
By n. Wiener, Ph. 2 .
Jus axioms, known as the axioms of reducibility, are stated on page 174 of the Principhia Mathematics of Whitehead and Russell. One of these, * 12.1 , is essential to the treatment of identity, descriptions, classes, and relations: the other, *12.11, is involved only in the theory of relations. *12.11 is applied directly only in $* 20.701 .702 .703$ and *21.12.13.151.3.701.702.703. It states that, given any propositional function of two variable individuals, there is another propositional function of Eur variable individuals, involving no apparent variables, and having the same truth value as φ for the same arguments, or in symbols:

$$
F:(\exists f): \varphi(x, y) \leq f(x, y)
$$

In*20 and $* 21.701 .702 .703$ all that is cone writh*1.111 is to extend it to cases where the arguments of φ and f are classes and. relations: */12.11 is essential to the development of the calculus of relations only owing to its applications in *21.12.13.15.3.) Here it is needed to make the transition between the definition of a binary relation and its uses. This is due to the fact that a binary relation itself is not defined, but only propositions about it, and $* 12$. 11 is needed to assure us that these propositions about it behave os if there were a real object with which they concern themselves. The authors of the Principia wish to treat a binary relation as the extension of a propositional function of two variables: that is, when they speak about the relation between x and y when $\varphi(x, y)$, they mean to speak of any propositional function which holds of those values of x and y, and only those values, of
which φ holds. Now, as it leads one into vicious-circle paradoxes to speak directly of'any propositional function which holds of those values of x ans y, and those only, of which φ holds', they first define a proposition concerning the relation between x and y when $\varphi(x, y)$ as a proposition concerning a propositional function involving no apparent variables which holds of x and y when and only when $\varphi(x, y)$. Then they need to use *12. 11 to assure us that whatever o maybe, there always is some such propositional function now, if wecan discover a propositional function ψ of one variable so correlated with φ that its extension is determined uniquely by that of φ, and vie versa -if, to put it in symbols, when ψ^{\prime} bears to φ^{\prime} the some relation that ψ bare $t_{0} \varphi, r \therefore ., \varphi^{\prime}(x, y): \Xi_{x, y} \varphi(x, y): \equiv: \psi^{\prime} \alpha,=\dot{\alpha} \psi_{\alpha}$-, we can entirely avoid the use of *12.11, and interpret any proposition concerning the extension of φ as it concerned the extension of ψ for the existence of the extension of a propositional function of one variable is assured to us by *12.1, quite as that of one of two variables is by *12.11. Now, such a ψ is the propositional function

$$
\left.(\exists x, y) \cdot \varphi(x, y), \alpha=c^{c} c^{c} c^{\prime} x \cup c^{c} \Lambda\right) \cup c^{c} c^{l} y .
$$

For it is clear that for each ordered pair of values of x and y there is one and only one value of α, and vice versa. On the one hand, as $L^{\prime}\left(C^{\prime}(x) \cup C N\right)$ is determined uniquely by x, and $L^{\prime \prime} c^{\prime} y$ is determined uniquely by y, that $L^{C}\left(L^{\prime} E x\right.$ CIA $)$ Cl' y is determined uniquely by x and y. Ox the other hand, if $c^{\prime}(C)$
 impossible, for, as $L^{\prime} z \neq \Lambda$, $l^{\prime} l^{\prime} ' z u c^{\prime} \backslash$ is not a unit class. From the latter altern. alive we conclude immediately that $y=w$. Similarly, $x=z$.

Therefore, when x and y are of the same type, we can make the following definition:

- His may seem circular, as lis a relation, defined in the

Principia as \vec{I}, but it really is not circular, for L'X may be defined directly as the class, $\hat{y}(y=x)$.
It will be seen that in this definition of $\hat{x} \hat{y} \varphi(x, y)$ it is essential that the x and the y should be of the same type, for if they are not
 less. Jo overcome this limitation, and secure typical ambiguity for domain and converse domain of $\hat{x} \hat{y} \varphi(x, y)$ separately, we make the following definitions.

$$
\begin{aligned}
& \left.\left.\left.\left.\hat{\alpha} \hat{y} \varphi(\alpha, y)=\hat{k}\left\{(\exists \alpha, y) \cdot \varphi(\alpha, y) \cdot k=c^{(c c l}(\alpha) u^{(}\right)\right) \cup c^{c}\left(c c^{c} y, c^{c}\right)\right)\right\} \cdot d\right\} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { eth. }
\end{aligned}
$$ etc.

Though these definitions may seem to conflict with oneanothei, they really chon not conflict, for where one of them is applicable, the others are meaningless, force sineydefine relations between objects of different types. Moreover, it is easy to see that our
 $t^{\prime} a^{\prime} \hat{\mu} \hat{r} \varphi(\mu, k)=t^{\prime} a^{\prime} \hat{\alpha} \hat{p} \psi(x, p)$. This is important, as we might easily have given a definition of a relation which would permit it to have several domains or converse clamains of different types. This is why we did not define $\hat{\alpha} \hat{y} \varphi(\alpha, y)$ simply as

for this would also represent $\hat{\alpha} \hat{\beta}\left\{(y) \cdot \varphi(\alpha, y) \cdot \beta=c^{(} y\right\}$
It willie seen that what we have danes practically ti s
to revert to schrioleis treatment of a relation as a class of ordered couples. The complicated apparatus of ''s and N's of which we-have made use is simply and solely devised for the purpose of constructing a class which shall depend on only on an ordered pair of values of x and y, and which shall in gas ar only one such pair. The particular method selected of doing this is largely a natter of choice: for example, 9 might
 every place 9 have written 1 .

Ourchangeel definition of $\hat{x} \hat{y} \varphi(x, y)$ renders it necessary to give new definitions of several other symblels funclanental to the theory of relations. I give the following table of such defineitions.

$$
\begin{aligned}
& R e l=\hat{k}\{k \subset \hat{x} \hat{y}(x=x, y=y)\} \text { bf. } \\
& x R y=\hat{z} \hat{w}\{2=x \cdot \omega=y\} \subset R \cdot R \varepsilon \text { Rel ow. } \\
& \varphi R .=(\exists \alpha) \cdot \alpha=R \cdot \alpha \varepsilon R e l . \varphi \alpha \quad D f .
\end{aligned}
$$

"We shall understand in this way any propositional function a containing capital letters in the positions proper to their arguments. Thus $\sim \varphi R$ shall be understood as

$$
(\exists \alpha) \cdot \alpha=R \cdot \alpha \varepsilon \operatorname{Re} \cdot \sim \varphi \alpha,
$$

and not as
(α) $: \alpha=R . \supset: \alpha \sim \varepsilon$ Rel. $v . \sim \varphi \alpha$.
We make this definition as well as the two following ones because of a propositional fume: Lion of 1 a class of the soot we have clefined as a relation may significantly take as arguments classes of the same type which are not relations, and wervishto define propositional functions of relations in such a manner as to dude

Ho require that their arguments be relations
$(R) \varphi R:=\alpha \varepsilon R e l D_{\alpha} \varphi \alpha \quad$ If.
$(\exists R) \cdot \varphi R:=(\exists \alpha) \cdot \alpha \varepsilon R e l \cdot \varphi \alpha \quad \alpha f$.
The first two and the last two of these clefinitions replace $* 21.03$. 02 and $* 21.07 .071$ respectively. From these definitions and the laws of the calculus of classes it is an exceedingly simple matter to deduce any of the propositions of $\because 21$ which are not explicitly used for the purpose of deriving the properties of relations from the particular definition of relations given there, and from this it is easy to prove that the formal properties of the objects 9 call relations are essentially the some as those of the relations of the Principia.

But it is obvious that since they are also classes, our relations will possess some formal properties not possessed by those of the P rincipia. Ogive in conclusion a table of some of the mare interesting of these

$$
\text { HR } \cup S=R \cup S
$$

r. R $\cap S=R$ i S
r:RCS \equiv RES
F. R $-S$ S $\equiv R \div S$
r.VCV
$r . \Lambda=i$

+ RelCCl2
$r: R p k \equiv$.Rp
F: R $2 k=R_{i K}$
$r \cdot \alpha+\beta s m s^{c} \alpha \hat{T}_{\beta}$
$r \cdot \alpha x \beta \sin \alpha \uparrow_{\beta}$

By N. Wiener, Ph.D. (Cominunicated by Mr G. H. Hardy.)
[Read 23 February 1914.]
Two axioms, known as the axionts of reducibility, are stated on page 174 of the first volume of the Principia Mathematica of Whitehead and Russell. One of these, $* 12 \cdot 1$, is essential to the treatment of identity, descriptions, classes, and relations: the other, $* 12 \cdot 11$, is involved only in the theory of relations. *12.11 is applied directly only in

$$
* 20 \cdot 701 \cdot 702 \cdot 703 \text { and } * 21 \cdot 12 \cdot 13 \cdot 151 \cdot 3 \cdot 701 \cdot 702 \cdot 703 .
$$

It states that, given any propositional function ϕ of two variable individuals, there is another propositional function of two variable individuals, involving no apparent variables, and having the same truth-value as ϕ for the same arguments, or in symbols:

$$
\vdash:((\mathfrak{y} f): \phi(x, y) \cdot \equiv \cdot f!(x, y) .
$$

In $* 20$ and $* 21 \cdot 701 \cdot 702 \cdot 703$ all that is done with $* 12 \cdot 11$ is to extend it to cases where the arguments of ϕ and f are classes and relations: $* 12.11$ is essential to the development of the calculus of relations only owing to its application in $\operatorname{*21} 12 \cdot 13 \cdot 1513$. Here it is needed to make the transition between the definition of a binary relation and its uses. This is due to the fact that a binary relation itself is not defined, but only propositions about it, and *12.11 is needed to assure us that these propositions about it behave as if there were a real object with which they concern themselves. The authors of the Principia wish to treat a binary relation as the extension of a propositional function of two variables: that is, when they speak about the relation between x and y when $\phi(x, y)$, they mean to speak of any propositional function which holds of those values of x and y, and only those values, of which ϕ holds. Now, as it leads one into vicions-circle paradoxes to speak directly of "any propositional function which holds of those values of x and y, and those only, of which ϕ holds," hey first define a proposition concerning the relation between x and y when $\phi(x, y)$ as a proposition concerning a propositional unction involving no apparent variables which holds of x and y when and only when $\phi(x, y)$. Then they need to use $* 12 \cdot 11$ assure us that, whatever ϕ may be, there always is some such ropositional function. Now, if we can discover a propositional unction ψ of one variable so correlated with ϕ that its extension
determined uniquely by that of ϕ ，and vice versa－if，to put it in symbols，when ψ^{\prime} bears to ϕ^{\prime} the same relation that ψ bears to $\phi, t: \cdot \phi^{\prime}(x, y) \cdot \equiv_{x, y} \cdot \phi(x, y): \equiv: \psi^{\prime} \alpha . \equiv_{a} \cdot \psi \alpha-$ ，we can entirely weoil the use of＊12．11，and interpret any proposition concerning the extension of ϕ as if it concerned the extension of ψ ；for the existence of the extension of a propositional function of one wariable is assured to us by $* 12 \cdot 1$ ，quite as that of one of two variables is by $* 12 \% 1$ ．Now，is such a ψ the propositional function

$$
(\text { 身 } x, y) \cdot \phi(x, y) \cdot \alpha=\iota^{6}\left(\iota^{6} l^{6} x \cup \iota^{6} \Lambda\right) \cup \iota^{6} l^{6} l^{6} y \text {. }
$$

For it is elear that for each ordered pair of values of x and y there is one and only one value of α ，and vice versa．On the one hand， as $t^{s}\left(\iota^{s} l^{6} x \cup \iota^{6} \Lambda\right)$ is determined uniquely by x ，and $\iota^{6} l^{6} l^{f} y$ is deter－ mined uniquely by $y, t^{t}\left(t^{s} t^{6} x \cup t^{s} \Lambda\right) \cup t^{s} t^{6},{ }^{s} y$ is determined uniquely by a and y ．On the other hand，if
fither $\iota^{s} \iota^{6} y=\iota^{6} l^{6} z \cup t^{6} \Lambda$ or $\iota^{6} \iota^{6} y=\iota^{6} \iota^{6} w$ ．The former supposition is clearly impossible，for，as $\iota^{6} z \neq \Lambda, \iota^{6} \iota^{6} z \cup l^{6} \Lambda$ is not a unit class． Whom the latter alternative we conclude immediately that $y=w$ ． Qimpilarly，$x=z$ ．

Therefore，when x and y are of the same type，we can make Whe following definition ：

$$
\operatorname{tg}^{g} \phi(x, y)=\hat{\alpha}:\left\{\left(\int^{4} x, y\right) \cdot \phi(x, y) \cdot \alpha=\iota^{6}\left(l^{5} l^{6} x \cup l^{6} \Lambda\right) \cup l^{6} l^{6} l^{6} y\right\} \quad \text { Df.* }
$$

It will be seen that in this definition of $\hat{x} \hat{y} \phi(x, y)$ it is essential tbat the x and the y should be of the same type，for if they are
 तall be meaningless．To overcome this limitation，and secure －ation ambiguity for domain and converse domain of $\hat{x} \hat{y} \phi(x, y)$ Wharately，we make the following definitions ：

$$
\begin{aligned}
& \text { 末 } \phi(a, y)=\hat{\kappa}\left\{\left(H^{\alpha}, y\right) \cdot \phi(\alpha, y)\right. \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& (20)(x, y)=\hat{\mu}{ }^{\prime}\left(\mathbb{T}^{\varepsilon}, y\right) \cdot \phi(\kappa, y) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \beta)=\hat{\boldsymbol{\kappa}}\{(\overbrace{\{ } x, \beta) \cdot \phi(x, \beta) . \\
& \left.\kappa=\iota^{6}\left[\iota^{\iota}\left(\iota^{6} \iota^{6} x \cup \iota^{6} \Lambda\right) \cup \iota^{6} \Lambda\right] \cup \iota^{6} \iota^{6} \iota^{s} \beta\right\} \quad \text { Df. } \\
& \text { U } \mathrm{t} \phi(x, \lambda)=\hat{\mu}\left\{\left(\mu^{x,} \lambda\right)\right. \text {. } \\
& \left.\mu=\iota^{d}\left\{\iota^{s}\left[\iota^{s}\left(\iota^{s} \iota^{s} x \cup \iota^{s} \Lambda\right) \cup \iota^{s} \Lambda\right] \cup \iota^{d} \Lambda\right\} \cup \iota^{s} \iota^{d} \iota^{d} \lambda\right\} \quad \text { Df, }
\end{aligned}
$$

6Thit may seem circular as t is a relation，defined in the Principia as \vec{I} ，but it with is not cireular，for $t x$ may be defined directly as the class，$\hat{y}(y=x)$ ．

Mr Wiener，A Simplification of the Logic of Relations． 389

Though these definitions may seem to conflict with one auother，they really do not conflict，for where one of them is applicable，the others are meaningless，since they define relations between objects of different types．Moreover，it is easy to see that our definitions are so chosen that

$$
\begin{aligned}
& F: \hat{\mu} \hat{\nu} \phi(\mu, \nu)=\hat{\omega} \hat{\rho} \psi(\omega, \rho) \cdot \supset \cdot t^{6} D^{〔} \hat{\mu} \hat{\nu} \phi(\mu, \nu)
\end{aligned}
$$

This is important，as we might easily have defined relations so that they might have several domains or converse domains of different types．This is why we did not define $\hat{\alpha} \hat{y} \phi(\alpha, y)$ simply as

$$
\hat{\kappa}\left\{\left(\left(y^{T} \alpha, y\right) \cdot \phi(\alpha, y) \cdot \kappa=\iota^{6}\left(\iota^{s} \iota^{6} \alpha \cup l^{d} \Lambda\right) \cup i^{d} l^{6} l^{d} l^{f} y\right\}\right. \text {, }
$$

for this would also represent

$$
\hat{\alpha} \hat{\beta}\left\{(y y) \cdot \phi(\alpha, y) \cdot \beta=\iota^{f} y\right\} .
$$

It will be seen that what we have done is practically to revert to Schröder＇s treatment of a relation as a class of ordered couples． The complicated apparatus of $\iota^{\prime} s$ and $\Lambda^{\prime} s$ of which we have made use is simply and solely devised for the purpose of constructing a class which shall depend only on an ordered pair of values of x and y ，and which shall correspond to only one such pair．The particular method selected of doing this is largely a matter of choice：for example，I might have substituted V ，or any other constant class not a unit class，and existing in every type of classes， in every place I have written Λ ．

Our changed definition of $\hat{x} \hat{y} \phi(x, y)$ renders it necessary to give new definitions of several other symbols fundamental to the theory of relations．I give the following table of such definitions：

$$
\begin{aligned}
& \text { Rel }=\hat{\kappa}\{\kappa \subset \hat{x} \hat{y}(x=x, y=y)\} \quad \text { Df. } \\
& x R y .=\hat{z} \hat{w}\{z=x, w=y\} \subset R, R \in \operatorname{Rel} D f \\
& \phi R .=.\left(\mathcal{H}^{\alpha}\right), \alpha=R, \alpha \in \operatorname{Rel}, \phi \alpha \\
& \text { (R) } \phi R:=: \alpha \in \operatorname{Rel} \cdot \partial_{a} \cdot \phi \alpha \quad \text { Df. } \\
& \text { (GR) }, \phi R:=\text { ((马 } \alpha \text {) }, \alpha \in \operatorname{Rel} \cdot \phi \alpha \quad \text { Df. }
\end{aligned}
$$

The first two and the last two of these definitions replace $221 \cdot 03.02$ and $* 21.07 .071$ respectively．From these definitions and the laws
＊We shall understand in this way any propositional functions containing ayital letters in the positions proper to their arguments．Thus $\sim \phi R$ shall be anderstood as
and not as

$$
\begin{aligned}
& \left(\mathcal{H}^{\alpha}\right) \cdot \alpha=R \cdot \alpha \in \text { Rel } \cdot \sim \phi \alpha \\
& \alpha=R \cdot \alpha \in \text { Rel } \cdot J_{a} \cdot \sim \phi \alpha .
\end{aligned}
$$

（Wy make this definition as well as the two following ones because a propositional netion of a class of the sort we have defined as a relation may significantly take
arguments classes of the same type which are not relations，and we wish to
the propositional functions of relations in such a manner as to require that their （xamments be relations．

390 Mr Wiener，A Simplification of the Logic of Relations．

of the calculus of classes it is an exceedingly simple matter to deduce any of the propositions of $* 21$ which are not explicitly used for the purpose of deriving the properties of relations from the particular definition of relations given there，and from this it is easy to preve that the formal properties of the objects I call melations are essentially the same as those of the relations of the Principia．

But it is obvious that since they are also classes，our relations will possess some formal properties not possessed by those of the Principia．I give in conclusion a table of some of the more interesting of these：

$$
\begin{aligned}
& \text { ト. } R \cup S=R \cup S \\
& \text { ト. } R \cap S=R \text { ค } S \\
& \vdash: R \subset S . \equiv . R \subset S \\
& \text { ト. } R-S . \equiv . R \doteq S \\
& \text { ト. V̇CV } \\
& \vdash . \Lambda=\dot{\Lambda} \\
& \text { ト. Rel CCls } \\
& \text { ト: Rpк: =. Rрк } \\
& \text { ト: Rsк. } \equiv \text {. Rs. } \\
& \vdash . \alpha+\beta \quad \text {.s } s^{\prime} \alpha \uparrow \beta \\
& \vdash . \alpha \times \beta \operatorname{sm} \alpha \uparrow \beta
\end{aligned}
$$

