THE METHOD OF POSTULATES IN MODERN MATHEMATICS.

Mathematics is often looked upon as the most stable of all
sciences, and in a sense, this is so. The theorems of geometry which were proved by the ancient Greek mathematicians form part and parcel of, the mathematics of the present day. The astronomy of the ancient Hindus has long possessed merely an historical interest, but their work in the theory of numbers is still deemed worthy of study, Notwithstanding such facts as. these, however, and notwithstanding, the general permanence of individual items of mathematical knowledge, in so far as. the comprehension of the meaning and purpose of mathematics as a whole is concerned, as great changes have taken place as is. the case wit any natural science.

The classical conception of mathematics, which is still retained by the layman today, is that mathematics is the science of number, quantity and extension. However, within the last century many sciences of a distinctly mathematical character have come into being which concern. themselves at bottom with none of these things. A set of objects may have an arrangement which is neither spatial nor. temporal: a group of people, for example, might be arranged in order of wisdom. The stuay of the possible arrangements of a trokup set of objects is
accordingly neither a study of time nor of space. However, it forms the topic for a great mathematical discipline:- what thay be called combinatory analysis, in its widest sense. Many parts of. this discipli pline, such as what is known as. the theory of permutation-groups, involve much material of a non-numerical, non-quantitative character. Again, the whole field of logic is now being handled in a strictly mathematical manner, although its sdbject-matter is far more general than number, quantity, or extension. Accordingly, a new definition of . the nature and purpose of mathematics has become necessary, and this new definition has reacted on mathematics itself and its application to the natural sciences.

One of Ainerica's greatest mathematicians, Benjamin Pierce, defined mathematics as "the science which draws necessary conclusions". "Conclusions about what?" we may ask. Pierce's reply would be "conclusions about anything whatever". The characteristic feature of such a mathematical formula as 'two and two make four', is that it is true of everything from shoes to kings, by way of ships, sealingwax, and cabbages; two things together with any other two things always give you four things. Geometry may not seem. to conform to this delinition so readily. It seems at first sight as, though geometry had a peculiar subject-matter- space. If one only reflects a little, however, he
will see that if one thing is certain of the space in which he lives, it is that no visible entities in it precisely satisuly the laws of geometry. Noboay ever say a line without width, a point without magnitude, nor a plane. infinite in extent ana without. thickness. Yet we draw irrefutable conclusions concerning. these things in geometry. How is it. then that we draw. these conclusions? the answer is, of course, "from. the axioms of geometry". It is sntirely on these axioms that. the certainty of geometry rests. That is if anything whatsoever satisfies these axioms, all. the conclusions of geometry become immediately applicable to it. Geometry does not say,"In our every-day space, any two intersecting lines determine a plane"; it merely, tells us. that. thes this is true in any system obeying. the axioms of geometry. Thus geometrical statements apply, to, the whole universe as $\frac{f(\not) \hat{l} l}{}$ as arithmetical statements.

We. thus see that the purpose of mathematics as.'the science which draws necessary conclusions' is. to. take certain hypotheses, which may be true or false of things in the world about us, and to deduce their consequences. Once this is recognized to be the true nature of mathematics, a great limitation on the scope of mathematical research is removed. Any set of hypotheses whatever is seen to yield us a mathematical system, if only, the hypotheses are not such a.s. to specify
some concrete field as their subject-matter. The practical work of the mathematichan comes to be the analyis of blank-form hypotheses, so, that when these hypothese turn up in the investigations, of the natural scientist, he may know what. to expect oi. them, and so that, the scientist may know in acvance what hypotheses are likely, to prove useful in the investigation he has in hand. We can see, that. this has actually been the function of mathematics in the history of science. It was. the great mathematical development of the first half of the
 it possible for Clerk-Maxwe@l, to formulate his far-reaching hypotheses concerning. the relation between light anh electricity. Again, the present use of imaginaries in alternating-current. theory would have been impossible but for the mass of deductions which had been made by the mathematicians in a purely. theoretical manner on the basis of the assumption. that a system existea in which -1 would have a square-root It is not. the quantitive aspect of mathematics that isu the first source of its fruitfulness; it is its hypothetical aspect. This being the case, it becomes a task of prime importance to isolate. the hypothetical phase of each mathematical discipline, and to exhibit it in its purity. This is the task of the method of postulates. A set of postulates for a mathematical system is a group of
propositions valid in, that system, from which. the remaining propositions of, the system can be deduced. To put it another way, a mathemati cal system is one vast hypothetical proposition, in which. the postula ates are, the hypothesis and the remaining formulae of the system form the conclusion. The word postulate is used rather than axiom, because 'axiom' 'seems to imply a sort of inherent certainty which does not appertain. to. the postulates of a mathematical system. The function of. the method of postulates is to arrange the propositions belonging to elready existing branches of mathematics in a deductive system, and. to suggest deductive systems which shall lead to future branches of mathematics.

At first sight, it would seem. that the deductive order oin the propositions in a mathematical system would be obvious on, the face of it, and.tiat. the method of postulates wold have a definite course marked out for it in each case. This, however, is by no means, true. In $\mathbb{I N} O$ if not all mathematical disciplines, there are several alternative deductive orders in which their facts can be arranged. For example, Euclid's fifth postulate, to. the effect. that if $P Q$ is parallel. tofLK, and A and B are pohnts on $L K$ and $P Q$ respectively, any line $\neq \ldots /, t h \nmid /$ anh $\mid x$, through A in the angle $B A K$ meets $P Q$, may be replaced by, the assumption that. through any point in the plane there goes one and only one line parallel. to a given line. It consequently happens
-that we of ten have a consicierable degree of choice between various sets of postulates for a given mathematical system, all of which are perfectly legitimate, so that. the choice between. these becomes a matter of considerable interest.

The first desideratum of any set of postulates is of course that it be consistent. Now, it is a simple enough matter to prove that a set of postulates is inconsistent, by deducing from it contradictory results. However, the fact. that such results are not forthcoming on a casual inspection offers no proof. that they will not be found by a more careful study. Accordingly, to prove the consistency of a set oi postulates, it is not enough. that no contracictory conclusions have been deduced froin. them. It is a remarkable fact, that so far no method of proving the consistency of a set of postulates has been found other than tie actual exhibition of a system which satisfies, them all. Concerning the ul timate nature of this exhibithon, there is no complete agreement among postulate-workers. It is generally accepted. that. the consistency of a set of postulates has been sufficiently demonstrated if a system can be exhibited which satisfies them and is made up of various arrangements of the positive intesers. Thus fractions are explained as relations betwaen integers, irretional numbers are defi ined in. terms of sequences of fractions, that approach. them as a limit,
so, that the whole number system is brount back to the integers. Then the consistency of the postulates of geometry is demonstrated by showing that if triads of numbers be called points, and pairs of linear equations between these numbers be called lines, the postulates for geometry will be satisfied. The process of demonstrating, the cons sistency of postulates by the exhibition of systems of constructions from, the posftive integers which satisfy them is known as the arithmetization of mathematics, and has been a prominent feature of all mathematical work done within the last forty years. It is all right as far as it goes, but it is not directly applicable. to all known mathematical systems, and. there are certain grave difficulties in the demonstration of the consistency of all, the formal properties ordinak ily attributed. to the positive integers, themselves.

Of course, all. the formal properties of a given system should be deducible from a correct set of postulates for, that system. In many cases, our information concerning a given system leaves a certain amount of variation opell in the details of its formal structure. In most cases, however, we are interested in determining, the formal prop erties of our system down. to the minutest detail. A set of postulates for such a system should leave none of its formal properties indeterminate. Such a set of postulates is called categorical or sufficient. The sufficiency of a set of postulates is demonstated by showing
that any two systems which satisiy it correspond term for term.
Another desideratumi of a set of postulates is. that it be as simple as possible. One feature of this simplicity is, that it should possess no redundancies:- , that is, that no postulate should be deduci ble from any of the rest. Thisi \ddagger s shown by the actual exhibition of phstylydtés systems which only fail to satisfy one of the postulates, thereby demonstrating that the postulate in question is not redunciant It $\mid \$ f \psi t t h_{\phi}$. The postulate in question is then said to be independent of the rest.
. There are other properties which are aiso desirable in a set of postulates. For one.thing, it should concern itself with as simple a set of fundamental notions as possible; it should possess very few postulates which explicitly demand. the existence of anything; it should not contain as a single proposition any. that can be divided directy into. two others, and so on. As. to whether a large or a small. set of postulates is preferable, there are two opinions. Some hold. ti/t that a large set marks a finer and more complete logical analysis, while others prefer the greater simplicity of a small set.

Now as to the technique of the postulate method. In discussing this, I shall use as an e ample a problem on which I an now at work:that of forming a simplified set of postulates for ordinary complex
algebra. A set of postulates for this algebra has already been developed for this algebra by Professor E. V. Huntington. His set of postie lates concerns itself with all complex numbers, the operations of addition and multiplication, the sub-class of all real numbers, and the order of magnitude among. these numbers. It twas obtained by. taking a large group of simple and fundamental propositions in ordinary algebra, and weeding out. those which are redundant. Ot contains such propositions as. the associative and commutative laws for addhtion and multiplication, and the distributive law for multiplication with regard, to addition. It consequently possesses a high degree of familia arity and naturalness; however, it has some counterbalancing disadvar tages. It is unduly large, containing, twenty-seven postulates, and has far too many undefined notions. It has also a large number of postulates demanding, the existence of certain special entities, such as 1, 0, and i. It consequently becomes worth while to look for a. simpler set. to take its place.

The first. thing to look for was an operation in. terms of which all of Huntington's relations could be defined. This was a long task, and came down in the last analysis to a sheer use of trial and error. Operations.in.terms of which addition and multiplication can be defined are quite easy. to discover - such operations as $1-x y$, or $1-\frac{x}{y}$
have, this property - and I had already seen some work of Dr. H. M. Sheffer, in which he had defined real numbers and the relation of greater and less in. terms of the relation between a complex number and its conjugate. My search was confined to operations which combinel the conjugate operation with an operation generating addition and muz tiplication, bat, that still left many alternatives open. The work thus consisted of a long and tedious elimination of operations which would not yield the result I wanted, and a general conifence in time and good luck. It was like nothing so much as the solution of a chess problem. At lastb I hit on the combination, and found that the operation 1 - the conjugate of $\frac{x}{y}$ would generate by iteration all Huntington's fundamental notions. I then knew, that I could get a set of postulates for algebra. in. terms of, this operation, and it seemed fairly obvious that it was going. to be simpler, than Huntington's set, but I had the formulation of the postulates still ahead of me. The first thing to do was. to collect a large number of true propositions con cerning my operation, and. to gradually, think myself into its manipulation, just as a schoolboy must. think himself into ordinary algebra Having brought, these propositions together, it was now necessary, to see if Huntington's postulates could be deduced from, them. Once, this was done, the task becaime one of elimination, combined with such $\phi \chi_{i}$
modifications of the postulates retained as facilitated, this work. When further elimination seemed impossible, the next. thing was do independence
 the twelve postulates, that remained, I was able, to secure . indepen-dence-proois for seven, and. toshow, that, two of the remaining postulates, taken together, were independent of adl. the rest. I was not able, to go further, owing, to. the unfamilharity of the subject.

Once the postulates had been developed so far, the next. thing in order was to see if Huntington's postulates could be obtained from t/4s this reduced set. This would seem of itself to be enough to demonstrate, the categorical character of the set, forHuntington's set is known to be categorical; however, this is not so. The set might be categorical for Huntington's operations wi-thout being categorical for mine. It was therefore necessary, to show, that after Huntington's oper ations had been defined. in. terilis of mine, mine could be defined again by an iteration Huntington's. This was shown.

The consistency of my set of postulates followed directly from that of Huntington's, for my operation could be defined in terms of his in the manner already indicated.

In rejecting redundant postulates, I was always careful to discard, where possible, those asserting the existence of particular en-
tities, as well as all others of an especially intricate nature. By care inn rejecting the undesirable postulates first, a fairly simple and uniform set was obtained.

So much for, the technique of postulate-work. It is a field where everyone, to a certain extent must develop his own. technique. Now, again, what is the whole value of this sort of work? Mathematics, as everyone knows, is not a mass of isolated disciplines; on the contrary, one might say that every branch of mathematics exists for the sakn of other mathematical and non-mathematical disciplines. In order. that a mathematical discipline may be applicable, certain conditions must be fulfilled. As we have already seen, the postulates constitute a stat mint of. these conditions. A simple set of postulates is desirable $\not \subset \not \subset \varnothing$ in, that. it facilitates the recognition of, the applicability of, the branch of mathematics. to which it belongs. Again, a new set of postllates in terms of a new relation may suggest important new. theorems it in an old branch of mathematics.

The field which has been covered by modern postulate-work is very large. It comprises Euclidean geometry(where Euclid's phbttkit $t \in$ postulates have been found defective in many ways), the non-Euclidean geometries, projective geometry, descriptive geometry, analysis sius, algebra, the various forms of the theories of groups and fields, the theory of measurement in general, the. theory of functions of a read
variable, and many other disciplines. It has invaded the sphere of mathematical physics, an a very interesting book on"A. Theory of Time and Space", by A. A. Robb, consists of a set of postulates for, the theory of relativity in physics. The method has alreacy played a large part in clarifying our mathematical iceas, and althougd. the mass of actual new mathematical results to its credit is not yet great, it is only a question of time when it w $\mathbb{I} l$ play its part in . the discovery of mathematical principles.

