GALVANOPHONE, A Hearing Apparatus for the Investigation of Very Small Electric Phenomens in Living Body.

By Katsuni Imahori, Pcof. of the Research Institute of Low Temperature Science, Hokkaido University, Eapporo.

During ny investigation on the statistical nature of brain-waves, I was frequently called attention by, some medical scientists, among whom may be mentioned Prof. Motokema of the Tohoku University and Prof. Minoshims of the Hokkaido University, on the disirability of an apparatus by which one may directly hear the wave forms of brain-waves, and obtain facilities for clinical diagnosis as well as for research works.

As the brain-waves are electrical fluctuations of extremely low frequencies the main components of which being near 10 cycles per second or much lower in some cases, the ear canot percieve them in their natural vibration frequencies. One of the possible methods to change them into audible frequencie's is to maise a magnetic or a film recording and play back with a speed sufficiently many times higher than that of recor ding. This method, however, requires special manipulations, and so cannot give immediate informations as the things are going on. A second method is to modulate the amplitude or the frequency of an audible sound of suitable frequency by the Wave form of the brain-waves. This idea was put into practice on 0ct. 1247.

Brain-waves were amplified by the usual resistance-capacity coupled amplifier, the output of which was used to modulate the amplitude of a sinugoidal wave of $360 \mathrm{c} . \mathrm{p} . \mathrm{s}$. The sound thus produced showed all the charasteristics of brain-weves very clearly, and unexperieaced hearers who attended my experiment meee able to distinguish indivisual brein-waves without difficulty. The result of these experiments mere reported at the meeting of the Brain-asve Researchers' Association held on Nov. 1947. The first public gresentation of the "orain-wave sound" was made on May 1948 at the annual meeting of the Japanese Physiological Society held at Niigata.

Frequency modulation was also tried. The effect seemed somewhat better in varidus respects than that of amplitude modulation. Three identical sets of amplifiers were constructed for the purpose of amplifying simultaneously three different phenomena, and their outputs mere used to modulate three different frequencies which were related to each other by some suitable chord. On listening to the "chorus" thus produced, one may with some practice grasp the general characteristics of the phenomena under investigation.

411 the electrical devices used in these trial experiments were operated. from D.C. batteries. In practical applications, however, decided advantages are obtained by operating them from commercisl A.C. Line. For this purpose a battery elilminator was constructed which gave D.C. outpute of 150 volts and 6.3 volts respectively for plate and filament supply. Difficulties arising from A.C. induction were completely elliminated by carefull electric and magnetic shielding, but occasional fluctuation of line voltage gave distuxbing effect which was very difficult to elliminate. This elliminator together with the amplifier and modulators the two modes of modulation being interchageable - were constructed to form a portable single set, and was shown to the merbbers of Brain-mave Researchers' Association on Oct. 1948.

At this stage of experiment, I happened to heve in hend an all A.C. operating direct current amplifier called "Iron Detector", which uses an extremely stable electric interruptor in the input circuit for the purpose of transforming the input voltage into an intermittent electrical vibration of about $600 \mathrm{c.p.s}$., which is amplified by ah resonance amplifier. This
amplifier responds steadily to $1 \mu \mathrm{~V}$, but as the input impedance is coparatively low and so somemhat large current must be applied, this excellent apparatusis unsuitable for such cases as brain-wave or action current of
heart beating where high input impedance and extremely low current require special attention.

A project was initiated to modify the Iron Detector so as to be used as a general purpose A.C. operating amplifier of very small electric phenomena especially in living bodies. With collaborations of the members of the physical and physiological sections of the Research Institute of Applied Electicity and those of the maker of the Iron Detector, an experimental set was completed on March 1949, which seemed to fulfill nearly all the requirements for practical application, and was named. "Galvanophone". The details of this apparatus are described in the following.

In Fig. 1 is shown a block diagramme of the new apparatus. (I) is a double I type wave filter which, consisting entirely of resistances and capacities, elliminates practically all we electrostatic pick-ups from A.C. line, so that one may dispense with those inconvenient devices for shielding the input circuit which have been for example used in the brain-mave study. Only in the worst condition one is needed to rearrange the general lay out or to apply simple devices for shielding.
The vibrating iuterruptor (II) is an electromagnetic vibrator, on the vibrating reed of which is attached an electric contact device made of special matal. The original form of the contact mechanism as supplied by the maker is shown in Fig. 2 (A). In order to avoid jumping effect produced by the collision of the vibrating reed with the fixed electrode, the amplitude of vibration is so adjusted thet the reed just touches the fixed electrode at its extreme position. The proportion of the duration of make to that of brake is very small, so that the resulting mave form is the so-called impulse Wevas. As only the fundamental component of this wave form is amplified in the following stages, and its amplitude is very small as compared to the actual height of the indivisual impulse, this mode of interrupting is very disadvantageous for our purpose. Fig. 2 (B) showi an improved contact mechanim which gives nearly equal duration of rake and brake, and the jumping effect is avoided by a simultaneous motion of both electrodes with the same phase but with slightly differeat amplitudes. The square shaped weve thus produced is very steady and its fundamental component is sufficient enough to give necessary amplification.

Between the interruptor and the amplifier is inserted a high pass filter (III) which passes freely the frequencies to be amplified and stops the 10 w frequenoy components of the grid current of the first amplifying tube from entering into the interruptor. The filter consists simply of two stages of series capacity and shunt resistance.

The amplifier (IV) is of the usual resistance-capacity coupled type using three 6C6 type tubes, the only difference being that relatively swall coupling capacities are used so that only the higher feequencies (above 500 c.p.s.) are amplified. The gain is about $100-120$ DB. Noises from various sources, especially those from the iirst tube are amply present at this stage. A.C. haw originating from the filament of the first tube also becomes considerable in spite of the above precaution. They are, however, completely elliminated by the following heterodyne filter (V), except those which cannot be avoided in principle.

The circuit in (V) is essentially the same as that of the usual heterodyne frequency converter, using $6 I 7$ as the mixer tube. The frequeacy to be mixed is identical with that of the amplified one, and its voltage is taken from the oscillator (XI) which was used to excite the interruptor. In the plate circuit of the mixer tube, a low pass filter is insertec which just allows those narrow frequency band which are contained in the input electricel variation _ for example $20 \mathrm{c} . \mathrm{p} . \mathrm{s}$. in the case of brain-maves - to pass through. Thus we have an amplified waves identical in shape with those of the input except for a small amount of noises which have passed through the heterodyne filter. Although the noises may be reduced to any extent as the width of the pass band is made narcower, but this means a sacrifice of faithful reproduction.

In order to make the output of the heterodyne filter audible, this is again used to modulate an audio frequency, the same frequency being employed as the previous one. For this purpose a balanced vacuum tube modulator
operating on square law characteristics is used (VI). After one stage of voltage amplification (VII), the modulated wave is rectified by a diode tube which is negatively biassed so as to suppress the low noise level described above. The last stage (IX) is a power amplifier, and the output is ready to operate a meter, a speaker or an oscillograph.

In addition to those described above, a vacuum thermopile is provided which is used to produce a srasll D.C, voltage for the purposte of zero balancing (X). The entire circuit diagramme is given in Fig. 3.

The Gelvanophone responds to small electrical fluctuations of frequencies $0-20 \mathrm{c} . \mathrm{p} . \mathrm{s}$. With voltages as 10 w as $5 \mu \mathrm{~V}$. It is all A.C. operating, and without any shielding of the input leads, no troubles arouses from A.C. pick ups. Probable fields of application, with some modification when necessary, are
(i) clinical application of action currents produced by heart beating, (ii) brain-wave study and its practical application, (iii) various electro-physiological studies, (iv) measurement of temperature by thermocouples, and so on. The apparatus was exhibited at the annual meeting of Japanese Physiological Society held at Kyoto this year.
(Sept. 25, 1949.)

FIG. 1.

FlG $2(A)$

FIG $2(B)$

$F \mid G i 3$

To be printed in the Journal of Meteorological Society of Japan.

ON THE LONG PERIOD FORECASTING BY MEANS OF HARMONIC ANALYSIS

BY
KATSUMI IMARORI and
TEISAKU KOBAYASHI

) -1-
 ON THE LONG PERIOD FORECASTING BY MEANS OF
 HAPMONIC ANAIYSIS
 by
 Katsumi Imahori and
 Teisaku Kobayashi

1. Introduction

The most systematic formulation which has ever been made of the theory of prediction of stationary time series is, to the best of the anthors' knowledge, that of Kolmogoroff and Wienerl) which has recently been developed independently in U.S.S.R. and in U.S.A. Their theøry is essentially a minimization problem in which a linezr transformation is sought such that when applied to the past and present values of a stationary time sertes fit guves the future values of the ilme series concerned with as small errors as possible. It is mathematically rigorous, and covers wide field of applications, so that it appears as if no room is left for any essentially new contributions except for possible extentions and applications following the lines established by the above mentioned suthorities.

Meanwhile in the metorological practice of weather forecasting there are two leading principles which characterime the various existing methods of forecasting. The one uses statistical methods such for example as the correlation coefficient between rainfall at a particular district and temperature of sea water at another. Method of periodogramme analysis may also be classified into this category. These statistical methods have one characteristic feature in that they can do without having any regard to possible physical mechanisms or causality relations between the quantities concerned. By the other principle of forecasting on the other hand one seeks for some physical law which governs the quantities entering into the phenomena in question, and which may be effectively used for the purpose of prediction. The two principles are of course not independent. Various "theories" put forward for the purpose of weather forecasting are approximate \not in the sense that they can not take all the variables into account which have some interconnection with the phenomena under consideration, so that one must necessarily resort to the statistical method.

In the statistical formulation of the prediction problem, which might well be said to have been grought up to almost completeness by the hand of Kolmogoroff and Wiener, the physical bases or assumptions on which all the mathematical theories are buily, and the physical meaning of various functions and formula occurring in them are ap

1) N. Wiener: Extrapolation, Interpolation, and Smoothing of Stationary Time Series, New York, 1949.

Abstract

$-2-$ Statiscical treatnemts of e. g. meteorological data may sometime lead to te deterministic physical laws in case where the probability becomes anity, but these are ppecial cases of minor importance. In the theory of e.g. Brownian motion, the observed irregular motion of a particle has a certain statistical regularity which may be expressed by the well-known Langevin equation, so that in general one might expect some physical law which, although unable to give precise prediction in a deterministic sense, expresses the interrelation of the mechanism existing in the phenomena under consideration and enables one to draw conclusions as to the effect produced under given conditions.

In their study on the statistical analysis of brain-waves, one of the present authors and Dr. K. Suhara2) have formulated a-theory in which a linear operator is sought such that when operated on the observed brain-wave this is transformed into a. completely random time series. The pperational equation established in this way reduces in the case of Brownian motion to the Langevin equation, and thus it is to be regarded in general as a tentative physical law in the above sense. While in the case of brain waves nothing is known at present as to the mechanism of generation, so that a purely statistical attack has been the only one available for any systematic formulation, there are many examples in which informations from different sources can be utilized infassuming a physical model which is governked by oome known physical law. In view of the most effective application of the statistical theory to the meteorological forecasting, the most interesting problem is how to combine these two methods of attack into a single formulation.
lAlthough some methodological consideration on thisproblem has been made by the same author in another field of study 3), the application of the same method to meteorological forecasting was not put into practice until last summer when Dr. K. Takahashi of the Meteorological Research Institute visited Sappero and held a lecture on the method of periodogramme analysis applied to his researches on seasonal forecasting When the authors' theory has been formulated to a certain extent and some numerical results obtained as to the probable temperatare of this winter at Sapporo, the authors were made aware of the above mentioned works of Kolmogoroff and Wiener. The present paper is a revised formulation of the manuscript prepared for presenting to the annual meeting of the Japanese Meteorological. Seiety held in Nov. 1950. The authors do not pretend to have given a compe leted theory, but it is hoped that their contribution adds something new to the development of the prediction theory as a physical scionce.

2. Fundamental Assumptions

Let the quantities which are used to describe the state of the system under consideration be expressed by functions $x(t, \gamma$)'s of time t, in which a parameter γ, assuming continuous or discrete set of values, is used to distinguish different quantities. In case the variable x depends in a completely deinite way on the independent variable t, $x(t)$ is said to be a causal process, and the procedure by which this isdetermined from a set of given conditions may be formulated as follows. $\phi \varnothing$
2) K. Imahori and Ko Suhara: Folia Psycho et Neule Japo Vol. 3, No. 2. 137. 1949.
3) Ko Imahori: Bulletin of the Res. Insto Applo Electo, Volo I, No. 1, 1949。

A system of finite or denumerably infinte number of functions $q_{t}(t), q_{x}(t), \ldots q_{x}(t)$ is introduced which are derived from $x(t)$ by a set of transformations

$$
\begin{equation*}
q_{i}(t)=K_{i}\{x(t)\}, \quad i=1,2, \ldots n \tag{1}
\end{equation*}
$$

where K_{t}, K_{2}, \ldots are operators which transform the function $x(t)$ into $q_{n}(t), q_{1}(t), \cdots$ respectively。 The nodimensional space defined by the variables $q_{4}, q_{2}, \ldots, q_{m}$ may be used to represent possible states of the system, and is called the phase space of the system. Starting from a point $q_{1}, \ldots q_{m}$ on which the system finds itself at a particular time $t=0$, one may successively follow the path of the representatice point as time proceeds, provided that the limit of the rate of change in coordinates in a small time interval Δt exists for $\Delta t \rightarrow \infty$ and is defined as a single valued function of coordinates 4), i.e.,

$$
\begin{equation*}
\frac{d q_{i}}{d t}-F_{i}(q)=0, \quad i=1,2, \cdots n \tag{2}
\end{equation*}
$$

The problem thus reduces to the solution of these simultaneous differential equations under given initial conditions. In dym namical systems they correspond to the equation of motion expressed in Hamilton's canorical form, and the functional forms of $F_{1}, F_{2}, \ldots F_{n}$ are determined by the dymamical structure of the system. In the present case the equations (2) are also called equations of motion of the system, and the functions F_{i} 's are regarded to be characteristic of the system considered. The number of dimensions n should also be characteristic of the system in order that the above requirement of unique determination of the process is to be fulfilled, while it is to a certain extent a matter of convenience, what kind of trnesformations which were introduce d in (1) is to be adopted. Linear trnasformations are generally used, auch for example as

$$
\begin{align*}
& q_{i}(t)=\frac{d i+x}{d t i-1}, \quad i=1,2, \ldots n \tag{3}\\
& q_{i}(t)=x(t+\overline{i-1} x), \quad i=1,2, \ldots n \tag{4}
\end{align*}
$$

So much for the causal process. A random process ispne which is r ot a causal process, so that the variables are not determined
4) The more general case where the functions F_{i} 's contain time explicitly is not considered here although the generalization might not be very difficult. In equation (2) q stands for $q_{1} q_{n}, \cdots q_{n}$ the same convention will be frequently used throughout this paper.
uniquely as functions of the time, the only avallable information being their probability distributions when the measurement is repeated a sufficient number of times. Using the same transformation (1), the increment Δq_{i} of each variable in a short time at are distibuted according to some prom bability law. This may be expressed by a conditional probability
function depending upon the coordinates $q_{i}, q_{i}^{\prime}=q_{i}+\Delta q_{i}$ and the time interval Δt 5), such that when the coordinates are known to be $q_{A}, q_{1}, . . q_{n}$ at time t, the probability that they ϕ lie between $q_{i}^{\prime}, q_{2}^{\prime}, \ldots q_{i}$ and $q_{i}^{\prime}+q_{i}^{\prime}, \ldots$ at time $t+\Delta t$ is given by

$$
\begin{equation*}
P\left(q_{1}, q_{2}, \cdots q_{n} / q_{1}^{1}, q_{2}^{\prime}, \cdots q_{n}^{\prime} ; \Delta t\right) d q_{1}^{\prime} \cdots d q_{n}^{\prime} \text {, } \tag{5}
\end{equation*}
$$

Here is involved the assumption that the process is a Markoff process in which the dependence of the distribution function on coordinates is restricted only to the initial coordinates whatever may be the history previous to it. The plausibility of this assumption might be seen in the similar situation as stated in the case of causal processes.

Using (5) the first and second moments of the changes in the coordinates in a small time interval at are given by

$$
\left.\begin{array}{rl}
a_{i}\left(q_{1}, \Delta t\right) & =\int \cdots \int\left(q_{i}^{\prime}+q_{i}\right) P\left(q_{,} q^{\prime}, \Delta t\right) d q_{1}^{\prime} \cdots d q_{n}^{\prime} \\
b_{i j}\left(q_{1} \Delta t\right) & =\int \cdots \int\left(q_{i}^{\prime}-q_{i}\right)\left(q_{j}^{\prime}-q_{j}\right) P\left(q_{1} q_{i}^{\prime} \Delta t\right) d q_{i}^{\prime} \cdot d q_{n}^{\prime} \tag{6}
\end{array}\right\}
$$

It is assumed that in the limit $\Delta t \rightarrow 0$, all the $a_{i}^{\prime} s$ and $b_{i j}$'s become proportional to Δt, so that

$$
\left.\begin{array}{l}
A_{i}(q)=\lim _{\Delta t \rightarrow \infty} \frac{a_{i}(q, \Delta t)}{\Delta t}, \tag{7}\\
B_{i j}(q)=\lim _{\Delta t \rightarrow 0} \frac{b_{i j}(q, \Delta t)}{\Delta t},
\end{array}\right\} \quad i, j=1,2, \ldots n
$$

exist. Them it can be shown that the generalized Fokker-plank equation

$$
\begin{equation*}
\frac{\partial p}{\partial t}=-\sum_{i=1}^{N} \frac{\partial}{\partial q_{i}}\left[A_{i}(q) \cdot p\right]+\frac{1}{2} \sum_{k \ell} \frac{\partial^{2}}{\partial q_{k} \partial q_{k}}\left[B_{k l}(q) \cdot p\right] \tag{8}
\end{equation*}
$$

holds, where P is regarded as a function of $q_{1} q_{2}, \ldots q_{m}$ and $*$, and the initial values of coordinates are contained as parameters. Thus if the functional forms of A_{i} 's and Biff's are assumed to be known, the problem reduces to the solution of the diffusion equation (8) under the initial condition:
5) Dependence upon the absolute position in time ss also left out of constideration. C.f. foot-note on page 3 .

$$
P\left(q_{1}, q_{2}, \cdots, q_{m}, 0\right)=\delta\left(q_{1}-q_{\infty}, \cdots, q_{n}-q_{n 0}\right)
$$

where $\delta(q)$ is the so-called $\not p \neq f$ Dirac's δ-function.
The direct physical meaning of the functions A_{i}^{\prime} s and $B i_{j}^{\prime}$ s is obvious from their definitions, but another interesting interpretation may be obtained in connection with a possible physical law by which the changes in time of the coordinates may be described. While the mean rate of change of the coordinate
q_{i} is given by $A_{i}(q)$, the actual rate of change q_{i} (at will differ from it ky a quantity which is totally unperdictable, so that one may write

$$
\begin{equation*}
\frac{d q_{i}}{d t}-A_{i}\left(q_{1}\right)=p_{i}(t), \quad i=1,2, \ldots m . \tag{10}
\end{equation*}
$$

in which $p_{:}^{\prime} s$ asifunctiins of t have the following properties:

$$
\left.\begin{array}{c}
\overline{P_{i}(t)}=0, \quad \begin{array}{c}
i=1,2, \ldots m \\
W_{i}\left(t^{\prime}\right) P_{i}\left(t^{\prime \prime}\right)
\end{array}=B_{i j} \delta\left(t^{\prime}-t^{\prime \prime}\right), \quad i, j=1,2, \ldots n \tag{11}
\end{array}\right\}
$$

The use in the second equation of the same notation $B_{i} ;$;'s as in (7) is Justified by calculating the second moments. Thus from (10) one gets

$$
\begin{aligned}
& \Delta q_{i}=A_{i}(q) \Delta t+\int_{0}^{\Delta t} p_{i}(t) d t, \\
& \widetilde{\Delta q_{i} \Delta q_{i}}=A_{i}(q) A_{i}(q)(\Delta t)^{2}+\iint_{i}^{\Delta t} \widetilde{p_{i}\left(t^{\prime}\right) p_{i}\left(t^{\prime \prime}\right)} d t^{\prime} d t^{\prime \prime}, \\
& \lim _{\Delta t \rightarrow 0} \frac{\Delta \bar{q}_{i} \Delta q_{i}}{\Delta t}=B_{i i} \text {, }
\end{aligned}
$$

which was to be shown.
It is interesting to note that the equation (10) may be regard d as a generalization of the equations (2), the functions
$A_{i}(q)$ of the former corresponding to the functions $F_{i}(q)$ of the latter, and the functions $p_{i}(t)$ resembling the external random "forces" in the case of random processes. They play the same role as the so-called Langevin equations in the theory of Brownian motion, and thus can be regarded as representing a possible physical model of the system.

3. Theory of Linear Prediction

The differential equation (10) of the preceding article can not always be consideredas linear, because one has no a prior knowledge as to the reason why the functional form of $A_{i}(q)$ should assume some particular structure except when this is given or at least assumed from the known structure of the system in question. It ϕ is easy to give simple examples in which the the phenomena are governed by nonlinear laws, and so their complete formulations have not yet been obatined. There seems however to exist one way to get rid of this difficulty. The key point Φ s that a statistical ensemble of any physical systems,
linear or non-linear, might be considered as equaivalent to a another one of appropriately chosen linear systems. Some consideration along this line are now being made, but the details will not be described here, and the present report will deal only with the case where a linear law can be assumed to exist.

Assuming that $A_{i}(q)$ is linear in coordinates, one puts

$$
A_{i}(q)=\sum_{i=1}^{n} a_{i j} q_{j}, \quad i^{\prime}=1,2, \ldots A
$$

so that the equation (10) becomes

$$
\begin{equation*}
\frac{d q_{i}}{d t}-\sum_{i} a_{i} q_{i}=p_{i}(t), \quad i=1,2, \ldots \text { not } \tag{12}
\end{equation*}
$$

where the coefficients are now considered as constants characteristic of the system. The corresponding Fokker-Blanck equation may be written

$$
\begin{equation*}
\frac{\partial p}{\partial t}=-\sum_{i j} q_{i j} \frac{\partial}{\partial q_{i}}\left[q_{i} p\right]+\frac{1}{2} \sum_{i j} B_{i j} \frac{\partial^{2} p}{\partial q_{i} \partial q_{j}} \tag{13}
\end{equation*}
$$

The solution of (12) or (13) can ge obtained in various forms. It is convenient to begin with on orthogonal transformation defined by
such that

$$
\begin{equation*}
z_{i}=\sum_{j=1}^{m} c_{i j} q_{j}, i=1,2, \ldots n \tag{14}
\end{equation*}
$$

保

$$
\begin{equation*}
\sum_{j} c_{i j} a_{i k}=\lambda_{i} c_{i k}, \quad i, k=1,2, \ldots m \tag{15}
\end{equation*}
$$

where λ_{i} 's are solutions of a determinantal equations

$$
\begin{equation*}
\text { Det. }\left(a_{i j}-\lambda \delta_{i j}\right)=0 \tag{16}
\end{equation*}
$$

Then the differential equation will be reduced to

$$
\begin{equation*}
\frac{d z_{i}}{d t}-\lambda_{i} z_{i}=\mathbb{W}_{i}(t), \quad i=1,2, \cdots n \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\pi_{i}(t)=\sum_{i} c_{i} f_{i}(t) \tag{18}
\end{equation*}
$$

so that

$$
\begin{equation*}
\overline{\Pi_{i}}\left(t^{\prime}\right) \pi_{i}\left(t^{\prime \prime}\right)=\sigma_{i j} \delta\left(t^{\prime}-t^{\prime \prime}\right)=\sum_{k i} C_{i k} C_{j l} B_{k l} \cdot \delta\left(t^{\prime}-t^{\prime \prime}\right), \tag{19}
\end{equation*}
$$

and the Fokker-planck equation becomes

$$
\begin{equation*}
\frac{\partial P}{\partial t}=-\sum_{i} \lambda_{i} \frac{\partial}{\partial z_{i}}\left[z_{i} P\right]+\frac{1}{2} \sum_{i j} \sigma_{i j} \frac{\partial^{2} p}{\partial z_{i} \partial z_{i}} \tag{20}
\end{equation*}
$$

The solution of thelrast equation was given by Ming then Wang and G_{0} ．E．Uhlenbeck b），thus
where $F(z, t)$ is the Fourier transfor $7 m$ of $P(2, t)$ ，and \sum_{j} ，the initial value of z_{j} ．The probability function $P\left(z_{1} t\right)$ is thus an nodimensional Gaussian distribution with the average value

$$
\begin{equation*}
\overline{z_{i}}=z_{i 0} e^{\lambda_{i} t}, \quad i=1,2, \ldots, n \tag{22}
\end{equation*}
$$

and the variances

$$
\begin{equation*}
\overline{\left(z_{i}-\bar{z}_{i}\right)\left(\bar{z}_{j}-\bar{z}_{j}\right)}=-\frac{\sigma_{i j}}{\lambda_{i}+\lambda_{i}}\left[1-e^{\left(\lambda_{i}+\lambda_{j}\right) \psi_{j}}\right] . \tag{23}
\end{equation*}
$$

The solution of the Langevin equation（17）can slso bepbtained easily：

$$
\begin{equation*}
z_{i}(t)=\int_{0}^{\infty} \pi_{i}\left(t-t^{\prime}\right) e^{\lambda_{i} t^{\prime}} d t^{\prime}=\int_{-\infty}^{t} \pi_{i}\left(t^{\prime}\right) e^{\lambda_{i}\left(t-t^{\prime}\right)} d t^{\prime}, \tag{24}
\end{equation*}
$$

$$
i=1,2, \cdots n
$$

It is interesting to note that the autowand cross－correlation functions for z_{z}^{*}＇s are intimately related to the above expressions（22）and（23），which characterize the probability function．One obtains from（24）

$$
\begin{align*}
Z_{i}(\tau) & =\left[z_{i}(t+\tau) z_{i}(t)\right]_{t}=\int_{0}^{\infty}\left[\pi_{i}\left(t+\tau-\lambda^{\prime}\right) \pi_{j}\left(t-t^{\prime}\right) e_{t}^{\lambda_{i} t^{\prime}+\lambda_{i} t^{\prime \prime}} d t^{\prime} d t^{\prime \prime}\right. \\
& = \begin{cases}4 \frac{\sigma_{i j}}{\lambda_{i}+\lambda_{j}} e^{-\lambda_{j} \tau}, \text { for } c<0 \\
-\frac{\sigma_{i j}}{\lambda_{i}+\lambda_{i}} e^{\lambda_{i} \tau}, & \text { for } c>0 .\end{cases} \tag{25}
\end{align*}
$$

In which it is assumed that the real parts of λ_{i}^{\prime}＇s are negative， and []$_{t}$ meands average with respect to t ．Thus the function $Z_{e_{e}}(t)$ satisfies the difeferential equation

$$
\begin{equation*}
\frac{d Z_{i_{i}}}{d t}=\lambda_{i} Z_{i_{i}}, \quad \text { for } \quad *>0 \text {. } \tag{26}
\end{equation*}
$$

which is obtained by equating the righthand side of（12）equal to zero．This property can be extended to more general cases in which only the linearity is assumed for the Langevin equation．Note that the average＂motion＂given by the equation （22）has also the same property．

From the above description it is seen that the problem of prediction has been essentially solved．Given the initial coordiaates Zios the average value of z_{4}^{\prime} s and the variances at time t later can be calculated from（22）and（23）， provided that λ_{i}＇s are known．Transforming back to the origif／nal coordinates one obtains the following expressions：

6）Ming Chen Wang and G 。 E．Uhlenbeck：Rev。 Mod。 Phys．17， 323．1935．

$$
\begin{align*}
& \text {-8- } \\
& P=\frac{1}{(2 \pi)^{\frac{\pi}{2}} \Delta^{\frac{1}{2}}} \operatorname{Exp}\left[-\frac{1}{2} \sum_{i j} \tilde{D}_{i j}\left(q_{i}-\vec{q}_{i}\right)\left(q_{j}-\bar{q}_{j}\right)\right] \text {, } \\
& \Delta=\operatorname{Det} \cdot\left(D_{i j}\right), \quad\left(\tilde{D}_{i j}\right)=\left(D_{i j}\right)^{-1}, \\
& \bar{q}_{k}=\sum_{i k} \tilde{c}_{i j} c_{j k} q_{k \omega} e^{\lambda_{i} t}, \quad\left(\tilde{c}_{i j}\right)=\left(c_{i j}\right)^{-1} . \tag{27}\\
& \left.\left(q_{i}-\bar{q}_{\epsilon}\right)\left(q_{i}-\bar{q}_{j}\right)=D_{i j}=-\sum_{k t} \tilde{c}_{i k} \tilde{c}_{i \ell} \frac{\sigma_{k t}}{\lambda_{k}+\lambda_{k}}\left[1-e^{\left(\lambda_{k}+\lambda_{\ell}\right) t}\right] .\right\} \\
& q_{i}(t)=\sum_{i} \tilde{c}_{i j} \int_{0}^{\infty} \pi_{j}\left(t-t^{\prime}\right) e^{\lambda_{i} t^{\prime}} d t^{\prime}=\sum_{j} \tilde{c}_{i j} \int_{-\infty}^{t} \pi_{i}\left(t^{\prime}\right) e^{\lambda_{i}\left(t-t^{\prime}\right)} d t^{\prime}, \tag{28}\\
& Q_{i l}(t)=\left[q_{i}(t+\infty) q_{i}(t)\right]_{t} \\
& =\left\{\begin{array}{l}
\sum_{k l} \frac{\tilde{c}_{i k} \tilde{\epsilon_{j l}} \sigma_{k l}}{\lambda_{k}+\lambda_{k}} e^{-\lambda_{l} t}, \text { for } c<0 \\
\sum_{k l} \frac{\tilde{c}_{i k} \tilde{c_{j l}} \sigma_{k l}}{\lambda_{k l}+\lambda_{l}} e^{\lambda_{k} t}, \text { for } \tau>0
\end{array}\right\} \tag{29}\\
& \frac{d Q_{i j}}{d t}-\sum_{k} a_{i k} Q_{k j}=0 \text {, for } A>0 \text {. } \tag{30}
\end{align*}
$$

The last quations may be utilized to determine n^{e} constants $a_{0 j}^{\prime}$'s from the experimentally obtainable functions $Q_{k i}$'s, so that by solving (15) and (16) one obtains the coefficients of diagonal transformation and the principal values $\lambda_{i} s_{i}$. The "diffusion" constants ${\sigma_{i}}^{\prime}$ s are determined from (29).

The formal procedure of prediction sketched above will be seen to be in agreement with that used by Dr. Ogawara in some of the applications of his theory of stochastic extrapolation 7)

In practical application of the above theory, howecer, one is sure to be perplexed with the calculations involving high order determinants, for in most cases the order n of the determinants must be taken so large that neither the evaluation of these determinants nor the solution of the determinantal equation (16) can be carried on.
While Dr Ogawara assured a very small number of dimensions ($n=$ from 5 to 10), in Wiener's theory all the present andpast values are needed for the prediction of the future. The solution of these difficulties, be found in one or more of the following projects:
(1). Device of an automatic calculator.
(2). Incorporation of various existing theories on meteorological phenomena for the deterination of system constants.
(3). Fo emulation of some approximate procedure 。

In the remafining part of this report will be described some considerations on the 3 rd problem listed above.
4. Decomposition of Time Series and
the Application of Harmonic Analysis
87
Let the set of n time series $q_{i}(t)^{\prime} s$ be so chosen that one is possible to devide them into sets of functions $q_{1}^{\prime}(t), q_{2}(t)$,
$\ldots q_{m}(t)$ and $q_{m+1}(t)$, $q_{m}(t)$, where the functions of each set belong to different frequency regions, so that using the formal Fourier transforms of each time series

$$
\begin{equation*}
q_{k}(t)=\int_{-\infty}^{\infty} f_{k}(\nu) e^{2 \pi \nu \nu t} d \nu, \quad k=1,2, \ldots n \tag{31}
\end{equation*}
$$

one has

$$
\begin{equation*}
f_{i}(\nu) \cdot f_{i}(\nu)=0, \quad i=1,2, \ldots m ; i=m+1, \cdots, n . \tag{32}
\end{equation*}
$$

In this case the time series belonging to different sets are statistically independent. In particular one has

$$
\left[q_{i}(t+t), q_{i}(t)\right]_{t}=0, \quad i=1,2, \cdots m ; j=m+1, \cdots n(33)
$$

It is further assumed, as is often pactically the case, that the characteristic solutions

$$
\left.\begin{array}{rl}
z_{i} & =z_{i 0} e^{x_{i} t}, \tag{34}\\
& =0, \text { for } x>0 \\
& , \text { for } t<0
\end{array}\right\} \quad i=1,2, \cdots n
$$

have their amplitude spectra falling entirely into one or other of the two frequency regions. Let $\lambda_{1}, \lambda_{2}, \ldots \lambda_{\text {re }}$ belong to the first set and the remaining ones topthe second. Then from (28) one has

$$
\begin{aligned}
q_{i}(t) & =\sum_{j=1}^{m} \tilde{c}_{i+1} \int_{0}^{\infty} \pi_{j}\left(t-t^{\prime}\right) e^{\lambda_{i} t^{\prime}} d t^{\prime}, \quad i=1,2, \ldots, m \\
& =\sum_{j=m^{++}}^{\infty} \tilde{C}_{i j} \int_{0}^{\infty} \pi_{j}\left(t-t^{\prime}\right) e^{\lambda_{j} t^{\prime}} d t^{\prime}, \quad i=m+1, \cdots, m .
\end{aligned}
$$

so that the Lanqevin equation will also be separated,

$$
\begin{aligned}
& \frac{d q_{i}}{d t}-\sum_{j=1}^{m} a_{i j}^{\prime} q_{j}=p_{i}(t), \quad i=1,2, \ldots m \\
& \frac{d q_{i}}{d t}-\sum_{j=m+1}^{m} a_{i j}^{\prime} q_{j}=p_{i}(t), \quad i=m+1, \ldots, m
\end{aligned}
$$

Thus the problem is reduced to ones of lower order. This reduction may be carried on until the overlapping of the amplitude spectra of different characteristic solutions (34) violates the assumption used inthe above argument. Even in the latter case one may proceed further under tolerable approximations. In favorable cases one would be possible to attain complete separation of the different λ_{i} 's by the above procedure without appreciable errors, so that it is finally reducedto a number of simplest types of Brownian motion.

At this point it would easily be recognized that the method of harmonic analysis plays an important role on the practical 7)M. Ogawara: Reports from the Central Met. Obs. No. 24. 1949. 7) M. Ogawara: Reports fira Forecasting of wolf's sunspot Numbers by Stochastic Extrapolation (unpubl.)
8) The simplest case of the prediction of a single time series is considered here. Extension to mutiple time series will be trivial.

First start with the observed thme series $x(t)$ whose values are supposed to be known from sufficently large negative value of time $-\uparrow$ to $k=0$. When the values of $x(t)$ are given $\sqrt{\text { a iscrete (for }}$ set of times, one may either regard them to be substituted by a continuous curve which is obtained by the usual method of curve fitting, or replace various integrals in the formulation for continuous case by proper summation in the discrete case. As the nature of errors introduced by these modifications may be computed by the well-established method of Fourier integralsph, it will be left out of considertion here.

Given the function $X(t)$, one may easily calculate its Fourier transform

$$
\begin{equation*}
A(v)=\int_{-p}^{0} x(t) e^{-2 \pi i v t} d t, \tag{35}
\end{equation*}
$$

and its absolute magnitude $|A(x)|$. It must be noted here that the amplitude spectrum thus obtained contains a certain amount of indefiniteness in the sense that its fine structures in the frequency bands within a definite frequency difference $\Delta \nu=1 / \$$ are physically meaningless. The araplitude spectrum given by $|A(\nu)|$ will usually consist of a number of maxima and minima showing more or less conspicuous predominancies in certain frequency bands, each one of which corresponding to one or more characteristic values discussed above. The frequency difference of adjacent maxima must of course be greater than $1 / T$ owing to the above mentioned indaterminacy, however, only those maxima should be considered as significant ones whose adjacent frequency differencfos are appreciably greater than $1 / \$$, so that if there exists a definite upper bound in frequencytthis is the case for example in discrete time seriep number of characteristic values should he taken at most equat to $2\left|i_{\text {max }}\right| T$.

Now if some of the minima in the spectral curve are found to be negligibly small and almost touch the gero axis, one may safely take them ss deviding points by which the characteristic solutions (34) are completely separated into a number offgroups, As the other extreme case one may consider the one in which two or more characteristic "resonance" frequencies overlap each other so that they fuse into a single maximum. The real situation is, howecer, that one does not know a priori how many resonance frequencies there are in a given frequency band, but it is rather the spectral curve itself that gives any information about them. One "assumes" that a single maximum in the spectral curve corresponds to a single resonance
 error due to this assumption may be calculated in some special cases where some known functional forms are substitured in place of the experimental curvefls.

The intermediate case in which the adjacent maxima in the spectral curve are partly resolved but not completely, are the ones where most of the ambiguities occur. As an approximate procedure for thass cases, one may take either of the two ways: one assumes a single characteristio value λ for a group of subsidiary maxima which as a shole constitube a single broader maxirnum; or one ascribes different values of ϕ characteristic solutions to each of the partly resolved maxima. It would be convenient to have some numerical criteria as to which one of the two alternativew should ve taken, but thedetails will be treated in a subsequent paper.

It thus came to the conclusion that in any case one can with different degrees of approximation reduce the problem into a set of harmonically bounded Brownian motions including as a special case that of free particle. Using real variables, the Langevin equations for them can be written as:

$$
\begin{equation*}
\frac{d^{2} q}{d t^{2}}+p \frac{d q}{d t}+\omega_{0}^{2} q=\phi(t) \tag{36}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d q}{d t}+\beta q=p(t) \tag{37}
\end{equation*}
$$

with

$$
\overline{p\left(t^{\prime}\right) p\left(t^{\prime \prime}\right)}=2 D \delta\left(t^{\prime}-t^{\prime \prime}\right)
$$

The solutions are well known 6), ie. the conditional probability functions are Gaussion functions with the averages and variances:

$$
\begin{gather*}
\bar{q}=\frac{q_{0}}{\omega_{1}} e^{-\frac{1}{2} \beta t} \sin \omega_{1} t+\frac{q_{0}}{\omega_{1}} e^{-\frac{1}{2} \beta t}\left(\omega_{1} \cos \omega_{1} t+\frac{\beta}{2} A \sin \omega_{0} t\right) \\
\overline{(q-\bar{q})^{2}}=\frac{P}{\beta}\left[1-\frac{1}{\omega_{1}^{2}} e^{-\beta t}\left(\omega_{1}^{2}+\frac{1}{2} \beta^{2} \sin ^{2} \omega_{0} t-\beta \omega_{1} \sin \omega_{1} t \cos \omega_{1} t\right)\right] \tag{38}\\
\omega_{1}^{2}=\omega_{0}^{2}-\beta^{2} / 4
\end{gather*}
$$

and

$$
\left.\begin{array}{l}
\bar{q}=q_{0} e^{-\beta^{t}} \tag{39}\\
(q-\bar{q})^{2} \\
=\frac{p}{\beta}\left[1-e^{-x \beta t}\right]
\end{array}\right\}
$$

respectively for (36) and (37). Those for the original time series can be calculated by linear superposition of \bar{q} 's and summing up the $\overline{(q-\bar{q})^{2}}$'s thus obtained for different components.

In Figs. $1-3$ are shown a few exemples of practical applications, which are intended not to be used as any routine works, but only to show how effective and promising the present method is. Fig. la is a plot of monthly mean temperatures at Sapporo from Sep. 194.4 to Feb. 1951, expressed in deviations from the mean annual change. XZ ike amplitude spectrum are shown in Fig. lb, obtained by the usual method of harmonic analysis using $7 \dot{2}$ ordinates. The predictedrerrors shown by the shaded area. The circles are the observed values. 9 mon fig. 2 is shown another example of prediction of the monthly mean temperature obtained by a different procedure. In this case, the 72 values of mean temperature of/Jan. Shown in Pig. a were subjected to harmonic analysis and used to calculate the probable temperature of Jan. in the future. The same procedures were repeated for $\overline{\mathrm{F}} \dot{\mathrm{b}} .$, etc. The agreement with observation-dotted cireles-is fairly good.
of the two predictions based upon different proximate coincidence of the two predictions based upon different periods.
vatules are gin in fig. 1 c together with their protolle-

The last example is shown in Figs. $3 \mathrm{a}, \mathrm{b}$, c for the case of prediction of the five days mean temperature obtained by similar calculations. While all these examples are based on the method of harmonic analysis using 72 ordinates, it would naturally be expected that better prediction should result by increasing the number of ordiantes inthe analysis.

In conclusion the authous wish to express their hearty thanks to Prof. T. Hori, the diredtor of the Institue to which they belong, for the interest he have had in this work, and also to Dr. K. Takahashi and Dr.M. Ogawara, both of the Meteoralogical Research Institute, for the valuable discussions held about the present method. The data used for calculation in this paperfwere supplied by Mr. Y. Morits, of the Meteorological Observatory at Sapporo, to whom also the authors' appreciation should be expressed.
${ }^{\circ} \mathrm{C}$

Mar.

II

$$
\text { Fig. } 1
$$

Fig. 1.

$$
\text { Fig. } 2 .
$$

Fig. 3

Kotsumi Imohori and Jun-ichi Hori

I. Introduction.

It is a well-known fect that in treating the phenomens of diffusion in the atmosphere coused by turbulent motion, we hade to set limits to the scale of turbulence according to the nature of the problem concerned. Por example, the effect of turbulence produced by a moods on the diffusion of fog or hent in the atmosphere should be described in terms of those turbulent motion whose scales are comparatively smaller than the dimensions of the space in which the diffusion takes place, i.e. the average interval between trees or bronches or lenves in the cnse of diffusion in the woods, the avernge height of trees in the case of diffusion behind the woods, the nvernge extension of the woods in the case of diffusion in the horizontal plane, orfstill larger scales in the case of diffusion in the upper atmosphere. Those turbulence whose scales are lor ger than the respective dimensions have only to be taken into occount as changes in the mean flow.

In the case of homogeneous turbulence extending infinitely in spoce, the local difference in the distribution of scales of turbulence does not come into ploy, as in the analogous case of white spectrum in optical phenomena, and thereby the theoretical ph\&phpt tre tment becomes considerably simple. The existing theories of turbulence has been almost confined to such cases. When, however, we consider the turbulent phenomena occurring near or in the woods, the turbulence having some particular scale plays an important role, as in the case of selective absorption in optics. A marked example of such phenomen wos provided by our observation at ochiishi which was carried out f in July, 1950. Pig. I is the map of the region near Ochiishi, in which the shaded portion represents the woods we chose for observation. Arrows indicate the direction of prevailing wind. Fig. 2A and B show the energy spectra of turbulent flow at A and $B(i, e$ in front of and behind the woods) respectively. These were obtained from the observations each lasting 10 minutes and simultaneously carried out at A and B, by harmonic annlysis for 72 terms and averaging over three data corresponding to observations at three slightly different points. Fliminating the spectr which correspond \& to the homogeneous isotropic turbulence in free space $\left(\mathrm{k}^{-5 / 3} \quad-10 \mathrm{~m}\right)$, Te obtain the ones shown by broken lines. It is a very remarkable foct thot $\mathbb{P i g}$. $2 A$ shoms regular array of highly distinct frequency bands, while such regular structure wholly disappears in Pig. 2B. Fig. 3 and 4 show the energy spectra which were obtrined from the observations within the woods near A and at a vacancy in the woods also near 4, respectively. Both of these spectra have highly regular structure similar to that in Fig. 2A. Such a structure in the spectrum is presumably due to the peculiar conformation of the land slong the const. (For the verification of this presumption, however, further investications are necessary.) Closer examination of Fig. 3 and 4 revenls several interesting fentures, some common to both spectra and some characteristic to en ch spectrum. The meaning of these fentures which may probably be looked for in connection with the characteristics of woods, will be investigoted in future.

Pig. 1.

Fig. $2 B$

Thus it becomes very important to consider the diffusion due to some particular part of the turbulent mass which has a definite scole and is pioked up from the mixture of turbulent masses hoving various mngnitudes. The method of trenting such a problem have hitherto involved so many ambiguities, that in some cases even on erroneous method has been accepted. The purpose of the present paper is to clarify these points as much as pose sible, and further to develop a genernl method for treating the problem of diffusion by turbulent motion, although it has not so far been able to reach the final step.

2. The Method of Correl'ation Function.

We hove merely to consider the motion of the wind. Por simplicity we treat here only the one-dimensional cose. Bxtension to the 3 -dimensional cose will involve no serious difficulty.

Let $u(t)$ be the component ϕ in a suitably chosen direction of wind-celocity at a rixed position, the mean vriue of wioh being assumed to be zero. As the statistical quantity which is deduced fromiu(t) and plays the fundamental role in the problem of diffusion, G. I. Taylor considered the function:

$$
\begin{equation*}
\overline{U(\tau)}=\overline{u(t) u(t+\tau)} \tag{1}
\end{equation*}
$$

$U(\tau) / U(0)$ is the socolled ${ }^{(}$autocorrelation function ${ }^{4}$ of u_{0} Now put

$$
\frac{d x}{d t}=u,
$$

and form

$$
\begin{equation*}
X(\tau)=\overline{x(t) x(t+\tau)}, \tag{2}
\end{equation*}
$$

detemining the integration constant so thot the avergge value of x becomes zero, then it may easily be proved that

$$
\begin{equation*}
\frac{d^{2} X}{d \tau^{2}}=-\Pi(\tau) \tag{3}
\end{equation*}
$$

Thus if we know $U(\tau)$, we can obtain $X(\tau)$ by solving (3). The function $x(t)$ as given above is in general different from the position of a particle which moves with the air. It may be regarded, however, as representing the motion of the particle, in n much as we \notin do not ask for the motion itself but only the average value in some sense.

Integrating (3) we obt-in:

$$
\begin{equation*}
X(\tau)=X(0)-\int_{0}^{\tau} d \tau^{\prime} \int_{0}^{\tau^{\prime}} U\left(\tau^{\prime \prime}\right) d \tau^{\prime \prime} \tag{4}
\end{equation*}
$$

Let l be the distance which \mathbb{l} s swept by the particle in τ seconds from the initial time t, then for its mean-square we have, since

$$
\begin{gather*}
\{x(t+\tau)-x(t)\}^{2}=2\{x(0)-x(\tau)\}, \\
\overline{l^{2}}=2 \int_{0}^{\tau} d \tau^{\prime} \int_{0}^{\tau^{\prime}} \bar{U}\left(\tau^{\prime \prime}\right) d \tau^{\prime \prime} . \tag{5}
\end{gather*}
$$

The correlation function $U(\tau)$ is an even function which in
general has maximum at $\tau=0$ and tends to zero when r becomes large. Fig. 5A and B shows two examples. For sufficiently small $11 \tau,(4)$ and (5) become

$$
\left.\begin{array}{c}
x(\tau)=x(0)-U(0) \frac{\tau^{2}}{2}, \tag{6}\\
\overline{\ell^{2}}=U(0) \tau^{2},
\end{array}\right\}
$$

respectively, as naturally expected. On the other hand, an ambiguity occurs when c increases indefinitely. There may be considered two distinct cases:
(A)

$$
\int_{0}^{\infty} \bar{U}(\tau) d \tau=\text { cons. }=L
$$

$$
\begin{equation*}
\int_{0}^{\infty} U(\tau) d \tau=0 \tag{B}
\end{equation*}
$$

Fig. 5

The case in which this integral becomes infinite does not come into question. Integrating ask (A) and (B) we get
(A) $\overline{l^{2}} \rightarrow 2 L \tau$,
(B) $\quad \overline{l^{2}} \rightarrow$ const. $($ or $\rightarrow \infty)$,
respectively. In the case (A), which was treated by Taylor, in (4) loses its physical meaning, since in that case the ensemble of particles spreads indefinitely and the process cannot be trested by the method of correlation as a stationary one with respect to the coordinate x. Further criterion is therefore required in order to know whether (5) holds or not even in such a case. Similar argument applies in the case (B) when $\overline{\ell^{2}} \rightarrow \infty$. Thus it remains only the case (B) in which $\overline{\ell^{2}} \rightarrow$ cont, where the process can be regarded as stationary also with respect to the cooldinate, and since the value of the constant ray be taken as equal to $X(0)$, formula (4) has reasonable meaning also when $\tau \rightarrow \infty$ 。

From the above argument, it will be seen that the method of the correlation function involves a difficulty for infinite times. In next section $\begin{aligned} & \text { me propose } \\ & \text { another method which is appropriate }\end{aligned}$ for treating the heterogeneous turbulence os explained in the introductory section.

3. The Method of Tokker-Planck.

Such a statistical phenomenon, $\not \subset \neq$ as the wind velocity $u(t)$ Varying complicatedly from time to time, can no more be trented from the causal point of view, and we are anturally compelled to toflke have recourse to the probability theory. For this purpose we define a grobability function $P\left(u_{0} / u, t\right)$, which will describe the characteristic stotistical fenture of the given phenomenon. $P(u / u, t) d u$ gives the probability that the wind velocity at t t will hove the value between u and $u+d u$, when the initial velocity $u_{0}($ ot $t=0)$ is given. In the onse of Markoff process, this function fulfilles the so-cnlled Fokker-Planck equation:

$$
\begin{equation*}
\frac{\partial P}{\partial t}=-\frac{\partial}{\partial u}[A(u) P]+\frac{1}{2} \frac{\partial^{2}}{\partial u^{2}}[B(u) P] \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& A(u)=\lim _{\Delta t \rightarrow 0} \frac{\overline{\Delta u}}{\Delta t} \tag{8}\\
& B(u)=\lim _{\Delta t \rightarrow 0} \frac{\frac{(\Delta u)^{2}}{\Delta t}}{} .
\end{align*}
$$

The function P, and hence the velocity distribution function

$$
\begin{equation*}
\mathbb{W}\left(u_{0}, u ; t\right)=W\left(u_{0}\right) P\left(u_{0} / u ; t\right) \tag{9}
\end{equation*}
$$

can be obtained as the solution of (7) under the given initial condition.

Now the probability function which is necessnry for us is the one with respect to the coordinnte $x_{0} x(t)$ may not, however, be regarded as a simple lfarkoff process, n will be seen from physical considerations. (In the causal process, the future motion cannot be determined uniquely by giving only the vnlue o of x ot $t=0$) In order to be able to treat it still as a Markoff process, we consider x and u simultoneously, regarding them as components of two-dimensional $(x-u)$-lhrkoff process. Thus the probability function is given by $P\left(u_{0}, x_{0} / u_{0} x_{i} t\right)$, and the Fokker-Planck equation becomes:

$$
\begin{gather*}
\frac{\partial P}{\partial t}=-\frac{\partial}{\partial x}\left(A_{1} P\right)-\frac{\partial}{\partial u}\left(A_{2} P\right)+\frac{1}{2}\left\{\frac{\partial^{2}}{\partial x^{2}}\left(B_{11} P\right)+2 \frac{\partial^{2}}{\partial x \partial u}\left(B_{12} P\right)+\frac{\partial^{2}}{\partial u^{2}}\left(B_{22} P\right)\right\} ; \\
A_{1}(x, u)=\lim \frac{\overline{\Delta x}}{\Delta t}, \quad A_{2}(x, u)=\lim \frac{\overline{\Delta u}}{\Delta t}, \tag{10}
\end{gather*}
$$

$$
B_{11}(x, u)=\lim \frac{\overline{(\Delta x)^{2}}}{\Delta t}, \quad B_{12}(x, u)=\lim \frac{\overline{\Delta x \Delta t u}}{\Delta t}, \quad B_{22}(x, u)=\lim \frac{\left(\overline{(\Delta u)^{2}}\right.}{\Delta t} .
$$

As an example, consider the Brownian motion of a free particle. The equations of motion are then given by

$$
\left.\begin{array}{c}
\frac{d x}{d t}-u=0, \tag{11}\\
\frac{d u}{d t}+\beta u=\phi(t)
\end{array}\right\}
$$

where $p(t)$ represents the completely random external force, and
has the property such that

$$
\left.\begin{array}{rl}
p(t) p(t+\tau) & =0, \tau \neq 0, \\
= & 2 D \delta(\tau), \tau=0 . \tag{13}
\end{array}\right\}
$$

Integrating (1i) with respect to t from t to $t+\Delta t$, we obtain

$$
\Delta x=u \Delta t
$$

and hence

$$
\Delta u=-\beta u \Delta t+\int_{t}^{t+\Delta t} p\left(t^{\prime}\right) d t^{\prime}
$$

$$
\begin{gathered}
A_{1}=u, \quad A_{2}=-\beta u, \\
B_{11}=0, \quad B_{12}=0, \quad B_{22}=2 D .
\end{gathered}
$$

Consequently the Fokker-Planck equation becomes

$$
\begin{equation*}
\frac{\partial P}{\partial t}=-u \frac{\partial P}{\partial x}+\beta \frac{\partial u P}{\partial u}+D \frac{\partial^{2} P}{\partial u^{2}} \tag{13}
\end{equation*}
$$

Solving this equation, we obtain the following average values and variances:

$$
\begin{align*}
& \bar{x}=x_{0}+\frac{u_{0}}{\beta}\left(1-e^{-\beta t}\right), \quad \bar{u}=u_{0} e^{-\beta t}, \\
& \overline{(x-\bar{x})^{2}}=\frac{D}{\beta^{2}}\left\{2 t-\frac{4}{\beta}\left(1-e^{-\beta t}\right)+\frac{1}{\beta}\left(1-e^{-2 \beta t}\right),\right. \\
& \overline{(u-\bar{u})^{2}}=\frac{D}{\beta}\left(1-e^{-2 \beta t}\right), \tag{14}\\
& \overline{(x-\bar{x})(u-\bar{u})}=\frac{D}{\beta^{2}}\left(1-e^{-\beta t}\right)^{2}
\end{align*}
$$

Taking the limit $t \rightarrow 0$ or $t \rightarrow \infty$, the variance of x becomes

$$
\begin{align*}
\overline{(x-\bar{x})^{2}} & \rightarrow \frac{2 D}{3} t^{3}, \quad t \rightarrow 0 \\
& \rightarrow \frac{2 D}{\beta^{2}} t, \quad t \rightarrow \infty \tag{15}
\end{align*}
$$

respectively.

4. The Decomposition of Turbulence.

Let $u(t)$ be the observed wind שelocity, and $u_{0}(t)$ its avernge value taken over the time interval ($t-T / 2, t+T / 2)$. If ve
decompose $u(t)$ into

$$
u(t)=u_{0}(t)+u^{\prime}(t)
$$

$u^{\prime}(t)$ represents the turbulent part of the total flow. According to the length of the time interval T, the scale of the largest burbulent mass included in $u^{\prime}(t)$ Varies, so that we must choosethe appropriate length of T, according to the nature of the problem, as suggested in the introduction. Bxtending this method of treatment and in order to investigate the effect on the diffusion of turbulent moss having a particular scale, we decompose u(t) into many parts:

$$
\begin{equation*}
u(t)=u_{0}(t)+u_{1}(t)+\cdots+u_{n}(t) \tag{16}
\end{equation*}
$$

Where $u_{o}(t), u_{1}(t), \ldots$. include the components whose frequencies lie between 0 and ν_{1}, ν_{1} and $\nu_{2}, \ldots . . \nu_{n-1}$ and ν_{n}, respectively. These components can be considered ns independent of each other, so that if we put

$$
\begin{equation*}
\overline{U_{i}}(\tau)=\overline{u_{i}(t) u_{i}(t+\tau),} \quad i=0,1,2, \ldots, n, \tag{37}
\end{equation*}
$$

it is seen that the additivity of correlation functions holds:

$$
\begin{equation*}
U(\tau)=\sum_{m=0}^{n} U_{m}(\tau) \tag{18}
\end{equation*}
$$

It will be possible to make this decomposition appropriately in such a manner, that the frequency spectrum of ench of the $u_{i}(t)$'s can approximately be treated as that of a suitably chosen damped harmonic oscillator, whose angevin equation is

$$
\begin{equation*}
\frac{d^{2} x_{i}}{d t^{2}}+\beta_{i} \frac{d x_{i}}{d t}+\omega_{i}^{2} x_{i}=p_{i}(t) \tag{19}
\end{equation*}
$$

where x_{i} is defined by $u_{i}=d x / d t$, such that its men value becomes zero. Rewriting this into

$$
\left.\begin{array}{c}
\frac{d x}{d t}-u=0 \tag{20}\\
\frac{d u}{d t}+\beta u+\omega_{0}^{2} x=p(t),
\end{array}\right\}
$$

we get the corresponding Fokker-Planck equation

$$
\begin{equation*}
\frac{\partial P}{\partial t}=-\frac{\partial}{\partial x}(u P)+\frac{\partial}{\partial u}\left[\left(\beta u+\omega_{0}^{2} x\right) P\right]+D \frac{\partial^{2} P}{\partial u^{2}} \tag{21}
\end{equation*}
$$

where for simplicity we omitted the indices. By solving this equation the following values for averages and variances are obtained 2 being two dimensional Gaussian distribution with respect.to x and u.

$$
\begin{align*}
& \bar{x}=\frac{u_{0}}{\omega_{1}} e^{-\frac{1}{2} \beta t} \sin \omega_{1} t+\frac{x_{0}}{\omega_{1}} e^{-\frac{1}{2} \beta t}\left(\omega_{1} \cos \omega_{1} t+\frac{\beta}{2} \sin \omega_{1} t\right), \\
& \bar{u}=\frac{u_{0}}{\omega_{1}} e^{-\frac{1}{2} \beta t}\left(\omega_{1} \cos \omega_{1} t-\frac{\beta}{2} \sin \omega_{1} t\right)-\frac{\omega_{0}^{2}}{\omega_{1}} x_{0} e^{-\frac{1}{2} \beta t} \sin \omega_{1} t, \\
& \overline{\omega_{0}^{2}(x-\bar{x})^{2}}=\frac{D}{\beta}\left[1-\frac{1}{\omega_{1}^{2}} e^{-\beta t}\left(\omega_{1}^{2}+\frac{1}{2} \beta^{2} \sin \omega_{1} t+\beta \omega_{1} \sin \omega_{1} t \cos \omega_{1} t\right)\right] \\
& \overline{(u-\bar{u})^{2}}=\frac{D}{\beta}\left[1-\frac{1}{\omega_{1}^{2}} e^{-\beta t}\left(\omega_{1}^{2}+\frac{1}{2} \beta^{2} \sin ^{2} \omega_{1} t-\beta \omega_{1} \sin \omega_{1} t \cos \omega_{1} t\right)\right] \tag{22}\\
& \overline{\omega_{0}(x-\bar{x})(u-\bar{u})}=\frac{D \omega_{0}}{\omega_{1}^{2}} e^{-\beta t} \sin ^{2} \omega_{1} t
\end{align*}
$$

where

$$
\omega_{1}^{2}=\omega_{0}^{2}-\beta^{2} / 4
$$

When $t \rightarrow 0$ and $t \rightarrow \infty$ the variance of x becomes

$$
\left.\begin{array}{rl}
\overline{(x-\bar{x})^{2}} & \rightarrow \frac{2 D}{3} t^{3}, \quad t \rightarrow 0 \tag{23}\\
& \rightarrow \frac{D}{\beta \omega_{0}^{2}}, \quad t \rightarrow \infty
\end{array}\right\}
$$

respectively, Compnring this with (15), we see that for $t \rightarrow 0$ exactly the same result is obtnined, while for $t \rightarrow \infty$, the variance now tokes the constant value. Thus in this case we come to the conclusion that in stationary state there occurs no diffusion, which vould ot first glance highly cuxious. This does not, however, involve any contradiction, as may be seen, for exnmple, from the fact that the air surrounding the enxth forms a stable lyyer. This result mounts to snying that, to the diffusion phenomenon in the stotionary state, only thot component $u_{0}(t)$ of the temporal variation of wind velocity $u(t)$, which contain the zero frequency, makes a contribution.
5. The Coefficient of Mixing * due to Turbulence.

Decompose the wind velocity $u(t)$ into mean and turbulent velocities:

$$
\begin{equation*}
u(t)=\bar{u}(t)+u^{\prime}(t) \tag{24}
\end{equation*}
$$

and let

$$
\begin{equation*}
R(\tau)=\overline{u^{\prime}(t) u^{\prime}(t+r)} \tag{35}
\end{equation*}
$$

be the correlation coefficient of $u^{\prime}(t)$. If we define the coefficient of mixing by

$$
\begin{equation*}
A=\int_{0}^{t} R(\tau) d \tau \tag{26}
\end{equation*}
$$

according to Taylor, the diffusion equation may be written

$$
\begin{equation*}
\frac{\partial \bar{s}}{\partial t}+\bar{u} \frac{\partial \bar{s}}{\partial x}=\frac{\partial}{\partial x}\left(A \frac{\partial \bar{s}}{\partial x}\right) \tag{37}
\end{equation*}
$$

In the stationnyy case the upper limit of the integral ($\frac{a}{6}$) should be taken as infinite. Using the results of the preceding section, we obtrin,
so that

$$
\begin{equation*}
R(\tau)=\frac{D}{\beta} e^{-\frac{\beta}{2} t}\left(\cos \omega, \tau-\frac{\beta}{2 \omega_{1}} \sin \omega_{1} \tau\right), \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
A=\frac{D}{\beta \omega_{1}} e^{-\frac{\beta}{2} t} \sin \omega_{1} t \tag{29}
\end{equation*}
$$

* Austauschkoeffizient.
from which it is seen that the coefficient of mixing A takes both signs alternatively as time elapses and finmlly becomes zero. This is of course the result corresponding to the turbulence which has a particular frequency, but even if we take into account the turbulence components having other frequencies, exactly the same result should be obtained. Fig. 6 illustrates this fact on the observed mind velocities. Two figures correspond to two different

lengths of time interval used in nveraging. We thus arrive at the conclusion that in the stationnry field of turbulence obtai ned by omitting the mean flow, diffusion does not occur and the coefficient of mizing becomes zero. It is ensy t申 indeed to pick up familinr examples in which diffusion actually takes place contrary to this conclusion. Such cases must homever be regnrded essentinlIy as the non-stationnry ones, in spite of their staionary sppenrance. Hence it seems natural to ndopt, as the coefficient which describes the diffusion that acturlly occur, the value of A in (29) when it first takes the maximum rather than the value at $t \rightarrow \infty$. This is approximately equal to the value $D / \beta \omega_{1}$. If we accept this, it becomes possible to discuss conveniently
 a particular scale. The value $D / \beta \omega$, con be colculated directly from the frequancy spectrum of $u(t)$.

Hence we can conclude that the most reasonnble method of studying the local charocteristics of, and the diffusion phenomena occurring in, a turbulent field such ns crented by the woods, the peculiar lay of the land and so on, is to first calculate the frequency spectra from the observed tempornl variation of wind velocity, at various points in such a field.

Translated from the Bulletin of the Research Institute of Applied Electricity, Vol. I, NO. 1, 1949.

THEORY OF

ON THS ANOMALOUS DISPJRSION OE DIELECTRICS

By

KAISUNI IMAHIORI

THEORY OF
ON THE AHOMAOUS DISPERSION OR DIELECTRICS
By
KAPSUNI IMAHORI

1. The Dielecric Constant Considered as an Operator

The dielectric constant ε of a dielectric is usually defined as a constant which is introduced by an empirical relation

$$
\begin{equation*}
D=\varepsilon E \tag{1}
\end{equation*}
$$

which interconnects the displacement vector D and the field intensity E appearing in the maxwell's electromagnetic equations. The dispersive property of a dielectric medium is described by the dependency of this ε on the frequency $\omega, e .8$. by

$$
\begin{equation*}
\varepsilon(\omega)=\frac{D}{E}, \tag{2}
\end{equation*}
$$

In which D and E are complex amplitudes in the sense that a stationary electric field E of frequency $\boldsymbol{\omega}$ produces a displacement D of the same frequency. In the general cases of dispersive media and arbitrary time variation of the electric field, especially for example in the case of transient phenomena, one can not however apply the relation (1), but must resort to entirely different method. The same is true in the treatment of liaxwelis equations.

Rewriting (2) as

$$
\begin{equation*}
D(\omega)=\Sigma(\omega) E(\omega) \tag{1}
\end{equation*}
$$

multiplying both sides of this equation $b y t / 2 \pi \cdot e^{i \omega t}$ and integrating, one has

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} D(\omega) e^{i \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \varepsilon(\omega) E(\omega) e^{i \omega t} d \omega
$$

So that by putting

$$
\left.\begin{array}{l}
D(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} D(\omega) e^{i \omega t} d \omega \\
E(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} E(\omega) e^{i \omega t} d \omega \\
\varepsilon(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \varepsilon(\omega) e^{i \omega t} d \omega,
\end{array}\right\}
$$

the following reation

$$
\begin{equation*}
D(t)=\int_{-\infty}^{\infty} \varepsilon\left(t^{\prime}\right) E\left(t-t^{\prime}\right) d t^{\prime} \tag{4}
\end{equation*}
$$

Is obtained. This replaces (1) in the case of dispersive media. (4) may be simply expressed by an operational equation

$$
D=(\varepsilon) E
$$

where (ε) is a linear operator which operates on a physical quantity E to produce another one D. Let it be called the (ε)-operator.

Conversthe one may derive (4) or $\left(2^{\prime}\right)$ as an aplioit representations of the (ε)-operator from the assumed general relation (5)

$$
E=\delta(t)
$$

be substituted in (5) and put

$$
\begin{equation*}
\varepsilon(t)=(\varepsilon) \delta(t) \tag{6}
\end{equation*}
$$

then from the well known formula

$$
E(t)=\int_{-\infty}^{\infty} E\left(t^{\prime}\right) \delta\left(t-t^{\prime}\right) d t^{\prime}
$$

which. means that any function $E(t)$ can be expressed as a linear superposition of δ-functions, one obtains

$$
\begin{aligned}
D(t) & =\int_{-\infty}^{\infty} \varepsilon\left(t-t^{\prime}\right) E\left(t^{\prime}\right) d t^{\prime} \\
& =\int_{-\infty}^{\infty} \varepsilon\left(t^{\prime}\right) E\left(t-t^{\prime}\right) d t^{\prime} .
\end{aligned}
$$

Thus $\varepsilon(t)$ may be considered as the "t-representaion" of the operator (ε) . Similarly if one puts in (5)

$$
E=e^{i \omega t}
$$

and

$$
\varepsilon(\omega) e^{i \omega t}=(\varepsilon) e^{i \omega t}
$$

then for any $E=E(\omega) e^{i \omega t}$ one has
so that

$$
\begin{aligned}
D=(\varepsilon) E(\omega) e^{i \omega t} & =E(\omega) \cdot(\varepsilon) e^{i \omega t} \\
& =E(\omega) \varepsilon(\omega) e^{i \omega t} \\
D(\omega)=E(\omega) & \varepsilon(\omega) .
\end{aligned}
$$

The $\varepsilon(\omega)$ may be called the " $\boldsymbol{\omega}$-representation" of the (ε)-perator. Consider for example the transient response of the circuit 1) Here $\delta(t)$ represents the Dirac's δ-function. See, for example, K. Imahori: Sound Analysis (in Japanese), 1949.

$-3-$
shown in Wig. 1. The condenser with oblique lines means that the medium is dispersive one. In place of the usual electric capacity C a linear operator (C) is used to represent the relation between the electric quantity q and the potential difference ∇ :

$$
\begin{equation*}
q=(C) \nabla . \tag{8}
\end{equation*}
$$

The oiouit equation becomes

$$
\begin{equation*}
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\left(C^{-1}\right) q=E(t) \tag{9}
\end{equation*}
$$

where $\left(C^{-1}\right)$ is the inverse operator $O f(C)$ and is defined by

$$
\nabla=\left(C^{-1}\right) q
$$

Solving the equation (9.) by the $\boldsymbol{\omega}$-representation, one has

$$
\begin{aligned}
&-L \omega^{2} q(\omega)+R i \omega q(\omega)+\frac{1}{C(\omega)} q(\omega)=E(\omega), \\
& q(\omega)=\frac{E(\omega)}{1 / C(\omega)-L \omega^{2}+R i \omega}=\frac{E(\omega)}{Z(\omega)},
\end{aligned}
$$

so that by transforming into t-representation,

$$
q(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} q(\omega) e^{i \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{E(\omega)}{Z(\omega)} e^{i \omega^{t}} d \omega
$$

is obtained. In order to solve directly by t-representation on the other hand, one has to get the inverse operator (C^{-1}) expressed in t-representation

$$
C^{-1}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{(\omega \omega)} e^{i \omega t} d \omega
$$

and substitute in (g), obtaining an integro-differential
equation

$$
\begin{equation*}
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\int_{-\infty}^{\infty} C^{-1}\left(t^{\prime}\right) q\left(t-t^{\prime}\right) d t^{\prime}=E(t) \tag{10}
\end{equation*}
$$

which is to be solved. Thus one sees how it is erroneous to "solve a differential equation" merely by putting $1 / C(\omega)$ in place of the $\left(C^{-1}\right)$ in $(9)^{2}$.

2. Physical Meaning of the (ε)-operator

In the phenomenological treatment of electromagnetic phenomena, all that is needed for its formulation concerning the physical properties of a given medium is to have its (ε)-operator expressed by an experimental t-or $\boldsymbol{\omega}$-representation. But when the equation (5) is regarded as representing a physical law which enables one to know the effect D produced by the cause \boldsymbol{E}, one might ascribe a characteristic physical model to

Fig. 1

-3-

8. 9. The condenser with oblique that the medium is dispersive se of the usual electric capacity r operator (C) is used to represent 2) between the eleotrio quantity q

$$
\begin{equation*}
q=(C) \nabla . \tag{8}
\end{equation*}
$$

> The clout equation becomes

$$
\begin{equation*}
L \frac{d q}{d t^{2}}+R \frac{d q}{d t}+\left(C^{-1}\right) q=E(t) \tag{9}
\end{equation*}
$$

where $\left(C^{-1}\right)$ is the inverse operator of (C) and is defined by

$$
\nabla=\left(C^{-1}\right) q .
$$

Solving the equation (9) by the ω-representation, one has

$$
\begin{aligned}
-L \omega^{2} q(\omega)+ & R i \omega q(\omega)+\frac{1}{C(\omega)} q(\omega)
\end{aligned}=E(\omega), \quad E(\omega), ~ E(\omega)=\frac{E(\omega)}{Z(\omega)},
$$

so that by transforming into t-representation

$$
q(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} q(\omega) e^{i \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{E(\omega)}{2(\omega)} e^{i \omega^{t}} d \omega .
$$

is obtained. In order to solve directly by t-representation on the other hand, one has to get the inverse operator (C^{-1}) expressed in t-representation

$$
C^{-1}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{(\omega \omega)} e^{i \omega t} d \omega
$$

and substitute in (g), obtaining an integro-differential equation

$$
\begin{equation*}
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\int_{-\infty}^{\infty} c^{-1}\left(t^{\prime}\right) q\left(t-t^{\prime}\right) d t^{\prime}=E(t), \tag{10}
\end{equation*}
$$

which is to be solved. Thus one sees how it is erroneous to "solve a differential equation" merely by putting $1 / C(\omega)$ in place of the $\left(\mathrm{C}^{-1}\right)$ in (9).

$$
\text { 2. Physical Meaning of the }(\varepsilon) \text {-Operator }
$$

In the phenomenological treatment of electromagnetic phenomena, all that is needed for its formulation concerning the physical properties of a given medium is to have its (ε)-operator expressed by an experimental t- or $\boldsymbol{\omega}$-representation. But when the equation (5) is regarded as representing a physical law which enables one to know the effect D produced by the cause \boldsymbol{E}, one might ascribe a characteristic physical model to
ordinary.
the (ε)-operator. (its formal analogy being found in the wellknown Hamiltonian \downarrow operator in quantum meohanios or in some formulation of the \downarrow clas\$ical mechanics.

Debye's theory of dielectric dispersion is well-known, but in view of the fact that this theory agrees with experiments only in a few ideal oases and that various reined theories which has been proposed to cover more general ones are as yet In no decisive stage, $1 t$ seems worth while to investigate on a possible physical model which can be derived inductively from experimental data, as contrasted to the usual deductive method in which a tentative model is first assumed and theoretical calculations are made to deduce a formula to compare with experiments. The present report deals with some considerations made on the former standpoint.

The ideal case is first considered Where Debye 's theory is valid. According to this theory the complex dielectric constant $\varepsilon(\omega)$ is given by

$$
\begin{equation*}
\varepsilon(\omega)=\varepsilon_{\infty}+\frac{\varepsilon_{0}-\varepsilon_{\infty}}{1+i \omega \tau} . \tag{11}
\end{equation*}
$$

Aransiorming this into t-representation, one obtains

$$
\begin{align*}
\varepsilon(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\varepsilon_{\infty}+\frac{\varepsilon_{0}-\varepsilon_{\infty}}{1+i \omega \tau}\right) e^{i \omega t} d \omega \\
& =\varepsilon_{\infty} \delta(t)+\left(\varepsilon_{0}-\varepsilon_{\infty}\right) \frac{1}{\tau} e^{-\frac{t}{\tau}}, \quad t>0 \tag{12}
\end{align*}
$$

Now the (ε-operator is devided up into two components, such that

$$
\left.\begin{array}{l}
(\varepsilon)=\left(\varepsilon_{1}\right)+\left(\varepsilon_{2}\right), \\
\varepsilon_{1}(\omega)=\varepsilon_{\infty}, \quad \varepsilon_{2}(\omega)=\frac{\varepsilon_{0}-\varepsilon_{\infty}}{1+i \omega \tau}, \tag{13}\\
D_{1}=\left(\varepsilon_{1}\right) E \quad, \quad D_{2}=\left(\varepsilon_{2}\right) E,
\end{array}\right\}
$$

then the inverse transformation of the last two:

$$
\begin{equation*}
\left(\varepsilon_{1}^{-1}\right) D_{1}=E, \quad\left(\varepsilon_{2}^{-1}\right) D_{2}=E \tag{14}
\end{equation*}
$$

may be transformed into \boldsymbol{t}-representation in the following way. fIrst starting from the $\boldsymbol{\omega}$-representation of the equations (14):

$$
\frac{1}{\varepsilon_{\infty}} D_{1}(\omega)=E(\omega), \quad \frac{1+i \omega ?}{\varepsilon_{0}-\varepsilon_{\infty}} D_{2}(\omega)=E(\omega)
$$

one can write them in t-representation as

$$
\left.\begin{array}{l}
\frac{1}{\varepsilon_{\infty}} D_{1}(t)=E(t) \tag{15}\\
\frac{1}{\varepsilon_{0}-\varepsilon_{\infty}}\left\{\tau \frac{d D_{2}(t)}{d t}+D_{2}(t)\right\}=E(t),
\end{array}\right\}
$$

The physical meaning $D(t)=D_{1}(t)+D_{2}(t)$. \#f $k 6 / k 7$ circuit diagramme shown in IV. 2 . Thus one may picture a polite physical model which corresponds to the equations (15),

$$
\begin{gathered}
\text { L!d'S } \\
\left.\square=\frac{\square}{\square}=\frac{\square}{\varepsilon^{4}}\right\} \frac{\varepsilon^{c}-\varepsilon^{80}}{s}
\end{gathered}
$$

-5-

this being recorded as a physical law which governs the displacement current D caused by the applied field E. The real axisthence of sum model as not however be concluded from the above argument alone, it benne necessary to be supplemented by evidenes from other sources. Also the uniqueness of the decomposition such as given by (15) is not assured as is known in the theory of electrical networks, \& sone consideration upon which will be described in the following articles.

> 3. Prune's Theory of Network Synthesis, and the Distribution Function of Fuoss and Kirkwood

The phyciosi interpretation given in the preceding article of the (ε)-operator stands on a basis which is essentially the same as that of the method of synthesis of two terminal networks with given impedance characteristics. The latter problem In the theory of electrical network e is regarded as has been solved by (. Brine $\boldsymbol{z}^{\text {) In his theory a "positive real function" } Z(\lambda)}$ is defined in which the complex variable $\lambda=\gamma+i \omega$ is used instead of ic in the impedance function given as a rational function
$Z(i \omega)$ of $\dot{\boldsymbol{\omega}}$. By separating successively the zeros and poles of the function $\mathbf{Z}(\lambda)$ the process of synthesizing the network is determined. It is to be noted here that the order of separetion in this procedure is quite arbitrary, so that different networks having the same characteristics might be realized. The interesting problem of finding a general relation between possible networks in this sense might be solved to some extent
 by Howitt and Caver.

Another point which must be taken into account in applying Brine's theory to the present case is that the impedance function as given by experiments is not necessarily a rational function of $i \omega$, so that the representation of it by a rational function should be regarded as an approximate one. Then it will become a matter of further consideration how should the poles and zeros of the function $\mathbf{Z}(\lambda)$ behave when $1 / 1 / \beta \nmid \beta \phi / k \nmid \beta / \phi$ from the experimentally determined function $Z(\hat{i} 0)$ by replacing the variable ic by λ. Thus the poles and zeros of $\boldsymbol{z}(\lambda)$ seen to have no physical meaning characteristic of the liven $Z(i \omega)$ but in some
varied in deriving this
cases it is even possible to impose some particular properties to the zeros and poles and construct 2 network with the desired $Z(i \omega)$. Foster's method of network synthesis by using only pure reactances as is shown by his reactance theorem is a good example of this.
2) O. Brume: J. Math and Phys. 10, No.3, 191, 1931.

5-

of glectriosl aetwork9, esome
consideration upon which will be
deseribad In the folloning antioles.
ical law which coverns the displaceapplied field E. The real exisowevar be concluded from the above ssary to be supplemented by evidenthe uniqueness of the Acnomposition assured as is known in the theory

Fig, 2

Wher $\quad 4 t 081$ Interpretation given in the preceding artiole af the (()-operator stends on a basis whioh is essentially the Wia gathat ol tho notho" oa synthesis of two terminal netForks 1 th Elvan Ampadamoe Maracteristios. The latter problem 1a the whaory of algutuloal metworics is regarded as has been
 La halimed lex variable $\lambda=\gamma+i \omega$ is used instead 08 ia 1 , the impedanos funstion given as a rational function

Z(cw) Li of the function $Z(\lambda)$ the process of synthesizing the network is determined. It is to be noted here that the order of separation in this procedure is quite arbitrary, so that difierent networks having the same characteristios might be realized. The intcresting problom of rinding a eeneral relation between possiule networks in, this sense might be solved to some extent
 by Howitt and Cauer.

Another point which must be taken into aocount in applying Brune's theory to the present case is that the impecance function as eiven by experiments is not necessarily a rational function of $i \omega$, so that the representation of it by a rational function should be regarded as an approximate one. Then it will become a matter of further consideration how should, the poles and zeros of the function $\mathbf{Z (\lambda)}$ behave when th/f Af f/ff1/f from the experimentally determined function $Z\left(i c_{0}\right.$ by replaclng the varlable $i \omega$ by $\boldsymbol{\lambda}$. Thus the poles and zeros of $\boldsymbol{Z}(\boldsymbol{\lambda})$ seem to have no physicel meaning charactemistio of the piven $Z(i \omega)$ but in some

Caried in deriving this
cases it is even possible to impose some partioular properties to the zeros and poles and construot a network with the desired. $Z(i \omega)$. Foster's method of network synthesis by using only pure reactances as is shown by his reactance theorem is a good example of this.
2) 0. Brune: J. Math. and Phys. 10, No.3, 191, 1931.

Iurning now back to the problem of dielectric dispersion, Irom the obvious relation

$$
\begin{equation*}
\varepsilon(\omega)=\int_{-\infty}^{\infty} \varepsilon\left(\omega^{\prime}\right) \delta\left(\omega-\omega^{\prime}\right) d \omega^{\prime} \tag{16}
\end{equation*}
$$

In which $\varepsilon(\omega)$ is the ω-representation, expressed as a complex kfṕft function of a real variable ω, of the (\&)-operator one may put
and obtain

$$
\left.\begin{array}{r}
D_{\omega^{\prime}}(\omega)=\varepsilon\left(\omega^{\prime}\right) \delta\left(\omega-\omega^{\prime}\right) E(\omega), \tag{17}\\
D(\omega)=\int_{-\infty}^{\infty} D_{\omega^{\prime}}(\omega) d \omega^{\prime},
\end{array}\right\}
$$

$$
\frac{1}{\varepsilon\left(\omega^{\prime}\right)} \cdot \frac{D \omega^{\prime}(\omega)}{\delta\left(\omega-\omega^{\prime}\right)}=E(\omega) .
$$

In order to change this into t-representation, use is made of a possible representaion

$$
\varepsilon\left(\omega^{\prime}\right) \delta\left(\omega-\omega^{\prime}\right)=\frac{1}{\left(\omega^{\prime 2}-\omega^{2}+i \hbar \omega\right) L \omega^{\prime}}
$$

for the δ-function, then

$$
\begin{equation*}
L_{\omega^{\prime}}\left\{\frac{d^{2} D_{\omega^{\prime}}(t)}{d t^{2}}+\omega^{\prime 2} D_{\omega^{\prime}}(t)\right\}=E(t) . \tag{18}
\end{equation*}
$$

This differential equation corresponds to the case in which a distribution of poles on the imaginary axis is assumed in Brune's theory.

As-an example of the dispersion theory in which a distribution of poles on the real axis is considered, one may mention that of R. M. Fuoss and J. G. Kirkwood.3) In this theory the "reduced polarisation" :

$$
\begin{equation*}
Q(\omega)=\frac{\varepsilon-\varepsilon_{\infty}}{\varepsilon_{0}-\varepsilon_{\infty}} \tag{19}
\end{equation*}
$$

is separated into real and imaginary parts

$$
\left.\begin{array}{rl}
Q(\omega) & =J(x)-i H(x), \tag{20}\\
x & =\log \frac{\omega m}{\omega},
\end{array}\right\}
$$

where $\boldsymbol{\omega}_{\boldsymbol{m}}$ is the $\boldsymbol{\omega}$ at which H takes its maximum, Then one is possible to obtain a distribution function such that

$$
\left.\begin{array}{c}
Q(\omega)=\int_{0}^{\infty} \frac{G(\tau)}{1+i \omega \tau} d \tau \\
\int_{0}^{\infty} G(\tau) d \tau=1, \tag{21}
\end{array}\right\}
$$

is satisfied. Comparing (21) with (11), it can be seen that $G(r)$ represents a continuous distribution of relaxation time τ. thes3) R....Iuoss and J.G.Alrkwood: J.A.c.3., 63, 385. 1941.

Thus one may set up a set of differential equations in analogy to (18) :

$$
\left.\begin{array}{c}
\frac{1}{\varepsilon_{\infty}} D_{1}(t)=E(t), \tag{22}\\
\frac{1}{\varepsilon_{0}-\varepsilon_{\infty}}\left\{\tau \frac{d D_{\tau}(t)}{d t}+D_{\tau}(t)\right\}=E(t),
\end{array}\right\}
$$

with a continuous parameter τ.

4. Expansion into Orthogonal Polynomials

In the above discussion it was assumed that the function $\varepsilon(\omega)$ which is to be derived from experiments is known for all values of its variable $\boldsymbol{\omega}$. The real situation, is however that the $\boldsymbol{\omega}$ at which experiments are made takes \hat{p} in most cases only an isolated set of values, and even if a continuous experiment be assumed to be possible, its range of values is necessarily finite. This is the point where the conditions are essentially different from those of network synthesis app so that full ore must be paid for.

Let $\varepsilon(\omega)$ be measured for values of $\boldsymbol{\omega}$ lying on a region Ω - which can be several isolated points-, and consider the following problem which is set up upon this. To approximate as near as possible the experimental values of $\varepsilon(\omega)$ at all points

$$
\lambda= \pm i \omega(\omega<\Omega)
$$

belonging to $\Omega \mathrm{bj}$ the expression

$$
\begin{equation*}
\frac{1}{\varepsilon(\lambda)}=a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\cdots+a_{n} \lambda^{n}, \tag{23}
\end{equation*}
$$

With properly chosen \boldsymbol{n} in the sense of the method of least squares. For this purpose the method of expansion in orthogonal polynomials may be recommended 4) Thus one mas choose suitable one from
(i) Legendre's polynomials,
(ii) Hermite's polynomials
(iii) Laguerre's polynomials,
(iv) Ischebysoheff's q- functions,
as the case may be.
separating (23) into real and imaginary parts and expanding The $\left\{\frac{1}{\varepsilon(\omega)}\right\}$ by polynomials of oven order, and $\operatorname{Im}\left\{\frac{1}{\varepsilon(\omega)}\right\}$ by polynomials of odd order,
the right hand side of (23) will be obtained by arranging in powers of λ. The form of (23) being thus determined the \boldsymbol{t}-representation for (5) becomes in this ouse
4) G. Size Ö: Orthogonal Polynomials, Amer. Hath. Soc.

Colloq. Publ. Vol. XxIII. 1939.
Courant ind Hilbert: Wethoden der Mathematischen Physik, BC. ..

$$
a_{0} \frac{d^{n} D}{d t^{n}}+a_{1} \frac{d^{n-1} D}{d t^{n-1}}+\cdots \cdot+a_{n} D=E .
$$

The assumption of a simple nolynomial in (23) is not altogether in contradiction with the positive real function in Brune's theory. For whercas the $Z(\lambda)$ in Drune's theory was defined for all values of $\boldsymbol{\lambda}$ on the $\mathrm{f} \mathrm{\phi} \phi$ imeginary aris, the $\mathcal{E}(\boldsymbol{\lambda})$ in the present case is derined on for a limited range of velues, so that there remains some indeterminacy in constructing the function $1 / \varepsilon(a)$ which might result in different forms as the procedure of approximation is different. It is however desirable to generalize the present method in the direction of Drune's theory. As a concluding remark it should be mentioned that it is casy to divide up the dieferential equation (24) into a number of oircuit equations such for examples as (15) or (22).

5. Sammery

It was show that there are many possibilitios in the physioal interpretation of an experimentally given $\varepsilon(\omega)$ by the aid of physical models which can not be oovered by the existing theory of electrical networks. The remaining problems are then:
(1) To formulate a unifying theory whioh covers all these possibities and includes in particular a general scheme of mutuel transformations between any two of then. Ihis is one of the most interesting problems which awaits further elucidation.
(1i) The degres of freedom in the possibilities mentioned above micht be esuoed formulating the result of multiple measrments concerning a number of physical quantities other than the dielectric constant for the same medium, The theor. of four terminal network synthesis given by Gewerta5) is very instructive in this sense.
(iii) Lo take other physical and ohemioal informations into account cffeotively in the formulation of the theory.6) As a simple example it is remariced here that one may direotly apply the present method to the analysis di dielectric oonstant measured on a mixture of two polar liquids each obeving the Debye's law.

As a concluding remark the autior hopes that the method described in this paper would be kappled to wider field of natural phenomena other than dielectric dispersion, such for exanple as the analysis of brain-waves whioh is now being carried on in the author's laboratory.
5t Charles M. Son Gewertz : Network Synthesis, Baltimore. 1933
6) See for example S. Lakeda: On a New Interpretation of the Distribution of Relaxation Time, seme this $\int^{\text {volume, }} \mathbf{p} 84$.

