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The basic result of this paper, from which important conclusions 

follow, is the proof that the series 

( 1 ) . . .  ^ 1/n°~ " S 1°RP/P°~ > x— 
n ^ x  p ^  x  

converges for every real (T ;>• s>. Here, n runs through the positive 

integers and p the primes, in natural order. The convergence of (l) for 

0^ > 14O is known, but not for \ Z.&~ ^ 1. The following method is 

adopted for our proof. Terms of the series (l) are grouped together for 

n and p in irregular, non-overlapping consecutive intervals With 

a suitably chosen, not necessarily integral, real number in d^, the 

original series (1) is then replaced by 

( 2 ) . . .  ^  ( d  -  l o g x ) / x  ,  C T  p  4  ,  
v 

where the subscript V. has been omitted for convenience from d and x. 

Differences between the partial sums of (0 and (2) arise, namely : 

Due to the grouping, and the substitution of x^> for n and p; to the 

irregularities in the number of primes contained in any d-interval; and 

lastly because the partial sums of (0 and (2) will not in general stop 

at the same term. 

I f ,  h ow e v e r ,  a  c o ve r i n g  s e t  o f  i n t e r v a l s  ^  d ^ J .  e x i s t s  s u c h  t h a t  

(2) and the various series and sequences (finite in number) arising from 

the above differences all converge simultaneously, then clearly the 

series (1) converges. 
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In what follows, YT(d) indicates the number of primes in the 

interval d. The prime number theorem is taken for granted in the form: 

/' (0,x)/v-li x/vx/log x . P denotes a probability, E the expectation 

(mean) and V the variance (dispersion) in the sense of probability 

theory. For stochastic X and scalar X. we always have E(AX) = A E(X) 

and V( \ X) = A V(X). By a variate is meant a stochastic variable, i.e. 

one that has a probability distribution. The following result of 

A.Kolmogoroff*'is fundamental: 

Lemma K: The stochastic series of independent variates y ^ 

converges with P=1 i_f there exists another set of independent variates 

^vn 'I such that the series P(un9fcvn), A E(vn), and V(vfi) all 

converge; otherwise the convergence-probability of A un is zero. 

The use of this theorem in the sequel does not mean that 0) con

verges with unit probability, for (l) is not a stochastic series. The 

utility of lemma K lies in showing the existence of a suitable choice 

of d-intervals. That is a stochastic mechanism of selection may be set 
-V - 1, • r 

up for -|_d.vj,^so that (2) and the series and sequences of its dif

ferences with (0 all converge with P=1. Therefore, at least one in

finite sequence of covering intervals ^ d^A must exist giving the 

simultaneous convergence of all these and hence the series (l) converges. 

The existence theorem does not actually construct a specific set of \ d (• , 

but the logic involved is completely rigorous, having as its basis the 

fact that a set of positive measure cannot be empty. The proof is not 

heuristic, as it would have been had d been taken as the interval between 

consecutive primes, or the prime numbers been otherwise treated as a 

stochastic sequence because of their irregularity. An important feature 
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of Lemma K is that P=0 or 1, no other value so that P>0 implies P=1 

immediately. Extensions to series of variates not completely independent, 

or where the variances themselves form another stochastic series, can be 

used. 

1. The real line x co, on which the integers and primes are 

marked off, is transformed into O^y^cn byy = lix = J dx/logx . 

Then, to an interval (a,a + 4 ) on the y-line corresponds a unique 

interval d on the x-line and conversely, with A = d/log x; where x is 

chosen as that number (not necessarily an integer) lying in d, which 

makes this relationship hold. The mean-value theorem shows the existence 

of such an x, which lies properly within d. The intervals may be taken 

to include the left-hand end point, but not the right. An arbitrarily 

large initial portion of either line may be ignored in discussion of the 

convergence problem. 

It remains tu ujMJCify Ihc^di3trtbiiUon^oj^he^ut^h«^ic^WL 

dependent —Each length the identical distribution, namely, 

the uniform distribution over (0,2). Being open on the right, /consecutive , 

marking of^ intervals of the lengths A ̂ without gap3 furnishes a com

plete non-overlapping covering of the y-line. That is^the length 

is a stochastic variable equivalent to the -jJ th independent selection 

from a uniform distribution; the position of the interval of length 

is uniquely determined by the covering process. Hence the d-intervals 

that correspond by the inverse li x transformation give a stochastic 

covering of the x-line, for each such random sample of the A'3' The 

number xv c. d^, has been specified above. For the lengths A , > ^ 

have for every and any positive integer k: 

(t.O... E(A ) =' i ' (A) = 1/3 ; eCaTT 2") = t/(2k+0 J E(A -< 2 k + ' )  =  0  
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With lemma K, this leads at once to : 

Theorem 1.1: The stochastic series ( /\ -1 )klogF-J/•v?^r converges 

for every odd positive integer k, any r, and all CT" ;> with P=1 ; the 

series /\klogrv;/v14 12L Mi k>°> Mi L> ^ > °* gflfete-wflfeft 

W. 

Proof: This follows immediately from (1.1 ), because the means for the 

first series are all zero, while the variances for each k are a fixed 

multiple of log2r-v>/a/2 ° , and the sum of such terms converges for 
k k 

2 0~"p>1. Similarly, for the second series, where E(A ) = 2 ,/(k+0, and 

V(Ak) = k 222k/(k+1 )(2k+1 ) -
}  j i r - Q - ' < — o  £ -  -2 a 4 r  L L  .  

The prime number theorem allows an estimate to be made of the number 

of primes in d: 

Lemma 1.1: 1, and j for any given large index 

^(Tf\d)) = 0(d+1) 

Proof: The first statement follows immediately from the prime number 

theorem. The number of primes is asymptotic to y = A. +••.+ Avi 

and divided by V, this tends in probability to the limit E(yf(d)). But 

t h e  s a m e  l i m i t  i n  p r o b a b i l i t y  i s  a l s o  E (A )  =  1 ,  b e c a u s e  o f  t h e  p a r e n t  A ~  

-distribution. For the second part, jwfr -feave 4.o-k»ofi tbz index fixed* 

"Efefco-the mean value is asymptotic to d/logx. We then apply the pro

bability result : 

Lemma 1.2: If a non-negative variate X have a fixed upper bound h and 
p 2 

expectation h/a, its variance cannot exceed h~/a - (h/a) . 

Proof: The variance V(X) = E(X2) - E2(X), by definition, and E(X) = h/a 

by hypothesis. The greatest value of E(X ) can be realised only when X 

is concentrated at the two extreme values 0 and h. The probabilities 
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must be (7—1/a) and l/a respectively to give the mean h/a, so that 
2 p 3(X ) cannot exceed h/a. 

The number of integers, and a fortiori that of primes in d cannot 

exceed d-f 1, while d/log x = A by definition, and cannot exceed 2; 

these estimates substituted in the findings of lemma 1.2 complete the 

proof of lemma 1.1. 

Theorem 1.1 can be paraphrased by putting d/log x for A , but 

its usefulness develops only when it is shown that V may be replaced by 

in the coefficients of the random series: 

Theorem |_J_: Tte stochastic series ^ (d/log x - 1 )logrx/x ̂  and 
r . 1 •+(3 

2_ a log x/x converge for all r and k with P=1, when CT > k and 

(P y 0 respectively. 

Proof: It is easy to see from the definitions that r*- 2A 

(2.0... r — ^ y / x 
log x^, -V ^ v + 1 

Inasmuch as y^ is the sum of an unbiassed random sample of variates with 

the same parent distribution which is symmetric with suitably bounded 

even order central moments (cf.formula 1.1), the estimates of S.3ernstein2^ 

apply. For the given uniform distribution of A , these can be stated as 

Lemma 2.j_: The probability is less than exp(-t~) for each of the in

equalities to hold for all large V : 

( 2 . 2 ) . . .  y  > v +  11 / 2 ^ / 3  ;  y  t  /2 V / 3  
-V 

Thus^P is less than for each of the inequalities : 

(2.3)... xv>2VlogV S xy<V/2 , 

to hold for all large V , where no attempt has been made to get the 

best possible constants. 
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From this, it follows that, for a suitably chosen positive 

constant c, the infinite product *n p(x- 2 c.-v~"0) converges, \. But 
k ^ for every £. > 0, however small, any k ,and large x , , log x/x —5> 0, 

monotonically. Therefore,J the positive monotonically decreasing co-
"" ̂  "" * 7* C  • Q—• 

efficients x .x .log x/x are less than cv" by a monotonic, bounded, 

factor of proportionality. The results for the convergence of infinite 
3) series derived from Abel's lemma are applicable, so that the series in 

theorem 2.1 converge with a positive probability for (T = cr~4 2 E, for 

every (T 7 % an d every ^ ® whenever the^series in theorem 1.1 converge. 

The compound probability is the product of the two convergence-probabili

ties. But the latter of the two probabilities is unity, and the former 

is given by the infinite product above, from which any finite number of 

terms may be deleted, without affecting convergence. Such omission 

brings the probability arbitrarily close to P=1-0, but the probability 

of convergence is fixed, hence must be unity; so also the compound pro

bability. Finally, the exponent G~' = 0~~ 4 2 t is arbitrarily close to 

i + 0 which completes the proof of the theorem. 

k k The reason for not using the estimates E(d ) = 0(log x) directly 

in the proof is that the terms of the series are no longer strictly in-
oJ2xio 

dependent, and the joint distributions would^/have to be worked out term by 

term. Thus, the use of theorem 1.1 as a first stage and the calculation 

of a probability for the bounded monotonic factor is essential. 

It follows that for stochastic covering intervals, the series (2) 

also converges with unit probability. The differences between this 

series and (l) may be estimated piecemeal as dominated by or^csanpar?61o to 

(2.4)... X d(d-f1 ^ ; S'^dK d~logx-l) . T -^TT(d) - 1 } logx 
^ ' -v> x0^1 ' x ^ 

(d4l)/x^" ; yfl d).logx/x^~ 
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The first of these arises from grouping all the terms l/n , n CL , 

a s  a  s i n g l e  t e r m  d / x v  J  t h e  s e r i e s  c o n v e r g e s  w i t h  P = 1 ,  b y  t h e o r e m  2 . 1 .  

The second is due similarly to differences fromjecrntrae^spi of the terms 
^ cvwA 

log p/pp (2_ d/log x/x ' ; inasmuch as // "(d) ^d4l, and the co

efficients are positive also, theorem 2.1 again gives P=1 for the con

vergence. The third series originates from taking just one of these 

grouped prime terms into (2) as log x/x and ignoring the rest. Here, 

ll (d)— 1 is a stochastic function of Z\ with mean zero, and variance 

0(d+l), by lemma 1.1. The same reasoning that carried theorem 1.1 into 

theorem 2.1 therefore applies, asd^lemma K has to be applied a second tine 

to the series of variances. The final probability of convergence is still 
-2-vv-p( f 2_ * y/ 

unity. The two sequences^are estimates dominating the difference between 

the partial sums of (l) and those of (2); the results for stochastic se

quences corresponding to those for series in lemma K again give unit pro

bability of convergence. Moreover, the compound probability for simulta

neous convergence of (2) and all members of (2.4) is still unity, though it 

would suffice if it were only positive. Thus, we conclude that at least 

one specific choice of d-intervals exists for which (2) and (2.4) all 

converge simultaneously. This proves 

Theorem 2.2: The series (1) converges for all real <j- >- h • 

Although %T~ is the best possible exponent for this method of 

proof it does not necessarily follow from the preceding that the series 

(1) diverges for CTfi For, even zero probability might still permit 

the existence of at least one suitable choice of covering intervals. For 

P=1, almost every choice will suit. 

Our methods lead obviously to a proof of 



Theorem 2.3 • If f(x) > 0 be a monotonically decreasing function of the 

positive real variable x, with a continuous first derivative f'(x), such 

that the series y f2(n).log2n and f'(n).log2n both converge. then 

the series 

(2.5)... f(n) - f(p)• log p , x —> C D  
n£x p^x 

converges. 

3• The function % (s) is defined for a complex variable s = & + it 

with (7~,t real, for the half-plane 1 by 

co 
(3.1)... ^(s)= l/ns = If ,/(i-p"s) . 

^ 1 p 

Both the series and the infinite product converge for the half-plane cr~> 1 . 

The function (s) defined by the series and its analytic continuation 

has no singularity in the entire finite plane except for the simple pole 

with unit residue, l/(s-l). 

The zeta-function obeys the functional equation'1"'': 

(3.2)... jf( L - S )  = 2,"V1~S(co«7rs/2)r ( S ) £ ( 8 ) .  

The Riemann hypothesis (RH) is the conjecture that all zeros of 

(s) not on the negative real axis lie on the vertical line (T~ = 4 . 

It is easily shown, directly from the series, that no zero can lie beyond 

(7* > 1. Using the functional equation, it would suffice to prove RH if 

it could be shown that no zero lies in the critical strip  ̂ =̂. 1. To 

this end, we use a classical lemma of function theory: Any singularity of 

an analytic F(z), except isolated simple poles with unit residue, and any 

zero of F(z) is a singularity of F(z) + F'(z)/F(z). The simple poles 

l/(z-a) cancel out, but zeros of F(z) appear as first degree poles in the 
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second terra, the logarithmic derivative. For F(s) = ^(s), the fact 

that £ (s) has no finite singularity other than the pole 1/(s—1) would 

mean that the singularities of % )f% (s) 4 (s) must be due only to 

the zeros of ^ (s). 

Formally, differentiation of the logarithm of the infinite product 
2 3 in (3.0 gives, using the series expansion log(l-x) = -x -x /2 -x /3 - ... : 

(3.3)... - % (s)/£ (s) = ^ log p/ps 4 logp/p2s4 logp/p^S4.. . 
p P 

The expansion is valid for CP >- 1 . For i 0~% all the series on 

the right except the first are together dominated by 2 log n/n2 - -2^ (2 CP). 

Therefore, the discussion by means of ^ (s) 4^ (3)/Jr(s) reduces to 

showing that the series 

(3.4)... ^ logp/p3 , x—^>03 , s = 0~ 4 it , 
n 2x p 5 x 

converges for all > &. 3ut we have already shown that (l), which is 

the form assumed by (3.4) on the real axis, converges for all CP > ^. 

Therefore, the Dirichlet series (3.4) converges throughout the open half-

-plane to the right of (p = J. This proves that (s) 4 ^ (s)/j$(s) 

has no finite singularities for (P->i. With the known regularity pro

perties of (e (s) and the symmetry in zeros from the functional equation 
T 

(3.2) mentioned above, this proves that no zeros^can occur in -Q^cr-^ 

nor in ^Z,o~ t and so leads to: 

Theorem 3. 1 :  The Riemann zeta-function. defined for (T~> 1  as in (3.1 ) 

has all its non-trivial zeros on the vertical line (T~ = g. 

The corresponding theorem for the Dirichlet ^functions is proved 

in analogous fashion. The consequences for analytic number-theory are too 
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well known to be enumerated here?'' 

Possible convergences of (1) on or to the left of 0"" = a would not 

affect RH bec ause singularities of (s)/^"(s) would occur in any case on 

the line - J from the second series on the right in (3.3). 
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