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GALVANOPHONE, A Hearing Apparatus for the

Investigation of Very tual ElectricPhenomena in Living Body.

By HpESE Katsumi Imahori, Prof. of the
Institute of low Temperature
Hokkaido University, Sapporo.

Research
Science,

During my investigation on the statistical nature of brain-waves, 1 was
frequently called attention by some medical scientists, among whom may WB
mentioned Prof, Motokaws of the Tohoku University and Prof,Minoshims of
the Hokkaido University, on the disirsbility of an apparatus by which one
may directly hear the wave forms of brain-waves, and obtain facilities for
S12uy08] iaguesis as well as for research works.&amp; the brain-waves are electrical fluctuations of extremel ‘low fr 33
the wain components of which being near 10 cycles per RE .,ja9ncles
im some cases, the ear cannot percieve them in their natural vibration
frequencies. One of the possible methods to change them into audible fre-
juencie”s is to mase a magnetic or a film recording and play back with a
spead sufliciently many times bigher than that of recording, This method
however, requires special manipulations, and so cannot give immediate
informations as the things are going on. 4 second method is .to modulate the
amplitude or the frequency of an audible sound of suitable frequency by the
save form of the brain-waves, This idea was put into' practice on Oct, 1947.

Brgin-waves were amplified by the usual resistance-capacity coupled
smplifier, the output of which was used to modulate the amplitude of a
sinugoidal wave of 360 c.p.s, The sound thus produced showed all the charas-
teristics of brain-waves very clearly, and unexperieaced hearers who attended
ny experiment meee able to distingulsh indivisual brain-waves without
fifficulty. The result of these experiments were reported at the meeting of
the Brain-wmmve Researchers' Association held on Nov, 1947, The first public
presentation of the "brain-wave sound” was made on May 1948at the annual
weeting of the Japanese Physiological Society held at Siigata, |

Frequency modulation was also tried. The effect seemed somewhat better in
varidus respects than that of amplitude modulation, Three identical sets of
amplifiers were constructed for the purpose of amplifying simultaneously
three different phenomena, and their outputs were used to modulate three
different frequencies which were related to each other by some suitable
chord. On listening to the "chorus" thus produced, one maywith some practice
gasp the general characteristics of the phenomena under investigation,

All the slectrical devices used in these trial experiments were operated
from L.C., batteries. In practical applications, however, @ecided advantages
are obtained by operating them from commercial A.C, line, For this purpose
a battery elliminator wae constructed which gave b.C, outputs of 150 volts
and 6,3 volts respectively for plate and filament supply. Difficulties.
arising from A.C, induction were completely elliminated by carefulf electric
and magnetic shielding, but occasional {luctuation of line voltage gave
iisturbing effect which was very difficult to elliminate. Tais elliminator
together with the amplifier sand modulators _ the two modes of modulation
being interchageable _were constructed to form a portable single sei, and
mas shown to the members of Brain-wave Hesearchers' Associafion on Oct.
L948, oo

At this stage of experiment, I happened tec have in handan all A.C,
operating direct current amplirier called “lron Detector®™, which uses an
sxtremely stable slectric interruptor in the imput circuit for ths purpose
of transforming the input voltage into an intermittent electrical vibration
of about 600 c¢.p.s., which is amplified by af resonance smplifier. This
amplifier responds steadily to 1 pV, but as the input impedance is copara-
tively low and so somewhat large current must be applied, this excellent
TL tRons unsuitable for such cases as brain-wave or actiom current of
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heart beating where high input impedance and extremely low current require
special attention.

A project was initiated to modify the Irom Detector so as to be used as
a general purpose A.C. operating amplifier of very small electric phenomena
especially in living bodies. With collaborations of the members of the
physical and physiological sections oi the Hesearch Institute of Applied
Electicity snd thuse of the maker of the Iron Detector, an experimental set
was completed on March 1949, which seemed to fulfill nearly all the require-
ments for practical application, and wac named "Galvanophone? The details
of this apparatus are described in the Iollowing. ; |

In Fig.l is shown &amp; block diagramme of the new apparatus,(I) is a double
T type wave filter which, consisting entirely of resistances and capacities,
glliminates practically all .he electrostatic pick-ups from A.C. line, so
that one may dispense with those inconvenient devices for shielding the input
circuit which have been for example used in the brain-wave study. Only in
the worst condition one is needed to rearrange the general lay out or to
apply simple devices for shieldiug. |

The vibrating iuterzuotor (11) is an electromagnetic vibrator, om the vib-
rating reed of which is attached an electric contact device made of special
matal. The original form of the contact mechanism as supplied by the maker
is shown in Fig.2 (4). In order to avoid jumping effect produced by the
collision of the vibrauving reed with the fixed electrode, the amplitude of
vibration is so adjusted thet the reed just touches the Iixed elecixode at
its extreme position. The proportion of the duration of nske to that of 5
brake is very small, so that the resulting wave form is the so-called impulse
savas. As only the fundamental component of this wave form is amplified in
the following stages, and its amplitude is very small a8 compared to the
actual height of the indivisual lmpulse, this mode of interrupting is very
disadvantageous for our purpose, Fig.2 (8) shows an improved contact mechanim
which gives nearly equsl duration of make and brake, and the jumping eifect
is avoided by a simultaneous motion of both electrodes withthe same phase
but with slightly different amplitudes. The square shaped wave thus produced
is very steady and its fundamental component is sufficient emough to give
necessary amplification.

Between the interruptor and the amplifier is inserted a high pass filter
(111) which passes freely the frequencies to be amplified and stops the low
frequency components of the grid current of the Ilirst amplifying tube from
entering into the interruptor. The filter consists simply of two seiee
stages of series capacity and shunt resistance.The amplifier av) is of the usual resistance-capacity coupled type using
three 606 type tubes, the only diiference being that relatively small
coupling capacities are used so that only the higher feequencies (above
500 G.p.s.) are amplified, The gain is about 100-120 LB, Noises from various
sources, especially those from the first tube are amply preseat at this
stage. 4.C. haw originating from the filament of the first lube also becomes
considerable in. spite of the above precaution. They are, however, complete-
ly elliminated by the following heterodyne filter (V), except those which
cannot be avoided in principles, :

The circuit in ov) is egsentially the same as that of the usual hetero-
dyne frequency TIWine 617 as the mixer tube. The frequency to be
mixed is identical with that of the amplified one, and its voltage is taken
from the oscillator (XI) which was used to excite the interrupto®, la the
plate circuit of the mixer tubs, a low pase filter is*inserted which just
allows those narrow frequency band which are contained in the input electrical
variation _ for example 20 c¢.p.s. in the case of Dbrain-waves _ LO pass
through. Thus we have an amplified waves identical in shape with those of
the input except for a small amount of noises which have passed through the
heterodyne filter. Although the noises may be reduced to any extent as the
width of the pass band is made narrower, but this means a sacrifice of
faithful reproduction,

In order to make the output of the heterodyne filter audible, this is
again used to modulate an audio frequency, the same frequency being employed
as the orevious one. For this purpose a balanced vacuum tube modulator
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operating on square law characteristics is used (VI). After one stage of
voltage amplification (VII), the modulated wave is rectified by a diode
tube which is negatively blassed so us to suppress the lownoise level
described above. The last stage (14) is a power amplifier, and the output
is ready to operate on a meter, a speaker or an oscillograph. ; Bs

In addition to those described above, a vacuum thermopile is provided
which is used to produce &amp; small U.C, voltage for the purpose of zero
balancing (X). The entire circuit diagramme is given in Fig. 3.
The Galvanophone responds to small elsctrical fluctuations of freguencies

0-20 c.p.s. with voltages #&lt;= low as SMV. It is all A.C, operating, and
without any shielding ¢ t  inout leads, no troubles arouses from 4.C.
pick ups. Probable f. *  acation, with some modification when
necessary, are | |

(i) clinical application of action currents produced by heart beating,
(ii) brain-wave study and its practical application.
(iii) various electro-physiological studies,
(iv) measurement of temperature by thermocouples,

and so on. The apparatus was exhibited at the annual meeting of Japanese
Physiclogical Society held at Kyoto this year.

(Sept. 25, 1949.) IR
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CN THE LONG PERIOD FORECASTING BY MEANS OF
HAPMONIC ANALYSIS

by
Katsumi Imahori and
Teisaku Kobayashi

1. Introduction

The most systematic formulation which has ever been made of
the theory of prediction of stationary time series is, to the
best of the anthors' knowledge, that of Kolmogoroff and Wienerl)
which hes recently been developed independently in U.S.S.R. and
in U.S.A. Their theéry 1s essentially a minimization problem
in which a lineer transformation is sought such that when
applied to the past and present values of a stationary time
seydes wt guves the future values of the time series concerned
with as small errors as possible, It is mathematically rigorous,
and covers wide field of applications, so that it appears as if
no room is left for any essentially new contributions except
for possible extentions and applications following the lines
esbablished by the above mentioned authorities.

Meanwhile in the metorological practice of weather fore-
casting there are two leading principles which characterize the
varions existing methods of forecasting. The one useg statistical
methods such for example as the correlation coefficient between
rainfall at a particular district and temperature of sea water
at another, Method of periodogramme analysis may also be
classified into this category. These statistical methods have
one characteristic feature in thst they can do without heaving
any regard to possible physical mechanisms or causality
relatioms between the quantities concerned. By the other prin-
ciple of forecasting on the other hand one seeks for some
physical law which governs the quantities entering intc the
phenomena in question, and which may be effectively used for the
purpose of prediction. The two principles are of course not
independent. Various "theories" put forward for the purpose of
weather forecasting are approximate Yin the sense that they can
not take all the variables into account which have some inter-
connection with the phenomena under consideration, so that one
must necessarily resort to the statistical method.

In the statistical formulation of the prediction problem,
which might well be said to hsve been grought up to almost
completeness by the hand of Kolmogoroff and Wiener, the physical
bases or assumptions on which all the mathematical theories are
buily, and the physical meaning of various functions and
formula occurring in them are apt tc be left out of consideration.

1) i, Wiener: Extrapolation, Interpolation, and Smoothing of
Stationary Time Series, New York, 1949.



Statiscical treatnemts of e. g. meteorological data may some-
time lead to $e deterministic physical laws in case where the
probability becomes mnity, but these are Bpecial cases of minor
importance. In the theory of e.g. Brownian motion, the observed
irregular motion of a particle has a certain statistical
regularity which may be expressed by the well-known Langevin
equation, so that in general one might expect some physical
law which, although unable to give precise prediction in a
deterministic sense, expresses the interrelation of the
mechanism existing in the phenomena under consideration and
enables one to draw conclusions as to the effect produced under
given conditions,

In their study on the statistical analysis of brain-waves,
one of the present authors and Dr. K. Suhars?) have formulated
a-theory in which a linear operator is sought such that when
operated on the observed brain-wave this is transformed into

&amp; completely random time series. The pperational equation
established in this way reduces in the case of Brownian motion
to the Langevin equation, and thus it is to be regarded in
general as a tentative physical law in the above sense. While in
the case of brain waves nothing is known at present as to the
mechanism of generation, so that a purely statistical attack
has been the only one available for any systematic formulation,
there are many examples in which informations from different
sources can be utili,ed inkssuming a physical model which is
govermfed by seme known physical law. In view of the most eff=-
ective application of the statistical theory to the meteorological
forecasting, the most interesting problem is how to combine
these two methods of attack into a single formulation. :

{Although some methodelogical consideration on thisproplem
has been made by the same author in another field of gtudy 3),
the application of the same method to meteorological forecasting
was not put into practice until last summer when Dr. K. Takahashi

of the Neteorological Research Institute visited Sapperc and held
a lecture on the method of periodogramme analysis applied
to his reseerches on sessonal forecasting When the authors! the-
ory has been formulated to a certain extent and some numerical
results obtained as to the probable temperatnre of this wihter at
Sapporo, the authors were made aware of the above mentioned
works of Kolmogomoff and Wiener. The present paper is a revised
formulation of the manuscript prepared for presenting to the
annual meeting of the Japanese Meteorological Seiety held in
Nov, 1950. The authors dc not pretend toc have given a comps
leted thecry, but it is hoped that their contribution adds
something new to the development of the prediction theory as
a physical science,

2. Pundamental Assumptions
el atelahni

Let the quantities which are used to describe the state of
the system under consideration be expressed by functions
x(t, ¥ )'s of time t, in which a paremeter y s 8ssuming
continuous or discrete set of values, 1s used to distinguish
different quantities, In case the variable X depends in a
completely deinite way on the independent variable t, x(t)
is sald to be a causal process, and the procedure by which
this isdetermined from a set of given conditions may be for-
iiateq as follows,



2) K. Imehori and K. Suhara: Folla Psych. et Neul. Jap. Vol,
3, Nos. 2s 137. 1949,
3) K, Imahori: Bulletin of the Res, Inst, Appl. Elect., Vol.
I, No, 1, 1948,
es

A system of finite or denumerably infinte number of functions
it}, it), - - ~ 4.4} 1s introduced which are derived from x{¥} by
a set of transformations

2:(+) = Kd xt} males {32

where [{, K,,... are operators which transform the function X +)
into  4.¢¢}, 4:(ty, -- respectively, The n~dimensional space defined
by the variables 4, 4.,-..,4. may be used to represent possible
states of the system, and 1s called the phase space of the system,
Starting from a"point 4., - - qas on which the system finds itself
et a particular time t »~ 0, one may successively follow the path
of the representatice point as time proceeds, provided that the
limit of the rate of change in coordinates in a small time inter-
val af exists for Als» and is defined as a single valued
function of coordinates 4+), l.0.,

dq,
at heFetgy= vo i

x

SEE SE
=BL RAI (2)

The problem thus reduces to the s#lution of these simultaneous
differential equations under given initial conditions. In dy~-
namical systems they correspond to the equation of motion expressed
in Hamilton's canonical form, and the functional forms of
F,h,-— f. are determined by the dymamical structure of the
system, In the present case the equations (2) are also called
equations of motion of the system, and the funetlions F's are
regarded to be characteristic ofthe system considered, The number
of dimensions n should also be characteristic of the system in
order that the above requirement of unique determination of the
process 1s to be fulfilled, while it is to a certain extent a
matter of convenience, what kind of trfesformations which were
introduced in (1) is to be adopted, Linear trnasformations are
generally used, much for example as

4
ql) = a
gt) = xd 11 (4)

So much for the causal process, A random process igbne which is
~ ,0t a causal process, so that the variables are not determined

§) The more general case where the functions F's contain time
explicitly 1s not considered here although the generalization
might not be very difficult. In equation (2) 9g stands for
14, {ws the same convention will be frequently used throughout
thls paper.

(arilquely as functions of the tims, the only
avallable information being their probability distributions
when the measurement 1s repeated sa sufficient number of times,
Using the same transformation (1), the increment A#%: of each va-
riable in a short time At are distkibuted according to some pro=-
babilitv law. This mav be expressed by a conditional bol oh 1



function depending upon the coordinates 9%, qi =e * 44. andthe time
interval at #&amp;), such that when the coordinates are known to be
Quy Gas ~-- 9» 8t time t , the probability that they glie between
2,4, pe and rds Lc at time 4+44 1s giwen by

VP ¥ ee i ;(9.00 lB hel sat Y ily) Rhyl, ’ (5

Here is involved the assumption that the process is a Markoff
process in which the dbendence of the distribution function
on coordinates is restricted only to the initial coordinates
whatever may be the history previous to it. The plausibility
of this assumption might be seen in the similar situation as
stated in the case of causal processeg.

Using (5) the first and second moments of the changes in the
coordinates in a small thime interval sf are given by

£ ’ y visala) = [of (4g0 Plg,8, a0 40-5
3 2bey (480) = [of (47-900

(6
L {f« {,2,; -

It is assumed that in the limit af-=2e , all the 4:3 and
4.5 become proportional to a# , so that

‘ a: (2Acq) = i arp {
AFD e

B.. (8) = Loe

exist. Them it can be shown that the generalized Fokker-plank
eguation

3

Apx: 1
i 4

f
&gt; T

A 7. ww fl |

fu

2 oi Ling2 Fut &gt;G el fs
bs &gt;. [5 1 - uf Pir na . p| “ nf 24.214 Bit (9.3 J

{S)

holds, where F is regarded as a function of 24 %ey + Ba
and * , and the 1nitial values of coordinates are contained
as parameters. Thus if the functiomal forms of As and Bess
are assumed to be known, the problem reduces to the solution
of the diffusion equation (&amp;) under the initial condition:

5) Dependence upon the absolute position in time &amp;s also left
out of constideration. C.4 . foot-note on page 3



Fae, bmi, 9) = 3 {1-2 gr Go Due)
where Seg is the so-called P&amp;f Dirac's S -function.

(3)

f
The direct physical meaning of the functions A¢s and Bes

1s obvious from their definitions, but another interesting
interpretation may be obtlned in connection with a possible
physical law by which the changes in time of the coordinates
may be described. While the mean rate of change of the coordinate

1¢ is given by A; (4) , the actual rate of change Air willdiffer from 1t by a guantity which is totally unperdictable, so
that one may write

A(g) = fold) | (apc. a
(10)

in which p's asnfunctiins of # have the following properties:

p. {£} = I :

Pi BOS = Bs Sim Ofer - Rn Y (11)
The use in the second equation of the same notation Bis as
In (7) is Justified by calculating the second moments. Thus
from (10) one gets

A
FA

7 pot
9, = A a3 AF 4 FU i

h Ce A Anyi 4
TM

hi AS AY
Ade At

which was to be shown.

It 1s interesting to note that the equation (10) may be
regard: d as a generalization of the equations (2), the functions

A: (3) of the former corresponding to the functions f.(4) of the
latter, and the functions bt) resembling the external
random "forces" in the case of random processeg. They play the
same role as the so-called Langevin equations in the theory
of Brownlan motion, and thus can be regarded as representing
2 possible physical model of the svstem.

5. Theory of Linear Prediction

The differential equation (10) of the preceding article can
not always be consideredas linear, because one has no a priori
knowledge as to the reason why the functional form of Ac fy)
should assume some particular structure except when this is given
or at least assumed from the known structure of the system in

question, It # is easy to give simple examples in which the
the phenomena are governed by nonlinear laws, and so their
complete formulations have not yet been obatined., There seems
nowever to exist one way to get rid of this difféculty. The
key point &amp;s that a statistical ensemble of any physical systems,



linear or mpom~linear, might be considered as equaivalent to a
another one of appropriately chosen linear systems. Sone
consideration along this line are now being made, but the details
will not be described here, and the present repopt will deal
only with the case where a linear l1l-w cin be assumed to exist.

Assuming that A ~

Ac (9
so that the equation (10) becomes

44; -Ts — &gt; 4 1; Pr &lt;3

“a

*
. Zed

(12)

where the coefficients ay's are now considered as constants
characteristic of the system. The corresvonding Fokker-Blanck
equation may be written

&gt;~ “ gb
= 2 ! og es

8 moe Lid 5 [3,713 &lt; Bq 2¢.7%,
‘ ; ot: “ (12,

The solutionof (12) or (13) can Be obtained in various forms.
It is convenfient to begin with an prthogonal transformation
defined By

Im
Pel =

7

&gt; yies Ce; 7;
at

Pe Lt = §,. 4%
= 7

(14.
such That

Cy Q4p =
1
7

. Fé
4 z

#.-
-—

_

7 -

* 2 - » —— [8 2)
i

{15]
s

where A.'s are solutions of a determinantal equations

Det. (ag- &gt; 84) 3”
Then the differential equation will be reduced to

or - Arde = Wyld) r=1,2

(186 }

(17 \
]

where

Cok Y 2 wm C1 ( 18]

sO that

HIEEY = a. f=
m §

om Coe (.) Bei i Ji"
kf

(19)

and the Fokker-planck equation becomes

4h fi ; FP
rE Tg Cr tle Wy ernestJae,LEPJyG1 Meg o (20)
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The solution of thedkast equation was given by Ming &amp;hen Wang
and G,. Eo Uhlenbeck # , thus

pti &gt; # a 2.5% &amp; STEW
ao i IZ 2 a YL Ry :

where V{,t) 1s the Fourier transform of P®&amp;#) , and the
initial value of 2; , The probability function Ps, . is
thus an# n-dimensional Gaussian distribution with the average
value

d=1, a

and the variances
er et | a; Ort

(%- 5 (5-E) = "San [+-¢
The solution of the Langevin eguation (17) can slso bebbtained
easily: x

x " u 2
ih Pi At [ ;

y= | mht € - lw)
jo (24)

t=if,2, ~ —
It is interesting to note that the auto=and cross~ correlation
functions for 2s are intimately related to the above
expressions (22) and (23) , which characterize the probability
funetion, One obtains from (24) oF

- " oo 7:

Laley= [em 86&gt; - Tre tA
(25)

85.
ret Ay ,

in which it is assumed that the real parts of A. Ss are negative,
and [ 1, meang@s average with respect to # , Thus the
function 2 d)satisfies the digfferential equation

A ZsT= aE in $e (26)
which is obtained by equating the righthand side of (12) equal
to zero. This property can be extended to more general cases
in which only the linearity is assumed for the Langevin
equation, Note that the average "motion" given by the equation
(22) has also the same property.

From the above description it 1s seen that the problem of
prediction has been essentially solved, Given the initial
coordinates %.,s the average value of z's and the variances
at time % later can be calculated from (22) and (23),
provided that X;/s are known, Transforming back to the
origi/nal coordinates one obtains the following expressions:

6) Ming Chen Wang and G, E. Uhlenbeck: Rev. Mod, Phys. 17,
305, 1835.
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The last wquations may be utilized to determine #n constants
ays from the experimentally obtainable functions Gks , so that
by solving (15) and (16) one obtains the coefficients .’s
of diagonal transformation and the principal values Aw 2
The "diffusion" constants Gs are determined from (29).

The formal procedure of prediction sketched above will be
seen to be in agreement with that used by Dr, Ogawara in some of

the applications of $his theory of stochastic extrapolation. 7)

In practical application of the abewe theory, howecsr, ons
1s sure to be perplexed with the e¢alculations involving high
order determinants, for in most cases the prder m of the
determinants must be taken so large that neither the evaluation
of these determinants nor the solution of the determinantal
equation (16) can be carried on,
While Dr, Ogawara assugied a very small mumber of dimensions (n=
from 5 to 10), in Wienerls theory all the present andpast values
are needed for the predicticn of the future, The so_luticn of
these difficulties, be found in one or more of the following

projects;dl”ma

{1). Device of an automatic calculator.
(2). In~corporation of various exlsting theorles on

meteorological phenomena for the deterination of system constants,
(3), Formulation of some approximate procedurs,

In the remgfining part of this report will be described some consid=
erations on the 3rd problem listed above.



+, Decomposition of Time Series and
tho Application of Harmonic Analy~? wh

Let the set of n time series 4.1) s be so chosen that
one ia possibl: to devide them into "sets of functions 4/@), iH

- 9 (3 ¢ t Jwat®} , « — mit} , where the funetions oF

sadh sci 1» =n ° different frequency regions, so that using
the forma. V+ transforms of each time ser’

2a F
{pl ¥) x Av A

ne has

£. 7) A = “ - ¥ (32)

In this case the tims series belonging tov different sets are
statistically independent, &lt;n particular one has

Lib, 4, ®], =o, 1%0,2, "mm ; Jem (33)
[t is further assumed, as is often practically the case,that
the characteristic solutions :

7, Tg. oME for Tmo
oo fay Wag FER (54)

have their amplitude spectre falling entirely into one or
other of the two frequency regions, Let A, A,.-- Aa belong
to the first set and the remaining ones tofthe second,
Then from (28) one has

Don pi re
2.3) A ao rd A

Pr “J

= pat!
7

so that the Lansevin equation wiil &amp;1lso be separated,

f

ot Rij % = Fottd, {= 2, co

dl - f i aed in ee

ar Zar 4 fothy dma
Thus the problem is reduced to ones of lower order,

This reduction may be carried on until the overlapping of the
amplitude spectra of different characteristic solutions (34)
violates the assumption used inthe above argument, Even in
the latter case one may proceed further under tolerable
approximations, In favorable cases one would De possible to
attain complete separation of the different js bv the above
procedure without appreciable errors, so that it i: finally
reduced to a number of simplest types of Brownian motion,

pA

At this point it would easily be recognized that the method
of harmonic analyr': nlays an important role &amp;n the practical
naman 1 Een de Ege ~~ Ee = $3 ch : T 53 &amp; in _ sl "

EE Rc sp BR uri et, hE w. NO. 2h, 1940.7) Ogaware i o;Reports from the Central Met, , Obs. Hos Sor 02
DE ea out T, Fujita: .forecasting of Wolf's sunspot

Numbers by Stochastic Sxtrapolation (unpubl. )

o' mhe gimplest case of the prediction of a single time series
armstAnred hermes. TErteaneiom to mitinle time series will be trivial.
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First start with the observed thme series x#) whose values
are suppossd t- be known from sufficently large neestive value
of time -7 tu #=», When the values of xu) are givenva.scretel fo
set of times, one may either regard thém to Le substituted by
2 continuous curve which is obtained by the usual method of
eurve flitting, or replace various integrals in the formulation
for continuous case by proper summation in the discrete case,
AS the nature of errors introduced by these modifications may
be computed by the well-established method of Fourier integrals
it will be left out of considertion here.

Given the function xi) Ts MEY @as
Fourler transform

-

Alp) =

Ch

1 calculate its

Fre,SWILhFidgsatl Pig

(55)
and its absolute magnitude }Am|, +t must be noted here that
the amplitude spectrum thus obtained contains a certain amount
of indefiniteness in the sense that its fine structures in the
frequency bands within a definite frequency difference av = 1/4
are physically meaningless, The amplitude spectrum given by JAP)!
will usually consist of a number of maxima and minima showing
more or less conspicuous precominamcies in certain frequency
vands, each one of ‘whieh corresponding to one or more
characteristic values discussed above, The frequency difference
of adjacent maxima must of course be greater than #4 owing to
the above mentloned indaterminacy, however, only those maxima
should be considered as significant ones whose 2d jacent frequency
differences are appreciably greater than 149,
sc that If there exists a definite upper bdund in frequency ye
this is the case for: example in discrete time seriefp——— the
number of characteristic values should be takes af wmost eipad To 2 hua | T

Now if some of the minima in the spectral curve are found
toc be negligibly small and almost touch the gero axis, cne may
safely take them ss deviding points by which the characteristic
solutions (34) are completely separated into a number offgroups,
As the other extreme case one may consider the one in which two
or more characteristic "resonance" frequencies overlap each
Other so that they fuse into a single maximum,
the real situation is, howecer, that one does not know a priori
how many resonance frequencies there are in a given frequency
band, but it is rather the spectral curve itself that gives
any information about them. One "assumes" that a single maximum
in the spectral curve corresponds to a single resonance
frequency. The amount if-eprospon=a-te-a-sinFle-rescnanee~-of
error due to this assumption may be calculated in some special
cases where some known functional forms are substitured in place
of the experimental curved/=.

The intermediate case in which the adjacent mexima in the
spectral curve are partly resolved but not completely, are the
ones where most of the ambiguities occur. As an approximate
procedure for these cases, one may take either of the two ways:
one assumes a single characteristic value N for a group of
subsidiary maxima which as a shole constitute = single broader
maximum; or one ascribes different values ofg characteristic
solutions to each of the partly resolved maxima, 1t would be
convenient to have some numerical criteria as to mhich one of

the two alternativew should ve taken bu* thafietails wil~
ELreated in 8 subsgseasuent



It thus came to-he conclusion that in sny case one can
with different degrees of approximation reduce the problem
into a Set oy harmonically bounded Brownian motivns including
a8 a special case that of free particle. Using resl variables
the Langevin equations for them can be written ag :

4 Ae wig ~ pio

Te as b "Ly oD

&amp;Wa.
bth pin = 2D H+

The solutions are well Known e) i.e. the conditional
functiong are Gaussion functions with the averages ard
verlances: : 7

a 8 rm ~ #

4 r i Re oy 3# { to. &amp;5
¥

(4-3 a 2
Side. 7

I
&gt; } BY} Anas

+
7

~
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- a! { =

+ i, wd
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oropehllity

respectively for (
series can be ca:

suming up the (4-
In Figs, 1%: rractical

applications, which a: i any routine
works, but only to show h ae promising the present
method is. Fig. la: is a pi . mentnly mean temperatures at
Sapporo from Se. jgedto Feb. j44! . expressed in deviations from the
mean annual change. fEhe amplitude spectrum are shown 'n Fig,
lb, obtained by the usual method of harmonic analysis using 7:
ordirastes, The Predicted BYIorESonaReE-
gcire’ "sg are the observed values.

.n gig.21s shownanotherexampl prerfintion of the
monthly mean temperature obtained by 2 .... “»nk pwocedure,
In this case, the 72 values of mean temper iu: ofian.
ghown in Flg,2A8 wer: subjected to harmonies an lysis and used
to calculate the probable temperaturs of Jan. in the futuee,
The some procedures were repeated for YeP,, ec... The agreement
© + sbservation-dofded cireles~—is falrly gooa. a,

TtWould be interesting to note the appromimate coincidence
of the two predictions based upon different periods. —

{ a rE i See - } ita rier HEE

¢ ¥

vobudes ane gine i Fis. § ¢ logellor with Badr probable
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The last example is shown in Figs . 3 a, b, ¢ for the case
of prediction of the five days mean temperature obtained by
similar calculations, While all these examples are based on the
method of harmonic analysis using 72 ordinates, it would naturally
be expected that better prediction should result by increasing the
number of ordifintes inkhe analysis,

In conclusion the authous wish to express their hearty
thanks to Prof, T, Hori, the diredtor of the Institue to which
they belong, for the interest he have had in this work, and
also to Dr. K, Takahashi and fr, M, Ogawara, both of the
Meteort@logical Research institute, for the valuable discussions
held about the present method, The data used for calculation
in this paperwere supplied by Mr, Y. Morita, of the Meteorological
Observatory at Sapporo, to whom also the authors! sppreciation
should be expressed,
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It in » weli-krown treating the phenomena ef diffu-
sion in th attr ~~ "wlent motion, we hr}e to set
limits to vP~ pr- “errding to the nature of the
problem concérned, = In effect of turbulence produced
by = woedson the diifuri or reg ~r henrt in the atmosphere should
be described in terms oo. those turbulent motion whose SCales are
comparatively smaller then the dimensions of the sp=ce in which
the diffusion takes plncey 1l.e. the ~verage interval between trees
or bronches or le-~ves in the ¢~se of diffusion in the woeds, the
average height of trees in the cose of diffusion behind the O0dS,
the aver-ge extension of the woods in the case of diffusion in the
horizontal plane, orfstill larger scales in the case of diffusion
in the upper stmosphere., Those turbulence whose ncales are lor ger
thon the respective dimensions have only to be t~lan into account
ag changes in the me~n flow,

In the case of homogeneous turbulence extendin~ inPinitelw in
sp~ce, the local difference in the distributi-= = ~ ture
bulence does not come into play. =n in th~ rr-iprmam ooo ~hite
spectrum in optie~l phenomena, and thereby thc threoretieasl | | (fg4
tre~tment becomes considerably simples, The existing theories of
turbulence has been almost confined to such cases, When, however,
we consider the turbulent phenomens occurring nes=r or in the weode
the turbulence having some p-rticular scale plays an importent
role, as in the case of selective =bsorption in optics. A marked
example of such phenomena w~s provided by our observation at Ochi=
ishi which was e~rried out ' im July, 1950. Wig. 1 is the map of
the region near Ochiishi, in which the shaded pertion represents
the woods we chose for observ-tion. Arrows indicate the direction
of prevailing wind. Fig. 5. and B show the energy spectra of ture
bulent flow at A and B(i.e, in front of and behind the woods) res
pectively., These were obtained from the observations esch lasting
10 minutes and simultaneous): ervried out at A and B , by harmonic
an»lysis for 72 €erms and av-—--'n2 over three dsta corresponding
to observations at three sli~r jy different points, Rliminating
the spectra which correspond, te the homogeneous isetropie turbu-
lence in free space (x9 -l2w), we obtain the ones shown by bro-
ken lines. It is a very remsrknble fect thot Rig, 2A shows regular
array of highly distinet frequency bands, while such regular
structure wholly dissvpesrs in Fig. 2B. Pigs 3 and 4 show the energy
spectra which were obtained from the observations within the
woods near -A and at a vacancy in the woods also near 4, respec-
tively. Both of these spectra h=ve highly regular structure
similar to that in Pig. 2A, Such a structure in the spectrum
is presumably due to the peculiar conformation of the land
along the coast. (For the verificstiin of this presumption,
however, further investigations are necessary.) Closer examins-
tion of Tig. 3 and 4 reveals several interesting fe~tures, some
common to both spectra mnd some chearemcteristie to es ch spectrum,
The meaning of these features which May probably be looked for
in connection with the cheoracteristics of woods, will be inves
tigated in future 2









Thus it becomes very important to consider the diffusion due
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Thus if we kne— —% wa gan obtain X(=) by solving (3),
The funetion “fen above is in genersi Jferent ‘rom
the positicn ov “mn which moves with the air. It mar be
regarded. howevc ~nsenting the motion of the psrticle,
in »n much na wo 18k for the motion itself but only the
werage value in gsor~ arpnma,

Integrating (3) we ohtein:
T

X(T)= X(o) [de Ft,
6 “s

Let f be the distance which wan swept by the particle in T
seconds from the initial time * tin for its mean-squere we have
zinice

¥
fh.
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fie 2de
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J(t) is an even function which
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1 gorrelation function
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regpectively, as naturally expected. On the other hand, an ambi-
guity occurs when 4 incresses indefinitelv, Theres mav be con-
gigdered two digtinct cases:

by4T)dr == Cord £ aml

a0

nH

The case in whieh this inteer . becomes irfinit-
into question. Intesratin 4 (2) and (3) wa =i

(. 2 20,1.

£29 Const vo

A-_.3 not come

reep atively, In the case (A), which was treated by Taylor,in {ey losen ito physical meaning, since in that case the ensemble
of particles spre~dg indefinitely and the process cannot be tres-
ted by the method of correlation as a stetionery one with respect
to the coordinate x, Murther criterion is therefore required in
erder te know whether (5) holds or not even in such a case,
Similar argument applies in the case (B)when gz—3e0 , Thus
it remains only the case (B) in which g&gt;—&gt; const, where the pro-
cess can be regarded ~s stationary also with respect to the coore
dinnte, and since the value of the constant ray be token as equal
to X (0), formulas (4) has reasonable meaning also when T-seco ,

From the above argument, it will be seen thnt the method of the
coprelation function involves a difficulty for infinite times.
In next section we propose another method which is appropriste
for treating .the heterogeneous turbulence -s explained in the
introductory section.
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from which i: is seen that the coefficient of mixing A take=
both gi~n~ » ternativelwv -~ time elnpses and finally hecome~ zero.
This is © course the resu..; corresponding to the turbulenc~ which
has » particul-r frequeney, but even if woe take into account the
turbulence componer*s having other frequencies, exactly tha game
result should be obi~ined. Pig. 6 illustrates this fact on the
observed wind velocities. Twn fisures correspond to two different

lengths of time int~ - thus arrive ot.
the conclusion tha a nrbulence obtni ned
by omitting the me~ ‘1 ¢g: vomit “~=nr and the coef-
ficient of mixing bocomes zero. I. ~~ “deed to pick up
familiar ex~mples in which diffusion actu»’ : “os place contrary
to this conclusion, Such cases rust however be reg-rded sssentisl-
ly as the non-stationary ones, in spite of their stailonary appenr-
ance, Hence it seems natural to adopt, »s the coefficient which
describes the diffusion that actuslly occur, the value of A in
(26) when it first takes the Maximum rather than the value at
t Dap . This is approximately equal to the value Pipe, -
If we accept this, it becomes Possible to discur~ cont * -i7--
nlso the diffusion due to the turbulent mass hovir ©
m Particular scale, The value D/Bw; con be calculated
from the frequency spectrum of u(f).

Hence we con conclude that the most reasonable method c¢’
studying the local characteristics of, and the diffusion nhenomen=
occurring in, a turbulent field such ~8 Created by the woods, the
peculiar lay of the land and so on, 1s to first calculate the
frequency spectra from the observed temporesl variation of wind
velocity, at various ovoints in such a field,
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The dielectric constant &amp; of a dielectric is usually defined
as a constant which is Iintr~dured by an empirical relation

D=g¢k, (1)
ahiich interconnects the displacement vector D and the field
intensity E appearing in the udaxwell's electiromagn tic equations.
Lhe dispersive property of a dielectric medium is described by
the dependency of this g¢ on the frequency w , +g. by

D
ew) = E )

in which P and PB are complex amplitudes in th- sense that
a stationary electric field FE of frequency eo Hroduces
a displacement D of the same frequency. In «. ! general
cases of dispersive media and arbitrary time variation of the
electric field, especially for example in the case of transient
phenomena, one can not however apply the relation (1), but must
resort to entirely different method. The same is true in the
treatment of laxwells equations.

Rewriting (2) as

Dl) = 2) BE)

multiplying both sides of this equation
rating, one has &gt;
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which. means that any function Ef) can be expressed
superposition of ox Punctions, one obtains
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Thus g*) may be considered as the "t-reyresentaion”
operator (8) . Similarly if cone puts in i,
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condenser with oblique
ve medium is dispersive

.. whe usual electrig¢ capacity
. linear operator (C) 1s used to represen
relation between the electric quantitv q

ld the potential difference ¥;

7= (OV. y ”~

the ¢licuit emation hegomes

phere

ol dg -( =182 +R + (0=uh,
(C*) is the inverse operator of (€) and is defined by

Y= (Cg.
50lving the equation ({) by the ew -representation, one has

2 ! te We
~Lew* gw) + Row gw) + Zi Joh = Bey |

(w) = E20} es E48 -

1 j= If Ctw)-Lo*e RE Z(w) ?
transforming into t-representation ,

P= 60 ‘coti cw? Ew) ,'“y= = — e Wwgity= 2% = Qw) € dw=&amp;=eis obtained. In order to solve directly by t-repre=entation on
the other hand, one has to get the inverse Operator {c) expresas-
ed in t-representation .

i [ ; oe { 2 ot 4
- al at. od

and substitute in ($Y), obtaining an inteoro.

souation 4 ”
ol 4 / ~~ { au+ “cH ~# = E(tLos + R= | ¢ (+) 91-17 ott 3.

which is t0 be solved. Thus One sees how it is erroneous to
"solve a differential equation" meamly by putting 1/ (gm) in
vlace of the (¢) in (9).

2. Physical lleaning of the (¢)-Cperator

in the phenomenological treatment of electromagnetic
phenomena, all that 1s needed for its formulation concerning
the physical propertie~ Of a given medium is to hmve 1ts
(£)-operator expressed - an experimental t- or e-representation.
But’ when the equation (.,) is regarded as representing a physical
law which enables one to know the effect D produced by the
cause E£ , one might ascribe a characteri~tig physical model to
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Solving the equation {(¢{) by the ew -representation, one has
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ls obtained. In order tO solve directly by t-representation on
the other hand, one has to get the inverse Operator (C7) express-
ed in t-representation
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and substitute in (9), obtaining an intecro-differentisl
equation " A "

» 7 / E&gt; 10)5k, + R Z | ec) 94-1 dt = E(1),
which is t0 be solved. Thus one sees how it is erroneous to
"solve a differential equation" meg~ly by putting 1/Ces) in
place of the (hH in (9).

Th - Wearing of the (g)-fiperator

&lt;n the phenrpen.+l: ~1 “regtmen® OF electromarnet:
phenomena, 1: needrd for ts formulatio
the physicas |} tic of a given medium is to :
(g)-operator expre-~ad ty an experimental t- or ew: sentation.
But’ when the equet! on (5) is regarded as represe.i’ - physical
law which enables one to know the effect D produced by the
cause E , one might ascribe a characteristic vhvsical model to

rE



the G)-operator © aiermal ana io
snown Hamiltonlsaa N -rator 1.
formulation of tH YW :assical

Pebye's theory of diclecgtirsd 1-Kknown, but
in view of the fagt that this neriments
only in a few 1deal cases add . theories
which has been proposed 10 gover C.ie8 are as yet
in no declsive stage, 11 seems wi. . awvegligate on =
posgible physical model which can ? ' inductively from
experimental data, as contrasted to the usual deductive method
in whlch a tentative model 1s first assumed and theoretical
calculations are made to deduce a formula to compare with
experiments. The present report deals with some considerations
nade on the former standpoint.

The 1ldeal case 1s first consldered wherc Lebye's theory
is valid. According to this theory the complex dielectric
sonstant (eo) is given bo

a,

Ge) = Low Jini
this | [+ Cd T

; into # -; rasa tat]

£4 E&gt; pr 5 ( ; ke 1 F 5 a SNe oh toiBg Got —2 ‘wt NaS

= t
(€) -opera Corie ) &gt; { Z,— foe) v1 oe 2

5
Fl

‘ransformling

tro = -~

re

NOW the
that

two components, such

{r= LINnTr (22), Ga— Coo
Sn) = Lo , QlE Tarn

D=GYE ,- Po=UGn E ,
Lranasformation Of the last tw

(HID =-E (Dp, = &amp;,

{

Chien the lnverse

fi 3
may be transformed into ¥-representation
Pirgt glarting {rom the t@-revresentation

7 s14):

in the following way.
of the ecuations

oy 1 | +? i
=, Ditw) = E(w) | —r Dw) = Ete)

one can write th } F-revresentation as

1. :GpePD(t)iEb’
ee “Dee = Dt) + Det)
Leal Hs al i Lie 8¢€ : cua $ ons can be ren 2 Pe ro -

x lcal model ich corresmonds to 1) seus tio 15)



}

this being rc... "ded ax thysical law whieh governs the displace-
nent current Db ~—w ~¢ applied field FEF. The real exis-
sence ©f such a - nowevery be @Oneéluded from the above
argument alone, it Lei. necessary to be supplemented by eviden-
ces from other sources. Also the uniqueness of thc ceomplsitior
such as given by \15) 1: not assured as 1s known in the theory
of electrical networks, , some consideration uvnon which will be
fegsoribhed in the following articles.

‘rune 's Theory of Network Synthesi~,
Yio tkriba on Funetion of Tuoss
rE .

and

{be phycicael interpretation giver in the preceding article
&gt;f the (g}-cperator stands on a basis +igh 1s essentially the
same as that of the method of synthe ~f two terminal net-
yorks with given mpedance characteristics. fhe latter problem
in the theory of electrical networks ls reprarded as has been
solved by OU. BruneIn his theory a "positive real function® Z@)
is 8efined in which the ccumplex variable A=7F+i@ is used instead
&gt;f ew ip the impedance function glven as a rational funetiion

Zicw) of fw , By separating successively the zeros and poles
&gt;f che function ZA) the process of synthesizing the network
ls determined. It is to be noted here that the order of sevpar-
ion in this procedure 1s quite arbitrary, so that different
networks having the same characteristics might Le realized.
‘he interesting problem of finding a general relation Letlween
possible networks in thi= sense mlght be solved 10 some extent

she method gn * of affine transformation studied
Howitt and Cauer.
Another point which must be taken intoaccount in applying

3rune's theory to the present case is that the lampedance funetior
as given by experiments Is not necessarily a rational funetion
of ew , so that the representation of it by a rational function
shoul oe regarded as an approximate one. Then it will become
3 matter of further consideration how *~yléd "&gt;= roles and
zeros of the function ZA behave when Arf I» f from the
axperimentally determined functionZ¢(ewX by replacin. “he variable
ew Lv A . Thus the poles and zeros of) ZA) seem to have no
Wmv +1 meaning characteristic Of thefpgliven ZO) “1% in some

fie procedur~ ~~ ion is)
yaried in deriv: _ p :

zases iL 1s even possible LO Impose sOmMF pe = “roperties
0 the zeros and poles and construct a netv rk = she desired
(cw). Poster's method of network synthesis by using only pure
reactances as-is shown bv his reactance thegrem 1g a good
examnpie of this.
ean a df

Ci. Rrune: J. Math. and Phys. 3g

=
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another point which must taken » applying
3rune's theory to the presenti case 1° ha ‘ange funetion
as given by experiments is not necessarily 1 function
»f ew, so that the representation of it by a r .iunal function
should be regarded as an approximate one. Then 1% wlll become
a matter of further consideration how should -~e noles and
zeros of the function ZW behave when JIE AE ALF kx il from the
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sulllai. ¢ I
rom the

» Awl
wh a L

D9

Uw) = | 5 (a!) Slew’) de
— 0a

+0 whieh gw) is the « -represcntatior,e ressed as a
function ¢! 1 real variable w, «(Tf the[gyoperator
one may puv .

{

complex L,

Doi (©) = Eh lem it

Dw) = [ De
ane

i Dust (@) = Ets)
£6 Seow)

in order to change this int - S ic 3PORSITe rep a, TALY1H0f-representation,useismadeof&amp;
1E(w) J (ww) =erona,J(Ww inw) Le’

for the § - function, then
ED. (# 2

fond Slat) + @ Do = £0).

¥

This differential equation corresponds to the case in whieh
a distribution of poles on the imaginary axis is assumed in
Brune's theory. |

As -an example of the dispersion theory in which a distribution
of poles on the real axis is considered, one may mention that
of R. i. Fuoss and J. G. Kirkwood.?) In this theory the "reduced
wolarisation” :

¢— Loo
Rw) = [groo

separated into real and imegin.
Ql) = T(x) — tH

fog 2ES oq ~~

T

arlyoo oy 3 ox do bon a + x 2 2 1 yz 3 dhWills Ire ner 4D the Ww a v Wwila dl H ta SCS a US
Ayer oF 12 4 Ad oo og A 4 at an — o nn A a
FY O LU LS Ve wbvalll 8 CA=2LylDU™ aun LILO VAI

o

1 G(TQR (w) = Py
Jo | +

I)

| G@ dr
OD

{19

\ 2v

maximum, Then one is
such that

{zs

is satisfied. Comparing (21) with {(11,, i+ can : seen thas G(T)
represents a continuous distribution of relaxation time
FRG = =  ———————

2) RelieTuoss and J.v Kirkwood: dedsus.
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FUTON Giscussion it was assume i that the function gw)
whieh iv ¢ derived from experiments is known for all values
of its variet: ew « The real situatics is however that the
€s al which ex eriments are made tak=s ;- In wm: 4 cases only
an isolated sel of values, and even if a ~ ¢ riment
be assumed to De possible, 1ts range of ~ CW
finite. This 1s the point where the condi iti... Ty
different from those of network synthesis full care
must be paid for. oo

Lei gc) Le measured for values o° - region £2
-- whieh can be several isolated poinuws er the
following problem whieh 1s set up upon + anproxinate
as near as possible the exverimental values of guy at all
points
) As # deo {WCB
oe TT oA 2 , 4

wv La 1 § Ws Th meee Mi

tn == »
= Qo + A,X + A-" "4

«
li

nn

"oe

AaEs Ae :
EL TEhh 5
So fet sn {

with properiy chosen mn in the sense ° tue method of least
Squares. Tor this purpose the method o! expansion in orthogonal
polynomials may be recommended® Thus on» “my choose suitable
one from

(i) Legendre's polvnomirls
\a+) Hermitel!s »  -
(411) Laguerre's
viv) ITschebysche

Loe case may Le.
separating \23, i:

Re |!Ll)

bo {5si»)
the right hand side of (23)
powers of A . The form of (:;
# -representation for (5) bec:

4i Ge SzepB: Orthogonal Polvne
«0lloq. Pues. Vol. Xgizl. lusy.

Courant und Hilbert: iethoden der Mlathematischen Thy

Waiddie
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{24)
The assumption Of a simpli molynomial in (22) is not altogether

in contradiction with the vositive real function in Brune's |
theory. For whereas the 2Z@) in Brune's theory was defined forall values of A on the 5ihn the €¢a) In the
present case is defined only ¥ a limited range of values, so
that there remains some indeterminacy in constructing the function
¥£0) which nifight result in different forms as the progedure of
approximation is different. It is however desirable to generalize
the present method In the direetion of oSrune's theory. a« g
concluding remark it should be mentioned that it is easy ©
divide up une 4ifferentlal equation (24) into a number or»
ocireuilt eruations such for examvles as (15) or (..).

gy y=

It was : are many “nr in the physical
intrw erin in Ew)  - the aid of
physss Lr « an nov be vored by the xisting theory
of elcairicai networks. The remaining problems are thon:

(i) To formulate a unifying theory which covers all these
possiblities and includes in particular a general scheme of
mutual transformations between any two of them. This is one of
the most Interesllng problems which awaits further elucidation.

\11) The degrees of freedom in the possibilities mentioned
above might be rduced by formulating the result of multiple
measrmenis concerning a number of physical quantities other than
the dielectric constant for the same medium, The theory of
four terminal network synthesis given by Gewertz¥® is very inst-
rugilve In this sense.

{1ii] Yo take other physical and chemical informations into
account effectively in the formulation of the theory.®? As a
simple exewple it 1s remarked here that one may directly apply
the present method 0 the analysis &amp;@f dielectric constant
measured on a mixture of two polar licuids each cheying the
Debye's law

; Co z % 4 =his BORE. si mers PEELE wer develop”AS a concluding remark the Se
deseribbd In thls paper would befapplied t.: w.
natural phenomena other than disicectiric dispersion,
example as. the analysis of brain-waves which is now
carried On in the author's laboratory.

53 Chavles M. Son Gewevta ; Network Synthests | Rajtimore . 1933 |

8} Gee for example ». sakeda: On
vistribution of Relaxation Time.

a New Interpretation of
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