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OPERATIONS IN COMPLEX ALGEBRA

r

ISOkORPHIC WITH ADDITION

MULTIPLICATION.

.Noybert Wienero

In a papqr entitled The Fundina jsp t & ,
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2.

crete empirical data compiled. therein.' These arei t . properties of

the. table which rejui t froi te e tod.I en loyed in scheat ii ng anu

arr<.nging,. the data presented. This surgests. the possibility hinted at

by Poinc&re,that. the certainty ol geometry may / be clue. to. tni

manner in which it ordleis our spa&i L e1 'rIences, an. nQt. to the-e

experiences. themselves. Geometry woul , then be, in a y he forim

o0 cur e ternal sense' but vould owe both its certainty anc. its 04i1t

practicai vau. to. the aot 0" it ue a aorm o odn. h x

;e rn,. -e-si wh 'C a ve rather ilan l form in er-

ent in our ekperience itself. Its practical value, that is, is ueto

.the fact that it is a orrm chosen by us with. the -iiute Jur os o

simhli ing. the expression of, the laws oi physi s, whic would assC n

an inorinat;Gely cOmplic 7i w. Ter t( 47prIJ to. s di ly i U1I0

in. terms 0 ou. :i..a.a x :. nc j,>L T ;c s <iia nsL e'l 0ye

in curiving Space 1ro caerienlu Way uc (i2v07 1C i re 11i. the

processes of masure'1ent, etc.. that are employed in physicP rathe .r as

dginiton oi such entities as di tin es. than as modes of J1sCoverir.'

them6



It is a simple matter, to j.rove. that. if x # k. is o period 3, k 1.

1 is. thus defineable. in. terms oi #. 0 may be def ined as 1 # 1. xy may

'n-da. xI; y, p f or

#
1.(1 -1

I.(l 1 )

1
xy - 1

- 1- x - 1
(xy -1 xy

-xy~

-This definition of xy will evidently give an irndeterminate result

when x or y or x #y or (x # y) # 1 is 0. In. the first. two cases, we

def ine xy as 0, in. the second, as 1 , and in. the. third, as x y
x

1 - 1 , xy -1 , which we def ine as. that number,other, than 1 ,
xy

which makes x x 1. In case x or y is infinite, while- the other

factor is not 0, we define xy as infinity, while we assign no meanin,

.to. t.e procuc~t of .ero by iniity.

--- n.S Yxx , for
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Y(--,

=y(..L'# y)
x

x + y

,This definition breaks down-if either x, y, x # 1, (x #1 1,

or x 1T(;KA) 3 JLh e Q r nd

erininate. Th.aflas whep- ile expression w h J we iavu def ined as

cases which rermain, as a little computation will show, are.those whem

either x or y is infinity or .ero, or where x and y ar& finite, and

Yi ne ii (7) 0, 41 >l ~ ~

x'+l 00 -1"&*7 ~
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and y a,
0, while, if f inite 1.( ) j y

last
SI sAeinition is

ifZ '% eviuent, for under, the circumstances when we have agrsced

o e - ~i >0ui

We have. thus given a def inition of multiplication involvirng

nothing but # and logical constants, and a def inition oi adQition #

which can ultimately be expressed inthe same manner, since it in

t
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OPERATIONS IN COMPLEX ALGEBRA ISOMORPHIC WITH ADDITION AND

MULTIPLICATION.

######################### ##7#############

SThere are several different methods in accordance with which we

may consider a mathematical system. A miethod. that has recently been

much used for. the characterization of a mathematical system is. that df

s A mathematical system has been regarded as determined as

.to all its mathematical properties when certain relationships between

certain of.the entities of which. it.treats have been specified expli-f

.itly in a given small number of propositions..This method is unques-

tionably one of. the utmost mathematical and logical value, but it

nevertheless. is obviously Vfji liable. to. tell us both, too little axo

.too much about.the mathematical system which, it specifies. It is a

familiar fact, first,.that a multitude of sets of postulates, dealing

with quite different operations and: relations, may define the same

system, and seconaly,. that. there are scarcely any. two mathematical

systems so diverse.that it is not possible. to arrange some construct-t

.ion out of.the elements of-the one which will fulfil*.the condition

of.the other. For. these reasons, a more precise specification of a

mathematical system may be obtained by considering, not. the formal

properties of any single operation or relation entering. into its

, -j

Ell

Aw-0-
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constitution, but a definition which will enable us.to determine

whether any given operation or relatton belongs. to. the system; and A

by determining M#*4M4##&*#### those

properties which any element whatsoever of-the system possesses by

virtue of its position in. the system. This may be done by a set of

postulates, but not every set of postulates does. this. For example,

as KEMPE pointed out #),. the algebra of logic may retain its formal

properties unchanged under. transformations. that alter any element of

.the syistem into any other, yet most of.the postulates for. the algebra

of logic single out. two elements of.the system under. the names of 0

and 1, and correspondingly concern.themselves with certain specific

operations dependent on. these entities. If we desire.to replace sucha

set of postulates by one which does not. thus over-specify. the entities

with which it deals, and which consequently- gives us a.truer idea of.f

.the internal structure of the system it defines, one of.the first

preliminary steps for us. to. take. is naturally. that of making a survey

ofthe system. to determine. to what extent we have been over-specify-

.ing.the system in our postulates...This n tu ally involves.the questir

of just precisely what entities of..the system defined by our/t$A;At
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tostulates possess.the formal properties of.the entities, relations,

and operations dealt with. inv,6ur postulates. Of course,.the most obvi-

ous of.these formal properties are precisely. those formulated. in, the

postulates. themselves. We. thus obtain. the following fundamental ques-

.tion concerning any specified system of relations and operations

which is regarded as generated by a set of postulates concerning cer-

tain of. these: jWha~toQprtions and relations Uf . te system may be

substi tuted for. ths ti th whinh the pnstuflates. ccnorn .r themnelve1 9

withtnnt @Jtgrin, +hw tr-thmvine -of the pnstlilate0? I have already

dealt with. this question in. the form in which it appears in Boolean

algebras #).[I propose.to devote.this paperto.the discussion of.the

#). In an article which will have appeared. in. theseL TRANS.-

ACTIONS.

corresponding problem in. the ordinary algebra of complex quantities.

A set of postulates has been developed for. this algebra by HUN-

TINGTON #).DLThis set concerns. itself with. the operations of addition
#). See Monograph IV. . in Monoaraphs onLTob E leme ntary

M Alic, edited by J. W. A. Young.

and multiplication among complex numbers and. the relation of "greater

.than" among real numbers. Now, both. the operation of addition and

.that of multiplication can be derived from.the iteration of.the

operation

x 9y y
1 + x - y
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on. the numbers. to be added or multiplied and given constant numbers.

,This may be shown by. the following formulae:

x~-4
1 1

x y y

0 @ y y

1- 

1
Iy

0 1

1x
(x - y y

x ~i xy-1

-1(xy-1) - 1 -xY

(T-xy) xy

x(y - 1) xy - x

x - x - x

x

y - (1 x + y

It. is clear,.then,.that..the operation @ and..the pair of operations,

addition and multiplication, determine one another reciprocally in $46

such a manner that the question of what pairs of algebraic operations

possess. th same formal properties as addition and multiplication

reduces itseLf.to..the question as.to what algebraic operations posses



1Y,

the same formal properties as 0, and. that itL is possible; to construct

a set of postuates for complex algebra- in. terms of 9 and. the relation

"greater. than"alone.

Since complex algebra is a categorically determined system #) v

#) Ibid, sec. 32.

any formal properties of @ which do not. involve. the naming of any

special algebraic entities, but simply.the statement.that all or no cr

some such entities have a certain property, follow from. the postulatES

of.the algebra itself, and must be possessed by any algebraic opera't-

ion satisfying a set of postulates for Q. If we wish. to. investigate

just what operations in algebra have. the same formal properties as @,

however, we may restrict our. investigation somewhat. It. is a familiar

fact. that a projective. transformation changes every algebraic operat-

.ion. into another algebraic operation, and. that. if we adjoin, the enti-V

.o.to our number-system, making. the appropriate alterations. in our

definition of an algebraic operation, etc., a projective.transformatt.

.ion will be isomorphic, and will not alter any of. the formal propers.

.ties of. the operationsL it. transforms. Furthermore, a projective. trans-

formation may be found which will.transform any. three numbers into ay

other three. We may. therefore restrict our search for operations of

.the same formal properties as @.to those operations which bear. the $#


