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GALVANOPHONE, A Hearing Apparatus for the

Investigation of Very Small Electric
Phenomena in Iivingxﬁody.'

By Katsumi Imahori, Prof. of the Research
Institute of low Temperature Secience
Hokkaido University, Sapporo.

’

During my investigation on the statistical nature of brain-waves, 1 was
frequently called attention by some medical sclentists, among whom may s
mentionsd Prof, Motokawa of tihe Tohoku University and Prof, Minoshima of
the Hokkaido University, on the disirability of an apparatus by which one
may directly hear the wave forms of brain-waves, and obtain facilities for
clinical diagnosis as well as for research works. o

As the brain-waves are electrical fluctustions of extremely low frequencies
the wain components of which being near 10 cycles per second or much lower
in some cases, the esr cannot percieve them in their astural vibration
frequencies. One of the possible methods to change them into audible fre-
quencie”s is to mase a maguetic or a film recording and play back with a
spead sufficiently many times higher than that of recor ding. This method,
however, requires special manipulations, and so cannot give immediate
informations as the things are going on. 4 second method is .to modulate the
awplitude or the frequency of an audible sound of suitable frequency by the
wave form of the brain-waves, This idea was put into' practice on Oct, 1947,

Brain-waves were amplified by the usual resistance-capacity coupled
smplifier, the output of which was used to modulate the amplitude of a
sinugoidal wave of 360 c.p.s. The scund thus produced showed all the charas-
teristics of brain-waves very clearly, and unexperisaced hearers who attended
my experiment weee able (o distinguish indivisual brain-waves without
difficulty. The result of these experiments werse reported at the meeting of
the EBrain-wave Researchers' Association held on Nov, 1947. The first public
presentation of the "brain-wave sound™ was made on May 1948 at the aunnual
meeting of the Japanese Physiological fociety held at Niigata,

Frequency modulation was also tried, The effect seemed somewhat better in
varidus respects than that of amplitude modulaiion, Three identical sets of
amplifiers mere constructed for the purpose of amplifying simultaneously
three different phenomena, and their outputs were used to modulate three
different frequencies which were related to each other by some suitable
chord. On listening to the "chorus™ thus produced, one may with some practice
geasp the general characteristics of the pnenomena under investigation,

All the slectrical devices used in these trial experiments were operated
from L.C, batteries, In practicai applications, however, decided advantages
are obtained by operating them from commerciasl A.,C, line, For this purpose
a battery elliminator was constructed which gave b,C. outpute of 150 volts
and 6,3 volts respectively for plate and filament supply. Uifficulties.
arising from 4.C, induction were completely elliminated by carefulf electric
and megnetic shielding, but occasional fluctuation of line voltage gave
disturbing effect which was very difficult to elliminate. This elliminator
together with the amplifier and wmodulators _ the two modes of modulation
being interchageable _ were constructed to form & portable single ssi, and
was shown to the mewbers of Brain-wave Researchers' Associstion on QOect,
1948, 3 :

At this stage of experiment, I happened to have in hend an all A.C,
operating direct current amplifier called "lromn Detector™, which uses an
extremely stable electric interruptor in ths Iinput circuit fo? the purpose
of transforming the input voltage into an intermittent electr}cgl vibration
of about 600 ¢.p.s., which is amplified by af <resonance amplifier. This
amplifier responds steadily to 1 pV, but as the input impedagce is copara-
tively low and so sowewhat large current must be applied, this excellent
apparatu7 s unsuitable for such cases as brain-wave or action current of
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heart beating where high input impedance zand extremely low current require
special attention. :

A project was initiated to modify the Iron Detector so as to be used as
a general purpose A.C, operating amplifier of very small electric phenomena
especially in living bodies. With collaborations of the members of the
physical and physiological sections ol the Hesearch Institute of Applied
Electicity and those of the maker of the Iron Detector, an experimental seil
was completed on March 1949, which seewed to fulfill nearly all the require-
ments for practical application, and wac named "Galvanophone? The details
of this apparatus are described in the following. ;

In Fig.l is sbown & block diagramme of the new apparatus, (I) is a double
T type wave filter which, consisting euntirely of resistances and capacities,
elliminates practically all .he electrostatic pick-ups from 4.C., line, so
that one may dispeuse with those incounvenient devices for shielding the input
circuit which have been for example used in the brain-wave study. Only in
the worst condition one is needed to rearrange the general lay out or to
apply simple devices for shielding.
~The vibreting iuterruptor (I11) is an elsctromsgnetic vibrator, om the vib-
rating reed of which is attached an electric contact device made of special
matal. The original form of the contact mechanism as supplied by the maker
je shown in Fig.2 (A). In order to avoid jumping effect produced by the
collision of the vitraving reed with the fixed electrode, the amplitude ol
vibration is so adjusted thet the reed just touches the Iixed elecirode &t
its extreme position. The proportion of the duration of make to that of
brake is very small, so that the resulting wave form is the so-called impulse
waves, As only the fundamental component of this wave form is amplified in
the following stages, and its amplitude is very swmall as compared to the
actual height of the indivisual impulse, this wode of interrupting is very
disadventageous for our purpose, r'ig.2 (&) shows an improved contact mechanim
which gives nearly equal duration of make and brake, and the jumping effect
is avoided by & simultaneous motion of Dboth electroudes with the sawme phase
but with slightly differeant amplitudses. The square shaped wave thus produced
is very steady aud its fundawental componsnt is suificient enough to give
necessary amplification. :

Betwesn the interruptor and the amplifier is inserted a high pass filter
(II1) which passes freely the frequencies to be amplified and stops the low
frequency componeuts of the grid current of the Iirst awplifying tube Ifrom
entering into the interruptor. The filter comnsists simply of two sedes
stages of series capacity and shunt resistance. v

The amplifier (IV) is of the usual resistance-capacity coupled type using
three 6C6 type tubes, the only diiference being that relatively small
coupling capacities are used so that only the higher feequencies (above
500 ¢.p.s.) are amplified. The gain is about 100-120 DB, loises from various
sources, especially those from the first tube sre amply present at this
.stage. A,C. baworiginating from the filament of the first Tube also becomes
considerable in.spite of the above precaation. They are, however, complete-
ly elliminated by the following heterodyne filter (V), except tnose which
cannot be avoided in principle, ok

The circuit in (V? is egsentially the same as that of the usual hstero-
dyne frequency converter, using 6L7 as the mixer tube., The frequemcy to be
mixed is identical with that of the amplified one, and its voltage is taken
from the oscillator (XI) which was used to excite the interruptos. la the
plate circuit of the mixer tubs, a low pase filter is®*inserted which just
allows those narrow frequeancy band which are contained in the input elecirical
variation _ for example 20 c.p.s. in the case of brain-waves _ L0 pass
through. Thus we have an amplified waves identical in shape with those of
the input except for a small amount of noises which have passed through the
heterodyne filter., Although the noises may be reduced to any extent as the
width of the pass band is made narromer, but this means a sacrifice of
faithful reproduction,

In order to make the output of the heterodyne filter audible, this is
again used to modulate an audio frequency, the same frequency being employed
as the previous one. for this purpose a balanced vacuum tube modulator
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operating on square law characteristics is used (VI), After one stage of
voltage amplification (VII), the moduluted wave is rectified by a diode
tube which is negatively biassed so as to suppress the low noise level
described above. The last stage (IX) is a power amplifier, and the output
is ready to operate on a meter, a speaker or an oscillograph.

In addition to those described above, a vacuum thermopile is provided
which is used to produce & small U.C, voltage for the purpos.e of zero
balancing (X). The entire circuit diagramme is given in Fig. 3.

The Galvanophone responds to small electrical fluctuations of freguencies
0-20 c.p.s. with voltages as low as OV, It is all A.C, operating, and
without any shielding of the input leads, no troubles arouses from &.C,
Pick ups. Probable fields of application, with some modification when
necessary, are

(1) clinical application of action currents produced by hesrt beating,

(ii) brain-wave study and its practical application, '

(iii) various electro-physiological studies,

{(iv) measurement of temperature by thermocouples,
and 80 on. The apparatus was exhibited at the annusal meeting of Japanese
Physiological Society held at Kyoto this year.

(Sept. 25, 1949.)
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ON THE LONG PERIOD FORECASTING BY MEANS OF
HAPMONIC ANALYSIS

by
Katsumi Imashori and
Telsaku Kobayashi

Es Introduction

The most systematic formulation which has ever been made of
the theory of prediction of stationary time series is, to the .
best of the anthors' knowledge, that of Kolmogoroff and Wienerl)
which has recently been developed independently in U.S.S.R. and
in U.S.A. Thelr thedry 1s essentially a minimization problem
in which a lineer trasnsformation is sought such that when
applied to the past and present values of a stationary time
seWées mt guves the future values of the time series concerned
with as small errors as possible. It is mathematically rigorous,
and covers wide field of applications, so that it appears as if
no room is left for any essentially new contributions except
for possible extentions and applications following the lines
Bstablished by the above mentioned guthorities.

Meanwhile in the metorological practice of weather fore-
casting there are two leading principles which characterize the
varions existing methods of forecasting. The one usegd statistical
methods such for example as the correlation coefficient between
rainfall at a particular district and temperature of sea water
at another. Method of periodogramme analysis may also be
classified into this category. These statistical methods have
one characteristic feature in that they can do without having
any regard to possible physical mechanisms or causality
relatioms between the quantities concerned. By the other prin-
ciple of forecasting on the other hsnd one seeks for some
physical law which governs the quantities entering into the
phenomena in question, and which may be effectively used for the
purpose of prediction. The two principles are of course not
independent., Various "theories" put forward for the purpose of
weather forecasting are approximate ¥in the sense that they can
not take all the variables intoc account which have some inter-
connection with the phenomena under consideration, so that one
must necessarily resort to the statistical method.

In the statistical formulation of the prediction problem,
which might well be said to have been grought up to almost
completeness by the hand of Kolmogoroff and Viiener, the physical
bases or assumptions on which all the mathematical theories are
buily, and the physical meaning of various functions and
formula occurring in them are apt to be left out of consideration.
1) 8, Wiener: Extrapolation, Interpolation, and Smoothing of
Stationary Time Series, New York, 1949.
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Statiscical treatnemts of e. g. meteorological data may some-
time lead to $e deterministic physical laws in case where the
probability becomes unity, but these are Ppecial cases of minor
importance. In the theory of e.g. Brownian motion, the observed
irregular motion of a particle has a certain statistical
regularity which may be expressed by the well-known Langevin
Bquaticn, so that in general one might expect some physical

law which, although unable to give precise prediction in a
deterministic sense, expresses the interrelation of the
mechanism existing in the phenomens under consideration and
enables one to draw conclusions as to the effect produced under
given conditions.

In their study on the statistical analysis of brain-waves,
one of the present authors and Dr. K. Suhara?) have formulated
a-theory in which a linear operator is sought such that when
operated on the observed brain-wave this is transformed into
& _completely random times series. The pperational equation
established in this way reduces in the case of Brownian motion
to the Langevin equation, and thus it is tc be regarded in
general as a tentative physical law in the above sense, While in
the case of brain waves nothing is known at present as to the
mechanism of generation, so that a purely statistical attack
has been the only one available for any systematic formulation,
there are many examples in which informations from different
sources can be utili,ed iqéssuming a physical model which is
govermged by seme known physical law. In view of the most eff-
ective application of the statistical theory to the meteorological
forecasting, the most interesting problem is how to combine
these two methods of attack into a single formulation.

{Although some methodelogical consideration on thiqbroblem
has been made by the same author in another field of study 3},
the application of the same method to meteorological forecasting

was not put into practice until last summer when Dr. K. Takahashi
of the Neteorological Research Institute visited Sappero and held
a lecture on the method of periodogramme analysis applied

to his researches on seasonal forecastin? When the authors' the-
ory has been formulated to a certain extent and some numerical
results obtained as to the probable temperatnre of this wihter at
Sapporo, the authors were made aware of the above mentioned

works of Kolmogopoff and Wiener. The present paper is a revised
formulation of the manuscript prepared for presenting to the
annual meeting of the Japanese Meteorological Seisty held in
Nov, 1950. The authors dc not pretend tc have given a comp=
leted theory, but 1t is hoped that their contribution adds
something new to the development of the prediction theory as

a physical science,

2, Pundamental Assumptions

Let the quantities which are used to describe the state of
the system under consideration be expressed by functions
x(t, ¥ )'s of time t, in which a paremeter ¥y , assuming
continuous or discrete set of values, 1is used to distinguish
different quantities. In case the variable X depends in a
completely deinite way on the independent variable t, x(t)
is sald to be a causal process, and the procedure by which
this isdetermined from a set of given conditions may be for-
mglated as follows, )




2) K. Imehcori and K., Suhara:; Fclia Psych. et Neul. Jap, Vol.
3, No. 2. 137, 1949,

3) K. Imahori: Bulletin of the Res. Inst, Appl. Elect., Vol,
I, Noe. 1, 1949,

A system of finite or denumerably infinte number of functions
qakt, 24t), - - -~ 4.4} 1s introduced which are derived from x{¥} by
a set of transformations

@ = Klxwl e --om (1)
where [{ K»,. .. &re operators which transform the funection X{*)
into  4.¢x), 4s(¢), - - - respectively, The n=dimensional space defined

by the varisbles 4, 4.,...,4~ may be used to represent possible
states of the system, and is called the phase space of the system,
Starting from a"point 4., - --9«s on which the system finds 1itself
et & particular time t -~ 0, one may successively follow the path
of the representatice point as time proceeds, provided that the
limit of the rate of change in coordinates ln a small time inter-
val at exists for AJ s~ and is defined as a single valued
function of coordinates ?0, 1:8,,

a9, " .

The problem thus reduces to the stlution of these simultaneous
differential equations under given initial conditions. In dy-
namical systems they correspond to the equation of motion expressed
in Hamilton's canonical form, and the functional forms of

F, R, -~ f. are determined by the dymamical structure of the

system, In the present case the equations (2) are also called
equations of motion of the system, and the funections F./s are
regarded to be characteristic ofthe system considered, The number
of dimensions n should also be characteristic of the system in
order that the above requirement of unique determination of the
process 1s to be fulfilled, while it is to a certain extent a
matter of convenience, what kind of trflwsformations which were
introduced in (1) is to be adopted, Linear trnasformations are
geénerall y used, amuch for example as

g %-;—;: ) “"“.‘1 2 R (3)
?ﬂ‘r&): 1{*""’ ;_:r‘?) 7 &‘zfrzﬁ"'"ﬁ - (4)

80 much for the causal process., A random process iqéne which is
T ,0t a causal process, soO that the variables are not determined

4] The more general case where the functions F's contain time
explicitly 1is not considered here although the generalization
might not be very difficult, In equation (2) 9 stands for

4945 +-{» the same convention will be freguently used throughout
thls paper.

(Giiquely as functions of the time, the only
avallable information being their probability distributions

when the measurement 1s repeated a sufficient number of times,
Using the same transformation (1), the increment A%: of each va-
riable in a short time At are distkibuted according to some pro=-
bability law. This may be expressed by a conditional probability
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i
function depending upon the coordinates €: 9:+=4%:*44: andthe time
interval at &), such that when the coordinates are known to be
Ga; 95r - 9= 8t time t , the probability that they glie between
%{?‘{;' R and 4;+d4; --- at time {f+4¢ 1s gieen by

P (1:}111“‘?’“/?:7?;1‘"‘&; ? Af) ﬁt?: "“*1:‘ y (5)

Here is involved the assumption that the process is a Markoff
process in which the dpendence of the distribution function
on coordinates is restricted only to the initlal coordinates
whatever may be the history previous to it. The plausibility
of this assumption might be seen in the similar situation as
stated in the case of causal processeg.

Using (5) the first and second moments of the changes in the
coordinates in a small thime interval &+ are given by

ac(q,4%) "’J‘“} (9:-9) P (4,1, &) dq,- - Aql :
by (4ot = o] (11000 =) P g0 20 o, ﬂf@-{ I
e L1, v~ m J

It is assumed that in the limit af-e , 2ll the 4.5 and
4.'s Dbecome proportional to 4 , so that
o

Ay = bl & .(%ifi.
Ab-de S
oy 4'}{1 "'!},2}-'4»:

Betir o B Pultarl, (7)
¢ Rl

-

A
exist. Them 1t can be shown that the Beneralized Fokker-plank
eguation

A T i3 22 [Btey- B
holds, where P 1s.fegarded as a function of A P

and * , and the initial values of coordinates are contained
as parameters, Thus if the functiomal forms of AJs and B&'g
are assumed to be known, the problem reduces to the solution

of the diffusion equation (&) under the initial condition:

out of constideration. C.4§ . foot-note on page 3 .



P(—?.U‘ll;'"‘?.*‘)a} = 3(2.“3&_;“‘)1«*‘%»}, (9)
where 5(%} is the so-called P#f Dirac's & -function.

L4
The direct physical meaning of the functions A¢s and 8£f5

is obvious from their definitions, but another interesting
interpretation may be obtined in connection with a possible
physical law by which the changes in time of the coordinates
may be described. While the mean rate of change of the coordinate

t¢ 1is given by A:{(4) , the actual rate of change A¢;/dt~ will
differ from it by a guantity which is totally unperdictable, so
that one may write

1

J‘ ¢ - = . e "
.;1;“ Ailg) = fottd | fap2,--m. e

in which f&fx asafunctiins of # have the following properties:

p‘;{f):' o i i,";,_,fflr.--.dh

‘ﬁ;;') ,?; % = BE; Sfi'wj")} 4."5':-}, R E (11)

The use in the second equation of the same notation quﬁ as
in (7) is Justified by calculating the second moments. Thus
from (10) one gets

af
Ay, = A ) 4t + Lf’fﬁb‘*’r,

At
AL a7, = AcQ A gy (ab)T+ ,ﬂ Fald) $4 9 dt'dt”
&

PO Lo DOEREEE
Atde it o
which was to be shown,

It 1s interesting to note that the equation (10) may be
regard-d as a generalization of the equations (2), the functions
A:(9) of the former corresponding to the functions fotg) of the

latter, and the functions Pett) resembling the external
random "forces" in the case of random processeg. They play the
same role as the so-called Langevin equations in the theory

of Brownlan motion, and thus can be regarded as representing

a possible physical model of the system.

e Theory of Linear Prediction

The differential equation (10) of the preceding article can
not always be consideredas linear, because one has no a priori
knowledge as to the reason why the functional form of A,€3)
should assume some particular structure except when this is given

or at least assumed from the known structure of the system in
question. It & is easy to give simple examples in which the

the phenomema are governed by nonlinear laws, and so their
complete formulations have not yet been obatined, There seems
however to exist one way to get rid of this difféculty. The

key polnt &s that a statistical ensemble of any physical systems,



linear or pom~linesr, might be considered as equaivalent to a
another one of appropriately chosen linear systems. Some
consideration along this line are now being made, but the details
will not be described here, and the present repobt will deal

only with the case where a linear law can be assumed to exist.

Assuming that A; () is linear in coordinates, one puts

A k) B g Q,;i- T)j : el -

so that the equation (10) becomes

é_i'f:-. s 5. = 'P;[#)) f:f,z‘.,,ﬁ
At ¥ e | (12)

where the coefficients qus are ncw consldered as constants
characteristic of the system. The corresponding Fokker-Blanck
equation may be written

&

F_

30T N 2 B,

>t ‘i (12)

The solution of (12) or (13) can Be obtained in various forms.

It is ccnvenfient to begin with an prthogonal transformation
defined By

SR The RS S (14)
such that
Z C;}' Rip = Ae Cop ) xi,k:l,.z}-um (15)
where AJ; are églutinns of a determinantal equations
Det . (aq“%&‘): e (16)
Then the differential equation will be reduced to
3%% ~ X B = T () : L=1,2, += ™ (17)
where
Wy = 2 Cy pur) (18)
s0 that ;

e e ot

THE Y = @ St = 3 6 )8, Sy (19)
fibff}'ﬂ; @#* (}:} (Yf .;.; k ;IBM { ),
and the Fokker-planck equation becomes

(20)

nrst f\Jf

_%L
i3

‘t-cu
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The solution of theglkast egquation was given by Ming &hen Wang
and G, E, Uhlenbeck # , thus ~

sz M 5e Bk, OwWE
A o 2__ L AR 4 -t L. T ol
F(;ﬁ%} i m”-{i*i i, ?’j z}ae :ri ’-%(?h '};*J‘ﬁ I }j'(( 21)

where Tqit) is the Fourier transfor?m.of P&%f), and #., the
initial value of 2 . The probability functlon P¢g'#r 1s
thus an# n-dimensional Gaussian distribution with the average
value '

. 7

2ew 9o € |, det,z, .-..m (22)

and the variances
R b, =, B SISO Nt 8

el e 0%; ety
“-"’9:”?3“?;} = “5‘.“?;_‘}:!‘ € ,} (23)
i
The solution of the Langevin eguation (17) can slso bgébtained

easily:
T o
At = j'zﬁ,u’)e
—~—p0

f=t,2, - — ™ -
It is interesting to note that the auto=and cross- correlation
functions for 2,/s are intimately related to the above
expressions (22) and (23) , which characterize the probability
funetion, Onse obtains from (24)

; “ : 7 ot Iy
2;;{?}: [atng@] - ff [%.(hs0-2 }‘ﬁ;{#djf Lt

i A

Gtrs | BG-te’

2ld-t)

7

’ (24)

T3 "y (25)
1( - ;—{-—-ﬁ.;«: e AJ'T . ’E’JY rco
= Sl o
0% i . :
£ —— £ ot
Ar+ o i

in which it is assumed that the real parts of )gk are negsative,
and [ 1}, meanfi3 average with respect to + , Thus the
function Zuﬁ)satisfies the di@fiferential equation

A Z; 26
,-.f—ot;i* = }i' %7 : ﬁgry ¥ > e ( )

which 1s obtained by equating the righthand side of (12) equal
to zero. This property can be extended to more general cases
in which only the linearity is assumed for the Langevin
eguation, Note that the average "motion" given by the equation
(22) has also the same property.

From the above description it is seen that the problem of
prediction has been essentially solved, Given the initial
coordimates Z%.,s the average value of z's and the variances
at time t later can be calculated from (22) and (23),
provided that )/ s are known, Transforming back to the
origif/nal coordinates one obtains the following expressions:

6) Ming Chen Wang and G, E, Uhlenbgck: Rev, Mod. Phys. 17,
323. 1935,
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P"*~—~ E B il 9 \
Eg T |- 2 z 20 (1-T0, 1) \
A= Det. (p':i) 3 Lﬁj }= (Dq)'i,
P N MF ” \(27)
b Rl eyt
{ZL :1{)(1*{) i w w B Ot A0t o |
: ¥ P Bl I 2 |
J ; ﬁx R e - 1 )
S ¢ i ~ 7 Mit-2') o
L= L ¢ @[*,n; At’ b ‘?j wWitye T 4y (28)
) j

AR Agﬁ.,,gi,,.fm P b

)k*}ﬁ < 2 /éi‘?r?(o (29)

Qg (r) = [ 4. 004013, (ﬂjﬁ ]

= 1 ki
Cin c g Mt o r?a

g RU -2
oy Mt }ﬁ 4
Q.. (30)

The last wquations may be utilized to determine w constants
A4y's from the experimentally obtainable functions & s , so that
by solving (15) and (16) one obtains the coefficients .’s
of diagonal transformation and the principal values )J;‘j
The "diffusion" constants G%E are determined from (29).

The formal procedure of prediction sketched above will be
seen to be in agreement with that used by Dr, Ogawara in some of
the applications of jhis theory of stochastic extrapclation, 7)

In practical application of the abese theory, howecer, one
is sure to be perplexed with the e¢alculations involving high
order determinants, for in most cases the prder m of the
determinants must be taken so large that neither the evaluation
of these determlinants nor the solution of the determinantal
equation (16) can be carried on,

While Dr., Ogawarg assuged a very small mumber of dimensions (n=
from 5 to 10), in Wiener!s theory all the present anq@ast values
are needed for the predicticn of the future, The so_lutiocn of
these difficulties,be found in one or more of the following
projects'ma e wasdl

(1) Device of an automatie calculator,

(2)e In—corporation of various exlsting theorles on
meteorological phenomena for the deterination of system constants,

(3). Formulation of some approximate procedure.
In the remgfining part of this report will be described some conslde
erations on the 3rd problem listed above.
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4, Decomposition of Time Series and
the Application of Harmonie Analysds 8%

Let the set of n time series ;QJ’s ke so chosen that
one is possible to devide them into 'sets of functions 1{¢))?}f})
- (B and Quait) , - — 1w it) , where the funections o

eadh set belong to different frequency regions, so that using
the formal Fourier transforms of each time series

B 1wiv F
gh&):j fav e Ay k=13, .. (31)

s

~one has

£ f N =0, Qshz~m feme, o m (32)

In this case the time series belonging to different sets are
statistically independent. 4n particular one has

[‘Zf.{ta'r} v ‘t} m}]t =, 1=1,2, -~ e J';mﬂ;.-,h (33)
It is further assumed, as is often practically the case,that
the characteristic solutions r
2 = R4 &’k"’t . fg’f =

= for t<o ? Bl W ()
2

have their amplitude spectre falling entirely into one or
other of the two frequency regions. Let A, X, .- k. Dbelong
to the first set and the remaining ones tofAhe second,.

Then from (28) one has

@

zm,._/ r y )jtf 4 ‘
Jr= ;Z—:':if [Taa-t0 e " | rega,
) A |
A L \‘jf ‘
s Zf gt dge’ AL
joms e

so that the Lansevin equation will also be separated,

A4, < 4 1
8 e ol e

is! 7

A4 5 ;  ..~ 3 t i I
o T N e e e N

Thus the problem is reduced to ones of lower order.
This reduction may be carried on until the overlapping of the
amplitude spectra of different characteristic solutions (34)
violates the assumption used inthe above argument, Even in
the latter case cne may proceed further under tolerable
approximations., In favorable cases one would De possible to
attain complete separation of the different 3;’s by the above
procedure without appreciable errors, so that it 1is finally
reduced to a number of simplest types of Brownian motion,

At this point it would easily be recognized that the method
of harmonie analysis plays an important role &n the practical
ooy A A £

ramamnT 2 omm et fea aO L o

' s O e D e hhe Caatra L ek, s OO0 o NO.. Bd. 1849,
7)Mo .awara:.;ﬁeppntg_frqm,tqe_CQQtra1}M9t, Obs. NO. it

}ﬁo-ggawara and T, Fujita: .3onecasping.gf,ﬂolfts_sgnspot
Numbers by Stochastic sxtrapolation (unpubl.)

ingle time serles
g8) The simplest case of the prediction of a 8
ﬁlﬂcpnsidered here. Extension to mitiple time series will be trivial.
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First start with the observed thme serles x{) whose values
are supposed to be known from sufficently large negative value _ —
of time - to #=e. When the values of x( are glven¥discretel fﬁ
set of times, one may either regard thdm to be substituted by
a continuous curve which is obtained by the usual method of
curve fltting, or replace various integrals in the formulation
for continuous case by proper summation in the discrete case,
As the nature of errors introduced by thesec modifications may
be computed by the well-established method of Fourier integralsy,
it will be left out of considertion here. :

Given the funetion X&) , one may easily calculate its
Fourier transform

2 —2rcpt
Alp) = f:x{ﬂ e 4t
- i
and its absolute magnitude MAm|, 1t must be noted here that
the amplitude spectrum thus obtalned contains a certain amount
of indefiniteness in the sense¢ that 1ts fine structures in the
frequency bands within a definite freguency difference ay = 1/
are physically meaningless, The amplitude spectrum given by jAc7]
will usually consist of & number of maxima and minima showing
more or less comnspicuous precominamcies in certain frequency
bands, each one of whleh corresponding to one or more
characteristic values discussed above, The frequency difference
of adjacent maxima must of course be greater than 14 owing to
the above mentioned indaterminaey, however, only those maxima
should be considered as significant ones whose «d jacent frequency
differencfes are appreciably greater than 147, .
sc that if there exists a definite upper bound in freguencyd=—
this is the case for‘'example in discrete time serief the
number of characteristlic values should he taker ot most ev.ud o 2| B 4T,

(35)

Now if some of the minima in the spectral curve are found
to be negligibly small and almost touech the gero axis, one may
safely take them as deviding points by which the characteristic
solutions (34) are completely separated into a number offgroups,
As the other extreme case one may consider the one in which two -
or more characteristic "resonance" frequencies overlap each
other so that they fuse into a single maximum,

The real situation is, howecer, that one does not know a priori
how many resonance frequencies there are in a given frequency
band, but 1t is rather the spectral curve itself that gives

any information about them. One "assumes" that a single maximum
in the spedtral curve corresponds to a single resonance
frequency. The amount if-eprrespon-s-te-e-single~-rescnrnee~of
error due to this assumption may be calculated in some special
cases where some known functional forms are substitured in place
of the expsrimental curvel/s,

The intermidiate case in which the adjacent maxima in the
spectral curve are partly resolved but ntt completely, are the
ones whers most of the ambiguities oeccur. As an approximate
procedurc for these cases, one may take elither of the two ways:
one assumes a single characteristie value ™ for a group of
subsidiary maxima which as a shole constitube a single broader
maximum; or one ascribes different values ofg characteristic
solutions to each of the partly resolved maxima, it would be

convenient to have some numerical criteria as to which one of
the two alternativew should ve taken, but th?ﬁetails will be
treated in a subseguent paper .
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It thus came to-the conclusion that in gny case one can
with different degrees of spproximation reduce the problem
into a set of harmonically bounded Brownisn motiocns including
as a speclal case that of free particle. Using real variables,
the Langevin equations for them can be written as

B rp gy - b, (28)
or
jﬁ%_+ gg = p ity (57)
with

path petn = 2D SH-F
The solutlons are well known ¢, i.e. the econditional probablility

functlong are Gaussion functions with the averages and
veriances:

A= ,l"_ __-}f;;l' . V %o hl‘ﬂt ‘ :
?r‘ 5 £ ﬂmg.),f-r—;-ﬁ ¥ {m,w)ﬁ»‘,f*f-:g%ﬂf#)’
e ' ~gt y -
(%""L) = %[1—@1‘8 (Wﬁ%é‘*?lww.j —“Pw,ﬂw&’,fﬂd)wlt)] 38 )
i

2
w}j‘: &5:' i P/éf-

and 5
- e .
e p -~
#es i o LA o

respectively for (36) and (37). Those for the original time
serles can be calculated by linear superposition of % ’s and
summing up the{imi}zfs thus obtained for different components,

In Figs. 1—$ are shown a few exemples of practical
applications, which are intended not to be used as any routine
works, but only to show how effective and promising the present
method is. Fig. la is a plot of monthly mean temperatures at
Sapporo from Sep. medto Wb, jq¢{ , expressed in deviaiions from the
mean aennuzl change, JfEke amplitude spectrum are shown in Fig.
1b, obtained by the usual method of harmonic analysis using 7
ordinates. The predlicted¥errors shown by the shaded area, The
gcireles are the observed values. o
In Fig. 2 Is zhown another example ol predicticn of the
monthly mean temperature obtained by a diffsrent procedure.

In this case, the 72 values of mean tepperature ofijan.

Shown in Flg,28 wer: subjected to harmonic analysis and wused

to caleulate the probable temperature of Jan. in the futuee,

The same procedures were repeated for FeB,, ete., The agrecment

with observation-doffed cireles~~—1s falrly good.
woulq be interesting to note the appromimate coineidenea)

of the two predictions based upon different periods. s
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The last example is shown in Figs o 3 a, b, ¢ for the case
of prediction of the five days mean temperature obtained by
similar calculations, While all these examples are based on the
method of harmonic analysis using 72 ordinates, it would naturally
be expected that better prediction should result by increasing the
number of ordiBntes inthe analysis,

In conclusion the authous wish to express their hearty
thanks to Prof, T. Hori, the diredtor of the Institue to which
they belong, for the interest he have had in this work, and
alsc to Dr. K, Takahashi and fr, M, Ogawara, both of the
Meteordlogical Research instifute, for the valuable discussions
held about the present method., The data used for calculation
in this papeﬂwere supplied by Mr. Y, Morita, of the Meteorologiesal
Observatory at Sapporo, to whom also the authors' sppreciation
should be expressed,
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ON THE DIFFUSION BY RBURBULENT MOTION
By

Katsumi Imshori and Jun-ichi Hori

I. Introeduction,

It is » well-known fact that in treating the phenomens of diffu-
gion in the atmosphere esused by turbulent motion, we hsgp to set
limits to the scale of turbulence =ccording to the nature of the
problem concérned. For example, the effect of turhmlence produced
by = woedson the diffusion of fog or he~t.in the ~tmosphere sheuld
be described &n terms of those turbulent motion whose scales are
comparatively smaller than the dimensions of the sp=ce in which
the diffusion takes placel i.,e. the ~verage interval between trees
or br-nches or le~ves in the e~se of diffusion in the woeds, the
avernge height of trees in the cnagse of diffusion behind the woeds,
the aver-ge extension of the woods in the cose of diffusion in the
horizontal plene, op%till larger scales in the case of diffusion
in the upper atmosphere. Those turbulence whose scmles are leor ger
thon the respective dimensions have only to be taken into =sccount '
as cheangeg in the me-~n flow,

In the c=ase of homogeneous turbulence extending infinitely in
sp~cey, the local difference in the distribution ef secales of tur-
bulence does not come into pleay, =8 in the analogous case of white
spectrum in opticnal phenomens, and thereby the theoretical AHgAgL
tre~tment becomes consider-bly simple, The existing theories of
. turbudence has been mlmost confined to such cases, When, however,
we consider the turbulent phenomena oceurring nesr or in the woods,
the turbulence having some porticular scale pleays an important
role, a8 in the case of selective =hsorption in optics, A marked
example of such phenomena wsg provided by our observation at Ochia-
ishi which was e¢~rried out £ in July, 1950, ¥ig, 1 is the map of
the region near Ochiishi, in which the shaded portion represents
. the woods we chose for aobservation. Arrews indicate the direction
of prevailing wind. Fig. 2A and B show the energy spectra of ture
bulent flow at A and B(i,e, in front of and behind the woods) res-
pectively, These were obtained from the observations esch lasting
10 minutes =nd simultaneously carried out at A and B , by harmonic
annlysis for 72 €erms and averaging over three data corresponding
to observations at three slightly different points., REliminating
the spectra which correspondf te the homozeneous isotropie turbu-
lence in free space (k™% -law), we obtain the ones shown by bro-
ken lines. It is a very remasrkable fact thot ®ig, 2A shows regular
arrny of highly distinet frequency bands, while such regular
structure wholly dissppesrs in Fig. 2B, Pige 3 and 4 show the energy
spectra which were obtained from the observations within the
woods near-A and at a vacancy in the woods also near A, respec-
tlv?ly. Both of these spectra hnve highly regular structure
similar to that in Pig. 2A. Such a structure in the spectrum
18 presumably due to the peculiar conformsation of the land
along the coast, (For the verificatiin of this presumption,
hgwever, further investigations are necesgary,) Closer examina-
tion of Wig., 3 and 4 reveals seversal interesting fe~tures, some
Eommon to both spectra and some charecteristic to es ch spectrum,
The meaning of these features which may probahbly be looked for’
in connection with the characteristics of woods, will be inves-
tigoted in future.
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Thus it becomes very important to consider the diffusion due
to some pnarticuler part of the turhilent mmss which has a de
finite se=le and is picked up from the mixture of turbulent mas-
gses h~ving various magnitudes. The method of tre-~ting such =»
problem have hitherto involved so meany ambiguities; that in some
cnseg even an erroneous method h~s been accepted. The purpose
of the present paper is to clnrify these points as much as pPoBa
sible, and further to develop a genernl method for treating the
problem of diffusion by turbulent motion, although it has
not so far been able to reach the final step.

2, The Method of Correlation Function.

We have merely to consider the motion of the wind, For simp-
licity we trest here only the one-dimensionsl case, Xxtension
to the J-dimensional c¢=se will involve no serious difficulty.

Let u{t) be the component g in a suitably chosen direction of
wind-celocity at n fixed position, the me=n wnlue o ieh being
assumed to be zero. As the statistical quantity which is dedu-
ced from'u(t) and plays the fundamental role in the problem of
diffusion, G, I, Taylor considered the function:

Ul) = ut)ult+x) (1)

T7FQV%H%Q is the soecnlled ¥ autoecorrelation function" of u,
Now put

and form

X(t)= xeic(tt), (2)

determining the integration const=nt so th»t the avermge v=lue
of x becomes zero, then it mry easily be proved that
da*x
et = —THCe). (3)
Thus if we know TU(T) , we can obtain X(¥) by solving (3).
The funetion x@) as given above is in general different from
the position of a yarticle which moves with the air. It may be
regnrded, however, =»s representing the motion of the particle,
in ~8 mich as we £ do not ask for the motion itself but only the
average value in gsome sense,
Integrating (3) we obteing

T z’/

X ()= X(o0)— / de’ | gedde” (4)
6 0 . :
Let £ ‘be the distance which was swvept by the particle in /T

seconds from the initial time t, then for its mean-square we have,
since

frr —xec)f*= 2{x(e)~ x(x)},

LRI «’
y:z[d—cfﬂ'(@@dtf’ (5)

The correlation function T(t) 1is an even funetion which in



generml has maximum at C=0 and tends to zere when fr. be-
comes large, Fies, %A and B shows two examples. TFor sufficiently
small T , (4) and (5) become

X = X(0)- T@E, i
6
1> = Tz

regpectively, as naturally expected., On the other hsnd, an ambi-
guity occurs whem T increesses indefinitely, There may be con-
gigered two distinct cases:

/

@
(4) f'D'(‘C)dc-: const. =/,

(%) f Ttde —o,

Ute) Ltite)
(4) | (3)

Fig. 5

The case in whieh this integral becomes infinite dees not come
into question., Integrating g#4 () and (B) we get

(A) 7*— 2L,
(B) 23 const, (v — ),

respectively, In the case (A), which was treated by Taylor,
in (4) loses its physical mesning, since in that case the ensemble
of particles spre~ds indefinitely ~nd the process cannot be trea-
ted by the method of correlation as ma stationsry one with respect
to the coordinate x, Purther criterion is therefore required in
erder te know whether (5) holds or not even in such = case.
Similar srgument applies in the case (B) when Fi—ze ., Thus
it remains only the c=se (B) in which ¢*—> const, where the pro-
cess can be regarded ~s stationary also with respect to the coor-
dinnte, and since the value of the constant ray be taken as equal
to X (0), formula (4) has reasonable meaning also when T-eo ,
From the above argument, it will be seen that the method of the
coprelation function involves a difficulty for infinite times.
in next section we propose snother method which is appropriste

for treating the heterogeneous turbulence ~s explained in the
introductory section.



3, The Method of Tokker-Tlanck.

Sueh a st-tistical phenomenon, ¥¢ as the wind velocity u(t)
varying complicatedly from time to time, can no more be treanted
from the causal point of view, and we are maturally compelled to
£AKE have recourse to the probability theory. For this purpose
we define a probability function P(uo /u, t), which wiall describe .
the characteristic stetistical feature of the given phenomenon.
P(u /u, t)du gives the probability that the wind velocity at 1
t will have the value between u =nd u + du, when the initial ve-
locity ue (ot t = 0) is given. In the cose of Markoff process,
this function fulfilles the so-called Fokker-Planck aquations

. D2 ”
2L - 2 [AwP]++ s [Be0P] (7)
where
o BT A
A(UJﬂdtap#r‘;J (8)
© (au)r
EMbO::J%:: at

The function P, =and hence the velocity distribution function

T (o, u 5)= W (Ua)P(Hhofut; t) LA

can be obtained as the solution of (7) under the given initinml
condition. :

Now the prpbability function which is necessary for us \
is the one with respect to the coordinate x. x(t) may not, how-
ever, be rag-rded ~s a simple Markoff process, ~s will be seen
from ghysical considerations. (In the causnl procsss, the future
motion cennot be determined uniquely by giving only the vnlue A
of x ot t = 0.) In order to be able to treet it still as =
Markoff process, we consider x -nd u simult=neously, regarding them
as comgonents of two-dimensional (x~u) -Mnarkoff process. Thus the
probability function is given by Plugs Xo /Uusx3t), and the
Fokker-Planck equation becomes3

'QE=——3“(A{P)‘5%(AAP)+‘{'[a%(&;P)-f 27&%—”—(&: P+ 3?43 (BJJP)f)'

ot ax

A= LimdX,  Aalou)= Lo 20, . (10)

Bu(x,u)= ke @ge 9 = L., Oxad - = 0. )
‘ f( “) Mdt N B;. CX,U) Ll‘l-‘—l——-a-z-q-} B &,U) ‘&M‘At

As an example, consider the Brownian motion of a free particle.
The equntions of motion are then given by

: 11
Ltrpu= b, =

where p(t) represemts the completely random extermal force, and



has the property such that

(12)

-

pee)p(t+T) =o0, T*0, }
= 2Dd(t), t=o0.
Integrating (11) with‘respect to t from t to t + 4 t, we obtain

L = MAt,)

tHat
Au=—/g udt+ | pEDdt;

and hence t
A,=H, AL"—’—'p”J
BU=O/ Bl-l"_‘:oj B.u’-‘* 2D_

Consequently the Fokker-Planck equation becomes

APTI. 3D aap e (13)
at“_“ax"'ﬂ U +Daua

Solving this equntion, we obt-in the following average values and
varisncess :

o .. (1—ePt), T=we F%

A

(-%)*= L {zt—-(‘}(;—e‘ﬁt)at—{g(:-e‘*ﬂg

2

Gl b O e ol

(- Xu-G) = L[?; (-p=f3

Taking the limit t — 0 or t > = , the variance of x becomes

-xr — 22 t3  t—0
(15)
Had 2F£- t, Lol e |

respectively,

4, The Decomposition of Turbulence.

Let u(t) be the observed wind eeloeity, and u,(t) ite average
value taken over the time interval (t — T/2, t + T/2). If we
decompose u(t) into :



U@t)= Us(t)+ W'E)

u/(t) represents the turbulent part of the total flow. According

to the length of the time interval-T, the secale of the largeat tur-
bulent mass included in u/(t) varies, 80 that we must choogehhe
appropriate length of T, according to the ﬂufule of the problem,

as suggested in the introduction. RExtending th1?m~Lnod 0of treatment
and in order to investig~te the effect on the diffusion of turbulent
mass having a prticular scale , we decompose u(t) into many psrta;

U)= to(B)+ Uy (BI+ - -+ Un(E), 28 (16)

where uo(t), u,(t)y..... include the components whose frequencies
lie between O and v, 3 # A Vi Sececacsy 3 and 32 ,
respecfively. These components can be considered ~s independent of
each other, 80 that if we put

Uc(t)= y.(eru.(t+7), =0L2---, m, }/}})‘(1,)
it is seen that the additivity of correlation functions holds:
Te)= 2 U (). (18)
m=g

It will be possible to mske this decomposition appropriately in
such a manner, that the frequency spectrum of each of the u;(t)'s
can approximately be treated s that of = aultwbly chosen damped
harmonic oscillator, whose Langevin equation is

dx "'/3 d/)(-.._‘_w JC.»—-P ('{:) (1§)

where x; 1is defined by u; = dx /dt, such that its mean value be-
comes zero. Rewriting this into

%+pu+ wa'x = pCE),

we gat the corresponding Fokker-Planck 9quntion

%%_usz(upn - [(Bu+ wis)p ] 1P ; (21)

where for simplicity we omitted the indices. By solving this
equntion the following wvelues for »~verages and varisnces are obtanined

P being two dimensional Gmussian distribution with respect -to x
and u.

N R e O t+-L stmcort),
£ 0 - T 0 .
U= __:'T‘: e‘aPt(w,@swgt-ﬁJ&u Wt )~ ﬁxo e ip st wyt,

M%’-(L——:Z}*: F 4-——’—6 Pt(w'_', I{@gww; 't."f'ﬁtd, le-d;tﬁo.fﬁhtj
(22)
C“-W)":—?—E—&’—J—ehpt(wf*‘z"ﬂ‘.sbu“w.t-—/sw,s.:" w;tmsw;t—)‘];

s (TN = 2)“’*’ 2 Pl



where ¢
W)= we—p/ 4

When t+ —2 0 and t =2 ¢ the wvarisnce of x becomes

(x-%)* — Tt-"} t—o0,

(23)
E}‘_} t'ﬁ”) X
.Y

respectively. Compnring this with (15), we see that for t — 0
exactly the same result is obtained, while for t —» = ', the variance
now taskes the constant vealue., Thus in this cese we come to the
conclusion that in stationary stente there occurs no diffusion,
which would »~t first glance highly curious. This does not, how-
ever, involve =ny contr~diction, =& m~y be seen, for exmmple,
from the fact th~at the air surrounding the earth forms a stable
l-yer, This result amounts to ssaying that, to the diffusion phe-
nomenon in the stationary st-te, only thst component u,(t) of the
temporal varistion of wind velocity u(t), which contesin the zero
frequency, makes a contributiong

—

5 The Coefficient of Mixing*due to Turbulence.

Decompose the wind velocity u(t) into mean and turbulent veloci-
ties;

Ul)= GE)+u’(t), (24)
and let

R = wu (ttr) (35)

be the correlation coefficient of u’(t). If we define the coef-
ficient of mixing by

t
/‘l—-:/B('t)dfz, (26)
o
according to Taylor, the diffusion equation m~y be written
o5 . .05 D o5 (27)
36T x| ) 26

In the stationapy case the upper limit of the integral (38) should -
be te=ken =s infinite. Using the results of the preceding section,
we obtain,

(28)

B
—t
R(’°}=£-Q s (Cofw,'t—-ﬁ Siwmr w,'tf),
2wy

80 that
. e ; |
A= o i, - (29)

Fah

a"ﬁm81:.::.113c‘hkoe1“1‘iz.’u3n:1’c..



from which it is seen that the coefficient of mixing A takes

both signs alternatively »s time elapses and finally becomes zero.
This is of course the result corregponding to the turbulence which
has a particular frequeney, but even if we take into account the
turbulence components having other frequencies, ex=actly the same
result should be obt-ined. WTig, 6 illustrates this fact on the
observed wind velocities. Two figures correspond to two different

/”"‘.r

<A N T
NS A

lengths of time interval used in averaging. We thus arrive st

the conclusion that in the stationary field of turbulence obt~-i ned
by omitting the mean flow, diffusion does not oceur =nd the coef-
ficient of mixing becomes zero. It is enasy £A indeed to pick up
familiar examples in which diffusion actuslly takes pl-oce contrary-
to this conclusion, Such cases rst however be regorded essentianl-
ly as the non-stationary ones, in spite of their staion~ry sappear-
ance, Hence it seems natural to adopt, =s the coefficient which
describes the diffusion that actunlly occur, the value of A in

(2¢) when it first takes the maximum rather then the value at

t > . This is approximately equal to the value Plpww, »

If we accept this, it becomes possible to discuss cnnégniently
mlso the diffusion due to the turbulent mnss having LHE/#AXAE/

a particular scale. The value Lﬂpah ¢an be calculated directly
from the frequancy spectrum of u(t).

Henge e c¢an conclude that the most re~sonnble method of
studylpg.the loecal charscteristics of, and the diffusion phenomen=
ocecurring in, =a turbulent field such »8 crented by the woods, the
peculiar lay of the land and so on, is to first calculate the
fraqugncy spectra from the observed temporal variation of wind
velocity, at wvarious points in siich a field.
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By
K&TSUNI IMAHORI
l. The Dielecric Constant Considered as

an Operator

The dielectric constant &€ of a dielectric is usually defined
as a constant which 1s introduced by an empirical relation

P=sE, (1)

which interconnects the displacement vector D and the field
intens lty E appearing in the udaxwell's eleuuru,ubu-t ¢ equations.

fhe dispersive property of a dielectric medium is described by
the degend ency of this £ on the frequeney w , €.8. by

: D
ew) = = ) (2).
in whieh P eand E are complex amplitudes in the sense that
a stationary electric field E of frequenocy ed produces
a displacement D of the same frequeney. In the general
cases of dispersive media and arbitrary time variation of the
@alectric Lrt;d, especially for example in the case of transient
phenomena, one can not however apply the relation (1), but must
resort to entirely different method. The same 1is true in the
treatment of daxwells ﬂ~uau¢ozs.
Rewriting (2) as
Diw) = 2w) E@) , (21)
- . ‘w,t .
multiplying both sides of this equation b;}&,-ea and integ-
I‘&L.'.,'LL, one has
€
fwt wi
L | pave o= -Lf 2 Ecm)e oleo .
20 27
— —e 4
S50 that by putting
o fewt
N 1 .
Dity= 1| Diwye dw
— b >
oot e 5
E@® = ;uEL Ew) e dw, (3)

o -
$(¢) = ;I:-. f g e Aw.
oo ,

the following reation

ey = [ () E(-1) &t ()



+ 2 ] s o e = t = = - b e 2 il AUR e g s
is obtained. This replaces (1) in the case of dispersive media.

(4) may be simply expressed by an opcrational equation
D= OF (5)

mLme (‘E.) is a lincar operator which operates on a physical
quar .,w, E to produce another one D . Let it be called the
(g)~operator. ARy

"‘ow rsg 1_J one may derive (4) or (2 ) as,explic €
tations of (i) operator from the essumed general 1 n (5
between D a j AN . :

E = &

a2 bkt bnbald In () A winin o
e S\.{UQLA.'ULAUUM A4l '-‘d‘_)‘ and PU

gty = () Sy,

"

o

then from the well known formula
Ew = [ T e da@-1) M,
which means that any '?u_:.ﬁ.:L—hi”on El(t) can be expressed as a linear:
iti 5 cg(—faute't;;,us , one obtains :
Dtt) = f g(t-1") E(A)’
.

=[" i) EG-A) dn'

Thus £(*) may be considered as the "t-representaion" of the
operator (¢) . Similarly if one puts in (5)

: ok

E= et

fwd
3

‘gt
Slw)e = (9 e

——
-
-~

't;[.LE;il for any E—=Efw)-e.wr one has
b= (%) Etw) etwfx E(w) .(f.)ef“’
. Gl
g0 that = Elw) s(w)e” ’

D)= El(w) ¢(w) .
The 4¢(w) may be called the "w-representation” of the(g)opera-

Congider for example the transient response of the circuit

esents the Dirac's J-function.
..:u:e, for exa‘mle K. Imashori: Sound Analysis (in Japanese),

1845
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shown in Fig. 1. The condenser with oblique
lines means that the medium is dispersive
one. In place of the usual electric capacity
€ a linear operator (C) is used to represent
the relation between the electrie quantity 1
and the potential difference 7 ;:

7= (V. (8)
fhe eicult equation becomes
Lt g & @y - (9)
where (C') is the inverse operator of (€) and is defined by .
i 1- (8')
Solving the equation (¢) by the ew -representation, one has
~Lat§lw) + Réw glw)+ ZLL;) ey = E@w) |

e E(w) _ Etw
i(m) T Cw) - Lt R T Zlw) ?

50 that by trans;orming into t- rgpresenta ion ,

gt = ij)e A = -,;Lr[”_g'g)—e dw>

ls obtained. In order to solve directly by t-repregentation on
the other hand, one has to get the inverse operator (cf)express—
ed in t-representation ;

uot

cw = L f i £ dw

and substitute in (9), obtaining an integro-differential
eguation

L‘%}Z + R % - f Cled) 9(4-1 M = EH), Lo

which is t0o be solved. Thus one sees how it is erroneous to
"solve a diffcrentlal equation" mesgely by putting 5/Cg9 in
place of the (¢) in (9).

3

2. Physical lieaning of the (£)-Operator

in the phenomenological treatment of
phenomena, all that 1s needed for its £ roing
physical properties of a given mediuxs s
(g)-operator expressed by an uA:FL‘mmztai sentation.
Sut’ when the equation (5) is regarded as physical
law which enabless one %92 ow the effect <D *ruﬂJVAu by the
cause one might ascribe a aracteristic physiecal model to
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icm).-: Goo + |+ cwT (11)
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®H = 3 f et e o
= 5.-3&) - (io* Zo-) ‘LJ«?— ¥, Epe 12
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Liow the (ge)-operator is devided up intc two components, suech
that P
(fr= L20* (EL)}
— Eoo
D=3 E ;- BR=linE& |
th the lnverse transfo: tion of the last two:
= ]

(&)D,=E | (z9p, = £, (14)
may be transformed into ¥ -representation in the followl iay.
_'i;_“t starting frc ¢ w-representation the equetions
\.LHJ- ’

1 | +tw?
z Ditw) = E« ¥ e Do) :
one & 10 r" 3 antavic a

D.ét) = Ey
e 3;‘_*) + Dol = Ew®, 5

To-Zom

. . DCf:} D.tt-)+ D(e) .
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this being rerarded as a physical law whieh governs the displace-
ment ourrent D ocaused by the applied field £ . The real exis-
tence of such model een ndE however he goneluded from the above
argument alone, it belny unecesgsary to be supplemented by eviden-
ces from other sources. &l1lso the unigueness of the d=ecompositionp
such as given by (15) is not assured as 1is known in the theory
of electrical networks, ., some consideration upon which will be
desoribed in the f£0llowing articles.

7+ Brune's Fheory of Network SynthEL s, and
the Distribution Punation of Puoss
and Eirkwood :

The vhycicel interpretation given in the preceding article
£ the (g)-operator stands on a basis which is essentially the
same as thet of the method of synthesis of two terminal net-
works with given impedance characteristics. The latter problem
in the theory of electrical networks is reyarieﬂ as has been
solved by 0. Brune®In nis theory a ®positive real function® ZQ)
is defined in which the complex variable A= ¥ is used instead
of i@ in the lmpedance Lhﬂ“tlﬁﬂ given as a rational funetion
Z2eew) of Lw ., By separating BuGCLSSlVLl" the geros and poles
of the funcetion 2() the process of synthesizing the network
is determined. It is to be noted here that the order of sSepars-
tion in this procedure is quite arbitrary, so that different
networks having the sanme cgaracberistics might be realized.
The intecresting problem of finding a general relation buvacen
possible networks in this sense might be solved to some exten
by the wetnui éﬁi Idatéd/bf of affing transformation studisd
Ly Kowitt and Cauer. J
Another point which must be taken into sccount in applying
Brune's theory to the present case is that the lmped@ance Tunetion
as given by experiments is not necessarily a rational funetion
of ¢ , so that the representation of it by a rational function
should be regarded as an approximate one. Then it mill baeome
a matter of further consideration how should the and
zeros of the function ZMA) behave when fA{E 1f ﬁ%fﬂ#éﬂ from the
experimentally determined funetion Z(e) by replacing the variable
c«> by X . Thus the poles and zeros of) 2ZA) seem to have no
?LJSiC&l ‘aaning characteristic of the/given ZﬁQ{ but in some
e procedure Of approximation is
aried in deriving this
cases il is even possible t0 Impose some varticular properties
to the zercs and poles and consiruct a network with the desired
¥(cw). Poster's method of network synthesis by using only pure
reactances as-1s shown by his reactance theorem 1s a good
exauple of this.

2) ¢. Brune: J. Math. and Pnjs. 10, No.3, 191 1931.
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‘w) = f 5 (') Slew—w') clw', (1
—De )
ig wihich gte) 1s the «=represcntation,expressed as a complex /fp.;";;‘
function of a real variable w , of the(gyoperator '
one may put - g

Do (w) = £ ‘é‘(mhwf) E(w),
D(w) = j D, (= dw! I 117}

and obtain ¥ il
: Dest (@)

£ Jeo-w)

in order to chenge this ip
POssible representaion

(W) J(w-w') =

for the S-function, then _
D (F

wa{_d_ol{)}“l}l 4 o Dm'(*)} Ew). (18)

= E(w)

to t-—representation, use ls made of g
i

(W s ipw) Lo’

This differential equation corresponds to the case in whieh
a distribution of poles on the imaginary axis is assumed in
Brune's theory.
As-an example of the dispersion theory in whieh a distribution
of poles on the real axis is considered, one may mention that
of R, i, Fuoss and J. G. kirkwood.’) In this theory the "reduced
polarisation™ :

S e .
ch) -3 %o“ Z oo ( 19)
is separated into real and imaginary parts
Ry = T(n) — LHW) ,
; (20)

Cy,
A poj—w“ ’

where @w 1s the « at which H takes its maximum, Then one is
possible to obtain a distribution funetion such that
® Gl
R(w) = —1 dt
. | +({wT ’
o ¢ l\
JG(r)dr e i (21)
1]
is satisfied. Comparing (21) with (11), it can be 21 that GO
represents a continuous distribution of relaxation time
ERT AR G0 o 000 o i Sy T A0 A 0 e e s S5
b . - . e r A - e 2 Op ; -
/J' -tl«-Ao_uluuu a)la ¢ewe LI AWOVA & CVadhaWando Cy /“-‘;‘ 1.',;;,‘.4
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Thus one may set up a set of differential equations in analogy
to (18} :
—Lp,u; = B, |
LAY alDrU*) r ptm} = By, (22)

with a coutlnuous parameter T o

4.Lxpansion into Orthogonal Polynomtals

In the above discussion 1t was assumed thet the funetion E&g)
whieh is to be derived from experiments is known for all values
of its variable w . The real situation is however that the
to at which experiments are made takes § in wost cases only
an isolated set of values, and even if a ontinuous experiment
;]
ald

o

u ¥ §
oe assumned %o be possible, its range of ues ls
finite. This 1s the polut where the CunditiC are essentially
different from those of network synthesis ﬁf Sle I
must be paid for. _

Let €t~} be measured for values of & lying on a regionfl
~- which can be several isolated points~, and consider the
following provlem whieh 1is set up upon this. To approximate
as near as possille the experimental values of gfu) at all

vJ\.aj.‘AuD -
x;: i: 4 ( L C:JZ)
belonging to £2 by the azpressibn
{’5\7 = At QA+ BN+ o g oAl (23)

with properlJ chnosen m in the-sense of the method of least
Squareés. Tor this purpose the method of exparcsion in orthogonal
rolynomials may be reoogmanﬁad. Thus one may choose suitable
one from : '
(i) Legendre's polynomials,

r

\1i) Hermite's polynomlals’,
{11i) Laguerre's vol Jnoomials,

(iv) Tschebyscheff's q-fur ctlons,
as the case may bLe.

ceparating \23) into real and imaginary parts and expanding
P { Zﬂ& Uy polynomials of even order, aund
{ by polynomials of odd order,
S S

the right hand side of (23) 1111 bb obtained by arranging in

powers of A . The form of (23) in& thus determined the
t-reprGSEutat on for (5] bec omes in this case
41 G« Sge &8 urtnocun_l Polynomials, Amer. Wath. 3oe. Aﬁwﬂ/

Collog. Publ. Vol. XXiII. laJ,.
_ “ourant und Hilbert: Wethoden der Mathematischen Physik,
DUs s
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a.,ddf.+atdd,'f..+ vk RiB =B, (24)

)

fhe assumntion of a simple volynomial in (22) is not altogether
in contradiction with the noeitive real function in Brune's
theory. For where wms the % )} in Drune's theory was defined for
all values of X on the ireginary-a>ie, the €@) in the
present case 1ls defined only M e limited range of velues, so
that there remains some indelerminacey in construeting the function
y%og which Miignt result in different forms as the prodedure of
approximation is different. It is however desirable to generalize
the present method Iln tue direction of brune's theory. As a
concluding remark it should be mentioned that it is easy to
divide up the differential equation (24) into a nuaber of
circuit equations such for examples as (15) or (22).

5¢« Sammary

It was shown that there are many possibilities in the physical
interpretation of ean experimentally given £(») by the aid of
physical models which can not be covered by the existing theory
of electrical networks. The remaining problems are then:

(1) To formulate a unifying theory which covers all these
possibitles and includes in particular a general scheme of
mutual transformations between any two of them. This is one of
the most interesting problems which awaits further elucidation.

{11) The degrees of freedom in the possibilities mentioned
above might be ﬂ?aced by formulating the result of multiple
measrments concerning a number of physical quantities other than
the dielectrie constant for the same medium, The theory of
four terminal network synthesis given by Gewertz® is very inst-
ructive in this sense. ‘

(iii)} 1o take other physical and chemical informations intd
account effectively in the formulation of the theory.9 As &
simple exawple 1t 1s remarked here that one may directly apply
the present method to the enelysis &f dielectric constant
measured on a mixture of two polar liguids each obeying the

Debye's law.
lﬂ/ﬁﬁﬂ?lﬁéiﬁﬁfﬁﬁé/iﬁﬁﬁéi'#ﬁﬁ:ﬂ;eveloped exd—TLurther and ve)l
As a concludlng remark the aullior/hopes that the metnod
deseribbd in thils paper would bexapplied to wider field of
natural phenomena other than dielectric dispersion, such for
example as the analysis of brain-waves which is now being
carried on in the author's labLoratory.

e e e S e e S —— - " e

5% Chavles M. Sow Gewerta | Network Synthests , RBajtimove . 1933 .

6) See for exanmple 5. lakeda: On a liew Interpretation of the
Distribution of Relaxation Time, %&e~sag%jvolu£e, p. 044
thes



