto Lamp denin.
Tur twher were pumped y-t day. See spetch bolzw. $11 / 2$ turn spinbl of $2 \mathrm{~mm}(t) 1 \cdot D$ pyrex tubing. Filled watle 12 " perciside of xenm gas. Tumy tm Ingut ont jpict $26 / 13$ tivies that of $\mathrm{en} F=-14 \mathrm{~m} 7 \mathrm{~m} t 1900$ volts. of 5000 gashe at seemdniternes ot an p ondphat $t_{0} 11 / 26$
Two pins menc welded ot the legs today for a mamitnuy in a se fetw con joctas Bill mi Rbert oand chas Wychett are building lampre fel town with pin joichs now.

$76,24,1947$.
Hawalibunt
this book has heav with Reins whorioprepanir an applen in the plisic lalo integratin sy=tem into a scurteb. Confintor Sive hies, nud Somue haw en to by in the thit townah wit weds. Oh have lwo sections of 620 theitemu.

 mon.thes.
Mar. 21.1447 In Washingt marig with Dm coggis to discuen stwlo runway jastallation at havz 3610 y. menillof AGA. Amwis Bas Atcuninetm comber. Wathics.
Im. Douglan CAB.
Breckenrilye Bur. Ste.
Coggims and 2 went to nu. thal bong niet and Fetod af the Wenthorth Astel 46 st. I saw Narnuche at the nuw, Barthenewi, and Jester.
"isday. Phil Sperry and - ant of SyCnamia came in uich coggin to talk about expolme

Conf with Wiltims aud Ho Sinclain abouff the model existing bitlyy nd dee that we have been resning fra vinthor so.
Apriil 51947. 20B-203. Ben Juyaís rome. Basic Resande,
Sef up for Strobotun delay terts OA5 tabe.

puloegr.

April 151947
Larel Eqertosa
my parento were here fr m_{7} bithday apprb-44yro. zlyar Sillm arrived Jumday the 13. pmu Dh. If. He is oh a three numth ris it of S.S. a he 17 yeas at Iowrain uni. Belge.

Ben togar medsured tu poong prit of chu $=1-24$. $300 \mathrm{mf}(-), 4000$ volt. $40, \times 10^{6}$ lumens seak. or $4 \times 10^{\circ} \mathrm{cpp}$.

Ripinh carlon was in Bostm trday and yeste dong. Ate and Juincer were at M.1.T. for lunch. I had dimnerin inth them at the Red coach, Then weweut x thi pre. olvtoprasthers outribit at the fohntaincock Hall. semilar co, Syerania, tanifpoband mc eldodid had fash equipment on dis flay.

Tash lamf de rign.

Dentfor a gpring that will also senve aothe sparle trip.

Mithivas finishing auathere exponne -meter for plash photoynphy. This me has a
 for reducing thit liget.

Anil 151947.
Dacredsbarim
Made two tube yoiterdry and punped thi norning. Filled urth 8 or 9 inder of xeum. and terter on portable model. also feled nuwgtyle 203 with 3 inches of $x \mathrm{emc}$.

Yotell was over for limch. I brew lini in sugland.
Confo appil, 18,1947. Beins, Herl, chas W. and 7red Barjtow tt:c., 1 ossman jobe enlarger. Damiog get the pirlable. new stobolux - \#14 pyrex 60 cq ce 5.1 quin vita guat
"ty nańes directy mitho eneigy stinge.
Jagat.. as sjparef eneigy.
Quarty tuhe can be loveled up D sicrase fty.
Anone machiul- Buied sample, Bentow wants sintervetype. One lamp.
Indnctivie prekenp $1 / 4$ volt. 0,1 ivetoutpret Lamp resesich - oredesion for bigher
efficieng and slonter duativ.
Raige prermure mith Bele sine
lamps.
Décusión of lamp protection problem..
60 cych swich puoh-buttor type?
Norie camera changep suggeitd.
5 membet and nirgmitio conmintitor. Jombret and nigonitio commitintor. Forlage intactor suitch.
Hinged cover.
Jocus arnangemer
Compineatime levs.
Etp notor, 10 ted be wrele by $B R$, ADA. - Infra Red - borbe to urite mmse
ADifittle. - Chzo qrangto milwanker may. Microcupe illtumator. Max bingtreos important. Anto tgintion system. Ken in freloweys.

106-Atyme Eganta
afinil 19,1547 ?
Partable. Jlosh miv.
Fivenal drys yod stated assumbly of parto for portalue to he Nith fap film and
 be finit weol2 whect musared to thosenctity lenel of aif tifis 4×5 camenas. The ace fitem a so mif afpaciln at 2400 V .

He nuw mit will hi sel ift to ahe lamphilill be sopesialep desigind no thak higa ligut iffecicint reine \&ight mill bi chornvy 1/10 that ote thy exishing
 of tefecter is usel.

Shofe to be able to use ony beterie.

a bleeder and relay sytem tre the beraw on ofthe turle sumais. There in no vord nclayould tual carnents that ubould to cercptah a
 due to leakrge, for the regulatio,
one such syotem.

adjuit value of resistade to vet reigulated volitge.
contaits.

$$
R C=R, C
$$

the max of the input is grolts.
Let curvent x relay be 10 ma .
then $R=e / I=9 / 0_{1}=900$ olins.

$$
\begin{aligned}
& \text { Let } R, C,=10^{7} 3 \times 10^{-6}=30 \mathrm{sec}= \\
& \text { then } c=\frac{30 \times \pi}{900}=\frac{1}{300} \text { forrad }=3300 \mathrm{mf} \text {. }
\end{aligned}
$$

This is a rutherlarzecaprantrox. With a relory that worls in nua nisteal of 10 the caforint coned he vedur. Aed ro 330 mf . an electiontic of thin value yoved ke praitial bul if nuidat have lealsargo resistane of hess. thaur chi 9000 olun. on orth wn its time canstaut nuigur he sliorter thau desived.

Velt.
3000 -

108
Gfinilal 1947.
Noel visit at Camb. - Conference note.
503 flash tubes - now filled worth 15 cm
of xeuns.
after 5000,-10,000 flosishes 2000 watiler. 350 mf .

$$
\frac{8}{800} \text { watt per. }
$$

Sme self feosh and hoedover (y).
Puribed to acrefot 5000 feshe.
Saptules 2 atwarplues of Fryptome.
nuries - Objectivi

- 24 ogde - bad on people who

2. Sound effects - may Lomer vistaye.
3.

Supated mixing lamufict to still see anth du 24 bucle lisht. be eurajed
most somed is denbled an the filus. arept novise.
2.53 .55 .681116 aserteresiettuesp

411

- fro meter.
 with eth tor and 3.5 mf . 20 meg bled der.
this usp urined ap hy Bill mc Robe ts and tried. The cay ind wapo. or o.f amp. Jimi the wots sounce.

Conf. Time 4.30 wedne day aftencoons.
Frier states that he will not be friee fin a year rume. He ha an imp porlant MiT. progict on same phose of the atom Enims. repented, thithe confenence on thi Bosch Dems repinted, thethe confelnauce on thi Bosch
steny of mitin. Aptanningy the gap ithe pobleur Aysteng of sinitin. Aphanandey the gap is the pooblem and ung self at Walker. Walker- ossumblies.
Dummt osillogrsth lecture. How. Leo. Hell IR.E..
Amplifier lesto hyuse of signal frimithe sweep eht. Ude resislin one plide, tr megrlus utt

Termial boust or backerf GiR.ose.

110
Aprils 1947 28 mon kory
Possible Portable Layout.

hole puca butte
control ana handle. also the is a nom pilot lamp which goes off whey the batty is below some preset
standard value. Alp the hears port are in the parcel supply.

May 141942
circus phito solup for not. Seo. Soe.

Jisis atups.

The thrue por them anito on the surta fide where pot to formance.
2nethe fint 2 porfonef the
energet here in foilurve.
meth reabingaviry f4s at A and 3.5 at B
 do nof influmere enpoome. all theskei dinis
 + 3.5 if aitinn whe ove of the hit opole?

Cal. Ifingt - niter was acomplished os per beeos.

Taniend condition: 53.2 w.th onr kodetim Hiesuas 10 fofinintile subjict 100 ommeter. This uas puated no the pather ocalo in frmun of the proarids and thenorotuled $f=1-14$ uss used as ger the ligitlevel.

Refuns.

$$
\text { N.c.p.see. } \cong \frac{6180}{10}=6180
$$

Smeren sec per square inch

$$
=\frac{H C P_{1} \text { sec }}{(31)^{2}}=0.6450 \text { lemensee } / \text { apimich }
$$

101 mt $6120 \times \frac{101}{100}$ lmunsec.
$2000 \mathrm{~V}=6 / 80$ limensea
30
$\frac{=.927}{\text { of teg Comengec pagtt. }}$.
This isthe amonis of log CN energy
$f 3.2$ reguined for au anerje sivestilu.

112 fine 5 194?
Hamed Soquetion.
Inasin $X 4$. at thu modungilers lab at 161 . 6Th ans anthe fory schimer on fune B. Fies. We sawcouden and Y. D Kane bou the sestaven color yeesh unit. Hoo watsermes.

The U.h. Regnies $\mathrm{Ra}_{\mathrm{tin}}$ and xame peite data
Hext Rum
Rie lectric testo, min $2 x+1000$ vals.
tests on weah interloles.
6000 ofperatims of relays.
ClrnA ambient $90^{\circ} \mathrm{C}$. 25° andient. Platir $60^{\circ} \mathrm{C}$. cotem $90^{\circ} \mathrm{C}$.
phemal $150^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \text { Resea de Iff. Stouf. } \\
& \text { mpiper } \\
& \text { Banher } \\
& \text { Irark Querketter. }
\end{aligned}
$$

The des cuzsim was gererat in nature hat maybe somithing wseful will come out.

Qesoin 4.4. L caled mom. Llens. and siscusped the Conge flash mit with Krinter and Donis. It wes derilet't a Sd another

Jane 201947
Itarctave Colar Plioth gnaply in Sympleny Hall.
most If last week was opent an the color plevtornpiry of the Poprs and the MiIT. Sraduatim.

First plertoswede takee aff 5.6 om Slatraclume coss and Aut Kodachrome cc15 and cc2s with the following Reguting.

1200 mif foro vots re.ry in toll
 fromat in the secand balconef. soo mit at $1000 \mathrm{voth} F T 503$ in 30 capnee reffect this "located on 2ned Galkang at the prist of thy strge. Breh elu abore tubes were in thu same sige of the hall.
The EKtradime was overexprosed. 56.3 or 7 ? would have been better
the Koda dime looke O ole. Int had i yollow arió f5.6. inth cc15 and $\$ \$ 25$.

Es Bennetfinisiled the th study ot the
color vavi him of fla, atules a a functin of nocrage and cof hasty.

Tus ther students areplailuà, wali in Cle Same field. H'大beV Xaewert 3) Bny Stale Re cire 8029. conse JIII if to tudy dimennules va ionaty and their affect ipn faneolor.
in vestig tee the influence if wareform on chu color. The chore ciee thrt wi use k BCop the virize may also change the coler enoughto be of bene fit there Rom $20 B$ RO3 is where thes wnth is cr be accmiphitad.
true 21
Bristru aubl Wyalortf dett latay for N.Y. To innigh wong on the connzuencer slecetiten Chth nus in iche Shatm A大tet mi $4 . y$. ctus studio is of obtavir a 1000 wat jash unit fin ase in cotan plixlotyaijuy

The kitel, Seopmplic ownity ire io oponsm a lims to colmado ant cheininia os-2urot

is viniminauran a sear portable to do the job. I plan A wee 2 or 3 FT 20 Henctubes a 75 mt at 3000 volt. The batlony is ${ }^{2}$ volt, contles tiviq of theneo. 4 rtiet willar batleré.
Duve 25 1947. HAcberth. Conff last rught with
guneshanion and sin pumestaristuna asposiver concen 7 .

Bottery chanzer for proffesimal portable.
ac.

5 all lealbatte ER churst fully charged.

13 vols.	acvoll	I \& amp.
after changed.	9.0	.00
	91.9	.04
	112	1.13
	12.1	.2
	13.7	.39
	14.9	.55.

Dicharge. Slasted $\frac{8 \mathrm{am}}{8!.5} .5 \mathrm{amp} .13 .5 \mathrm{voc}.$.
8! 5'. 5 amp.
12 noun. 5 amplees 12.8 vols. Sreen bills down on nust of thy cell Discherge sill mine.edr. 8
2 pm 12.7 velt.
${ }_{5}^{5} \mathrm{pm} \cdot 7 \quad 10.8$
520 ? 9.8 velts. afer ner ning the Red ballo were Loun also.

Charge started 8.15.
0. tamp.
check of light oistpunt with neter. Sune 26 Soq 4 Wychops. nsar mel.
nurdel.
Portable uith FT-20 in Block case lamphouse. Hfo. $f 2.5$ nuter 100 .
Portalbe utth FTー 15 ing al con
off $f 2.5$ neter 50
Thus the FT-15 seem to be $1 / 2$ that of thazo.
Oale box Studio Kodatin.
10 ff 3.5 meter $\gg 20.86$.
Huw Prof Portoble FT- 20 singte hbe $75 \mathrm{me} ~ 2800$. 10 ft +3.5 meter 70. guide factor abals 30.
loft if 3.5 meter 95 6 cells Suide factur abrut 35.
Tesvis
fine 25 1949. Jurth Ge,trof Puopersime Porlabe,

$$
\begin{aligned}
& \text { io } \mid t+3,5 \text { mole } 97 \text {. } 105^{\circ} \text { one FT:220 } 3500-75 \text { mt. } \\
& 105 \\
& \begin{array}{ccccc}
102 & 2 & \text { FT.220 ". " } \\
997 & 3 & " 1 & \text { " }
\end{array} \\
& \text { Iigulforme - FT: } 220 \text { with "then two on bux } \\
& \text { nol on nueter }
\end{aligned}
$$

Thus the liqletdivides equally be tween lamfs.

30ft of extensim anble reducet the light about 20% \% 23 wine 2 uinies for erele

Golunatim of ruter befme hip west. Sinferonter 200 ma SR, Bor Wrod.
120 volts ac infrut to R_{0} ditum model
 conerpir polact $4 \% 7$ of $81 / 2 \mathrm{ft}$ from buet. Guide jaclow of 40 .
 Arizontal view no neflecton.
27.5" fimi $F 7-14 X$ rmis of neter.

Plamioid oper meter nends 150. Half serle
Promerng 60 og 0 ec mifrelene $\frac{1.60}{5.5 \mathrm{mmp}}=0.84$

Sept 41947.
red S. Stertim
A neturne sefot a fimin a 2 numtle thit
to Comb bid in the poried. Ao pltios cffint d did get plisas of the

$$
\begin{aligned}
& \text { Ruforo -any } \\
& \text { Rindtailed color } \\
& \text { Blachchiniel .! }
\end{aligned}
$$

Anchicago.
ang $2 q$ in.
Tistoof pontable timenfomur uned thes sumpitio $75: 1$

Sept 131147 . Narger of collien' will be here an Sapdiș X shod the bylet scove of celleg o which is un being given of heregestaday to ser che she gon and 4 . 4 . Cilnaks wos
Fuige - ofphir I plan 1200 uf 4000 N in an FT-Mon

priesform
on Soptinsin Rocherter with Reve lauren guty on Cue s gicr han probpabie rir competition

them and 2 had a anfonilh whtisis and
 onsiptio. We belive sung be this is sete.

7wattiee perflash. 200 or 300 frimesfoerse.
Sefo 1919y7. Confinith Dore Nieloen, Chao. Wycleoft Senvenluanien aborys studiv vartal of thi longe flarl mitt.

Ne conchoded to put the flash equifment in Dones कhedir and lat Livi do s ampees aced stait proshentan ot once.
plas iog of quok seceipe bui aur then th methirs woved he to par in a ferge per flash.
Sefo 21. Alandedroferin.
Seo Kanger refronted that the 8×10 ansco
 and warn. These veretaken with a $1 / 2$ sec Now prone (or $1 / x$) syucled by hand uste the actin.
the comest shtrachme expsosure was $f 4.7$ or $f 5.6$. We trole mor of the pictiens at $f 8$ oo they mere danh and coed. the set nif is desmped on plil.

Sep1241947

FT-14 n. scahoind lamp no 510.5 mf 2150 veets (?).
2'7" Distance uith out filter or polarizer 21'7" for 100 ma with one polaraid sheut with too polavaid
\longrightarrow reachis.
$8^{\prime 7} \rightarrow$ Destanch changes of $8^{\prime \prime} 2^{\prime \prime}$ to give 100 n scale uitle are prolarid sheif. .. tor .. t . s on sale.
with dorh shasb Vencturing us 5% less \pm this cut out the sprecular refeitern fman-the bench top.
Distance. 5'5: light-meter.

5'5" Distance ivithe 100 on scale inith two polaroid sheet in phase. Out of phace-veading \$2.5.士.

$$
\frac{67 \text { c.p.s. }}{(5 \times i 2+5)^{2}}=\frac{67}{(65)^{2}}=.0158 \text { lemenos/squase mich. }
$$

or $144 \times .0158=2.27$ hmensee $/$ gquare $/ 5$.

$$
10.5 \frac{\mathrm{mfat}}{2} 2150^{2}=24.3 \text { wathe: }=
$$

$$
24.3 \times 27.5=\frac{667}{} \text { or } \text { tinnen see }
$$

$$
\text { or } 67 \text {. condleppomerrec. }
$$

$$
\begin{aligned}
& \frac{551 \text { imulae }}{20 \text { ustere }}=27.5 \mathrm{~lm} / \text { watt. }
\end{aligned}
$$

Bitterg tests for \&.R. Fijut meter.
ABettery reduced $X 1$. va A. Eiqitgres doun 10%
67.ps. 1
B. Bat voltaje
at
$\left.\right|_{V} ^{1,3}$
117 volts.
99
Reading.
100
100
100
100
eudof scale zen seV for tube usar

1.2	$109(125) ?$	106	105
1.1	$109(125)$	104	106
1.0	110	107	103
19	110	105	104
.8	110	100	100
.9	1102		
.9	90	105	103
185	90	103	104
1.3	100	102	103

1.32

Sugges make scale read wolt with 100 al du battong thange point actur ld will wam down ti go on bollo hatterces witl - du singet tube bete.
$135 \times 10^{-6}=\frac{135 .}{R} \quad R=10^{6}$ ohus. for Bscale. $\pm 5 \%$ 人-500, 500.

$$
15 \times 1.135 \times 10^{6}=\frac{1.5}{R}=R=\frac{1.5}{135} \times 10^{6}=111000
$$

isef. 26,1947
pance $S 50$
Visif from noel, thayer, Pritchad and Inydur the fird three frim sea. Oo at nela ball thay to disnows twhes eet. Sjkecial lamp manufachme semienharsu's new ofpinal conshuction and the higu of peed musie larp. FT-617 tibe waved be nuade far us if the

 is hijh.
 opdinl types. the birs about $5 / \mathrm{s}^{\prime \prime}$ diain.

 lenthan ay FT-14. at 3000 the efficieng

- Atoble the Bs. crourd ufix see Vallyy a vede in of the 126 (r.) hume tubs self flash.

 Sermeshansen gane him.
emin be pherelt ar pitcha sthat a, morie roach an and the FT-1 , atemptiag. at 24 cycles phir light for color on ow we wis at 30b viter. Surch a unit noved ne. 10 he

be obacturnable to the people being photognopled. suggerted thast zuch an ourfit he berilt for one of the studios or expernien ally.

Chone. $\alpha \frac{I^{2}}{2}=\frac{C E^{2}}{2}=$
not meedel?

$$
\sqrt{1} \quad 2 \pi \sqrt{L c}=\frac{1}{2 f}
$$

'I.!'lyy 6 m 12 phase wich reacter without filter.

Tume x and C so that lampfine at full dhange.

$$
\begin{array}{ll}
2 \pi \sqrt{2 c}=\frac{1}{2 f} \quad & f 4 \pi \sqrt{2 c}=1 \\
& f^{16 \pi^{2} L c}=1 \\
\alpha=\frac{1}{16 \pi^{2} c f}=\frac{1}{16 \pi^{2} 9 \times 10^{-6} f}=\frac{70}{7} h . \\
& =\frac{70}{24}=2.92 \mathrm{~h} .
\end{array}
$$

d.

Ratio $\operatorname{Light}\left(\cos ^{2} \theta\right) \cos \theta$ angle.

The exporme or light meter is due next week according Q Within. We hane aad serval conferen... about du privicat for the pory fow wolvs
a methrd of nimertmit the pola sidhas keen devised wht is single and esiogl dith ale the shent in terial. tur scales abone atin of the shwet imtenial. Tum reale Ge abonit give the shesth on the accunes of the tale.
oct. 4,1947 . Transfortable trinsformer
Ray them $1412214 y^{\prime}$ to gine 2800 V firm a 12 volsbattery.

60:1 ratwo.
C.T. on low volloyewridm

Trausid shorl aircuit mepeidand from low voiblide $=10 \mathrm{~lm}$.

124 A．EEGqentan
Coct：6，194？
Tests were made sala day on \＆tque $テ$ Tーノ tubes in paralcel． 115^{3-1}（7．）

The tube wove bwarl ok．if the voetoge exceeds 1900 volt．

If as 50 ft loupand vas incerted in one coil，thit Camf noned niss even with＇ 400 volts．
S.e. Kigat mulen.
ABSl_{1}. Init of sample 10 lot. firm wilkies.
Test of polunid lig it gadqit seeprye123 for cale.

$$
\text { FT-14 } 2100 \mathrm{~V} \pm 10.5 \mathrm{mt} \text { at } 7 \mathrm{ff} . \mathrm{t} \text {. }
$$

Polaroid	Ineter
$\times 1$	200
1	190
2	102
2	101
4	57
4	56
8	37
16	25
32	20
64	12.

1000 witt twigsten lamp.

		182
2	2.08	87.5
4	3.95	46.
8	6.75	27
16	12.1	15
32	18.2	10
64	22.7	8

 $\begin{array}{ll}2 & 204 \\ 4 & 308\end{array}$
f
$\begin{array}{lll}16 & 13.7 & 14\end{array}$
$\begin{array}{lll}32 & 21,3 \quad 9\end{array}$
$6432 \quad 6$
926 phero
some $\frac{165}{6}$
$\begin{array}{lll}196 & 15 \text { mith } 9 \text { meanfition } \\ 109 & & 0 \\ 66 & & \\ 43 & & \\ 33 & & \\ 27.5 & & \\ 24.5 & 0 & \\ & & \\ & & \\ & & \end{array}$

HN 34 Polarid. al juackus.
unitho ohe. caller West.
$190-2.5$
... 64 . satiom nuter.
20×50 pane ${ }^{2}$ -
20×50 pances-
about 4 s iñ inclesper in olmuad

$$
\begin{aligned}
& 5 \text {-panel } \frac{50}{25 a}=\frac{1}{5} .
\end{aligned}
$$

1		200
2	2.12	94
4	4.25	47
8	9.1	22
16	18.2	11
32	40	$5+$
64	100	$2+$
4		200196
8		96
16	42	
32	19	
64	8	

$\begin{array}{lll}64 & 64.7 & 3\end{array}$
HN32 Drwble sheer. .005
$\begin{array}{lll}32 & 27.7 & 7 \\ 10 & 14.9 & 13\end{array}$
$8 \quad 214 \quad 27$
438×51
$\begin{array}{lll}2 & 2.11 & 92 \\ 1 & 1 . & 194\end{array}$

Thkenal duingorin sopt with Bnjlex m? Pomitzer Joan mirt andf Domitye.

$$
\text { HN } 34 \text { Pperrid al nuedens. }
$$

rowitho ole. adler Werv.

$$
\begin{aligned}
& 190-2.5 \\
& 64 \text { ntiom nuater. }
\end{aligned}
$$

20×50 panel.i.
20×50 penel-
about 4 sद nindesper in olmuadr

HN-34 1 c, M, '6 thot Co

1		200
2	212	44
4	4.25	47
8	9.1	22
6	18.2	11
32	40	$5+$
64	100	$2+$
4	200196	
8	96	
16	42	
32	19	
64	8	

$$
\begin{array}{lll}
64 & 64.7 & 3 \\
32 & 27.7 & 7 \\
14.9 & 13 \\
8 & 2.7 & 27 \\
4.8 & 51 \\
211 & 92 \\
1 . & 19.4
\end{array}
$$

HN32 Drwble Sheer .te5

Powertrous former
Roytheon M116/2-2
Secondong Bumero out wnclu.y. Comm, Rllus. orin A ungle tafes Frim B - be themen cail.

16	16.4	$12+$
32	32.8	6
24	65.7	3
3.5	117	197
45		117
5.6	78	
6.3	62	
5	38	
11		21
16	10	
22		5

Puös mullipheir thipourfit. frouBaritoio.

Nov 1,194?
Relurdr of mueliflaca mivit.
Joh Beilly wireh a milturhnt osillatur mitt the el muttifeade muit forbetter contree fote fregue oy

Siqutratis Kodatim. at

$$
1 / \frac{17}{18}=1 / 5
$$ anter of

Surde factm of $1 K_{0 d}=400$?
multyflach. 200 or 100.
130

Sat. nor.15, 1947 Testof pite. Fiqulmuter.
Hiditm lijht source 136 mf 2000 v \pm Sferenof.
10 ft prim miter in beam attervition Polunil selat 64 at 32 ilu meter reices 162 .
$f^{2} 2$ Netiving gins miter of 1150

$$
\begin{aligned}
& 22 \rightarrow 4.6 \\
& \left(\frac{\pi 5}{22}\right)^{2}=\left(\frac{1}{5}\right)^{2}=\frac{1}{25} .
\end{aligned}
$$

One lyyer Mit I3md papeer

$$
\text { f4.5 metir } 1 \text { 30 }
$$

- Tissue peper + Mir.jpher

$$
\begin{aligned}
& \text { wuepecper }+ \text { Mit.ppher } \\
& \text { + } 4.5
\end{aligned}
$$

Comnent
Compat Fip m rettetingent of stennatar.
2. Wider zeriler live 3. Crelnguler A
3. Cell zens in colt.
rencincorention
 jomu SSE.
30.65 mff at 1980 oreto shomes give 1850 $\frac{2000}{15 D}=1.04 \sqrt{104}=1.02 \times 1905=2060$ vels.
$20.25^{\prime \prime}$ metertop to lamponter? Readriq 100 with 2 prper jilte. asper above. f $\begin{array}{r}3.5 \\ 4.5\end{array}-100$

		6.5
Iistance $14.5^{\prime \prime}$	38	
	+3.5	200
	4.5	117
	5.6	76
	6.3	61
	8	37
	11	20
	16	10
	22	5

with buill \qquad Fuctin of 40 . \qquad

132 stralyorlin
hor $18194 ?$ Wilhard batteng ER-15-6 20 be 6795 parp. 2e. callor girbe (22). 20 amphours. Wit 9.75 Cb , 6 volt.
200 recqele.
3 ball indocitrs.
200 doyp cmuplete desib..je.

100 ma .
67
.67
$6 ?$
134
 shomithem thi S.R. Eiquitsuett.
Simpon shoued me an... and suet

Stumpmen will waut a suiter and is goin, t set are form exR.

Afti 12 him. the tuhs and revistor Heshed over. The resistns plis onfeen
Revired with 25 ro ohm carbentype nistand of

 sludent bivis stue tos. G. 250 widroc flac a mile. Hosm \& krim were hire as Mit yoble-lag X_{1} show

Wem nustoris
 awnek or so. Ny, hoff and Barach helfed yetcerd, and trday the focton fimu the chrsed polarils do not doheck against the distanes.

132 strisequeln
hor 181947 Williand battery ER-15-6
ER-15-6 6795 parbiuo. callor grobe (22). 20 amphours. Wit 9.75 Cb , 6 volt.
200 recqua
3 ball indocators.
20o dorp cmuplete desidn.je.

Now 20, 1447 Vinited iss plaup at Fume thenduy t shovithemthie s.R. Eighstmett.
Siupom shoved me an... sand suet many there.
Kuderinarl Smage.

Sturpion will wrut a suiter and is goin, ot qet are firm E.R.

after 12 hove the lules and resistos fished over. The resistns speis sfaen duel t an are oren in the desistin??
hor. 22 Revired with 25000 ohm carbentyper nistand of on horlocull'l wivit t Sled wich nothoghan and seneral sludent bs nis ofle bs.c.
beger iras here thio nom to dis aies 250 widtre.fla a muils.

646 Cess 1947 nor. 1947.

Nov 26.1947. S.R. Meter (light) has been under tort for
 do not check against the distance.
$134 \operatorname{hor} 261547$ Sarrel shertin. Thoticall Pichupfor shent flaskes

The conventimal photorell pichenfo cirvit for lijut pulses is sh. blen below a cathide folloner neduces the thind constant of the cincuitand pernits leads x an ovillognaph or an amplifir.

The elthoth of the
photo cell is the la gest
the an and otherfore is the has
the greatest cafracity.
The virint below hubo the photrell cathrde at contial to volential by allouringthe an ele potential to vong with the lind. Some thirg needs to be done aboul the gmiescent conditions.

$$
\begin{gathered}
\frac{\mu e_{l}=}{r_{p}+R_{k}(i+\mu)} \quad i_{k}^{\prime}=z_{l}^{\prime}=\frac{\mu e_{1}}{r_{p}+R_{k}(1+\mu)} \\
r_{2}^{\prime}=\frac{z_{1}^{\prime} \alpha R_{k} \mu}{r_{p}+R_{k}+R_{k}^{\prime}(1+\mu)}
\end{gathered}
$$

$e_{1}=B_{1}^{\prime} R_{k} \quad$ balaual and. $e_{1}=?$

$$
e_{2}=i_{2} R_{2}
$$

$$
\begin{gathered}
=-\frac{R_{L} x_{a} R_{k} \mu}{r_{p}+R_{L}+R_{R}^{\prime}(1+\mu)} \\
r_{p}+R_{L}+R_{k}^{\prime}(1+\mu)=-\mu R_{L} a=\left(\mu R_{m}\right) \\
P_{0}\left(R_{m}+R_{E}\right)(1+\mu)=0
\end{gathered}
$$

$p_{p}+\left(P_{x} R_{k}\right)(1+\mu)=0$

$$
\begin{aligned}
& R_{L}(\mu u-1)=R_{\kappa}(1+u)+r_{p} . \\
& \text { if } R_{k}(1+m) \gg r_{p} \text {. } \\
& R_{2}(a \mu-1)=R_{k}(1+\mu) \text {. } \\
& \text { and, aind }(1+\mu)=\mu(\mu \text { - }) \text { if } \\
& R_{L}=R_{K}^{\prime} \text {. } \\
& R_{L}=\frac{R_{K}^{\prime}(1+\mu)}{a \mu-1} \\
& R_{L} a-R_{L}=R_{L}(1+m) . \\
& a=\frac{R_{K}(1+\mu)+R_{L}}{R_{k} \mu}
\end{aligned}
$$

Thg 6 SN 7 twin thiode.

$$
\begin{aligned}
R_{L}= & \frac{R_{k}^{\prime}(1+\mu)}{a \mu-1} \\
= & R_{k}^{\prime} \frac{21}{9} \\
= & . \\
\text { use } R_{L} & =20,000 . \\
& I^{2} R=\frac{\bar{C}^{2}}{R^{2}}=\frac{4 \times 1 N^{Y}}{2 \times 10^{4}}=2 \text { utut }
\end{aligned}
$$

-300 mlen?
Thtolez capgrid 3 pexte

$$
4 \text { cate }
$$

O mada con inith Sier and Jussel in th fford Bedy. las Aridg at fiam abaut light peilmen. an ophical seheme was disicuzzed. Peterivalso 6 prot had cmment obrut it. A methrd oo get a shirs otth. jexsh consisted af notalien nunimine.

 buto gecper perte
 . $55 \mathrm{~ms} / \mathrm{mich}$ with 1000 ohms in senes

Dec.1.1947 the cathode follomer does not whe well inith a refifid grid surings since + and -surges prsduce different resuts.

When the grid is prilsed positime there may be givd cament which belpsity change the onlfint capacitance,

Vhentipacitance prises suegatine the gid evceedo cutrff nivethe catthade oafia wina the preveits the are cathrdeform following the grid.

Tho only a msurer is these a low valve of gatholl resistane so the callole cau bllow Doley starkel to work las week parttind in clie slectsmite gab.

Ben Iogin quithis jib and his couse at M.IT. la ween:

Bof Deming is resealking on slort fash sources in Bed 20 F 203.

Wycherf sfent tody in SBR. With wiltein on testring MR. sumie inits and esposure suetens.

138 Dec 2.1947
Rowe and Soroka from therdaen were here trdoy to discurs feash sonces. Xeippingerals.
Sounce used a Vaberlan $0.02 \mathrm{mf}^{\prime} 10,100 \mathrm{U}$. 1votor
Point source ible diftroctim jrathern when
sparing wh jof. 22 ft anth
ogect at 11 JJ .
inter formineter sourede
1/4 mt 15, ro valts. $\quad 3$ witt sec .
S" Ne rhovel them denniqg expencients.
mir. frm Izentiin aas horeis well as Kewman.

$$
\begin{array}{ll}
E_{f}=1.38 & I_{p .} \\
E_{b_{s}}=14 \mathrm{~V} & \\
E_{g}=-1.5 & 44 . \\
E_{g}=-1 & \frac{14 .}{0.6 .} \\
0.93 & \frac{70}{15}=140 \mathrm{mmin}
\end{array}
$$

$E_{f}=1.38$

F	1.41	1.45	1.43		1.42		142
F $_{1}-1$	115	122	132	119	62	126	113
-1.5	45	49	59	45	22	46	4
0	63	59	57	46	26	41	37

Alifof meter $1=12.1$ ma. Full scale

$$
I_{b_{0}}=30 \mathrm{ma}
$$

$$
\frac{15}{30 \times 10^{-6}}=.5 \times 10^{6}=500,000 \text { ohme. }
$$

$$
\begin{aligned}
& I_{f}=\frac{\mu E_{f}}{r_{r}+\begin{array}{l}
50000 \times 7 \\
350000
\end{array}}=1 \\
& \frac{12 \times 10^{-6}}{m} .700,000=E=\frac{45}{8}=1 \text { volt. } \\
& \begin{array}{l}
=.7 m-5 \\
\text { lamen. }
\end{array} \\
& c=.01 \times 10^{-6} \\
& e_{c}=.7 \times .01 \times 10^{-6}=.007 \times 10^{-6}
\end{aligned}
$$

140

The prssibilty of the rese 7 elverns
fioser lulps for m tim setanco acs ipleceerly nowy peoper sumee the oft no difht while de shutter is doseo the sdeme has not bece used besance 1
K, Fhelise

The tiugs teory lamp is very wiole in the blue endbet the d/Rexcess whice the kum porither has of excess in this

Inow propprie dual Dightuig, where there in a dal purper color ree two

Insthenmere there will be a great reduitimin afporeny pecectreave the hingte infects? will give consider abe

Th mise problem will need to be polved by aleothtiv traf ment aved by the deschange hive.

Diebsquata
zucirscope illuminatur.
Dracined inth Banstrw the folloving,
nucios ope illuminator.

a mermind entort tube will be used to Hashed is a soul ar of ligilet.
Dec.13, 1947. Atasfantin

 mioof Rycheth Xor Brain O'Brian abut
 the qith foor in thi evening y 0 . sillor and Pmubber kotter taicked bejone d didon phitignplyy and jen a bulbsppe devices

Sives in u.f it the 12 th of the. Finst Daw Homyed. Dtode an F trim in the vubwar perpin the Warsai Stedics wher I met workat, at the Warsaw studic. Wheretyman was there dechin, the Pa'heresyong-ne no h gritt
 antains. $\dot{R}=1, t y 50$ limen per. ot

Witu the $8^{\prime \prime}$ refertm mpplies by soely, man the

Las. Netied a sualler refeitid, doserand

Color Testo
Haned SGyertar
Dier ith ction uychorf
Kocederme Derflijut Typer Emulsim 381-1 regures $100-120$ entmen secon do so $d t$ at $f 3.5$ mith cC 15 .
Sil of Killtm $3.5 \times 10=35$.

$$
\begin{aligned}
& f=\sqrt{k \text { Indeglogpt. }} \\
& 3.5^{2}=k 100 . \\
& k=12.2
\end{aligned}
$$

Dec19,1947. The subminating model of the erporme neten
 before my de so tum o racketer an Du io. d tested the meter and fonnd thet a while sard of gone a readiny of 10 ua in the nuter to ma Neitirgtonet) when Why level was sals otengy to colm (Nolodimue). Shind Uu meterta boon Frad,
Sandel, to, on the 12 th in 4. 4 . D slined the melerix̀ Suriby and A Bije ow Sneen. While in u.y dalled Devi ar tho commencial fiendisto's stulis.
 the new kola of cuanem. Ac le fo tinden aft test showed timing truble in the mitany owitch.

Notebook \# 17

Filming and Separation Record

\qquad unmounted photograph (s)
\qquad negative strip (s)
1 unmounted page (s)
(notes, drawings, letters, etc.)
was/were filmed where originally located between page \qquad and \qquad 3.
$\operatorname{Item}(\mathrm{s})$ now housed in accompanying folder.
-

Color Testo
Haned segentins
Dile with chas.Uychods.
Kodaderme Dorlijut Iypee Enulsim 381-1 requr. $100-C^{120}$ entmen secm do sof $d t$ at $f 3.5$ mith CC 15 .
Siliof Kiltran $3.5 \times 10=35$.

$$
f=\sqrt{K \text { Snnuggagt. }}
$$

$$
3,5^{2}=K 100
$$

$$
k=12.2
$$

Dec19,1947. The submunatine model of the eyporme meten

 tested thy meter and fomis thet a whice sard It gone a read liny of 10 ua in the nueter to ma Neitivg tonet when thy level was zals atengy proln (Holobimue). Shent UM meterta boon grod, Sandele, ty, on the 12 th in 4.9. D slimed
 While in $n .4$ doaled Dere ar to commencial feisivito's stulis.
fan 81448 ohmeger was fuere fan 6 and? to tost oync zin the new kola of caven. Ac le ysunden aft testo slowed timinit cruber in the mitony switch.

Notebook \# 17

Filming and Separation Record

__ unmounted photograph(s)
___ negative strip(s)
1 unmounted page(s)
(notes, drawings, letters, etc.)
was/were filmed where originally located between page 142 and 143 .

Item(s) now housed in accompanying folder.

Color Testo

15 December 1947 c.sry.
$f: 6.15$ @ $5^{\prime}-3^{\prime}$
380 humen $\sec / f^{2} \quad 32.3$ g.m.
f:3.5@9'3
118 humen sec/ft ${ }^{2} \quad 32.3$ g.m
$f: 6.15$
(a) $5^{1}-9^{11}$

300 hemen sec /ft:
35.35 gm
$f: 3.5$
(a) $10^{1}-1 \frac{1}{4}$

97 Lumer sec/ft ${ }^{2}$ 35.35

$$
\begin{aligned}
& 5.25=27.6 \times 2=55.2 \\
& \sqrt{55.2}=7.42 f(1 \text { stapp }) \\
& 27.6 \times 4=110.4 \quad \sqrt{110.4}=10.5 \mathrm{ft}(2 \text { 2.0.2. })
\end{aligned}
$$

Koductrame Dayligit Iype emulsion \#381-1 requires $100-120$ lumen seconds/sq. ft at $f: 3.5$ with a $C C-15$

Jou81947. Portable.
Worked inth Stmeshausen an protoble carmit trday. Fired follouring

charges in 15 secto $600-700$ maxprin querrert $=\psi-6$ firal at $600 \mathrm{~V}=0$. Por 0.8 ouf.
$220+550$ wailing s in senie.
at Josvoll the privony drain wos 1.7 5 aups.

Vnied three D cellsphit flashtyke Eourady. the ousput vile wap 630 anth a fresh balbong if the capracito as aluaged. Trom a staud shilepoint fle vaetroe ree t
600 or 580 . tue it lorl valo of tere D cells was 3.8 nelt (4.5 v conmeetu 3 cells).

वा

0 cil.
(cont) (cme)
mclann Don Wittey of mans. Reveral weat with me
 mecloud \& tanifeol plant in Qliel sea motorola Vittrasfrom $\begin{array}{r}25 \mathrm{~B} 23068-\mathrm{C} \text { Potable } \\ 3 \mathrm{C} 41 .\end{array}$ 3 C 41 . derip.

wolory

3.5 pape
3.5 pope

Bat no to 6 valts.
0.65 amps 4.2 V (5.50 pencir beforetest) 1000Ω. 710 V ox decturfucis.

146
Jay. $12,1948$.
faneds.
trausfinuer desinu
thy \#22 12 tuins. for 4 verevinfact.
Pdiv
showed be 8 to 100
sypeniment shous exatrigg $4 . \mathrm{V}, \frac{2,2 \mathrm{amp}}{7 . \mathrm{amp}}$.
cament bigh.

140 tuns with C.T. 127 turns with C.T. withs ok. D news . 45 amp
jon 211948.
Myster nus fomer

Yoc Ide Ede Lordantcond

Trausformer design secondon 15070 turns, 1400 wine
Primany 100 C.T.

250 cqob de iqn
3000 tums of $\# 38$ wine
58 turns of \# 24 wine C.T. (59).
Estack.
$4 v$

nullmy 725 c
$6 v 080$
wailer ok on 7 velts

OA4 G

$$
\frac{R_{1}=}{R_{2}} \frac{R_{1}}{10^{\circ}}=\frac{100}{250}
$$

$$
R_{1}=\frac{100}{205} \times 10^{6}=\frac{400}{5}
$$

650 velt-lital regffor shent an the
500 V 8 sec
Goo 14 sec
 535 velts on fash twbe 11 secondstichorge.
max cune fram bottry $=3$ amps \pm al 4 vilts. Beam light is dont liff fo old protabe.

Taisporsteble Powarsupipey.

Rob-yellow lead

Bo Ryefar iou
12
10 gest prat on 10/2 of winiling. $5 / 6$.

Luso in Xy yerte day to atlen a
cominte af the sist
new commitete of the sovitg for
notindtecuits onfinve. To on Wrdell
Higu- sha Thelinitany ina the Weddell
ongainzen abitthe cleanman.
Nophed today with fow Jussel on the
porject por the pacific next spining.
Ther semith be diffirinlt with
He orcill ginphs trat Dive rove ro uin.
 A 25000 vot ture to gen tu exinit firere
tast photgraplig. apprame Vo Inire Gight from thi's field eminsial.

Canlom of By.K. Co Cewavaldivio. wish oloniwh himi the niwn inuint on tly pupalue. Nte is gorinito nuace lingt fection for us in clevee ond.

O
 lampir and caperitus eletergbes ar
 Wook will dhow daat 100 midat 700 voles mito a suall sthint tubie will pirduce arsura

Ciricuit propposed.

The aboue is beinqconsidaral as a liznt soute jur Arana Cougul's camera por identifacation purifoses.

June $18194 \sqrt{8}$

- Cavel 58yertana.

Sreturned from Enicuetoh atobl in the
harshall isednds on fime 8 and hane since chen been calchict upon comes prindenve and othen itene, that aom inp during nig absecure.

Dpvend to shi wetok anth tterb Srier and otvers of the regues of the atomic Evergy commis um to belp instrinuent thine brubo. Ny work is corvered in a nole book line this. \# 18

Jerry schere called about the 2800 waterdec foshumet jor E. R. That are Geion node by Rtythem there are 24 onffits about to ee shippel bit Roythem itor being olijhoty midifue to nerv seefinat che undor. Wurider? specficiatino.

1. Juith - Sutarble mit noif nuarlsel for 110 meto. Ochervise tanue
suitih.
2. Tush holder wo changed
3. Temprise wooloo nuch. Louvers mere cutinth sidegf the prwer supply wnits.
4. The unizulativn lest os unade by the underwinles lab way 2000 mil laf. 100 V insted of 2000 midtaf.

Filming and Separation Record

```
    unmounted photograph(s)
    negative strip(s)
```

\qquad

``` unmounted page(s)
(notes, drawings, letters, etc.)
```

was/were filmed where originally located between page \qquad and \qquad 3.

Item(s) now housed in accompanying folder.

152
June $18194 \sqrt{8}$
4) woded Eqyertwa.

Ireturned from Eniuvetoh acobl in the marshall isednts on fine 8 and hane since then been catchict upon come frendenue and other ilene, that comn up during xuy abocenre.

Ifvent to Shi wetok anth therb Srier and others at the regues of the atomic Evergy commis nom to bi p instrineent thince brubo. Nuy work is eorered in a nole book lihe ttis. \#18

Jerry schere called abrut the 2800 water dec fosh unte jon E. R. That are Geian node by
to ae shippet Gife Roythem itor being shigisey ngdifted to neet che under hurgerv sperficiatinoig

1. Surth - Atterlide ing noif puarkel forloris into. Ocherwise dance
fuiteh.
2. Tush holder was changed
3. Temprise woolor nuch. Louvers were cut inth sidesf the power supply inits.
4. The uniculativn test as uucde by the underwiles lab wd, of bosed on ty
2000 mid lay.

Notebook \# 17

Filming and Separation Record

\qquad unmounted photograph(s)
__ negative strip(s)
\qquad unmounted page(s)
(notes, drawings, letters, etc.)
was/were filmed where originally located between page \qquad and \qquad 3.

Item(s) now housed in accompanying folder.

$R=0.11$. and 10 meqolums

$$
\begin{aligned}
& C=0.1 \times 10^{-6} \\
& R C=\frac{10^{-2}}{10^{-2}} 10^{-3} \text { and } 1 .
\end{aligned}
$$

nor. 4, 1447

CONTINUED ON NEXT REEL

