Orations in Complex Algebra sonarphic with
addition and Multiplication
n. Wiener

In his water in monooralts on Jopuos of Modern Mathematics, entitled The Fundamental Propositions of algebra, Professor $\underline{\varepsilon}$ V Huntington develops a set of postulates for ordinary complex alghtra in terms of the operations of addition and multiplication and the relation 'lest than' among real numbers. In the course oftis raper, thee examples aregiven of mathematical systems samarHic with ordinary algebra. I x each of these, the field of the system is the same as that of ordnarg complex algebra, with the exception that the

- infinity of our original algebra may be rdresented by some term not Ulaying the art of infinity in ournew system, and vice versa. If we represent the analogue of the + operation by θ that of x by $(\cdot$, and that of $<$ by θ, the
defining formulae for these operations are in the first example

$$
\begin{aligned}
& a \oplus b=a+b \\
& a \circ b=5(a \times b)
\end{aligned}
$$

$$
\text { and } Q=<;
$$

in the second,

$$
a \oplus t=\frac{a \times b}{a+b}
$$

with proper allowances when a or bor $a+b$ $=0$,

$$
a \circ b=a \times b
$$

while Q is the relation between x and y when x is negative and y is positive, on when bath are of one sign and $y<x$; and finally in the third example,

$$
\begin{aligned}
& a \oplus b=a+b+1 \\
& a \odot b=a \times b+a+b
\end{aligned}
$$

and $\theta=<$
As Professor Huntington remarks in a note", "Each of these systems is obtained from the ordinary complex plane by a /rajective transformation:" -the first by the transformation

G(@), for if Tbeatransformation which twrns@to \# it will turn 1,0 and -1 into the entities which

- satisfy the corresfranding definitionswith@altered to \#, and will turn any iteration of @ox a given set of terns into the corresponding iteration of \# on the analogues of these terms. Therefore, any inavidicransformation of @ into on other operation generates an isomorphic transformation of tan
 $\frac{d}{} \cdot x y=z$ will then result from the Hair cations, whin roble is al scolucitle to the solution of single edgeat. The converse of this statement
- follows in a precisely similar manner from the fact that x @ $=\frac{y}{1+x-y}$, lie this putt which clearly involves no operations not definable in terms of t and x. It follows

OPERATIONS IN COMPLEX ALGBBRA ISONORPHIC WITH ADDIIION AND

 MULTIPLICAMION.
Norbert Wiener.

In a paper entitled. The Fundamental Propositions of Alsebra, 1) PIofessor E. V. HUNTINGTON cevelops a set of postulates for ordinary complex algebra in, terms of the operations of audition and multiplication and the relation 'less than' among real numbers. In, the course of, this paper, three examples are given of mathematical systems isomorphic with complex algebra. If we adjoin, to, the ordinary complex number-system the number infinity, whose formal properties we determine in an appropriate manner, then the field of each of HuNTINGON'S systens is, the same as, that of ordinary aleebra. If we represent the analo ve of addition by $\boldsymbol{\theta}$, that of multiplication by \boldsymbol{Q}, and that of $<$ by \mathcal{Q}, the defining formulae for these are in the first example

$$
\begin{aligned}
& a \oplus b=a+b, \\
& a \odot b=5(a \times b), \\
& \text { and } \theta=<;
\end{aligned}
$$

in. the second,

$$
a \oplus b=\frac{a x b}{a+b}
$$

crete empirical data compiled, therein. These aresthose properties of the table which result from, the methods employed in schematizing and arranging, the data presented. This suggests, the possibility hinted at by Poincare, that, the certainty of geometry may $k \not \equiv \$ k \nmid t$ be que, to, the manner in which it orders our spatial experiences, and not, to, these the shady of experiences, themselves. Geometry would then be, in a way, ' the form Oi our external sense', but would owe both its certainty and its plat practical value. to the fact of its being a form imposed on this external sense with a practical end in view, rather than a form innerent in our experience itself. Its practical value, that is, is cue to the fact. that it is a form chosen by us with. the definite purpose of simplifying the expression of the laws or physics, winich would assume an inorinately complicated form. if we were, to express them directly in, terms of our immediate experiences. The sort of schematism employed in deriving Space from experience may be discovered if we regard, the processes of measurement, etco. that are employed in physics rather as definitions of such entities as distances. than as modes of discovering their.

It is a simple matter to prove, that if $x \# k$ is of period $3, k=1$ 。
1 is thus defineable in terms of \#. 0 may be defined as 1 \# 1. ky may be defined as $[x$ \# y) \# $]$ - 1 ; for

$$
\begin{aligned}
{[(x \neq y)-1 \# 1} & =1-\frac{1}{1 \cdot\left(1-\frac{1}{1 \cdot\left(1-\frac{1}{x y}\right)}\right.} \\
& =1-\frac{1}{1-\frac{x y}{x y-1}} \\
& =1-\frac{x y-1}{(x y-1)-x y} \\
& =1+(x y-1) \\
& =x y
\end{aligned}
$$

This definition of $x y$ will evidently give an indeterminate result when x or y or x \#y or (x \# y) \# 1 is 0 。 In. the first. two cases, we define $x y$ as 0 , in. the second, as 1 , and in. the third, as $x \# y=$ x $1-\frac{1}{x y}=1, x y=-1$, which we define as, that number, other, than 1 , Which makes $x \neq x=1$. In case x or y is infinite, while, the other factor is not 0 , we define wy as infinity, while we assign no meaning to. the product of zero by infinity.

$$
x \text {. y may be defined as } y\{(x \# 1)[(x \# 1) \# 1] \# y\} \text {, for }
$$

$$
\begin{aligned}
y\{(x \neq 1)[(x \neq 1) \neq 1] \# y\} & =y\left\{\left(\frac{x-1}{x}\right)\left(1-\frac{1-1}{\frac{x-1}{x}}\right) \neq y\right\} \\
& =y\left\{\left(\frac{x-1}{x}\right)\left(1-\frac{x}{x-1}\right) \neq y\right\} \\
& =y\left\{\frac{x-1}{x} \cdot \frac{-1}{x-1} \# y\right\} \\
& =y\left(-\frac{1}{x} \# y\right) \\
& =y\left\{1-\frac{1}{-\frac{1}{x} \cdot y}\right\} \\
& =y\left(1+\frac{x}{y}\right) \\
& =x+y \cdot
\end{aligned}
$$

This definition breaks down if either x, y, x \# 1, ($\mathrm{x} \# 1$) \#1, or $(x \# 1)[(x \#, 1) \#] \# y$ is either zero or infinity y_{2} or is indeterminate. Ihallacases, where. the expression which we have defined as $x+y$ is indeterminate, if. the expression which, by our definition, is $y+x$ is determinate, we shall define x as, the latter. The only cases which remain, as a little computation will show, are. those where either x or y is infinity or zero, or where x and y are finite, and $(x \# 1)[(x \# 1) \# 1] \# y=0$. We dentine $x+0$ and $0+x \operatorname{as} x, \infty+x$ and $x+\infty$ as ∞ unless $x=\infty$, in which case we do not define $x+\infty$
nor x), while if $x \not A \$$ andinite and $(x \neq 1)[(x \# 1) \# 1] \# y=0$, we shall agree to call $x+y$ 1. The propriety of this definition is $\phi / t i \phi p \neq 1 \phi \phi \phi$ evicient, for under, the circumstances when we have agreed to use it, $1+\frac{\hat{y}}{}$ will equal 0 , and x will equal -y .

We have thus given a definition of multiplication involving nothing but \# and logical constants, and a definition of addition thin which can ultimately be expressed in the same manner, since it in

OPERATIONS IN COMPLEX ALGEBRA ISOMORPHIC WITH ADDITION AND MULTIPLICATION。
N. Wiener.
\#
There are several different methods in accordance with which we may consider a mathematical system. A method. that has recently been much used for the characterization of a mathematical system is that d postulatese A mathematical system has been regarded as determined as - to all its mathematical properties when certain relationships between certain of the entities of which.it. treats have been specified explic itly in a given small number of propositions. This method is unquestionably one of, the utmost mathematical and logical value, but it nevertheless is obviously $\langle x A b| \phi \mid$ liable, to tell us both. too little ara too much about. the mathematical system which it specifies. It is a familiar fact, first, that a multitude of sets of postulates, dealing with quite different operations and relations, may define the same system, and secondly, that. there are scarcely any, two mathematical systems so diverse, that it. is not possible to arrange some constructin ion out of the elements of the one which will fulfil the conditions of the other. For these reasons, a more precise specification of a mathematical system may be obtained by considering, not. the formal properties of any single operation or relation entering into. its
constitution, but a definition which will enable us to determine whether any given operation or relatton belongs. to. the system; and $\not \subset$
 properties which any element whatsoever of, the system possesses by virtue of its position in. the system. This may be done by a set of postulates, but not every set of postulates does. this. For example, as KEMPE pointed out \#), the algebra of logic may retain its formal \#)
properties unchanged under. transformations. that al eer any element of the system into any other, yet most of the postulates for, the algebra of logic single out. two elements of the system under. the names of 0 and 1, and correspondingly concern. themselves with certain specific operations dependent on these entities. If we desire to replace such a set of postulates by one which does not, thus over-specify. the entities with which.it deals, and which consequently gives us a truer idea of. t the internal structure of the system it defines, one of the first preliminary steps for us, to, take is naturally that of making a survey of, the system, to determine, to what extent we have been over-specifying the system in our postulates. This naturally involves. the question relations, and operations of just precisely what entities of the system defined by our $\left./ \phi \phi \phi t \chi_{1}\right]_{d} / \boldsymbol{c}$
postulates possess the formal properties of, the entities, relations, and operations dealt with ini ϕ pur postulates. Of course, the most obvious of these formal properties are precisely, those formulated in the postulates. themselves. We. thus obtain. the following fundamental question concerning any specified syscem of relations and operations which is regarded as generated by a set of postulates concerning certain of these: What operations and relations of the system may be substituted for those which the postulates concern themselves without altering the truth-value of the postulates? I have already dealt with this question in the form in which it appears in Boolean algebras \#). (I propose to devote this paper to the discussion of the \#). In an article which will have appeared in these TRANS ACTIONS.
corresponding problem in the ordinary algebra of complex quantities. A set of postulates has been developed for, this algebra by HUNTINGTON \#). This set concerns itself with the operations of addition
\#). See Monograph IV. in Monographs on Topics of Elementary Matiematics, edited by J. W. A. Young.
asd multiplication among complex numbers and. the relation of "greater than" among real numbers. Now, both. the operation of addition and that of multiplication can be derived from, the iteration of the operation

$$
x @ y=\frac{y}{1+x-y}
$$

on the numbers to be added or multiplied and given constant numbers. This may be shown by the following formulae:

$$
\begin{aligned}
& x @ 1=\frac{1}{x} \\
& \frac{1}{x @ y}=\frac{1+x}{y}-1 \\
& \frac{1}{0 @ y}=\frac{1}{y}-1 \\
& \frac{1}{0 @ \frac{1}{y}}=y-1 \\
& \frac{1}{(x-17 @ y}=\frac{x}{y}-1 \\
& \frac{x}{\left(\frac{1}{y}\right)}-1=x y-1 \\
& -1(x y-1)-1=-x y \\
& -(1)(-x y)=x y \\
& x(y-1)=x y-x \\
& x \cdot \frac{y}{x}-x=y-x \\
& y-x(-1)=x+y
\end{aligned}
$$

It is clear, then, that the operation © and. the pair of operations, addition and multiplication, determine one another reciprocally in $\$$ such a manner that the question of what pairs of algebraic operations possess the same formal properties as addition and multiplication reduces itself, to the question as to what algebraic operations possess
. the same formal properties as @, and that it is possible. to construct a set of postuates for complex algebra in terins of @ and. the relation "greater than"alone.

Since complex algebra is a categorically determined system \#), \#). Ibid, sec. 32 .
any formal properties of @ which do not involve the naming of any special algebraic entities, but simply the statement, that all or no α some such entities have a certain property, follow from the postulates of the algebra itself, and must be possessed by any algebraic operation satisfying a set of postulates for @. If we wish. to investigate just what operations in algebra have, the same formal properties as @, however, we may restrict our investigation somewhat. It. is a familiar fact that a projective, transformation changes every algebraic operation into another algebraic operation, and, that. if we adjoin, the entity ©. to our number-system, making, the appropriate alterations in our definition of an algebraic operation, etc., a projective. transformat ion will be isomorphic, and will not alter any of the formal properties of, the operationsit. transforms. Furthermore, a projective, transformation may be found which will. transform any three numbers into ary other, three. We may, therefore restrict our search for operations of the same formal properties as @.to those operations which bear. the sd

