The Massachusetts Institute of Technology Bulletin (USPS 333-260) is published five times yearly by the Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, in August, December (two issues), February and May. Issues of the Bulletin include Courses and Degree Programs, the Spring Undergraduate Seminar Program, the IAP Guide, the Summer Session Catalogue, and the Fall Undergraduate Seminar Program.

Volume 120, Number 1, August 1984. Second class postage paid at Boston, Massachusetts and at additional offices.

Send changes of address to Room 4-237, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.

The Institute reserves the right to make changes in the regulations and courses announced in this Bulletin.

The main telephone number at the Massachusetts Institute of Technology is (617) 253-1000.

The Massachusetts Institute of Technology admits students of any race, color, sex, religion, or national or ethnic origin to all rights, privileges, programs, and activities generally accorded or made available to students at the Institute. It does not discriminate against individuals on the basis of race, color, sex, sexual orientation, religion, handicap, age, or national or ethnic origin in administration of its educational policies, admissions policies, scholarship and loan programs, and other Institute administered programs and activities, but may favor US citizens or residents in admissions and financial aid.

The Institute has adopted an affirmative action plan expressing its continuing commitment to the principle of equal opportunity in education.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement of the President</td>
<td>5</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>This is MIT</td>
<td>7</td>
</tr>
<tr>
<td>History and Purpose</td>
<td>8</td>
</tr>
<tr>
<td>The Academic Program</td>
<td>9</td>
</tr>
<tr>
<td>The Academic Calendar</td>
<td>10</td>
</tr>
<tr>
<td>Educational Resources</td>
<td>12</td>
</tr>
<tr>
<td>The Campus</td>
<td>14</td>
</tr>
<tr>
<td>The Boston Environment</td>
<td>16</td>
</tr>
<tr>
<td>Organization of the Institute</td>
<td>19</td>
</tr>
<tr>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Campus Life</td>
<td>21</td>
</tr>
<tr>
<td>Campus Activities</td>
<td>22</td>
</tr>
<tr>
<td>Housing</td>
<td>26</td>
</tr>
<tr>
<td>Student Services</td>
<td>30</td>
</tr>
<tr>
<td>Rules and Regulations</td>
<td>32</td>
</tr>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Education at MIT</td>
<td>37</td>
</tr>
<tr>
<td>Academic Programs</td>
<td>38</td>
</tr>
<tr>
<td>General Institute</td>
<td>47</td>
</tr>
<tr>
<td>Requirements</td>
<td></td>
</tr>
<tr>
<td>Admissions</td>
<td>56</td>
</tr>
<tr>
<td>Costs for Undergraduate Students</td>
<td>59</td>
</tr>
<tr>
<td>Financial Aids</td>
<td>60</td>
</tr>
<tr>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Graduate Education at MIT</td>
<td>63</td>
</tr>
<tr>
<td>General Requirements for Graduate Degrees</td>
<td>65</td>
</tr>
<tr>
<td>Admissions</td>
<td>72</td>
</tr>
<tr>
<td>Costs for Graduate Students</td>
<td>74</td>
</tr>
<tr>
<td>Financial Aids</td>
<td>76</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Interdepartmental Study and Research</td>
<td>81</td>
</tr>
<tr>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>Departmental Degree Programs and Requirements</td>
<td>105</td>
</tr>
<tr>
<td>School of Architecture and Planning</td>
<td>106</td>
</tr>
<tr>
<td>Architecture</td>
<td>108</td>
</tr>
<tr>
<td>Urban Studies and Planning</td>
<td>113</td>
</tr>
<tr>
<td>School of Engineering</td>
<td>119</td>
</tr>
<tr>
<td>Aeronautics and Astronautics</td>
<td>122</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>130</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>136</td>
</tr>
<tr>
<td>Electrical Engineering and Computer Science</td>
<td>144</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>152</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>158</td>
</tr>
<tr>
<td>Nuclear Engineering</td>
<td>166</td>
</tr>
<tr>
<td>Ocean Engineering</td>
<td>172</td>
</tr>
<tr>
<td>School of Humanities and Social Science</td>
<td>177</td>
</tr>
<tr>
<td>Economics</td>
<td>181</td>
</tr>
<tr>
<td>Humanities</td>
<td>184</td>
</tr>
<tr>
<td>Linguistics and Philosophy</td>
<td>191</td>
</tr>
<tr>
<td>Political Science</td>
<td>194</td>
</tr>
<tr>
<td>Psychology</td>
<td>198</td>
</tr>
<tr>
<td>Program in Science, Technology, and Society</td>
<td>201</td>
</tr>
<tr>
<td>Sloan School of Management</td>
<td>204</td>
</tr>
</tbody>
</table>
School of Science 211

Biology 213
Chemistry 217
Earth, Atmospheric, and Planetary Sciences 220
Mathematics 225
Nutrition and Food Science 229
Physics 233

Joint Program in Oceanography and Oceanographic Engineering with the Woods Hole Oceanographic Institution 238

Whitaker College of Health Sciences, Technology, and Management 239

Harvard-MIT Division of Health Sciences and Technology 240

ROTC Programs 241
Air Force ROTC 241
Army ROTC 241
Naval ROTC 242

VII Descriptions of Subjects245

1 Civil Engineering 3D
2 Mechanical Engineering 16D
3 Materials Science and Engineering 26D
4 Architecture 35D
5 Chemistry 46D
6 Electrical Engineering and Computer Science 50D
7 Biology 65D
8 Physics 69D
9 Psychology 76D
10 Chemical Engineering 80D
11 Urban Studies and Planning 87D
12 Earth, Atmospheric, and Planetary Sciences 97D
13 Ocean Engineering 107D
14 Economics 114D
15 Management 121D
16 Aeronautics and Astronautics 136D
17 Political Science 145D
18 Mathematics 159D
19 Nutrition and Food Science 171D
20 Humanities 175D
21 Nuclear Engineering 205D
22 Linguistics and Philosophy 213D

HST Health Sciences and Technology 219D
SP Special Programs 223D
STS Science, Technology, and Society 225D
SWE Engineering School-Wide Electives 230D
TPP Technology and Policy 232D
AS Aerospace Studies 233D
MS Military Science 234D
NS Naval Science 236D
MIT Corporation 482

Officers of the Faculty and Institute Professors 484

Index 487
Colophon 495
An MIT Education for Our Times

Earlier in this century people looked to science and technology to light the path of progress. This is no longer the case. That early, and somewhat naive, optimism has been replaced by a skepticism and an alarming decline in scientific literacy in this country. This decline reflects, in part, the difficulty of keeping up with fields which grow and change with astonishing speed. But there is also, among the public, an ignorance, wariness, and discomfort about most things scientific and technological.

It is clear, however, that the future development not only of this nation, but of the world, is inexorably tied to continued scientific progress and to the humane and thoughtful applications of science. What is needed is not a retreat from science and technology, but a more complete science and technology.

We must strive to develop among ourselves, among our students, and in the public at large, an understanding of the fact that engineering and science are, by their very nature, humanistic enterprises.

Scientific inquiry is, at once, a most natural and highly refined expression of the human mind and spirit. It is derived from native curiosity about the nature of our world and about the universe, and it results in speculations and concepts which help to give meaning and order to that world. Engineering and technology are both natural and socially derived enterprises. They offer suggestions of agenda — on goals and priorities — for scientific inquiry. Ultimately, I believe, this inquiry and these enterprises must rest where they begin, with concern for the human condition.

The attention to the humanistic elements and the human consequences of all that we do must be broadly shared. For, not only do we need a more complete science and technology, but we need to understand — and to engage — the larger social, cultural, and historical domains of which they are a part. We must continue to be a sanctuary for the constructive criticism of the technological enterprise and of the larger society. These principles must be built into the academic programs of our students — both undergraduate and graduate — and they must be reflected in the lives and activities of all who choose to be a part of this institution.

For over a century, MIT has been a place where exceptional people from all walks of life come together to work and to study. As such, MIT has a responsibility to itself and to the nation to be open — and to reach out — to the most talented and promising people, regardless of race or sex. . . . For the sake of MIT, and for the world we help to build, we would do well to share the vision of Margaret Mead, articulated nearly 50 years ago, but no less relevant today:

If we are to achieve a richer culture, rich in contrasting values, we must recognize the whole gamut of human potentialities, and so weave a less arbitrary social fabric, one in which each diverse human gift will find a fitting place.

From the Inaugural Address of Paul E. Gray President
This is MIT
On February 20, 1865, four years after approval of its founding charter, the Massachusetts Institute of Technology opened its doors to admit the first class of 15 students. The event marked the culmination of an effort by William Barton Rogers, MIT's founder and first president, to create a new kind of educational institution relevant to the times and to the nation's need, where students would be educated in the application as well as the acquisition of knowledge. A distinguished natural scientist, Rogers stressed, too, the importance of basic research, and believed that professional competence was best fostered by a coupling of teaching and research and attention to real-world problems.

Today, education and related research continue to be MIT's central purpose, with relevance to the practical world as a guiding principle. The Institute is an independent, coeducational, privately endowed university. It is broadly organized into five academic Schools — Architecture and Planning, Engineering, Humanities and Social Science, Management, and Science. Within these Schools there are 22 academic departments, as well as many interdepartmental laboratories, centers, and divisions which extend beyond the traditional departmental boundaries.

MIT's total enrollment is approximately 9,500, almost evenly divided between undergraduate and graduate students. In 1983-84, MIT students came from all 50 states and the District of Columbia, Puerto Rico, the Virgin Islands, and 96 foreign countries. The proportion of international students at the Institute, about 25 percent, is one of the highest in an American university.

The MIT faculty numbers approximately 1,000, with a total teaching staff of 1,800. Most faculty appointments are in one or more of the academic departments, but the faculty also work in the many interdepartmental laboratories, centers, and divisions. Most faculty members at MIT teach both graduate and undergraduate students. Undergraduates often register for graduate classes; many undergraduates and all graduate students participate, often together, in advanced research.

This intermixing of ages, disciplines, and nationalities, which is characteristic of MIT, deeply influences the life and experience of every member of the academic community, bringing together students and teachers, biologists and architects, humanists and engineers, young and old. The result is an academic environment unusual for its singleness of focus on excellence, and notable for its diversity of interest.
The purpose of the academic program at MIT is to give students a sound command of basic principles, a versatility of insight and perspective concerning natural and social phenomena, the habit of continued learning, and the power that comes from a thorough and systematic approach to learning. From these attributes comes the best assurance for continued professional and personal growth, especially in today's rapidly changing world.

The two essential parts of all MIT educational programs are teaching and research. Both of these activities carried on together have greater power than either performed alone. While advancing human knowledge and understanding, research makes special contributions to the Institute's educational program. It provides experience in both theory and experiment for students and faculty, and assures that classroom teaching is up to date. Teaching, at the same time, provides a setting in which the relevance, accomplishments, and vitality of research are continually clarified and assessed.

Each of the 22 academic departments offers one or more degree programs or Courses of study. By and large, students pursue a degree in one of the departments. Degrees are awarded on the basis of satisfactory completion of requirements in each program. Descriptions of departmental programs for graduate and undergraduate students are given in Chapter VI of this catalogue. More detailed information may be obtained by consulting the individual departments. The various Schools and Departments are listed as follows:

School of Architecture and Planning
Architecture
Urban Studies and Planning

School of Engineering
Aeronautics and Astronautics
Chemical Engineering
Civil Engineering
Electrical Engineering and Computer Science
Materials Science and Engineering
Mechanical Engineering
Nuclear Engineering
Ocean Engineering

School of Humanities and Social Science
Economics
Humanities
Linguistics and Philosophy
Political Science
Psychology

Sloan School of Management
Management

School of Science
Biology
Chemistry
Earth, Atmospheric, and Planetary Sciences
Mathematics
Nutrition and Food Science
Physics

Whitaker College of Health Sciences, Technology, and Management

The academic programs of both undergraduate and graduate students are based upon a core of general Institute and departmental requirements. There is enough flexibility, however, to allow each student, in collaboration with a faculty advisor, to develop an individual program in response to his or her own interests and preparation. For example, there is a growing number of students who concentrate their studies in areas that cross departmental lines. Among these are programs in fields such as planetary and space science, communications, environmental studies, health sciences and technology, visual arts, transportation, urban studies, and energy, many of which are described in Chapter V.

Undergraduate Courses at MIT lead to the degree of Bachelor of Science (S.B.). Graduate degrees awarded include Master of Architecture (M.Arch.), Master of Science (M.S.), Master in City Planning (M.C.P.), Engineer (each degree designates the field in which it is awarded), Doctor of Philosophy (Ph.D.), and Doctor of Science (Sc.D.).

For most undergraduates, degree-granting programs, including those which provide periods of on-the-job experience off campus, require four years of full-time study for the Bachelor of Science.

MIT is accredited by the New England Association of Schools and Colleges. Information about accreditation by specific professional organizations is listed within Chapter VI of this catalogue.

1 At the Institute the capitalized word Course refers to an organized curriculum leading to a specified degree. The lowercased word course or subject, on the other hand, refers to the individual classes. Each Course is designated by a Roman numeral; individual subjects are given Arabic numerals to correspond with the Course numbers. For example, Course I and Course I-A are curricula in Civil Engineering; the number 1.05 indicates a subject given in Civil Engineering. The Department of Civil Engineering as a whole can also be referred to as Course I or Course I.

2 Engineer degrees include Chemical Engineer (Chem.E.), Civil Engineer (C.E.), Electrical Engineer (E.E.), Engineer in Aeronautics and Astronautics (E.A.A.), Environmental Engineer (Env.E.), Materials Engineer (Mat.E.), Mechanical Engineer (Mech.E.), Metallurgical Engineer (Mat.E.), Nuclear Engineer (Nuc.E.), Ocean Engineer (Ocean E.)
The academic calendar provides a framework for educational programs and cultural events, and generally influences the patterns of campus life. At MIT the fall term starts shortly after Labor Day and ends before Christmas, and the spring term starts the first full week in February and ends in mid-May.

The January Independent Activities Period (IAP) provides a new and significant dimension to educational activities. The time during IAP may be devoted to research, study in a field of the student's interest, travel, relaxation, or investigation of new areas of interest. During this time more than 500 special activities, including films, field trips, seminars and lectures, individual projects, and intensive subjects and workshops, are offered on the campus. There are also numerous off-campus activities, including field trips and academic projects abroad.

During the regular summer session, MIT offers a selection of the subjects available during the academic year, as well as a few subjects designed for special interests and needs.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bursar's Financial Worksheet due in Bursar's Office, Student Accounts, E19-215</td>
</tr>
<tr>
<td>10</td>
<td>Last day to petition for September Advanced Standing Exam and to return application card for Postponed Finals</td>
</tr>
<tr>
<td>13</td>
<td>Payment for first term due</td>
</tr>
<tr>
<td>29</td>
<td>Transfer Student Orientation Week begins</td>
</tr>
<tr>
<td>31</td>
<td>Freshman Orientation Week begins</td>
</tr>
</tbody>
</table>

September

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Labor Day (Holiday)</td>
</tr>
<tr>
<td>4</td>
<td>Graduate Orientation Week begins</td>
</tr>
<tr>
<td>4-5</td>
<td>Advanced Standing Exams and Postponed Finals</td>
</tr>
<tr>
<td>4-6</td>
<td>International Open House</td>
</tr>
<tr>
<td>10</td>
<td>Registration Day</td>
</tr>
<tr>
<td>11</td>
<td>First day of classes</td>
</tr>
<tr>
<td>14</td>
<td>Last day to petition for September 29 Advanced Standing Exam</td>
</tr>
<tr>
<td>28</td>
<td>Application for advanced degrees in February due in Registrar's Office, E19-335. $20 fee after this date.</td>
</tr>
<tr>
<td>29</td>
<td>Advanced Standing Exams</td>
</tr>
</tbody>
</table>

October

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-9</td>
<td>Columbus Day Vacation</td>
</tr>
<tr>
<td>12</td>
<td>Add Date. Last day to add subjects to registration. $20 processing charge for any add allowed after this date. Last day for juniors and seniors to change an elective to or from P/F grading.</td>
</tr>
<tr>
<td>15</td>
<td>Automatic withdrawal date for students not having completed six steps of registration</td>
</tr>
</tbody>
</table>

November

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Veterans Day (Observed)</td>
</tr>
<tr>
<td>21</td>
<td>Last day to petition for December Advanced Standing Exam</td>
</tr>
<tr>
<td>21</td>
<td>Drop Date. Last day to cancel subjects from registration. Undergraduates must petition to Committee on Academic Performance; graduates must petition to Committee on Graduate School Policy for a cancellation after this date. $20 processing charge for any drop allowed after this date.</td>
</tr>
<tr>
<td>22-23</td>
<td>Thanksgiving Vacation</td>
</tr>
</tbody>
</table>

December

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4</td>
<td>Second-term registration material available in Building 10 Lobby</td>
</tr>
<tr>
<td>7</td>
<td>Last day for changing thesis title. $20 fee after this date.</td>
</tr>
<tr>
<td>13</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>14</td>
<td>Deadline for students to turn in Freshman Evaluation Forms</td>
</tr>
<tr>
<td>18-21</td>
<td>Final exam period</td>
</tr>
<tr>
<td>21</td>
<td>Registration material for second term due in Registrar's Office, E19-335. $20 fine for registration received after this date.</td>
</tr>
<tr>
<td>22</td>
<td>Christmas Vacation begins (through January 6)</td>
</tr>
<tr>
<td>Date</td>
<td>Event</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>January 2</td>
<td>Bursar’s Registration Worksheet due in Bursar’s Office, Student Accounts, E19-215</td>
</tr>
<tr>
<td>March 4</td>
<td>First-term grade reports mailed</td>
</tr>
<tr>
<td>March 6</td>
<td>Last day of Christmas Vacation</td>
</tr>
<tr>
<td>March 7</td>
<td>Deadline for instructors to turn in Freshman Evaluation Forms</td>
</tr>
<tr>
<td>March 7</td>
<td>First day of Independent Activities Period</td>
</tr>
<tr>
<td>March 11</td>
<td>Doctoral theses due for January</td>
</tr>
<tr>
<td>March 14</td>
<td>Payment for second term due</td>
</tr>
<tr>
<td>March 15</td>
<td>Martin Luther King, Jr.’s Birthday (Holiday)</td>
</tr>
<tr>
<td>March 18</td>
<td>Theses, other than doctoral, due for January</td>
</tr>
<tr>
<td>March 18</td>
<td>Last day to go on or off February degree list</td>
</tr>
<tr>
<td>March 18</td>
<td>Last day to petition for February Advanced Standing Exam and to return application card for Postponed Finals</td>
</tr>
<tr>
<td>March 30</td>
<td>Last day of Independent Activities Period</td>
</tr>
<tr>
<td>March 31</td>
<td>Vacation begins (through February 3)</td>
</tr>
<tr>
<td>February 3</td>
<td>Last day of vacation</td>
</tr>
<tr>
<td>February 4</td>
<td>Registration Day</td>
</tr>
<tr>
<td>February 5</td>
<td>First day of classes</td>
</tr>
<tr>
<td>February 7</td>
<td>Grade reports for January period mailed</td>
</tr>
<tr>
<td>February 9</td>
<td>Advanced Standing Exams and Postponed Finals</td>
</tr>
<tr>
<td>February 18-19</td>
<td>Washington's Birthday Vacation</td>
</tr>
<tr>
<td>February 22</td>
<td>Application for advanced degrees in June due in Registrar’s Office, E19-335. $20 fee after this date.</td>
</tr>
<tr>
<td>March 8</td>
<td>Add Date. Last day to add subjects to registration. $20 processing charge for any add allowed after this date. Last day for juniors and seniors to change an elective to or from P/F grading.</td>
</tr>
<tr>
<td>March 11</td>
<td>Automatic withdrawal date for students not having completed six steps of registration</td>
</tr>
<tr>
<td>April 22</td>
<td>Deadline for students to turn in Freshman Evaluation Forms</td>
</tr>
<tr>
<td>April 25-29</td>
<td>Spring Vacation</td>
</tr>
<tr>
<td>April 15-16</td>
<td>Patriots’ Day Vacation</td>
</tr>
<tr>
<td>April 19</td>
<td>Summer session registration material available in Registrar’s Office, E19-335. $20 fee after this date.</td>
</tr>
<tr>
<td>April 26</td>
<td>Drop Date. Last day to cancel subjects from registration. Undergraduates must petition to Committee on Academic Performance; graduates must petition to Committee on Graduate School Policy for a cancellation after this date. $20 processing charge for any drop allowed after this date.</td>
</tr>
<tr>
<td>April 30</td>
<td>Last day to petition for May Advanced Standing Exam</td>
</tr>
<tr>
<td>May 3</td>
<td>Doctoral theses due for second term</td>
</tr>
<tr>
<td>May 3</td>
<td>Summer session registration material due, Registrar’s Office, E19-335</td>
</tr>
<tr>
<td>May 6-7</td>
<td>First-term registration material available in Building 10 Lobby. Reference copies of new subject descriptions available in departmental headquarters, libraries, and the Information Center.</td>
</tr>
<tr>
<td>May 10</td>
<td>Theses, other than doctoral, due for second term</td>
</tr>
<tr>
<td>May 16</td>
<td>Last day of classes</td>
</tr>
<tr>
<td>May 17</td>
<td>Last day to go on or off degree list</td>
</tr>
<tr>
<td>May 20-22</td>
<td>Final exam period</td>
</tr>
<tr>
<td>May 23</td>
<td>Registration material for continuing students due in Registrar’s Office, E19-335. $20 fee for any registration for continuing students received after this date.</td>
</tr>
<tr>
<td>June 27</td>
<td>Memorial Day (Holiday)</td>
</tr>
<tr>
<td>June 3</td>
<td>Commencement exercises</td>
</tr>
<tr>
<td>June 3</td>
<td>Second-term grade reports mailed to home address</td>
</tr>
<tr>
<td>June 10</td>
<td>Summer Session begins (through August 21)</td>
</tr>
</tbody>
</table>
Educational Resources

A special feature of education at MIT is the opportunity for students and faculty to participate together in research activities. The Institute devotes substantial resources of its own to such undertakings and receives substantial grants from both industry and government in support of such work.

MIT has unusual facilities for this research, some of which are unique among educational institutions. There are more than 70 special laboratories on the campus. In general, the Institute’s policy is to make these facilities available to students — with the result that nearly all of MIT’s laboratories are shared by undergraduates, graduate students, and faculty members working together in close collaboration on ongoing projects.

Many of these research facilities are described in this catalogue by the departments which operate them. In addition to laboratories organized within departments, there is a large number of interdepartmental laboratories and centers, established to facilitate work in fields which cross the lines of traditional disciplines. Undergraduate and graduate interdepartmental opportunities and major interdepartmental organizations and research facilities are described in Chapter V.

Libraries

Supporting both the teaching and research activities at the Institute are the MIT Libraries, with holdings of more than 1.9 million volumes. More than 19,000 current journals and periodicals and extensive back files provide comprehensive resources in all major fields. These are enriched by numerous special collections, including microfiche, slides, recordings, photographs, and maps. Through MIT’s membership in the Boston Library Consortium, graduate students, faculty members, and research staff have access to extensive research collections outside the Institute.

The Library system, with headquarters in the Charles Hayden Memorial Library building, includes libraries for each of the Institute’s five Schools, with several branches and reading rooms: the Rotch Library of Architecture and Planning (with a separate Skidmore Room for visual collections); the Dewey Library (economics, industrial management, industrial relations, and political science); the Barker Engineering Library (with a separate Aeronautics and Astronautics Library and Von Hippel Reading Room for materials science); the Humanities Library (with a Music Library and a Reserve Book Room); the Science Library (with the Lindgren Library for the earth and planetary sciences and Chemistry Reading Room); the Student Center Library; the Institute Archives and Special Collections; Rare Books; and the MIT Museum and Historical Collections.

All of the services offered by a fine research library are available: reference and information, interlibrary loans, bibliographic guidance, complete microfilm and photocopying facilities, and retrieval from machine-readable databases. The Libraries serve primarily Institute students, faculty, staff members, and their families. Others wishing to use the facilities may apply to the Assistant Director for Public Services, Room 14S-216, for a library privilege card.

Information Processing Services

Information processing for MIT’s teaching and research programs utilizes the latest developments in computer technology, including a broad spectrum of processing power from personal machines to large multi-user access systems. IPS provides a full range of support services, including public terminals, documentation, education, user-consulting, and an extensive library of application and systems software. In addition, there are many local departmental and laboratory facilities which meet more specialized computing requirements, and many faculty and staff have access to personal computers. An increasing number of these computers is attached to networks which provide convenient communication between users and the distribution of computing resources.

Project Athena

Project Athena is a major new initiative to enhance undergraduate education at MIT through the use of high-performance personal computers. To meet this goal, the project will install a campus-wide network of approximately 2,600 work stations into academic facilities, laboratories, libraries, dormitories, fraternities, and other living groups. These work stations will be available to all undergraduates for academic use on essentially an unstructured basis. Athena will draw on major grants from Digital Equipment Corporation and IBM, providing hardware, maintenance, and staff support to the project with a total value of $50 million.

In addition to installing this equipment, Athena makes grants of curriculum development funds to explore the potential uses of computation in virtually all aspects of the MIT curriculum. These projects vary in size and scope; the first courses using the results of these development efforts will be taught in fall 1984.
MIT Press

The MIT Press, one of the country’s largest university presses, publishes books and journals that enjoy worldwide circulation: professional, reference, and scholarly books; graduate and undergraduate texts; and books for general audiences. Books and journals published by the Press have won many awards, including the National Book Award, and a wide variety of citations for graphic and scholarly excellence.

The Council for the Arts at MIT

Student activities in the arts are supported through the Grants Program of MIT’s Council for the Arts. The Grants Program, administered by a committee of alumni and friends of the Institute, offers direct financial support to individual students, faculty, and staff, and to MIT organizations and activities. Its purpose is to stimulate and support artistic activity at the Institute. Previous experience with the arts is not necessary; experimentation, interdisciplinary projects, and broad student participation are encouraged. Grant awards range from a few hundred to several thousand dollars.

The Council for the Arts also issues a calendar of arts events taking place at the Institute and a newsletter describing particular arts activities or individuals active in the MIT arts community, and offers technical assistance in program planning and funding opportunities for artists.

Founded in 1971, the Council is a self-supporting organization composed of 100 alumni and friends of the arts at the Institute.

Lowell Institute School

The Lowell Institute School was established at MIT in 1903 to provide evening instruction in technical subjects for residents of the Boston area. Today the School offers subjects in the areas of modern technology which are not readily available at other evening institutions, at a level geared to the practicing technician who has an Associate degree or equivalent experience.

The programs can broaden an individual’s current skill level or prepare a technician for employment in a new field. There is strong emphasis on practical aspects, combined with sufficient theory to provide an adequate foundation of understanding.

Subjects offered by the School do not carry MIT credit, but certificates are awarded to those who complete a satisfactory program. Further information may be obtained by contacting Dr. Bruce D. Wedlock, Director, Lowell Institute School, Room E19-738, MIT, Cambridge, Massachusetts 02139.
The Campus

MIT's 135-acre campus extends for more than a mile along the Cambridge side of the broad Charles River Basin facing historic Beacon Hill and the central sections of Boston. Most academic activities are brought together in a group of interconnected buildings designed to permit maximum flexibility and easy communication among the departments and Schools. The extensive athletic plant and playing fields are on the campus, as are the recreational buildings, dormitories, and dining halls. This arrangement contributes greatly to the sense of unity and interdepartmental involvement that characterize the Institute.

At the eastern end of the campus are the Alfred P. Sloan Building and the distinctive Grover M. Harmann Building, which house activities in management, economics, international studies, and political science. Adjacent to them is Eastgate, a 30-story apartment tower for married students. A building at 70 Memorial Drive was recently renovated, and contains classroom and office space for the Sloan School and the Program in Science, Technology, and Society. The newest facilities on campus are the buildings for the Whitaker College of Health Sciences, Technology, and Management, and the Medical Department Health Services Center, completed in early 1982. The Whitaker College Building houses research laboratories, classrooms, a library, and reading room, and headquarters for the College. The Health Services Center provides facilities for medical, dental, surgical and other specialties, a pharmacy, and an infirmary. A commanding feature of East Campus is McDermott Court, in which a great sculpture by Alexander Calder rises in bold contrast to the facade of the 20-story Center for Earth Sciences, the Cecil and Ida Green Building. Surrounding McDermott Court are student residences, Walker Memorial (which houses a dining hall and snack bar, the graduate student pub, and student activity offices), Hayden Library, the Camile Edouard Dreyfus Chemistry Building, and the Ralph Landau Building, which houses the Department of Chemical Engineering.

The Institute's main buildings, enclosing the Killian Court, were designed by Welles Bosworth, Class of 1899, and were dedicated in 1916. Banked by rhododendrons and lined with tall shade trees, the Killian Court opens to a wide view of the Charles River, the low brick buildings of old Boston, and the concrete and glass towers that rise above them. Interconnected with these central buildings are the Center for Life Sciences (the Dorrance and the Whitaker buildings), the Karl Taylor Compton Laboratories (electronics and nuclear science), the EG&G Education Center (with lecture and laboratory facilities for the Department of Electrical Engineering and Computer Science), the Center for Materials Science and Engineering (the Vannevar Bush Building), the Center for Space Research, the Sloan Laboratory, the Guggenheim Laboratory, and the Center for Advanced Engineering Study.
Across Massachusetts Avenue, on West Campus, is the Student Center (the Julius Adams Stratton building), which contains social rooms, cafeterias, offices for student activities, music rooms, a spacious library, and recreational and commercial facilities. The Student Center Plaza is bounded on the west by Kresge Auditorium and on the east by the Chapel. Both buildings were designed by Eero Saarinen. The auditorium contains a large concert hall seating 1,200, a little theatre, offices, and rehearsal rooms. The Chapel is used regularly for religious services by all faiths and is open throughout the day for meditation. The Chapel's unusual design includes an exterior moat that reflects light in changing patterns on the interior walls. Adjacent to the Chapel is the Center for Advanced Visual Studies.

Located throughout the campus is an outstanding collection of contemporary environmental sculpture including works by Henry Moore, Louise Nevelson, Alexander Calder, Pablo Picasso, and Tony Smith. This collection highlights the history, art, and architecture of the Institute.

Along Memorial Drive and facing out on the Charles River are additional student residences, among them the serpentine Baker House, which was designed by the Finnish architect Alvar Aalto. Westgate, an apartment complex for married students, and the Tang residence tower for graduate students are located at the westernmost end of the campus. Also on West Campus are the du Pont Athletic Center and playing fields for soccer, lacrosse, baseball, softball, touch football, rugby, cricket, track, and tennis. The Athletics Center includes an ice rink and field house, and Rockwell Cage accommodates varsity and intramural basketball, volleyball, and badminton. MIT's Steinbrenner Stadium includes a six-lane, 400-meter, all-weather running track, the first of its kind in North America. The Stadium also includes facilities for the steeplechase and field events, with a game field inside the track oval for intercollegiate football, soccer, lacrosse, and field hockey games.

The Charles River Basin, which is two miles long and a third of a mile wide, is a major feature of MIT's physical environment, and the Pierce Boathouse and the Walter C. Wood Sailing Pavilion provide means for extensive activity in crew and in sailing.

Student-guided tours of the campus leave from the information Center in the lobby of the Rogers Building at 10 am and 2 pm Monday through Friday. Prospective students and their families are welcome at the Admissions Office after the tour.
The Boston Environment

MIT is in Cambridge, Massachusetts, on the north bank of the Charles River, facing the city of Boston. The city of Cambridge, best known as the residence of MIT and Harvard, is home to many students and young professionals, especially near the two campuses. The city also has a strong ethnic character with tightly knit Portuguese, Italian, and Irish neighborhoods.

Within a two-mile radius of the Institute are the Museums of Science and Fine Arts, the Gardner Museum, the New England Conservatory of Music, Symphony Hall, the New England Aquarium, and the Boston Public Library. Students can travel easily to the theatre district where pre-Broadway plays are often previewed and local productions are staged.

Among the numerous cultural organizations in the area are the Boston Symphony Orchestra, the Boston Pops, the Boston Ballet Company, the Opera Company of Boston, the Boston Center for the Arts, the Loeb Drama Center, and the American Repertory Theatre.

MIT is one of more than 50 schools located within the Boston area. Others include Harvard University, Radcliffe College, Boston University, Northeastern University, Boston College, Brandeis University, Tufts University, Simmons College, Wellesley College, and many specialized professional art and music schools. The concentration of academic, cultural, and intellectual activities in the Boston area is one of the largest in the country and there is an extraordinary variety of young people, over 250,000, from all over the country and the world.

An hour or two away from MIT by car are the mountains of Vermont and New Hampshire, the ocean beaches of Cape Cod, the lakes and rivers of Maine, the small clusters of fishing towns along the New England coast, and many historical places of interest — Salem, Sturbridge, Lexington, Concord, and Plymouth in Massachusetts alone. The four distinct seasons of New England combined with the varied landscape offer unlimited possibilities for recreation — skiing, mountain climbing, hiking, sailing, canoeing, kayaking, swimming, and camping.
Organization of the Institute

The Institute's board of trustees is known as the Corporation, over which the Chairman presides. Its members include 100 distinguished leaders of science, engineering, industry, and education, and (ex officio) the President and the Treasurer of the Corporation. Between quarterly meetings the Corporation functions through its officers and Executive Committee.

The Corporation appoints Visiting Committees for each department and for certain of the other major activities of the Institute. These Committees, whose members are leaders in their respective professions, provide counsel to the departments and in turn make recommendations to the Corporation concerning departmental activities.

The Institute's chief executive officer is the President. In addition, senior administrative officers of the Institute include the Provost, the Associate Provosts, and five Vice Presidents. The academic program is directed by the President, the Provost, the Associate Provosts, and five Deans, each responsible for the undergraduate and graduate programs in one of the five academic Schools. The Institute's 22 academic departments are organized into the five Schools.

The President presides over the faculty of the Institute, which consists of all professors, certain professors emeriti, and a number of administrative officers (ex officis). Officers of the faculty are the President of the Institute, and the Chairman, the Associate Chairman, and the Secretary of the faculty.

The Academic Council is responsible for the overall administration of the Institute. This group consists of the senior officers, the vice presidents, the deans, the chairman of the faculty, and the director of libraries. Department heads and directors of laboratories and centers join them to form the Faculty Council.

Educational policy for the Institute is determined by the faculty. The MIT faculty meets monthly and conducts much of its business through a number of elected standing committees. The faculty Committee on Educational Policy (CEP), which includes student members, formulates and articulates overall undergraduate educational policy, sponsors educational experiments, and coordinates much of the faculty business. The Chairman of the faculty is ex officio Chairman of the CEP.

The Dean of the Graduate School is concerned with coordinating educational policies of the graduate programs, and the Dean for Student Affairs is directly concerned with all aspects of student life.

The management of research activities, which are financed through contracts with government and industry, is supported by the Office of Sponsored Programs. The Industrial Liaison Program provides industry and other organizations access to research resources at MIT and a means of exchanging information with their MIT counterparts. Through the Program, technological developments made at MIT are transferred to industry for commercial application, helping to link work at the Institute to the solution of societal problems.

The MIT Alumni Association has a comprehensive program for keeping some 76,000 men and women, who have studied at MIT, informed of Institute affairs. For example, the Alumni Association publishes Technology Review, a nationally circulated journal of contemporary affairs in science, architecture, engineering, humanities, management, and other fields represented among MIT alumni. There are nearly 60 regional MIT clubs throughout the world. The Alumni Fund, through which alumni contribute to the financial mainstream of the Institute, ranks annually among the country's most successful. Alumni activities include conferences, class reunions, and seminars in Cambridge and major cities throughout the United States, as well as a program of communications and directories.

The Association of MIT Alumnae is an organization of former MIT women students with a continuing interest in women currently studying at the Institute. The group maintains and administers its own funds for special financial aid to women students.
Campus Activities

There is much more to an MIT education than study and research in classrooms and laboratories. Many activities and services are available which complement strictly academic pursuits, and provide numerous opportunities for students to grow and develop new interests. This chapter describes the range of extracurricular activities on campus; the Institute's housing and dining programs; and the advisory, counseling, and medical services available to students.

Undergraduate Student Government

The MIT Undergraduate Association, to which all undergraduates belong, is the major undergraduate governmental body. It is assisted by a variety of committees. The Finance Board coordinates budgets and allocates funds to student organizations. The Student Center Committee helps manage the facility, develops programs, and operates a 24-hour coffeehouse. The Student Committee on Educational Policy proposes educational reforms and publishes a course evaluation guide. It also provides student feedback to the departments and the Institute on important educational issues. The Student Information Processing Board operates free computer services for student use and advises on computer policy at the Institute. The Association of Student Activities coordinates programs and allocates space. The Nominations Committee recommends student representatives for more than 50 faculty and administrative committees. The Social Committee produces the major social events of the year.

The International Students' Council represents the interests of international students at the Institute and sponsors a newsletter, assemblies, and other events.

All living groups, both fraternities and Institute Houses, elect governing councils, responsible for the functioning of their houses. In addition to sponsoring social events, these house councils handle all judicial matters within the respective houses. To deal with problems of common concern, the fraternities have joined in the Interfraternity Conference (IFC), while the Institute Houses have formed the Dormitory Council. The IFC operates a central food purchasing agency, coordinates and supervises Rush Week, and works to improve relations between fraternities and Boston's Back Bay community by sponsoring an area cleanup and beautification program. The Dormitory Council coordinates common house activities such as freshman orientation, major social events, and handles inter-house judicial problems.

The elected officers of the Non-Resident Student Association run a program of tutorial, athletic, and social events for commuting students at the NRSA house on Memorial Drive.

Each class at MIT elects a president and executive committee to handle various class activities.

Graduate Student Government

All graduate students are represented by the Graduate Student Council. The Council is composed of elected representatives of all Courses, Ashdown House, Tang Hall, Green Hall, Eastgate, Westgate, and international students. The organization encourages social, academic, athletic, cultural, and other extracurricular activities; promotes closer relations between graduate students and faculty outside formal academic exercises; and voices ideas and suggestions of graduate students. The Graduate Student Council nominates two students to serve on the faculty Committee on Graduate School Policy and has representation on several other standing committees of the Institute.

Athletics

The athletic program at the Institute encourages all students to participate in some form of physical recreation. Instruction is offered in a wide variety of activities, many of which may be continued in the years following graduation.

Last year, approximately 800 men and women were active in intercollegiate varsity sports while 4,900 students, seeking more informal activities, joined club and intramural teams. The popular intramural program regularly attracts more than two-thirds of the undergraduates and a significant number of graduate students. Last year, there were some 1,200 teams with an estimated 11,900 total participants. In addition, MIT's sailing program attracts another 1,700 students, faculty, staff, and alumni, and extends sailing privileges to their families.

MIT sponsors varsity sports for men in baseball, basketball, crew (heavyweight and lightweight), cross country, fencing, golf, gymnastics, indoor and outdoor track, lacrosse, pistol, rifle, sailing, skiing, soccer, squash, swimming, tennis, water polo, and wrestling. In addition, there are women's varsity teams in basketball, cross country, crew, fencing, field hockey, gymnastics, sailing, softball, swimming, tennis, and volleyball. Competition includes New England colleges and some Ivy League schools. Club varsity sports include football and men's ice hockey.
There are intramural programs in backgammon, badminton, basketball, billiards, bowling, chess, cross country, cycling, fencing, football, frisbee, hockey, sailing, soccer, softball (fast and slow pitch), squash, swimming, tennis, track (indoor and outdoor), volleyball, water polo, weight lifting, and wrestling.

Club sports include badminton, fencing, figure skating, women's ice hockey, rugby (men and women), women's water polo, and white-water kayaking and canoeing. Both undergraduate and graduate students participate in intramural and club programs.

MIT's excellent facilities include the Athletics Center (with an indoor track and ice hockey rink), the du Pont Athletic Center, Alumni Swimming Pool, Walter C. Wood Sailing Pavilion, and Pierce Boathouse. The 20-acre Briggs playing fields include the du Pont outdoor tennis courts. The J. B. Carr Tennis Center includes four indoor courts. Rockwell Cage was renovated to accommodate varsity and intramural basketball, volleyball, and badminton. Steinbrenner Stadium features a 400-meter all-weather track, one of the best in the nation.

Lectures, Seminars, and Films

The Lecture Series Committee, an all-student group independently financed by its program of classic and current films, brings outstanding and controversial speakers to the campus. LSC also has cosponsored, with MIT departments or other campus groups, events of cultural, entertainment, or educational significance. Nationality groups also present movies, as does the Student Center Committee.

Student Publications

Student publications at MIT include The Tech, a student newspaper published twice weekly; Ergo, Technique, the senior yearbook; Rune, an annual literary magazine; How to Get Around MIT (HoToGAMIT), the MIT community guide; and The Graduate, a publication of the Graduate Student Council. There are less formal outlets for journalistic talents in the newspapers of the Institute Houses and in departmental and organizational newsletters of many kinds.

Religious Organizations

There are currently 12 active and long-standing student religious organizations on campus which are based in the Chapel and the Student Center. Ministers representing the major faiths devote all or a large part of their time to on-campus activities, counseling with individual students, and advising the student religious organizations.

In accordance with the Chapel's interdenominational status, the Institute has not appointed an Institute Chaplain or Dean of the Chapel. MIT considers that one of its responsibilities is to maintain an atmosphere of religious freedom for all and to provide opportunity for the exercise of all spiritual interests.
Special Interest Groups

There are more than 80 non-athletic activities and clubs at MIT, many of them open to both faculty and students. Among the most active are the Outing Club, the White Water Club (canoe and kayak), the Hobby Shop, the Debates Society, the "Ham" radio station WMBR (the FM local broadcasting station), and the Student Art Association.

Many students are actively engaged in social service work in the Greater Boston area. Groups such as the Interfraternity Conference and Alpha Phi Omega, the national service fraternity, sponsor active social service programs.

The MIT Black Student Union (BSU) runs a variety of programs in education, culture, and black students' issues. The 23 international student clubs on campus sponsor many programs, including discussion groups and social events. MIT has an active organization of gays, called Gays at MIT (GAMIT), which organizes weekly awareness programs and discussion groups, and sponsors social events throughout the year. The Technology Wives Organization (TWO) is composed of wives of MIT students, both undergraduate and graduate, and sponsors a variety of monthly programs as a social and service organization.

Dancing of all kinds flourishes at MIT. The Folk Dance Club, the Tech Squares, the Ballroom Dancing Club, and various foreign student groups provide regular opportunities for dancers at all levels of ability. The MIT Dance Workshop presents formal programs and supervised instruction as well as sponsors periodic special courses by professional dancers from the Boston area.

Smaller interest groups include bridge, chess, model rocket, railroad clubs, and strategic games.

Theatre

A variety of theatrical performances is presented on the campus by both student organizations and professional groups.

Dramashop is a student drama group which functions under the supervision of the Director of the Drama Program, and includes a set and costume designer and a technical director. Each year this group presents at least two major productions of full-length plays and several workshop productions of one-act plays directed, designed, and acted by students. Further information on the Drama Program may be found under the School of Humanities and Social Science.

The Musical Theatre Guild presents two major and two smaller-scale musical productions each year. MIT students are given first priority in filling all manager, director, designer, orchestra, cast, and technical positions. Tech Show, an original student-written musical, is usually produced in the spring term.

The MIT Community Players is composed of graduate students, as well as undergraduates, faculty, staff, and their families. Each year they present, under professional direction, three full-stage productions — two during the academic year and one during the summer.

The MIT Shakespeare Ensemble, composed of MIT and Wellesley students and a professional director, presents two main productions each year and maintains an extensive repertory of scenes. The Ensemble tours its fall production throughout the Northeast and also performs at Boston-area high schools and institutions. The Ensemble also conducts an apprentice program that offers training in Shakespearean acting.

Music

MIT is a musical community. It has a busy season of musical activities and programs performed by many different musical groups, all of which are open to both undergraduate and graduate students. The Combined Musical Clubs include the Symphony Orchestra, Concert Band, Chamber Music Society, Festival Jazz Ensemble, Concert Jazz Band, Gospel Choir, and Early Music Society. There is also a barbershop group, the Logarhythms, and a coed popular music group, the Chorallaries. The Choral Society, which draws its 150 members from the entire MIT community, performs both classical and contemporary choral works.

These organizations give public concerts on the campus, participate in joint concerts on other Northeastern college campuses, and take periodic concert tours throughout the East and Midwest.

Chamber music groups, symphonic groups, and concert soloists appear at MIT each year as part of the Humanities Series. Additional chamber music concerts given by faculty and students are regularly scheduled throughout the year. Other professional musical events are sponsored at the Institute by various campus organizations.
Technology Community Association (TCA)

Managed by undergraduates, TCA conducts a diversified program of year-round services to the MIT community, including a book exchange, duplicating machines and silk screening facilities for student use, and an annual blood donor drive. TCA also channels volunteers into urban community service projects.

Visual Arts Activities

The Committee on the Visual Arts administers a variety of programs. The Hayden Galleries show 10 exhibitions each year focusing on contemporary art and architecture. The Catherine N. Stratton and List Student Loan collections provide prints on loan to students for the academic year following an exhibition each September in Hayden Galleries. The MIT Permanent Collection is sited in offices and public spaces throughout the Institute and is particularly noted for outdoor sculpture and contemporary works of art on paper.

Educational activities include an undergraduate seminar, "Issues in Contemporary Art"; lectures; symposia; and an extensive publications program in conjunction with Hayden Galleries exhibitions.

The Hart Nautical Collections, a branch of the MIT Museum, maintain a fine collection of paintings, prints, photographs, ship plans and models, and working drawings of yachts and small craft by well-known 20th-century designers.

Exhibitions in the Margaret Hutchinson Compton Gallery illustrate the Institute's programs and fields of inquiry. Exhibitions this past year included Insights and Explorations — an exhibit combining artistic and scientific methods of inquiry; works by American etcher and photographer Samuel V. Chamberlain '18; and Ring the Banjar! The Banjo in America from Folklore to Factory.

Talbot House

Talbot House, an old New England farmhouse in South Pomfret, Vermont, is administered by the Office of the Dean for Student Affairs. It was a gift by Laurance Rockefeller to be used by the MIT community.

The atmosphere at Talbot House is relaxed and comfortable. Meals are prepared by a staff cook and served family style. Members of the MIT community take advantage of the tranquility at Talbot House to retreat from the noise and commotion of the city. The most frequent visitors to the house have been members of clubs, living groups, and academic groups. Some groups have gone for recreation and a study break; others have found Talbot House to be an excellent setting for special projects, seminars, workshops, or research discussions.

Any group from the MIT community, ranging in size from 15 to 27 people, may request the use of Talbot House. A number of considerations is weighed in determining which groups can be accommodated.
At the undergraduate level, MIT is essentially a residential university. Of the total undergraduate student body of 4,500, about 2,650 single men and women live in the ten Institute Houses on the campus, and about 1,350 single men and women are in other residence groups including 21 fraternities, the cooperative MIT Student House, and the Women's Independent Living Group. The opening of a new undergraduate residence in 1981 now allows for the housing of transfer and readmitted students.

The central purpose of the residential system is to provide an environment conducive to personal development as well as academic achievement. The Institute relies greatly on the initiative and responsibility of both individual students and student government organizations in the residences.

Faculty families chosen for their understanding of and deep interest in students live in each of the Institute Houses. They are not charged with formal academic or operational responsibilities; instead, they welcome informal associations with their fellow residents. In all of the Institute Houses and in some fraternities, Graduate Residents also provide personal and academic assistance to undergraduates.

With the exception of McCormick Hall (all female) and MacGregor House (all male), the Institute Houses have coeducational living facilities. However, most of the coed Houses also have “single-sex” living areas within the House. While we are unable to guarantee the assignment of a freshman to any particular House, an effort is made to assign students to one of their top choices. It is also usually possible to transfer from one House to another after the first term.
Housing

Institute Houses

Everett Moore Baker House
Bexley Hall
Burton-Conner
East Campus Houses — Munroe, Hayden, Wood, Goodale, Bemis, and Walcott
Frank S. MacGregor House
Stanley McCormick Hall
New West Campus Houses — Ballard, Laurence, Coolidge, Desmond, Fisk, and Thorn, which include:
French House
German House
Russian House
Spanish House
Random Hall
Senior Houses — Ware, Atkinson, Runkle, Holman, Nichols, and Crafts
500 Memorial Drive

Rooms in the Institute Houses are engaged for the full academic year. For the year 1984-85, the average rents for the Houses range from $908 to $1,210 per term.

A student cancelling a room assignment after the stated deadline of July 13 will be charged a cancellation fee. A student withdrawing from MIT during a regular term will receive a refund based on proration of the term rental over 12 weeks of occupancy.

Meal Plans for 1984-85

The meal plans for all MIT students, graduate and undergraduate, combine the use of points for commons meals and cash for à la carte meals and snacks. This unique plan, with the help of a transaction processor called the VadiDine System, provides the students with a wide range of options, flexibility, and financial equity.

All students living in Houses which have dining rooms (Baker House, MacGregor House, McCormick Hall, and 500 Memorial Drive) are required to take the following meal plan: freshmen "360" plan, sophomores "310" plan, juniors "260" plan, and seniors "210" plan. All four plans are with Basic or Seconds as a minimum.

The meal plans as listed are basically the same but with different levels of credit. The plans can be used as points, one point for breakfast, two points for lunch, and three points for dinner in the "commons" house dining rooms or at a la carte prices in Lobdell and 20 Chimneys in the Student Center, Morriss Hall and Pritchett in Walker Memorial, and in the snack bar and dining room at 500 Memorial Drive. Special arrangements are available for weekends and late evening hours. There will be a full refund of the unused balance on any meal plan to those students who cancel their plan or withdraw from the Institute. The only exception will be for those students who are required to be on a meal plan and do not use their minimum requirement.

Detailed information about the dining plans, their use during IAP, the options available, the minimum requirements, refunds, the guest policy, and how to use the program is available to freshmen in the Undergraduate Residence book and to others in the Food Service VadiDine Office in Room E18-375.

Plan Prices per Term

<table>
<thead>
<tr>
<th>Plan</th>
<th>Basic Plan</th>
<th>Seconds Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>560 Plan</td>
<td>$916</td>
<td>$1,081</td>
</tr>
<tr>
<td>460 Plan</td>
<td>781</td>
<td>915</td>
</tr>
<tr>
<td>410 Plan</td>
<td>714</td>
<td>833</td>
</tr>
<tr>
<td>360 Plan</td>
<td>646</td>
<td>751</td>
</tr>
<tr>
<td>310 Plan</td>
<td>579</td>
<td>668</td>
</tr>
<tr>
<td>260 Plan</td>
<td>511</td>
<td>566</td>
</tr>
<tr>
<td>210 Plan</td>
<td>444</td>
<td>503</td>
</tr>
<tr>
<td>160 Plan</td>
<td>376</td>
<td>421</td>
</tr>
<tr>
<td>Charge Plan</td>
<td>200</td>
<td>—</td>
</tr>
</tbody>
</table>

Fraternities

Recognized fraternities at MIT include 27 chapters of national fraternities and four local-residential groups with no off-campus affiliation. Four are coed. The other 27 house men only. All of the fraternities maintain houses in Cambridge, Boston, or Brookline. Fraternities participate in MIT student government through the Interfraternity Conference.

Each fraternity chapter is self-governing, manages all of its operations and maintenance, and develops its academic, social, membership, recreational, and external policies and programs. The fraternities provide a unique experience in leadership, community planning, and group interactions.

Approximately 95 percent of the fraternity freshmen are pledged during "Residence/Orientation Week," which is held in September just prior to Registration. Normally, about 375 freshmen accept invitations to join fraternities. A few upperclassmen, including transfer students, also pledge fraternities at the beginning of each term.
The Women's Independent Living Group

The WILG is a non-dormitory living group for women in a newly renovated house a short distance from campus. The living group offers a sense of community and allows for independence and self-governance similar to the fraternities. WILG is also a member of the Interfraternity Conference.

Cooperative Living

The MIT Student House is an independent, coeducational, cooperative living group for financially needy students. It is owned by a corporation of House alumni. The 30 undergraduate members maintain the residence and do all the work except for major repairs. Students cooperate in the management of the House and the academic, recreational, and social aspects of student life. Savings per member are at least $800 a year. Student House is also a member of the Interfraternity Conference.

Non-Resident Student Association

Those unmarried undergraduates who commute daily from their own homes or off-campus quarters and who are not affiliated with one of the Institute Houses, fraternity chapters, or the MIT Student House are considered members of the Non-Resident Student Association (NRSA). A small fee is charged members to help support the social and cultural programs of this student organization. The fee is currently $10 but may be increased by the NRSA. The focus for NRSA activities is a house on the campus which provides social and study facilities for commuting students, limited overnight accommodations, and a graduate resident tutor. The student governing group has responsibilities similar to those of student governing bodies in the residences.

Off Campus Student Housing

Students who do not live on campus will find help in locating accommodations in the Off Campus Housing Service, Room E18-301, MIT. Listings of available rentals in the Greater Boston area are maintained. The staff attempts, on an individual basis, to help students locate the type of accommodations that will best suit individual preferences and finances. All correspondence should be addressed to Off Campus Housing Service, Building E18-301, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139.

Additional Information

Additional information on undergraduate housing and application procedures is contained in the publication Undergraduate Residence at MIT. Each first-year student is automatically sent a copy of this brochure about three months before registration day of the term for which he or she has been admitted to MIT. Others may request copies from the Office of the Dean for Student Affairs, Room 7-133, MIT, Cambridge, Massachusetts 02139, (617) 253-4051. Information about fraternities also may be obtained by writing to Interfraternity Conference, Room W20-413, MIT, Cambridge, Massachusetts 02139. Information on the MIT Student House may be obtained by writing to the President, MIT Student House, 111 Bay State Road, Boston, Massachusetts 02215.

Approximately 30 percent of the single graduate students reside on the campus in Avery Allen Ashdown House, Ping Yuan Tang Residence Hall, and Ida Flansburgh Green Hall.

Ashdown House

Ashdown House, located on the corner of Massachusetts Avenue and Memorial Drive directly across from the main buildings of MIT, houses 391 single graduate men and women in single, double, and triple rooms.

A member of the faculty, who is familiar with the aims and problems of graduate students, resides with his family in the House, serving as the Faculty Family in Residence. A student House Executive Committee, acting with the advice and assistance of the Faculty Resident, plans and operates the activities program.

Ashdown House, with facilities for social and cultural events, is a center of graduate student activities.

Rooms in Ashdown House are rented for a full academic year; rents range from $1,890 to $2,242 per person for the academic year, depending on the type of room.
Green Hall

Opened this past spring, Green Hall accommodates 46 single graduate women in 32 single and eight double rooms. The completely refurbished dormitory is centrally located on Memorial Drive within five minutes walking distance of athletic, Student Center, and main campus buildings.

Rooms are furnished with a bed, desk, chair, lamp, and dresser, and average $1,985 per person for the academic year. Rooms in Green Hall are rented for the full academic year beginning September 1 and include all utilities except private telephone.

An MIT faculty member resides in the Hall and assists student leaders in planning social and orientation activities. Community cooking facilities are available on each floor, or residents may purchase meals on a charge plan or a la carte in nearby McCormick Hall.

Tang Hall

Tang Hall, located on the far western end of the campus, houses 404 single graduate men and women in one-, three-, and four-bedroom apartments. The apartments, unfurnished except for wall-to-wall carpeting, drapes, and kitchen appliances, are rented on a 12-month license to each occupant, beginning September 1. Rents range from $203 to $245 per occupant per month and include all utilities except telephone. Community facilities are available in this building, two tennis courts are located next to it, and limited parking is available nearby at a nominal annual fee.

More complete information on all graduate residences may be found in A Practical Planning Guide for New Graduate Students, which is automatically mailed to all entering graduate students.

Residence in married student housing is limited to regular undergraduate and graduate married students registered and attending MIT whose spouses are present in the residence. Students must be registered for each semester in which they reside in on-campus student housing (except for the summer). Assignments are made on a one-year license-agreement basis beginning on September 1 of each year. Apartment rents range from $344 to $562 per month and include all utilities except telephone.

Married student housing is managed by the MIT Housing Office, Room E18-301, MIT. Since accommodations in Eastgate and Westgate are limited, married students seeking apartments also are advised to contact the Off-Campus Housing Service.

Westgate

This five-building complex, located at the west end of the MIT campus, provides 209 apartments for married student families.

Westgate consists of a 16-story tower with 90 one-room efficiency apartments and 60 one-bedroom units, and four three-story garden-type buildings with a total of 59 two-bedroom apartments.

Eastgate

Located adjacent to Kendall Square at the east end of the MIT campus, Eastgate is a 30-story apartment tower with 197 family units for married students.

In the tower building there are 94 one-bedroom apartments, 84 larger one-bedroom apartments, and 19 two-bedroom apartments.
Student Services

Advising and Counseling

The Institute offers a variety of advising and counseling resources. By intention, they are not centralized in a "counseling center." A student is free to choose the resource which appears to be most helpful. Counseling, as the word is used here, refers to casual conversations and to scheduled appointments; it ranges from the providing of information to skilled psychotherapy.

The Freshman Handbook and How to Get Around MIT list in detail the counseling resources at MIT. Only a short summary is given here. Each student has a faculty advisor. The Office of the Dean for Student Affairs/Student Assistance Services offers counseling services to all students, whether the situation is academic or personal or both. The office has special responsibilities for international students, women, minorities, and handicapped students. Faculty and graduate residents and tutors are available in the Institute Houses, and some fraternities have graduate residents. Frequently a student is able to get the help he or she wants from a fellow student or from an instructor who is not officially a faculty advisor. Coaches and activity advisors can be helpful as well.

Several offices specialize in particular areas. They include the Student Financial Aid Office, which includes student employment, the Religious Counselors, and the Career Services and Preprofessional Advising. The Campus Police are frequently of help to students. For students considering particular fields, there is a Premedical Advisory Council, a Prelaw Advisory Council, and a Foreign Study Advisor.

The services provided by the Medical Department are described next. The psychiatrists, psychologists, and social workers from the Medical Department are considered by many students to be among the Institute's most skilled counselors.

Medical

The MIT Student Health Program consists of medical services available on campus and of hospital and accident insurance in which all regular students are enrolled unless they submit a written request to waive coverage.

All regular and special students are entitled to comprehensive health care services given by the Medical Department at the Health Services Center (Building E23) generally without further charge. As exceptions to this, charges are made for pre-entry physicals, obstetrical care, routine eye examinations, contact lens service, hearing aid evaluations, ear piercing, dental care, missed appointments, contraceptive devices, prescription drugs, and those surgical procedures and outside diagnostic tests which should be covered by the student's hospital and accident insurance policy. Student spouses may use the Department on a fee-for-service basis or receive the same benefits as a student by paying the $324 Health Service fee for coverage from September 1, 1984 through August 31, 1985.

The MIT Medical Department is a multi-specialty group practice which employs 23 full-time and 40 part-time physicians as well as other professional support personnel. The Department's medical staff provides primary care in the areas of internal medicine, surgery, and pediatrics. Specialists are also available in gynecology, orthopedics, ophthalmology, urology, allergy, neurology, nutrition, endocrinology, dermatology, otolaryngology, gastroenterology, pathology, radiology, psychiatry, and social work services. The Department provides a pharmacy and a full-time optometry service including contact lens services. Laboratory, X-ray, and other diagnostic testing facilities are also available, as is a health education and patient advocacy service. A major goal of the Department is to provide high-quality, accessible medical care; students are encouraged to identify a primary physician who coordinates their health care.

A dental service, which offers dental treatment for students and their spouses, is available on a fee-for-service basis, as is a pediatric service.

Initial consultations with a member of the psychiatric service are available to all students and their spouses without charge. Prolonged psychiatric treatment cannot be provided by the Institute psychiatric staff; students requiring such treatment will be referred to private psychiatrists or psychiatric clinics in the area.

Prior to matriculation, every student, undergraduate or graduate, is required to submit an MIT entrance medical form. The form, which is completed by the student and his or her personal physician, is returned to the chief of Student Health Programs. This form consists of historical information, immunization record, physical examination, and specified laboratory studies. In addition, freedom from active tuberculosis as evidenced by an intradermal skin test or chest X-ray is mandated by public health requirements and cannot be waived. If a student has not returned the pre-entry physical form by the time he or she enters MIT, the student will be required to have it completed by the Medical Department. There will be a charge for this service.

An 18-bed Inpatient Service is operated by the Medical Department for students with acute illness or contagious diseases who cannot be cared for in their dormitories or other living groups but for whom hospitalization in a general hospital is inappropriate. Children are not admitted to the Inpatient Service, but if necessary, are referred to a nearby hospital offering pediatric care. Patients requiring major surgery or treatment for serious illness are sent to one of the Boston or Cambridge hospitals where their care is usually supervised by one of the Medical Department physicians or surgeons.

All visits to the Medical Department are by appointment except in emergencies. The regular hours of the Department are from 8:30 am to 5 pm, Monday through Friday except for holidays. At all other times emergency medical care is available through the MIT Off-Hours Service. Advice may be obtained day or night by calling 253-1311. If a student is too ill to come to the Health Services Center without assistance, the Medical Department should be notified and will recommend suitable help.
Except under unusual circumstances and with the approval of the Medical Director, healthcare services covered by the MIT Medical Department do not include the cost of medical care given off campus or hospitalization except in the MIT Inpatient Service. The cost of hospitalization and outside medical care for serious illness or injury is extremely high; in Boston-area hospitals it exceeds $550 per day. For this reason, it is extremely important that students maintain adequate health insurance for themselves and family members. All regular students will be enrolled automatically in the MIT hospital insurance program and billed for each semester. US citizens covered under their own or their family's policy must request waiver of the MIT coverage by completing the form enclosed with the Financial Registration material. All non-US citizens must demonstrate that they have coverage equivalent to the MIT insurance by submitting a copy of their insurance policy to the MIT Medical Department Student Insurance Office together with the completed waiver request.

Special students taking two or more courses are eligible to purchase the MIT hospital and accident insurance, but are not enrolled automatically.

Annual Rates (September 1, 1984-August 31, 1985)

<table>
<thead>
<tr>
<th>Medical Department</th>
<th>Hospital & Accident Insurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>included in tuition</td>
</tr>
<tr>
<td>Spouse</td>
<td>$324 (or fee for service)</td>
</tr>
<tr>
<td>Child(ren)</td>
<td>fee for service</td>
</tr>
</tbody>
</table>

The Office of Career Services and Preprofessional Advising serves students seeking information and advice on employment, opportunities for further study, and careers.

The Career Services staff are happy to talk with students on an individual basis about their plans. The Office also arranges seminars at which alumni and others discuss the rewards and frustrations of their own career fields. The Office maintains a comprehensive library containing information on careers, specific employers in industry and government, courses of graduate study, fellowships, and opportunities for work and study abroad. In addition, information on premedical and prelaw studies, as well as other details about professional postgraduate education, is available.

More than 400 companies, government agencies, and graduate schools make recruiting visits to the Office each year. These visits are publicized in descriptive notices which are posted throughout the Institute. All bona fide employers are given access to the facilities of the Office on equal terms. Their coming to the campus gives students a valuable opportunity to discuss employment prospects with different organizations.

The Office, through its Alumni Placement section, is in continual correspondence with employers seeking experienced personnel. Notices of vacancies are received from all parts of the nation and abroad. The Office also assists alumni interested in a change of job or of career.

The Child Care Office helps families with young children locate suitable child care arrangements. There are three programs operating on the MIT campus which can accommodate children from infancy to age five. All of the programs reflect the great diversity of cultures that one finds at the Institute.

Family Day Care is organized by the Child Care Office and is an arrangement in the home of a day care provider who has been licensed by the Commonwealth of Massachusetts. Each family day care home operates independently offering its own attitudes and activities. The Child Care Office puts providers and users in touch with each other. Actual arrangements are made by the families involved. Fees range from $2.50 to $3.00 per hour.

Family day care homes are located in Eastgate and Westgate, as well as in other parts of Cambridge and surrounding communities.

Technology Children's Center, Inc. (TCC) is a private, nonprofit corporation which operates two programs on campus for children who are at least two years and nine months old:

- The Half-day Program follows the academic calendar and offers a morning program from 8:30 am to 1 pm. Children may be enrolled for two, three, or five mornings a week, with classrooms located in Eastgate and in Westgate. Fees for the 1984-85 school year are $1,957 for five mornings; $1,174 for three mornings; and $733 for two mornings. There is also a six-week summer program.

- The Day Care program offers full-time, year-round care from 8 am to 5:30 pm, Monday through Friday. The center is located at Eastgate. The comprehensive fee for 1984-85 is $4,863.

The Child Care Office maintains information about child care in other parts of Cambridge and surrounding communities. Every effort is made to find the arrangement that is most suitable for an individual family. Further information may be obtained from the Child Care Office, Room 4-144, MIT, Cambridge, Massachusetts 02139, (617) 253-1592, or TCC, 60 Wadsworth St., Cambridge, Massachusetts 02142, 253-5907.
Rules and Regulations

Conduct, Discipline, and Grievance Procedures

MIT assumes that all students come to the Institute for a serious purpose and expects them to be responsible individuals who demand of themselves high standards of honesty and personal conduct. Disappointments in this expectation have been rare.

Fundamental to the principle of independent learning and professional growth is the requirement of honesty and integrity in the conduct of one's academic and nonacademic life. Maintenance of a healthy living and learning environment requires that all members of the community exercise due respect for the basic rights of one another. Cheating, plagiarism, and other forms of intellectual dishonesty are considered serious offenses against the academic community. In addition, harassment on the basis of sex, race, color, religion, national origin, or sexual orientation is specifically in conflict with Institute policy.

Violations by students of MIT regulations such as those governing living groups, parking, and the improper use of MIT's name, keys, telephones, computers, and so forth, render the offender subject to institutional penalties.

Off-campus misconduct will not be the basis for disciplinary action unless it is deemed by the Institute a clear and present danger to the functions of the Institute. The Institute determines its jurisdiction under this policy for each case. Student status in no sense renders a student immune from the jurisdiction of civil courts and other civil authorities according to the law of the land. However, MIT does handle many infractions of the civil or communal code internally — according to Institute policies and procedures. This is done with the understanding by the outside community that MIT will deal seriously with such offenses. (Almost every large institution in society has its own processes which are deferred to by the civil authorities so long as the internal processes are adequate and functioning.) Serious infractions of city, state, or Federal laws, however, are referred to the civil authorities.

If an infraction causes a student to be involved both in Institute judicial proceedings and court proceedings, and if an Institute decision might prejudice the court case, the Institute will usually hold its decision in abeyance until after the court proceedings have reached a conclusive point.

MIT traditionally has placed considerable responsibility on student governing groups to deal with problems in the student community. Nearly all Institute Houses and independent residencies have judicial procedures, organizations, and/or designated persons who deal with disputes and violations of rules and regulations occurring in their living groups.

Students who believe that they have been treated improperly for any reason are encouraged to seek resolution of their grievances. Grievances vis-a-vis other students should be pursued as outlined in the paragraphs above. For grievances relating to their academic or work situations, students should seek resolution directly with their professors, instructors, academic advisors, and immediate work supervisors — as appropriate to the nature of the perceived unjust treatment. If a problem cannot be resolved at this level, students should either seek assistance from their department heads or deans or avail themselves of the assistance of the Office of the Dean for Student Affairs or the Office of the Dean of the Graduate School. Students may also choose to bring the problem to the attention of the two Special Assistants to the President.

It is Institute policy that individuals will not be reprimanded or discriminated against for initiating an inquiry or complaint and that the rights of the individual against whom a complaint is made are protected.
Privacy of Student Records

Institute Policy on Harassment

Harassment of any kind is unacceptable at MIT and is in conflict with the policies and interests of the Institute. Moreover, many forms of harassment have been recognized by the US Equal Opportunity Commission and the courts as violations of the civil rights laws.

Harassment is defined as verbal or physical conduct which has the intent or effect of unreasonably interfering with an individual’s or group’s educational and/or work performance at MIT, or creating an intimidating, hostile, or offensive educational and work environment on or off campus. Harassment on the basis of race, color, sex, religion, national origin, or sexual orientation includes harassment of an individual in terms of a stereotyped group characteristic, or because of that person’s identification with a particular group. With reference to sexual harassment, the definition also includes unwelcomed sexual advances and requests for sexual favors which might be perceived as explicitly or implicitly affecting educational or employment decisions concerning an individual.

Any member of the MIT community who believes that he or she has been harassed is encouraged to raise the issue, or lodge a complaint, in accordance with the established grievance procedures outlined above. Additional information on procedures for following up on harassment concerns is available from the Office of the Dean for Student Affairs.

A “Guide to Alternative Starting Points and Sequences for Addressing Harassment Concerns” is available from the Office of the Dean for Student Affairs.

Additional information on conduct and discipline may be found in the position paper by the Committee on Discipline entitled “Infractions of the MIT Code and Violations of Law,” which is available from the Office of the Dean for Student Affairs.

The Family Educational Rights and Privacy Act of 1974 (sometimes called “the Buckley Amendment”) gives students certain rights, consistent with the privacy of others, to review records, files, and data held about them on an official basis by the Institute, and also gives students a right to challenge the content of those records, files, and data which they believe are inaccurate, misleading, or otherwise in violation of their privacy and other rights. The Act also imposes certain controls on access to information about students.

Under the Act, “education records” mean those records which are directly related to a student and are maintained by MIT. Education records at MIT include those that are kept by the offices of the Registrar, Admissions, Dean for Student Affairs, Dean of the Graduate School, Bursar, Student Financial Aid, UROP, academic departments and advisors, standing committees of the faculty, Alumni Association, and the Archives. Certain records are not included as education records under the Act. They include: personal files held by Institute faculty and staff that are not accessible or revealed to others, certain records of the Campus Police, and medical records maintained by the Medical Department.

Review of Records and Challenges to Record Content

Subject to the exceptions stated below, all education records of the Institute that are identified with an individual student or former student will be available for review at the request of that individual. A student may make a request directly to the custodian of the record or to the Office of the Dean for Student Affairs. A student shall not be permitted to review those specific portions of his or her education record that refer to other identified students. Individuals may challenge the content of their education record with the custodian or through the Office of the Dean for Student Affairs. If a dispute remains pertaining to the accuracy or completeness of the record, the student shall be afforded a hearing.

Information about students assembled prior to January 1, 1975, under promises of confidentiality, explicit or implicit, will not be made available for review by the concerned students without the written consent of the author. A letter of recommendation that was placed in a student’s education record after January 1, 1975, will not be made available to the student for review, if the student has previously waived his or her right to review that specific letter.

Under the Family Educational Rights and Privacy Act of 1974, an MIT student who has applied for admission, but has not yet attended, another component unit of MIT (e.g., a graduate school or department) does not have the right to review his or her education record within that component unit unless and until the student begins to attend that unit. However, individual departments may choose to disclose such information to such a student.

Although medical records maintained by the Medical Department are not considered education records under the Family Educational Rights and Privacy Act of 1974, they are regulated by Massachusetts law relating to the rights of patients and residents of health facilities. Under this law, students have the right to confidentiality of their medical records as well as the right to inspect and to obtain a copy of these records.
Disclosure of Information about Students

Disclosure of information in education records to persons within or outside the Institute, except as indicated below, requires the student's written consent. The written consent must be signed and dated and must include a specification of the records to be disclosed, the purpose of the disclosure, and the party to whom the disclosure may be made. Upon request, the student shall be provided with a copy of a record that is disclosed pursuant to this consent. A record of each request and of each disclosure must be made part of the education records to which a student has access. Institute officials may have access, without the student's prior consent, and without a record being made, to specific student records in which they have a legitimate educational interest. For this purpose, Institute officials include both academic and administrative personnel. Only those Institute officials acting in a capacity intended to further the educational interests of the student and possessing a clear need to obtain information about the student may have access to that information. For example: faculty advisors may have access to relevant education records of their advisees. In addition, custodians of students' educational records shall exercise responsibility to treat personal information with appropriate care and discretion and not exchange such information unnecessarily, and to ensure that the transfer of information between persons not in the same office or working group serves a legitimate Institute purpose. (Where such transfer is unusual, prior notice should be given to the individual and where practicable, permission should be obtained.)

Under the Family Educational Rights and Privacy Act, education records may be disclosed without a student's prior consent to officials of another educational institution in which the student seeks or intends to enroll, or in which the student is enrolled concurrently. In such cases, the student must be notified of the disclosure, provided with a copy of the disclosed records if he or she requests, and granted an opportunity for a hearing to challenge the contents of the disclosed records. All education records that are released to persons or organizations outside of MIT must be released on the condition that they will be used only for their stated purpose and that no other party will have access to them without the student's written consent. The disclosed material should contain a statement to the effect that acceptance of these materials constitutes an agreement to abide by this condition.

Certain personally identifiable information from a student's education record, designated by the Institute as directory information, may be released without the student's prior consent and without a record being made. This information includes: name, term and permanent addresses, term phone number, department, class, degrees received, dates of attendance, and, for an intercollegiate athletic team member, weight and height. A student has the right to withhold the designation of any or all of these categories of information on himself or herself as directory information. To exercise this right, a student should submit by the end of the second week of the fall term a request form available from the Registrar. Intercollegiate athletic team members who wish to withhold the designation of weight and height as directory information should contact the Sports Information Director in the Athletic Department. The Student Directory, although it contains most of the information listed above, is intended primarily for use by members of the MIT community. Information in the Directory may be made available to persons outside of MIT only in response to inquiries about specified individuals. Providing the Directory or similar listings to persons outside MIT or using the Directory for non-Institute purposes is prohibited. Massachusetts law permits local municipalities to obtain census information, similar to directory information, pertaining to students living in MIT residences. In the case of court orders or subpoenas for information, the affected individual should be notified immediately and the release of such information should then be made only by an officer of the Institute who has been specifically authorized to do so.

Administration of Institute Policy

Questions concerning this policy may be directed to the Dean for Student Affairs; Chairman of the Committee on Privacy; or the Vice President in the Office of the President, who is the senior officer responsible for overseeing Institute operations with respect to the protection of individual privacy. Students who believe that their rights under the Act have been abridged by the Institute may file complaints with the FERPA Office, Department of Education, Washington, DC 20201.

Letters of Recommendation

A student's request for a letter of recommendation to be written by Institute faculty or staff constitutes a consent to disclosure and should, therefore, be made in writing.

A student or former student may voluntarily waive his or her right to review or receive copies of letters of recommendation or other documents sent to MIT or written by a member of the MIT faculty or staff in connection with admission to educational institutions, employment, or consideration for an honor or recognition. Such a waiver must be in writing and must include adequate identification of the concerned individual, the author of the letter, and the purpose for which the letter is intended. Such waivers must not be required as a condition for admission to, receipt of financial aid from, or receipt of any other services or benefits from any agency or institution. Faculty and staff should take care not to encourage waivers unnecessarily.

Personal Files of Faculty and Staff

The personal files of members of the faculty and staff which concern students, including private correspondence and notes which refer to students, are not regarded as education records and are not per se subject to review by students. However, if the personal files are made available to others within the Institute or to parties outside MIT, then they are part of a student's education records, and the student has a right to review those personal files.
Motor Vehicles

All motor vehicles operated by students must be registered each year with the MIT Campus Police. Failure to register will result in a $25 fine. This registration is required whether or not a parking sticker is obtained. Students also should note that state law requires that out-of-state cars operated by students be registered with the Campus Police.

Parking facilities at MIT are limited. In general, the Institute cannot provide parking for resident students. With the approval of the Dean for Student Affairs, a limited number of spaces is available for assignment to students with physical handicaps requiring use of an automobile and to a few other undergraduates. Parking is prohibited and towing in effect on Memorial Drive in front of MIT between the hours of 7 and 10 am.

Students who plan to bring motor vehicles to Cambridge should take careful note of the information regarding pertinent Massachusetts laws which is mailed with registration material. In addition, since the rate of car thefts in this state is one of the highest in the nation, serious consideration should be given to equipping automobiles with anti-theft devices.
The Freshman Year

The undergraduate programs at MIT are designed to help students develop understanding, maturity, and capabilities needed to meet the challenges of modern society. An MIT education has its roots in science and engineering, with a view to joining the power of these disciplines with a concern for human values and social goals. As undergraduates, students are encouraged to develop a basic knowledge and continuing interest in a given field, and to become creative intellectual explorers who know how to keep learning on their own.

One of the most exciting features of undergraduate education at MIT is the opportunity for students to join with faculty in ongoing research projects. Such experiences, through the Undergraduate Research Opportunities Program, encourage intellectual commitments and self-direction, and often provide a focus for students’ undergraduate studies. There is also an Independent Activities Period each January during which students can spend time in workshops, independent research projects, intensive seminars, field trips, lecture and film series, and other activities which do not easily fit into the traditional academic calendar.

MIT students base their studies on a core of subjects in science, mathematics, and the humanities (the General Institute Requirements), and then go on to major in one of the engineering fields, in the physical or life sciences, in management, in architecture or urban studies and planning, or in an area in the humanities or social sciences. In the first year, most students take a program of subjects from a variety of options in mathematics, physics, chemistry or biology, and humanities. During the second year, students generally continue their studies with subjects meeting the various Institute requirements and with the beginning subjects in the departmental programs. In the third and fourth years, students concentrate on the departmental program which they selected as their major Course of study. In addition to departmental programs, it also is possible to study and even major in one of a growing number of interdepartmental fields, such as environmental or energy studies, biomedical engineering, communications science, humanities and engineering, and humanities and science.

In addition to the departmental or major program, there is time for students to take elective subjects each year. These elective opportunities allow students to follow special interests or to enrich their educational background. A student may also use elective time to prepare for advanced study in a professional field such as medicine or law; for graduate study in an area in which MIT gives no undergraduate degree; or for advanced study in an interdepartmental field.

For most students, the program for the Bachelor of Science normally requires four years of full-time study. To complete work for a bachelor’s degree in any Course, each student must fulfill the General Institute Requirements and must complete the departmental program specified by that Course. Details on General Institute Requirements and on selecting a major Course of study are discussed later in this chapter.

During the first year at MIT, most students take a program which includes subjects in mathematics, physics, chemistry or biology, and humanities. In order to enable first-year students to study in ways that best suit their preparation and learning styles, there is a variety of ways to complete the core subjects, as well as to prepare for further undergraduate study. Students may choose from a range of specified subjects or may enroll in one of the distinctive freshman programs called Concourse, the Integrated Studies Program, and the Experimental Study Group, which are described later in this chapter.

In order to fulfill the Institute degree requirements (listed later in this chapter), those freshmen following the more traditional subject-by-subject format may choose one of four sequences in mathematics, one of four subjects in the chemistry/biology area, one of two sequences in physics, and from a designated list of subjects in the humanities, arts, and social sciences. Students have five options from which to choose to satisfy the first phase of the Writing Requirement.

A typical program for the first year includes two terms of physics, two terms of calculus, two terms of humanities, one term of chemistry or biology, plus one or more elective subjects, perhaps including an undergraduate seminar. All subjects taken by freshmen are graded on a pass/fail basis. Some freshmen also elect to become involved in the Undergraduate Research Opportunities Program (described later in this chapter). Entering students with degree credit for one or more of the first-year subjects may substitute more advanced subjects or may use the time made available for electives or Science Distribution subjects. The procedures by which degree credit at entrance is earned are described under Admissions in this chapter.

Most students build their freshman programs from among the basic subjects mentioned above. The Concourse Program, the Integrated Studies Program, and the Experimental Study Group, which offer alternatives to the more traditional lecture/recitation, subject-by-subject format, have their own faculty, meeting place, and methods of operation. In these programs, students make progress comparable to that of other freshmen, but the manner in which individual Institute degree requirements are met varies between the programs and among students within each program. In all three programs there is a high level of student-faculty interaction.

The various undergraduate Courses are described in Chapter VI. At the Institute the capitalized word Course refers to an organized curriculum leading to a specified degree. The lowercased word course or subject, on the other hand, refers to the individual classes. Each Course is designated by a Roman numeral; individual subjects are given Arabic numerals to correspond with the Course numbers. For example, Course I and Course I-A are curricula in Civil Engineering. 1.05 indicates a subject given in Civil Engineering. The Department of Civil Engineering as a whole is also referred to as Course 1 or Course I.
Concourse Program

A student who chooses the Concourse Program becomes a member of a group of about 50 freshmen working with a team of five to seven faculty members in a year-long program of study that deals with interactions of ideas and methods from engineering, science, and humanities. Concourse has operated as an alternative program for freshmen since 1971, and has been made a regular part of the MIT curriculum. A main goal of the Program is to explore both the unity and conflict of humanistic and technical viewpoints and ideas. The general approach is not only to achieve competence in the separate disciplines but to examine the mutual relevance of freshman calculus, physics, chemistry, biology, and humanities in the context of topics such as information theory, computation, physiological psychology, perception, the structure of history, the uses and construction of models, and the mind-body problem.

The Concourse faculty members, representing different professional disciplines, collaborate closely in the planning and teaching of the curriculum, which fully treats the subject matter of Institute Requirements while branching out into related topics. Regularly scheduled class sessions are supplemented by various kinds of less formal activity. Special provisions for advanced study are made for students who enter with degree credit in one or more of the first-year fields. A student may carry at least one subject per term outside the Concourse Program. Subject matter of the Concourse Program is arranged so that the student receives credit for all of the first-year General Institute Requirements upon successful completion of the program. The structure of Concourse promotes close and sustained contact between students and faculty, and provides a coherent and balanced approach to the diversity of disciplines and research activities at the Institute.

Concourse operates under the aegis of the Department of Electrical Engineering and Computer Science. The program supervisors for 1984-85 are Professors Jerome Y. Lettvin and David Adler. A detailed description of the program may be found in the Freshman Handbook or may be obtained by writing to Concourse, Room E51-110, Cambridge, MA 02139.

Integrated Studies Program

The Integrated Studies Program is a new freshman program open to about 50 students and conducted by a group of faculty from the Schools of Science and Engineering and from the Program in Science, Technology, and Society.

Its goals are two-fold: to provide for a group of freshmen an educational setting which emphasizes the connections of the scientific disciplines with their cultural contexts and their applications to human needs, and to do it in surroundings which allow the participating students and faculty to develop the sense of a shared intellectual experience.

In particular, the program will include the material in physics, chemistry, calculus, and the humanities generally expected in the freshman year. The academic disciplines are taught rigorously to bring out their internal logic and coherence. Integration is achieved by careful scheduling so that related concepts in different disciplines are presented at the same time. It is achieved as well through seminars and through synthesis-oriented term papers and design assignments. For example, students would study calculus and Newtonian mechanics along with the history of 17th-century science and with the design of early machines, and later they would explore how the engineering profession developed.

Special provisions for individual advanced study are made for students who enter with degree credit in one or more of the first-year subjects. Students may also carry at least one subject per term outside the Program.

Subject matter of the Integrated Studies Program is arranged so that the student receives credit for all of the first-year General Institute Requirements upon successful completion of the program. The mix of several opportunities — formal course work, seminars, discussions, the availability of a common room reserved exclusively for the Program, and the easy access to faculty and student tutors — provides a setting in which students can discover both the coherence and the diversity of the disciplines they study, and can find a congenial atmosphere of mutual support.

A detailed description of the Program may be found in the Freshman Handbook or by writing to the Integrated Studies Program, MIT, Room E51-110, Cambridge, MA 02139.

ESG (Experimental Study Group)

ESG is a small academic community at MIT which offers a comprehensive alternative program in the core subjects for freshmen and sophomores. Students enrolling in ESG can study mathematics, physics, chemistry, humanities, and social science subjects (and other subjects, including computer science, depending on staff availability) through a combination of tutorials, seminars, study groups, and independent study projects. In contrast to the set structure of the regular curriculum, ESG's flexibility allows students to go at their own pace whenever possible, to choose their own topics of concentration within the course material, and to organize their schedules as they wish. Although ESG can be a full-time activity for freshmen, students usually take one or two courses in the regular curriculum which are not offered in ESG. Every freshman is guaranteed at least 50 units of credit each term, including specific credit for subjects completed and free elective credit for work done that is not covered under a particular subject number.

In addition to offering a solid academic program for freshmen and sophomores, ESG also provides a place where students and staff can study and socialize together. Each year approximately 45 freshmen, 25 sophomores, 10 staff members, and 20 upperclass tutors (who have been in ESG as freshmen) participate in ESG. Staff members are drawn from MIT's Departments of Mathematics, Chemistry, Physics, and from the Schools of Engineering and Humanities and Social Science. Interaction between community members is facilitated not only through seminars, study groups, and tutorials, but also through community activities such as weekly luncheons and weekend trips.

More information may be found in the Freshman Handbook or by writing to ESG, Room 24-612, MIT, Cambridge, Massachusetts 02139.
Selection of Major Course of Study

Freshman Grading

Many entering students have a well-defined preference for a specific field, while others have interests in several areas and have not yet decided on a field of concentration. A substantial percentage of those who do enter with a decided preference, however, later find other areas more to their liking; therefore, students should be prepared to examine with an open mind the wide range of Courses available at the Institute. Students are encouraged to attend departmental orientation programs to seek out and talk with faculty and others who have experience in fields of potential interest to them. They are also urged to select electives which will help them in deciding about their future careers. For many, this consideration of fields will reinforce existing convictions, while for others it will open up new avenues of interest. MIT may, however, limit enrollment in particular fields of study to balance resources with student interest.

Each of the undergraduate Courses combines the study of basic principles with the study of their practical applications. This combination, studied in depth, helps to foster motivation for the lifelong learning necessary for professional competence.

Students usually choose a Course at the end of the first year though they need not do so until the end of their second year. There is sufficient overlap and flexibility so that a change in Course can be made with relative ease in the second year. Thus, even though a student may have doubts about which of two Courses to choose, he or she usually finds it wise to enroll in one of them for a year to get the true flavor of being an undergraduate in that department.

All undergraduate and graduate academic programs, as well as faculty listings, for each of the Institute's 22 Courses are described fully in Chapter VI, entitled Departmental Degree Programs.

Each student entering MIT is assigned an advisor who assists the student in designing an effective program of study appropriate to individual interests and aspirations. For instance, the selection of elective subjects is an important consideration, one which students should discuss in depth with their advisor.

Electives

Any subject offered by the Institute is open to first-year students, provided they satisfy the prerequisites. There are several hundred subjects without prerequisites from which a student may select during the freshman year.

Electives can be used for several different purposes. For example, many students who are undecided about their eventual program of study will use some part of their elective time to get more information about the various departments or fields they are considering. Other students who are more certain of their professional goals will use elective time to explore areas of secondary interest. Still others will choose to begin work on departmental or Institute requirements, deferring subjects of a more supplemental nature until a later year.

The study of a language may be started or continued. Freshmen should select electives that best suit their individual needs.

Undergraduate Seminars

The Undergraduate Seminar Program offers students an opportunity to interact closely with faculty members on topics which are of current interest. Seminars vary tremendously both in style and topic. Some are oriented around small group discussions; others have speakers, go on field trips, or engage in "hands-on" research. Many topics are interdisciplinary in nature.

Most seminars carry six units of pass/fail credit, and the class size is generally restricted to a small group. Titles and descriptions of seminars to be offered in the upcoming term are published in the Undergraduate Seminar Program booklet, published twice yearly. Copies of the current booklet are available in the Undergraduate Academic Support Office, Room 7-104.
Undergraduate Research Opportunities Program (UROP)

UROP invites undergraduates to participate with MIT faculty and staff members in a wide range of research activities in every academic department and most interdisciplinary laboratories.

There are many advantages to becoming involved in such pursuits as early as possible in an undergraduate career: establishing ties to faculty; having access to the advising, counseling, and tutoring resources of a professional group; trying out a potential major; acquiring data-gathering and laboratory techniques; exploring the frontiers of a field; undertaking topics not amenable to the classroom; facing a real-world problem; and establishing a focus for educational experiences. Through UROP, students can come to have a better understanding of the intellectual process of inquiry, while experiencing an opportunity for personal and professional growth.

Ground rules for participating in UROP are contained in the UROP Directory. Coordinators for Institute departments, laboratories, and offices are listed under each Directory entry. These people are prepared to assist students, but a certain amount of footwork and negotiation will be required in order to achieve a satisfying collaboration. The UROP experience will be unlike any other; its benefits and rewards are great, but expectations and standards are commensurately demanding. Call or visit the UROP office at any time, Room 20B-141, (617) 253-5049 for advice, consolation, or congratulations.

Women's Studies

The Women's Studies Program at MIT offers students an opportunity to gain a new and exciting perspective on existing disciplines. The Program seeks to include women and gender as categories of analysis in all traditional scholarly inquiry. Though the conditions and quality of women's lives have differed from those of men in most cultures and periods of history, academic research and course content often fail to consider the role of gender in social systems. The primary objective of the Women's Studies Program is to encourage the reexamination and reinterpretation of existing data, and to promote the discovery of new knowledge about women and gender.

The Women's Studies Program provides students a unique opportunity for interdisciplinary study through various subjects offered at MIT. The core subject, Introduction to Women's Studies, asks students to challenge traditional assumptions and questions in a variety of disciplines, including literature, history, psychology, philosophy, anthropology, and biology, and the Program's perspectives have significant implications for any course of inquiry.

The faculty members involved in the Women's Studies Program are Dr. Ruth Perry, Program Director and Senior Lecturer in Literature and Women's Studies; Dr. Margaret Andersen, Visiting Lecturer in Women's Studies; and 15 faculty drawn from all areas of the Institute, offering subjects in the Departments of Linguistics and Philosophy, Psychology, Management, and Humanities. There also are opportunities to pursue gender-related topics in Urban Studies and Planning; Political Science; the Program in Science, Technology, and Society; the Experimental Study Group; and the Undergraduate Seminar Program.

Women's Studies offers distribution subjects as well as a field of concentration under the Humanities, Arts, and Social Sciences Requirements. The subjects are listed in the SP section of Chapter VII in this catalogue. Degree programs in Women's Studies are available by petition.

The Women's Studies Research Room, housed next to the Program's offices in the Humanities Library, offers faculty and students a central location for the study of women and gender. It contains a core library of relevant materials, including books and journals. Outside the Research Room is a small lounge area, available during Hayden Library hours, where members of the community can meet and exchange ideas. The Women's Studies Program also functions as an information clearinghouse for all students interested in Women's Studies classes at MIT, Wellesley, or Harvard. A wide range of announcements and information relevant to feminist scholars in the Boston area and others interested in Women's Studies is posted on the bulletin board.

Further information about the Women's Studies Program may be obtained by contacting Dr. Ruth Perry, Director, Women's Studies Program, Room 14E-316, MIT, Cambridge, Massachusetts 02139, (617) 253-8844.
Preprofessional Advising and Education

Within the Office of Career Services (Room 12-170), the Preprofessional Advising programs serve students who are interested in pursuing professional postgraduate education, particularly in the fields of medicine, law, and psychology. The staff in the Office works closely with three faculty/student committees: the Committee on Preprofessional Advising and Education, the Premedical Advisory Council, and the Prelaw Advisory Council.

Premedical Education

In recent years increasing numbers of students have entered medical school upon graduation from MIT. Each year nearly 10 percent of the senior class as well as a large number of alumni and graduate students go on to medical study. Students in nearly every Course of study are represented among the applicants. Since there is no specific premedical department at MIT, students have great flexibility in their choice of major fields, and are encouraged to take advantage of the diversity of subjects offered at the Institute. Medical school entrance requirements can be met through a selection of electives; such programs fully meet the specifications of the Association of American Medical Colleges.

The Premedical Advisory Council, whose members are directly involved in medical practice, medical research, or student counseling, provides guidance and information to students interested in medical careers. The Office of Preprofessional Advising and Education, Room 12-170, (617) 253-4737, maintains Medical College Admissions Test application forms, school catalogues, A Pre-Medical Handbook for MIT Students, and other information pertinent to medical study. Students interested in medicine are encouraged to make an appointment in the Preprofessional Office by the second term of their sophomore year. Students interested in medicine are assigned to a premedical advisor at that time.

Prelaw Education

A number of MIT students enter law school each year. Law schools do not require a particular undergraduate program as a condition for admission; students from every Institute School have been admitted to law school. Prelaw students should consult members of the Prelaw Advisory Council regarding preparation for a legal education and make contact with the Preprofessional Office during their junior or senior year.

The Preprofessional Advising and Education Office maintains the catalogues of accredited law schools, the dates and application materials for the Law School Admissions Test, and other information pertinent to the study of law. A Handbook for MIT Students Interested in Law has been prepared to answer questions commonly asked by students interested in a legal education. The Handbook contains information on the selection of law schools, the admissions decision process, and the wide range of roles for lawyers. Copies of this and other helpful publications are available in the Office of Preprofessional Advising and Education. Please see the section on Law-Related Studies in Chapter V of this catalogue for a further discussion of opportunities and programs in this area.

Education Studies

MIT students may receive certification to teach in the Commonwealth of Massachusetts by taking a prescribed series of subjects through the MIT-Wellesley Exchange Program. Subjects in political science, psychology, humanities, and management deal with specific educational problems. Students are encouraged to contact the faculty in the Education Department at Wellesley.

Junior Year Abroad

Many opportunities are open for study in foreign countries through participation in one of the excellent programs administered by nonprofit educational organizations or through an individually arranged program. Plans for study abroad should be worked out by each student with his or her faculty advisor and the Office of Career Services and Preprofessional Advising, Room 12-170, (617) 253-4735. The Office of Career Services can provide a great deal of assistance and information as a student plans for study at another college or university. Although almost any field can be studied abroad, it is generally advisable to take most professional subjects at MIT. By emphasizing the language, literature, history, and culture of the host country, the year abroad can be a valuable learning experience.

Effective working command of the language of the host country is vital. By conscientious work in language subjects here, even a student without prior study frequently can achieve proficiency in a foreign language by the beginning of the junior year if he or she begins by the second term of the freshman year. The orientation period provided by most organized programs will be a necessary complement in many cases. For a mature student with exceptional competence in the language and some knowledge of the culture, an individual program may be desirable, but careful planning is essential.

A student on an approved junior year abroad program maintains, without payment of MIT tuition, official MIT registration as an "undergraduate on foreign study," and thereby student aid status and dormitory priority. Total costs including travel sometimes are less than that at the Institute.

Students who have participated in an approved one-year program may normally expect to receive a minimum of 90 units of credit toward their MIT degree, upon successful completion of their studies and subsequent return to MIT.
Domestic Year Away

This program provides the opportunity to spend from one semester to one year at another academic institution for the pursuit of work generally not available at MIT. A student on such an approved program maintains, without payment of MIT tuition, official MIT registration as "undergraduate studying away," with student aid status and dormitory priority. Approval for Domestic Year Away status requires that:

1. the student show that the objectives of the planned program of studies are consistent with his or her overall degree program at MIT and that he or she has the academic and personal qualifications which will ensure maximum benefits from the experience;

2. the student demonstrate that the planned program of study draws on resources available at the second institution which are not generally available at MIT or at the institutions with which MIT has cross-registration privileges; and

3. the student be accepted by a school of established academic merit for a program involving a work load comparable to that of MIT.

Those students interested in these programs should consult the Dean for Student Affairs Office, Room 5-108, (617) 253-7979.

Harvard University

A limited number of MIT undergraduates is permitted to take one or two subjects at Harvard University (Faculty of Arts and Sciences) for degree credit at no extra charge, provided the subjects are not offered regularly at MIT. Cross-registration is normally limited to upper-classmen who must be regularly enrolled at MIT and paying full tuition for the term in question. No more than two regular subjects or more than one intensive subject may be taken at Harvard in any one term. Arrangements are made through the Humanities Undergraduate Office.

Wellesley-MIT Exchange Program

Participation in the Wellesley-MIT Exchange Program can expand the educational opportunities for students of each institution. Under this program, students may cross-register for any courses at the other school, with the only requirement being that they present the necessary prerequisites. MIT students may use Wellesley courses to meet certain Institute requirements as described later in the section.

A small, liberal arts college for women located on a 500-acre woodland campus 12 miles west of Boston, Wellesley College provides a different yet no less challenging environment for learning and living from that of MIT.

Wellesley and MIT operate free weekday bus service between the two campuses for students who are cross-registered. The ride is about 40 minutes each way, so students should plan for at least one hour between their Wellesley and MIT classes. Cross-registered students have priority in boarding, but others with MIT or Wellesley identification cards may use the bus on a space-available basis.

MIT students register for a Wellesley course simply by putting the course name and number on their MIT registration form or correction form in the space marked "Cross Registration at Wellesley." Students must also register at Wellesley during the first two weeks of classes.

Wellesley subjects and grades are recorded on students' MIT transcripts. Unless otherwise stated in the Wellesley Bulletin a semester course receives one Wellesley unit of credit, which equals 12 (3-0-9) MIT units.

MIT students receive letter grades for their Wellesley courses unless 1) a course is designated mandatory "credit/non-credit" by Wellesley, 2) they are freshmen under MIT's "pass/fail" requirement, or 3) they are juniors or seniors using one of their two MIT electives for pass/fail. Under Wellesley's credit/non-credit system, credit is awarded for C-level work or above.

Students may take Wellesley courses to meet a variety of MIT distribution and concentration requirements. There are, however, some restrictions and special procedures, which are described below.

Students generally cannot substitute Wellesley courses for MIT Science Core courses (Chemistry, Biology, Physics, and Calculus) or Laboratory Requirement courses. They may take Wellesley courses to satisfy Science Distribution Requirements, but need the approval of the Committee on Curricula.

To meet the Distribution portion of the MIT Humanities, Arts, and Social Sciences Requirement, students may take the Wellesley courses listed under the various fields in the HASS Distribution section in this chapter. Wellesley courses may be designated as part of the Concentration in the Humanities, Arts, and Social Sciences at the discretion of the designated advisor in that Field of Concentration. Students may use Wellesley courses as unrestricted electives toward fulfilling the Humanities, Arts, and Social Sciences Requirement, but they must petition to do so. Petitions may be obtained from the Exchange Office at...
Undergraduate Registration and Academic Performance

MIT or from Ruth Spear in the Humanities Undergraduate Office, 14N-410, (617) 253-4443 (who can also answer questions pertaining to the Humanities, Arts, and Social Sciences Requirement).

Wellesley subjects may be used to fulfill departmental requirements with the permission of a faculty advisor.

Most examinations at Wellesley are offered on a self-scheduled basis. Wellesley's academic calendar differs from MIT's. Students are responsible for meeting Wellesley's end-of-term deadlines. Students may obtain information on end-of-term procedures from the Exchange Office at MIT.

Students unable to complete their work due to grave emergency or illness should contact the Exchange Coordinator at Wellesley within 24 hours of the deadline to get further instructions.

Students may take physical education classes at Wellesley on a space-available basis and may apply these classes toward their MIT physical education requirements.

MIT students receive full library privileges at Wellesley on a space-available basis and may apply these classes toward their MIT physical education requirements.

MIT students receive full library privileges at the Wellesley College Library.

The following lists the areas of study at Wellesley:

Anthropology
Art
Astronomy
Biological Sciences
Black Studies
Chemistry
Chinese
Classical Civilization
Computer Science
Economics
Education
English
French
Geology
German
Greek and Latin

Complete information on registration procedures may be found in the “MIT Registration Material” packet which is available to students in December and May in the Building 10 Lobby. Additional details may be found in the Guide for Undergraduates and Faculty Advisors the Graduate School Manual.

Definition of Student Status

Once admitted (or readmitted) to MIT, a person becomes an MIT student at the start of the term for which he or she was admitted. Student status is retained until graduation, unless the student withdraws or is required to withdraw or fails to complete registration in a given term. For the fall and spring terms, completion of the five steps listed below is necessary for continuing student status during that term: 1) registration material issued by the Registrar has been completed and returned, 2) financial registration material issued by the Bursar has been completed and returned, 3) all Institute charges have been paid when due, or satisfactory alternative arrangements have been made with the Bursar, 4) the faculty advisor or registration officer has signed the student's registration form and this form has been received by the Registrar's Office, and 5) an ID validation sticker has been picked up.

Registration Procedures

All subjects to be taken during the current term, including thesis, cross-registration with Wellesley or Harvard, and ROTC, should be listed on the Registration Form. A third- or fourth-year undergraduate student who wants to take an elective subject Pass/Fail using the Junior-Senior Pass/Fail option should be sure to indicate P/F beside the subject on the Registration Form. The faculty advisor and student should be sure that the subject to be designated Pass/Fail is not being used to fulfill either a department or an institute requirement, and that the student does not take more than a total of two subjects under this option during his or her junior and senior year. The units for independent study and thesis subjects should be indicated. The units for thesis are listed as laboratory units.

Correction Cards signed by the student's faculty advisor for undergraduates and registration officer for graduate students should be used for all changes in registration after Registration Day. The specific deadlines for such changes are listed in the Academic Calendar in this catalogue. The instructor's signature is also required if a subject is added after the first week of the term. All Correction Cards should be hand delivered by the student to the Registrar's Office, Room E19-335, or to the Undergraduate Academic Support Office, Room 7-104.

The Registrar's Office sends out a “Status of Registration Form” to every student during the fourth week of the term. Additional Status Forms are sent out at three-week intervals to every student for whom the Registrar has received a Correction Card since the previous set of Status Forms was issued. On these forms will be listed the student's program as it stands in the Registrar's Office. This will confirm the student's registration and point out any discrepancies. If the Registrar's Office has received no change in the student's record, then no further Status Forms are generated after the fourth week of the term.

The Institute holds each student fully responsible for checking the accuracy of his or her initial Registration Form and any subsequent Correction Cards submitted to the Registrar's Office, for ensuring that the Registrar is provided with a correct current mailing address, and for carefully reviewing each Status of Registration Form generated by the Registrar to make sure that it accurately reflects his or her registration. Steps to eliminate any discrepancies should be taken promptly by the student. The student should keep copies of the original Registration Form and all subsequent Correction Cards and Status of Registration Forms as evidence of having followed these procedures.

If an undergraduate wishes to add or drop a subject or to make or change a Pass/Fail designation after the deadline dates, the student must petition the Committee on Academic Performance (CAP). Such petitions are not automatically approved.

An undergraduate student who wishes to withdraw during a term or arrange for a leave of absence must see a dean in the Student Assistance Services Section of the Dean's Office, Room 5-106.

Credits

The credit hours (units) for each subject indicate the number of hours spent each week in class and laboratory, plus the estimated time which the average student spends each week in outside preparation, for one regular term.
Each subject is listed with three credit numbers, showing in sequence the units allotted to: class; laboratory, design, or fieldwork; and preparation. Each unit represents 14 hours of work per term. The total unit credit for a subject is obtained by adding together all the units shown. The typical undergraduate student load, based on a four-year program, is 45 to 54 units per term. However, if approved by his or her faculty advisor, a student may follow a program leading to an S.B. degree in either more or less than eight terms.

Credit Limit for Freshmen

A freshman may register and receive credit for a maximum of 60 credit units in the fall term and 63 credit units in the spring term. Credit earned for passing an Advanced Standing Examination will be counted toward this credit limit unless such an exam is taken either in the September or February examination period. In view of the requirement that ROTC students take one ROTC subject each term, all AS-, MS-, and NS-numbered subjects are excluded from this credit limit. Petitions for individual exceptions should be submitted to the Committee on Academic Performance. However, the Committee enforces the credit limit rigidly and only allows exceptions on purely technical grounds.

Light-Load Registration by Undergraduates

The Institute feels that the concept of a four-year residential college, requiring a full-time academic program, is central to the MIT undergraduate experience. An MIT degree represents not only a specified number of credit units and a collection of subjects, but an intensity and continuity of involvement in an academic enterprise and an immersion in the culture of MIT as well. In general, therefore, MIT is not an appropriate place for pursuing an undergraduate education on an extended, part-time basis.

Requests from students for light-load registration status are handled under the following policy. Once enrolled as a regular student, an undergraduate may not lapse to a light load of subjects (register for fewer than 32 units) for more than a total of two terms without petitioning the Committee on Academic Performance. The CAP allows use of the light load beyond a second term only for very special circumstances. Arrangements to take a reduced load of subjects should be initiated prior to the beginning of the term. The procedure to be followed in this regard is described in the Guide for Undergraduates and Faculty Advisors.

Junior/Senior Pass/Fail Option

A student may opt to take a total of two subjects on a pass/fail basis during his or her junior and senior years. This option is intended to provide students an opportunity to broaden their education by taking subjects which may not be in their area of expertise without concern for its affect on their academic record. It is therefore expected that this option will be designated at the time the student initially registers for the subject, but the deadline for this decision is Add Date. Such subjects may not be used to fulfill either an Institute or a department requirement.

Advanced Standing Examinations

To qualify for an Advanced Standing Examination, a student must never have been registered for or attended class in the subject concerned. A freshman who takes such an exam shall receive the grade of P for passing performance, but no record will be kept of failing performance. For all other students, a grade ranging from A to F as usual will be recorded on the transcript. For all other students, a grade ranging from A to F as usual will be recorded on the transcript. Any passing grade entitles a student to full credit for the subject. For freshmen, such credit will count toward the 60- or 63-unit credit limit unless the exam is taken either in the September or February examination period (see Credit Limit for Freshmen).

Program for Two Bachelor's Degrees

A student may work for two Bachelor's degrees to be received separately or concurrently. He or she must submit to the Registrar a petition which indicates the desire to work for two degrees and which has been approved by faculty advisors in each of the two departments concerned at least two full terms before the student would normally receive the second of the two S.B. degrees. The requirements of each department must be satisfied and the combined program must contain at least 450 units. Both faculty advisors should take responsibility for examining the entire program in the same way as they would for a candidate for a single S.B. degree. Students should consult the Student Financial Aid Office regarding any impact this arrangement might have on eligibility for MIT or Federal financial aid.

Information about the Simultaneous Award of Two Masters' Degrees and the Simultaneous Program for a Bachelor's and Master's Degree may be found in Chapter IV of this catalogue.

Grade Reports and Transcripts

Grade reports are issued by the Registrar at the end of each term and summer session to all registered students. Students may order transcripts of their academic record at the Registrar's Office, Room E19-335, upon presentation of a receipt from the Cashier's Office, Room 10-180, at a cost of $2 per copy.

Final Examinations

Final examinations are held at the end of each term; the schedule is issued about two months before the examination period. Each student is held responsible for obtaining an examination schedule at the Information Center, Room 7-121; for reporting any conflicts in examinations to the Schedules Office, Room E19-338, in the Office of the Registrar before the time limit given on the examination schedule, and for attending the final examinations required in the subjects for which he or she is registered.

No member of the instructing staff is empowered to grant excuse from a scheduled final examination. Absence from any final examination is equivalent to complete failure except on presentation of adequate evidence of sickness or other valid reason for the absence. The Dean for Student Affairs may permit a student whose term work has been satisfactory to take the next scheduled examination on the subject. The instructor may, if the evidence warrants, issue a final grade without requiring a postponed final examination.

Minimum Undergraduate Academic Standards and Ratings

It is the responsibility of the Committee on Academic Performance (CAP) to see that minimum academic standards proposed by the individual departments are consistent throughout the Institute for undergraduates and conform with the rules and regulations approved by the faculty. In view of the individual nature of student academic performance, it is impossible for the CAP to set forth rigid standards of academic performance to be used throughout the Institute. The Institute generally expects undergraduate students to complete the requirements for a single S.B. degree in four years; this establishes a normal load of subjects at approximately 45 units of credit per term. Normally, however, the CAP accepts a minimum academic record reflecting the satisfactory completion of 36 units of credit with a term rating above 3.0 on a 5.0 scale at the end of any regular term, unless the Committee has specifically notified an individual student that a higher level of performance is required. (The latter would only occur as a result of previously poor performance.)
The following notations are used by the Registrar for satisfactory completion of work in the circumstances indicated:

- **S**, notation for credit awarded for work done elsewhere.
- **SA**, notation for satisfactorily completed doctoral thesis. Doctoral theses are not graded.

The grades and notations to be used for subjects not passed or not completed are:

- **F**, failed. This grade also signifies that the student must repeat the subject to receive credit.
- **O**, absent. This grade indicates that the student was progressing satisfactorily during the term but was absent from the final examination or absent during the last two weeks of the term, or both. An **O** grade carries no credit for the subject. Unsatisfactory performance because of absence throughout the term should be recorded as **F**.
- **OX**, absence satisfactorily explained to and excused by the Dean for Student Affairs in the case of an undergraduate student or by the Dean of the Graduate School in the case of a graduate student. The faculty member in charge of the subject will be notified when an **O** is changed to an **OX**. An **OX** carries no credit for the subject. However, the faculty member in charge must provide the student the opportunity to receive a credit-carrying grade. This may be done with or without the instructor requiring a postponed final examination or other additional evaluation procedure.
- **DR**, a notation to be used only on the student's internal record for a subject dropped after the fifth week of the regular term.
- **I**, incomplete. The grade of **I** is to be used only for subjects for which a minor portion of the work required has not been completed and when a passing grade is expected when the work is completed. A typical example of a "minor portion of the work required" might be a paper or a laboratory report. If the work is not completed before the end of the fifth week of the succeeding term of the regular academic year, explicit approval of the faculty member in charge is required to extend this deadline. If the instructor does grant such an extension, the outstanding work must be submitted to the instructor by the last day of classes of the same semester. If the work is not completed before the end of the succeeding term of the regular academic year (with the exception noted below) the student must register for and repeat the subject in order to receive credit.

Under these circumstances, the grade of **I** will remain on the record and will not automatically be converted to any other grade. However, the instructor may choose to change the grade if a commitment made by the student is not fulfilled. The only alternative to this procedure is for the student to petition the CAP or the CGSP for an extension to the end-of-term deadline. Such a petition will only be approved in the case of extenuating circumstances. When completion of the subject requires facilities which are normally but not continuously available, this must be indicated on the form reporting the **I** grade and the work must be completed in the earliest term in which the facilities are available. Under these circumstances, an undergraduate student must submit a petition to the CAP and a graduate student must submit a petition to the CGSP. When an Incomplete is completed within the time allowed, the final grade will be recorded on the student's permanent transcript beside the Incomplete.

J, a notation assigned for work such as thesis, UROP, or "At Plant" registration (internship or industrial practice), which has progressed satisfactorily, but has not been completed. Grade given upon completion of the work in a later term also covers this term. Faculty members and instructors must obtain approval from the Committee on Curricula to use grade of **J** in subjects other than those mentioned above.

U, a notation for thesis work which has not been completed and in which progress has been unsatisfactory. Grade given upon completion of the work in a later term also covers this term. Unless a student's progress improves significantly, the student may expect that grade to be failing.

T, temporary notation. It is used for subjects which cover the equivalent of one term's work, but are scheduled over parts of two normal grading periods. Prior approval must have been obtained from the Committee on Curricula for undergraduate subjects or the Committee on Graduate School Policy for graduate subjects. This notation is recorded only on the student's internal record. A permanent grade must be assigned when the subject is finished.
General Institute Requirements

Science Requirement

To be recommended for the degree of Bachelor of Science, students must have attended the Institute not less than one academic year, which ordinarily must be the year of graduation. Students must have completed satisfactorily programs of study approved in accordance with the rules and regulations of the faculty, including General Institute Requirements and the Departmental Program of the Course in which the degree is to be awarded. A student must petition the Committee on Curricula for any substitutions in the General Institute Requirements. Departures from the Departmental Programs are permitted with the consent of the faculty advisor. The Departmental Program and the total number of units required are shown for most Courses in the Departmental Degree Programs chapter of this catalogue.

To be recommended for the degree of Bachelor of Science, students must have satisfactorily completed the General Institute Requirements and Departmental Program requirements as follows (plus the Physical Education Requirement):

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>Chemistry/Biology (12 units)</td>
<td></td>
</tr>
<tr>
<td>(3.091 or 5.11 or 5.60 or 7.01)</td>
<td></td>
</tr>
<tr>
<td>Physics (24 units)</td>
<td></td>
</tr>
<tr>
<td>(8.01 or 8.012 or 8.013J and 8.02 or 8.021 or 8.022 or 8.023J)</td>
<td></td>
</tr>
<tr>
<td>Calculus (24 units)</td>
<td></td>
</tr>
<tr>
<td>(18.001 or 18.01 or 18.011 or 18.012 and 18.002 or 18.02 or 18.021 or 18.022)</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>72</td>
</tr>
<tr>
<td>Eight subjects totaling at least</td>
<td></td>
</tr>
<tr>
<td>Writing Requirement</td>
<td></td>
</tr>
<tr>
<td>Satisfied in two stages as specified on the next page.</td>
<td></td>
</tr>
<tr>
<td>Science Distribution Requirement</td>
<td>36^1</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>12^1</td>
</tr>
<tr>
<td>Departmental Program and Unrestricted Electives</td>
<td>As specified for each Course, a minimum of</td>
</tr>
<tr>
<td></td>
<td>180^2</td>
</tr>
<tr>
<td>Total units required for the S.B. Degree, at least</td>
<td>360^3</td>
</tr>
</tbody>
</table>

1 Each department may specify some of the Science Distribution and Laboratory subjects.
2 Departments may require up to 205 units (leading to a total of 385 units) for graduation; Departmental Programs include at least 36 units of electives, usually more.
3 This total does not include ROTC subjects, if elected.

MIT expects its graduates to have an understanding and appreciation of the basic concepts and methods of the physical sciences. These concepts and methods are needed in most degree programs at the Institute. More importantly, they are an essential part of the background that MIT graduates bring to their roles as professionals and as broadly educated citizens in a world deeply influenced by science and technology.

To provide this understanding, the Institute offers a variety of programs by which the student can fulfill the science, laboratory, and science distribution requirements. These programs introduce the student to the basic elements of the scientific method: experimental foundations and techniques, mathematical analysis, and conceptual models for experimental facts. Important experimental, as well as conceptual, aspects are introduced by the chemistry/biology requirement and by the laboratory requirement. Mathematical methods common to much of science and technology are explored in the calculus requirement. Basic concepts that underlie many physical phenomena are defined and elucidated in the physics and in the science distribution requirements.

In addition to a rigorous introduction to the sciences, these requirements are intended to stimulate and challenge each student to review critically his or her knowledge and to explore alternative conceptual and mathematical formulations which may provide better explanations of natural phenomena or may lead to better applications of technology.

The development of critical and constructive approaches to both theory and practice in science, engineering, and other professions is a central objective of the Institute’s educational programs.

Chemistry/Biology Requirement

The requirement can be satisfied in four different ways. The alternatives are 3.091 Introduction to Solid State Chemistry; 5.11 Principles of Chemical Science; 5.60 Chemical Thermodynamics; and 7.01 General Biology. 3.091 is designed for students who are particularly interested in the chemistry of the solid state. 5.11 presents an introduction to chemistry with an emphasis on basic principles and their applications. 5.60 is provided as an option for students who are particularly interested in the chemistry of the solid state. 7.01 introduces students who have the equivalent of 18.01 Calculus, are taking 18.02 Calculus concurrently, and have a foundation in chemistry upon which a more specialized study of chemical equilibrium can be based. Subject 7.01 is an introduction to biology that can be taken in the spring semester by freshmen who have taken 5.11 in the fall.
Writing Requirement

Physics Requirement

The Institute requirement in physics may be satisfied through a variety of combinations of first- and second-term physics subjects. The sequence 8.01-8.02 is the "standard" combination. A majority of students find this sequence suited to their needs. 8.012-8.022 covers essentially the same subject matter as 8.01-8.02, but is more advanced mathematically; calculus is used freely from the beginning of the term. 8.013J-8.023J is at about the same level of difficulty as 8.01-8.02, but with particular emphasis on topics relevant to biology, biophysics, and biomedical research and engineering; it would be appropriately followed by 8.02.

The student is not obliged to follow through the whole of any of the above sequences as a package, should some other choice become more suitable. There are many possibilities for switching from a first-term subject in one sequence to a second-term subject in another. In particular, there is a single second-term subject, 8.021, suitable for students who (whether or not they plan to take further physics) wish to study a broader range of topics than is available in 8.02 or 8.022.

Calculus Requirement

The Department of Mathematics offers several basic calculus sequences. The standard sequences are: 18.001-18.002, 18.01-18.02, and 18.011-18.021. All three sequences aim at presenting calculus as it will actually be used in science and engineering. The subjects differ in several respects: 1) content and intensity (see subject descriptions for details); 2) textbook (18.001-18.002 uses Calculus: An Introduction to Applied Mathematics by Professors Greenspan and Benney — the other two use Calculus and Analytic Geometry by Thomas and Finney); 3) structure (homework and testing practices vary); 4) teachers (18.001-18.002 is taught by the Applied Mathematics group while the others are taught by the rest of the Mathematics Department); and 5) prerequisites (18.011 assumes a year of high-school calculus; 18.001 also assumes some calculus).

A fourth sequence, 18.012-18.022 Calculus with Theory, assumes an extensive prior background in calculus, and emphasizes proofs.

Students with advanced placement or advanced standing credit for 18.01 will lose it upon taking 18.001 or 18.01. However, for students taking 18.011 or 18.012, it will be replaced by six units of elective credit.

The primary objectives of this General Institute Requirement are: to ensure minimum standards of writing proficiency for all undergraduates, with special emphasis on writing in students' professional fields, and to see that clear, effective writing is valued and fostered throughout the curriculum as an important part of an MIT education.

The basic features of the Requirement are: early evaluation, a variety of modes of completing the Requirement, and Institute-wide involvement. The Requirement is to be satisfied in two phases: Phase One is concerned with basic expository writing competence that should be expected of any educated person. The options for satisfying this phase are:

a) achieving, prior to entry, a score of 750 or above on the College Board Achievement Test in English Composition with Essay.

b) passing the Freshman Essay Evaluation during Residence/Orientation Week. For certain designated students an optional English as a Second Language (ESL) version is available.

c) receiving a grade of pass in any of the following expository writing subjects: 21.334 Expository Writing II for Undergraduates: English as a Second Language, or 21.730 Expository Writing, 21.731 Writing and Experience, 21.732 Introduction to Technical Communication, or any equivalent subject in Project Interphase, the Experimental Study Group, or Concourse.

d) submitting a five-page paper of expository prose written for any MIT subject and judged satisfactory by the professor of the subject and by faculty evaluators for the Requirement. Papers for any given semester will be accepted until the end of the fifth week of the following term.

Students normally complete this stage by the end of the freshman year.

Phase Two is designed to engage upperclass students in the more specialized forms of writing that are necessary within their professional disciplines. These encounters, which go beyond the writing experiences provided by the Humanities, Arts, and Social Sciences Requirement, occur over an extended period in the middle years of students' undergraduate careers. Phase Two should be satisfied by the end of the junior year.

Options for completing this phase are:

a) receiving a grade of B or better for the quality of writing in a cooperative subject within the general area of a student's professional field. Many engineering subjects (especially in laboratory and design) include instruction by Writing Program faculty. Such cooperative arrangements provide opportunities for satisfying Phase Two.

This phase can also be satisfied by receiving a B or better in any one of the following advanced subjects in scientific and engineering writing: 21.337 Workshop in Writing for Science and Engineering: English as a Second Language, 21.338 Workshop in Writing for the Social Sciences and Architecture: English as a Second Language, or 21.780 Science and Engineering Writing.

b) submitting a 10-page paper of expository prose from any MIT subject or UROP activity within the general area of a student's professional field which is judged satisfactory by the professor or supervisor and by faculty evaluators for the Requirement.

Students submitting papers must first pick up a cover sheet from the office of the Committee on the Writing Requirement (Room 3-231) for the subject instructor to sign. Instructors are encouraged to use the cover sheet to comment on the student's writing before signing the sheet and giving it to the student. The student then returns the paper and the cover sheet to the Committee office.

The Committee on the Writing Requirement has published a brochure on the Requirement and resources which may be used to satisfy it. Copies of this brochure and other material are available from Bonnie Walters, Coordinator of the Committee on the Writing Requirement, Room 3-231, (617) 253-3039.
General Institute Requirements

Humanities, Arts, and Social Sciences Requirement

MIT provides a substantial and varied program in the humanities, arts, and social sciences which forms an essential part of the education of every undergraduate. Through this program, students can deepen their knowledge in a variety of cultural and disciplinary areas and can develop sensibilities and skills vital to an effective and satisfying life as an individual, a professional, and a member of society.

More specifically, the objectives of the program are to develop: 1) skill in communication, both oral and written; 2) knowledge of human cultures, past and present, and of the ways in which they have influenced one another; 3) awareness of concepts, ideas, and systems of thought that underlie human activities; 4) understanding of the social, political, economic, and legal framework of our society; and 5) sensitivity to modes of communication and self-expression in the arts. Work in these areas will, where appropriate, display a special concern with the relation of science and technology to society.

The student's program in the humanities, arts, and social sciences is based on the following Institute Requirement:

1. Every candidate for a bachelor's degree must have completed a minimum of eight term subjects (of at least nine units each) in the humanities, arts, and social sciences, normally at the rate of one subject each term. Each field offers a mixture of nine- and 12-unit subjects.

2. Distribution. At least three of the eight subjects must be chosen from a specially designated list of humanities distribution subjects. The three subjects are to be selected from three separate fields from the following list and may be taken at any stage of the student's undergraduate career.

3. Concentration. Before the third year, each student selects a field of concentration. The requirements for concentration are set by each field and consist of either three or four subjects. An individual's program of concentration is arranged in consultation with a designated advisor in the field. A distribution subject in a given field may be counted also as one of the required concentration subjects in the same field with the permission of the concentration advisor. In individual cases a special interdisciplinary program of concentration may be arranged with the approval of an advisor designated by the Dean of Humanities and Social Science. This approval must be obtained ahead of time, before the desired combination of subjects has been completed.

The following fields of concentration currently are offered:

- American Studies
- Ancient and Medieval Studies
- Anthropology and Archaeology
- Drama
- Economics
- Film and Media Studies
- Foreign Languages and Literatures
- History
- History of Art and Architecture
- Labor in Industrial Society
- Latin American Studies
- Linguistics
- Literature
- Music
- Philosophy
- Political Science
- Psychology
- Russian Studies
- Science, Technology, and Society
- Technology, Culture, and Development
- Traditions and Texts
- Urban Studies
- Visual Arts and Design
- Women's Studies
- Writing

Students interested in exploring or registering for a field of concentration should speak with an advisor designated by that field. Descriptions of the offerings of each field and a list of advisors may be obtained at the appropriate department headquarters or at the Humanities Undergraduate Office.

HASS Information

For detailed information on distribution subjects or on the concentration requirements in any field, and for assistance with any aspect of the Humanities, Arts, and Social Sciences Requirement, students should visit the HASS Information Center, Room 14N-409, (617) 253-4441.

Distribution Subjects

Humanities distribution subjects are humanistic in orientation, of broad general interest, with a subject matter clearly drawn from one or more of the disciplines in the Humanities, Arts, or Social Sciences. Such subjects meet in sections small enough to allow discussions in which every student can participate, and — except for some art subjects — they call for a substantial amount of writing. The character of such subjects varies from field to field, and each field has established criteria for the selection of Humanities distribution subjects.

These criteria have been published, along with a guide to Humanities distribution subjects, by the Humanities, Arts, and Social Sciences Information Center.

Almost all of these subjects are without prerequisites and are appropriate for students at all levels. Students are free to take more than the necessary minimum of three distribution subjects; those taken in excess of the minimum may be used as electives toward completion of the eight-subject requirement or in some cases, with the approval of the relevant field, may be accepted as part of a program of concentration. Note, however, that in no case may more than one subject in a given field be counted toward both distribution and concentration.
The following is the list of subjects offered for humanities distribution credit:

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>21.350</td>
<td>The Ancient World I: Near East and Greece</td>
</tr>
<tr>
<td></td>
<td>21.351</td>
<td>The Ancient World II: Rome</td>
</tr>
<tr>
<td></td>
<td>21.352</td>
<td>The Middle Ages I</td>
</tr>
<tr>
<td></td>
<td>21.353</td>
<td>The Middle Ages II</td>
</tr>
<tr>
<td></td>
<td>21.356</td>
<td>History of the Western World I: 1500-1815</td>
</tr>
<tr>
<td></td>
<td>21.357</td>
<td>History of the Western World II: 1815-1970</td>
</tr>
<tr>
<td>Literature A</td>
<td>21.001</td>
<td>Foundations of Western Literature: Homer to Dante</td>
</tr>
<tr>
<td></td>
<td>21.002</td>
<td>Classics of European Literature</td>
</tr>
<tr>
<td></td>
<td>21.003</td>
<td>Introduction to Fiction</td>
</tr>
<tr>
<td></td>
<td>21.004</td>
<td>Major Poets</td>
</tr>
<tr>
<td></td>
<td>21.005</td>
<td>World Drama</td>
</tr>
<tr>
<td></td>
<td>21.006</td>
<td>Introduction to American Literature</td>
</tr>
<tr>
<td>Anthropology</td>
<td>21.369</td>
<td>Marx, Darwin, and Freud</td>
</tr>
<tr>
<td></td>
<td>21.376</td>
<td>Imperial and Revolutionary</td>
</tr>
<tr>
<td>Archaeology</td>
<td>21.377</td>
<td>The Soviet Union: A Communist Society in Historical Perspective</td>
</tr>
<tr>
<td>American Studies</td>
<td>21.010</td>
<td>Literature and Film</td>
</tr>
<tr>
<td></td>
<td>21.021</td>
<td>Comedy</td>
</tr>
<tr>
<td></td>
<td>21.022</td>
<td>Tragedy</td>
</tr>
<tr>
<td></td>
<td>21.079</td>
<td>Modern Russian Literature and Its Historical Structure</td>
</tr>
<tr>
<td></td>
<td>21.101</td>
<td>The American Novel</td>
</tr>
<tr>
<td></td>
<td>21.296</td>
<td>Introduction to European and Latin American Fiction</td>
</tr>
<tr>
<td></td>
<td>21.297J</td>
<td>Sex Roles in Fiction: Europe and Latin America [SP 432J]</td>
</tr>
<tr>
<td></td>
<td>21.298J</td>
<td>The Don Juan Legend [SP 433J]</td>
</tr>
<tr>
<td></td>
<td>21.300J</td>
<td>Courtship Themes in Romance [SP 434J]</td>
</tr>
<tr>
<td>Economics</td>
<td>21.303</td>
<td>Twentieth-Century French Literature</td>
</tr>
<tr>
<td></td>
<td>21.305</td>
<td>Slavic Civilization: Magic, Vampires, and Witches</td>
</tr>
<tr>
<td></td>
<td>21.310</td>
<td>Masterpieces of the Hispanic Tradition</td>
</tr>
<tr>
<td></td>
<td>21.315</td>
<td>Russian Short Story and the 19th Century</td>
</tr>
<tr>
<td></td>
<td>21.316</td>
<td>The Roots of Russian Literature</td>
</tr>
<tr>
<td></td>
<td>21.450J</td>
<td>The History of Africa</td>
</tr>
<tr>
<td></td>
<td>21.460</td>
<td>East Asian History: China</td>
</tr>
<tr>
<td></td>
<td>21.461</td>
<td>East Asian History: Japan</td>
</tr>
<tr>
<td></td>
<td>21.465</td>
<td>The Middle East From the Rise of Islam to World War</td>
</tr>
<tr>
<td></td>
<td>21.481</td>
<td>The Middle East in the 20th Century</td>
</tr>
<tr>
<td>Foreign Languages</td>
<td>21.203</td>
<td>French III</td>
</tr>
<tr>
<td></td>
<td>21.204</td>
<td>French IV</td>
</tr>
<tr>
<td></td>
<td>21.233</td>
<td>German III</td>
</tr>
<tr>
<td></td>
<td>21.234</td>
<td>German IV</td>
</tr>
<tr>
<td></td>
<td>21.256</td>
<td>Classical Greek II</td>
</tr>
<tr>
<td></td>
<td>21.263</td>
<td>Russian III</td>
</tr>
<tr>
<td></td>
<td>21.264</td>
<td>Russian IV</td>
</tr>
<tr>
<td></td>
<td>21.277</td>
<td>Spanish III</td>
</tr>
<tr>
<td></td>
<td>21.278</td>
<td>Spanish IV</td>
</tr>
<tr>
<td></td>
<td>21.282</td>
<td>Spanish for Bilingual Students</td>
</tr>
<tr>
<td></td>
<td>4.601</td>
<td>Topical Studies in the History and Theory of Art</td>
</tr>
<tr>
<td></td>
<td>4.605</td>
<td>Introduction to the History and Theory of Architecture</td>
</tr>
<tr>
<td></td>
<td>4.635</td>
<td>Late Gothic and Early Renaissance Architecture</td>
</tr>
<tr>
<td></td>
<td>4.642</td>
<td>Modern Art from Impressionism to Cubism</td>
</tr>
<tr>
<td></td>
<td>4.651</td>
<td>Modern Art from Cubism to the Present</td>
</tr>
<tr>
<td>Film and Media Studies</td>
<td>21.031</td>
<td>The Film Experience</td>
</tr>
<tr>
<td></td>
<td>21.310</td>
<td>Labor in Industrial Society</td>
</tr>
<tr>
<td>History of Art and Architecture</td>
<td>14.63</td>
<td>Labor in Industrial Society</td>
</tr>
<tr>
<td>Linguistics</td>
<td>24.900J</td>
<td>The Study of Language</td>
</tr>
</tbody>
</table>

1 Students may choose only one Distribution subject in Literature, either from list A or B.
Literature B¹,²

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.209</td>
<td>French Civilization I</td>
</tr>
<tr>
<td>21.210</td>
<td>French Civilization II</td>
</tr>
<tr>
<td>21.211</td>
<td>Introduction to French Literature</td>
</tr>
<tr>
<td>21.218</td>
<td>Introduction to the French Short Story</td>
</tr>
<tr>
<td>21.225</td>
<td>Representations of Love in French Literature</td>
</tr>
<tr>
<td>21.227J</td>
<td>Women: Writers in French-Speaking Cultures [SP 446J]</td>
</tr>
<tr>
<td>21.239</td>
<td>Introduction to German Literature</td>
</tr>
<tr>
<td>21.240</td>
<td>Epochs of German Culture</td>
</tr>
<tr>
<td>21.241</td>
<td>German Romanticism: Fantasy vs Reality</td>
</tr>
<tr>
<td>21.242</td>
<td>German Short Fiction</td>
</tr>
<tr>
<td>21.247</td>
<td>German Culture and Society: 1789-1914</td>
</tr>
<tr>
<td>21.249</td>
<td>Introduction to German Poetry</td>
</tr>
<tr>
<td>21.250</td>
<td>Introduction to German Drama</td>
</tr>
<tr>
<td>21.268</td>
<td>Russian Culture and Civilization</td>
</tr>
<tr>
<td>21.270</td>
<td>Pushkin and His Successors</td>
</tr>
<tr>
<td>21.284</td>
<td>An Introduction to Latin American Culture</td>
</tr>
<tr>
<td>21.285</td>
<td>Introduction to Spanish Culture</td>
</tr>
<tr>
<td>21.286</td>
<td>Latin American Literature 1492-1898: Creation of a Continent</td>
</tr>
<tr>
<td>21.287</td>
<td>Twentieth-Century Latin American Literature: The Alchemist's Laboratory</td>
</tr>
<tr>
<td>21.290</td>
<td>Literature and Social Conflict: Perspectives on Modern Spain</td>
</tr>
</tbody>
</table>

Philosophy

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.209</td>
<td>Introduction to the Problems of Philosophy</td>
</tr>
<tr>
<td>21.210</td>
<td>Contemporary Moral Issues</td>
</tr>
<tr>
<td>21.211</td>
<td>The Meaning of Life</td>
</tr>
<tr>
<td>21.212</td>
<td>Logic, Language, and Values</td>
</tr>
<tr>
<td>21.213</td>
<td>Moral and Legal Responsibility</td>
</tr>
<tr>
<td>21.218</td>
<td>Nature of Scientific Knowledge [STS 205J]</td>
</tr>
<tr>
<td>21.220</td>
<td>Classics in the History of Philosophy</td>
</tr>
<tr>
<td>21.221</td>
<td>The Human Mind</td>
</tr>
<tr>
<td>21.223</td>
<td>Classics in Political Philosophy [17.113J]</td>
</tr>
</tbody>
</table>

Political Science

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.103</td>
<td>Socialism</td>
</tr>
<tr>
<td>21.104</td>
<td>Introduction to Political Theory: Individual and Community</td>
</tr>
<tr>
<td>21.106</td>
<td>Introduction to the American Political Process</td>
</tr>
<tr>
<td>21.107</td>
<td>American Politics and Social Change</td>
</tr>
<tr>
<td>21.108</td>
<td>Just Wars, Total Wars, and Nuclear Wars</td>
</tr>
<tr>
<td>21.109</td>
<td>American Foreign Policy in a Changing World</td>
</tr>
<tr>
<td>21.110</td>
<td>The Quest for Equality and Development in Third World Countries</td>
</tr>
<tr>
<td>21.111</td>
<td>Political Change in Latin America</td>
</tr>
<tr>
<td>21.112</td>
<td>Political and Economic Development of Tropical Africa</td>
</tr>
<tr>
<td>21.113</td>
<td>Religion, Politics, and Social Change</td>
</tr>
</tbody>
</table>

Religious Studies

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.209</td>
<td>Wellesley Religion 107: Crises of Belief in Modern Religion</td>
</tr>
<tr>
<td>21.211</td>
<td>Wellesley Religion 252: Islamic Tradition</td>
</tr>
</tbody>
</table>

Sociology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
</table>

Science, Technology, and Society

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.711</td>
<td>Science, Technology, and Social Change</td>
</tr>
<tr>
<td>21.712</td>
<td>The Scientific Revolution</td>
</tr>
<tr>
<td>21.713</td>
<td>History of 19th- and 20th-Century Science</td>
</tr>
<tr>
<td>21.714</td>
<td>American Science Since the 1930s</td>
</tr>
<tr>
<td>21.715</td>
<td>History of Technology in America I: 1787-1876</td>
</tr>
<tr>
<td>21.716</td>
<td>History of Technology in America II: 1876-The Present</td>
</tr>
<tr>
<td>21.717</td>
<td>Arms, Power, and the Engineer</td>
</tr>
<tr>
<td>21.718</td>
<td>Military Enterprise and Technological Change: Historical Perspectives on the American Experience</td>
</tr>
</tbody>
</table>

Traditions and Texts

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.719</td>
<td>The Bible</td>
</tr>
<tr>
<td>21.720</td>
<td>The Greeks</td>
</tr>
<tr>
<td>21.721</td>
<td>The East Asian Tradition: Past and Present</td>
</tr>
<tr>
<td>21.722</td>
<td>The Islamic Tradition: Past and Present</td>
</tr>
<tr>
<td>21.723</td>
<td>The Romans</td>
</tr>
<tr>
<td>21.724</td>
<td>Major Medieval Texts</td>
</tr>
<tr>
<td>21.725</td>
<td>The Renaissance and Reformation</td>
</tr>
<tr>
<td>21.726</td>
<td>The Enlightenment</td>
</tr>
<tr>
<td>21.727</td>
<td>Romanticism</td>
</tr>
<tr>
<td>21.729</td>
<td>The Americans</td>
</tr>
</tbody>
</table>

¹ Students may choose only one Distribution subject in Literature, either from list A or B.
² Students who have taken any third- or fourth-level foreign language subject as a Distribution subject may not take a subject from Literature B to satisfy the Distribution Requirement unless it is in a different foreign language.
Science Distribution Requirement

The Science Distribution Requirement of 36 units is met by taking subjects designed for this purpose. Available subjects are listed below. To fulfill the requirement, students must study subjects totaling 36 units of which no more than 12 units may be taken in subjects offered by a student's own department. Subjects designated "J" which are cooperatively taught by faculty members in the student's own department also fall under the 12-unit departmental limitation. If 3.091, 5.11, 5.60, or 7.01 is used to satisfy the General Institute Requirement in Chemistry/Biology, then it cannot be used for the Science Distribution Requirement. The combination of subjects chosen must be approved by the student's Faculty Advisor. Science Distribution Subjects normally are taken in the second year, but students who have the proper prerequisites may begin taking them in the first year.

Through Science Distribution Subjects the student can broaden and deepen the educational foundation in basic science begun in the first-year program. These subjects are designed to give each student the opportunity to proceed further in areas already studied, or to explore other areas of potential interest.

The available Science Distribution Subjects vary among themselves in approach and emphasis. Some give a systematic introduction to the fundamental concepts and principles of a field; others illustrate, through examples, some of the attitudes, concerns, and methods that are characteristic of professional work in a field.

Most Departmental Programs require 48 units in the second year. In many cases, subjects required by a department are also on the list of Science Distribution or Laboratory Subjects. Thus students following a particular Departmental Program may satisfy simultaneously part or all of the Science Distribution or Laboratory Requirements.

Further information on elective subjects may be found in the "Guide to the Humanities, Arts, and Social Sciences Requirement," available in the Humanities Undergraduate Office, Room 14N-410.

Science Distribution Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Introduction to Computers and Engineering Problem Solving (3-1-8)</td>
</tr>
<tr>
<td>1.04</td>
<td>Behavior of Physical Systems I (3-2-7)</td>
</tr>
<tr>
<td>1.12</td>
<td>Computer Models of Physical and Engineering Systems (3-0-9)</td>
</tr>
<tr>
<td>1.32</td>
<td>Introduction to Engineering Geology (3-3-6)</td>
</tr>
<tr>
<td>1.59J</td>
<td>Materials of Construction (3-0-9)</td>
</tr>
<tr>
<td>1.86</td>
<td>Element Cycles in the Environment (2-0-4)</td>
</tr>
<tr>
<td>2.01</td>
<td>Mechanics of Solids (4-0-8)</td>
</tr>
<tr>
<td>2.02</td>
<td>Introduction to System Dynamics (4-0-8)</td>
</tr>
<tr>
<td>2.10I</td>
<td>Computer Models of Physical and Engineering Systems (3-0-9)</td>
</tr>
<tr>
<td>2.20</td>
<td>Fluid Mechanics (4-0-8)</td>
</tr>
<tr>
<td>2.40</td>
<td>Thermodynamics (4-0-8)</td>
</tr>
<tr>
<td>2.90I</td>
<td>Introduction to Polymer Science and Engineering (3-0-9)</td>
</tr>
<tr>
<td>3.00</td>
<td>Thermodynamics of Materials (4-0-8)</td>
</tr>
<tr>
<td>3.05</td>
<td>Computer Models of Physical and Engineering Systems (3-0-9)</td>
</tr>
<tr>
<td>3.061J</td>
<td>Introduction to Polymer Science and Engineering (3-0-9)</td>
</tr>
<tr>
<td>3.07</td>
<td>Introduction to Ceramics (3-0-9)</td>
</tr>
<tr>
<td>3.091</td>
<td>Introduction to Solid-State Chemistry (5-0-7)</td>
</tr>
<tr>
<td>3.10</td>
<td>Chemical Physics of Materials (3-0-6)</td>
</tr>
<tr>
<td>3.11</td>
<td>Mechanics of Materials I (4-0-8)</td>
</tr>
<tr>
<td>3.143J</td>
<td>Materials of Construction (3-0-9)</td>
</tr>
<tr>
<td>4.30</td>
<td>Basic Structural Theory (3-3-6)</td>
</tr>
<tr>
<td>5.11</td>
<td>Principles of Chemical Science (5-0-7)</td>
</tr>
<tr>
<td>5.12</td>
<td>Organic Chemistry I (5-0-7)</td>
</tr>
<tr>
<td>5.60</td>
<td>Chemical Thermodynamics (4-0-8)</td>
</tr>
<tr>
<td>5.61</td>
<td>Physical Chemistry (4-0-8)</td>
</tr>
<tr>
<td>6.002</td>
<td>Circuits and Electronics (4-2-9)</td>
</tr>
<tr>
<td>6.018</td>
<td>Statistical Mechanics and Thermodynamics (4-0-8)</td>
</tr>
<tr>
<td>6.034</td>
<td>Artificial Intelligence (4-0-8)</td>
</tr>
</tbody>
</table>

Not acceptable as Science Distribution Subject, if taken to fulfill the General Institute Requirement in Chemistry/Biology.
Laboratory Requirement

The Laboratory Requirement of 12 units may be met by enrolling in one or two laboratory subjects expressly designed for this purpose. The available subjects are listed below. The Laboratory Requirement is normally fulfilled in the first two years.

A typical Laboratory subject offers the student an opportunity to set up and carry out experiments dealing with phenomena of the natural world. Under faculty supervision the student plays a substantial role in planning a) the design of the experiment, b) the selection of the measurement technique, and c) the procedure to be used for validation of the data.

Hypotheses are formulated and then tested by comparing them with the results of the experiments. The student then compares and discusses the experimental results in terms of the current state of knowledge and prepares progress and final reports of the work.

The Laboratory subjects call for a major commitment of the student's attention to one or a few experimental problems and emphasize as much as possible work of project type rather than routine experimental exercises. They are designed to stimulate the student's resourcefulness and ideas.

The Laboratory Requirement is not intended primarily to teach specific techniques for later experimental work, to provide broad coverage of a particular field, or to be a complement to a specific subject. The Laboratory Subjects are planned to give each student, at an early stage of the educational experience at MIT, an opportunity to work on one or a few experimental problems, exercising the same type of initiative and resourcefulness as a professional would in similar circumstances.

1.102 Transportation Laboratory (0-3-3)
1.105J Structural Engineering Laboratory (0-3-3)
1.106 Laboratory Projects in Environmental Fluid Mechanics (0-3-3)
1.107 Aquatic Chemistry and Biology Laboratory (2-6-4)
1.53 Constructed Facilities Project Laboratory (0-3-3)
2.671 Measurement and Instrumentation (2-3-4)
2.672 Project Laboratory (1-3-2)
2.86 Manufacturing Processes and Systems (3-3-3)

Students taking 2.671 or 2.86 (9 units) receive 6 units of laboratory credit.
Physical Education Requirement

The Institute expects all students to gain instruction in physical education activities or sports during their first two years at MIT. By the end of this period, each student should have accumulated the required eight points of physical education credit (four courses) and should have passed the swimming test or taken a beginning swimming class. Credit may be gained by participation in the intercollegiate program (four points for each sport in season). A maximum of four points (two points per year) may be gained by physical activities within the ROTC programs.

There are Advanced Credit Examinations available for physical education credit in a number of different activities, including a physical fitness test. Two points of credit are awarded to students who pass one of these proficiency tests. Appointments are made with the Director of Physical Education. These exams must be completed no later than one week prior to the last day of classes for that year. A maximum of four points may be gained through Advanced Credit Examinations.

Sophomore transfer students must complete four of the eight-point physical education requirement. Junior and senior transfer students are not subject to the requirement.

The program consists of both individual and team activities with the major emphasis placed on the development of skills which can be utilized in later life. A student who elects individual sports such as golf, tennis, sailing, or squash will receive a strong background in the fundamentals of the sport. Instruction in physical education classes often leads to intercollegiate or intramural participation.

Physical education courses are offered in four quarters — two quarters for each semester — and also during the Independent Activities Period. Students register for these courses in the du Pont Gymnasium on the day after the academic registration and on a specific date halfway through each semester.

First Quarter:
Archery, bicycling, ballet I, II, jazz, exercise for body conditioning, partner dance, tap dance, touch football, ultimate frisbee, golf, lacrosse, pistol, rugby, sailing, scuba, sculling, exercise fitness, swimming (beginning), T'ai Chi, tennis (beginning and intermediate), table tennis, weight training, and yoga.

Second Quarter:
Badminton, basketball fundamentals, ballet I, II, jazz, partner dance, tap dance, diving, fencing, hockey, judo, pistol, Red Cross advanced life saving, exercise fitness, skating (beginning), squash, swimming (beginning and intermediate), weight training, and yoga.

IAP:
Badminton, baseball (hitting), aerobic dance, ballet I, II, jazz, partner dance, fencing, applied fitness, hockey, box lacrosse, pistol, exercise fitness, skating (beginning), figure skating, squash, advanced swimming techniques, T'ai Chi, tennis (intermediate and advanced).

Third Quarter:
Basketball, ballet I, II, jazz, exercise for body conditioning, partner dance, tap dance, fencing, figure skating, first aid (part 1), health/fitness education, hockey, judo, pistol, scuba, self-designed fitness, skating (beginning), skin diving, squash, swimming (beginning, advanced beginning, and advanced techniques), table tennis, volleyball, weight training, and Red Cross W.S.I. (part 1).

Fourth Quarter:
Archery, ballet I, II, jazz, partner dance, exercise for body conditioning, ultimate frisbee, golf (beginning), pistol, sailing, scuba, sculling, exercise fitness, softball, squash, swimming (beginning), tennis (beginning and intermediate), weight training, and Red Cross W.S.I. (part 2).

Upon entering MIT each student must submit a record of a medical examination and take a swimming test. Students who fail the swimming test are expected to take beginning swimming. If the medical examination indicates any disability which might limit physical activities, athletic requirements may be modified after consultation with the MIT Medical Department.
Independent Activities Period

Independent Activities Period (IAP) is a three and one-half week period in January in which faculty members and students are freed from the rigors of regularly scheduled classes to provide time for flexible teaching and learning and for independent study and research. Students are encouraged to explore the educational resources of the Institute not only by individually arranging projects with faculty members but also by organizing and participating in special IAP activities. Or they may purse interests independently either on or off campus.

Although IAP is kept as unstructured as possible, it is part of the academic program of the Institute — the "1" in MIT's "4-1-4" academic calendar. Grades are deemphasized during IAP. However, students may earn academic credit for work directed by a faculty member.

Activities

More than 600 activities are offered each year on a wide range of subjects, both academic and nonacademic. IAP activities are organized mostly by individual volunteers only one or two months in advance. They may be organized or attended by anyone at the institute: faculty, student, or employee.

Students find organizing IAP activities a rewarding challenge. For many, it is their first opportunity to teach and to develop a program from their own ideas. In doing so, they acquire organizational and leadership skills that prove invaluable to their careers.

A planning sheet, called the IAP Announcement, offers tips on organizing an activity, and provides a special application form for publicizing the activity in the IAP Guide. Funds are available from the institute and individual departments and organizations to help defray expenses. New and student-led activities receive priority from the Institute's IAP Activities Fund.

Tuition, Room, and Board

Full-time students in either the first or second semester do not have to pay additional tuition or room fees to the Institute during IAP. Students can purchase additional points on their fall term meal plan to cover IAP, or they can purchase a new plan for IAP and the spring term at the beginning of January.

Academic Credit and Grades

Most activities do not offer credit. However, it is possible for a student to earn academic credit by doing work under the direction of a faculty member for a subject listed in the Bulletin. The total cumulative credits a student may earn for all subjects is limited to six credit hours, except by special authorization. A department head may approve the awarding of up to 12 units in a single subject, but in all other cases, undergraduates must petition for approval from the Committee on Curricula, and graduate students from the Committee on Graduate School Policy. Credits received by freshmen during IAP are not counted toward their credit limits for the spring or fall term.

A student wishing to receive credit must work out the details individually with a faculty supervisor who will choose an appropriate subject listed in the Bulletin and determine how much credit is to be offered. In keeping with the generally unstructured nature of IAP, there is no formal registration process.

During IAP all work done for credit under a special problem subject number is graded pass/fail. However, if a regular subject is offered in intensive form, letter grades may be given.

Students are asked to remind their faculty supervisors that their IAP grades must be turned in by the last day of IAP. Grade reports will be sent to the students and to their departments at the beginning of the spring semester. Students not receiving grade reports when expected should check promptly with their instructors.

Students not receiving grade reports when expected should check promptly with their instructors or the Registrar's Office immediately after the end of IAP.

Veterans' Benefits

Full-time students receiving Veterans' benefits have been certified for the entire academic year. Because the period between the first day of winter vacation and the beginning of the second term is more than a calendar month, VA regulations require that IAP be treated as a separate term, much the same as Summer Session. To ensure uninterrupted benefits for IAP, students must notify the Student Financial Aid Office, Room 5-119, (617) 253-4971, by December 1, of their intent to attend IAP full time. Students must receive credit, i.e., a letter or pass/fail grade, to be entitled to VA benefits. Anyone who receives VA benefits for IAP but fails to earn sufficient credit will have to return the money. Veterans should make sure their instructors turn in their grade sheets to the Registrar's Office immediately after the end of IAP.

Special Students

Applications for special-student status solely for IAP will not be accepted. Special students admitted to the first or second term do not automatically have IAP privileges. Those admitted by the Director of Admissions must consult the Admissions Office concerning their status during IAP. Former students readmitted as special students by the Committee on Academic Performance (CAP) or the Office of the Dean for Student Affairs (ODSA) must consult the appropriate office for permission to participate in IAP. If the special student has paid full tuition during the first term or is admitted to do so in the second, there will not be an additional tuition charge for IAP. If the student has not been paying full tuition, he or she will be charged either the minimum special student fee or the amount necessary to bring tuition for the term up to full tuition.

Special students wanting credit for IAP work should consult Ronald P. Smith, Room E19-341, (617) 253-4781, if they were admitted by CAP or ODSA, or the Admissions Office if they were admitted by the Director of Admissions.

Student Exchanges

A one-for-one exchange between an MIT student and someone from another school is permitted during IAP provided the students themselves assume responsibility for all arrangements, travel expenses, and any additional tuition and living expenses. If the other school waives tuition for the MIT student, MIT will reciprocate. The MIT Admissions Office may also waive the application fee if the other school does so.

MIT students wishing to set up an exchange should contact the IAP Office, Room 7-108, (617) 253-1668. Students from outside MIT should ask the appropriate office on their own campus to contact the IAP Office. Because MIT will not admit special students solely for IAP, students from other schools can attend IAP only as part of a one-for-one exchange.

The Institute's regular cross-registration with Wellesley College remains in effect during IAP. MIT students are encouraged to take advantage of their flexible schedules during IAP to participate in Wellesley's winter term. In return, Wellesley students are invited to join IAP activities.
Admissions

Freshman Admissions

Secondary School Preparation

The majority of undergraduate men and women enter MIT as members of the freshman class, directly following completion of secondary school studies. Most good public, parochial, and independent secondary schools in the United States and equivalent schools in other countries provide suitable preparation for the student who takes full advantage of the opportunities that such schools afford. The efforts of secondary schools to achieve regional accreditation are encouraged by MIT.

The preparatory course in high school should be a broad one. The applicant should be able to read with intelligence and sensitivity and to express ideas clearly in oral and written form.

In mathematics, emphasis should be on thorough mastery of fundamental principles, operations, and definitions rather than on covering a wide range of topics. The applicant must have sufficient preparation for the study of calculus.

Work in the sciences should stress basic concepts and quantitative understanding, both in classroom work and in the laboratory setting. Chemistry and physics are particularly appropriate preparation for the freshman year science subjects at MIT.

MIT encourages the study of history and of foreign languages in depth. The choice of languages should be guided by the educational opportunities open to each student, by special interests or cultural ties, and by the nature of his or her probable future work.

MIT expects that its applicants have taken the broadest, most rigorous program available to them in high school. Ideal preparation for study at MIT would include English (four years), history/social studies (two or more years), mathematics through trigonometry or beyond (four years), laboratory sciences (biology, chemistry, and physics), and a foreign language. Interested students whose high school program does not match this in every detail are also urged to apply, since the selection of an entering class with broad interests will be guided as well by the quality of the applicant's work, by special strengths, and by apparent promise on grounds of intellect, character, and particular goals.

Application Procedures

Applicants are encouraged to write during their junior year for information. Candidates in their last year of high school must complete the application process by January 1 of the year of intended entrance. Early action is available with a November 1 deadline. There is a $35 application fee. Notices concerning the admission decision will be mailed in early April. MIT may limit enrollment in particular fields of study to balance resources with student interest.

Personal Conferences (Interview)

Each applicant for admission to the freshman class is required to have a personal conference with a designated member of the MIT Educational Council near the applicant's home. Council members are MIT graduates who have been selected for their ability to represent MIT and for their interest in young people.

Each applicant will be referred for a conference to a member of the Council. This conference is an essential part of the final application and must take place between May 1 of the junior year and December 15 of the year prior to entrance.

Prospective applicants and their families are welcome at the Admissions Office Monday through Friday between 9 am and 4 pm. Prospective student-guided tours of the campus leave the Information Center each weekday (except holidays) at 10 am and 2 pm. Students and parents are welcome at the Admissions Office after the tour for a group session with a member of the staff.

Project Interphase

In order to help newly admitted students make a successful transition from high school to the pace and style of MIT, a special summer session is available, called Project Interphase. This program offers subjects in math, science, and the humanities which build on the regular entrance requirements. It is available by invitation at no expense to the student.

Deferred Admissions

Occasionally students wish to take a year off between secondary school and college. In such cases we recommend following normal admissions procedures, as if going directly on to college, and then requesting deferral. If during the "deferred" year students take post-secondary school academic work approximating a full course load, they must reapply as transfer students rather than matriculate as deferred freshmen.

Advanced Placement

MIT has always encouraged students to move ahead academically according to their capabilities. It offers four procedures by which students entering from secondary schools may go directly into a subject at an advanced level: 1) the College Board Advanced Placement Program; 2) G.C.E. A-levels and the International Baccalaureate; 3) college transcript; and 4) Advanced Standing Examination at MIT.

Students who take college-level subjects offered in their schools in cooperation with the College Board Advanced Placement Program should take the appropriate three-hour examinations administered by the Board each year in May and instruct the Board to send the scores to MIT. Degree credit for MIT subjects, and, where appropriate, advanced placement, is given on the basis of a high achievement in the tests (normally a score of four or five). The students are notified of the credit offered before registration so that they may discuss an optimum schedule with their faculty advisor.

In some secondary schools, selected students take college-level subjects at a local college. Such students may submit an official transcript from the college showing subjects taken and grades earned in order to receive MIT credit under the regular college transfer procedures.

MIT does not give credit for high school or other precollege study of foreign languages. Other subjects in the humanities, arts, and social sciences may receive credit (9 units) applicable to the unrestricted elective requirements only. This credit will not reduce the General Institute Requirement of eight one-term subjects in the areas of Humanities, Arts, and Social Sciences.
International Undergraduate Admissions

Entrance Examinations

All candidates are required to take the following tests given by the College Board: the Scholastic Aptitude Tests and three one-hour Achievement Tests in 1) Level I or Level II Mathematics, 2) Physics or Chemistry or Biology, 3) English Composition or one of the History tests. (Test requirements vary for international students. See the section on Entrance Examinations for International Applicants later in this chapter for more details.)

The College Board offers these examinations in the principal cities of the United States and abroad. The test dates, locations, and fees for the current year are outlined in an Information Bulletin which may be obtained from most guidance offices or by writing directly to the College Board, Box 592, Princeton, New Jersey 08540. Residents of western North America, Mexico, Australia, Pacific Islands, Japan, and China should apply to the College Board, Box 1025, Berkeley, California 94701.

Candidates for admission for September 1985 must have completed the SAT and the three Achievement Tests by the January 1985 testing date. Either the SAT or up to three achievements may be taken on any scheduled test date. Note that the closing dates for registration are usually four to six weeks (five to seven weeks outside the United States) before the test date. The College Board should be requested to send all scores directly to MIT. A student taking physics or chemistry in the junior year should probably take the achievement test in that subject during the spring of that year.

Early Action

MIT requires a complete set of application materials before considering a candidate for admission. A student who takes all the required College Board tests by the November test date and files all of the application material by November 1 of the senior year may request the Committee on Admissions to review the application by mid-December. If the test scores, school grades through the junior year, and other qualifications are so excellent that the applicant will clearly be acceptable later, the Committee will offer admission immediately; if it feels that it should compare the application with those of other candidates, it will hold the application until the usual time in April. A student who seeks early consideration in this way is free to file applications at other colleges and, if offered admission at MIT, is not required to reply to the Institute before the candidates' reply date in early May. This, therefore, is not an "early decision" plan in the usual sense.

TOEFL is administered by the Educational Testing Service. Students wishing to take the TOEFL must do so no later than the January test date; an earlier test date is preferable. Write directly to the Educational Testing Service, Princeton, New Jersey 08540, USA, for registration material and information.

Facility in English

Lectures, laboratory sessions, and written or oral examinations at MIT are conducted in English. All applicants must present evidence of their ability to carry on their studies in English.

Entrance Examinations for International Applicants

The College Board tests listed in the Entrance Examination section of this chapter are the required entrance examinations. If English is not the applicant's native language, the following group of tests may be substituted: the Test of English as a Foreign Language (TOEFL) and the Physics Achievement Test, the Chemistry or Biology Achievement Test, and either the Math Level I or Level II Achievement Test.

TOEFL is administered by the Educational Testing Service. Students wishing to take the TOEFL must do so no later than the January test date; an earlier test date is preferable. Write directly to the Educational Testing Service, Princeton, New Jersey 08540, USA, for registration material and information.

The MIT undergraduate student body includes many citizens of other countries. These students normally join the freshman class after completing secondary school at the highest level. Students are encouraged to plan to complete the Higher School Certificate, the General Certificate of Education at the Advanced Level, the Baccalaureate, the Matriculate, or the Gymnasium, even though decisions on admission to MIT are made in April, prior to the time when most exams are normally taken.

All citizens of foreign countries, except foreign citizens attending secondary schools in the United States, should begin the application process as outlined below.

Application Procedures

Students should write to the Director of Admissions at least a year before they plan to enter MIT for information about application procedures. Included in the response will be the leaflet, "Information for Prospective International Students" and a Preliminary Application form which should be returned promptly. Final Application materials will be forwarded to those whose Preliminary form is approved. All documents must be completed in English or accompanied by attested translations of the original into English. In order to receive consideration, the Final Application must be completed and returned by January 1, and the required College Board tests (including, if appropriate, the Test of English as a Foreign Language — TOEFL) must be taken by the January test date. All students are urged to register for the tests at least six to eight weeks in advance of the testing date.

Preliminary Application forms or initial letters of inquiry about admission received after November 15 will be too late for the fall term.

Personal Conferences

Applicants will receive instructions about arranging a personal conference with a local MIT alumnus, a representative of the Institute for International Education, or the America-Mideast Educational and Training Services (AMIDEAST).
College Transfer Admissions

Students who have completed two or more terms with high standing at a recognized college, university, engineering school, or junior college and who are entitled to honorable dismissal may be admitted to MIT by transfer.

A transfer student’s eligibility for admission will be determined by the Committee on Admissions after a review of his or her record. The applicant will be expected in every case to have completed one year’s study of secondary school physics and mathematics (or the equivalent at the college level) and mathematics through trigonometry. MIT may not be able to accept applications in a given year for those departments whose enrollments exceed educational resources.

Transfer applications may be submitted at not less than one-year intervals. It is not customary to admit as a transfer a student with only one additional year’s work needed to complete the degree.

Transfer applicants will be asked to take the College Board tests prescribed in this chapter’s section on Entrance Examinations for freshman applicants if they have not already done so. Transfer applicants from foreign countries are admitted only for September.

International transfer students should read carefully the sections on Entrance Examinations and Entrance Examinations for International Applicants in this chapter.

Application Procedures

College students considering transfer to the Institute should file a Preliminary Application for Admission with Advanced Standing three months before the final application deadline. These forms can be obtained from the Admissions Office. The Director of Admissions will advise the applicant of those parts of the regular entrance requirements which must be fulfilled and will arrange to have the final application materials sent.

The applicant must assure that the following documents are submitted:

1. A completed Application for Admission with Advanced Standing, indicating all subjects that will have been completed at the time of transfer, and a nonreturnable fee of $35. Final applications should be submitted by April 1 for entry in September and by November 15 for entry in February.

2. A certified transcript of the college record to date, including a statement of good standing. A certified statement covering subjects subsequently taken should be sent as soon as it is available.

3. Catalogue pages describing all subjects which will have been completed.

4. Three evaluation reports, including two from faculty instructors and one from the Dean of Students or the applicant’s chief faculty advisor. These forms should be sent directly to the Director of Admissions by the endorsers.

5. A report from the secondary school attended. The report should be made on the form provided with the Final Application and should be sent directly from the secondary school to the Director of Admissions.

6. College Board test reports, as appropriate.

As soon as the completed application has been reviewed, the applicant will be informed of the decision. In some cases, action may be deferred until final grades are available.

Applications for Financial Aid

An intention and a wish to apply for financial aid may be shown on the admission application form in space provided for that purpose.

Advanced Credit

Students admitted by transfer may expect to receive credit for subjects of study completed elsewhere that are substantially equivalent to those required at the Institute. A grade above the lowest passing grade is necessary.

A student in another college contemplating later transfer to MIT should plan a program of studies to include as much as possible of the mathematics, physics, and humanities as is included in the typical first two years of MIT.

Applications admitted with advanced standing in architecture will be placed in the design sequence in accordance with their performance on their first problem.

All remaining questions concerning credits must be settled within two weeks after the opening of the academic year. In these cases, the student should consult the Director of Admissions.

Special Student Admissions

The Institute can accept a limited number of undergraduates who wish to carry on special studies and who are not degree candidates at MIT. The students enroll as Special Students; they enjoy most of the privileges of the regular student but are not eligible for campus housing or financial assistance from MIT. Special Student status is granted for one term only, and an application for this status is required for any successive terms. Admission as a Special Student does not carry any implication for other applications. Applicants must present academic credentials of high quality or evidence of professional experience relevant to the proposed program. Admission is subject to available places in the classroom, laboratory, or studio.

The Director of Admissions will supply application forms upon request. There is an application fee of $35 for the first application; it is not required for renewal applications within a two-year period.

Deadlines for filing applications are August 1 for fall term, January 1 for spring term, and May 1 for summer term.
Costs for Undergraduates

Undergraduate student costs for the academic year 1984-85 at MIT will be about $15,800. This includes tuition, comprehensive health care services at the MIT Medical Department, and an estimate for the costs of room and board, books, supplies, and personal expenses. Cost of travel obviously varies significantly and is not included. The cost of books and supplies, clothes, laundry, recreation, and other personal necessities vary widely depending upon interests, tastes, and needs, but typically total about $1,400. There are many kinds of dining and housing arrangements at MIT and the range of student expenses for room and board is broad. The Student Financial Aid Office uses a standard allowance of $4,100 for room and board. Thus, total costs for most undergraduates during the 1984-85 academic year will be in the range of $14,500 to $17,500 (excluding cost of travel), depending upon specific choices.

The following are the basic tuition and fees at MIT for the academic year 1984-85 (which are reviewed and likely to increase each year):

<table>
<thead>
<tr>
<th>Service</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$10,300</td>
</tr>
<tr>
<td>Hospital and Accident Insurance Policy</td>
<td>240</td>
</tr>
</tbody>
</table>
| The tuition for all regular undergraduates in the first and second terms is $5,150 per term. Full tuition in either term of the current year covers the January Independent Activities Period. Tuition rates for the Summer Session are published each year in the Summer Session Catalogue, available in March. Regular undergraduate students who have permission to take only a few subjects are initially charged full tuition. They may then apply to have their tuition charged at the rate of
| | |
| Enrolled in the academic year 1984-85 | $165 per unit with the approval of the Faculty Advisor and, if not a degree candidate, with the additional approval of the Dean for Student Affairs. In such cases, there is a minimum fee of $990 for subjects and a minimum of $430 for S.B. thesis. Upon recommendation of a department, the Dean for Student Affairs, in the case of an undergraduate student, may set a special tuition rate in unusual circumstances. Special Students are charged at the rate of
| | $165 per unit taken either for credit or not for credit. This unit fee applies up to a maximum of $5,150 per term and is subject to the following minimum fees:
| | |
| Members of the MIT Community | $990 |
| Other Special Students | 1,485 |
| Cooperative programs offered by MIT provide industrial and research experience through a series of work assignments interwoven with regular study at the Institute. The tuition fees for cooperative programs are as follows:
| Aeronautics and Astronautics, Course XVI-B | |
| Mechanical Engineering, Course II-B | |
| Ocean Engineering, Course XIII-C | |
| June-August (16 months), $10,300 | |
| Chemical Engineering Practice, Course X-A | |
| September-January or February-June, $5,150 | |
| Electrical Science and Engineering or Computer Science and Engineering, Course VI-A | |
| Engineering Internship Program | |
| July 1 to June 30, $10,300 | |
| Materials Science and Engineering, Course III-B | |
| September-August, $10,300 | |
| In each case, the first $5,150 is due on the date when the second-term tuition is normally due, and the additional $5,150 is due on the date when the first-term tuition is normally due. Upon recommendation of the Department, a special tuition rate for any cooperative program may be set in an unusual case.

A student withdrawing before the start of a term is not charged any tuition for that term and any tuition payments previously made for that term will be refunded. Students withdrawing during the first or second term are charged one-twelfth of the stated tuition for the term for each week from the starting date of the term, with a minimum two-week charge. A student is financially obligated to the Institute for the tuition appropriate to the program approved by his or her Faculty Advisor or Graduate Registration Officer at the beginning of the term. Any subsequent reduction in fees is based on the date that cancellation of a subject or withdrawal from the Institute is effected. At that time, any excess payments which the student has made will be refunded. If the student receives financial aid through one of the Title IV Federally based student financial aid programs, and aid is reduced as a consequence of the reduced tuition, the total amount of Title IV aid (minus work earnings) is divided by the total amount of aid awarded (minus earnings), to determine the amount to be credited toward the student's charges and the amount to be returned to the Title IV programs.

Miscellaneous Fees

<table>
<thead>
<tr>
<th>Service</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application fee for undergraduate admission</td>
<td>$35</td>
</tr>
<tr>
<td>Late registration fee</td>
<td>20</td>
</tr>
<tr>
<td>Fee for late filing of degree application</td>
<td>20</td>
</tr>
<tr>
<td>Processing Charges for Late Changes in Registration</td>
<td></td>
</tr>
</tbody>
</table>
| A late change in registration, which requires the approval of the appropriate faculty committee, is defined as adding a subject after the fifth week or dropping a subject during the last three weeks of a term. The processing charge for late changes is $20 for one subject or $25 for more than one subject in a petition. There is an additional charge of $20 for a retroactive charge after the end of the term. The miscellaneous fees and processing charges listed above are nonrefundable, unless levied in error.

1 Payment of the tuition fee entitles all regular and special registered students to comprehensive health care services at the MIT Medical Department, including consultation with a wide range of specialists, diagnostic studies, and hospitalization in the MIT Infirmary. Charges are made for pre-entry physicals, obstetrical care, routine eye examinations, contact lens service, hearing aid evaluations, ear piercing, dental care, missed appointments, contraceptive devices, prescription drugs, and those surgical procedures and outside diagnostic tests which should be covered by the student's hospital and accident insurance policy.

2 The MIT Student Insurance covers hospitalization (other than in the MIT Infirmary) due to accidents or illness. The insurance is required for all students, unless they can demonstrate that they have equivalent coverage through another insurance program. A medical insurance plan for a student's spouse and children is also available. The additional cost of insurance coverage for the spouse for outside hospital care is $648. Hospitalization insurance for one or more children may be purchased for $210. A student withdrawing during a term may cancel this insurance and receive a credit as of the end of the month when cancelled, by filing a request at the Student Insurance Office.

3 Includes Special Students who are full-time employees of the Institute or who are dependents of full-time employees or regular students.
Financial Aids

Grants, Loans, and Employment

Payments

Financial registration forms and instructions, and bills for tuition and other charges will be sent to admitted and continuing undergraduate students prior to the beginning of each term. Students must, by the due date specified in these instructions, either make their payment in full or elect the MIT Bursary Payment Plan, which allows for monthly payments plus applicable finance charges.

If the Bursary Payment Plan is elected, it must be signed by the payment due date to avoid the late payment charge. Students not on the Bursary Payment Plan will be assessed a late payment charge of one and one-half percent on the outstanding balance of their accounts each time a payment due date is missed.

All outstanding bills must be paid, or satisfactory arrangements made with the Bursar for their payment, before a student will be allowed to register at the beginning of a term, or, if a candidate for a degree, be allowed entry of his or her name on the degree list.

Registered student status can be withdrawn at any time for delinquency in payment of bills.

To assist students in meeting each term's expenses, various financial aids are available for which the student may be eligible (described in the next section). Also, students and their families might consider the installment plans that are offered. The MIT Parent Loan Plan, for example, is designed to help parents pay for four years of college costs over a period of about seven years. MIT provides the basic funds for this monthly installment plan, which offers loans at moderate interest rates to parents whose annual family income is between $25,000 and $100,000. There are also a number of prepayment plans and extended payment plans available through commercial banks, lending institutions, and insurance agencies. Information on these installment programs will be sent in the spring to the parents of newly admitted students. Otherwise, information may be obtained from John Rogers, MIT Parent Loan Plan Office, Box 160, Boston, Massachusetts 02101, (617) 253-4134.

The Student Financial Aid Office provides grants and loans based on the financial need of the individual student, as determined by analysis of a statement of family financial condition. This will be provided by means of the Financial Aid Form of the College Scholarship Service. A copy of the most recent parental Federal tax return is also required in support of aid applications.

MIT is fortunate in having received gifts from many benefactors, alumni, and friends to help support the educational needs of MIT students. There are currently more than 400 such scholarships, from which student aid is annually drawn. Additionally, there are about 40 loan funds which have been established for special purposes. The Student Financial Aid Office reviews applications and makes awards from the most suitable Institute grant and loan resources. Applicants need not request aid from a specific fund. Any need which is not met by a grant may be offset by long-term loans or employment.

Students are expected to work and/or borrow as the first incremental portion of their aid. Student loan funds allow the student to pay part of the cost of his or her education on long-term credit under favorable financial terms. However, loan fund capital is limited, and MIT student loans are granted only on the basis of demonstrated financial need. Undergraduate loans are provided from several sources, including the National Direct Student Loan (NDSL) Program, the Guaranteed Student Loan Program, and the Institute's own Technology Loan Fund.

Jobs are not assigned; rather, students are expected to arrange employment most suitable to their own talents and available time. The Student Employment Office maintains listings of positions to assist students seeking jobs. Employment is usually available on campus in dining facilities, residence halls, offices, libraries, and laboratories. Listings of off-campus positions also are available. Students' earnings from part-time work depend on experience, and, of course, availability of time.

All students considering MIT are strongly urged to explore all areas of financial assistance, including government scholarship and loan programs. A number of states sponsor scholarship programs for residents, and information concerning eligibility may usually be obtained from secondary school guidance counselors. The Federal Guaranteed Student Loan Program for students and the Parent Loans for Undergraduate Students Program are administered by individual states. Local banks and lending institutions should be able to answer initial inquiries concerning the availability of loans under these programs.

Parents of students considering MIT might also explore the Institute's Parent Loan Plan, which is described in the preceding section.
Applications for Financial Aid

Entering Freshmen

Students who wish to be considered for financial aid should complete the appropriate form included with the Application for Admission. This form must be submitted prior to January 1. In addition, the Financial Aid Form (FAF) appropriate to the applicant's state of residence must be submitted to the College Scholarship Service between January 1 and January 31. An application for admission is not prejudiced by an application for aid. The two decisions are entirely separate — need criteria have no bearing on admissions, and admissions criteria have no part in determining qualifications for aid. There is no reason to be deterred from applying concurrently to MIT for admission and aid.

International Students

MIT has small amounts of grant and loan funds which are made available to exceptionally well-qualified undergraduate international students who demonstrate financial need. International students who wish to be considered for financial aid should complete and return the appropriate form included with their admissions material by November 1. Because financial aid funds are severely limited, students should seek aid from sources other than MIT. International students should make all arrangements for their financial obligations to MIT for their entire stay in the United States before leaving their countries. Further information about the admission of international students is available from the Director of Admissions, Room 3-108, MIT, Cambridge, Massachusetts 02139, USA.

Transfer Students

Transfer applicants who wish to be considered for financial aid may obtain an application form and detailed instructions by completing the Request for MIT Financial Aid Application included in the Admissions packet.

Upperclass Students

MIT awards are made on an annual basis, and recipients are required to reapply each year for continued assistance in the following year. Upperclass financial aid applications are sent to the term addresses of current aid recipients in early February; upperclass students who have not been receiving assistance may also apply at this time by obtaining the new forms from the Student Financial Aid Office. Part of the application process involves the provision of a copy of the most recent parental Federal tax return, and all applicants are expected to apply concurrently for a Federal Pell Grant, a state grant where applicable, and for any and all renewable grants received in prior years.

A student's eligibility for MIT undergraduate grant funds will end when the student receives an initial degree, or after the equivalent of eight terms, whichever occurs first. Eligibility for Pell Grants may continue beyond the eighth term, under some conditions, but ends with the taking of an initial degree.

Eligibility for undergraduate loans continues through all undergraduate programs; and, of course, a student becomes eligible for the higher loan maximums which pertain to graduate students upon admission to a graduate program.
Graduate Education at MIT

Resources for Graduate Study

Extensive resources for graduate study have developed naturally at MIT from a long tradition of emphasis on contributions to new knowledge. The wealth and diversity of teaching and research resources are described in Chapter VI of this catalogue in the departmental sections.

Although most graduate students find their interests served by programs available within a single department, many elect to work in interdisciplinary fields (described in Chapter V) which may reach into two or more departments and involve interdisciplinary work in any of MIT’s laboratories. Special committees provide guidance in certain areas such as biomedical engineering, economics and urban studies, environmental engineering, instrumentation, management of technology, medical engineering, medical physics, operations research, technology and policy, transportation, and health policy and management. In other fields, interdepartmental programs are administered by ad hoc committees appointed for each student and approved by the Dean of the Graduate School.

MIT’s Libraries are a major resource for graduate study. Comprehensive collections are available in fields in which MIT concentrates its teaching and research efforts. Through participation in the Boston Library Consortium, graduate students, faculty members, and research staff have access to extensive research collections outside the Institute.

Another resource for graduate study is the cross-registration programs with Harvard University, Wellesley College, and joint degree programs with the Woods Hole Oceanographic Institution. Limited study opportunities are also available at Brandeis University, Tufts University, and Boston University. Details are given later in this chapter.

Graduate students are encouraged to use MIT’s extensive athletic facilities. Teams composed of undergraduate and graduate students participate in intercollegiate competitions, and the intramural athletic program.

Graduate students are welcome to share in the cultural and social activities and recreational facilities at MIT. Concerts and dramatic performances are frequently given by Institute groups and professional performers. Leaders in many fields give lectures and seminars on the campus, which are open to all members of the Institute community. MIT students also take advantage of the many cultural and intellectual opportunities in the Boston area, including free admission to the Boston Museum of Fine Arts and the Museum of Science.
General Requirements for Graduate Degrees

Fields of Graduate Study

Graduate students may pursue work leading to any of the following degrees: Doctor of Philosophy, Ph.D.; Doctor of Science, Sc.D.; Engineer's degrees; Master of Science, S.M.; Master of Architecture, M.Arch.; and Master in City Planning, M.C.P.

The major fields of graduate study are listed here. Graduate programs are described in individual department statements in Chapter VI.

Each graduate student is officially enrolled in one department or Course. The programs are not limited, however, to subjects offered in a single department. Subjects and research programs may be chosen from several departments, with the approval of the faculty advisor to ensure that the overall program is integrated and well balanced with respect to a major field of study.

A student who expects to come to MIT for an advanced degree after earning an undergraduate degree elsewhere should give careful attention to undergraduate prerequisites as outlined by each department or program elsewhere in this catalogue. For more specific information, a student should consult the department or program in which he or she wishes to enroll.

MIT degrees are "residence" degrees in the sense that a major portion of the work must be done on campus in association with the faculty, other graduate students, and the institute community. The amount of time required to attain any one degree varies.

Degrees are awarded by the Corporation of the Institute upon the recommendation of the faculty. Favorable faculty action is based upon School Policy on recommendations from the appropriate departmental committees on graduate students.

School of Architecture and Planning

Architecture, Course IV
Architectural design (M.Arch.)
Architecture studies (S.M.)
Architecture, art, and environmental studies (Ph.D.)
Visual studies (S.M.)

Urban Studies and Planning, Course XI
Urban and regional planning
Urban and regional studies

School of Engineering

Aeronautics and Astronautics, Course XVI
Aeroacoustics
Aerodynamics
Aeroelasticity
Aerospace systems
Aircraft propulsion
Astrodynamics
Biomedical engineering*
Computational fluid dynamics
Computer systems
Dynamic energy conversion
Estimation and control
Flight transportation
Fluid mechanics
Gas dynamics
Gas turbines

Gas turbine structures
Navigation and control systems
Instrumentation*
Management of technology* (S.M.)
Materials engineering*
Physics of fluids
Plasma physics
Space propulsion
Structural dynamics
Structures technology
Technology and policy* (S.M.)
Vehicle design

*Approved Interdepartmental Program
Chemical Engineering, Course X
Applied chemistry
Biochemical engineering
Biomedical engineering*
Catalysis and reactor engineering
Chemical engineering systems
Engineering operations
Environmental engineering*
Fuel engineering
Management of technology* (S.M.)
Materials
Materials engineering*
Polymers and plastics
Technology and policy* (S.M.)

Chemical Engineering Practice, Course X-A
Joint Program with the Woods Hole Oceanographic Institution, Course X-W
Oceanographic engineering

Civil Engineering, Course I
Aquatic science
Civil engineering
Civil engineering systems
Coastal engineering
Construction engineering and management
Earthquake engineering
Environmental engineering*
Geotechnical engineering
Geotechnology
Hydrodynamics
Hydrology
Management of technology* (S.M.)
Materials engineering*
Operations research*
Structural engineering
Technology and policy* (S.M.)
Transportation* (S.M.)
Transportation economics
Transportation systems
Water resources

Joint Program with the Woods Hole Oceanographic Institution, Course I-W
Oceanographic engineering

Electrical Engineering and Computer Science, Course VI
Electrical engineering
Electrical science
Artificial intelligence
Bioelectrical engineering
Biomedical engineering*
Communications
Computer science
Control engineering
Electric power systems
Electromagnetics
Electronics
Energy systems
Management of technology* (S.M.)
Operations research*
Quantum electronics
Solid state electronics
System engineering
Systems science
Technology and policy* (S.M.)

Joint Program with the Woods Hole Oceanographic Institution, Course VI-W
Oceanographic engineering

Materials Science and Engineering, Course III
Ceramics
Electronic materials
Management of technology* (S.M.)
Materials engineering
Materials science
Metallurgy
Polymers
Technology and policy* (S.M.)

Joint Program with the Woods Hole Oceanographic Institution, Course III-W
Oceanographic engineering

Mechanical Engineering, Course II
Acoustics and vibration
Applied mechanics
Automatic control
Biomedical engineering*
Combustion
Computational mechanics and finite element analysis
Computation and microprocessor applications
Computer-aided design/manufacturing
Continuum mechanics
Cryogenics
Desalination
Design
Dynamics
Ecosystems
Energy conversion and conservation
Environmental engineering*
Fibers and polymers
Fluid mechanics
Heat transfer
Internal and external combustion engines
Management of technology* (S.M.)
Man-machine systems
Manufacturing
Materials and materials processing
Mechanical engineering
Mining and resource engineering
Polymers and polymer processing
Stress analysis
Technology and policy* (S.M.)
Thermodynamics
Transportation* (S.M.)
Tribology: friction, lubrication and wear

Joint Program with the Woods Hole Oceanographic Institution, Course II-W
Oceanographic engineering

*Approved Interdepartmental Program
Ocean Engineering, Course XIII
- Acoustics
- Applied mechanics
- Environmental engineering
- Fluid mechanics
- Hydrodynamics
- Management of technology* (S.M.)
- Marine data systems engineering
- Naval engineering
- Ocean engineering
- Operations research*
- Structural mechanics
- Technology and policy* (S.M.)

Naval Architecture and Marine Engineering, Course XIII

Naval Construction and Engineering (USN and USCG), Course XIII-A

Ocean Systems Management, Course XIII-B
- Coastal zone utilization
- Marine resource development
- Marine transportation
- Ocean engineering and law
- Ocean systems management

Joint Program with the Woods Hole Oceanographic Institution, Course XIII-W
- Oceanographic engineering

Nuclear Engineering, Course XXII
- Applied plasma physics
- Applied radiation physics
- Energy technology
- Fusion reactor engineering
- Management of technology* (S.M.)
- Nuclear fuel management
- Nuclear materials engineering
- Nuclear reactor engineering
- Nuclear reactor physics
- Radiological sciences
- Technology and policy* (S.M.)

Psychology, Course IX
- Cognitive psychology
- Developmental psychology
- Experimental psychology
- Neuroanatomy
- Neurophysiology
- Physiological psychology
- Psycholinguistics
- Sensory perception

Sloan School of Management
- Management, Course XV
- Management of technology* (S.M.)
- Operations research*

School of Science
- Biology, Course VII
- Biochemistry
- Biophysics
- Cell and developmental biology
- Immunology
- Microbiology
- Physiology

Joint Program with the Woods Hole Oceanographic Institution, Course VII-W
- Oceanography

Chemistry, Course V
- Analytical chemistry
- Biological chemistry
- Biophysical chemistry
- Chemical physics
- Inorganic chemistry
- Organic chemistry
- Physical chemistry

Earth, Atmospheric, and Planetary Sciences, Course XII
- Geochemistry
- Geology (classical geology, theoretical geology)
- Geophysics
- Meteorology
- Oceanography
- Physical oceanography (Ph.D.)
- Planetary sciences

Joint Program with the Woods Hole Oceanographic Institution, Course XII-W
- Oceanography

Mathematics, Course XVIII

Nutrition and Food Science, Course XX
- Biochemical engineering
- Biotechnology
- Food science
- Neural and endocrine regulation
- Nutritional biochemistry and metabolism
- Toxicology

Physics, Course VIII

Harvard-MIT Division of Health Sciences and Technology
- Biomedical sciences*
- Medical engineering
- Medical physics

Whitaker College of Health Sciences, Technology, and Management
- Health Policy and Management
Master's Degrees

Master of Science With and Without Specification

For the degree of Master of Science, the student must have completed satisfactorily a program of study of at least 66 units, of which 42 units shall be "A" subjects, and a thesis, approved by the department in which he or she is enrolled. If 34 units of "A" subjects and the thesis are in a single field, as determined by a departmental committee on graduate students, the degree will be recommended with specification of the field in which the student has thus specialized; otherwise, the degree will be recommended without specification. The same high standard of academic performance in a program approved by a departmental committee on graduate students is required for either degree.

The choice of field of specialization must be approved by the committee on graduate students of the department in which the student is enrolled. Approval of the entire program must be obtained from this committee and from the student's faculty advisor. A special interdepartmental committee, approved by the Dean of the Graduate School, may be appointed to supervise a program in an interdepartmental field.

The satisfactory completion of the Master's degree requires the student to be in residence as a full-time regular graduate student for a minimum of one regular academic term (not the summer session). Every degree candidate working on a thesis must register for thesis in all semesters during which his or her thesis research or writing is actually in progress and during the term his or her name appears on the degree list.

Master of Architecture

The graduate degree of Master of Architecture is awarded upon the satisfactory completion of a program of study of at least 164 subject units approved by the Department of Architecture, of which 96 units must be "A" subjects, and the completion of a thesis acceptable to the Department of Architecture. The candidate must also have been in residence for a minimum of four regular academic terms. A student who enters without previous experience in a department of architecture may take as long as eight academic terms to complete the degree.

Master In City Planning

For the degree of Master in City Planning, the student must have completed satisfactorily a minimum of 120 units of which at least 42 units must be "A" subjects. The student must also have completed a thesis acceptable to the Department of Urban Studies and Planning, and have been in residence for a minimum of two regular academic terms.

Simultaneous Registration for Two Master's Degrees

Single thesis. This degree plan is intended for qualified graduate students who seek academic recognition in two professional fields which, although distinct, have a substantial interdisciplinary connection. The interdisciplinarity is implemented both by a balanced choice of academic subjects, made with the advice of each of two departments, and by selection of the thesis topic.

To satisfy the minimum requirements for the program, the student must complete (in addition to thesis units) at least 132 subject units of which 66 units are unique to each department. At least 42 of each group of 66 units must be graduate "A" subjects. In those instances where, for a single regular Master's degree or program, a department has established unit requirements in excess of the foregoing minima, the departmental requirements prevail. Such excess of units in one department may not be applied to the program in the other department.

Students pursuing a Master in City Planning in addition to a second Master's degree must have both programs approved in the usual way, but the subject units for the M.C. P. can be lowered at the discretion of the Department of Urban Studies and Planning.

Participation in this degree plan is limited to students who are already registered in one department and who meet the admissions criteria of the second department. At least two regular terms prior to completion of the program, the student must submit to each department a statement of educational objectives along with a detailed program plan that includes a description of the proposed thesis topic. The total program must meet with the approval of each department and a petition approved by the Dean of the Graduate School describing the program must be filed with the Registrar.

The thesis research must be done under the supervision of an approved member of one of the two participating departments with the other department providing a thesis reader. The thesis must be of superior quality. The single thesis cannot be used to satisfy the thesis requirements of any additional graduate degree programs.

In special cases, the Standing Committee of an approved Interdisciplinary Program may act in lieu of one of the two participating departments.

Two theses. Occasionally an individual, already admitted to the Graduate School, may wish to pursue simultaneously two distinct Master's programs, fulfilling the thesis requirement with a separate thesis for each degree program. In such cases, the usual unit requirements for each program apply separately. Registration for two degrees is contingent upon approval by the second department of a request for admission. Such a request can be initiated by a petition approved by both departments and approved by the Dean of the Graduate School.

Simultaneous Award of Bachelor's and Master's Degrees

An undergraduate student of the Institute who is enrolled as a candidate for the Bachelor's degree may be admitted by a department as a candidate for the Master's degree. Students must register as graduate students for at least one regular academic term (not summer session) to be recommended for the simultaneous award of the Bachelor's and Master's degrees. The thesis submitted for the Master's degree may also be accepted by the department in fulfillment of the undergraduate thesis requirement, if any. A student wishing to pursue this type of academic program must submit an application for Graduate School in the usual way, as well as file a petition with the Registrar which has been approved by the student's undergraduate faculty advisor and the graduate registration officer of the appropriate department.
Engineer's Degrees

The program for an Engineer's degree requires more advanced and broader competence in engineering and science subjects than for the Master's degree, but with less emphasis on original research than a doctoral program. In general, the Engineer's degree requires two academic years beyond an undergraduate degree.

The following Engineer's degrees are awarded: Chemical Engineer (Chem.E.); Civil Engineer (C.E.); Electrical Engineer (E.E.); Engineer in Aeronautics and Astronautics (E.A.A.); Environmental Engineer (Env.E.); Materials Engineer (Mat.E.); Mechanical Engineer (Mech.E.); Metallurgical Engineer (Met.E.); Nuclear Engineer (Nucl.E.); Ocean Engineer (Ocean E.).

Satisfactory completion of a program of advanced study and research approved by the appropriate department or interdepartmental committee of the School of Engineering is required. The minimum program consists of at least 162 subject units (exclusive of thesis units) and the completion of an acceptable thesis. The candidate must also have been in residence for a minimum of two regular academic terms. Registration is required of every degree candidate working on a thesis in all periods during which the thesis research or writing is actually in progress and during the term his or her name appears on the degree list. A department may accept a Master's thesis of superior quality for the Engineer's degree only if the student intends to use that document to fulfill the requirements of a single Master's degree.

Doctoral Degrees

MIT offers the degrees of Doctor of Science and Doctor of Philosophy, interchangeably, in the engineering and science departments (except biology) and in the fields of medical engineering and medical physics. The degree of Doctor of Philosophy is awarded in architecture, biology, economics, linguistics, management, philosophy, political science, psychology, urban studies and planning, and Whitaker College. These degrees certify creditable completion of an approved program of advanced study in addition to a research dissertation of high quality based on original research.

The two Institute requirements for a doctorate are: 1) completion of a program of advanced study, including a general examination, and 2) completion and oral defense of a thesis on original research.

Graduate study and research leading to a doctoral degree must be pursued under the direction of the Committee on Graduate School Policy for at least four academic terms. In some cases, the required period of residence may be reduced but in no instance may it be reduced to less than two regular academic terms and one summer session.

The program of advanced study and research may be selected in any field approved by the department in which the student is enrolled. The thesis is in this same field but the program often includes subject areas reaching into several departments. If the field requires substantial participation by two or more departments, an interdepartmental faculty committee, approved by the Dean of the Graduate School, should be appointed to supervise the student's program.

Each doctoral candidate has a general examination in his or her field at such time and in such manner as the departmental or interdepartmental committee approves. This examination consists of both oral and written parts.

Thesis

A doctoral thesis requires at least one full-time academic year of research, but most doctoral research efforts take a substantially longer time. Each doctoral candidate is required to register for thesis in all periods during which work is actually in progress.

The investigation must be carried out under the supervision of an MIT faculty member or senior staff member approved by the department. Work already accomplished elsewhere which has not been approved by a department cannot be accepted in fulfillment of the thesis requirement.

An oral examination on the thesis and its field will be held after the thesis has been submitted and evaluated by the examiners.

Non-Resident Doctoral Thesis Research Status

While doctoral thesis research is ordinarily carried out while the student is in residence at the Institute, on some occasions it may be essential or desirable that the student be absent from the campus during a period of his or her thesis research or writing. Permission to become a non-resident doctoral candidate must be sought from the Dean of the Graduate School at least one month prior to the opening of the term during which the student wishes to register in this category. Consult the Graduate School Manual for additional information on non-resident status.

Minor Program

Although there is no Institute requirement of a minor for the doctoral degree, certain departments require that candidates take a number of subjects outside their major field.
Cross Registration at Other Institutions

Language Proficiency

There is no Institute language requirement; however, several departments require that a candidate be able to read or speak one or two foreign languages with intermediate competence. Typically, a student may satisfy the requirement in one of three ways: 1) by fulfilling the requirement before entrance by passing one or more intermediate or advanced subjects with a grade of C or better; 2) through examination by the Foreign Languages and Literatures Section of the Department of Humanities; 3) by taking a two-term subject in a language or languages offered by the Foreign Languages and Literatures Section of the Department of Humanities. Depending on student demand, the Section offers a choice of two-term language subjects, stressing the ability to read or to speak, in French, German, Russian, or Spanish.

For the purpose of the second alternative, the Section gives written and oral examinations in French, German, Russian, and Spanish once each term. Written and oral examinations in other approved languages are arranged individually upon request.

Harvard University

A regular, full-time graduate student at MIT may enroll to take subjects (exclusive of thesis) at Harvard without paying additional tuition, provided that this exchange enrollment does not exceed one-half of his or her total registration for the term. Included in the above category are MIT full-time Special Graduate Students. This cooperative arrangement is not applicable to the summer session.

Requests for registration under this cooperative arrangement must be approved by the MIT department of registration and should be confined to subjects which are not offered at the student's own institution. Students will not be allowed to attend classes in which additional registrants put an undue load on the instructors. The procedures to be followed are given in the Graduate School Manual.

Wellesley-MIT Exchange

Graduate students are eligible to participate in the Wellesley-MIT Exchange Program. Wellesley courses are not considered (A) subjects, but they may be accepted for credit toward your degree with the approval of your department. For details about the Exchange, see the description of the Program in Chapter III of this catalogue.

Woods Hole Oceanographic Institution

MIT, in conjunction with the Woods Hole Oceanographic Institution, offers graduate degree programs in oceanography and oceanographic engineering. All decisions, from admission to the conferring of the joint degree, are made by consensus of MIT/WHOI joint discipline committees. The programs in oceanography involve the Departments of Biology and Earth, Atmospheric, and Planetary Sciences at MIT. The oceanographic engineering programs involve the MIT Departments of Civil, Chemical, Electrical, Materials Science, Mechanical, and Ocean Engineering. Information regarding the program may be obtained from the MIT Joint Program Office or the Education Office at WHOI.

Boston University

A cross-registration agreement has been made between the MIT Departments of Economics and Political Science and the African Studies Program of Boston University. Details of the procedures to be followed are similar to those for Harvard-MIT cross-registration.

Brandeis University

A cooperative arrangement also exists between the MIT Department of Urban Studies and Planning and the Florence Heller Graduate School for Advanced Studies in Social Welfare at Brandeis University. Cross-registration is restricted to one or two subjects per term in the areas of social welfare at Brandeis and urban studies at MIT.

Tufts University

A cross-registration agreement exists between the MIT Department of Nutrition and Food Science and the School of Dental Medicine at Tufts University. The program is restricted to specific graduate subjects at each institution.
Graduate Registration and Academic Performance

Complete information on registration procedures may be found in the "MIT Registration Material" packet which is available to students in December and May in the Building 10 Lobby. Additional details may be found in the Graduate School Manual.

Definition of Student Status

Once admitted (or readmitted) to MIT, a person becomes an MIT student at the start of the term for which he or she was admitted. Student status is retained until graduation, unless the student withdraws, is required to withdraw, or fails to complete registration in a given term. For the fall and spring terms, completion of the steps listed below is necessary for continuing student status during that term:
1) registration material issued by the Registrar has been completed and returned, 2) financial registration material issued by the Bursar has been completed and returned, 3) all Institute charges have been paid when due, or satisfactory alternative arrangements have been made with the Bursar, 4) the registration officer has approved the student's registration form, 5) an ID validation sticker has been picked up according to instructions, and 6) the Graduate Need Determination Form along with parental information when required, or the Graduate and Professional Schools Financial Assistance Services (GAPSFAS) form has been submitted to the Student Financial Aid Office.

Registration

Each student is required to complete registration forms and present them to the Registrar before the opening of each term or as specified in registration instructions. First-term registration is available during the summer to newly entering students and should be picked up at the Registrar's Office (E19-33) upon arrival at MIT. Registration material for continuing students is available in May and can be picked up in the Building 10 Lobby for two days, after which it is available in the Registrar's Office. Second-term registration materials are similarly available in December. An individual who has not completed registration procedures by the start of the sixth week of the term will be withdrawn and will be charged a prorated tuition for this period.

Every student is assigned to a faculty member of his or her department who serves as the student's registration officer. Each student's program must be approved by this individual, and changes may be made only with the registration officer's approval.

Subject Credits and Designations

The units for each subject are indicated in the subject descriptions listed in Chapter VII of this catalogue. Each subject is listed with three credit numbers, showing in sequence the units allotted to: class, laboratory, design, or field work; and preparation. The total credit for a subject is obtained by adding together all the units shown.

In the list of subject descriptions, the year classification is indicated as "U" for an undergraduate subject and "G" for a subject offered primarily for graduate students. The "A" designation following the name of a subject indicates that it is an approved subject for a graduate degree and is offered primarily for graduate students.

Final Examinations

Final examinations are held at the end of each term; the schedule is issued about two months before the examination period. Each student is held responsible for obtaining an examination schedule at the Information Center, for reporting any conflicts in examinations before the time limit given on the schedule, and for attending the final examinations required in the subjects for which he or she is registered.

No member of the instructing staff can excuse a student from a scheduled final examination. Absence from any final examination is equivalent to a failing grade except on presentation of adequate evidence of sickness or other valid reason for the absence. The Dean of the Graduate School must be consulted for approval in order for a student whose term work has been satisfactory to take a postponed examination on the subject. The instructor may, if the evidence warrants, issue a final grade without requiring a postponed final examination.

Grade Reports and Transcripts

Grade reports are issued by the Registrar at the end of each term and summer session to all registered students. Students may order transcripts of their academic record at the Registrar's Office, Room E19-335, upon presentation of a receipt from the Cashier's Office, Room 10-180, at a cost of $2 per copy.

Detailed descriptions of the grades and notations used at MIT are given in the section entitled Undergraduate Registration and Academic Performance in Chapter III of this catalogue. Grades and notations used at MIT in both undergraduate and graduate subjects are the same.

Graduate Academic Standards

It is the responsibility of the Committee on Graduate School Policy (CGSP) to monitor minimum academic standards for graduate students and special graduate students in accordance with the rules and regulations of the faculty. The CGSP reviews the academic records of all graduate students at the end of each term (including the summer session), and students with cumulative ratings of 3.5 to 4.0 are given particular attention. Consideration is given not only to low grades, but to other factors affecting a student's performance in meeting the requirements for the degree program in which he or she is enrolled.

Recommendations for action by the CGSP are made by departmental graduate committees. Unless extenuating circumstances are found, students who are not making satisfactory progress towards a degree may be denied permission to continue or may be warned that without substantial improvement in the following term they may be refused further registration in the Graduate School.

More detailed information concerning procedures followed by CGSP may be found in the Graduate School Manual. It is also important for students to be informed of individual department requirements and expectations concerning academic performance.

Independent Activities Period

During the January Independent Activities Period (IAP), graduate students may pursue their own interests, including thesis research and preparation for qualifying exams. They also may lead or participate in activities specially organized for this three and one-half week period.

Graduate students should read the section on IAP in Chapter III of this catalogue for details concerning credit, VA benefits, and special student status.
Admissions

Regular Graduate Admissions

A Regular Graduate Student is an applicant who has been admitted to the Institute and is registered for a program of advanced study and research leading to any of the post-baccalaureate degrees offered by MIT. A student registered in a program of study leading to the simultaneous award of the degrees of Bachelor of Science and Master of Science must apply to the Graduate School and be registered as a graduate student for at least one academic term (not the summer session) of his or her program of study.

To be admitted as a Regular Graduate Student, an applicant must have received a bachelor's degree or its equivalent from a college, university, or technical school of acceptable standing. Applicants are evaluated by the department in which they propose to register on the basis of their prior performance and professional promise. These are evidenced by academic records, letters of evaluation from individuals familiar with the applicant's capabilities, and any other pertinent data furnished by the applicant. While high academic achievement does not guarantee admission, such achievement, or other persuasive evidence of professional promise, is expected.

Some engineering departments require students seeking a doctoral degree to qualify first for a master's degree.

Undergraduate Requirements for Advanced Degrees

In addition to preparation in the specific field of interest, most departments require significant work in mathematics and the physical sciences, but some require as little as a year each of college-level mathematics and physical science. Requirements of individual departments are given in Chapter VI of this catalogue. Students with minor deficiencies in preparation may be admitted to the Graduate School; however, deficiencies in prerequisite or general or professional subjects must be made up before the student may proceed with graduate work dependent on them.

Application Procedures

Students normally enter the Graduate School in September. However, in several departments suitable programs can be arranged for students entering in June or February. Prospective applicants should check with individual departments about their dates for admission.

Students wishing to enter in June or September should apply on the prescribed forms by January 14; candidates for admission in February should apply by November 1. However, applications submitted later may be considered if vacancies still exist. Candidates for admission who are also applicants for financial aid should observe the same deadlines.

Inquiries about specific requirements for admission should be addressed to the chairman of the appropriate departmental committee on graduate students.

Graduate Record Examinations (GRE)

Many departments require applicants to submit scores in the Aptitude Test and the appropriate Advanced Test of the Graduate Record Examination. Applicants are urged to consult with appropriate departments to confirm test requirements and recommendations. For a test application, write to the Graduate Record Examination, Educational Testing Service, Box 955, Princeton, New Jersey 08540.

International Graduate Admissions

Graduate student applicants who are citizens of countries other than the United States must have received a bachelor's degree or its equivalent from a college, university, or technical institute. The academic record and all credentials must indicate the ability of the candidate to complete an approved program of graduate study and research. Applicants are evaluated by the academic departments. Admission is granted on a competitive basis. Competence in written and spoken English is expected. Students whose native language is not English and whose schooling has not been predominantly in English, must take the Test of English as a Foreign Language (TOEFL). This test is mentioned in the section on International Undergraduate Admissions in Chapter III of this catalogue.

The Final Application for Admission from International Students may be obtained from the Director of Admissions, Room 3-103, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.

Applicants must submit complete application materials to the Director of Admissions.

Please refer to the previous section concerning individual departmental requirements for the Graduate Record Examinations.
Special Graduate Students

A Special Graduate Student is one whose intended program of study is essentially graduate in nature but who is not a candidate for a degree. Normally such a student will have received a bachelor’s degree. All applications are made through the Admissions Office. Applications for the specific subjects desired will be evaluated by the Graduate Committee of the appropriate department(s). Admission is valid for only one term; a student must seek readmission each term to continue at the Institute. Those applying for Special Graduate Student status for the first time must pay a $35 application fee. A fee is not required for renewal applications within a two-year period. To be allowed to continue as a Special Graduate Student, academic performance satisfactory to the Committee on Graduate School Policy must be maintained.

The deadlines for filing Special Student applications are May 1 for the summer term, August 1 for the fall term, and January 1 for the spring term.

Citizens of countries other than the United States whose native language has not been predominantly English must submit the Test of English as a Foreign Language (TOEFL) as noted in the section on International Graduate Admissions.

Admission as a Special Graduate Student does not imply any commitment on the part of the Graduate School toward an individual’s admisibility to Regular Graduate Student status (degree candidate). If a Special Graduate Student is subsequently admitted as a degree candidate, subjects completed may be used in partial fulfillment of requirements for an advanced degree. The department will determine what subjects are acceptable. Registration as a Special Graduate Student does not count toward minimum residency requirements for an advanced degree nor for eligibility for nonresident status.

Correspondence concerning admission as a Special Graduate Student should be addressed to the Director of Admissions, Room 3-103, from whom application material and “Information for Special Students” may be obtained.
Costs for Graduate Students

The following are the basic tuition and fees at MIT for the academic year 1984-85 (which are reviewed and likely to increase each year):

<table>
<thead>
<tr>
<th>Description</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$10,300</td>
</tr>
<tr>
<td>Hospital and Accident Insurance Policy</td>
<td>$240</td>
</tr>
</tbody>
</table>

The tuition for all regular graduate students, including graduate student staff, in the first and second terms is $5,150 per term. Full tuition in either term of the current year covers the January Independent Activities Period. The minimum term tuition charge for registration for doctoral thesis upon readmission as a resident student is $7,725, if not registered during preceding regular term. The tuition for all regular graduate students including fellows, trainees, and academic staff in the 1984 summer session was $3,450. Special tuition rates apply to other students in the summer session. These are published each year in the Summer Session Catalogue, available in March.

Special Students (except in the Sloan School of Management) are charged at the rate of $165 per unit taken either for credit or not for credit. This unit fee applies up to a maximum of $5,150 per term and is subject to the following minimum fees:

- Members of the MIT Community: $990
- Other Special Students: 1,485

Any resident graduate student making progress toward a degree is expected to register and is considered a full-time student. If a graduate student requires only part of a term to complete the thesis, initially, full tuition for the term is charged, and adjustments to tuition are made at a later date. If the student was registered for thesis as a resident student in the immediately preceding term, regular or summer, tuition for thesis will be adjusted after acceptance by the department of the completed document on the basis of a charge of $430 per week from the starting date of the term, with a minimum of $430 for the Master's or Engineer's degree and $860 for the Doctoral degree. If the immediately preceding term was the summer term and if the graduate student was not registered for thesis in that summer term, but was registered for thesis in residence in the previous second term, the minimum tuition for thesis is $2,575. A student who continues to hold a fellowship, traineeship, or graduate staff appointment for the remainder of the term after delivery of the thesis continues to be regarded as a full-time student and the tuition will not be adjusted. In unusual circumstances, the Dean of the Graduate School may set special tuition rates for graduate students.

Doctoral thesis research is ordinarily carried out while the student is in residence at the Institute. However, on some occasions, it may be essential or desirable that the student be absent from the campus during a period of his or her thesis research. Permission to become a non-resident doctoral candidate must be sought from the Dean of the Graduate School at least one month prior to the opening of the term during which the student wishes to register in this category. Prior to submission, the request must be approved by the student's thesis supervisor and by the representative to the Committee on Graduate School Policy from the student's department of registration. Students who are permitted to undertake non-resident thesis research must register as Non-Resident Doctoral Candidates and pay tuition equal to approximately 15 percent of the regular full tuition ($770 per term for 1984-85). Following completion of the non-resident period, the student must return to resident status for completion and presentation of the doctoral thesis. If the student requires only part of this first term back in residence to complete the thesis, the tuition will be adjusted subject to a minimum of $2,575. Please consult the Graduate School Manual for additional information on non-resident status.

Cooperative programs offered by MIT provide industrial and research experience through a series of work assignments interspersed with regular study at the Institute. The tuition fees for cooperative programs are as follows:

- Aeronautics and Astronautics, Course XVI-B, Mechanical Engineering, Course II-B, Ocean Engineering, Course XIII-C, June-August (15 months), $10,300
- Chemical Engineering Practice, Course X-A, September-January or February-June, $5,150
- Electrical Science and Engineering or Computer Science and Engineering, Course VI-A, Engineering Internship Program, July 1 to June 30, $10,300
- Materials Science and Engineering, Course III-B, September-August, $10,300

In each case, the first $5,150 is due on the date when the first-term tuition is normally due, and the additional $5,150 is due on the date when the second-term tuition is normally due.

1. Payment of this fee entitles all regular and special registered students to comprehensive health care services at the MIT Medical Department, including consultation with a wide range of specialists, diagnostic studies, and hospitalization in the MIT Infirmary. Charges are made for pre-entry physicals, obstetrical care, routine eye examinations, contact lens service, hearing aid evaluations, ear piercing, dental care, missed appointments, contraceptive devices, prescription drugs, and those surgical procedures and outside diagnostic tests which should be covered by the student's hospital and accident insurance policy.

2. The MIT Student Insurance covers hospitalization (other than in the MIT Infirmary) due to accidents or illness. The insurance is required for all students, unless they can demonstrate that they have equivalent coverage through another insurance program. A medical insurance plan for a student's spouse and children is also available. The additional cost of insurance coverage for the spouse for outside hospital care is $648. Hospitalization insurance for one or more children may be purchased for $210. A student withdrawing during a term may cancel the insurance and receive a credit, as of the end of the month when cancelled, by filing a request at the Student Insurance Office.

3. Includes Special Students who are full-time employees of the Institute or who are dependents of full-time employees or regular students.
Except for employees of the Institute or their children, the tuition fee is $290 per unit of registration, with a minimum charge of $2,610. There is a maximum charge of $8,700 per term for full-time special graduate students enrolled in the program. Students interested in the Management of Technology Program should consult the Sloan School of Management with regard to fees.

There is a professional activities fee of $100 per regular term in the Master's Degree Program in the Sloan School.

A student withdrawing before the start of a term is not charged any tuition for that term and any tuition payments previously made for that term will be refunded. Students withdrawing during the first or second term are charged one-twelfth of the stated tuition for the term for each week from the starting date of the term, with a minimum two-week charge. A student is financially obligated to the Institute for the tuition appropriate to the program approved by his or her faculty advisor or graduate registration officer at the first of the term. Any subsequent reduction in fees is based on the date that cancellation of a subject or withdrawal from the Institute is effected. At that time, any excess payments which the student has made will be refunded.

Graduate Living Costs

Living expenses for graduate students vary widely depending on such factors as marital status, availability of resources, interests, and tastes. Monthly living costs (housing, food, and personal expenses) for a single graduate student generally average about $870; for a married graduate student, $1,180; and for a married graduate student with one child, $1,900. These cost estimates do not include tuition, books, or the Hospital and Accident Insurance Policy. Campus housing for graduate students is limited and less than half of the graduate student population can be accommodated in Institute housing. On-campus dining opportunities are available to graduate students.

Miscellaneous Fees

- **Application fee for graduate admission**: $35
- **Late registration fee**: $20
- **Fee for doctoral degree language exam (given at an unscheduled time)**: $30
- **Fee for late filing of degree application**: $20
- **Fee for late thesis title change**: $20
- **Library processing fees**
 - Doctoral theses: $30
 - All other theses for advanced degrees: $20

Processing Charges for Late Changes in Registration

A late change in registration, which requires the approval of the appropriate faculty committee, is defined as adding a subject after the fifth week or dropping a subject during the last three weeks of a term. The processing charge for late changes is $20 for one subject or $25 for more than one subject in a petition. There is an additional charge of $20 for a retroactive change after the end of the term.

The miscellaneous fees and processing charges listed above are nonrefundable, unless levied in error.

Payments

Financial information and instructions and bills for tuition and other charges will be sent to admitted and continuing graduate students prior to the beginning of each term. Students must, by the due date specified in these instructions, either make their payment in full or elect the MIT Bursary Payment Plan, which allows for monthly payments plus applicable finance charges. Research and teaching assistants who have fees in excess of $150 billed through the Bursar's Office after the tuition portion of their award has been credited may pay their fees through monthly payroll deductions without associated finance charges.

If the Bursary Payment Plan is elected, it must be signed by the payment due date to avoid the late payment charge. Students not on the Bursary Payment Plan will be assessed a late payment charge of one and one-half percent on the outstanding balance of their accounts each time a payment due date is missed.

All outstanding bills must be paid or satisfactory arrangements made with the Bursar for their payment before a student will be allowed to register at the beginning of a term, or, if a candidate for a degree, be allowed entry of his or her name on the degree list.

Registered student status can be withdrawn at any time for delinquency in payment of bills.

Students and their families might consider the Parent Loan Plan, developed to help parents of MIT students pay for educational expenses at MIT over an extended period of time. This monthly installment plan offers loans at moderate interest rates to parents (US citizens) whose annual family income is between $25,000 and $100,000. Further information may be obtained from John Rogers, MIT Parent Loan Plan Office, Box 160, Boston, Massachusetts 02101, (617) 253-4134.
Financial Aids

Fellowships, Traineeships, and Scholarships

MIT makes available financial support to graduate students from a variety of sources and in several different forms — fellowships, scholarships, traineeships, teaching and research assistantships, the Federal College Work-Study Program, and the Technology Loan Fund. Many forms of support are granted solely on the basis of merit while others are granted on the basis of financial need or a combination of merit and need.

Neither every department nor the Institute itself has the financial resources to provide support for all deserving students. Thus, it is important that prospective students explore all sources of aid available outside MIT to find means of financing their graduate programs.

Upon admission to an MIT graduate program, all students are required to complete the MIT Graduate School Need Analysis form as a part of the registration process. Although MIT does not require completion of the Graduate and Professional Schools Financial Aid Service (GAPSFAS) form, students may submit the GAPSFAS form in lieu of the MIT Graduate Student Need Analysis form. To do so, they must designate on the GAPSFAS form that a copy should be sent to MIT.

Information on fellowships and other financial aid resources is available from departments and the Office of the Dean of the Graduate School, Room 3-138. Information on loans and the College Work-Study Program is available from the Student Financial Aid Office, Room 5-119.

A fellowship or traineeship is an award to a graduate student which covers tuition, partially or fully, and provides, in addition, a stipend to help defray living expenses. In the context of the Graduate School, a scholarship is an award which fully or partially covers tuition only. Most awards are made on the basis of academic promise and in some instances financial need to students who are enrolled in a graduate degree program. Under Section 117 of the US Internal Revenue Code of 1954, such awards, held by degree candidates, are not usually subject to income tax.

The Institute receives funds from individual donors and corporations which provide for the support of fellowships and scholarships each year. In addition, government agencies and private foundations offer fellowships and other grants which they award either directly to outstanding students for use at institutions of their choice or, in a few cases, to MIT for award to its students. Fellowships available under these national programs are summarized in the following section.

Applications for fellowship aid for the academic year, beginning in June or September, must be filed by January 15. Applications for fellowship aid filed after this date are considered only if funds are available. Final action on applications is taken on the recommendation of departments to the Graduate School at the end of March, after the announcement of awards to applicants by the national agencies and foundations under their national competitive programs. A student who wins such a fellowship is usually eligible only for a supplementary award in accordance with MIT's guidelines. For further information on these guidelines, please see the Graduate School Manual.

In accordance with a resolution of the Council of Graduate Schools in the United States, endorsed by most graduate schools in the US, a student has until April 15 to accept or decline an offer. If a student does not reply to an offer by this date, it may be canceled.

Every student holding a fellowship, traineeship, or scholarship for graduate study at the Institute must register as a full-time regular graduate student for the period of the award. If a student withdraws from the Institute before tenure expires, the award must be relinquished, and the student will be required to refund any sum already paid as the Dean of the Graduate School deems appropriate.
Loan Funds

MIT administers the Technology Loan Fund under which financial assistance is available to graduate students. However, loan capital is limited and MIT student loans are granted only after the student has explored all sources of aid including employment opportunities and the Guaranteed Student Loan program from banks and other lending institutions. Eligibility for MIT loans is based on need as determined by the Student Financial Aid Office, and is a function of student expenses and resources (including assets). Standard budgets have been developed for single students and married students with or without dependents and are rigorously applied. Loans not covered by the Guaranteed Student Loan program require a co-signer.

Graduate students who do not possess US citizenship or a permanent resident visa are not eligible for state or Federally guaranteed loans, nor are they eligible for MIT loans during the first year of residence. Thus, students who are citizens of other countries must be prepared to meet their expenses for the first year at MIT without recourse to loans from the Institute and without expectation that in subsequent years loans may be available.

Special Students (individuals who are not admitted to a graduate degree program) may apply to MIT for loan funds, but there is no commitment to provide assistance. State Guaranteed Loans may be approved when the student is enrolled for 24 or more units.

Specific information on eligibility for loan funds is available from the Student Financial Aid Office, Room 5-119.

Teaching and Research Assistantships

MIT employs about 425 graduate students each year as part-time or full-time instructors or teaching assistants to aid the faculty in grading undergraduate quizzes, instructing in the classroom and laboratory, and conducting tutorials.

The departments regard seriously the benefits of a teaching assistantship as a preparation for a career in university teaching, and the Institute offers a prize each year — the Goodwin Medal — for conspicuously effective teaching by a graduate student.

The units for which an instructor or teaching assistant may register as a student are determined by the department in the light of the student's assistantship duties, program of study, and compensation.

Appointments to teaching assistantships are made upon recommendation of the head of a department. A student who wishes to be considered for a teaching appointment should write to the department. Only full-time graduate students who are candidates for advanced MIT degrees may be appointed.

Each year about 1,500 graduate students at MIT hold appointments as research assistants. The principal duty of a research assistant is to contribute to a program of departmental or interdepartmental research.

Most students welcome the opportunity to participate as junior colleagues of the faculty in an ongoing research project which frequently influences their choice of thesis topic. Appointments to research assistantships are made by the department head to full-time students who are candidates for advanced MIT degrees.

The units for which a research assistant may register are determined by the department in the light of duties and program of study. Research assistants are compensated on the basis of time devoted to their research. In all cases they must pay full tuition.

Students who receive financial support from other sources (fellowships, scholarships, teaching assistantships, etc.) may receive supplementary stipends as research assistants in accordance with Institute and departmental guidelines.

Other Employment Opportunities

Employment is available both on or off campus. The Student Employment Office, Room 5-119, keeps up-to-date listings of job opportunities which are open to graduate students. Some positions are available directly through the academic departments, laboratories, and administrative offices on campus.

International students may work on campus but may require special permission from the US government to work off campus. Citizens of other countries should consult the Dean for Student Affairs' international student desk before accepting employment.

Graduate Residents

Regular resident graduate students who have completed at least one graduate year at MIT or new students who have been MIT undergraduates may apply to the Dean for Student Affairs for positions as Graduate Residents. Such positions provide room and board but no stipend.
Scholarships and Fellowships for Graduate Students

National Fellowships for Graduate Study
American Association of University Women
Hertz Foundation
Mellon Fellowships in the Humanities
National Science Foundation
Office of Naval Research Fellowships

See Graduate School Office for details of these and other programs.

Aid for Foreign Study
Churchill Scholarship Program
German Academic Exchange Service (DAAD)
Institute of International Education (Fulbright)
Luce Scholars Program
Marshall Scholarships
Rhodes Scholarships

Numerous other fellowships exist for graduate and postdoctoral study abroad. For an inclusive listing of international fellowships consult the International Students' Office, Room 5-112, 253-3795. All of the above scholarships have early fall deadlines.

Aid for Study in Various Fields

The following individuals and organizations have made gifts to MIT to assist graduate students in need of financial aid. These awards are administered by the Graduate School Office or the individual departments (as indicated). Individual applications are usually not necessary.

Aeronautics and Astronautics
Donald W. Douglas
Richard C. Du Pont
Lester D. Gardner

Architecture
The Aga Khan Fellowship for Islamic Architecture
Avalon Foundation
W. Danforth Compton Memorial
William Emerson Fund
William and Frances Emerson
Edith M. Hobbs
Samuel A. Marx
Floyd Naramore Architectural Memorial Fund
William B. Perkins
Arthur Roth

Chemical Engineering
Amoco Foundation
Atlantic Richfield Foundation
Chevron (Standard Oil Company of California)
Dow Chemical Company Foundation
Exxon Teaching Fellowships
Edwin G. Gilliland
W. R. Grace and Company
Halcon International, Inc.
Arthur D. Little
Nestle-Western Company
Pfizer, Inc.
Polaroid Foundation, Inc.
Shell Companies Foundation

Chemistry
Lewis Paul Chapin
Dow Chemical Company
Eastman Kodak Company
Halcon International, Inc.
Arthur D. Little
Forris Jewett Moore Memorial
James Flack Norris
Polaroid Foundation, Inc.
Unireal Foundation

Civil Engineering
Exxon Teaching Fellowships

Earth, Atmospheric, and Planetary Sciences
Amoco Foundation Doctoral Fellowship
Chevron (Standard Oil Company of California)
Exxon Teaching Fellowships
Phillips Fellowship (Phillips Petroleum Company)
Shell Doctoral Fellowship

Economics
Clarence J. Hicks Memorial
Graduate Economics Alumni Fellowship

Electrical Engineering and Computer Science
Amoco Foundation
Analog Devices, Inc.
Burroughs Corporation
Cronin Fund
Digital Equipment Corporation
General Electric Foundation
Grass Instrument Company
GTE Foundation
IBM Corporation
RCA Corporation
Sanders Associates, Inc.
Schlumberger-Doll Research
Schlumberger Foundation
Vinton-Hayes Fellowships in Communication

Management
Sloan School of Management — A number of fellowships and scholarships for students seeking the doctoral degree.
Council for Opportunity in Graduate Management
Exxon Education Foundation Fellowship
Johnson & Johnson Leadership Awards

Materials Science and Engineering
Allegheny-Ludlum Industries, Inc.
American Metal Climax Foundation
ASARCO Foundation
Cato Foundation
International Nickel Company, Inc.
Prizes and Awards

Mechanical Engineering
Allied Chemical Corporation Fellowship
Exxon Teaching Fellowships
General Electric Foundation
MTS Systems Corporation
Weyerhauser Company Foundation Fellowship

Nuclear Engineering
Manson Benedict Fellowship
Sherman R. Knapp Fellowship in Nuclear Power Engineering
Theos J. Thompson Memorial Fellowship

Nutrition and Food Science
Bernard E. Proctor Memorial

Ocean Engineering
American Society of Naval Engineers
Society of Naval Architects and Marine Engineers

Physics
Karl Taylor Compton Fellowships

Urban Studies and Planning
William Emerson Fund
Alan M. Voorhees
Frederick J. Adams
Charles Abrams
Avalon Foundation

To encourage and recognize high achievement by students at MIT, a number of prizes have been established by individuals and organizations. In general, these awards are made each year by the Office of the Dean for Student Affairs, the Dean of the Graduate School, or by the departments or organizations concerned.

American Institute of Chemists Award (1957)
Avery Allen Ashdown Award
Karl Taylor Compton Prizes (1951)
The Goodwin Medal
The Edward L. Horton Fellowship Award
Military Prizes
Scott Paper Foundation Leadership Award
Irwin Sizer Award
William L. Stewart, Jr., Awards (1964)
Stratton Prizes (1930)
The Laya and Jerome B. Wiesner Awards (1979)

Architecture
Alpha Rho Chi Medal (1932)
Student Certificate of the American Institute of Architects (1914)
Student Medal of the American Institute of Architects (1914)

Chemical Engineering
Chemical Engineering Special Service Award
Rosemary J. Wojtowicz Memorial Prize in Chemical Engineering Practice

Civil Engineering
Tucker-Voss Award (1953)
Richard Lee Russel Prize (1967)
The Steinberg Prize (1977)

Earth, Atmospheric, and Planetary Sciences
Christopher Goetz Memorial Prize
The Carl-Gustav Rossby Award in Meteorology

Electrical Engineering and Computer Science
Carlton E. Tucker Award for Excellence in Teaching
Harold L. Hazen Award for Excellence in Teaching
Frederick C. Hennie III Award for Excellence in Teaching

Management
Allied Fellowship
E. Pennell Brooks Prize
Digital Equipment Corporation Scholarships
Henry B. duPont Scholarship
Editorships of the Sloan Management Review
Henry Ford II Scholarship
Thomas M. Hill Prize
Alexander Proudfoot Fellowships
Selley Scholarships
Zenon S. and Clotide Zannetos Sloan Ph.D. Thesis Prize

Materials Science and Engineering
American Metal Climax Foundation Prize (1969)
Falih N. Darmo Materials Achievement Award
Foundry Educational Foundation Scholarship
John Wulff Award for Excellence in Teaching

Mechanical Engineering
Luis de Florez Awards (1957)
Silent Hoist and Crane Company Materials Handling Award (1956)

Nuclear Engineering
Roy Axford Award (for Outstanding Senior)
Irving Kaplan Award (for Outstanding Junior)

Ocean Engineering
Society of Naval Architects and Marine Engineers Award

Technology and Policy Program
Alumni Award for Excellence and Leadership
Alumni Prize for Best Thesis
Interdepartmental Study and Research
Interdepartmental Study and Research

Advances in knowledge and concern with the functioning of modern society have led researchers to become interested in complex problems that can no longer be adequately dealt with from the vantage point of a single academic department. There is thus an increasing tendency at MIT for faculty and students from different fields to work together in a variety of groups, laboratories, centers, and programs that cut across departmental or School lines. Some of these opportunities lead to degrees or form the basis for a "minor" program; many can be explored through the various interdepartmental organizations and research facilities available at MIT.

These interdepartmental educational opportunities and research facilities are listed here and described in detail in this chapter. The specific opportunities available for undergraduate and graduate students in each of these areas are outlined within the description of the program or facility.

Some of the interdepartmental programs and research facilities provide opportunities for undergraduates to engage in research or study as part of a departmental major, and some provide a way to broaden a student's educational experience. Undergraduates enrolled in a variety of departments may find valuable possibilities for thesis work and participation in the Undergraduate Research Opportunities Program (UROP).

Most of the Institute's major interdepartmental organizations and research facilities listed in this chapter offer graduate students opportunities for interdepartmental research, including thesis topics (and often research assistantships). Some of the interdepartmental educational programs have been formally approved for graduate students by the Committee on Graduate School Policy. An interested student must be admitted by one of the regular academic departments in order to participate in an interdepartmental program (except in Operations Research). Each of these programs has a standing faculty committee which administers the program, but degrees in the field of study are granted by the student's department of registration. The descriptions of these programs indicate in the title the advanced degree(s) which are offered: e.g., (S.M.), (Ph.D.). Other study or research opportunities may be fields of study which lead to advanced degrees, either as part of departmental degree programs or as interdepartmental programs administered on a more ad hoc basis.

The opportunities for interdepartmental study and research at MIT include:

- Acoustics
- Archaeology and Ancient Technology (see Center for Materials Research in Archaeology and Ethnology)
- Artificial Intelligence Laboratory
- Arts and Media Technology
- Astronomy and Astrophysics
- Bates Linear Accelerator (see Laboratory for Nuclear Science)
- Biomedical Engineering
- Bitter National Magnet Laboratory
- Cell Culture Center
- Center for Advanced Engineering Study
- Center for Advanced Visual Studies
- Center for Cancer Research
- Center for Cognitive Science
- Center for Computational Research in Economics and Management Science
- Center for Health Effects of Fossil Fuels Utilization
- Center for Information Systems Research
- Center for International Studies
- Center for Materials Research in Archaeology and Ethnology
- Center for Materials Science and Engineering
- Center for Policy Alternatives
- Center for Real Estate Development
- Center for Space Research
- Center for Transportation Studies
- Clinical Research Center
- Cognitive Science Programs (see Center for Cognitive Science)
- Communications Policy Program
- Concourse Program for First-Year Students
- Draper Laboratory
- Economics and Urban Studies
- Energy Laboratory
- Energy Study and Research
- Environmental Studies
- ESG (Experimental Study Group)
- Health Sciences and Technology
- Humanistic Studies Combined with Engineering or Science (S.B. Degree Programs)
- Innovation Center
- Integrated Studies Program
- Interdisciplinary Programs in Humanities
- Interdisciplinary Research Opportunities for Undergraduates (see UROP)
- International Food and Nutrition Program
- Laboratory for Computer Science
- Laboratory for Electromagnetic and Electronic Systems
- Laboratory for Information and Decision Systems
- Laboratory for Manufacturing and Productivity
- Laboratory for Nuclear Science
- Laboratory of Architecture and Planning
- Law-Related Studies
- Lincoln Laboratory
- Management of Technology Program
- Materials Processing Center

Mineral Resources Engineering and Management
Mining and Mineral Resources Research Institute
Nuclear Reactor Laboratory
Oceanography and Oceanographic Engineering
Operations Research Center
Operations Research
Plasma Fusion Center
Polymeric Materials
Power Engineering
Real Estate Development (see Center for Real Estate Development)
Research Laboratory of Electronics
Science, Technology, and Society
Sea Grant College Program
Spectroscopy Laboratory
Statistics Center
Technology Adaptation Program
Technology and Policy
Transportation (see Center for Transportation Studies)
Undergraduate Research Opportunities Program (UROP)
Undergraduate Seminars
Unspecified S.B. Degree Programs for Interdisciplinary Study
Wallace Astrophysical Observatory (see Astronomy and Astrophysics)
Wallace Geophysical Observatory
Women's Studies
Acoustics

Acoustical study and research are carried out within the Departments of Mechanical Engineering, Ocean Engineering, Electrical Engineering and Computer Science, Aeronautics, and Architecture.

Acoustical work generally supports the principal activities within the departments, such as in communications, machine design, propulsion and guidance, and structural design. Subjects in acoustics have few prerequisites and can be readily taken by students from any department. Undergraduates should be able to take several acoustics courses from the offerings of various departments. At the graduate level, it is possible to set up more specialized interdepartmental programs of study and research in acoustics. The unspecified master's degree in engineering allows one to specialize in acoustics. Another possibility is to enter the doctoral program of one of the departments and to establish a special faculty committee with representatives of the appropriate departments for the program. The degree received may be departmental or designate a specialty in acoustics.

Acoustics subjects fall generally within three categories. The first consists of basic subjects at both undergraduate and graduate levels. These subjects are taught within the Departments of Electrical Engineering and Computer Science, Mechanical Engineering, and Architecture. A second group of subjects supports the various research activities in acoustics. These include subjects in speech communication, neural physiology and perception of sound, vibration and wave propagation, aerodynamic noise, and medical ultrasonics. A third set of subjects is in "professional practice," and includes noise control, architectural acoustics, and sonar applications. A complete listing of the various acoustics subjects is contained in the brochure Acoustics at MIT.

Students wishing further information should contact Professor Richard H. Lyon, Department of Mechanical Engineering, Room 3-366, MIT, Cambridge, Massachusetts 02139, (617) 253-2214.

Artificial Intelligence Laboratory

The primary goal of the Artificial Intelligence Laboratory is to understand how computers can be made to exhibit intelligence. Two corollary goals are to make computers more useful and to understand certain aspects of human intelligence. Current research includes work on robotics, English-language understanding, learning and automatic debugging, commonsense reasoning, engineering problem solving, manufacturing productivity, computer architecture, and human development.

Graduate students typically are enrolled in the Departments of Electrical Engineering and Computer Science, Mechanical Engineering, Psychology, Mathematics, or Linguistics and Philosophy. Undergraduates get involved through UROP projects.

Robotics. This area includes studies in vision, tactile sensing, manipulation, and the intelligent connection of perception with action. Central problems are the formulation of representations and the exploitation of natural constraints.

Design and Analysis Systems. Engineers design, analyze, debug, and explain complex engineered systems using reasoning that is relatively deep. Understanding this reasoning requires the ability to deal with such notions as causality and the interaction of constraints. Applications apply particularly to very large-scale integrated circuit design and programming.

Learning and Natural Language. Recent work has concentrated on theories explaining how new situations can be analyzed in terms of remembered case studies and on ideas that enable the rules of natural language syntax to be inferred from examples. Applications include information retrieval and intelligent support systems, both oriented toward supplying decision makers with usable computer expertise.

Computing Concepts. Sophisticated ideas for programming languages and computer architectures are a major research theme. Current work focuses on a connection memory machine with a million processors and on scalable, message-oriented models of computation.

Further information is available from Professor Patrick H. Winston, Director, Artificial Intelligence Laboratory, Room NE 43-816, MIT, Cambridge, Massachusetts 02139, (617) 253-6216.

Arts and Media Technology

A new Arts and Media Technology facility under construction at MIT will be completed in 1984. The facility will house exhibition galleries and a new Institute Interdisciplinary Laboratory, called the Media Lab, and will include research and educational activities in media arts and sciences. The academic program associated with the building is emerging from a new Ph.D. program in Media Technology, as well as a redefined Master of Science in Visual Studies (S.M.Vis.S.) degree program. Both degrees will include interdisciplinary alliances with related MIT activities, particularly: computer science, electronic music, and learning research. A description of the present S.M.Vis.S. program may be found under the School of Architecture and Planning in Chapter VI.

Astronomy and Astrophysics

Observatories and Facilities

Teaching and research in astronomy and astrophysics at MIT are truly interdepartmental, involving more than 25 faculty members of the Departments of Physics; Earth, Atmospheric, and Planetary Sciences; Earth, Atmospheric, and Planetary Sciences; Mathematics; Electrical Engineering and Computer Science; and Chemistry. The subjects offered and the opportunities for graduate and undergraduate research cover a correspondingly broad spectrum.

The observational programs emphasize the application of modern technology to the study of objects as diverse as the rings of planets and clusters of galaxies. For example, radio telescopes, as single dishes or transcontinental interferometer arrays, are used to determine the structure of radio galaxies and to analyze the formation of complex molecules in interstellar space. X-ray satellites are used to measure the temperature and composition of intergalactic matter and to study the properties of thermonuclear explosions on neutron stars. Plasma detectors on deep space probes are used to explore the properties of the interplanetary medium and the magnetospheres of the planets out to Neptune. Radar scanners are used from Earth and from planetary orbiting spacecraft to map the topography of Venus. Two-dimensional CCD arrays are used for image analysis on optical telescopes. Looking toward the future possibility of gravitational wave astronomy, instruments for the detection of gravitational radiation are now under development.

Some of the theoretical research is related directly to observational programs as in the study of planetary ring systems, the interpretation of interplanetary plasma measurements, and the evolution of X-ray binaries. Other efforts are devoted to understanding the general circulation of planetary atmospheres, the dynamics of both isolated and interacting galaxies, and problems of relativistic and high-energy astrophysics ranging from the origin of the universe in the Big Bang to the formation of galaxies, the mechanisms of supernovae, and the origins of cosmic rays.
The George R. Wallace, Jr., Astrophysical Observatory is a versatile facility for research and teaching in optical astronomy, and directly supports the growing student and faculty interest at MIT in astronomy and related sciences. The Observatory, located in nearby Westford, Massachusetts, has two optical telescopes of 16- and 24-inch diameter with unique electronic instrumentation. The telescopes are used in formal instruction, for student research projects, and as testbeds for instrumentation to be used with larger instruments. Further information on the Wallace Observatory may be obtained by contacting Professor James L. Elliot, Department of Earth, Atmospheric, and Planetary Sciences, Room 54-422, MIT, Cambridge, Massachusetts 02139, (317) 253-7556 or 253-6306.

The Haystack Radio Observatory provides opportunities for undergraduate and graduate student research, both for spectroscopy of the interstellar medium and for very-long-baseline interferometry. The Haystack Observatory is also located in Westford.

The McGraw-Hill Observatory at Kitt Peak in Arizona is operated jointly by MIT, the University of Michigan, and Dartmouth College. It has two telescopes of 52-inch and 95-inch diameter, both with modern instrumentation.

Experimental programs with student participation involve instruments launched in rockets, satellites, and interplanetary spacecraft. In addition, MIT students and staff observe at other installations such as the National Radio Astronomy Observatory in West Virginia and the National Astronomy and Ionospheric Observatory in Arecibo, Puerto Rico, and they use the telescopes of both the Kitt Peak National Observatory and the Cerro-Tololo Inter-American Observatory in Chile.

Astronomy and astrophysics subjects, which are offered at the undergraduate and graduate levels, are primarily given by the Departments of Physics and Earth, Atmospheric, and Planetary Sciences. Further information, including a complete list of astronomy and astrophysics subjects, may be obtained by contacting Professor George Clark, Room 37-611, MIT, Cambridge, Massachusetts 02139, (617) 253-5842.

Biomedical Engineering

There are many graduate degree opportunities (S.C.D., Ph.D.) in biomedical engineering at MIT, and students and faculty in many departments are conducting research in this area. These research interests, spanning the life sciences, physics, and engineering, have led to the development of programs of graduate study for students wishing to pursue careers in these rapidly evolving fields. Each of these programs has evolved out of the interests and professional specialties of the participating faculty. Many are based primarily in the academic departments of the School of Engineering and, therefore, are available to students as regular departmental activities. Virtually all of the engineering studies are in collaboration with life scientists, many of whom are members of medical faculties and affiliated with teaching hospitals in the Boston area.

There are currently four graduate programs in biomedical engineering available to graduate students at MIT. These are: 1) departmental programs in the School of Engineering; 2) MIT Interdepartmental Doctoral Program in Biomedical Engineering; 3) Harvard-MIT Division of Health Sciences and Technology Doctoral Program in Medical Engineering and Medical Physics; and 4) combined M.D.-Ph.D. programs in the Harvard-MIT Division of Health Sciences and Technology.

The choice among the first three of these programs depends on the desired breadth of exposure to the medical and life sciences and the career goals of the student, particularly with respect to the clinical aspects of biomedical engineering.

1) A student who is primarily attracted by a basic engineering discipline which is applicable to biological problems and who intends to pursue a professional engineering career which may lie outside the field of biomedical engineering is advised to apply for the departmental program. A background in mathematics and the physical sciences is a necessary prerequisite for graduate study in the School of Engineering departmental biomedical engineering programs; preparation in the biological sciences though desirable, is not required.

Further information on departmental programs in the School of Engineering may be obtained from the graduate registration officer of the appropriate department. Active biomedical research is pursued in the Departments of Aeronautics and Astronautics, Chemical Engineering, Electrical Engineering and Computer Science, Materials Science and Engineering, Mechanical Engineering, and Nuclear Engineering.

2) A student who wishes a broader exposure to the life sciences as preparation for a career in the application of engineering and physics to a wide range of living systems is advised to apply for the Interdepartmental Doctoral Program in Biomedical Engineering, administered by the MIT Committee on Biomedical Engineering. The program is aimed at developing biomedical engineers who can function well in both the fields of engineering and life sciences, as, for example, biomedical engineers concerned with control systems and with instrumentation for aerospace medicine; biomaterials scientists interested in developing materials for artificial organs and prosthetic devices; experts in fluid flow who are seeking a deeper understanding of how the cardiovascular system functions; and systems engineers interested in designing automated laboratories, model emergency rooms, operating rooms, and patient facilities. Graduate students from any department who possess or are completing an engineering master's degree may apply for admission. Students should normally apply for admission to the MIT engineering department most closely related to the field of their undergraduate major, and should contact the MIT Committee on Biomedical Engineering offices, Room 37-219, MIT, Cambridge, Massachusetts 02139. A guide to Biomedical Engineering and Physics at MIT and Harvard describes both educational programs and research activities. Copies are available from Professor L. R. Young, Room 37-207, MIT, Cambridge, Massachusetts 02139, (617) 253-7805.

3) A student who wishes intensive exposure to the medical sciences as preparation for a career of research on important clinical programs is advised to apply for the HST Doctoral Program in Medical Engineering and Medical Physics. Further information may be obtained from the Admissions Office of the Harvard-MIT Division of Health Sciences and Technology, Room E25-513B.

4) The biomedical sciences curriculum of the Harvard-MIT Division of Health Sciences and Technology leads to the M.D. at Harvard Medical School and may be combined with studies leading to the S.M. or the Ph.D. in one of the MIT departments. Students interested in such combined degree programs must apply independently to the department of interest and to Harvard Medical School. Further information may be obtained from Professor E. Cravalho, Room E25-335, MIT, Cambridge, Massachusetts 02139, (617) 253-1414.

Biomedical engineering is also of increasing interest to undergraduate students at MIT. Investigations on such varied topics as biomaterials, biological control systems, and mecha-
nisms of sensory perception, to name only a few, involve faculty and students from most of the engineering departments. Much of this research is carried out in interdepartmental laboratories in collaboration with workers from medical centers in the Boston area. Undergraduates wishing to explore this developing area have ample opportunity within their regular departmental major through elective subjects, special laboratory projects, and the senior thesis. These studies should be of special interest to students who are enrolled in a premedical curriculum. The Committee on Biomedical Engineering serves as an advisory body which can assist students in setting up interdepartmental programs. Further information may be obtained from Professor L. R. Young, Room 37-207, MIT, Cambridge, Massachusetts 02139, (617) 253-7805.

Bitter National Magnet Laboratory

The Francis Bitter National Magnet Laboratory, supported by the National Science Foundation, conducts a program of research and development in science and engineering in areas involving magnetic fields.

Continuous fields up to 30 tesla are available in a variety of configurations. High magnetic field and high resolution nuclear magnetic resonance spectrometers are used for studies of molecules of biological interest. Both the high field magnets and the nuclear magnetic resonance spectrometers are made available on a routine basis to research groups from other MIT departments and from institutions throughout the world. In addition, the Laboratory operates pulsed magnets giving fields up to 45 tesla and a magnetically shielded room of walk-in size.

The Laboratory’s solid-state physics research program is an experimental and theoretical study of semiconductors, magnetic materials, and superconductors. Molecular biology studies are carried out using high resolution nuclear magnetic resonance spectrometry and the Mössbauer effect.

The Laboratory also conducts research and development programs aimed at the practical application of magnetic fields to technology and medicine. Current projects include studies of the weak magnetic fields of the human body and the effects of magnetic fields on living systems, studies of magnetic separation techniques, and development of nuclear magnetic resonance imaging systems.

Collaborative programs are carried out with the Departments of Electrical Engineering and Computer Science, Mechanical Engineering, Nuclear Engineering, Materials Science and Engineering, Chemistry, and with the Plasma Fusion Center. These collaborative programs include participation by undergraduate and graduate students working on theses. Undergraduate students in the UROP program and others are also employed.

Additional information may be obtained from the Director of the Laboratory, Professor Peter Wolff, Building NW14-3220, MIT, Cambridge, Massachusetts 02139, (617) 253-5476.

Cell Culture Center

The Cell Culture Center was established and funded by the National Science Foundation to serve as a facility and resource for cell biologists throughout the United States. Its mission is to carry out large-scale cell and virus production that will allow scientists to conduct novel and important experiments in basic cell biology which could not be carried out with the materials and resources available in the investigator’s own laboratory. The Center works directly with individual scientists on basic research problems, and carries out an active program for the development of new techniques for large-scale cell and virus production. A limited number of graduate and undergraduate students can participate through the Departments of Biology or Nutrition and Food Science in studies carried out in the Center involving large-scale animal cell production. Recently a Cell Sorter Laboratory was added which provides instrumentation to analyze various light scatter properties and any compatible fluorescent label on a rapid, single-cell basis, providing statistical quantitation of each desired parameter on a given suspended cell population. The laboratory is equipped with Ortho Diagnostic Instrumentation and an on-line computer system for data acquisition, storage, and analysis.

Further inquiries may be addressed to the Office of the Director, Dr. Donald J. Giard, Room E17-321, MIT, Cambridge, Massachusetts 02139, (617) 253-6430.

Center for Advanced Engineering Study

The primary objective of CAES is to improve the capabilities and effectiveness of practicing engineers. Emphasis is given to technical and managerial-technical subjects which are application-oriented. The Center identifies problems which are of great national or professional importance and offers instruction and assistance to the profession in solving them. Through research and improved methods of continuing education, the Center provides a number of ways for participants to acquire the knowledge and skills needed to resolve these problems.

The Center offers the following programs, which include both on-campus and off-campus activities:

1) The Advanced Study Programs enable engineers, scientists, and technical managers to come to MIT for one or more terms to work in depth, and to strengthen their base, in technological areas pertinent to their professions.

2) The Visiting Engineers Program enables outstanding experienced research engineers to spend an academic year or longer at MIT pursuing research in close collaboration with one or more MIT faculty members.

3) Through the Video Course Development Program, CAES has developed more than 1,000 video tapes, video course manuals, and textbooks in engineering, science, mathematics, and management. These video-based courses are designed to meet the individual needs of engineers, scientists, and technical managers working in the field.

4) The Seminar Office supports a variety of nonaccredited continuing education programs — workshops, seminars, short courses, and conferences. Emphasis is on technical and management applications in science and engineering, reflecting trends in the marketplace and their relationship to technology development. Individual programs vary in length, lasting from one day to one month, and may be held at MIT or other locations around the country and overseas.

5) This year the Center’s program of research and development in continuing education shifted its emphasis from energy conservation to the problems associated with commercial competitiveness in international markets. One of the keys to increased strength in this area
Interdepartmental Study and Research

is increased quality and productivity. Based upon studies at the Center, a new subject, Managing Systems of People and Machines for Quality and Productivity, is being offered in the School of Engineering. Influencing undergraduate and graduate education is an important by-product of the Center's research and development program.

For more information on the above programs and current offerings, contact Myron Tribus or John Newcomb, Center for Advanced Engineering Study, Room 9-221, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, (617) 253-7400.

Center for Advanced Visual Studies

The Center for Advanced Visual Studies provides artists of achievement with the opportunity to explore new artistic forms. Collaboration through a working dialogue between artists, scientists, and engineers is of primary importance in the exploration of new creative objectives. Mutually beneficial contact between artist and scientist allows the artist to develop the technical competence to utilize advanced technology.

A limited amount of work space also is available for a small number of research affiliates and graduate students. Undergraduates may participate in the Center through UROP.

A catalogue listing the Center's educational offerings, in association with the Department of Architecture, is available in the Office of the Director, Professor Otto Piene, Building W11, 40 Massachusetts Avenue, MIT, Cambridge, Massachusetts 02139, (617) 253-4415.

Center for Cancer Research

The Center for Cancer Research provides facilities for interdepartmental work in various phases of fundamental cancer research. The Center's faculty are drawn from the Department of Biology. Graduate students in any of the MIT departments may ask to do doctoral thesis research under the supervision of the faculty of the Center. If accepted, they may be eligible for support as research assistants in the Center. Opportunities for undergraduate research are available through the UROP program. Seminars in cancer research both for credit and as public colloquia of the Center are available. Further information may be obtained by contacting the Office of the Director, Professor Salvador Luria, Room E17-110, MIT, Cambridge, Massachusetts 02139, (617) 253-6400.

Center for Cognitive Science

Cognitive Science Programs

The Center for Cognitive Science provides an intellectual and administrative focus for individual and collaborative research in cognitive science at MIT. In addition, a committee of the Center disseminates information about graduate and undergraduate study in cognitive science.

Members of the Center represent the Departments of Electrical Engineering and Computer Science, Linguistics and Philosophy, and Psychology (which offer subjects appropriate for training in cognitive science), as well as the Artificial Intelligence Laboratory and the Research Laboratory of Electronics.

A number of cooperative activities involving members of the Center and scientists at other institutions with programs in cognitive science are planned or in progress, and the members of the Center maintain active relations with scientists working at other academic, medical, and research institutions in the Boston area.

The Center administers an extensive program of postdoctoral fellowships designed to attract outstanding young scholars to MIT for an extended interaction with members of the Center. The Center also coordinates a number of research projects in the areas of cognitive science pursued by visiting and permanent members of the Center. Computer-based laboratory and research facilities are maintained within the Center to support the conduct of such research.

A Cognitive Science Seminar and series of colloquia serve to disseminate scientific information and provide for the mutual exchange of students and workers in the field.

Further information may be obtained from the Office of the Director, Professor S. J. Keyser, Room 20D-213, MIT, Cambridge, Massachusetts 02139, (617) 253-4143.

The understanding of computer science is described under the Department of Psychology in Chapter VI of this catalogue.

At the undergraduate level, no formal interdisciplinary degree program is offered at present. Graduate students who wish to have information or guidance about available resources across departments should consult the chairman of the Committee on Graduate Studies in the Cognitive Sciences, Professor Samuel J. Keyser, Room 20D-213, MIT, Cambridge, Massachusetts 02139, (617) 253-4141.

Center for Computational Research in Economics and Management Science

This Center's purpose is to advance knowledge about modeling in economics, statistics, and management. This is accomplished through algorithmic research and related software development, performed by researchers representing the varied quantitative disciplines that underlie modern computer-intensive modeling. These disciplines include econometrics, statistics, numerical analysis, and operations research. Computer implementation is performed using interactive tools, of which the single most important is a comprehensive software environment called TROLL. TROLL contains programming tools and standard functions that facilitate the rapid implementation of experimental algorithms and also provides a modeling environment for applied studies. The system provides all standard techniques, and many experimental ones, for building and using econometric models.

Recent research at the Center has focused on the evaluation and improvement of model reliability, simultaneous equation estimation, nonlinear optimization, robust estimation, ARIMA time series models, and the use of artificial intelligence concepts in statistical or econometric model building.

The Center's research complements activities in several MIT departments and laboratories. The links include active participation in Center projects by faculty members of the Sloan School of Management; collaboration with the Statistics Center and the Energy Laboratory, the Laboratory for Decision and Information Systems, and the Operations Research Center on projects of mutual interest; and use of Center-developed software by the Departments of Economics, Political Science, and Civil Engineering.

Several graduate students work as research assistants at the Center, and undergraduates participate in UROP projects. Students sometimes use the Center's resources in doing theses.

Further information may be obtained from the Director, Professor Edwin Kuh, Room E40-149, MIT, Cambridge, Massachusetts 02139, (617) 253-8413.
Center for Health Effects of Fossil Fuels Utilization

The Center for Health Effects of Fossil Fuels Utilization was established through the collaborative efforts of combustion scientists and engineers, toxicologists, and analytical chemists in the Departments of Chemical Engineering, Nutrition and Food Science, and Chemistry. The Center is funded by the National Institute of Environmental Health Sciences. Its associated research programs are funded by NIEHS, the US Department of Energy, and other governmental agencies. These research programs have provided challenging interdisciplinary problems for graduate and undergraduate students. Of particular importance is the emphasis on providing information sufficient to guide engineering design for combustion systems with lower levels of biologically active emissions.

The primary mode of research involves analytical chemists working with combustion engineers to measure and identify the chemical components from experimental and practical combustion systems. Toxicologists first evaluate the biological activity of the raw exhausts by measuring their mutagenic potency in bacteria and human cells. The combination of analytical chemistry and toxicology is then used to identify the specific compounds in the exhausts which are responsible for the biological activity. A second area of research is the study of the effects of gaseous and particulate combustion effluents on respiratory physiology. A third area is the development of means to measure the presence and biological effects of combustion-generated chemicals directly in humans.

The findings of studies in all three areas have stimulated primary research efforts in understanding both the mechanisms of compound formation and the mechanisms of activity in inducing cancer and genetic change.

The Director of the Center is Professor G-W. Wogan, Professor of Toxicology and Head of the Department of Nutrition and Food Science. Further information may be obtained from Professor William G. Thilly, Associate Director and Professor of Genetic Toxicology, Room E18-866, MIT, Cambridge, Massachusetts, 02139, (617) 253-6221, or from the Center Office, Room 2A-104, 253-8800.

Center for Information Systems Research

The Center for Information Systems Research (CISR) was established at the Sloan School of Management in 1974. CISR's activities focus on research aimed at improving the effectiveness of information-processing tools and techniques available to managers in the private sector and policymakers in the public sector. There is a recognized need to institute more effective relationships between academics and private and public sector managers in a joint effort to improve computer-based information systems.

Research at CISR is pragmatic, problem-based, and application-driven. Research efforts are performed primarily in application areas of immediate interest to managers and policymakers. A set of corporate sponsors provides both funding and assistance in defining and investigating significant research areas. Research on fundamental issues affecting both the public and private sectors is being performed in such areas as: 1) decision support systems, 2) the information needs of managers, 3) technology, and 4) the management of the information systems function. CISR disseminates significant research findings to the information systems user community through teaching, seminars, working papers, and publications.

The background of CISR's faculty ranges from computer science and electrical engineering to law, psychology, and organizational behavior. Each year, a number of master's degree graduate students in management information systems perform their thesis work and course projects in conjunction with ongoing CISR research. In addition, Ph.D. and master's students are often involved in CISR projects as research assistants.

Further information about the Center may be obtained by contacting the Office of the Director, Dr. John F. Rockart, Room E40-193, Sloan School of Management, MIT, Cambridge, Massachusetts 02139, (617) 253-2348.

Center for International Studies

The Center for International Studies engages in research on the international dimension of contemporary policy questions, particularly those related to scientific and technological change. The Center has no formal teaching programs of its own, but most of its senior staff are faculty members of various MIT departments, and there are opportunities for graduate students to participate in the Center's research programs. The following are the areas of current research:

- science and public policy
- arms control and defense studies
- US-Japan science and technology
- energy policy
- risk management
- communications policy
- migration and development
- international effects of regulatory policies
- technology and development
- food and nutrition
- environmental issues
- problems of advanced industrial societies
- US-China science and technology
- international political problems and conflict
- political and economic development

Further information may be obtained from the Director, Professor Eugene B. Skolnikoff, Room E38-648, MIT, Cambridge, Massachusetts 02139, (617) 253-3140.

Center for Materials Research in Archaeology and Ethnology

Archaeology and Ancient Technology Program

The Center for Materials Research in Archaeology and Ethnology (CMRAE) encourages new directions for research in anthropology, archaeology, art history, and related humanistic and social science disciplines by providing them with an expanded technical base in the sciences of organic and inorganic materials. The Center was established in 1977 and includes eight institutions in the greater Boston area: Boston University, Brandeis University, Harvard University, the University of Massachusetts, MIT, the Museum of Fine Arts of Boston, Robert S. Peabody Foundation for Archaeology, Tufts University, and Wellesley College. MIT serves as the Center's coordinating institution.

The Center's research activities are carried out in a network of shared laboratories at member institutions, which are used by students and faculty of those institutions as well as by visiting scholars and graduate students who join the Center for shorter periods. The materials research laboratories include, among others, metallurgy, ceramics, lithics, archaeobotany, and zooarchaeology. The research program of the Center emphasizes rigorous laboratory study of artifacts and other kinds of cultural remains in order to determine their nature and structure of the materials of which they are composed and the extraction and processing regimes they have undergone.
The Center offers graduate-level subjects in the CMRAE Graduate Laboratory (208-B). These are open to graduate students and senior undergraduates from all participating institutions. Each subject is heavily laboratory oriented, runs for a full year, and covers a single class of materials (e.g., ceramics or metals), or a method for interpreting archaeological data (e.g., computers in archaeology).

The Center runs a Summer Institute, which offers a one-month, intensive laboratory course open to graduate students and scholars from institutions throughout the United States and abroad.

Further information about the Center may be obtained from the Director, Professor Heather Lechtman, Anthropology/Archaeology Program and Department of Materials Science and Engineering, Room 8-138, MIT, Cambridge, Massachusetts 02139, (617) 253-1375.

MIT also offers an undergraduate program in Archaeology and Ancient Technology. Through a combination of archaeological fieldwork, laboratory studies, and subjects, this program attempts to improve the understanding of how pre-modern people adapted their material environment to their needs. We also study how cultures, interacting with materials, produced technological systems which, in turn, helped to shape the cultures themselves. This area of study combines the scientific examination and experiments of the materials laboratory, the scientific excavation of archaeological sites, the aesthetic feel of the technology and appreciation of its products, and the historical and anthropological study of the contexts of the technologies in specific places and times. The subjects, given in the Anthropology/Archaeology Program and in the Department of Materials Science and Engineering, focus on different ancient societies and different ancient technologies, and on the ethnographic record of the use of materials and techniques in the production of art and material culture in general.

The specific projects currently under study in the Laboratory for Research on Archaeological Materials and in the field include examination of pre-Columbian metalworking in the Andes and in Mesoamerica, a study of ceramic production in the American Southwest and in Japan, an investigation of the change from tempera to oil medium in painting of the Italian Renaissance, and a reconstruction of the agricultural system developed by the ancient Maya. Interested students should contact Professor Heather Lechtman, Room 16-401, MIT, Cambridge, Massachusetts 02139, (617) 253-2172; Professor Arthur Steinberg, Room 208-B131C, 253-6956; Professor Suzanne DeAtley, Room 20D-105, 253-6955; or Dr. Frederick Wiseman, Room 208-B131B, 253-6973.

Center for Materials Science and Engineering

Major research programs currently supported by the Center emphasize interdisciplinary research on the synthesis and properties of materials in the following areas of thrust: 1) flow and fracture in high temperature alloys; 2) structure and properties of microcrystalline and glassy alloys produced by rapid solidification; 3) catalytic activity and surface structure; 4) defects in solids; 5) phase transitions; 6) deformation and fracture in polymer composites; 7) materials research using synchrotron radiation. Major funding for these interdisciplinary programs is provided under the National Science Foundation Materials Research Laboratories Program.

Participating in CMSE-funded programs are faculty groups from the Departments of Chemical Engineering, Chemistry, Electrical Engineering and Computer Science, Materials Science and Engineering, Mechanical Engineering, and Physics. Graduate and undergraduate students participate actively in all aspects of the CMSE research program. Actual appointments are handled by the academic departments.

CMSE maintains excellent modern central service facilities such as crystal growth and characterization laboratories; spectroscopic facilities; scanning, transmission, and scanning-transmission electron microscopy; analytical compositional analysis; X-ray diffraction; microelectronics fabrication and characterization; an ion implanter; and Scanning Auger, ESCA, and I EED analysis available in the Surface Analytical facility. Also available are the Von Hippel Reading Room and a student machine shop. Annual CMSE reports entitled Research in Materials at MIT and Polymer Research at MIT cover research in these areas and are available through the Center by contacting the Administrative Office, Room 13-2098, MIT, Cambridge, Massachusetts 02139, (617) 253-6841. Further information may be obtained from the Office of the Director, Room 13-2090, MIT, Cambridge, Massachusetts 02139.

Center for Policy Alternatives

The Center for Policy Alternatives (CPA) was established in 1972 within the School of Engineering to meet the growing need for interdisciplinary policy analysis. CPA's objectives are to identify and study important emerging social issues in which technology and engineering play a significant role, to assess the consequences of established institutional policies and develop alternative actions for decision makers, and to provide students and professionals with research and training opportunities in policy formulation and analysis.

CPA's studies have been commissioned by and directed to a variety of institutions in the US and abroad including government, industry, labor, and educational institutions that are addressing complex socio-technical problems. Many CPA studies are international in scope and have either used a comparative approach or focused on the experience of a single foreign country, often with the collaboration of foreign research centers or universities. CPA has been particularly concerned with industrial innovation — the way new technology is developed and introduced — and with policies for assessing and ameliorating the adverse social effects of technology.

The CPA approach to policy analysis involves specialists from a wide variety of backgrounds including engineering, science, law, economics, political science, public health, and philosophy. Research at the Center often requires the development of new research methodologies that both encompass and extend traditional approaches. Legal analysis is an important dimension of the Center's work, and law and technology courses at MIT have been developed and are taught by Center faculty and staff. The Center especially welcomes the participation of faculty, students, and staff from the departments, other centers, and laboratories at MIT in joint research efforts.

A Master of Science degree program in Technology and Policy was initiated in 1975 by the School of Engineering with the collaboration of CPA (see description under Technology and Policy in this chapter). Several CPA staff members teach courses in the Technology and Policy Program, are on its Steering Committee, and oversee a number of master's theses in the program.
CPA staff also supervise master's and Ph.D. candidates from various departments and advise students participating in interdisciplinary programs. Courses taught by CPA staff include Law, Technology, and Public Policy; Management of Technology; Technology, Law, and the Working Environment; Environmental Law; and Proseminar in Technology and Policy.

Graduate and undergraduate students interested in participating in CPA research programs or in developing new policy research projects should contact the Office of the Director, Professor Nicholas A. Ashford, Room E40-209, MIT, Cambridge, Massachusetts 02139, (617) 253-1662.

Center for Real Estate Development

Real Estate Development (S.M.)

The Center for Real Estate Development provides an intellectual focus for research on issues affecting the development process. Faculty associated with the Center are drawn from the Departments of Architecture, Urban Studies and Planning, Civil Engineering, and the School of Management. The major research interests of the Center include the linkages between design quality and financial performance; the interaction between tax policy, monetary policy, and the availability of capital for development; models of the demand for different types of development; and research on new forms of public-private partnerships. The Center encourages interaction between members of the development industry and the academic community through seminars, colloquia, lectures, and a series of intensive summer courses. The Center is supported in part through corporate and personal memberships from firms and individuals active in the development industry.

The Center also serves as the home for the Master of Science in Real Estate Development program, an interdisciplinary degree program which combines training in design, planning, construction, management, finance, and marketing. The program is intended to prepare students to assume positions of responsibility in private development companies, financial institutions, government agencies, nonprofit development organizations, and consulting firms. The program may be completed in 12 months of intensive study. Further information about the Center or the Master of Science in Real Estate Development may be obtained from Charles H. Spaulding, Director, Center for Real Estate Development, W31-300, Cambridge, Massachusetts 02139.

Center for Space Research

The Center for Space Research offers students, faculty, and professional research staff opportunities to participate in a broadly based program of space-related research. Its projects draw upon the interests and expertise of scientists and engineers from many MIT departments and laboratories. Research programs are carried on, for example, in x-ray astronomy, space plasma physics, and the life sciences. These experimental studies usually involve experiments carried by balloons, sounding rockets, orbiting satellites, or deep space probes. The experimental programs are supplemented by closely related programs of ground-based research in similar fields and by laboratory development of suitable instrumentation for the space-based and ground-based experiments. An active program of theoretical studies in astrophysics is also supported by the Center.

Laboratory facilities include x-ray sources, particle accelerators, vacuum chambers, and conventional electronic test and machine tool equipment. Extensive data handling and computational facilities are available for the analysis and reduction of scientific data. An experienced and well-equipped group of engineers and technicians provides design, construction, and testing of experiments in support of the flight programs.

The variety of scientific and technical problems that arise in these investigations affords numerous opportunities for graduate thesis research. In addition there is major participation by undergraduate students in programs of data analysis and in the development of new instruments. Further information may be obtained from the Office of the Director, Professor Herbert S. Bridge, Room E7-241, MIT, Cambridge, Massachusetts 02139, (617) 253-7501.

Center for Transportation Studies

Transportation (S.M.)

The Center for Transportation Studies was established to provide interdisciplinary cooperation in innovative research and to provide a focal point for educational programs within the Institute. The Center's research involves all modes of transportation, both passenger and freight, in both the public and private sectors. It ranges from broad conceptual planning to the specifics of equipment design and operations analysis, and addresses major issues of policy, technology, the environment, economic development, land use, planning, and management.

The Center promotes interaction among faculty members from all Schools at MIT as well as other universities and organizations concerned with transportation, recognizing that the solution to complex problems requires close ties between technological possibilities and their social, economic, ecological, and political ramifications.

Recent research projects include the development of algorithms and computer software for data collection and network problems; the development of dynamic models of transportation systems; finding ways of improving productivity in railroads, trucking, and transit; the development of specific standards for highway maintenance and study of the performance of materials used in road construction; studies of railroad equipment and automation and how they might be improved; the economics of ocean transportation of oil; and guidelines for urban planning. The Center also has been involved in major projects in Egypt, Spain, and Brazil dealing with infrastructure, railroads, and operations management, and has recently completed a major international study on the future of the automobile, involving research teams not only at MIT but also at other universities in the United States, Japan, West Germany, France, Sweden, and the United Kingdom. Research sponsorship includes a range of governmental and industrial organizations affording students wide opportunities for involvement in newly evolving research frontiers. Full-time and part-time research assistantships are awarded to graduate students each year. Undergraduates also may participate in sponsored research through UROP.

Graduate programs leading to the master's and doctoral degrees, as well as professional training, are available through the departments associated with the Center, including Aeronautics and Astronautics, Civil Engineering, Economics, Mechanical Engineering, Ocean Engineering, Political Science, Sloan School of Management, and Urban Studies and Planning.

The Master of Science in Transportation, an interdisciplinary degree offered by graduate departments in cooperation with the Center, is designed to prepare students either for careers in transportation or for additional graduate work. Students with a variety of backgrounds such as engineering, social sciences, management, architecture, urban studies, and operations research are encouraged to participate in the program. An entering student should have a background in economics, calculus, and probability.
The degree requirements include the satisfactory completion of at least 72 units (including 18 units in core subjects, 36 units in a program area, and 18 units of electives) and the presentation of an acceptable thesis. The specified core consists of two subjects — Transportation Systems Analysis and Applied Microeconomics — and establishes a common methodological framework for analyzing transportation problems.

The remainder of the program builds upon specific program areas of professional interest, such as: air, ocean, urban, or freight transportation; transportation in developing countries; transportation, land use, and regional development; transportation systems analysis; transportation policy and institutional analysis; transportation technology; transportation logistics and carrier management; and transportation, energy, and the environment.

Students must take at least four related subjects in their program area. Since the research associated with the Master's thesis usually requires one or two terms to complete, students generally should expect to take three or four terms to complete the program (though some exceptional students can complete the program in less time).

Students who have been admitted to study for the Master of City Planning or the Master of Science in Transportation are invited to propose programs for joint work in the two fields leading to a dual degree, Master of Science in Transportation (S.M.) and Master of City Planning (M.C.P.). This would require application for admission to the second degree. Applications must be made prior to the student's final academic year in the first degree program and are considered during the spring admission process. Normally, students are expected to meet the core requirements of both degrees, but may submit a joint thesis and count some subjects completed for one degree toward the other. A minimum number of units will be set for each student (on an individual basis) within the range 160 to 180 units plus thesis. The number would be determined by the relevance of the student's prior degree and work experience, and the complementarity of the two degree programs being pursued.

The Center for Transportation Studies attempts to provide financial assistance, in the form of fellowships and research and teaching assistantships, in most of the fields in which the Center is active.

Students interested in coming to MIT for transportation studies or in learning more about the Center and its programs should write to the Office of the Director of the Center for Transportation Studies, Professor Daniel Roos, Room 1-123, MIT, Cambridge, Massachusetts 02139. For each admitted student an appropriate department of registration will be selected based on the individual’s background and area of specialization.

Clinical Research Center

The MIT Clinical Research Center is a small, fully equipped and staffed research hospital on campus that enables interested scientists to perform research with human subjects and allows students at all levels to gain experience with human subjects and human disease. Research projects in progress are in the areas of nutrition, psychology, endocrinology, gastroenterology, and mechanical, chemical, and electrical engineering, and largely involve collaboration between basic scientists and clinical scientists.

The facilities of the Center are open to all departments in the Institute, and its investigators are faculty members from many of those departments. Although most patients hospitalized in the Clinical Research Center come from the Boston area, a significant number is referred from other parts of the United States or from abroad. Opportunities are available for undergraduate and graduate students to participate in the Center’s programs.

Further information may be obtained by contacting the Office of the Director, Dr. Nevin Scrimshaw, Room E17-446, MIT, Cambridge, Massachusetts 02139, (617) 253-3091 or 3092.

Communications Policy Program

Rapid technological change and the critical importance of communications to society have combined to generate intense concern with policymaking in this area. This interdisciplinary field which draws on engineering, economics, policy analysis, legal studies, management, political science, and the sociology of communications effects is an area of active study and research at MIT.

There is a graduate degree program in Communications Technology and Policy within the Department of Political Science. Some graduate students have developed their own interdisciplinary course of study in communications through the Program in Technology and Policy, or through other departments including Electrical Engineering and Computer Science, Economics, the Sloan School of Management, and the School of Architecture and Planning. Undergraduates may wish to review the course listings of the Film and Media Concentration and consult with the field advisors in that program. Further information is available from the Literature Faculty Office, Room 14N-305, MIT, Cambridge, Massachusetts 02139, (617) 253-3581.

The Research Program on Communications Policy is a collaborative effort between the Center for International Studies, the Center for Policy Alternatives, the Center for Information Systems Research, the Center for Advanced Engineering Study, the Laboratory for Information and Decision Systems, the Laboratory for Computer Science, the Research Laboratory of Electronics, and the Media Laboratory. Program faculty are available to advise interested graduate students in the design of their course of study, to put them in touch with ongoing research activity at the Institute, and to help with professional placement. Recent dissertations and faculty research associated with the program have included studies of the politics of media reform, telecommunications, interactive media and video games, high-definition television, the social impact of the telephone, telecommunications facilities in rural Egypt, and Federal regulation of cable television.

The Program publishes an interdisciplinary course list, organizes seminars on special topics, and publishes an annual report describing recent and upcoming research and teaching activities concerned with communications policy. For further information contact Brian Kahin, Program Coordinator, Research Program on Communications Policy, Room E53-402, MIT, Cambridge, Massachusetts 02139, (617) 253-3144.

Concourse Program for First-Year Students

Freshmen who wish to have the ambiance of a small school in their first-year studies may elect the Concourse Program. Concourse offers the standard curriculum for freshman year taught by MIT faculty in the sciences and humanities. A group of about 60 students take these courses and are encouraged to work together. Faculty assistants and tutors are available to students directly. The Program covers, and provides credit for, the Institute Requirements of the first year.
Draper Laboratory
A number of research organizations in the Boston-Cambridge area have close ties with MIT faculty members which may lead to opportunities for interdepartmental research. In particular, the Charles Stark Draper Laboratory maintains a relationship with the Institute that permits students to engage in joint research activities.

The Charles Stark Draper Laboratory (formerly the Instrumentation Laboratory) separated from MIT on July 1, 1973, to become an independent nonprofit research and educational organization. Mechanisms exist to permit the continuation of joint research activities and to allow the Laboratory to continue its unique contributions to the Institute's educational program.

The professional field of interest has traditionally been the instrumentation of practical problems in dynamic geometry — e.g., guidance and control of aerospace and marine vehicles. The Laboratory is mission-oriented. Probably the most publicized achievement of the Laboratory has been the Apollo guidance and control system. Draper Laboratory leadership in the US space program is continuing with the Space Shuttle Program. In addition, the Laboratory has been broadening its areas of activities in instrumentation to other fields such as geophysical and oceanographic engineering.

The Laboratory experience in instrumentation has resulted in new computer science activities and software applications in industrial automation, control for advanced energy systems, and specialized communication.

A number of MIT faculty members maintain a close association with the Laboratory, and thesis research opportunities exist which fulfill the residency requirement for an MIT degree in all phases of systems engineering, including basic theory, mathematical analysis, computer studies, component design and evaluation (mechanical, electrical, and optical), and system synthesis. Students are in direct association with the professional staff of engineers and scientists of the Laboratory, and thus learn to appreciate the economic and human, as well as the technical, aspects of a system. Undergraduate and graduate students also may be employed by the Laboratory and work directly on a project. These opportunities provide an excellent technical internship which greatly broadens the students' educational experience.

CSDL, within walking distance of the main campus, is located at 555 Tech Square, Cambridge, Massachusetts 02139. Further information may be obtained by contacting Dr. David Burke, (617) 258-2395, or Institute extension 182-62395.

Economics and Urban Studies (Ph.D.)
A doctoral program is offered jointly by the Departments of Economics and Urban Studies and Planning at MIT. The Joint Program recognizes the interrelationship between the analytical aspects of policy questions and research opportunities in economics, and the institutional and policy orientations of urban studies. It has been recognized that both research and active intervention into urban problems benefit from the broadening of perspectives and institutional sophistication and the deepening of analytic penetration of a coordinated exposure to the two disciplines offers. This approach thus opens up a wider variety of career challenges than is available to specialists of either field alone. Students desiring to enter the Program must be admitted to both departments and then explicitly to the Joint Program. The Program is administered by a standing interdepartmental committee. Further information may be obtained from Professor Jerome Rothenberg, Room E52-355, MIT, Cambridge, Massachusetts 02139; (617) 253-2674, or from Professor William C. Wheaton, Room 10-403, 253-1723.

Energy Laboratory
Energy Study and Research
The Energy Laboratory was established in 1972 to provide a focus for strengthening and broadening energy activities on campus, with emphasis on conducting research to answer energy questions or illuminate energy issues. Energy Laboratory research projects this year involve over 100 research staff, 50 faculty, and 200 students from most of MIT's academic departments. Graduate and undergraduate students are an integral part of the interdisciplinary research teams working on both fundamental and mission-oriented projects that address both technical and socioeconomic aspects of important energy issues.

The International Energy Studies program conducts research on economic, political, and security aspects of international trade in fossil and nuclear fuels. Research also focuses on natural resource development, including resource assessment, contracting and investment issues, and markets. Research on developing countries includes these topics as well as debt issues and reciprocal relationships between energy and economic development. New research directions include roles of state enterprises and impacts of technological change and technology transfer on world energy markets.

The Utility Systems program involves faculty and research staff from engineering and policy science departments at MIT who analyze utility operations and growth, both in the short and the long run, and is focused on: 1) electric utility operations and control; 2) economics and policy decisions associated with adoption of new energy technologies; 3) development of modeling tools for utility operation and utility capacity expansion analysis; and 4) economics of regulation/deregulation of the electric power system.

The Energy Markets, Pricing, and Regulation program conducts research on the structure and regulation of the energy industries and markets, and the interaction between energy markets and the macroeconomy. Current research focuses on the structure and regulation of the US electric utility and natural gas industries; income distribution, productivity, and economic growth effects of changing energy prices; and energy use and conservation. New research directions include economic/financial studies of primary resource firms and of large-scale energy technology investments.

The Center for Energy Policy Research focuses on policy research and analysis and on making results available and useful to policymakers. With support from its Associates, a wide range of US and international corporate and noncorporate interest groups, the Center holds conferences and seminars to bring together key government and private organizations to work on energy-related policy issues. The work of the Center is done by professional staff members from the Energy Laboratory and faculty and students from several MIT departments (particularly the Sloan School of Management and the Department of Economics), and specialists from the Center's Associates.

The Energy Systems program studies options for future energy systems by 1) evaluating the short- and long-term impact of energy systems and 2) identifying R & D needs and initiating projects to solve the identified problems. International cooperative activities are planned for this program. The integration of distributed photovoltaic systems into a power grid is also under study.
The Combustion Research Facilities program emphasizes parallel modeling and experimental investigations of combustion processes of gaseous, liquid, and solid fuels. Both steady and unsteady operation. A special feature of the experimental studies is that fundamental flame data are obtained in large-scale pilot plant combustors in which the combustion heat transfer processes closely simulate industrial practice.

Research in the High-Temperature Reactions and Health Effects program concentrates on the oxidation and pyrolysis of fuels and on techniques for controlling emissions from these processes. Studies of the formation of mutagens in hydrocarbon combustion involve a team effort among engineering, analytical chemistry, and biological sciences.

The Synthetic Fuels Center focuses on research on conversion of coal, oil shale, biomass, and other energy resources to liquid and gaseous fuels. Energy companies cooperate to support and offer guidance to the program.

The Transportation Propulsion program conducts research on both improving existing engines and developing new concepts. Activities are based in the Sloan Automotive Laboratory and include fundamental and applied research relevant to internal combustion engines, work on alternative propulsion concepts, and policy and technology studies.

The Advanced Energy Materials program examines new and emerging technologies in such areas as electrodes and electrolytes for high-density batteries and fuel cells; synthesis of ceramic powders using laser heat sources; rapid solidification of molten ceramics; solar heating/cooling; amorphous photovoltaics; and broad band antireflective coatings.

Research in the Environmental program seeks to identify and reduce the environmental impacts of energy-related facilities and involves a diverse range of research projects, including cooling systems for electric power plants, water management issues associated with coal development, impacts of acid rain, and local effects of air emissions.

The Electric Utility program serves to inform participating companies about ongoing MIT research activities, to identify and discuss utility needs and priorities, and to develop research projects responsive to those needs. The member organizations currently participating in the program include nine utilities; eight other organizations involved in supplying fuel, equipment, or services to the industry; and one government agency.

The Nuclear program has the following broad objectives: 1) to provide direct technical contributions to nuclear plant reliability and safety; 2) to investigate possible improvements in nuclear plant design for more efficient utilization of nuclear fuel resources; and 3) to develop and communicate information that will contribute to public understanding of nuclear power.

The Energy-Efficient Buildings and Systems program examines the behavior of existing buildings and components and seeks to develop new technologies with better energy efficiency. Current projects include studies of the transfer and accumulation of moisture in structures retrofitted with insulation, heat loss from building foundations, and the insulating value and aging characteristics of closed-cell foam insulation.

The Mining Systems program is directed toward underground coal mining. It emphasizes the development of remote and automated systems which can remove miners from regions of high risk.

Further information about the Energy Laboratory may be obtained by contacting the Office of the Director, Professor David C. White, E40-463, MIT, Cambridge, Massachusetts 02139 (617) 253-3400.

Undergraduate programs in energy study and research are available in most departments at MIT, including all those in the School of Engineering. These prepare students for careers in the energy field that can be entered immediately upon graduation. Such programs include not only the basic sciences but also the applied sciences, such as fluid and solid mechanics, heat, controls, chemical processes, economics, and materials. Specialized subjects lead more directly towards careers, as in exploration for and production of uranium and fossil fuels; development of alternative energy sources such as solar, wind, and geothermal; petroleum refining; manufacture of synthetic fuels; conventional and nuclear generation of electric power; energy conservation in buildings, transportation, and manufacturing; and energy policy. In addition, all undergraduate engineering programs provide preparation for graduate work in the field of energy.

Many opportunities exist for undergraduates to work on energy-related research projects offered by the centers, laboratories, and academic departments. This research can be done for thesis or other academic credit or for pay under the Undergraduate Research Opportunities Program. Further information, including lists of advisors, programs, subjects, and research topics related to energy, is available through the Office of the Dean of Engineering, Room 1-206, MIT, Cambridge, Massachusetts 02139.

Graduate programs that prepare students for careers in the energy field are available in all of the Schools at MIT. There are many opportunities for students interested in all aspects of energy science, engineering, management, and policy. While the Energy Laboratory provides a focus for energy research at the Institute, a great deal of energy-related work is also under way in other centers and laboratories, and in the academic departments.

Students interested in graduate work in the energy field should first gain admission to the academic department whose program best matches their background and interests. An individualized program of advanced study and research can be arranged by a balance of fundamental subjects and interdisciplinary subjects that deal with diverse aspects of energy supply, utilization, and policy, and by selection of an appropriate thesis topic. Energy advisors have been appointed in each department to provide information on elective subjects, degree programs, and research opportunities. A brochure containing further information and the list of advisors is available from the Office of the Dean of Engineering, Room 1-206, MIT, Cambridge, Massachusetts 02139.

Environmental Studies

Environmental studies for undergraduate and graduate students are available through a variety of departmental and interdepartmental subjects and laboratories. Both the technical and the policy aspects of environmental studies are explored in subjects offered by the Departments of Civil Engineering, Mechanical Engineering, Ocean Engineering, Chemical Engineering, Earth, Atmospheric, and Planetary Sciences, Urban Studies and Planning, and the Program in Science, Technology, and Society. The areas of environmental studies available at MIT include air and water quality; pollution control; water, ocean, and energy resource management; public policy and planning for the environment; and the impacts of technology on the environment. In addition, many departments offer other educational and research opportunities to graduate students in specific areas of the environment closely related to their own disciplines.

Undergraduates whose interests span more than one discipline may arrange a coordinated program of interdisciplinary environmental study by entering one of the unspecified degree programs sponsored by many of the departments. Undergraduate students who have a disciplinary commitment but desire a coherent minor program of environmental study may do so through use of the unrestricted electives available to them.
Graduate students may pursue environmental studies in various ways. Through its several departments, the School of Engineering sponsors the degree of Environmental Engineer. The Energy Laboratory supports research on environmental issues which cross academic departments and Schools. The Program in Technology and Policy promotes careers in the development and implementation of policies for the productive use and control of technology. Major research with opportunities for graduate study in environmental policy and impact assessment is undertaken by the Laboratory of Architecture and Planning and the School of Architecture and Planning. There are also opportunities in the environmental area under the auspices of the joint programs of MIT and the Woods Hole Oceanographic Institution. (The above programs are described in this chapter and in Chapter VI.)

Graduate students may also arrange special programs with the help of their advisors in aspects of the environment which are closely related to their disciplinary interests, and they may pursue interdepartmental programs leading to advanced degrees under the auspices of the Dean of the Graduate School. See environmental listings under individual departments for more specific information.

Information concerning environmental education and research activities at MIT is centered in the Office of the Provost, which works with faculty members and appropriate centers and laboratories. Further information, lists of departmental advisors, and subjects offered on environmental issues for both undergraduate and graduate students are available through the Office of the Provost, Room 3-234, MIT, Cambridge, Massachusetts 02139.

ESG (Experimental Study Group)

ESG is open to freshmen and sophomores interested in participating in a small, informal academic program which offers credit primarily in core subjects through tutorials, seminars, and independent study. The details of the program can be found in Chapter III, Undergraduate Education. Information can be obtained directly from ESG by contacting Holly Sweet, Room 24-612, MIT, Cambridge, Massachusetts 02139, (617) 253-7786.

Health Sciences and Technology

MIT's programs in health sciences and technology are organized within the Whitaker College of Health Sciences, Technology, and Management and the Harvard-MIT Division of Health Sciences and Technology (HST). The Center for Health Effects of Fossil Fuels Utilization and the Biomedical Engineering portions of the HST program are described in this chapter. Additional information about HST and the Whitaker College may be found at the end of Chapter VI in this catalogue.

Humanistic Studies Combined with Engineering or Science (S.B. Degree Programs in Courses XXI, XXI-E, XXI-S)

MIT has developed programs for undergraduate students who have an active interest in the relationship between humanistic and scientific/technical knowledge. The first (XXI) is a double-degree arrangement leading to two S.B. degrees, one centered in the curricula of the Department of Humanities and the Program in Science, Technology, and Society (STS); the other in one of the degree programs in the School of Science or the School of Engineering. The second (XXI-E, XXI-S) is a joint-degree major which brings together components of humanities/STS and engineering/science within the dimensions of a single S.B. program.

Both of these plans require substantial knowledge in each of the two chosen areas, and both are grounded in a rigorous system of seminars and other subjects expressly designed to relate scientific learning and technological choice to social and cultural issues.

More detailed descriptions of these programs, including outlined degree requirements, are included in the Department of Humanities and STS descriptions in Chapter VI of this catalogue.

Innovation Center

The MIT Innovation Center offers an educational program on technological innovation. Undergraduate and graduate students learn about generating creative solutions to fill market needs, transforming ideas into marketable products, developing new business enterprises, and forming and leading new ventures within larger organizations. The Innovation Center is a division of the School of Engineering, with logistic support provided by the Department of Mechanical Engineering.

The educational opportunities offered by the Center include a classroom teaching program and active participation in the technological innovation process through laboratory experience. Classroom subjects include invention (2.941J, 10.802J, 13.77J, 16.671J), Entrepreneurship (2.942, an Engineering School-Wide Elective), and 2.944 The Idea/Product Transformation. These are all graduate-level subjects. Students who wish to take laboratory subjects or participate in a UROP program should contact the Center.

Laboratory activity centers around the Industry/Innovation Center Cooperative Program. Member companies provide market-oriented product and process needs that call for innovative solutions. Opportunities for research include thesis, UROP, and independent projects for both graduate and undergraduate students. Authentic participation in the technological innovation process is an invaluable supplement to an engineering education. The Center is also open to those in the MIT community with inventive ideas of their own which they would like to pursue.

Further information may be obtained by contacting the Office of the Director, Dr. D. G. Janssen, Room W59-202, MIT, Cambridge, Massachusetts 02139, (617) 253-5180.

Integrated Studies Program

The Integrated Studies Program offers a group of about 50 freshmen an opportunity to fulfill their first-year General Institute Requirements as a coordinated educational experience. While physics, chemistry, mathematics, and the humanities are taught as separate academic disciplines, care is taken to bring out their interrelationships and interactions at seminars and through synthesis-oriented assignments. The Program is described in greater detail in Chapter III of this catalogue.
Interdisciplinary Programs in Humanities

The School of Humanities and Social Science offers a number of subjects and programs of an interdisciplinary nature for undergraduates. Descriptions of the various interdisciplinary programs can be found under the School of Humanities and Social Science in Chapter VI of this catalogue.

International Food and Nutrition Program

The International Food and Nutrition Program (IFNP), jointly established by the Department of Nutrition and Food Science and the Center for International Studies, provides an interdisciplinary focus for postdoctoral students interested in nutrition field studies, policy analysis, and evaluation of appropriate nutrition interventions. The Departments of Economics, Political Science, Urban Studies and Planning, and the Anthropology and Archaeology Section of the Department of Humanities also participate. Graduate students are sometimes accepted but must enter through and fulfill all degree requirements of their respective departments. IFNP is affiliated with the Office of International Health of the Harvard School of Public Health. Courses at MIT and Harvard are available to full-time students at either institution.

Representative areas in which IFNP works include the following: a) monitoring the nutritional status of populations, including assessing malnutrition among vulnerable population groups; b) determination of nutrition program benefits; c) interactions among such factors as nutrition, maternal-child health, infection, socioeconomic and cultural characteristics, agriculture policy, and sanitation and other public health problems; d) the effects of income and price changes and of subsidized consumption programs on the nutritional intake of vulnerable populations; e) food and agriculture policies of food-exporting nations as these relate to international food needs; f) international food data systems.

Further information may be obtained from Professor Nevin S. Scrimshaw, Director of the IFNP, Room 20A-201, MIT, Cambridge, Massachusetts 02139, (617) 253-5101.

Laboratory for Computer Science

The Laboratory for Computer Science is an interdisciplinary laboratory whose principal goal is research in computer science and engineering. The Laboratory includes 18 research groups, currently staffed by approximately 300 faculty, students, and staff members. The academic members of the Laboratory are from the Departments of Electrical Engineering and Computer Science, Humanities, Mathematics, Architecture, and the Sloan School of Management.

The Laboratory for Computer Science was established in 1963 for the advancement of time-shared computer systems. It developed the Compatible Time-Sharing System (CTSS), one of the first time-shared systems in the world, based on pioneering work at what was then the MIT Computation Center. Subsequently, the Laboratory developed Multics, an improved system that introduced several new concepts in time-sharing. These two major developments stimulated research activities in the application of on-line computing to such diverse fields as engineering, architecture, mathematics, biology, medicine, library science, and management. In the 1970s, highlights of the Laboratory’s work were MACSYMA, a 2-Megabyte program with knowledge in symbolic mathematics; the dataflow concept, which is important for harnessing thousands of processors to work on a common task; the use of computers in clinical decision making; and public cryptography algorithms aimed at insuring privacy in distributed/networked computer systems. The Laboratory is now engaged in a broad front of research activities that span four principal areas: 1) Knowledge-Based Systems; 2) Machines, Languages, and Systems; 3) Theory; and 4) Computers and People.

The Laboratory for Computer Science fosters participation in research by undergraduates and graduate students. Research assistantships are available to graduate students for work in all aspects of the research program, and undergraduates may work at the Laboratory under UROP. Facilities are provided for thesis research and special projects to both graduate and undergraduate students.

Further information may be obtained by contacting John J. Hynes, Room NE43-101, MIT, Cambridge, Massachusetts 02139, (617) 253-2006.
All of the programs, within the four areas of the Laboratory, are carried out with the assistance of both undergraduate and graduate students under the supervision of faculty members in the Departments of Electrical Engineering and Computer Science and Mechanical Engineering.

Further information may be obtained by contacting the Office of the Director, Professor Thomas H. Lee, Room 10-171, MIT, Cambridge, Massachusetts 02139, (617) 253-4631.

Laboratory for Information and Decision Systems

The Laboratory for Information and Decision Systems is an interdepartmental laboratory for research and education in systems, communications, and control. Computers and computation play an important role in this research. The Laboratory is staffed by over 100 faculty, research scientists, and graduate students principally from the Departments of Electrical Engineering and Computer Science, Mechanical Engineering, and Ocean Engineering. Research falls into three main areas:

1) Research in Communication Science and Systems ranges from studies of the underlying information theoretic properties of networks and point-to-point systems to architectural design. A major research program in this area deals with reliable, efficient communication in data networks. Some of the topics in this program are routing, flow control, the communication complexity of distributed algorithms, contention resolution in broadcast networks, protocols, failure recovery, and topological design.

2) Research in Systems and Control Science ranges from fundamental studies in deterministic and stochastic systems, multivariable and adaptive control, nonlinear estimation and model-based signal processing, and large-scale and distributed systems to application areas such as command and control systems and operation and control of complex manufacturing processes. In addition, development of algorithms and special computer structures for estimation, signal processing, and control is an integral part of this research.

3) Research in Computer and Information Systems is concerned with basic problems in the use of computers in complex information transfer and retrieval systems. One study involves expert intermediary systems to assist end-user access to heterogeneous databases. A second project deals with analytical and experimental investigations of electronic document-delivery networks applicable to interlibrary resource sharing.

Research opportunities are available in the Laboratory for both undergraduate and graduate students. Undergraduates may participate through UROP.

Further information may be obtained by contacting the Office of the Director, Professor S. K. Mitter, Room 35-304, MIT, Cambridge, Massachusetts 02139, (617) 253-2160, or the Associate Director, Professor H. G. Gallager, Room 35-206, 253-2533.

Laboratory for Manufacturing and Productivity

The Laboratory for Manufacturing and Productivity is an interdisciplinary center for education and research in manufacturing and productivity at MIT. The goal of the Laboratory is the advancement of manufacturing science and technology.

The Laboratory educates scientists and engineers in the analysis and synthesis of products, processes, and manufacturing systems. Fundamental research conducted in the Laboratory leads to innovation in products, manufacturing process technology, and better understanding of planning, design, and production operations. The Laboratory seeks to establish a rational foundation for productivity increase based on a systematic understanding of the complex interactions among the many areas of manufacturing including design, processing, assembly, inspection, and quality control. The impact of the new manufacturing technology on society is also addressed.

The Laboratory draws upon faculty and staff in the Departments of Mechanical Engineering, Electrical Engineering and Computer Science, Chemical Engineering, Materials Science and Engineering, and Ocean Engineering, as well as the Center for Policy Alternatives and the Sloan School of Management. Important perspectives are contributed by the representatives of industrial firms associated with the Laboratory's cooperative research programs.

Topics of current interest include:

- Axiomatics (a scientific approach to the decision-making process related to manufacturing — an approach which facilitates rational design of processes, products, and optimization of manufacturing systems)
- Computer Integrated Manufacturing, including CAD/CAM
- Polymers Processing
- Flexible Materials Processing
- Metals Processing
- Tribology (science of friction, wear, and lubrication)

Machine Dynamics

Robotics/Intelligent Machines (including intelligent welding, sheet-metal forming, and injection molding)

In addition to research projects sponsored by individual organizations, a large proportion of the Laboratory's work is supported by several consortia of industrial firms. Among these are the MIT-Industry Polymer Processing Program, the MIT-Industry Flexible Materials Processing Program, the Machine Dynamics Program, the Industrial Robotics Program, and the Tribology Research Program.

Opportunities for undergraduate and graduate students are available for thesis research and UROP projects. A limited number of postdoctoral research positions are also available.

Additional information may be obtained from the Director, Professor N. P. Suh; Associate Director, Professor S. Dubowsky; or Assistant Director, Dr. G. Chryssolouris, Room 35-136, MIT, Cambridge, Massachusetts 02139, (617) 253-2234.

Laboratory for Nuclear Science

Bates Linear Accelerator Center

The Laboratory for Nuclear Science performs basic research in nuclear and elementary particle physics. It supports research interests of faculty in the Department of Physics by maintaining and administering facilities adapted to studies in high-energy and nuclear structure physics. The Bates Linear Accelerator, a high-intensity electron machine, has greatly extended the Laboratory's capabilities (and is described below). The Laboratory operates a computer facility available to staff and students.

As part of the nuclear physics program, members of the Laboratory are engaged in experiments at the MIT Bates Linear Accelerator Center, the Brookhaven Tandem Accelerator, and the Oak Ridge National Laboratory's Holifield Tandem facility. The high-energy physics program involves experiments at the CERN, Geneva, Switzerland, Fermi National Accelerator Laboratory, the Stanford Linear Accelerator, and at the German high-energy electron-proton storage ring facility in Hamburg. Also several small groups within the Laboratory are engaged in the application of nuclear and particle physics instrumentation to medical and biological problems.
Among many projects are theoretical studies of the atomic nucleus and elementary particles; experimental programs using a variety of detector techniques to study strong, electromagnetic and weak interactions of elementary particles and other high-energy phenomena; application of high-speed electronic computer techniques to the problems of nuclear and elementary particle data analysis; nuclear studies using heavy-ion accelerators; and programs in radioactivity and in medium- and low-energy photonuclear and nuclear particle research.

Students participate in the entire range of research programs in fulfilling their graduate and undergraduate degree requirements or as participants in UROP.

Further information may be obtained from the Office of the Director, Professor Arthur Kerman, Room 26-505, MIT, Cambridge, Massachusetts 02139, (617) 253-2395.

The William H. Bates Linear Electron Accelerator Center, funded by the US Department of Energy for use by MIT research staff (principally in the Laboratory for Nuclear Science and the Department of Physics), is available for use through a formal user's organization to eligible researchers in the New England area and nationwide.

The Laboratory supports a broad program of research in electromagnetic interactions with nuclei. Facilities are available for high-precision high-resolution electron scattering and photoreactions including pion production. A project has been completed successfully during the past year to raise the accelerator's beam energy to more than 750 MeV, almost doubling its previous energy capability. A further increase in energy to about 1 GeV is planned. A polarized electron source is under development which will make possible studies of parity violation in electron scattering and spin effects in nuclear reactions. Plans are being developed to increase the duty factor to nearly 100 percent.

The research participation of physics students, as undergraduate laboratory assistants working on UROP projects and through graduate thesis work, is encouraged and forms an important part of the Bates program. A large number of students, from the universities of user physicists as well as from MIT, are so involved. Further information may be obtained from the Director, Professor E. J. Moniz, Room 6-308A, MIT, Cambridge, Massachusetts 02139, (617) 253-6202.

Laboratory of Architecture and Planning

The Laboratory of Architecture and Planning (LAP), part of the School of Architecture and Planning, fosters research contributing to the understanding, education, and practice of architecture, planning, and closely related fields.

Projects currently administered by the Laboratory focus on: energy conservation and appropriate technology; development of techniques for assessing the environmental impacts of development and for mediating disputes concerning such developments; solar architecture; neighborhood and community development; use of media as a tool for public participation in community planning; and innovative approaches to communicating research findings to the public. The LAP's primary area of development is building technology.

The LAP provides a range of continuing education opportunities for the architectural and planning professions. The Laboratory also promotes the integration of research into the educational environment of the School and the Institute through the sponsorship of lectures, seminars, and conferences; publication support; and a program of architecture case studies.

The Laboratory involves a wide variety of people and institutions both inside and outside MIT, including faculty and students from MIT departments and centers, as well as from other educational institutions; the alumni of the School of Architecture and Planning; architectural and planning practitioners; and client groups such as firms, public agencies, and community organizations. LAP research involves graduate and undergraduate students from several MIT departments, through research assistantships and UROP.

Further information may be obtained from the Office of the Director, Michael Joroff, Room 4-209, MIT, Cambridge, Massachusetts 02139, (617) 253-1350.

Law-Related Studies

Undergraduate and graduate students interested in the legal or public policy aspects of their field, the legal profession, or our legal structure and processes as a part of a general education may do so through a wide range of graduate or graduate subjects, research projects, seminars, and fieldwork opportunities. Among the over 30 law-centered subjects in 10 departments are syllabi covering the American legal structure, the judicial process, constitutional history, and legal aspects of planning, management, environmental affairs, ocean resources, construction, transportation, industrial safety, computer science, and technology.

In some areas, work is undertaken collaboratively with law schools in the area. In addition to several lawyers on the teaching staffs of five different departments, there are lawyers on the administrative staff with experience in a variety of fields which they are willing to share with students.

In recent years, a substantial number of MIT undergraduates from nearly every department have gone on to law school. The technically oriented undergraduate training serves students well in law school and in future practice. There is a series of open seminars designed to acquaint students with what lawyers actually do. Field research and work opportunities offer other means for testing an interest in the law.

The Office of Career Services and Preprofessional Advising, Room 12-170, (617) 253-4737, and members of the Pre-Law Advisory Council provide guidance and information for students interested in going to law school. They and the Coordinator of Law-Related Studies, Professor Lawrence Bacow, also have additional information regarding the Law-Related Studies Program at MIT.

Lincoln Laboratory

The Lincoln Laboratory is a Federally sponsored center for research and development in advanced electronics, with special emphasis on applications to national defense. The Laboratory is staffed and operated by MIT and located in Lexington, Massachusetts.

Lincoln Laboratory activities extend from fundamental investigations in science, through technological development of devices and components, to the design and development of complex systems. A continuing program of research in advanced electronics techniques provides a background of experience and ideas for work in specific programs, as well as a source of new scientific and technological advances for civilian and military application.

Specific programs include satellite communications, reentry studies and technology, computer systems and digital signal processing, image processing, space surveillance, and air traffic control. Research also is conducted in the fields of optics, solid-state devices, radar systems, and integrated communication networks for speech and data.
Opportunities for research in many of these technical areas are available to MIT faculty members and qualified undergraduate and graduate students. Inquiries may be directed to Dr. Melvin A. Herlin, Assistant to the Director, LIN A-163, (617) 253-5500, extension 7024, or Institute extension 181-7024.

Management of Technology Program (S.M.)

The Management of Technology Program is a 12-month master's degree program, beginning only in June of each year, for scientists and engineers with a minimum of five years of work experience. Offered jointly by the School of Engineering and the Sloan School of Management, the program focuses on management principles for technical professionals whose careers require increasing managerial responsibility on the technical side of the organization.

The rigorous, 12-month curriculum, developed and taught by faculty from both Schools, leads to a Master of Science in the Management of Technology and covers three elements: 1) underlying core subjects in management principles and analytic methods, 2) in-depth studies on management of technical programs and organizations, and 3) a thesis relating to the management of technical programs and organizations. Participating departments include the Sloan School of Management and all eight departments in the School of Engineering.

Application material is available only through the Program office and is due back in that office by February 1. Requirements for admission include: five years of work experience, an undergraduate science or engineering degree, and prior course work in macro- and microeconomic theory and calculus. In addition, all applicants must take the GMAT. Chemical engineers and foreign ocean engineers must also take the GRE, and all foreign applicants must submit scores from the TOEFL.

Complete information on Program objectives, the curriculum, and application procedures is available from the Program Director, Professor Edward B. Roberts, or from the Program Manager, Jane M. Morse, Room E52-125, MIT, Cambridge, Massachusetts 02139, (617) 253-3733.

Materials Processing Center

The Materials Processing Center provides an interdisciplinary focus on the processing and performance of materials. The Center stresses the control of the internal structure of materials during processing, from the macroscopic to the atomic level, to control materials performance. The Center promotes technical and analytical methods that are economical, energy-efficient, and socially acceptable.

Dedicated to the development and expansion of the fundamental scientific and technological base of materials processing, the Center pursues a three-pronged approach with interdisciplinary research, education, and advisory programs.

To solve critical, basic processing problems, the Center coordinates faculty expertise and facilities from a number of departments, principally Materials Science and Engineering, Mechanical Engineering, Electrical Engineering and Computer Science, and Chemical Engineering. Center research concentrates on all engineering materials, including metallic, ceramic, polymeric, and electronic materials.

Center educational programs strive to attract outstanding students to the study of materials processing. The Center offers UROP appointments and special summer scholarships to undergraduate students. It awards fellowship appointments to outstanding first-year graduate students and supports others through research programs funded by grants and contracts through the Center. The Center also conducts continuing education programs to introduce professional engineers and scientists to recent technological information.

The Center has strong links with both industry and government. Through the Industry Colloquium, it provides a forum for industrial representatives to discuss their needs and problems with researchers in the university. Through workshops and symposia, the Center distributes knowledge and information on innovative and recent scientific and technological developments. It also sponsors the appointment of industry and government personnel as visiting faculty, adjunct faculty, and post-doctoral researchers.

For further information, contact Professor H. Kent Bowen, Director, at (617) 253-6892, or Dr. G. B. Kenney, Assistant Director, 253-3244, both in Room 12-007, MIT, Cambridge, Massachusetts 02139.

Mining and Mineral Resources Research Institute

Mineral Resources Engineering and Management (S.M., Eng., Ph.D.)

The Mining and Mineral Resources Research Institute (MMRRI) was founded to support and aid in the coordination of the wide variety of academic activities and research programs related to mineral resources. In particular, it encourages interdisciplinary activities for both undergraduate and graduate students, and calls attention to opportunities for careers in mineral resource engineering and management. The direct support of the MMRRI, which comes from the US Department of the Interior, includes funding for a limited number of fellowships and scholarships and for some research activities.

The Departments of Civil Engineering, Mechanical Engineering, Materials Science and Engineering, Earth, Atmospheric, and Planetary Sciences, Ocean Engineering, Economics, Management, and Political Science are involved, as is the Energy Laboratory. Some of the major problems being addressed are: finding mineral resources, extracting and processing them economically and in an environmentally acceptable manner, and reducing our need for mineral resources and substituting one resource for the other. Joint academic subjects and seminars, and particularly the undergraduate and graduate interdisciplinary programs of study in Mineral Resources Engineering and Management (described later), represent the academic side of the MMRRI.

Undergraduate students may pursue study of mineral resources through a variety of programs and laboratories. Related activities may be found in the departments associated with the MMRRI listed above. Departments offer educational and research (UROP) opportunities in the fields which are related to their own disciplines. A student's interest often can be met through a minor program with the use of available electives.

Information on the various activities of the Mining and Mineral Resources Research Institute and on departmental advisors and special programs of study may be obtained from the Office of the Director, Professor John F. Elliott, Room 4-138, MIT, Cambridge, Massachusetts 02139, (617) 253-3305.

The Mineral Resources Engineering and Management (S.M., Eng., Ph.D.) program provides formal educational opportunities to graduate students with interests in the mineral resources field. The academic subjects and research available throughout the Institute...
make it possible to offer programs in several areas of concentration, leading to a variety of careers in the mineral resources field. Studies in the MREM program can lead to the Engineer, Ph.D., or Master of Science corresponding to the department of registration.

The MREM program consists of four subprograms: 1) The exploration subprogram exposes students to the geological, technical, and decision theoretical aspects of exploration. 2) The extraction subprogram provides a background for design of surface or underground mines, selection and development of mining machinery, management of large projects, and resolution of environmental problems. 3) The processing subprogram deepens the student's physical and chemical education and leads to the analysis and design of industrial processes including their managerial and environmental aspects. 4) The resource management subprogram encompasses a wide range - systems engineering, economics, and public policy, as well as problems of substitution and of related resources (water, energy). Students' emphasis in the resource management subprogram can be placed on engineering, management, or public policy. The resource management subprogram also provides an MREM general overview, aimed at students desiring a broader education.

For the Master of Science degree, a student usually will take at least 75 percent of the required credit units from one of the subprograms and the remaining credit units from one of the other subprograms. Engineer and Ph.D. students usually will concentrate at least half of their credit units in one of the subprograms and take the remaining credit units from at least two of the other subprograms. Research projects suitable for thesis work are conducted in most of the participating departments.

Students desiring to pursue their studies in the MREM program should apply for admission to graduate studies in the department best suited to their interests. Students will be awarded the graduate degree in this department. The participating departments are listed earlier under MMRRR.

eA prospectus containing detailed information on the MREM program, including listings of academic subjects in each of the subprograms, possible research areas, and the MREM faculty contacts in each of the participating departments, may be obtained from Professor Herbert H. Einstein, Room 1-330, MIT, Cambridge, Massachusetts 02139, (617) 253-3598.

Nuclear Reactor Laboratory

The Nuclear Reactor Laboratory (NRL) provides the focus for a wide range of research programs which involve the use of nuclear radiations. Research programs in various MIT departments and centers including Physics, Materials Science and Engineering, Earth, Atmospheric, and Planetary Sciences, Chemical Engineering, Mechanical Engineering, Nuclear Engineering, and Nutrition and Food Science are supported by the capabilities in the NRL. Facilities of the Nuclear Reactor Laboratory are also used for teaching and research activities by other institutions. The NRL provides special services to regional hospitals and industries, e.g., short-lived isotopes for medical purposes.

Current areas of research include: applications of nuclear trace analysis to problems in the physical and engineering sciences, in the life sciences, geosciences and the environment; neutron and nuclear physics; neutron scattering studies of solids, liquids, and dense gases; radiation effects on materials; bulk and near surface radiation damage studies of nuclear and fusion reactor materials; reactor physics and reactor engineering; nuclear medicine; and isotope development.

The NRL operates a 5-million watt research reactor (MITR-II), which is one of the largest university reactors. Recent redesign and rebuilding of MITR-II has significantly enhanced the neutron and gamma-ray intensity and the reactor's versatility.

Experimental facilities and instrumentation at the NRL include: neutron diffractometers; 2- and 3-axis polarized beams; spin flippers; neutron inelastic scattering spectrometers; a neutron interferometer; magnetic and cryogenic sample control; a wide variety of sample irradiation facilities with fast and slow neutron fluxes up to 10^{14} per cm2 and sec; a temperature-controlled in-pile facility which allows simultaneous neutron and ion bombardment; and a fast reactor blanket facility.

Other experimental facilities and instrumentation include: a thermal column with large hololium; radiochemistry laboratories; hot cells for dismantling or testing; nuclear detection equipment; trace analysis facilities; a materials characterization laboratory; and shielded hot cells for handling and testing radioactive materials.

Undergraduate students are involved in the operation of the reactor and in the research activities through special projects or senior thesis. Graduate student thesis research is carried on in the various research areas mentioned earlier.

A current summary report is available which describes the activities at the NRL in greater detail. For information, inquire at the Office of the Director, Professor Otto K. Harling, Room NW12-208, MIT, Cambridge, Massachusetts 02139, (617) 253-4201 or 253-4202.

Oceanography and Oceanographic Engineering (Eng., Ph.D., Sc.D.)

MIT and the Woods Hole Oceanographic Institution (WHOI) on Cape Cod offer joint programs of graduate study and research for students with special interests in biological oceanography, chemical oceanography, marine geochemistry, marine geology, marine geophysics, oceanographic engineering, and physical oceanography. These graduate programs are administered by committees drawn from the faculty and staff of both institutions. Students accepted to the Joint Program have access to the extensive intellectual and physical resources available for advanced study at both WHOI and MIT. The program is described in detail at the end of Chapter VI.

Operations Research Center

Operations Research (S.M., Ph.D.)

The Operations Research Center (ORC) provides education and research opportunities for students and faculty interested in the interdisciplinary field of operations research. Operations research is concerned with conceptualizing and implementing mathematical models for analyzing planning and operating problems arising in the public and private sectors. Generally speaking, these are normative models that are optimized to provide decision makers with better insights into their decision problems and to assist them in selecting the most effective courses of action.

The Operations Research Center is organized as an interdepartmental center, structured to take advantage of the expertise of faculty drawn from a variety of departments, including the Sloan School of Management, Electrical Engineering and Computer Science, Aeronautical Engineering, Mathematics, Civil Engineering, Ocean Engineering, Urban Studies and Planning, and Physics. The Center is composed of approximately 20 affiliated faculty and 35 graduate students. Both a master's
and a doctoral degree program are offered. An important feature of these programs is their interdisciplinary structure. In addition to following a set of core courses, students are encouraged to design a curriculum that is tailored to their professional and research interests. The program provides a strong background in the theoretical foundations of operations research and the practical techniques used in building models for a wide variety of applications.

The core graduate curriculum for both S.M. and Ph.D. degrees consists of Applied Probability (6.431), Decision Analysis (15.065), Applied Statistics (15.075), and Introduction to Mathematical Programming (15.081J/6.251J). Master’s degree students continue with three additional graduate-level subjects and prepare a thesis in an area of research concentration. Employment opportunities for graduates of the S.M. program exist in technical staffs of private firms, as planners in governmental agencies, and in private consulting firms.

Doctoral degree students are expected to take, in addition to the core, Markov Models and Their Applications (6.262), Introduction to Stochastic Processes (15.073J/18.445J), Statistics for Model Building (15.086J/18.457J), Network Optimization (15.082), Combinatorial Optimization (15.083), and Nonlinear Programming and Discrete-Time Optimal Control (15.084J/6.252J). Doctoral degree candidates must qualify for continuation in the program by passing Qualifying and General Examinations which are taken in the second year of a typically four-year program. Course work in a minor program follows, in addition to pursuing an original research project under the guidance of a doctoral dissertation committee. The formal academic program is supplemented by teaching and research assistantship opportunities for most doctoral candidates. Graduates of the Ph.D. program often assume faculty positions in the US and abroad.

Students wishing to concentrate specifically in operations research at either the master’s degree or doctoral degree level may apply directly to the interdepartmental graduate program. This can be done by following general MIT graduate admissions procedures and by inserting, "Operations Research — Interdepartmental Programs," in all places on the application materials which request a departmental designation.

Further information about the Operations Research Center and the degree programs is contained in a brochure entitled Graduate Education at the Operations Research Center and is available from the Operations Research Center, Webster Building (E40-184), MIT, Cambridge, Massachusetts 02139. Individual questions may be addressed to either of the Co-directors, Professors Richard C. Larson and Jeremy F. Shapiro.

Plasma Fusion Center

The Plasma Fusion Center, formed in 1976, provides a focus for experimental and theoretical studies in plasma fusion physics and related engineering disciplines. It provides the leadership required for effectively undertaking all Department of Energy-sponsored fusion research at MIT. The timely development of fusion energy is one of the most urgent and technically complex challenges facing society.

The Plasma Fusion Center fosters independent creativity, and helps integrate the collective fusion activities into a cohesive program with the following broader Institute goals:

- to provide, both nationally and internationally, strong technical leadership for the development of fusion energy;
- to provide the intellectual environment for the expert educational training of students, research scientists, and engineers.

Fusion research activities fall into five major programmatic Divisions.

The Fusion Systems Division is concerned with overall design and reactor physics investigations of the next generation of major toroidal and mirror fusion devices; understanding the potential characteristics and technology requirements of power-producing fusion reactors; and developing new reactor design concepts and advanced millimeter and far infrared wave technology for plasma heating and diagnostics.

The Mirror Confinement Systems Division is developing an increased understanding of basic tandem mirror mirror physics with emphasis on stability properties, thermal barrier formation, and RF heating. The subprogram areas include the TARA tandem mirror experiment.

The Fusion Technology and Engineering Division aims to provide critical engineering support for operating confinement experiments and advanced design projects. It also develops advanced superconducting magnet technology for the national fusion program.

The Applied Physics Research Division is developing the basic experimental and theoretical understanding of plasma heating and confinement properties (including research on tokamak and mirror systems, advanced fusion concepts, fusion theory and computations, diagnostics and laser development, and intense-charged particle beam research).

The Toroidal Confinement Experiments Division is developing a basic understanding of the stability and transport properties of high-temperature toroidal plasmas at reactor-level conditions and developing and testing concepts for optimization of the toroidal confinement approach to magnetic fusion. The subprogram areas include the ALCATOR tokamak experiment.

In the last decade, many results of great significance to the international effort to develop fusion energy have been obtained in the ALCATOR A and C high-field tokamaks, the major experimental facilities in the Plasma Fusion Center program. For example, ALCATOR C currently holds the world record in obtaining the highest product of plasma density times confinement time, and is also a world leader in developing techniques to drive current by radio-frequency waves. TARA, a new experiment based on the tandem mirror concept, is expected to make major contributions to mirror fusion development. VERSATOR II and CONSTANCE are used to study particular research aspects of toroidal and mirror-confined plasmas, respectively. The overall program has a balance between experimental and theoretical studies. Fusion activities in the Department of Aeronautics and Astronautics, Electrical Engineering and Computer Science, Materials Science and Engineering, Mechanical Engineering, Nuclear Engineering, and Physics, as well as the Francis Bitter National Magnet Laboratory and the Research Laboratory of Electronics, are affiliated with the Plasma Fusion Center.

The Center’s programs provide an excellent forum for the training of students and professional researchers. Approximately 80 graduate and 30 undergraduate students are currently involved at all levels of thesis work; undergraduates also participate through UROP.

Further information may be obtained from the Office of the Director, Professor Ronald C. Davidson, Room NW16-202, Cambridge, Massachusetts 02139, (617) 253-8102.
Polymeric Materials

Polymeric materials span a remarkable range of structures and properties, presenting a diversity of challenges and opportunities for several interacting disciplines, and polymer science and engineering is now one of the most rapidly expanding areas in the field of materials. Polymers can exist in various combinations of amorphous and crystalline states, leading to properties that may be described as rubbery or glassy, strong or weak, tough or brittle. They also exhibit unique rheological behavior which permits the processing into many forms, including fibers, films, and composite materials.

Students interested in interdepartmental graduate degree programs focusing on polymeric materials may register in the Departments of Civil Engineering, Mechanical Engineering, Materials Science and Engineering, or Chemical Engineering, and have their programs of coursework and research specially arranged in consultation with an ad hoc interdepartmental committee chosen for the purpose. This procedure allows for a high degree of flexibility, depending on the candidate’s central interests.

In addition to the core subjects in the program, students may concentrate in one or more areas related to polymers, such as synthesis, processing, characterization, structure-property relationships, surface phenomena, biopolymers, fiber technology, and composites.

More specific information concerning interdepartmental study and research on polymeric materials may be obtained from Professor F. J. McGarry, Departments of Civil Engineering and Materials Science and Engineering, Room 8-209, MIT, Cambridge, Massachusetts 02139, (617) 253-7172; Professor A. S. Argon, Department of Mechanical Engineering, Room 1-306, 253-2217; Professor D. R. Uhligman, Department of Materials Science and Engineering, Room 13-4005, 253-6895; or Professor E. W. Merrill, Department of Chemical Engineering, Room 66-562, 253-4593.

Power Engineering

Interdepartmental academic and research programs in power engineering are available in the Departments of Aeronautics and Astronautics, Electrical Engineering and Computer Science, Mechanical Engineering, Ocean Engineering, and Nuclear Engineering. These programs cover a broad range of energy-related issues.

A graduate student enrolled in any of these departments may construct from among various subject offerings and research activities an academic program and thesis research which he or she wishes to pursue. In addition to subjects treating specific topics in power engineering, many other related subjects are available on such topics as thermodynamics, fluid mechanics, heat transfer, control theory, materials, stress analysis, vibrations, cryogenics, and combustion.

In addition to the departments listed above, research in power systems is conducted at the Gas Turbine Laboratory, Laboratory for Electromagnetic and Electronic Systems, Sloan Automotive Laboratory, Energy Laboratory, Heat Transfer Laboratory, Cryogenic Engineering Laboratory, and at the Nuclear Reactor.

Research assistantships are available for graduate students, and a part-time employment is available for undergraduates. For further information on the programs and financial support, contact the Graduate Registrar Officer of one of the participating departments.

Research Laboratory of Electronics

Established in 1945 as the Institute’s first interdepartmental laboratory, the Research Laboratory of Electronics provides faculty members and their students, both graduate and undergraduate, with the diverse services and facilities of a large laboratory to conduct research in two major areas — electronics and optics — together with language, speech, and hearing. In addition, smaller groups are focused on atomic and molecular physics, plasma physics, radio astronomy, digital signal processing, image processing, electromagnetic, and communications. At present there are approximately 20 research groups. Participants come primarily from the Departments of Electrical Engineering and Computer Science, Physics, Chemistry, Materials Science and Engineering, and Linguistics and Philosophy.

Research in electronics and optics covers a broad spectrum of concerns ranging from electronic materials and fabrication through high-speed electronic and optic devices to electronic and optical circuits and, finally, logic, architecture, and large-scale systems. The Laboratory brings together fundamental theoretical and experimental work in the nature of materials and surface interfaces with practical devices, circuits, and systems oriented to high-performance applications.

The program in language, speech, and hearing includes linguistic work in phonology coupled with the structure and design of systems for text-to-speech conversion and speech recognition, as well as fundamental work on articulatory phonetics, auditory psychophysics, and auditory physiology.

Additional research foci include fundamental studies in atomic and molecular physics such as radiation modes and basic constants, both theoretical and experimental research in plasma physics, radio astronomy and astrophysics, digital signal processing theory and hardware architecture, digital processing of two-dimensional signals (including high-resolution television), studies of electromagnetic propagation in nonlinear media, and a variety of studies in communications including structure and protocols for high-speed local networks.

Almost all of the research in RLE is conducted or supervised by academic faculty members and students. Approximately 100 members of the faculty are affiliated with the Laboratory, and work with over 300 graduate students and approximately 100 undergraduates in addition to research staff. The research in RLE provides opportunities for a broad spectrum of student thesis projects.

Additional information may be obtained by contacting the Office of the Director, Professor Jonathan Allen, Room 36-413, MIT, Cambridge, Massachusetts 02139, (617) 253-2509.

Science, Technology, and Society

The Program in Science, Technology, and Society (STS) focuses on the ways in which scientific, technological, and social factors interact to shape modern life. It traces the impact of scientific ideas and technological practices on society and culture and examines the role of social, political, and cultural considerations in shaping developments in science and technology. STS draws its faculty from the social and natural sciences, engineering, and the humanities. Various opportunities for research and study are available at the undergraduate and graduate levels. A more detailed description of the Program is given in the School of Humanities and Social Science section in Chapter VI. Further information may be obtained from the Office of the Director, Professor Carl Kaysen, Room E51-110, MIT, Cambridge, Massachusetts 02139, (617) 253-4062.
Sea Grant College Program

Dedicated to advancing the vital roles of engineering and science in the development of ocean and coastal resources, the Sea Grant Program funds and coordinates multidisciplinary research projects, educational opportunities, and advisory services. Following the lead of the National Sea Grant Program, created by Congress in 1966, MIT recognizes the need to respond to opportunities in the marine and coastal fields, and to solve current technological, economic, social, and political problems caused by our increasing and conflicting uses of the seas. The designation in 1976 of MIT as the nation's twelfth Sea Grant College, the first private institution to achieve this distinction, strengthened the institute's commitment to furthering wise use and development of the ocean's resources.

The Sea Grant research program reflects the conviction that the Institute's expertise and facilities can help solve critical problems in marine resource utilization and coastal zone development. Sea Grant research strives for balanced use of oceans and coasts, greater harvests of food and useful materials from the sea, the prudent extraction of offshore oil and undersea minerals, and the application of engineering to improved methods of working in and on the seas. The principal departments involved in Sea Grant research include Civil Engineering, Ocean Engineering, Mechanical Engineering, and Nutrition and Food Science. Students participate directly in most Sea Grant research projects at both graduate and undergraduate levels, and support is available for UROP projects.

The Sea Grant Program also supports innovative education at MIT in ocean utilization and coastal zone development. Each year, an interdisciplinary design subject provides graduate and undergraduate students with the chance to apply classroom knowledge to "real-world" situations. The Program has supported new curricula and textbooks in the field of ocean engineering. A joint project with the Massachusetts Maritime Academy is providing new educational opportunities for professional fishermen.

MIT Sea Grant's Advisory Services publish technical reports, sponsor symposia, and work with local governments, business, and organizations to transfer comprehensive information to the public on the many facets of resource development in the oceans and coastal zones.

More information on Sea Grant Program projects and services may be obtained from the Office of the Director, Professor Chryssostomos Chryssostomidis, Room E38-302, MIT, Cambridge, Massachusetts 02139, (617) 253-7041.

Spectroscopy Laboratory

The George Russell Harrison Spectroscopy Laboratory is dedicated to advancing knowledge of the structure and dynamics of atoms and molecules and the properties of liquids and solids, utilizing the techniques of modern spectroscopy. These techniques include the use of lasers, signal processors, computers, and electro-optic devices.

The Spectroscopy Laboratory encourages participation and collaboration among staff members in various disciplines of science and engineering. At present, several departments (principally, Chemistry, Physics, Biology, Electrical Engineering and Computer Science, Nutrition and Food Science, and Health Sciences and Technology) are involved. In addition, scientific visitors from the US and abroad participate in the work of the Laboratory.

Current research areas include high-resolution laser spectroscopy of excited vibrational and electronic molecular levels, CARS studies, kinetics of intermediates in organo-metallic complexes, laser optical pumping of atoms, infrared and optical double resonance experiments, laser saturation spectroscopy, coherent transients, photon echoes, laser-nuclear spectroscopy, superradiance, Rydberg atoms, structural studies of biological molecules using Raman techniques and X-ray diffraction data, technical holography, and applications of lasers in medicine.

Within the Laboratory is the Laser Research Center, supported by a grant from the National Science Foundation. This Center makes available to researchers from various university and industrial research institutions one of the most extensive collections of lasers in the US for spectroscopic research. Research in the Center includes laser chemistry and the non-linear spectroscopy of atoms and molecules; relaxation processes in physical systems; problems in biology and nuclear physics; and engineering applications and technical holography.

Many graduate and undergraduate students perform thesis research in the Laboratory; UROP projects are offered in many areas of laser research.

Further information on the Laboratory may be obtained from the Office of the Director, Professor Michael Feld, Room 6-014, MIT, Cambridge, Massachusetts 02139, (617) 253-7700.

Statistics Center

The Statistics Center offers interdepartmental master's and doctoral degree programs in statistics and helps to coordinate research, teaching, and consulting activities in statistics at MIT. Students considering MIT for graduate study in statistics should seek the advice of the Statistics Center about which department or School would be most appropriate for admission to MIT. Once admitted to a department (or School), students pursue S.M. and Ph.D. programs in statistics in the department or under the general guidance of an interdepartmental committee established through the Dean of the Graduate School. The Statistics Center can also provide assistance in obtaining financial support. (Undergraduates can focus on statistics in a number of departments, particularly Mathematics, Economics, and the Sloan School of Management.)

Usually, S.M. degree programs can be completed in one year by students with backgrounds in linear algebra, probability, and statistics. A thesis is required for the S.M. degree and almost all theses in recent years have made contributions to applied projects. The doctoral programs for students in statistics can be individually planned in collaboration with various MIT departments.

Major theoretical fields of interest at the Statistics Center are pattern recognition and cluster analysis, robust regression, categorical data analysis, statistical computing and graphics, detection of influential data, time series analysis, stochastic control, sequential analysis, Bayesian statistics, risk assessment, and probability theory.

Fields of application have ranged from microbiology and astrophysics to political science, and from the health sciences to the Massachusetts lottery. Departments in which Center members are involved include Mathematics; Electrical Engineering and Computer Science; Earth, Atmospheric, and Planetary Sciences; Economics; Nutrition and Food Science; and the Sloan School of Management.

The statistical consulting service at the Center provides students and faculty the opportunity to collaborate with researchers at MIT and neighboring institutions on projects covering the full range of statistical theory and practice on real problems.
While much of theoretical statistics draws heavily on mathematics, applied statistics is increasingly linked to computer science via numerical analysis, graphics, and the development of expert systems for data analysis. These topics are a part of the rapidly growing field of computational statistics which often forms a basic part of interdepartmental statistics programs.

Further information, including a list of the 60 statistics subjects offered at MIT, may be obtained by contacting the Offices of the Directors, Professor Herman Chernoff, Room E40-107, (617) 253-8721, and Professor Roy Welsch, Room E40-129, 253-8411, MIT, Cambridge, Massachusetts 02139.

Technology Adaptation Program
The Technology Adaptation Program (TAP) is concerned with:

- developing an understanding of the characteristics of technologies that are appropriate to countries in various stages of development;
- identifying criteria for the selection and adaptation of technologies appropriate for use in developing countries;
- understanding the processes by which technological knowledge and skills can be effectively introduced, disseminated, and used in developing nations; and
- determining the long-term and short-term social and economic consequences of importing technologies rather than improving those which are indigenous.

TAP is administered by a Policy Committee which draws its members from the Schools of Engineering, Humanities and Social Science, and the Sloan School of Management. Members of the faculty who have specific research projects under TAP largely come from these Schools.

The MIT/Cairo University Technological Planning Program was initiated in 1976, under TAP auspices, to assist Cairo University in developing capabilities which could contribute to the formulation and implementation of science and technology-related policies, to the end of aiding in the realization of Egyptian development goals.

TAP provides educational and research opportunities for master's candidates who are interested in the transfer and adaptation of the technologies of their own areas of specialization to the needs of developing countries. Students who elect this program submit a proposed program for approval to the TAP Policy Committee. (Specifications are available upon request.) Students' proposed topics also require approval of the TAP Policy Committee, as well as of the departments in which the students are registered.

Students who elect this program should note that the total units required for graduation may be higher than the 66 units minimum required by the Institute.

Students may receive financial support in the form of research assistantships associated with current TAP research projects.

Students interested in working on TAP projects who cannot fulfill all the requirements of the program may be accepted for participation in special cases.

Further information about the program, including a list of current research projects, may be obtained from the Office of the Director, Professor Fred Moavenzadeh, Room E40-251, MIT, Cambridge, Massachusetts 02139, (617) 253-7227.

Technology and Policy (S.M.)
The Technology and Policy Program prepares young men and women for competent leadership in the constructive development of technology. It educates "engineers with a difference," persons with both strong technical foundations and skills in dealing with important social concerns. It is unique in the opportunities it provides to combine a base in technology with skills in identifying, analyzing, and implementing solutions to policy issues.

The curriculum is based on three subjects in each of four areas: 1) advanced competence in a specific technological area of the student's choice; 2) methods of policy analysis such as TPP 21 Engineering Systems Analysis and 15.012 Applied Micro and Macroeconomics; 3) the legal and political context of policy development, and specifically TPP 22J The Policy Making Process; and 4) a core of integrative subjects. Academic credit is routinely granted for comparable studies done elsewhere.

Students determine individual curricula in consultation with their faculty advisors. We expect them to take full advantage of all the subjects available at MIT and, through cross registration, at Harvard. All students take a minimum core of two subjects, TPP 11J and TPP 12J. The program helps students confront policy issues as they really are — complex, difficult, often ill-defined, and full of conflicting values. It is the element that distinguishes this Program from just a set of subjects, and it provides the common ground where students meet to discuss issues of technology and policy. A thesis is required. This is a major analysis in the student's field of interest. Students prepare for this effort by taking TPP 13J Engineering Policy Seminar. Theses frequently are published as reports or professional papers. Many graduates regard the thesis as the most significant part of their education at MIT.

Because clear expression is a practical necessity, students must demonstrate sufficient writing skills before beginning their thesis. New students take a diagnostic written exam in September. A seminar or course in technical writing may be required, depending on the results.

Students with prior interest and capabilities in technology and policy can complete the degree program in one calendar year. Others may need an additional semester.

Students typically obtain part-time jobs to support their education. These are mostly research assistantships on MIT projects that match their areas of specialization, for example, in the Center for Policy Alternatives, and the Energy Laboratory. A number of students will also find it desirable to work in off-campus internships. A limited number of teaching assistantships are also available.
Partial scholarships are offered on the basis of excellence and need. Alumni have endowed an annual Technology and Policy Prize to support outstanding work. Applicants should also apply for fellowships that may be available to them, for example, through the National Science Foundation, professional societies, or other organizations.

Applicants should have a strong basis in technology. Applications are reviewed by the Program and the MIT department corresponding to their particular interests. This process starts January 15 and candidates are notified as soon as possible.

The Program enrolls about 20 students each year. We limit the class to maintain close, collegial relationships between faculty and students, and to provide the best possible integration of Technology and Policy.

The steering committee for the Program consists of faculty members and student representatives from the Departments of Aeronautics and Astronautics, Chemical Engineering, Civil Engineering, Electrical Engineering and Computer Science, Materials Science and Engineering, Mechanical Engineering, Nuclear Engineering, Ocean Engineering, Political Science, and Urban Studies and Planning, as well as from the Center for Policy Alternatives, the Energy Laboratory, and the Program in Science, Technology, and Society.

Further information may be obtained by contacting the Chairman, Professor Richard de Neufville, Room 1-138, MIT, Cambridge, Massachusetts 02139, (617) 253-3621, or the Associate Chairman, Professor Joel Clark, Room 8-413.

Undergraduate Research Opportunities Program (UROP)

The Undergraduate Research Opportunities Program (UROP) provides undergraduates the opportunity to participate with MIT faculty and staff members in a wide range of research activities throughout the Institute. Students may participate in ongoing research or find a faculty sponsor for a self-originated project. The first several pages of the UROP Directory, published each year, give details on how to get started. Students are urged to read this before they embark on their research. Information on some current projects is posted on the UROP bulletin board in the main corridor of the Institute, and in the UROP Office, Room 20B-141. New listings are announced each week in Tech Talk. Further information may be obtained by contacting the staff at the UROP Office, Room 20B-141, or by calling (617) 253-5049.

Students interested in research also may contact various laboratories and centers directly. For information about the opportunities for interdisciplinary research, see the descriptions of the various interdepartmental laboratories, centers, and programs in the UROP Directory and in this chapter of the catalogue.

Undergraduate Seminars

The Undergraduate Seminar Program offers an opportunity for students to interact with faculty members in small, informal class settings. Seminars vary tremendously both in style and topic; some are oriented around small, informal class discussions while others bring in speakers, go out on field trips, or involve extensive laboratory projects. Many of the topics are interdisciplinary, and taught jointly by members of several departments. Others seminar topics are of particular interest to faculty members but are outside of their department's usual scope. Therefore, it is helpful to look through all of the offerings for topics that may be of interest.

For more details about the program, including titles and descriptions of seminars, see the Undergraduate Seminar Booklet issued twice yearly. This publication is available from the Undergraduate Seminar Office, Ms. Peggy Richardson, Room 7-104, MIT, Cambridge, Massachusetts 02139, (617) 253-3621.

Unspecified Degree Programs for Interdisciplinary Study (S.B.)

In a number of departments it is possible to take a less intensive "major," leading to an undergraduate degree which does not specify a professional field. To enroll for such a degree without specification, the student registers in the normal way in the department chosen. The added flexibility of an unspecified degree program, coupled with appropriate advice from the home department and from other departments, can give students a valuable opportunity for interdepartmental study.

Wallace Geophysical Observatory

The George R. Wallace, Jr., Geophysical Observatory is a unique research facility designed to monitor ground motions and to aid in the development and testing of new seismic and other geophysical instrumentation. It is the center of activity for MIT's nine-station network in New England.

The Observatory, located 55 miles north of Boston in Westford, Massachusetts, has a large, multi-room underground vault and a surface control room. The vault has a controlled temperature environment and instrument piers resting directly on the basement granite. The Observatory contains sensitive seismometers and instruments for monitoring ground tilts and the earth's tidal motions. The surface building houses a work area and control and recording instruments, although most of the data are telemetered directly to the Department of Earth, Atmospheric, and Planetary Sciences (Rooms 54-517 and 54-527). The data from the Observatory and the New England seismic network are recorded, analyzed, and displayed by a dedicated HP-1000 computer system.

Data from the Observatory along with the numerous resources of the Department provide a unique facility for undergraduates, graduate students, and staff to pursue research concerning the interior of the earth.

Further information may be obtained by contacting the Director, Professor M. Naft Toksoz, Room 54-518, MIT, Cambridge, Massachusetts 02139, (617) 253-6382.

Women's Studies Program

The Women's Studies Program offers unique opportunities for interdisciplinary study and research for both undergraduate and graduate students. The Program's courses focus on the social, historical, and cultural contributions and perceptions of women, and can provide a Humanities concentration for undergraduates. The curriculum includes both a core subject Introduction to Women's Studies — and a selection of subjects from many departments at the Institute. Special independent study topics and UROP projects can be arranged. The primary objective of Women's Studies is to encourage the reexamination and reinterpretation of existing data, as well as to promote new research about women and gender, in all disciplines, offering new perspectives in fields as diverse as biology, psychology, engineering, and literature. To facilitate interdepartmental research, the Women's Studies Research Room in the Humanities Library offers the MIT community a multidisciplinary resource for the study of women and gender. The Program is described in greater detail in Chapter III of this catalogue.
School of Architecture and Planning

Architecture (Course 4)
Urban Studies and Planning (Course 11)

The first university program in architecture in the United States was begun at MIT in 1865 and the second college program in planning in 1932. The present School of Architecture and Planning continues in the forefront of architecture and planning education, benefiting from the special collaborations fostered in a university of science and technology.

Today the School prepares students for professional careers that respond to the social, aesthetic, and technical demands of a growing variety of clients. The School is particularly concerned with services for communities that traditionally have lacked access to professional help. These goals are nourished by a culturally diverse student body and faculty, recruited with a special emphasis on minorities and women.

Departments and Special Programs

The School consists of the Department of Architecture, the Department of Urban Studies and Planning, and a multidisciplinary research division, the Laboratory of Architecture and Planning. The Departments offer undergraduate, graduate-professional, and doctoral programs in architecture, planning, and visual studies, which prepare students for practice, research, and further study. Two special programs allow mid-career practitioners from minority communities who work in urban and regional development in the US and developing countries to study and pursue independent research during one academic year. In addition, the general institute support for cross-registration at Harvard University gives professional students the opportunity to enrich their education at the Graduate School of Design and the Kennedy School of Government.

Departmental self-sufficiency is balanced by a strong interaction with other academic units at MIT. Several faculty members hold joint appointments in both departments of the School. Others have joint appointments in departments such as Economics, Civil Engineering, and Humanities. Teaching and research in several areas, such as urban economics, building technology, energy, communications, law, operations research, transportation, and the arts, are linked to other parts of the Institute. The most recent collaboration is the newly established joint program for Energy Efficient Buildings and Systems with the School of Engineering and the Energy Laboratory.

International engagements and their relation to educational and professional goals are an important factor in the reach and influence of the School. These include the Special Program in
Urban and Regional Studies (SPURS); the Technology Adaptation Program (TAP) for Egypt; the Aga Khan Program in Islamic Architecture; and teaching and exchange activities in South America, Japan, and China.

Media Laboratory

In the late 1940s MIT pioneered in relating experiments in science and engineering to the arts, which suggested an alliance through visual education of scientists and through the opportunity for artists to be stimulated by the tools and constructs of science and technology. In 1963 innovations in computer systems manipulating spatial data were introduced at MIT; in 1972 the Department of Architecture introduced television-based computer graphics, which resulted in the merger of video with computers.

For a School concerned with the quality of the human environment, an extension of scope to include the media environment has been as reasonable as the extension years ago from the physical to the social environment. The product of that extension is the Media Laboratory, a new research center in the School concerned with drawing together such once discrete disciplines as film, graphics, photography, music, and computer science in combinations made possible by new digital video technologies and by advanced computer applications capable of simultaneously manipulating sound, images, and data. Special emphasis is placed on the design of opportunities that enhance human/machine interaction.

Center for Real Estate Development

Much of what the School does is associated with real estate development. The Department of Architecture educates students who, through their skills in design, give form to real estate development. The Department of Urban Studies and Planning teaches students to plan for and manage the consequences of investment and disinvestment in the urban environment. The research of each Department tries to understand the processes that shape and influence new development.

Recognizing the need to better understand the development process, the School created the Center for Real Estate Development in 1983. The Center sponsors a full agenda of research on issues related to real estate development. It also serves as the home for the Master of Science in Real Estate Development, an interdepartmental degree program that educates students to assume positions of responsibility in both public and private sector development organizations.

Research and Field Experience

The School is also in the forefront of developing types of research, which can become as integral to practice as they are necessary to education. Approximately $3 million of research is being conducted in the School, much of it fostered and administered by the School's Laboratory of Architecture and Planning (LAP), described in Chapter V.

Research has informed course content, curricular structure, student careers and experience, and knowledge of practice. Sponsored research increasingly provides major financial support for students and faculty. Reports produced through research projects are distributed nationally, and a special education program provides opportunities for researchers to present their findings through continuing education courses, symposia, and special institutes. Researchers also have developed a number of collaborative ventures with colleagues in other universities and in government.

Current research reflects the wide spectrum of student and faculty interests. These include studies of reinvestment in urban neighborhoods; the impact of telecommunications policy on human settlement; models for community analysis; the effect of major cutbacks in property taxes on public services; the effect of housing and its environs on special needs groups, including the elderly; passive solar energy systems; computer graphics for design; land use and facilities siting; and multiregional input/output analysis of economic activity and transportation. Housing research is also conducted with the MIT-Harvard Joint Center for Housing Studies.

As research assistants, students not only participate in existing projects but also help to formulate ideas for new proposals. In both architecture and planning, students have had a wide variety of field-related experiences in private and public sector programs. These include programming public services for the City of Cambridge; research assistance to Boston neighborhood organizations; staffing citizen land use planning organizations; advocacy planning and design assistance for citizen groups; and work in design, construction, and planning firms.

Office of the Dean

John de Monchaux, M.Arch.
Professor of Architecture and Urban Planning
Dean

Lois A. Craig, B.A.
Associate Dean

Barbara Lister-James
Assistant to the Dean

Michael Joroff, M.C.P.
Director, Laboratory of Architecture and Planning

Cynthia Ware, B.A.
Communications Coordinator
Department of Architecture

John Randolph Myer, B.Arch.
Professor of Architecture
Head of the Department

Leon Bennett Grosier, Sc.D.
Professor of Structures
Executive Officer

Professors

Stanford Anderson, M.Arch., Ph.D.
Professor of History and Architecture

Julian Beinart, M.C.P., M.Arch.
Professor of Architecture

John de Monchaux, M.Arch.
Professor of Architecture and Planning
Dean, School of Architecture and Planning

N. John Habraken, B.I.
Professor of Architecture

Imre Halasz, Dipl. Arch.
Professor of Architecture

Richard Leacock, D.F.A.
Professor of Cinema

Henry A. Millon, B. Arch., M.Arch., Ph.D.
Professor of History and Architecture (Visiting)

Nicholas Peter Negroponte, M.Arch.
Professor of Media Technology
Director, Media Laboratory

Seymour Aubrey Papert, Ph.D.
Professor of Media Technology

Otto Piene, M.A.
Professor of Visual Design
Director, Center for Advanced Visual Studies

William Lyman Porter, M.Arch., Ph.D.
Professor of Architecture and Planning
Director of the Aga Khan Program for Islamic Architecture, MIT

Robert Ormerod Preusser
Professor of Visual Design

Louis Sauer, M.A.
Professor of Architecture (Visiting)

Maurice Keith Smith, B.Arch.
Professor of Architecture

Jerome Bert Wisner, Ph.D.
Institute Professor
President, Emeritus

Waclaw Piotr Zalewski, D. Tech. Sci.
Professor of Structures

Associate Professors

Stephen Benton, Ph.D.
Associate Professor of Media Technology

Muriel Cooper, B.F.A.
Associate Professor of Visual Studies

Eric Diuhoesch, M.Arch., Ph.D.
Associate Professor of Building Technology

Fernando Domeyko-Perez, Dipl. Arch.
Associate Professor of Architecture

Richard Filipowski, B.A.
Associate Professor of Visual Design

David Hodes Friedman, Ph.D.
Associate Professor of the History of Architecture

Sandra C. Howell, Ph.D.
Associate Professor of Behavioral Science in Architecture

Andrew Lippman, M.S.
Associate Professor of Media Technology

Patrick Purcell, Ph.D.
Associate Professor of Computer Graphics (Visiting)

Robert J. Slattery, M.Arch.
Associate Professor of Architecture

Chester Lee Sprague, M.Arch.
Associate Professor of Architecture

Jan Wampler, M.Arch.
Associate Professor of Architecture

Assistant Professors

Ranko Bon, Ph.D.
Assistant Professor of Economics in Architecture

Harvey J. Bryan, M.Arch.
Assistant Professor of Building Technology

Nabeel Hamdi, Dipl. Arch.
Assistant Professor of Housing Design

Edward Robbins, Ph.D.
Assistant Professor of Anthropology in Architecture

Yasser Tabbaa, Ph.D.
Assistant Professor of the History of Architecture

Aga Khan Development Professor in the History of Islamic Architecture

Anne Wagner, Ph.D.
Assistant Professor of the History of Art

Adjunct Professors

Wayne V. Andersen, Ph.D.
Adjunct Professor of the History of Art

Richard H. Bolt, Ph.D.
Adjunct Professor of Environmental Controls

Giancarlo De Carlo, L.A.
Adjunct Professor of Architecture

Richard Chester Tremaglio, M.Arch.
Adjunct Professor of Architecture

Principal Research Scientist

Richard A. Bolt, Ph.D.

Principal Research Associates

Timothy E. Johnson, S.M.
Ron MacNeil, M.F.A.

Research Associate

Reinhard Goethert, M.Arch.

Lecturers

Nishan Bichajian
Michael Buckley, M.A.A.S.
Glorianna Davenport, M.A.
John Furlong, M.A.
Dennis Frenchman, M.Arch., M.C.P.
Shun Kanda, M.Arch.
Gunter Nitschke, Dipl. Arch.

Technical Instructors

William F. Kelley, B.B.A.
Lee R. Silverman, M.F.A.
Brian Swift, M.F.A.

Administrative Officer

Anne Shepley, B.A.

Assistant to the Head of the Department

Nancy Jones, B.A.
The Department of Architecture includes a number of diverse fields of interest in architecture and the arts. The programs encourage students to combine theoretical interest with tangible application and to consider the social consequences of their work. The diversity of attitudes and working methods in the Department make possible a variety of alternative career paths. Undergraduate and graduate students have the opportunity to structure their own academic programs to suit their special aptitudes and interests within an overall curriculum framework.

The Department offers five degree programs: the Bachelor of Science in Art and Design, the Master of Architecture, the Master of Science in Architecture Studies, the Master of Science in Visual Studies, and the Doctor of Philosophy. The Department is composed of five discipline groups: architectural design; architecture studies; building technology; history, theory, and criticism of architecture and art; and arts and media technology. Students in each degree program are encouraged to take subjects in the different discipline groups.

Architectural design is taught from a broad range of perspectives linking several common concerns: site and context, use and form, building methods and materials, and the role of the architect. Context is considered in terms of existing and historical physical form (natural and constructed) and sociological patterns of use. The role of the architect is less often seen as the sole creator of a completed building than as a participant with user groups, or as a generator of a structure to which users may add or alter over time.

A broad range of architectural design studios is offered. Rather than a single core curriculum, the focus is on a set of design projects of ascending complexity. Introductory studios provide a basic architectural design background and vocabulary and help undergraduates decide whether they want to continue in architecture. The design method strategy provides a range of experiences of form-making in which individual faculty present their particular ways of exploring a design issue. The advanced studios give graduate students the opportunity to sharpen their skills and to develop their own attitudes of form-making. In their theses, students carry through a project of their own from concept through theory and design to a final product.

The School’s new computer center is available to experiment with modeling techniques, graphic representations, design methods, and assistance with the design process itself. In addition, students may participate in research work in these areas.

The stress in Architecture studies is on combining the study and practice of shaping the built environment with research on the built environment, on the forces which mold it, and on the design process itself, and covers such areas as large-scale physical settings, behavioral studies, environmental programming, the form and evaluation of cities, design theory and methodology, decision-making procedures in design, housing and settlement forms in developing countries, and self-help processes. Central to these topics is the role of the user as an active force in the development of environments and the role of the designer as an agent in the process of human habitation.

Building technology includes research and teaching in building structures, construction processes, industrialized building systems, acoustics, energy in buildings, solar architecture, and daylighting. Faculty in the group offer subjects and design studio experiences examining the technical and/or contextual aspects of their fields. Students may then, for example, have the opportunity both to study problems of energy resources and technologies, and to use what they have learned in designing physical environments. Research facilities include the Program for Energy Efficient Buildings and Systems and the MIT Solar Building No. 5.

The history, theory, and criticism of architecture and art group emphasizes ways of developing and organizing concepts as well as understanding the physical and social context of an architect’s and artist’s works. The group is most concerned with the creative process itself, both in understanding the meanings of architect’s and artist’s actions and, more importantly, in being able to contribute directly to analytical and design processes (including work in architectural design studios).

The history of architecture offerings deal with social and physical contexts of the built environment on many scales. While not limited to any particular period of time, they generally focus on contemporary understanding relevant to the basic premises on which architects work. Theory and criticism of architecture serve as the methodological bases for evaluation of the premises, the process, the final product, and the implications (social, formal, and other) of the proposed action and non-action. They study the development of and changes in significant attitudes about architectural works.

The establishment of the Media Laboratory is changing the visual studies group into the arts and media technology group. The current four areas — graphics/imaging, film/video, computer graphics, and spatial imaging — are being augmented by additional areas — learning environments, computer speech, electronic publishing, telecommunications, and electronic music. Visual design and photography for undergraduate students and the offerings in environmental art by the Center for Advanced Visual Studies (described in Chapter V) remain.

Media technology embraces all of the sensory channels which people use to communicate meanings, feelings, and ideas. These include print, graphics, movies, television, and computers, both in their current and future forms. It further encompasses the modern technologies of presentation and display: digital video, electronic hardcopy, speech synthesis and recognition, holography and other 3-D visualizations, all of which can serve as intermediaries between people and the world of information and imagery.
Undergraduate Study

The Department offers two undergraduate courses of study: Course IV, leading to the Bachelor of Science in Art and Design, and Course IV-B, leading to the Bachelor of Science.

Bachelor of Science in Art and Design Course IV

Course IV offers a flexible program for students in four possible areas of concentration: visual arts (including visual design, photography and spatial imaging, the Visible Language Workshop, and film making); architectural design; building technology (including structures, building process, energy systems, and environmental control); and history, theory, and criticism of architecture. Within a broad framework, students develop individual courses of study best suited to their needs and interests.

The requirements for the S.B. in Art and Design curriculum begin with an introductory subject, 4.01 Issues in Architecture, designed to be taken by freshmen and sophomores. The remaining Restricted Electives include beginning work in the arts, architecture and the building process, and the history and social context of art and architecture.

Students should discuss their educational interests and plans with a faculty advisor not later than the beginning of their junior year. The Department has prepared a list of subjects which gives the requirements for each of its four areas of concentration. Each area of concentration provides a variety of subjects among which to choose, as well as an opportunity to get deeply involved in a particular subfield.

Students who plan to continue their studies for the graduate degree, Master of Architecture, must apply for admission to the graduate M.Arch. program. Students who have fulfilled the requirements for the Bachelor of Science in Art and Design normally are able to satisfy the requirements for the M.Arch. in two years if they include in their undergraduate program a sufficient number of professional subjects. This requires careful use of a student's Unrestricted Electives.

Students who intend to continue with graduate studies in the visual arts, building technology, and history, theory, and criticism of architecture should consult with an appropriate faculty member to design a program of study which establishes the basis for graduate study.

Bachelor of Science in Art and Design Course IV

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>11</td>
</tr>
<tr>
<td>Science Distribution Requirement</td>
<td>36</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>12</td>
</tr>
</tbody>
</table>

Departmental Program

| Restricted Electives: at least 53 |

One subject from each of the following six groups:

Group 1 Introductory Subject

- 4.01 Issues in Architecture, 12

Group 2 Design Information

- 4.231 Computers and Graphics, 12
- 4.261 Observing Form in Context, 12; 4.01

Group 3 Environmental Technology

- 4.30 Basic Structural Theory, 12; 8.02, 18.02
- 4.402J Building Construction I, 12

Group 4 History of Art and Architecture

- 4.005 Introduction to the History and Theory of Architecture, 9
- 4.642 Modern Art from Impressionism to Cubism, 9
- 4.645 Selected Topics in Architecture — 1750 to the Present, 9; 4.605
- 4.646 American Landscapes, Towns, and Buildings, 9; 4.605
- 4.651 Modern Art from Cubism to the Present, 9

Group 5 Social Context

- 11.001 Introduction to Urban Design and Development, 12
- 11.002 Introduction to Public Policy Analysis and Government Action, 12
- 11.131 The Urban Neighborhood, 12

Group 6 Arts

- 4.821 Visual Projects I, 9
- 4.823 Form and Design I, 12
- 4.825 Form and Color, 9
- 4.870 Words, Images, Graphics Tools, and Ideas, 12
- 4.921 Creative Photography I, 12
- 4.971 Introduction to Moviemaking, 12

Planned Electives: 72

A coherent set of subjects within one of the following areas of concentration (in addition to a restricted elective in the area): Architectural Design; Building Technology; History, Theory, and Criticism of Architecture; Visual Arts. See Department for details.

Unrestricted Electives 45

Total Units Required for the S.B. Degree 360

Bachelor of Science Course IV-B

Course IV-B is offered for students who find that their basic intellectual commitments are to subjects within the Department of Architecture but whose educational objectives cut across departmental boundaries. These students may, with the approval of the Department, plan a course of study that meets their individual needs and interests while including the fundamental areas within the Department. For example, students might create a coherent program combining subjects in architecture with subjects in urban studies and planning, computer sciences, systems analysis, acoustics, etc.

As early as possible, students should discuss their educational goals, including a list of the restricted, planned, and unrestricted electives selected to achieve these goals.

The Course IV-B curriculum is similar to Course IV, except that students need take only one subject each from five of the six groups shown in the Course IV curriculum, plus a coherent program of planned electives (96 units) leading to a well-defined interdisciplinary goal. Further details may be obtained from the Department.

Students in either program of the Department of Architecture may, upon consultation with a faculty advisor, exercise flexibility in scheduling completion of the General Institute Requirements. It should be emphasized, however, that any program of studies involving postponing first-year physics and mathematics limits the possibilities of transferring easily to (or taking advanced subjects in) those departments that presuppose the completion of most of the General Institute Science Requirements by the end of the sophomore year.

1. Subjects in the fields of Visual Arts and Design, History of Art and Architecture, and Urban Studies used in fulfillment of the Departmental Program may not be used to satisfy the Humanities, Arts, and Social Sciences (HASS) Requirement. Students cannot have the same departmental area of concentration and HASS Field of Concentration.

2. The subject 4.30, if elected, can be used to satisfy part of the Science Distribution Requirement, thereby providing 12 additional units of Unrestricted Electives.
Graduate Study

The Department offers four graduate degree programs — the Master of Architecture, the Master of Science in Visual Studies, the Master of Science in Architecture Studies, and the Doctor of Philosophy.

The Master of Architecture is awarded to students who complete a program, accredited by the National Architectural Accrediting Board, that is an essential step toward licensure for architectural practice.

The Master of Science in Visual Studies program explores arts and media technology; it accepts only students who have already demonstrated a high level of competence and achievement in their field.

The Master of Science in Architecture Studies program stresses research and inquiry in the built environment; the degree is meant both for students who already have their first professional architecture degree and those whose previous education matches the program.

The Ph.D. program is an advanced degree program initiated in the area of History, Theory, and Criticism, but is being expanded to other areas — specifically Design Methodology, and Media Arts and Sciences.

Master of Architecture

The Master of Architecture is awarded upon the satisfactory completion of an approved program of at least 164 units, of which 96 units must be in "A" subjects, and an acceptable thesis. Completion ordinarily requires at least two years of residence beyond the Institute's undergraduate Bachelor of Science in Art and Design. A substantial number of candidates are admitted with a Bachelor's degree from other institutions. Those who have not yet studied in a department of architecture require at least three and one-half years of residence to fulfill the requirements for the M.Arch. degree.

The professional M.Arch. program is seen as being diverse and open-ended with many views of an appropriate theory and practice of architecture available, yet with a general set of shared concerns. These include a commitment to design, a concern for the behavior of people and their participation in creating architecture, an interest in inquiry and criticism, a view of the environment as a living and developing phenomenon, an interest in the relation between the built environment and institutions, a regard for the material processes of building, and a concern for the spatial and temporal contexts of buildings.

Architectural design studios are the center of the M.Arch. degree program. Students must recognize that there are many possible professional roles, and therefore must assume much of the responsibility for structuring their own educational programs. While the professional curriculum specifies that a student study a range of subjects in several interrelated fields, students in the M.Arch. program have a number of choices within each of the studio areas offered in the Department, and have the opportunity to concentrate in one area which they may define.

Master of Science in Visual Studies

This program offers graduate education in visual studies and visual media with emphasis on their technological development, communications applications, and use in and as art. It is open to students from varied backgrounds.

There are six areas of concentration: film/video, centered in the Department's Film Section; environmental art, focusing on teaching and research in the Center for Advanced Visual Studies; graphics design, in the Visible Language Workshop; spatial imaging and holography; computer graphics, based in the Architecture Machine Group; and learning environments and education. In addition, areas in acoustics and audio engineering, photonics, and personal computation are being developed. Students may pursue the degree either in a single area of concentration or in a joint combined area — for example, computerized typography, environmental graphics, or digital video.

The degree is awarded upon completion of an approved program including core subjects from each of the five areas of concentration, and an acceptable thesis. The program requires two full academic years of residency.

Master of Science in Architecture Studies

This program is designed to provide a climate for research and inquiry which stresses the investigative component of understanding the built environment. It is open to students with professional degrees in architecture, or to students with degrees in other fields who demonstrate experience and significant achievement in those fields. The M.Arch.S. degree is awarded upon satisfactory completion of an approved program of study and the completion of an acceptable thesis. The Department requires two full academic years of residency.

The program has a strong interest in the methods of inquiry, development and testing of knowledge, and the building and application of theory as it pertains to the built environment. It allows students to specialize in areas in which they wish to obtain particular abilities. The three major areas of study are:

1) Environmental Design — a joint enterprise of the Department of Architecture and the Department of Urban Studies and Planning. Major interests include environmental design, models and evaluation, policy analysis, behavior and programming, and history and theory.

2) Housing and Settlement Design — which concentrates on issues of human habitation as related to design, and deals with problems in developing countries. Sub-areas of research and teaching are methods, behavior studies, technology and settlement design.

3) Building Systems Design — concentrating on the architectural applications of various aspects of the technology of building and their related systems. Emphasis is on energy systems, industrialized building systems, structural systems, and environmental control in building. Each of these study areas has strong relationships with other departments and centers at the Institute.

About 70 percent of the students in the S.M.Arch.S. program come from outside the United States; this encourages the exchange of ideas across cultures. Students often use a site in their home countries as a base for their theses.
Doctor of Philosophy

The Ph.D. program in Architecture, Art, and Environmental Studies is primarily in the area of History, Theory, and Criticism. It draws upon the unique range of disciplines and professions within the Department of Architecture and emphasizes the study of Western (19th and 20th centuries) and Islamic architecture and urbanism, and methodological issues that inform or link historical and practical work. A small number of Ph.D. candidates may work in close association with the faculty and its research in two areas: studies in architecture and environmental structure; and studies in Islamic architecture and urbanism (part of the Aga Khan Program for Islamic Architecture). In addition, some students are working in the area of design methodology.

Candidates for the program should have a Master’s degree or the equivalent. Previous university work may be in academic or professional schools, and in the history of architecture; some professional experience is recommended also. Candidates with degrees from other institutions are required to be in residence for two academic years.

Each student admitted to the program should consult with one principal professor to work out both a three-person advisory committee and a general plan of study. Progress through the program follows a sequence of subject work, qualifying papers, general examinations in major and minor fields, and dissertation writing and defense. Proficiency in two languages is mandatory. Students are encouraged to take subjects appropriate to their programs in other departments at MIT, and at Harvard and Wellesley; active collaboration with MIT’s gallery and exhibitions program and with other institutions in the Boston-Cambridge area also is possible.

A new experimental program under the Media Laboratory has been announced, which leads to a Ph.D. in Media Technology. Initially there are three areas of concentration: electronic media, learning technology, and computer music. The thrust of this new program is modern information technology serving as a vehicle for human expression, either artistic or intellectual.

Inquiries

Further information concerning undergraduate and graduate academic programs in the Department, admissions, financial aid, and assistantships may be obtained from: Department of Architecture, Room 7-303, MIT, Cambridge, Massachusetts 02139, (617) 253-7791.
Department of Urban Studies and Planning

Gary Hack, M.Arch., M.U.P., Ph.D.
Associate Professor of Urban Studies and Environmental Design
Head of the Department

Lloyd Rodwin, M.P.A., Ph.D.
Ford International Professor Director, Special Program for Urban and Regional Studies (SPURS)

Donald Allen Schon, Ph.D.
Ford Professor of Urban Studies and Education

Lawrence E. Suskind, M.C.P., Ph.D.
Professor of Urban Studies and Planning

Michael Wheeler, J.D., LL.M.
Professor of Law (Visiting)

Professors

Philip David, M.B.A., Ph.D.
Professor of Urban Land Development (Visiting)

John de Monchaux, M.Arch.
Professor of Architecture and Planning
Dean, School of Architecture and Planning

Professors Emeriti

Roland Bradford Greeley, M.C.P.
Professor of Regional Planning, Emeritus

John Tasker Howard, M.C.P.
Professor of City Planning, Emeritus

Philip Barnard Herr, M.C.P.
Adjunct Professor of City Planning

Melvin H. King, M.Ed.
Adjunct Professor of Urban Studies and Planning
Director, Community Fellows Program

Senior Lecturers

Michael Joroff, M.C.P.
Director, Laboratory of Architecture and Planning

Alan Strout, Ph.D.
Lecturers

David L. Birch, D.B.A., Ph.D.
Senior Research Scientist, Laboratory of Architecture and Planning

Belden Daniels, J.D.

Louise Dunlap, Ph.D.

Dennis Frenchman, M.C.P., M.Arch.
Director of Environmental Design

Richard Tabors, Ph.D.

Administrative Officer

Rolf R. Engler, A.S.A.
The Department of Urban Studies and Planning (DUSP) offers several degree and non-degree programs: Bachelor of Science in Planning; Master of City Planning; Doctorate in Urban Studies and Planning; Joint programs with the Departments of Architecture, Civil Engineering, Political Science, and Economics; a Special Program in Urban and Regional Studies (for mid-career professionals from less developed areas); the Community Fellows Program (for mid-career professionals from communities of color in the United States); and special student status for part-time mid-career professionals interested in taking individual courses.

City and regional planners in the US and other parts of the world are involved in a variety of activities aimed at shaping the pattern of human settlements and providing housing, public services, employment opportunities, and other crucial support systems that comprise a decent living environment. Planning encompasses not only a concern for the structure and experience of the built environment, but also a desire to harness the social, economic, political, and technological forces that give meaning to the everyday lives of men and women in residential, work, and recreational settings. Planners operate at the neighborhood, metropolitan, state, or national level, in both the public and private sectors. Their tasks are the same: to help frame the issues and problems which receive attention, to formulate and implement programs and policies responsive to individual and group needs, and to work with and for various communities in allocating both economic and natural resources most efficiently and most equitably.

Planners are often described as "generalists-with-a-specialty." Specialties have been thought of in functional terms (such as housing, transportation, land use, health care) or in terms of the geographic levels at which decision making takes place (neighborhood planning, town planning, regional planning, planning for national development). Subspecialties within the planning field also have been described in terms of the roles that planners are called upon to play, such as manager, designer, regulator, advocate, evaluator, or futurist.

The Department of Urban Studies and Planning seeks to educate professionals and scholars who as practitioners are able to deal with the processes of urban and regional development, environmental planning and design, and public policy analysis and implementation. The Department is committed to educating planners who can advocate the interests of underrepresented constituencies.

A focus on practice and the development of practice-related skills is central to the Department, particularly to students in the professional degree (M.C.P.) program. One means of acquiring these practice-related skills and of integrating them with classroom knowledge is through the Department's fieldwork and internship programs. Through fieldwork, students can acquire competence by working with capable practitioners and then bringing field experiences back into the academic setting for reflection and discussion. Students may work in community organizations or government agencies, or under the direction of faculty members involved in field-based projects for outside clients. Academic credit is awarded according to the time committed. In some cases stipends are related to fieldwork or internship programs.

Specific opportunities for concentration and specialization available to students are included in the descriptions of the degree programs that follow.

During the month of January, the Department of Urban Studies and Planning offers a series of "mini-subjects" in specialized fields not covered by the regular curriculum — unique opportunities provided by the Institute-wide January Independent Activities Period. Some of these are student-organized activities which subsequently have been incorporated into the academic program.

Bachelor of Science in Planning
Course XI — Option 1

The Department of Urban Studies and Planning offers an interdisciplinary preprofessional program designed to prepare students for careers as planners, analysts, advisors, and managers in either the public or private sectors. Course work stresses knowledge and skills for: 1) defining and responding to community needs, 2) evaluating and designing public policies and programs, and 3) allocating resources in an efficient and equitable manner.

The core of the program provides basic knowledge of community and environmental systems; the social science concepts used to describe them; and the methods and techniques with which they can be analyzed, planned, and changed. Students begin with one introductory subject linked to either the design or policy side of planning, plus three social science subjects introducing basic concepts from the disciplines of sociology, political science, and economics. The two-subject sequence in planning and applied social research then builds on these introductory subjects to develop skills in practical problem solving. Students are also expected to sharpen their analytic skills through both the required statistics subject and the laboratory.

Student participation in departmental research and public sector internships is an important part of the program. Faculty members will help students formulate, design, and undertake a personal project synthesizing what they have learned. The project may involve a focused attempt at analysis, or a report on a problem-solving experience accomplished through a fieldwork assignment or the result of a workshop.

Students are free to develop their own specializations in consultation with their advisors or may select one of the three areas suggested by the Department:

Environmental Planning serves students seeking careers in managing and analyzing the quality of the environment. Students may subsequently become specialists in planning, law, engineering, or other "environmental professions" such as landscape architecture, water resource management, and air pollution control. This specialization examines the form and function of natural and urban systems, techniques for describing and evaluating environmental change, approaches to analyzing and implementing environmental policy, and mechanisms for assessing the choices posed by the environmental impacts of technological advances.
Neighborhood and Community Planning emphasizes the study of the built environment; and techniques of describing, evaluating, and guiding spatial and physical change. Students learn about interactions between communities and the people who inhabit them. They acquire skills in defining needs and goals, in assessing alternative development patterns and policies, and methods for implementing planned changes in urban areas. The specialization relates economic and political aspects of development to planning methods and theory.

Public Policy, Urban Management, and the Law focuses on the nature of public institutions, the processes of policy formation, analysis and implementation, and research and management techniques for planning and executing public policy. Subjects examine factors that influence public choices — political and economic interests, social structure, and value considerations. Fieldwork and internship subjects give students experience which helps develop skills in analysis and management. This specialization prepares students for subsequent work in government, public administration and management, and law.

Bachelor of Science in Planning
Course XI—Option 1

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>The Humanities, Arts, and Social Sciences Requirement can be satisfied by subjects in the Departmental Program, plus three Humanities Distribution subjects totaling</td>
<td>27</td>
</tr>
<tr>
<td>The Science Distribution Requirement can be satisfied by 18.057 in the Departmental Program, plus appropriate subjects totaling</td>
<td>24</td>
</tr>
<tr>
<td>The Laboratory Requirement can be satisfied by 11.188 in the Departmental Program.</td>
<td></td>
</tr>
</tbody>
</table>

Departmental Program

Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)

Required Subjects: 100-114

Group I: Introduction
One of the following two subjects:
11.001 Introduction to Urban Design and Development, 12
11.002 Introduction to Public Policy Analysis and Government Action, 12

Group II: Social Science
11.005 Urban Social Structure and Process, 9
11.007J Politics and Public Policy, 12
14.01 Economic Principles I, 9

Group III: Planning and Applied Social Research
11.003 Planning and Applied Social Research I, 12; 11.007J, 14.01
11.004 Planning and Applied Social Research II, 12; 11.003
11.188 Laboratory in Research Methods, 12
18.057 Introduction to Applied Statistics, 12

Group IV: Senior Project
Senior Project (10-24 units)

Planned Electives: at least 45

A coherent selection of five subjects in planning and applied social science developed in consultation with the student's departmental advisor. The student must include at least one additional social science subject such as 11.008J Urban Economics or 11.014J American Urban History II, at least 12 units of approved internship, fieldwork, or workshop experience; and at least three subjects comprising an approved area of specialization (described in text).

Unrestricted Electives 104-90

Total Units Required for the S.B. Degree 360

Bachelor of Science in Planning
Course XI — Option 2

This option, in cooperation with Civil Engineering, is designed for students who want to combine the skills of the two fields. Such programs concentrate, for example, on environmental engineering, on transportation systems related to land development, or on constructed facilities and environmental planning. Other combinations are possible.

The program is administered by a committee of faculty representing the two departments. Applications are made directly to this committee through either department. The committee advises students on the choice of courses to meet their study objectives.

This is a combined degree. The diploma names only the S.B. in Planning, but a letter provided upon graduation by the Combined Program Committee confirms the student's participation in the program.

1 A computer-related subject such as 1.00 Introduction to Computers and Engineering Problem Solving is suggested as one subject.
Bachelor of Science in Planning Course XI—Option 2

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>The Humanities, Arts, and Social Sciences Requirement, can be satisfied by 1.01J in the Departmental Program, plus appropriate subjects totaling 1.00 and 18.03 in the Departmental Program, plus appropriate subjects totaling 12</td>
<td>63</td>
</tr>
<tr>
<td>The Science Distribution Requirement can be satisfied by 1.00 and 18.03 in the Departmental Program, plus appropriate subjects totaling</td>
<td>12</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>12</td>
</tr>
</tbody>
</table>

Departmental Program

Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 Introduction to Computers and Engineering Problem Solving, 12</td>
<td></td>
</tr>
<tr>
<td>1.01J Engineering Aspects of Economic Analysis, 12</td>
<td></td>
</tr>
<tr>
<td>1.02 Civil Engineering Systems Analysis I, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>1.03 Civil Engineering Systems Analysis II, 12; 1.02, 18.03</td>
<td></td>
</tr>
</tbody>
</table>

One of the following two subjects:

11.001 Introduction to Urban Design and Development, 12	
11.002 Introduction to Public Policy Analysis and Government Action, 12	
plus 18.03 Differential Equations, 12; 18.02	

Planned Electives: at least 72

Including:

- Subjects which assure breadth and depth in the area of specialization (at least 18 units)
- Civil Engineering subjects (at least 18 units)
- A special studies project or thesis which requires a synthesis of knowledge within the scope of the joint program (at least 12 units)

Unrestricted Electives at least 60

Total Units Required for the B.S. Degree 360

Bachelor of Science in Planning Course XI — Option 3

Urban and Regional Planning in Developing Countries

This option provides training in urban studies and planning in the setting of developing countries. It is designed particularly for those students who come from developing countries or who are preparing to work in such places.

Students electing this option must take one of the two introductory subjects offered by the Department, the Urban Studies laboratory, and the thesis; and a set of subjects in issues of regional development, and the politics, economics, and social aspects of development. Electives are chosen in conference with the student’s advisor and are intended to develop a basic competence in analysis and planning in some specific areas.

The major problem area foci available are housing, transportation, and urban policy, but arrangements can be made to combine work in other departments such as Architecture, Civil Engineering, Economics, or Political Science.

Five-Year S.B.-M.C.P. Option

MIT undergraduate planning majors may apply for admission to the Department’s Master in City Planning (M.C.P.) Program at the end of their junior year. Students accepted into the five-year program are exempted from the undergraduate thesis requirement and receive both the Bachelor of Science and the Master in City Planning at the end of five years. Admission is limited to those undergraduates who have demonstrated exceptional professional promise. More information on the five-year program can be obtained from the Director of the Undergraduate Urban Studies Program or the Chairman of the M.C.P. Committee.

The Department of Urban Studies and Planning offers graduate work leading to the Master in City Planning and the Doctor of Philosophy. The Course is open to students with varying backgrounds. Urban studies, environmental studies, architecture, political science, civil engineering, economics, sociology, law, management, geography, and public administration all offer suitable preparation. Applicants from other fields are also accepted. Undergraduate preparation for urban studies and planning usually differs from that required for scientific degrees at MIT.

Further Information concerning academic programs in the Department, admissions, and financial aid may be obtained from the Graduate Admissions Secretary, Room 7-338, MIT (617) 253-2024.

Master in City Planning

The basic professional degree in the planning field is the Master in City Planning (M.C.P.). The Department of Urban Studies and Planning provides graduate education for men and women who assume professional roles in public and private agencies, in the United States and abroad. The Department seeks to provide M.C.P. students with the skills and specialized knowledge needed to fill traditional as well as emerging planning roles.

The two-year M.C.P. Program emphasizes the mastery of the tools necessary for effective practice and is therefore distinct from liberal arts programs in urban affairs. An intensive course of study stresses skills for policy analysis and institutional intervention. The Master’s Program is recognized by the American Planning Association.

The M.C.P. program offers professional training mainly within the context of the institutional processes and cultural values of more developed countries, and is described in the following paragraphs. For those students from developing areas of the world or for those with a primary interest in such areas, a modified option is available, summarized in the subsequent section on Master in City Planning for Developing Areas. Because the M.C.P./IDA program has a departmental admissions process which explicitly takes into account educational backgrounds and professional experience acquired abroad, applicants must specify interest in the M.C.P./Developing Areas option on their application forms if they wish to be admitted to that program.

A student’s plan of study in the M.C.P. program is set forth in a program statement developed jointly by the student and faculty advisor. The program statement describes the purposes and goals of study, the proposed schedule of subjects, the manner in which

1. Up to 27 additional units of unrestricted electives may be obtained if three of the planned electives in the Departmental Program are designated as the student’s Field of Concentration.

2. Suggested subject — 11.188
competence in a specialization is developed, and an indication of a possible thesis project topic. The program statement is submitted at the end of the first semester of study to the M.C.P. Committee, which monitors each student’s progress.

Degree Requirements. Students are expected to take a minimum of 30 credit units each term (about three subjects) or a minimum of 120 total units, in addition to the thesis.

The Professional Core. Three subjects, taught in conjunction with each other during the student’s first term in the Department, constitute a “core experience” which we view as central to the professional program. The core subjects are:

It is possible to test out of 11.210 and 11.220, (not 11.200); the exams also serve to diagnose students’ own strengths and weaknesses.

M.C.P. students select an area of specialization by the end of the first semester, tailored to individual students’ interests. Specializations at the M.C.P. level include:

Environmental Design involves conceptualizing and guiding changes in the spatial environment. Work in this area at MIT involves acquiring knowledge about the interactions between people and the settings they inhabit; understanding the historical evolution of current forms of settlement; learning methods for analyzing, programming, designing, and implementing environmental change; anticipating and coping with the impacts of changes in the form and functioning of human settlements; and developing processes for regulating and managing environments over time.

Environmental Planning and Policy emphasizes the study of the legal, institutional, and economic tools by which society conserves and manages its environmental resources. Substantive areas of concern include energy facility siting, pollution control, land use, growth management, and coastal zone management. Students examine the interactions between built and natural systems, techniques for describing and evaluating changes in environmental quality, approaches to environmental policy analysis, and mechanisms for assessing the choices posed by the environmental impacts of new technology.

Neighborhood and Community Development integrates economic, social, and political theories of development with planning methods. Emphasis is on community planning, including the location and organization of community services and facilities; the impact of housing, capital, and labor markets on the operation of the local economy; strategies for intervening in neighborhood income and employment structures; analysis of current and alternative policies toward neighborhoods; and the development of new techniques for defining community needs, assessing alternative policies, and implementing planned change.

Regional Economic Development involves the study of economic growth and locational change. Emphasis is on the production and distribution of goods and services; job creation and employment processes; development finance, trade, migration, and capital flows; techniques for analyzing regional development; and the evaluation of domestic, foreign, and international regional economic policies. Currently, special attention is paid to domestic issues and the application of regional input-output techniques.

Housing and Real Estate Development focuses on the planning and management of urban development, and especially on the design, location, and financing of housing. Emphasis is on analysis of the financial dimensions of real estate, public policies that affect housing conditions and private development, incentives in the development sector, land use regulations, and assessment of markets and housing needs. Public-private partnerships for real estate development construction issues, and the operation of financial markets are other important subjects. Students may elect to pursue subjects offered as part of the Real Estate Development Program, which is described in Chapter V of this catalogue.

Teaching and research in Transportation Planning take place in several departments at MIT. Coordination is provided by the Center for Transportation Studies described in Chapter V. Topics of special interest include transportation systems analysis, transportation policy studies, transportation technology assessment, and the management of transportation enterprise. A number of faculty members and students are interested in the relationship between transportation and particular problems, such as regional development, urbanization, and the pricing of commodities. Work spans developed and less developed countries.

All students are required to submit a thesis on a topic of their choice. The Department encourages M.C.P. students to avoid the traditional perception of the thesis as a “minidissertation,” and to think instead of a client-oriented, professional document, which bridges academic and professional concerns. While most of the thesis work occurs during the last semester of the second year, students are urged to begin the process of defining a thesis topic early in the second year.

Students in the M.C.P. Program are encouraged to integrate fieldwork and internships with academic course work. The Department provides a variety of individual and group field placements involving varying degrees of faculty participation and supervision. Academic credit is awarded for field experience, although some students choose instead to participate in the work-study financial aid program. The Department also sponsors a variety of seminars in which students have an opportunity to reflect on their field experiences.

The HUD Intern Program, a special federally funded program for minority M.C.P. students, provides tuition and fieldwork placements in public and nonprofit agencies.

Master of City Planning/Developing Areas Option

The requirements for this professional degree program are similar to the regular M.C.P. program. However, while the core and specialized subjects of the regular program tend to emphasize practice in developed countries, the M.C.P./DA program places greater weight upon cultural and institutional comparisons and on the planning skills for regional and area growth and development in Asia, the Middle East, Africa, Latin America, and the Caribbean region. Students with an interest in the development problems of disadvantaged regions in the United States, Canada, Europe, and Japan should apply to the regular M.C.P. program.

As an alternative to the core subject, 11.200 Planning and Institutional Processes, students in the M.C.P./DA option are required to take 11.205 Comparative Planning and Institutions, which stresses the role of institutions in shaping planning processes in third world countries. Students may test out of the other two required core subjects, 11.210, and 11.220, as described earlier. For some specializations under the M.C.P./DA option (indicated by a * in the following paragraph), additional economics or quantitative methods courses may be required after review of the student’s prior course work and diagnostic test results.

Possibilities for specialization under the M.C.P./DA option include: Planning Process and Implementation, National and Sub...
National Area Development Problems and Policy, Regional Economic Theory and Planning,* Transportation and Urban Infrastructure,* Housing Problems and Policy, Urban Settlement Planning, and Urban Economics and Public Finance.* It is also possible to construct specializations in environmental design, real estate, and land management.

Simultaneous Master’s Degrees in City Planning and Architecture

Students who have been admitted to either the Department of Urban Studies and Planning or the Department of Architecture are invited to propose programs for joint work in the two fields leading to degrees in both fields. Degree combinations may be M.C.P.-M.Arch. or M.C.P.-S.M.Arch. Program proposals must be made prior to the student’s final academic year in the first degree program and are considered during the spring admissions process. Normally, students are expected to meet the core requirements of both degrees, but may submit a joint thesis and count some subjects completed for one degree towards the other, thus decreasing the overall time required for the two degrees.

Double degree programs may include an innovative combination of work in any of the fields of specialization of the two departments. They may represent preparation for professional roles which bridge the two fields or the definition of new roles which are needed but not yet defined. Students pursuing dual degrees work with advisors in both departments.

Simultaneous Master’s Degrees in City Planning and Transportation

Students who have been admitted to study for the Master of City Planning or the Master of Science in Transportation are invited to propose programs for joint work leading to Master’s degrees in both fields. The details of this program are described in Chapter V under the Center for Transportation Studies.

Simultaneous Master’s Degrees in City Planning and Real Estate Development

Students who have been admitted to the Master of City Planning Program may propose programs which include as well all of the required subjects for the Master of Science in Real Estate Development. Information on this program is given under the School of Architecture and Planning at the beginning of this chapter. Students may submit a joint thesis and count some subjects completed for one degree toward the other, thereby decreasing the overall time required for the two degrees.

Doctor of Philosophy

Students seeking research or teaching careers in planning or urban studies may apply for admission to the doctoral program. Admission requirements are substantially the same as for the Master’s degree; however, more emphasis is placed on academic preparation in the student’s proposed area of specialization. We do not require a M.C.P. or equivalent for admission for Ph.D. studies.

The doctoral program emphasizes the role of knowledge acquired through research in the formulation of public policy, the development of fundamental research competence, and flexibility in the exploration of questions which no single discipline can address. Students work under the mentorship of faculty advisors. They may center their work on any field where there is faculty expertise. Some current faculty research involvements include: housing and economic development; land use and environmental policy; formal models in planning, regulation, and evaluation; community change and neighborhood quality; land development policy in developing countries; informal service networks among the low-income elderly; the nature of planning practice; public-private relationships in development; and infrastructure rehabilitation.

After successful completion of a required first-year doctoral seminar, a subject covering qualitative and quantitative methods of research, and general examinations, each Ph.D. candidate must prepare a written dissertation evidencing the capacity to do independent research. To be eligible for financial aid, students in the Ph.D. program must be registered for at least 30 credit units each term.

Students must take oral and written examinations in three fields: a broad intellectual discipline (urban economics, urban history, environmental design, institutional analysis); an area to which this is applied (infrastructure planning, transportation planning, settlement design, housing, economic development); and a specific subject within this area in which the student is likely to center his or her thesis.

Doctoral candidates usually require at least two terms of study in residence before taking their examinations and beginning their dissertations, although the process may require up to six terms, depending on prior preparation. The Ph.D. requires completion of at least 180 credit units. Previous work at MIT or elsewhere may count toward the degree. The general requirements for the Ph.D. are specified in Chapter IV of this catalogue.

Interested and qualified students can undertake joint doctoral programs with the Department of Political Science or the Department of Economics. Doctoral students in urban studies may be associated with the research program of the MIT-Harvard University Joint Center for Urban Studies or the School’s Laboratory of Architecture and Planning.

Non-degree Programs

A limited number of non-degree students are admitted to the Department each term. This special student status is especially designed for mid-career professionals interested in developing specialized skills, but it also is available to others.

Every year 10 to 12 women and men from various parts of the United States are selected to participate in the Community Fellows Program, a 10-month non-degree program which seeks to expose the Fellows to a range of political and ideological positions bearing on the existence of people of color in America and the development of their communities. The Program promotes the belief that people of color in America cannot achieve maximal economic and political development without the sharing and/or pooling of their talents, skills, and resources.

The Special Program for Urban and Regional Studies of Developing Areas (SPURS) provides an opportunity for a small number of mid-career professionals to spend a year at MIT studying the problems of urban and regional change within a broad context of national development. The majority of students are from developing countries, and SPURS offers participants the opportunity to work with people interested in similar problems.

Further information on these non-degree programs is available from the Department.
In this age of accelerating technological advance coupled with increasingly scarce and expensive resources, the profession of engineering is occupying an increasingly important role, both in creating the complex systems society needs and wants and in insuring that these systems meet societal goals for the human environment. Never have the challenges and opportunities for careers in engineering been more exciting or more promising than they are today.

Engineering is a creative profession concerned with developing and applying scientific knowledge and technology to meet societal needs within physical, economic, human, political, legal, and cultural constraints.

The growing influence of technology on all the functions of society such as energy and natural resource production, manufacturing and materials processing, health care and human rehabilitation, information, education, defense, construction, and transportation have created a large demand for engineering graduates, not only to enter the professional practice of engineering, but to bring the strengths of an engineering education to related fields such as law, medicine, management, and government.

The primary objectives of the School of Engineering at MIT are to educate men and women so they can become leaders in industry, government, and educational institutions; to advance the knowledge base of the engineering professions; and to influence the future directions of engineering education and practice.

The educational programs in the School emphasize understanding of fundamental principles; facility with experimental, computational, and analytical methods; development of skill in the creative processes of engineering such as design; and the development of a self-confidence and a versatility of mind which prepare the individual for a lifetime of learning and professional growth.

The academic departments in the School provide the primary homes for faculty, students, and degree programs and provide continuity and stability for the basic engineering disciplines. However, the departments increasingly share common interests in the broad areas of application to which their individual disciplines and technologies apply. Among the major applications of concern in most of the engineering departments are: energy supply, conversion, and conservation; transportation (air and space, ocean, urban, rail, and automotive); communication and information processing (including computer design and utilization); manufacturing and processing;
construction; materials and the extraction and processing of natural resources; environmental issues; and biomedical engineering and biotechnology. The approximately 35 interdepartmental centers, laboratories, and programs in which the School is involved provide the mechanisms and facilities for faculty and students to undertake collaborative research and engage in educational programs dealing with these and other interdisciplinary applications of importance to society. Many of these are described in Chapter V.

Through its departments and various interdepartmental groups the School of Engineering offers a wide variety of educational programs. Large numbers of undergraduate students often enroll in some graduate subjects, and all students are strongly encouraged to participate in a variety of research, engineering applications, and public service projects. Together, these activities and interactions provide a rich educational experience.

The School of Engineering offers formal graduate degree programs in both the departmental areas and a number of interdepartmental areas including: Biomedical Engineering, Environmental Studies, Instrumentation, Operations Research, Materials, Mineral Resources Engineering and Management, Technology and Policy, and Management of Technology. In addition, numerous other interdepartmental opportunities exist at both the undergraduate and graduate levels. With the faculty and resources of all the departments available, the student is able to develop a program that satisfies his or her own intellectual and professional objectives. The student interested in an interdepartmental program will find it helpful to study the departmental descriptions as well as to read the specific sections in Chapter V covering interdepartmental opportunities that combine disciplines from MIT's four other Schools with those of the School of Engineering.

Undergraduate degrees are awarded by the departments of the School but can embrace several interdepartmental fields as well. Several departments also offer "undesignated" degrees which lead to the Bachelor of Science without departmental designation. The curricula for these programs offer students opportunities to pursue programs of study which are broader than could be accommodated within a normal four-year departmental program.

Most undergraduate departmental degree programs in the School are accredited by the Accreditation Board for Engineering and Technology. However, given their more general nature, accreditation has not been sought for any undesignated degree programs. Holders of an accredited-program degree can generally take examinations for professional registration within a normal four-year period of time. An accredited degree may be required for certain jobs. As the situation varies markedly from field to field, students should discuss the question of accreditation with their advisor when considering undesignated degree programs.

For undergraduates the first-year curriculum encompasses study of physics, chemistry or biology, mathematics, and humanities/social sciences while still offering students many opportunities to make contact with engineering through undergraduate seminars, research opportunities, and elective subjects. In the second year, students typically continue these studies with subjects leading toward the fulfillment of the Science Distribution, the Laboratory, and the Humanities, Arts, and Social Sciences requirements. An undergraduate student normally becomes affiliated with a particular department as early as the beginning of the sophomore year, and from that time on works closely with an advisor from that department or program. Alternatively, a student may elect to delay this choice until the start of the junior year without necessarily delaying graduation beyond four years.

However, a student with an interest in engineering is encouraged to become involved with one of the engineering departments even during the freshman year, for example, through the Undergraduate Research Opportunities Program or the Undergraduate Seminar Program.

Many opportunities exist for individual initiatives. For example, significant numbers of students find it possible to combine their primary undergraduate degree with a second undergraduate degree in another area, such as management, political science, economics, one of the sciences, or another area of engineering. Others organize their programs so as to receive undergraduate and graduate degrees simultaneously. Completion of the undergraduate degree requirements in less than four years is also possible in some cases.

The School also offers an extensive program in continuing education through the Center for Advanced Engineering Study. Its goal is to improve the capabilities and effectiveness of practicing engineers. Priority is given to advancing the arts and sciences of applications, rather than remedial instruction, in both technical and managerial-technical areas. Further details on this interdepartmental program may be found in Chapter V.

The Engineering Internship Program is nationally recognized for its excellence. It combines traditional on-campus academic programs with off-campus work experience in industry and government. Such experience can be an important aspect of a sound engineering education and can also help students make more informed choices among the on-campus educational offerings, and obtain a better understanding of career opportunities available to them after graduation.

The Engineering Internship Program is similar to the cooperative program in the Department of Electrical Engineering and Computer Science (Course VI-A).

Emphasis is placed on ensuring that students in the program are placed in rewarding "real-world" company assignments that extend the learning experience into areas that are not available at MIT. There is extensive faculty participation and advising in both the on- and off-campus components of the program.

The Engineering Internship Program is designed principally as a joint undergraduate and graduate program that leads to the simultaneous award of the S.B. and S.M. in an engineering department upon successful completion of all degree requirements.

Programs have been established in the Departments of Aeronautics and Astronautics (XVI-C), Civil Engineering (I), Electrical Engineering and Computer Science (VI), Materials Science and Engineering (II-B), Mechanical Engineering (II-B), Nuclear Engineering (XXII-A), and Ocean Engineering (XIII-C).

Program Description

The following general description is typical of most participating departments. Please see the listing in the appropriate department for unique features of each program.

Students normally enter the program in the summer after their sophomore year at MIT. Sophomores in good standing in the School of Engineering are eligible to apply for the program and must be selected by a participating company during the on-campus interview process.

The program consists of three work assignments at the same industrial firm or government agency. Work assignments of three months' duration each occur after the student's second year at MIT and one after the third year. During the first term of the fourth year, a student applies to the department for admission into the graduate program. For those students who are accepted to the grad-
School-Wide Electives

The School of Engineering offers a set of School-Wide subjects, each of which is of interest to students from a number of departments in the School. A School-Wide subject may: integrate knowledge from several disciplines and illustrate the commonality of the intellectual underpinnings of the departments in the School of Engineering; be at the interface between the academic program of the School of Engineering and the programs of other Schools at MIT; be a service subject to engineering students and other students; and/or be germane to many engineering students, without being central to any one departmental program. A list of current School-Wide Electives follows. Please note that registration for these subjects takes place through one of the departmental numbers. Subject descriptions may be found at the end of the subject description chapter of this catalogue.

Computer Models of Physical and Engineering Systems U(2) SD
1.12, 2.101, 3.05, 10.11, 13.51, 16.008, 22.006

Defense and Arms Control Issues U(2)
6.934, 13.91, 16.994, 17.465, 22.003

Engineering Risk-Benefit Analysis (A) G(2)
1.155, 2.943, 3.577, 6.938, 10.816, 13.621, 16.794, 22.82

Engineering Systems Analysis (A) G(1)
1.146, 2.192, 3.56, 13.62, 16.784, 22.821, TPP 21

Entrepreneurship G(2)
2.942, 3.566, 6.936, 10.801, 13.78, 16.672, 22.86

Introduction to Technology and Law U(1)
1.165, 2.998, 10.803, 13.97, 16.792, 22.085

Inventions and Patents U(1)
3.172, 6.901, 16.673, 22.094

Management in Engineering U(1)
2.96, 6.930, 10.806, 13.52, 16.993, 22.002

Technology of Nuclear Weapons and Arms Control G(1)
6.932, 13.93, 16.995, 17.466, 22.841

Office of the Dean
Gerald Loomis Wilson, Sc.D.
Vannevar Bush Professor
Professor of Electrical and Mechanical Engineering
Dean

Herbert Heath Richardson, Sc.D.
Professor of Mechanical Engineering
Associate Dean

Eric Johnson, S.B., M.S.
Assistant Dean for Resource Development

Donna R. Savicki, B.S., M.S.
Assistant Dean for Administration

John Ronald Martuccelli, S.M.
Director, Engineering Internship Program

School Professors Without Departmental Affiliation
Judah Leon Schwartz, Ph.D.
Professor of Engineering Science and Education

Myron Tribus, Ph.D.
Professor of Engineering
Director, Center for Advanced Engineering Study

Nicholas A. Ashford, Ph.D.
Associate Professor of Technology and Policy
Director, Center for Policy Alternatives

Lawrence L. Bucciarelli, Ph.D.
Associate Professor of Engineering and Technology Studies

James M. Utterback, Ph.D.
Associate Professor of Engineering
Director, Industrial Liaison Program

Professor Emeritus
Alfred Adolf Heinrich Keil, Dr. rer. nat.
Professor of Ocean Engineering, Emeritus
Ford Professor of Engineering, Emeritus
Department of Aeronautics and Astronautics

Jack Leo Kerrebrock, Ph.D.
Richard Cockburn Macaulay,
Professor of Aeronautics and Astronautics
Head of the Department

Jean François Louis, Ph.D.
Professor of Aeronautics and Astronautics

James W. Mar, Sc.D.
Jerome Clarke Hunsaker
Professor of Aerospace Education

Winston Roscoe Markey, Sc.D.
Professor of Aeronautics and Astronautics

James Elliot McCune, Ph.D.
Professor of Aeronautics and Astronautics

Rene Harcourt Miller, M.A.
H. N. Slater Professor of Flight Transportation

Earl Morton Murman, Ph.D.
Professor of Aeronautics and Astronautics

Amedeo Rodolfo Odori, Ph.D.
Professor of Aeronautics and Astronautics and Civil Engineering

Martin L. G. Oldfield, D.Phil.
Professor of Aeronautics and Astronautics (Visiting)

Theodore Hsueh-Huang Pian, Sc.D.
Professor of Aeronautics and Astronautics

Robert Warren Simpson, Ph.D.
Professor of Aeronautics and Astronautics

Edward Story Taylor, S.B.
Professor of Flight Propulsion, Emeritus
Senior Lecturer

Leon Trilling, Ph.D.
Professor of Aeronautics and Astronautics

Wallace Earl Vander Velde, Sc.D.
Professor of Aeronautics and Astronautics

Harold Yehuda Wachman, Ph.D.
Professor of Aeronautics and Astronautics

Harry Philip Whitaker, S.M.
Professor of Aeronautics and Astronautics
Emeritus
Senior Lecturer

Sheila Evans Widnall, Sc.D.
Professor of Aeronautics and Astronautics

Adjunct Professors

Richard Horace Battin, Ph.D.
Adjunct Professor of Aeronautics and Astronautics

Rudrapatina V. Ramnath, Ph.D.
Adjunct Professor of Aeronautics and Astronautics

Senior Lecturers

Saul Sigmond Abarbanel, Ph.D.
Raymond Lewis Biplinghoff,
Dr.Sc.Techn.
Charles Gerald Cary
William Reed Hawthorne, Sc.D.
Donald John Jordan, B.S.
Robert C. Seaman, Jr., Sc.D.
John Regnier Wiley, S.B.

Lecturers

Philip Nathaniel Bowditch, S.B.
Paul Jon Cefola, Ph.D.
Philip Kenyon Chapman, Sc.D.
John Jacob Deyel, Jr., Sc.D.
Donald Charles Fraser, Sc.D.
John Hovorka, Sc.D.
Henry Herbert Kolm, Ph.D.
Stephen James Madden, Jr., Ph.D.
John Stanley Sinkiewicz, B.S.
Nawal Koshore Taneja, Ph.D.
John Pascual Vinti, Sc.D.
Joseph Yannon, S.B.

Technical Instructors

Robert Lee Renshaw, B.S.E.E.
Allan Ralph Shaw
Edward Donald Weiner

Administrative Officer

Helen Robbins Raine

Senior Research Engineer

Charles McMaster Oman, Ph.D.

Research Associates

Robert David Bruen, M.S.
Robert Haines, M.S.
Alan Nataf, Ph.D.
Choon Soo Tan, Ph.D.

Research Engineers

Raymond Anthony Ausrotas, M.S.
Frank Herman Durgin, E.A.A.
John Demitrios Pararas, Ph.D.

Postdoctoral Associates

Hyoung-Woo Shin, Ph.D.
Jean-Jacques Slotine, Ph.D.
The objectives of the Department of Aeronautics and Astronautics are to provide broad training in the philosophy, approach, and disciplines of aerospace engineering, and to conduct research at the forefronts of a wide range of technologies critical to the future development of aerospace.

The aerospace community is unusual in its emphasis on advanced technology, and in its responsibility for large complex vehicles and systems which demand uniform excellence in engineering and management. It continually seeks to advance basic understanding of a wide range of physical phenomena, to conceive new devices and systems based on this understanding, and to carry them through the development process to practical use. It encompasses a wide range of talent, from basic researchers to managers of organizations employing thousands of engineers.

The MIT Department of Aeronautics and Astronautics is equally unusual in its commitment to providing education for and access to this broad range of opportunities in aerospace engineering. Its success in this endeavor is indicated by the large numbers of its alumni who are senior managers in government and in major aerospace firms, or in the forefront of basic research in the engineering sciences. The extensive involvement of its faculty with government and industry is a further measure of the Department's central role in the aerospace community.

The aerospace vehicle — be it a helicopter, commercial transport, satellite, or space shuttle — provides a focus for many aspects of aerospace engineering with which the Department deals. Throughout its teaching and research activities, the vehicles and the transportation systems of which they are key elements motivate and coordinate the instruction and research. The faculty is also alert to the applications of aerospace-derived technologies to other than aerospace uses, resulting in a myriad of couplings to the scientific and engineering research communities.

At the undergraduate level, the Department seeks to provide a broad introduction to aerospace engineering, together with thorough basic training in all of the disciplines critical to aerospace. The departmental program comprises: 1) Unified Engineering, an introductory subject taught cooperatively by a number of senior faculty members, covering all of the basic disciplines in an interrelated format as well as experimental and systems approaches; 2) a choice of Advanced Required Subjects and access to Electives providing greater depth in each disciplinary area; and 3) the Experimental Projects Laboratory, in which each...
student conceives and executes an individual experiment. In addition, undergraduates are encouraged to become involved in the research activities of the Department through the Undergraduate Research Opportunities Program. Research opportunities are outlined under Graduate Study.

The graduate teaching and research activities of the Department are strongly interwoven, since the graduate subjects evolve from the research and professional interests of the faculty and in turn serve to introduce students to the areas of active research. Teaching activities are normally organized into six Divisions of Instruction: Mechanics and Physics of Fluids; Structures, Materials, and Aeroelasticity; Propulsion and Energy Conversion; Instrumentation, Guidance, and Control; Biomedical Engineering; and Aeronautical and Astronautical Systems. Research is conducted in several Departmental Laboratories, each of which is described briefly in the section on Graduate Study. In addition, the Department maintains close interaction with the Charles Stark Draper Laboratory.

Bachelor of Science in Aeronautics and Astronautics

Course XVI

Undergraduate study in the Department leads to the Bachelor of Science in Aeronautics and Astronautics at the end of four years. The curricula provide flexibility to meet the needs of professionals in aerospace activities ranging from fundamental research to responsible engineering direction of large enterprises.

The required undergraduate curriculum provides a core around which the student can build — either to become a practicing engineer upon receipt of the S.B. or to continue on to graduate studies in any of the specialties. It includes: 1) a fall-spring sequence of subjects called Unified Engineering I-IV, 2) a set of Advanced Required Subjects, 3) an Experimental Projects Laboratory, and 4) a Systems Engineering subject.

Unified Engineering is offered in sets of two 12-unit subjects in two successive semesters. These subjects are taught cooperatively by a number of faculty members. Their purpose is to introduce new students to the disciplines and methodologies of aerospace engineering at a basic level, with a balanced exposure to analysis, empirical methods, and design. The areas covered include statics, dynamics, structures, fluid mechanics, thermodynamics, propulsion, control, and systems engineering. Several laboratory experiments are performed and a number of systems problems which interrelate the disciplines are included.

Unified Engineering is usually taken in the sophomore year; it fulfills the prerequisites for a variety of Advanced Required Subjects and Electives which deal more intensively with subjects in the six main areas of Aeronautics and Astronautics described in the introduction to the Department. Alternatively, a student may take Unified Engineering in the junior year, and complete the Departmental requirements in the senior year; this also provides a well-rounded engineering education and excellent preparation for graduate study.

The Advanced Required Subjects treat more completely and in greater depth the material to which the student is introduced in Unified Engineering and in the other basic required subjects. To ensure adequate breadth of preparation in each student's education, a distribution from among the undergraduate subjects is required. For maximum benefit, students should complete 16.02 and 16.54 before taking 16.84, or 16.20 and 16.53 before taking 16.85.

Each student has the opportunity in the Undergraduate Projects Laboratory (16.622) to conceive, organize, and execute an individual experimental project under the supervision of a faculty member. A proposal is prepared; oral and written reporting of the results are required. The written project reports are critically reviewed for writing style and exposition by faculty from the School of Humanities and Social Science.

The Systems Engineering subject requires students, as a team, to pull together their undergraduate education through the design of an operating system such as a manned space station or a vertical takeoff airplane.

To take full advantage of the unique research environment of MIT, undergraduates are encouraged to become involved in the research activities of the Department through UROP, the Undergraduate Research Opportunities Program. Many of the faculty actively seek undergraduates to become a part of their research team. Specific areas of research opportunity are outlined under Graduate Study. It also should be noted that the advanced undergraduate student, through careful selection and scheduling of the elective freedom, can progress to graduate subjects in one or more areas of interest.

The Department recommends 1) that 3.091 or 5.60 be used to satisfy the Institute Chemistry Requirement, 2) that an introductory digital computing programming subject such as 1.00, 2.10, or 6.001 be taken as early as possible, and 3) that 21.780 Scientific and Engineering Writing be taken as part of the Humanities, Arts, and Social Science Requirement.

Any one of several programs leads to the degree of Bachelor of Science in Aeronautics and Astronautics, and all are accredited by the Accreditation Board for Engineering and Technology. If desired, the student may request an unspecified degree, Bachelor of Science. This degree is not so accredited.

Program 1 Aeronautical and Astronautical Engineering. Program 1 is appropriate for students desiring a broad exposure to aerospace engineering in the normal four years of residence at MIT. The required subjects may be supplemented with additional advanced undergraduate subjects or graduate subjects according to individual interests. Further details on concentrations in the six main areas of Aeronautics may be obtained from the Department.
Bachelor of Science in Aeronautics and Astronautics
Course XVI
Program 1 Aeronautical and Astronautical Engineering

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>72</td>
</tr>
</tbody>
</table>

The Science Distribution Requirement can be satisfied by 8.03, 18.03, and 16.001 in the Departmental Program.
The Laboratory Requirement can be satisfied by 16.622 in the Departmental Program.

Departmental Program

Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)

Basic Required Subjects:
- 3.094 Materials Technology, 12
- 6.071 Introduction to Electronics, 12; 18.01, 8.02
- 8.03 Physics III, 12; 8.02
- 16.001 Unified Engineering I, 12; 8.01, 18.03
- 16.002 Unified Engineering II, 12; 8.01, 18.03
- 18.003 Unified Engineering III, 12; 16.001, 16.002
- 18.004 Unified Engineering IV, 12; 16.001, 16.002
- 18.03 Differential Equations, 12; 18.02

Advanced Required Subjects: 75
- One of the following two subjects:
 - 16.02 Aerodynamics, 12; 16.004
 - 16.06 Space Gas Dynamics, 12; 16.004
 - 18.20 Structural Mechanics, 12; 16.004*
 - 18.30 Principles of Automatic Control, 12; 18.03
- One of the following two subjects:
 - 16.53 Rocket Propulsion, 12; 16.004
 - 16.54 Aircraft Engines and Gas Turbines, 12; 16.004
 - 16.621 Experimental Projects I, 3; 16.004
 - 16.622 Experimental Projects II, 12; 16.621
- One of the following two subjects:
 - 16.84 Flight Vehicle Engineering, 12; 16.02*
 - 16.85 Space Systems Engineering, 12; 16.20

Unrestricted Electives 50

Total Units Required for the S.B. Degree 363

Program 2 Aeronautical and Astronautical Engineering: Avionics Option

The Avionics Option prepares the student for a career in Aerospace Electronics. It also provides a strong foundation for graduate work in the fields of Instrumentation, Guidance, and Control. The program is designed for students who are interested in the application of electronics to guidance, navigation, surveillance-stabilization, instrumentation, and control of aircraft or spacecraft. New graduates traditionally have joined this professional area after having had an undergraduate major in electrical or aeronautical engineering, and having been introduced to the other half of their discipline through apprenticeship or graduate study. This option allows the student to learn the basics of both parts of the discipline as an undergraduate. The requirements include core subjects in Electrical Engineering which can be taken in the junior year or as a sophomore if Unified Engineering is deferred to the junior year. The elective freedom can be utilized to take advanced subjects in guidance and control depending on the student's particular area of interest within the broad field of avionics.

Bachelor of Science in Aeronautics and Astronautics
Course XVI
Program 2 Aeronautical and Astronautical Engineering: Avionics Option

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>90</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>72</td>
</tr>
</tbody>
</table>

The Science Distribution Requirement can be satisfied by 8.02, 8.03, and 16.001 in the Departmental Program.
The Laboratory Requirement can be satisfied by either 6.111 or 16.622 in the Departmental Program.

Departmental Program

Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)

Basic Required Subjects:
- 6.012 Electronic Devices and Circuits, 15; 8.02, 16.03*
- 6.003 Signals and Systems, 15; 8.002, 16.03*
- 8.03 Physics III, 12; 8.02
- 16.001 Unified Engineering I, 12; 8.01, 18.03
- 16.002 Unified Engineering II, 12; 8.01, 18.03
- 16.003 Unified Engineering III, 12; 16.001, 16.002
- 16.004 Unified Engineering IV, 12; 16.001, 16.002
- 18.03 Differential Equations, 12; 18.02

Advanced Required Subjects: 87
- 6.111 Introductory Digital Systems Laboratory, 12; 8.002*
- One of the following two subjects:
 - 6.301 Solid State Circuits, 12; 6.012
 - 18.61 Microcomputer Laboratory, 12; 8.002*, 2.10
- One of the following three subjects:
 - 16.02 Aerodynamics, 12; 16.004
 - 18.06 Space Gas Dynamics, 12; 16.004
 - 18.20 Structural Mechanics, 12; 16.004*
- One of the following two subjects:
 - 6.302 Feedback Systems, 12; 6.003
 - 16.30 Principles of Automatic Control, 12; 18.03*
 - 16.40 Principles of Flight Guidance, 12; 16.30*
 - 16.621 Experimental Projects I, 3; 16.004
 - 16.622 Experimental Projects II, 12; 16.621
- One of the following two subjects:
 - 16.84 Flight Vehicle Engineering, 12; 16.02
 - 16.85 Space Systems Engineering, 12; 16.20

Unrestricted Electives 60

Total Units Required for the S.B. Degree 379 or 381

* Alternate prerequisites are also listed in the subject description.
Cooperative Program Course XVI-B

The cooperative program in Aeronautics and Astronautics provides undergraduates the opportunity to participate in professional activities in an aerospace organization for about seven months before the senior year. The program permits completion of requirements for the Bachelor of Science degree in four years. Students in this program become regular employees while working in the company, and are paid at prevailing rates.

Interested students should contact the professor in charge for details and an interview; also, students should arrange a schedule with their faculty advisor which permits an absence from MIT during the second term of the third year. One summer at MIT usually is necessary.

The curriculum requirements for this degree in Course XVI-B are the same as for Course XVI with the addition of required registration for 16.80 Industrial Practice during the plant work period, in place of eight units of elective.

Engineering Internship Program Course XVI-C

The Department of Aeronautics and Astronautics participates in the Engineering Internship Program (EIP) administered by the School of Engineering. It is intended as a five-year joint S.B.-S.M. program which features periods of work at a participating company alternating with periods of study at MIT. See additional detailed discussion of this program in the introduction to the School of Engineering.

Interested students apply for participation in EIP during the spring term of their sophomore year. Once a selection is made and accepted, both the student and the company agree to continue that association to completion of the Program.

The student earns six units of credit for each of the two undergraduate work periods by registering for 16.801. The student also earns 12 units of graduate G credit through registration for 16.802 during the work period as a graduate student. The following spring and summer terms he or she usually is required to be at MIT to complete the subject requirements and the thesis report. The Bachelor of Science and Master of Science degrees are then awarded simultaneously.

The work experiences provided under Course XVI-C are the same as for Course XVI with 16.801 (twice) used as 12 units of elective. For further information, please see the Department EIP Coordinator.

Double Degree Program

Students may pursue two S.B. degrees under the Double Degree Program outlined in Chapter III of this catalogue. In particular, some students may wish to combine a professional education in Aeronautics and Astronautics with a liberal education which links the development and practice of science and engineering with their social, economic, historical, and cultural contexts. For them the Department of Aeronautics and Astronautics and the Department of Humanities in cooperation with the Program in Science, Technology, and Society offer a double degree program which combines majors in Course XVI and Course XXI. A detailed description of that integrated degree program will be found under the description of the Program in Science, Technology, and Society.

Inquiries

For additional information concerning academic and research programs in the Department, admissions, suggested four-year undergraduate programs, interdisciplinary programs, financial aid, etc., please write to the Department of Aeronautics and Astronautics Undergraduate Office, Professor Emmett A. Witmer, Room 33-208, MIT, Cambridge, Massachusetts 02139, (617) 253-2279.

Graduate Study

Graduate study in the Department of Aeronautics and Astronautics includes research work culminating in a thesis and study of graduate-level subjects in the Department and other departments and schools at MIT. Degrees are awarded at the Master's, Eng 'yer's, and Doctoral levels. The range of subject matter available is best conveyed by brief descriptions of the activities of the Departmental Divisions of Instruction and the Departmental Laboratories. More detailed information may be obtained from the Graduate Office or from individual faculty members.

Divisions of Instruction and Research Laboratories

The graduate subject offerings of the Department are informally organized into six Divisions: Mechanics and Physics of Fluids; Structures, Materials, and Aeroelasticity; Instrumentation, Guidance, and Control; Propulsion and Energy Conversion; Biomedical Engineering; and Aeronautical and Astronautical Systems. Research is conducted in a number of research laboratories. A faculty member is typically involved in teaching graduate and undergraduate subjects in one or more of the Divisions, and in conducting research in one or more of the Departmental Laboratories or at the Charles Stark Draper Laboratory.

Mechanics and Physics of Fluids. Fluid mechanics is an essential discipline for diverse fields of engineering which are concerned with material, energy, and information transfer and its consequences. The principles of fluid mechanics are essential for an understanding of all flight regimes covering a wide range of speeds, altitudes, and fluid properties, from those associated with low-speed flight transportation to high-speed near-space operations, and space travel.

Research in fluid mechanics is carried on in several Departmental laboratories. The focus of the Computational Fluid Dynamics Laboratory is on algorithm development and its application to external and internal flow fields. Emphasis in the Fluid Dynamics Laboratory is on turbulence structure and flow stability. The Molecular Beam Laboratory employs techniques which examine the nature of interactions between the environment and vehicle surfaces. Rotary wing aerodynamics and noise are interests of the Helicopter Rotor Acoustics Laboratory. The Center for Aerodynamic Studies is concerned with the complex flow coupling of flight vehicles as an entity. Several laboratories operate wind tunnels. A large subsonic circuit in the Wright Brothers Facility is used for airfoil and nacelle research, rotor wing dynamics, aircraft development, and the
One focus for the activities of the Instrumentation, Guidance, and Control Division is the Draper Laboratory which offers opportunities for participation to students of US citizenship. Many Department faculty and students are actively involved in research programs in this laboratory on guidance systems and components for all types of flight vehicles, including inertial guidance, using the advanced facilities of the lab for research on all phases of control and guidance. In the past this work has resulted in the development of many flight vehicle systems including the Apollo spacecraft navigation and guidance systems. Further detail on the Draper Laboratory is given in Chapter V.

The Laser Systems Laboratory pioneers in the development and application of laser technology. Specific activities include: optical gyroscopes; optical frequency standards; ultra-high-resolution spectroscopy and interaction of intense radiation with atoms and molecules.

Other control-related research projects are carried out in the Space Systems Laboratory and elsewhere in the Department, with substantial focus on the control of large flexible assemblies in space.

Biomedical Engineering. The Man-Vehicle Laboratory applies control and instrumentation disciplines to biological and psychological problems. It has been selected to perform manned space experiments on Spacelab-1 to investigate balance, adaptation to zero-g, and "space motion sickness." In addition, it conducts flight simulator studies on man in the loop, vehicle display and control, and air traffic control research. The laboratory also works on bioinstrumentation, physiological control systems, and clinical applications of the aerospace sciences. Activities include modeling of the human visual and vestibular system, flight simulation, cognitive learning and work on diagnostic instrumentation for diseases of the eye and ear.

Propulsion and Energy Conversion. This division addresses, in teaching and research, those disciplines and technologies of special importance to propulsion and energy conversion. Subjects are offered in aircraft and rocket propulsion, and in advanced energy conversion. The Gas Turbine and Plasma-dynamics Laboratory provides unique experimental and computational facilities for research on fluid mechanics, heat transfer, and aerelasticity in turbomachinery, and for research on space propulsion and power systems. Activities include theoretical and experimental study of transonic compressors and stability of compression systems, computational and experimental study of internal and external heat transfer in turbine blading, advanced engine controls, aerelasticity of rotors, electro-propulsion devices, and MHD power generation.

Aeronautical and Astronautical Systems. The high levels of expenditure involved in the development of aeronautical and astronautical systems, their complexity and dependence on a variety of disciplines, and the high degree of interaction among these disciplines have all required the development of some method for integrating the total system and the development of formal analytical tools to optimize it as a whole rather than by parts. From this need has grown the concept of systems engineering whose successful application to the space program and to the analysis of transportation systems has amply demonstrated its effectiveness as an engineering tool.

The broad coverage of systems engineering clearly implies that the responsibilities of the engineer include far more than the design, synthesis and construction of devices and facilities. The engineer must be aware of the social implications of his or her work and design, not only for maximum efficiency and safety, but also for minimum disruption of the environment.

Students interested in working in aeronautical and astronautical systems should place primary emphasis on a broad educational base which should include subjects in most of the divisions described above. In addition the student should obtain training in the disciplines which support systems analysis, such as probability and statistics, operations research, economics, and computer science, and should also maintain an awareness of the external disciplines which help shape society, such as economics, law, and the social sciences. Most of this material would be obtained in the graduate program, and undergraduate students can become prepared for a more effective graduate program by a judicious choice of undergraduate elective subjects.

The research of the Systems Division is conducted in the Flight Transportation, the Space Systems, and the VTOL Technology Laboratories. The Flight Transportation Laboratory conducts research in many areas of flight transportation covering airline operations, air traffic control operations, aircraft navigation and guidance, airport planning, and the application of advanced operations research techniques to transportation systems. The Space Systems Laboratory analyzes concepts for space utilization and exploration, including space manufacturing, the design of large space structures, and space transportation.
Entrance Requirements for Graduate Study

In addition to the general requirements for admission to the Graduate School, applicants must have a strong undergraduate background in some of the fundamentals of aerospace engineering and mathematics as described in Undergraduate Study. Two terms of advanced mathematics beyond 18.03 Differential Equations or its equivalent are required either prior to, or as part of, all graduate programs. Gaps in preparation can be filled early in the graduate program.

New graduate students are normally admitted as candidates for the degree of Master of Science. Admission requirements for candidates for the Engineer in Aeronautics and Astronautics are more rigorous and such admission is ordinarily considered only after the candidate has spent some time in residence at MIT. Admission to the Doctoral program is offered to students who have been accepted for graduate study and have passed the Doctoral Qualifying Examination. The examination is usually taken during the first year of graduate study in the Department, but not later than the third term. The examination seeks to measure the candidate’s fundamental understanding of the principles underlying aerospace engineering and aptitude for engineering research.

The Department of Aeronautics and Astronautics requires that all entering graduate students demonstrate satisfactory English writing ability by taking the Writing Diagnostic Examination offered by the Writing Program of the MIT Humanities Department. The exam is usually administered during the week after the initial date of registration in Graduate School. Those whose skills are found deficient will be required to complete remedial training specifically designed to fulfill their individual needs.

In addition, foreign candidates whose language of instruction has not been English for at least five or more years and/or those whose TOEFL score falls below 600, must take the MIT English Evaluation Test for Foreign Graduate Students after registration. The examination is held in early September and late January. On the basis of performance on this examination, the faculty may prescribe remedial courses in English offered at MIT.

Master of Science in Aeronautics and Astronautics

The general requirements for the Master of Science degree are cited in Chapter IV of this catalogue. The specific Departmental requirements are: an acceptable thesis, and at least 66 subject units, typically in graduate subjects relevant to the candidate’s area of technical interests. Of the 66 units, 42 units must be in “A” subjects, of which at least 21 units must be in Departmental subjects. To be credited toward the degree, non “A” level subjects must carry a grade of B or better. Full-time students normally must be in residence one full academic year. Students holding Research Assistantships will require a longer period of residence.

The Department requires two terms of advanced mathematics beyond 18.03 Differential Equations or its equivalent either prior to or as a part of the Master’s program. The choice of subjects in the area of major interest and the thesis topic are arranged individually by each student in consultation with a faculty advisor; the program of study must have the approval of the faculty advisor, who acts in behalf of the Department faculty.

Master of Science In Technology and Policy

Students interested in applying their aeronautical engineering background to problems of policy and socioeconomic assessment of technology may apply for the interdepartmental Master of Science Program in Technology and Policy. This program combines subjects in advanced technology with subjects in economics, systems analysis, political science, and law and engages the student in significant project work integrating technology and policy. General requirements and application procedures are described in Chapter V of this catalogue.

Engineer in Aeronautics and Astronautics

The Program leading to the degree of Engineer in Aeronautics and Astronautics is offered for students interested in a greater breadth of graduate subjects than is normally associated with a Master’s or Doctoral program, and less emphasis on research than required of Doctoral candidates. The minimum study program of 162 subject units must include graduate subjects from each of the Divisions of Instruction, and the thesis work must have a strong engineering, as distinct from a scientific, orientation. Two years beyond the Bachelor of Science degree normally are required for completion of this degree by a full-time student.

Doctor of Philosophy and Doctor of Science

The general requirements for this degree are given in Chapter IV of this catalogue. A candidate is admitted to the Doctoral program upon passing the Doctoral Qualifying Examination. After selecting an area for study and research, the candidate in consultation with the thesis supervisor forms a doctoral/thesis committee, which assists in the formulation of the individual’s research and study programs and monitors the student’s progress. The subjects selected to fulfill the major and minor program requirements must be approved by the committee. One foreign language is required and also must be approved by the student’s committee. The candidate’s mastery of the major area is tested by a written and an oral General Examination administered by the doctoral/thesis committee after completion of the major subjects.

Demonstrated competence for original research at the forefront of aerospace engineering is the final and major criterion for granting the Doctorate degree. The candidate’s thesis serves in part to demonstrate such competence, and on completion is defended orally in a presentation to the faculty of the Department, which may then recommend the award of the degree.
Interdisciplinary Programs

The graduate division of the Department participates in several interdisciplinary fields which are of special importance for Aeronautics and Astronautics in both research and the curriculum.

Biomedical Engineering. This program is available to students interested in biomedical instrumentation and physiological control systems where the disciplines involved in Aeronautics and Astronautics are applied to biology and medicine. Graduate study based on this program may be pursued within the Departmental program, the Health Sciences and Technology S.M.-Ph.D. Program in Medical Engineering and Medical Physics, or the Interdepartmental Ph.D. program in Biomedical Engineering. At the Master's degree level, students in the Department may specialize in biomedical engineering, emphasizing quantitative physiology, instrumentation and control, and biostatistics, or in man-machine systems and engineering psychology and in instrumentation and statistics. For a further description of these programs, please see Chapter V under Biomedical Engineering. Most biomedical engineering research in the Department of Aeronautics and Astronautics is conducted in the Man-Vehicle Laboratory.

Flight Transportation. For students interested in a career in flight transportation, there is available a program which incorporates a broader graduate education in disciplines such as economics, management, law, and operations research than is normally pursued by candidates for degrees in Engineering. Graduate research emphasizes one of the five areas of flight transportation: Flight Vehicle Design and Control; Airport Planning and Design; Air Traffic Control; Air Transportation Systems Analysis; and Airline Economics and Management, with subjects selected appropriately from those available in the Departments of Aeronautics and Astronautics, Civil Engineering, Economics, and the Center for Transportation Studies. A special interdepartmental program may be established for the doctoral student (or participation in the Operations Research Center Program may be considered, see Chapter V).

Fellowships, Research and Teaching Assistantships

Financial assistance for graduate study may be in the form of fellowships or research or teaching assistantships. There are several endowed and departmental fellowships which are granted to students of exceptional promise. The Department attempts to place a student in a laboratory in which the research activity is closely related to the student's interests. Both the fellowship student and the research assistant work with a faculty supervisor on a specific research assignment of interest, which generally leads to a thesis.

Inquiries

For additional information concerning academic and research programs in the Department, admissions, interdisciplinary programs, financial aid, assistantships, etc., please contact the Department of Aeronautics and Astronautics Graduate Office, Professor H. Y. Wachman, Room 33-208, MIT, Cambridge, Massachusetts 02139, (617) 253-2260.
Department of Chemical Engineering

James Wei, Sc.D.
Warren K. Lewis Professor of Chemical Engineering
Head of the Department

John Ploeger Longwell, Sc.D.
Edwin R. Gilliland Professor of Chemical Engineering
Executive Officer of the Department

Professor

Raymond Frederick Baddour, Sc.D.
Lannom du Pont Professor of Chemical Engineering

János Miklós Beér, Sc.D.
Professor of Chemical and Fuel Engineering

Howard Brenner, Sc.D.
Willard Henry Dow Professor of Chemical Engineering

Robert Arthur Brown, Ph.D.
Professor of Chemical Engineering

Clark Kenneth Colton, Ph.D.
Bayer Professor of Chemical Engineering

Charles Leland Conny, Ph.D.
Professor of Chemical and Biochemical Engineering

Lawrence Boyd Evans, Ph.D.
Professor of Chemical Engineering

Jack Benny Howard, Ph.D.
Professor of Chemical Engineering

Edward Wilson Merrill, Sc.D.
Carbon P. Dubbs Professor of Chemical Engineering

Robert Clark Reid, Sc.D.
Chevron Professor of Chemical Engineering

Graduate Officer

Adel Fares Sarofim, Sc.D.
Professor of Chemical Engineering

Charles Nelson Satterfield, Sc.D.
Professor of Chemical Engineering

Kenneth Alan Smith, Sc.D.
Professor of Chemical Engineering

Associate Provost

Vice President for Research

George Stephanopoulos, Ph.D.
Joseph R. Mares Professor of Chemical Engineering

Senior Lecturer

Charles Michael Mohr, Sc.D.

Lecturers

Joseph Franklin Boston, Ph.D.
(Visiting)

David John Goldstein, Sc.D.
(Visiting)

Michael Patrick Manning, Sc.D.
(Visiting)

Bryan Alan Solomon, Ph.D.
(Visiting)

Warren Myron Zapol, M.D.
(Visiting)

Instructor

Eric Wilson Anderson, M.S.
Assistant Station Director,
School of Chemical Engineering Practice

Senior Research Associate

Charles V. Berney, Ph.D.

Principal Research Associate

Martin Leon Yarmush, Ph.D.

Postdoctoral Associates

Guillemette Morel, Ph.D.

David Meyer Yarmush, Ph.D.

Postdoctoral Fellow

Joaquin Manuel Sampaio Cabral, Ph.D.

Graduate Student Administrator

Jean Anne Bueche, B.A.

Technical Instructor

Stanley Robert Mitchell

Visiting Engineer

Kazuto Kobayashi, M.S.

Visiting Scientists

Eric Bulot, Eng.
Ph. D. Robert Chaumont, Sc.D.
Peter Francis Davies, Ph.D.
Hsiao-Ping Huang, Ph.D.
Elizabeth Robinson Lang, Ph.D.
Jack Nelson Lindon, Ph.D.
Michael Patitsas, Ph.D.
Thomas William Peterson, Ph.D.
Henri Renon, Ph.D.
Edwin W. Salzman, M.D.
Michael Bernard Stemerman, M.D.

Professors Emeriti

Thomas Bradford Drew, S.M.
Professor of Chemical Engineering, Emeritus

Hoyt Clarke Hottei, A.B., S.M.
Professor of Chemical Engineering, Emeritus

Herman Paul Meissner, D.Sc.
Professor of Chemical Engineering, Emeritus

Johnson Edward Vivien, Sc.D.
Professor of Chemical Engineering, Emeritus
Chemical engineering is a broadly based discipline, having a deep involvement with chemistry along with the applications of physics and mathematics which are common to all engineering disciplines. In its broadest sense, chemical engineering is the creative application of chemistry to the solution of significant problems. Chemical engineering is making substantial contributions to the development of clean energy sources, to the provision of adequate food supplies, to the recreation of proper ecological balances, to the advancement of medical/engineering science, and to the economic production of material goods.

The Department of Chemical Engineering at MIT offers two undergraduate programs. One is Course X, leading to the Bachelor of Science in Chemical Engineering. This program is accredited by the Accreditation Board for Engineering and Technology and the American Institute of Chemical Engineers. The other program is Course X-C leading to the Bachelor of Science without specification, which is not accredited and requires less study in formal chemical engineering subjects.

The Department offers a wide selection of graduate subjects and research leading to advanced degrees in chemical engineering. Important subject areas include fuels and energy, polymer chemistry, surface and colloid chemistry, biomedical engineering, chemical process development, transport processes, and environmental engineering. Many of our current undergraduates find it attractive in the upperclass years to take a variety of these graduate-level subjects. This exposure is invaluable in identifying potential independent research interests for the student. Other students find these subjects to be fruitful as terminal technical subjects prior to moving on to work in teaching, government, or management. Students interested in the various areas of graduate study in Chemical Engineering should consult the section on Graduate Study which follows.

The School of Chemical Engineering Practice, also described in detail in the graduate section, involves one term of work under the direction of institute staff resident at the Practice School Stations. Each student has a unique opportunity to develop the ability to apply basic professional principles to the solution of practical problems in industry.

The undergraduate curriculum in chemical engineering provides basic studies in physics and mathematics, a major concentration in chemistry, and a strong core of chemical engineering. The four-year undergraduate programs, designed to develop judgment, initiative, and responsibility, give students considerable latitude in arranging a selection of subjects that best fits their needs. Those who expect to go on to graduate school may therefore elect subjects which strengthen their preparation for advanced work.

In addition to work in science and engineering, students take an integrated sequence of subjects in the humanities and social sciences. The chemical engineer's progress and accomplishments are not determined solely by technological competence; fully as important are a breadth of outlook and an understanding of society. The curriculum provides a sound preparation for going on to jobs in industry or government, and for graduate work.

Chemical engineering also provides an ideal preparation for careers in medicine and related fields of health science and technology. The Department's strong emphasis on chemistry provides excellent training toward medical school. A suitable program of study may be arranged within the regular curricula of Course X or X-C. Interested students should consult with their faculty advisor.

A departmental brochure gives typical four-year programs and provides advice in choosing electives in chemistry and chemical engineering. Undergraduates are encouraged to take part in the research activities of the Department. Freshmen who want an early initial exposure to chemical engineering should take 10.10 Process Synthesis which is designed for freshmen.
The student who decides early to major in chemical engineering is encouraged to begin taking professional subjects. For example, 5.11 Principles of Chemical Science and 5.12 Organic Chemistry I may be taken in the freshman year. If the subjects 10.13, 10.14, 5.62, and 18.03 are taken in the sophomore year, the student is in an excellent position for professional work in some depth in the third and fourth years.

Some students may wish to defer choice of a major field or exercise maximum freedom during the first two years. If the Science Distribution Subjects chosen in the second year include 18.03 and two are in the field of fluid mechanics, thermodynamics, chemistry, biology, or chemical engineering, students can generally complete the requirements for a degree in chemical engineering in two more years. Students are advised to discuss their proposed program with a Course X faculty advisor as soon as they become interested in a degree in chemical engineering.

Bachelor of Science in Chemical Engineering

Course X

The student who decides early to major in chemical engineering is encouraged to begin taking professional subjects. For example, 5.11 Principles of Chemical Science and 5.12 Organic Chemistry I may be taken in the freshman year. If the subjects 10.13, 10.14, 5.62, and 18.03 are taken in the sophomore year, the student is in an excellent position for professional work in some depth in the third and fourth years.

Some students may wish to defer choice of a major field or exercise maximum freedom during the first two years. If the Science Distribution Subjects chosen in the second year include 18.03 and two are in the field of fluid mechanics, thermodynamics, chemistry, biology, or chemical engineering, students can generally complete the requirements for a degree in chemical engineering in two more years. Students are advised to discuss their proposed program with a Course X faculty advisor as soon as they become interested in a degree in chemical engineering.

Restricted Electives (continued)

Laboratory Work. [Eighteen units included in the above categories must be associated with laboratory subjects. Thesis may be elected to satisfy 12 units. The subject 10.91 or equivalent may be used to satisfy no more than 6 units. The ungraded subject 10.UR or equivalent may not be used.]

<table>
<thead>
<tr>
<th>Unrestricted Electives</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Units Required for the S.B. Degree</td>
<td>386</td>
</tr>
</tbody>
</table>

Bachelor of Science

Course X-C

Students in Course X-C are permitted to plan programs involving basic subjects in chemistry and chemical engineering, but instead of continuing in depth in these areas, can study in other fields, such as other engineering disciplines, biology, biomedical engineering, economics, or management. Course X-C has proven to be especially attractive to students who wish to specialize in chemistry, physics, biology, patent law, or management while simultaneously gaining a broad exposure to the engineering approach to solving problems.

Students planning to follow this curriculum should discuss their interests with a member of the faculty of the Department. At the time they decide to enter the Course X-C program, preferably by the first term of their senior year, they should submit to the Department a statement of goals and a program of subjects which achieves their objectives. Students are assigned a member of the Department faculty as an advisor.

Departmental requirements for Course X-C are 5.11, 10.13, 10.14, and 10.301, plus a coherent program of subjects (102 units) including at least 30 units in chemical engineering. Further details may be obtained from the Department.

Five-Year Programs/Joint Programs

In addition to offering separate programs leading to the Bachelor of Science and Master of Science in Chemical Engineering, the Department offers a program leading to the simultaneous award of both degrees at the end of five years. A detailed description of this program is available from the Graduate Registration Officer. Students in the five-year program normally enroll in the School of Chemical Engineering Practice.

Bachelor of Science in Chemical Engineering

Course X

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>Humanities, Arts, and Social</td>
<td>72</td>
</tr>
<tr>
<td>Sciences Requirement</td>
<td></td>
</tr>
<tr>
<td>The Science Distribution Requirement can be satisfied by 10.13, 10.14, 5.62, and 5.11 in the Departmental Program.</td>
<td></td>
</tr>
<tr>
<td>The Laboratory Requirement can be satisfied by 5.310 (5.311) plus one year of Advanced Laboratory.</td>
<td></td>
</tr>
<tr>
<td>Departmental Program</td>
<td></td>
</tr>
<tr>
<td>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)</td>
<td></td>
</tr>
<tr>
<td>Required Subjects:</td>
<td>138</td>
</tr>
<tr>
<td>One of the following two subjects:</td>
<td></td>
</tr>
<tr>
<td>5.310 Laboratory Chemistry, 12; 5.11</td>
<td></td>
</tr>
<tr>
<td>5.311 Introductory Chemical Experimentation, 12; 5.311 plus 5.11</td>
<td></td>
</tr>
<tr>
<td>5.11 Principles of Chemical Science, 12</td>
<td></td>
</tr>
<tr>
<td>5.12 Organic Chemistry I, 12; 5.11</td>
<td></td>
</tr>
<tr>
<td>5.62 Physical Chemistry, 12: 10.13</td>
<td></td>
</tr>
<tr>
<td>10.13 Mass and Energy Processing, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>10.14 Chemical Engineering Thermodynamics, 9; 10.13</td>
<td></td>
</tr>
<tr>
<td>10.26 Chemical Engineering Laboratory, 12; 5.11, 10.14, 10.302, 10.37</td>
<td></td>
</tr>
<tr>
<td>10.301 Fluid Mechanics, 9; 18.03</td>
<td></td>
</tr>
<tr>
<td>10.302 Transport Processes, 9; 10.13, 10.301</td>
<td></td>
</tr>
<tr>
<td>10.32 Separation Processes, 9; 10.14, 10.302</td>
<td></td>
</tr>
<tr>
<td>10.36 Process Design, 9; 10.302, 10.32</td>
<td></td>
</tr>
<tr>
<td>10.37 Chemical Kinetics and Reactor Design, 9; 10.13, 10.301</td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives:</td>
<td>at least 36</td>
</tr>
<tr>
<td>Chemical Engineering (at least 18 units)</td>
<td></td>
</tr>
<tr>
<td>[The subjects 10.10, 10.11, 10.801, 10.802, 10.803, 10.805J, 10.806, 10.808, and 10.816 may not be used to satisfy this requirement.]</td>
<td></td>
</tr>
<tr>
<td>Technology (at least 18 units)</td>
<td></td>
</tr>
<tr>
<td>[Any subject in Chemistry, Biology, or Materials Science and Engineering (except 3.171 and freshman seminars), and the subjects 6.071, 6.101, 6.150J, and 8.002 may be used to satisfy this requirement.]</td>
<td></td>
</tr>
</tbody>
</table>

* Alternate prerequisites are also listed in the subject description.

1. Students who use 5.11 to fulfill the General Institute Requirement in Chemistry/Biology must take 12 additional units of Unrestricted Elective.
Graduate Study

Fields of Graduate Study

The technology of chemical engineering in the process industries falls loosely into two categories: physical and chemical. While both types are encountered in many industrial problems, graduate subjects of instruction and research are logically grouped in the corresponding fields of engineering operations and applied chemistry. Most graduate students take some work in each field, and in the School of Chemical Engineering Practice the problem assignments involve fundamentals in both areas. Specific subjects in each of the following fields of applied chemistry and engineering operations are described in Chapter VII.

Applied Chemistry. The Department offers a diversified program in applied chemistry, designed for students who wish to broaden their competence in the chemical aspects of chemical engineering. This program provides subjects in industrial chemistry and chemical thermodynamics; chemical kinetics and reactor engineering, with emphasis on heterogeneous and catalytic processes; and the physical chemistry of ion exchange, adsorption, and chromatography. The subjects listed under Fuel and Fossil Energy Engineering and Materials Science and Engineering also include applied chemistry. Much of the Department's research activity falls into these areas, and unique laboratory facilities are provided.

A well-rounded program in applied chemistry might also include subjects given by other departments in advanced organic, inorganic, or physical chemistry; biochemistry, enzymology, or bacteriology; and physical metallurgy, electrochemistry, corrosion, or ceramics.

Biochemical Engineering. Recent achievements in molecular biology have greatly stimulated interest in biotechnology and offer exciting opportunities to the chemical engineer. Biotechnology is the integration of biochemistry, microbiology, and chemical engineering. Biochemical engineering is at the interface between biological sciences and engineering principles. Important problems in this field in which the Department has active research programs are biocatalysis, microbial kinetics, transport phenomena in biological and particularly microbial systems, bioseparations, bioreactor design, control of microbial reactions, enzyme technology, renewable resource utilization, and bioengineering of mammalian cell cultures. Students interested in biochemical engineering have the opportunity to participate in an active research program while taking coursework in a variety of relevant subjects offered by the Department.

Subjects also are available in biochemistry, microbiology, enzymology and molecular biology which are taught in other Departments (Biology, Chemistry, and Nutrition and Food Science).

Biomedical Engineering. The application of chemical engineering to problems in the life sciences and medicine has become an increasingly important area of research. The broad backgrounds of chemical engineers, spanning both fundamental and applied aspects of chemistry and physics, makes them uniquely qualified to handle such tasks. Students interested in this area have the opportunity to draw upon the Department's diverse offering of subjects in the chemical engineering sciences.

The Department's active graduate research program in biomedically related areas is characterized by an interdisciplinary approach to both fundamental and applied problems. Many projects involve collaboration with physicians, surgeons, and life scientists in other departments and in local hospitals associated with Harvard Medical School. Research topics include the rheology of non-Newtonian biological fluids, mass transfer in blood and in artificial organs, such as the artificial kidney and blood oxygenator, synthesis of blood-compatible synthetic biomaterials, membrane transport phenomena, synthetic replacement of the lung surfactant, physical properties of biopolymers, and ultrafiltration of solutions of biological macromolecules.

Reaction Engineering. Chemical reactor engineering is concerned with the science and technology of chemical reactions that take place in reactors, leading to the production of useful chemicals and materials. It involves the interaction between chemistry, fluid mechanics, and heat transfer, and also includes study of catalytic reactions. The heart of a chemical plant or refinery is a reactor, surrounded by pumps, heat exchangers, and separation equipment. Active research programs in many aspects of this field are being carried out, and a number of relevant courses is offered.

Process and Systems Engineering. The variety of graduate subject offerings provides opportunity for programs in process simulation, process control, heat transfer, fluid mechanics, and separations — subjects which are basic in process engineering. Opportunities for research of an advanced nature in these areas are available.

Programs also may include advanced subjects in mathematics, instrumentation, fluid mechanics, metallurgy, and others offered in other departments.
Fuel and Fossil Energy Engineering. The problem of supplying energy economically while meeting environmental constraints is growing in importance and complexity, thus providing opportunities for major research and engineering contributions in the fields of combustion and fuel conversion. Combustion involves all the basic chemical engineering skills and a knowledge of high temperature chemistry and complex radiative heat transfer. Fuel conversion processes such as coal pyrolysis, gasification, and liquefaction involve the problems of the chemistry of complex mixtures with an important requirement for selective production of the desired products.

An integrated program in the field typically includes subjects in heat, momentum and mass transfer, thermodynamics, kinetics, combustion, radiation, and a research problem in combustion or fuel conversion. The Department's Fuels Research Laboratory provides excellent facilities for research on a wide range of problems. Through cooperative programs with the Energy Laboratory (described in Chapter V), it also offers the opportunity to work in facilities of sufficient size to address many of the pressing problems of fluidized bed and conventional combustion of difficult fuels on a realistic scale. Control of pollutants in both fuel manufacture and combustion is a major thrust of the research program.

Polymers and Materials Engineering. The Department maintains an active and diversified graduate research program in surface chemistry, polymer chemistry, and polymer physics and offers a coordinated instructional program in these areas. Students whose interests lie in the direction of surface phenomena or polymeric materials thus have a rare opportunity to develop specialized skills in these areas in an atmosphere where the focus of attention is on the applied, as well as the basic, scientific aspects.

Graduate research activities in these fields include topics such as the rheology of bulk polymers, polymer solutions and particulate dispersions, molecular transport phenomena in polymers, structure and properties of elastomers and microcrystalline thermoplastics, perm-selective membranes, polymers in turbulent drag reduction and for medical application, selective transformation of polymer surfaces by chemical and high-energy radiation, and XPS studies of polymer surfaces in relation to bulk composition, polymer blends, and block copolymers. Collaboration between chemical engineering and many other departments in the supervision of these research projects brings an interdisciplinary approach to the entire program.

For students with strong interest in materials and an adequate background in chemistry or chemical engineering, the Department offers a special graduate curriculum leading to the degrees of Materials Engineer, Doctor of Science, or Doctor of Philosophy. These curricula are designed to provide a properly integrated background in the science and engineering of the major classes of materials (metals, ceramics, and polymers) and also to specialize in some depth in a selected area of the field. Specific graduate programs in this area are suggested by, and subject to the approval of, an interdepartmental committee on materials engineering. Further details may be obtained by consulting the Department's Graduate Registration Officer.

School of Chemical Engineering Practice

Since its inception in 1916 the School of Chemical Engineering Practice has been a major feature of the graduate education in the Department. In this unique program students receive intensive instruction to broaden their education, not only in the technical aspects of the profession, but also in communication skills and human relations, which are frequently decisive in the success of an engineering enterprise. The Practice School program stresses problem solving in an engineering internship format, where students undertake projects at industrial sites under the direct supervision of resident MIT faculty. Credit is granted for participation in Practice School in lieu of preparing a master's thesis.

The operation of the Practice School is quite similar to a small consulting company. The resident staff work closely with the technical personnel of the host companies in identifying project assignments with significant educational merit, and with solutions that make important contributions to the operation of the host plants.

At Practice School, students work on three or four different projects. Groups and designated group leaders change from one project to another, giving every individual an opportunity to be a group leader at least once.

Students in the Practice School Program are required to demonstrate proficiency in or take one graduate subject in each of the following areas: Thermodynamics, Heat and Mass Transfer, Applied Process Chemistry, Kinetics and Reactor Design, and Applied Mathematics.

Advanced Degrees

The following advanced degrees are offered in chemical engineering: Master of Science in Chemical Engineering; Master of Science in Chemical Engineering Practice; Chemical Engineer; Environmental Engineer; Materials Engineer; Doctor of Science or Doctor of Philosophy. Preparation equivalent to 5.62 Physical Chemistry and 5.12 Organic Chemistry I is normally essential for any graduate work in chemical engineering. More detailed descriptions of each of the following programs can be obtained from the graduate registration officer in the Department.

Master of Science in Chemical Engineering

Programs for the Master of Science in Chemical Engineering usually are arranged as a continuation of undergraduate professional training, but at a greater level of depth and maturity. The general requirements for a Master's program are given in Chapter IV of this catalogue. To complete the requirements of at least 66 subject units, of which 42 units must be in A subjects, together with an acceptable thesis, generally takes one academic year.

Master of Science in Chemical Engineering Practice

The unit requirements for the Master of Science in Chemical Engineering Practice (Course X-A) are the same as those for the Master of Science in Chemical Engineering, except that 36 units of practice school experience may be accepted in lieu of the Master's thesis.

Bachelor of Science graduates of this Department can meet the requirements for the Master of Science in Chemical Engineering Practice (Course X-A) in two terms. Beginning in the September following graduation, students are at the field stations until the end of December, and then return to the Institute to complete the program during the spring term. A similar Practice School field program begins in February and extends to the end of May.

For students who have graduated in chemical engineering from other institutions, the usual program of study for the Master of Science in Chemical Engineering Practice involves two terms at the Institute followed by the field station work in the Practice School. Graduates in chemistry from other institutions normally require an additional term.

Master of Science in Technology and Policy

Students interested in applying their chemical engineering background to problems of policy and socioeconomic assessment of technology may apply for the interdepartmental Master of Science Program in Technology
and Policy. This program combines subjects in advanced technology in the particular field of the student's choosing with subjects in economics, systems analysis, political science, and law. General requirements and application procedures are described in Chapter V.

Chemical Engineer. The Engineer's degree is offered for those students who desire an advanced graduate education in depth but who are not interested primarily in research. The program of study and research normally includes attendance at the Practice School, completion of an approved integrated minor consisting of at least 24 units outside the Department. A detailed description of the Chemical Engineer's program may be obtained from the Graduate Registration Office.

Materials Engineer. Candidates interested in studying materials engineering in the Department of Chemical Engineering should have training equivalent to that offered by the Institute in its undergraduate programs in chemistry or chemical engineering. In general, two years are required for completion of the Materials Engineer.

Doctor of Science or Doctor of Philosophy. Admission to the doctoral program is granted only after the candidate has passed a written and oral general examination. The examination is given in January and May. It is usually taken at the end of the second term in residence as a graduate student, although students with good preparation should attempt the exam after one term. It is not necessary to complete a Master's program in order to obtain a doctorate.

The requirements for the doctoral degree include a program of advanced study, a minor program, and a thesis. The program of advanced study and research is normally carried out in one of the fields of chemical engineering under the supervision of one or more faculty members in the Department of Chemical Engineering.

The joint program with the Woods Hole Oceanographic Institution is intended for students whose primary career objective is oceanographic engineering. The program is described in more detail under the section at the end of this chapter on MIT’s Joint Program in Oceanography and Oceanographic Engineering with the Woods Hole Oceanographic Institution.

Financial Support

The Department has a wide variety of financial support for graduate students, including teaching and research assistantships, fellowships, and loans. Information about financial assistance may be obtained by writing to the Graduate Registration Officer, but consideration for awards cannot be given before the admissions decisions have been made.

Inquiries

Additional information concerning graduate programs, admissions, financial aid, assistantships, etc. may be obtained by writing to Professor Robert C. Reid, Graduate Registration Officer, Department of Chemical Engineering, Room 66-540, MIT, Cambridge, Massachusetts 02139, (617) 253-4571.
Department of Civil Engineering

Joseph Martin Sussman, Ph.D.
Professor of Civil Engineering
Head of the Department

Professors

Mohsen Mohamed Belayh, Ph.D.
Professor of Civil Engineering

Ratael Luis Bras, Sc.D.
Professor of Civil Engineering

Jerome Joseph Connor, Jr., Sc.D.
Professor of Civil Engineering

Stella C. Dafermos, Ph.D.
Professor of Civil Engineering (Visiting)

Richard Lawrence de Neufville, Ph.D.
Professor of Civil Engineering
Chairman, MIT Technology and Policy Program

Peter Sturges Eagleson, Sc.D.
Edmund K. Turner Professor of Civil Engineering

Herbert Heinrich Einstein, Sc.D.
Professor of Civil Engineering

Ann Fetter Friedlaender, Ph.D.
Professor of Civil Engineering and Economics
Dean, School of Humanities and Social Science

Ralph A. Gakenheimer, Ph.D.
Professor of Civil Engineering and Urban Studies and Planning

Lynd Walter Gelhar, Ph.D.
Professor of Civil Engineering

Donald R.F. Harleman, Sc.D.
Professor of Civil Engineering
Ford Professor of Civil Engineering (On leave, spring)

Charles Cushing Ladd, Sc.D.
Professor of Civil Engineering

Steven Richard Lerman, Ph.D.
Professor of Civil Engineering
Director, Project Athena

Robert Daniel Logcher, Sc.D.
Professor of Civil Engineering

Ole Secher Madsen, Sc.D.
Professor of Civil Engineering (On leave, fall)

David Hunter Marks, Ph.D.
Professor of Civil Engineering

Frederick Jerome McGarry, S.M.
Professor of Civil Engineering
Polymer Engineering

Chiang Chung Mei, Ph.D.
Professor of Civil Engineering

Fred Moavenzadeh, Ph.D.
Professor of Civil Engineering

William E. Leonard Professor of Engineering
Director, Technology Adaptation Program

Francois M.M. Morel, Ph.D.
Professor of Civil Engineering

Amedeo Rodolfo Odone, Ph.D.
Professor of Civil Engineering
Aeronautics and Astronautics

Frank Edward Perkins, Sc.D.
Professor of Civil Engineering
Associate Provost

Daniel Roos, Ph.D.
Professor of Civil Engineering
Director, Center for Transportation Studies

Uri Shamir, Ph.D.
Professor of Civil Engineering (Visiting)

Erik Hektor Vannarochke, Ph.D.
Professor of Civil Engineering (On leave)

Daniele Veneziano, Ph.D.
Professor of Civil Engineering

Robert Van Duyne Whitman, Sc.D.
Professor of Civil Engineering

Nigel Henry Moir Wilson, Ph.D.
Professor of Civil Engineering

Amr S. Azzouz, Sc.D.
Associate Professor of Civil Engineering

Gregory Bert Baecher, Ph.D.
Associate Professor of Civil Engineering

Moshe Emanuel Ben-Akiva, Ph.D.
Associate Professor of Civil Engineering

Oral Buyukozturk, Ph.D.
Associate Professor of Civil Engineering

Sallie W. Chisholm, Ph.D.
Associate Professor of Civil Engineering

Harold Field Hemond, Ph.D.
Henry L. Doherty Career Development Associate Professor of Civil Engineering

Henry G. Irwig, Ph.D.
Associate Professor of Civil Engineering

Eduardo Kauehl, Ph.D.
Associate Professor of Civil Engineering

Wallace Kendall Melville, Ph.D.
Associate Professor of Civil Engineering

Yosef Sheffi, Ph.D.
Associate Professor of Civil Engineering (On leave)

Keith Denamore Stolzenbach, Ph.D.
Associate Professor of Civil Engineering

Clifford Winston, Ph.D.
Associate Professor of Civil Engineering (On leave)

Assistant Professors

Philip M. Gschwend, Ph.D.
Assistant Professor of Civil Engineering

George Andrew Kour, Ph.D.
Assistant Professor of Civil Engineering

Victor C. Li, Ph.D.
Esther and Harold E. Edgerton Assistant Professor of Civil Engineering

S. Shyam Sunder, Sc.D.
Assistant Professor of Civil Engineering

John H. Slater, Ph.D.
Assistant Professor of Civil Engineering

Associate Professors

Amr S. Azzouz, Sc.D.
Associate Professor of Civil Engineering

Gregory Bert Baecher, Ph.D.
Associate Professor of Civil Engineering

Moshe Emanuel Ben-Akiva, Ph.D.
Associate Professor of Civil Engineering

Oral Buyukozturk, Ph.D.
Associate Professor of Civil Engineering

Sallie W. Chisholm, Ph.D.
Associate Professor of Civil Engineering

Harold Field Hemond, Ph.D.
Henry L. Doherty Career Development Associate Professor of Civil Engineering

Henry G. Irwig, Ph.D.
Associate Professor of Civil Engineering

Eduardo Kauehl, Ph.D.
Associate Professor of Civil Engineering

Wallace Kendall Melville, Ph.D.
Associate Professor of Civil Engineering

Yosef Sheffi, Ph.D.
Associate Professor of Civil Engineering (On leave)

Keith Denamore Stolzenbach, Ph.D.
Associate Professor of Civil Engineering

Clifford Winston, Ph.D.
Associate Professor of Civil Engineering (On leave)

Assistant Professors

Philip M. Gschwend, Ph.D.
Assistant Professor of Civil Engineering

George Andrew Kour, Ph.D.
Assistant Professor of Civil Engineering

Victor C. Li, Ph.D.
Esther and Harold E. Edgerton Assistant Professor of Civil Engineering

S. Shyam Sunder, Sc.D.
Assistant Professor of Civil Engineering

John H. Slater, Ph.D.
Assistant Professor of Civil Engineering

Senior Lecturers

James Martin Becker, Ph.D.
William Waither Seifert, Sc.D.

Lecturers

E. Eric Adams, Ph.D.
John T. Germaine, Ph.D.

Thomas F. Humphrey, S.M.
William LeMessurier, S.M.

Dennis McLaughlin, S.M.

Senior Administrative Officer

Trond H. Kaalstad, S.M.

Administrative Assistants

Paulette Chiles
Theresa Demeris
Patricia Dixon
Loretta Hewitt

Senior Research Associate

Robert T. Martin, Ph.D.

Principal Research Associates

Michael J. Markow, S.M.
Carl D. Martland, C.E.

Research Associates

Charles H. Hellwell, S.M.

Sponsored Research Staff

Brian D. Brademeyer, S.M.
Sheila L. Frankel, M.A.
John MacFarlane, S.M.

Postdoctoral Associate

Johan Anderson, Ph.D.

Visiting Engineers

Mustafa Gencer, Sc.D.
Fumio Sasaki, S.M.
Oinliang Wang, B.S.

Research Affiliates

Janet K. Koch, Ph.D.
Craig E. Philip, Ph.D.
Civil engineering is the principal instrument for focusing humanity’s scientific and technical skills on the creation of constructed facilities which advance a society toward the attainment of basic objectives such as economic development, environmental protection, and social well-being.

The scope of civil engineering education and research activities at MIT is quite broad and multifaceted. This stems directly from our recognition of the underlying characteristics of the civil engineering projects with which the civil engineer must ultimately deal. Such projects are typically large and costly, with potentially profound environmental, social, and financial impacts. Their design requires the civil engineer to deal with complex technological and scientific issues as well as difficult social and public policy questions. Therefore, our Department’s programs emphasize a broad understanding of the highest levels of technology available, the behavior of the engineering facility at a systems level, and the management, organizational, and institutional settings within which such engineering systems operate. On the technology dimension, our programs deal with areas such as structural analysis and design, analytical mechanics, geotechnical engineering, materials, hydrodynamics, hydrology, and aquatic science. In the engineering systems area, we focus on such topics as economic analysis, information and computer systems, engineering risk assessment, and operations analysis and optimization. In the management, organizational, and institutional area, we address issues such as management of very large-scale engineering projects, government regulation, industry structure, and institutional issues in engineering project implementation.

Civil engineering professionals are concerned with the critical problems of today’s society. For example, our energy needs demand projects of extraordinary scope and potential environmental impact (e.g., the Trans-Alaska Pipeline, offshore extraction facilities). Rebuilding the decaying infrastructure (e.g., highways, bridges, urban water systems) in the United States represents a major technical and economic challenge, as does the construction of new infrastructure in the developing world. The technology of underground facilities for the safe disposal of hazardous wastes and tunnels for transport of people and commodities requires new methodologies for analysis, design, and risk assessment. The efficient transport of goods and people requires innovative systems planning and implementation of infrastructure as well as a basic understanding of the underlying economic, organizational, and political factors. The productivity of natural bodies of water depends upon a deeper understanding of the interaction of manufactured substances with the biological systems existing therein. Ensuring the availability and effective utilization of water for human consumption, irrigation, and power generation, and protection of society from the potential disaster of floods or droughts requires careful planning, design, and operation of facilities as well as an understanding of the demands of society for this resource. Civil engineers play a leadership role in the conception, planning, realization, and operation of facilities and systems that help solve problems in all the above areas as well as others concerned with basic human and societal needs.

As these applications illustrate, civil engineering embraces a broad scope of activities in addition to economic analysis, design, construction, management, operation, and maintenance of a variety of facility types, activities which are brought to bear on the solution of many kinds of complex, multidimensional problems. It is our belief that the education of civil engineers for future leadership positions should provide a rigorous perspective on the latest technology and analytic methods, as well as on opportunities to develop the social science and management skills which are required to assess needs, evaluate social and environmental impacts, and operate the engineering enterprise. Such opportunities are ensured through a broad curriculum and the encouragement of interactions with other departments at MIT and neighboring universities.

Job opportunities in civil engineering are quite varied. Positions are available in large and small consulting organizations, firms in a variety of industries, and agencies at all levels of government, both in the US and in the international sector. Many of our students build upon the technical, planning, and management skills emphasized in our program to become involved in the entrepreneurial activity of owning and managing their own enterprises. Further, our undergraduate programs are considered excellent entries to graduate study in engineering as well as such fields as law and management.

The Department of Civil Engineering is organized into three functional Divisions: Constructed Facilities, Transportation Systems, and Water Resources and Environmental Engineering. These Divisions represent the major professional thrusts of the Department. At the same time, many problems within Civil Engineering transcend any one of these Divisions. This is reflected in the Department’s educational and research programs, including those of its Center for Construction Research and Education, which draw upon and integrate the techniques and concepts of the major
Undergraduate Study

The Department of Civil Engineering offers two undergraduate curricula for students seeking a strong base for careers in civil engineering or related fields. Course I, which leads to the Bachelor of Science in Civil Engineering, is designed for students having educational goals which fall substantially within the scope of civil engineering. Course I-A, which leads to the Bachelor of Science without designation, is designed for students having a well-defined educational goal, whose attainment requires a specially formulated program of study.

Each of these curricula provides sufficient flexibility to permit students to develop their own special interests by taking subjects in the Department of Civil Engineering and other departments. Undergraduates are encouraged to participate in the research activities of the Department and in many cases obtain degree credit for such work.

Students often find there are advantages in planning their programs for the third and fourth years so they dovetail with possible graduate study. This is readily accomplished for those students who embark on the Departmental Program in their second year. Under certain circumstances students are permitted to work toward undergraduate and graduate degrees to be received simultaneously.

Bachelor of Science in Civil Engineering

Course I — Internship Option

Students who wish to gain industrial experience as part of their undergraduate and graduate programs may do so by applying to Course I Internship Option. The Engineering Internship Program is described in detail in the School of Engineering section of this chapter; additional information on the Course I Internship Option will be presented here.

The Internship Option requirements are the same as for Course I. In addition, provision is made for students to be employed in the offices, plants, or construction sites of participating companies. The two undergraduate work assignments are together considered equivalent to a 12-unit subject and may, by petition, be used toward the planned elective requirement in the appropriate divisional option.

The program is expected to be particularly attractive to students who wish to study for the combined S.B.-S.M. degree, requiring five years for completion. Such students, if admitted to the graduate school, then complete two further work assignments, consisting of the summer and the subsequent fall term following the fourth year. A thesis for the S.M. degree is ordinarily based on the industrial experience. Twelve units of graduate credit are awarded for these two work assignments, in addition to regular thesis credit for preparation of the S.M. thesis.

Students desiring to participate in the Internship Option should apply early in the second term of their sophomore year.
Bachelor of Science in Civil Engineering

Course I

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>The Humanities, Arts, and Social Sciences Requirement can be satisfied by 1.01J in the Departmental Program, plus appropriate subjects totaling</td>
<td>63</td>
</tr>
<tr>
<td>The Science Distribution Requirement can be satisfied by 1.00 or 1.04, and 18.03 in the Departmental Program, plus appropriate subjects totaling</td>
<td>12</td>
</tr>
<tr>
<td>The Laboratory Requirement can be satisfied by subjects in the Departmental Program, plus an appropriate subject totaling</td>
<td>0 or 6</td>
</tr>
</tbody>
</table>

Departmental Program

Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)

<table>
<thead>
<tr>
<th>Required Subjects:</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 Introduction to Computers and Engineering Problem Solving</td>
<td>12</td>
</tr>
<tr>
<td>1.01J Engineering Aspects of Economic Analysis</td>
<td>12</td>
</tr>
<tr>
<td>1.02 Civil Engineering Systems Analysis I</td>
<td>12, 18.02</td>
</tr>
<tr>
<td>1.03 Civil Engineering Systems Analysis II</td>
<td>12, 18.02</td>
</tr>
<tr>
<td>1.04 Behavior of Physical Systems I</td>
<td>12, 18.02</td>
</tr>
<tr>
<td>1.05 Behavior of Physical Systems II</td>
<td>12, 18.02</td>
</tr>
<tr>
<td>18.03 Differential Equations</td>
<td>12, 18.02</td>
</tr>
</tbody>
</table>

Planned Electives:

One of the following three options:

Option I Transportation

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.102 Transportation Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>1.20 Transportation Systems Analysis</td>
<td>12, 1.03</td>
</tr>
<tr>
<td>1.213 Introduction to Freight Transportation</td>
<td>12</td>
</tr>
<tr>
<td>1.214 Public Transportation</td>
<td>12, 1.20</td>
</tr>
<tr>
<td>1.218 Case Study in Transportation Planning</td>
<td>15, 1.20</td>
</tr>
<tr>
<td>1.107 Undergraduate Thesis (at least 12 units)</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Additional transportation-related subject(s) sufficient to bring total planned electives to minimum of 69.

OR

Option II Water Resources and Environmental Engineering

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.106 Laboratory Projects in Environmental Fluid Mechanics</td>
<td>6</td>
</tr>
<tr>
<td>1.60 Fluid Dynamics</td>
<td>12, 1.05, 18.03</td>
</tr>
</tbody>
</table>

Planned Electives (continued)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.70 Analysis Methods in Water Resources and Environmental Engineering</td>
<td>1.60</td>
</tr>
<tr>
<td>1.80 Fundamentals of Ecology</td>
<td>12</td>
</tr>
</tbody>
</table>

Three of the following five subjects:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.107 Aquatic Chemistry and Biology Laboratory</td>
<td>12, 1.11</td>
</tr>
<tr>
<td>1.62 Free Surface Hydraulics</td>
<td>12, 1.60</td>
</tr>
<tr>
<td>1.71 Introduction to Hydrology</td>
<td>12, 1.05</td>
</tr>
<tr>
<td>1.85 Introduction to Wastewater Treatment Engineering</td>
<td>1.80</td>
</tr>
<tr>
<td>1.86 Element Cycles in the Environment</td>
<td>12, 1.60 or 1.80</td>
</tr>
<tr>
<td>1.11J Thesis (12 units)</td>
<td>1.80</td>
</tr>
</tbody>
</table>

Option III Constructed Facilities

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.105J Structural Engineering Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>1.30 Soil Mechanics</td>
<td>12, 1.04</td>
</tr>
<tr>
<td>1.50 Introduction to Structural Engineering</td>
<td>12, 1.04</td>
</tr>
<tr>
<td>1.51 Mechanics of Construction Materials</td>
<td>12, 1.04</td>
</tr>
<tr>
<td>1.53 Constructed Facilities Project Laboratory</td>
<td>12, 1.04</td>
</tr>
<tr>
<td>1.59J Materials of Construction</td>
<td>12, 1.04</td>
</tr>
</tbody>
</table>

Unrestricted Electives

57 to 66 units

Total Units Required for the S.B. Degree: 360

1. 1.00 may be accepted by petition as substitution for 1.00.
Electives and Research Opportunities

A list of undergraduate electives in Civil Engineering may be obtained from the Department. Students registered in the Department are encouraged to consider appropriate subjects offered by other departments as part of their elective programs.

Students wishing to work closely with a member of the faculty on research may obtain permission to register for thesis, or to enroll in 1.999, Undergraduate Studies in Civil Engineering. Numerous possibilities for UROP projects exist in the Department. To help undergraduates understand the professional challenges of Civil Engineering as well as to establish working relationships with the faculty, up to ten $600 UROP traineeships are awarded to undergraduates each spring.

The Department of Civil Engineering grants the following advanced degrees: Master of Science; Master of Science in Civil Engineering; Civil Engineer; Environmental Engineer; Doctor of Science; and Doctor of Philosophy. The Institute's general requirements for these degrees may be found in Chapter IV of this catalogue. Detailed information on the departmental requirements for each degree may be obtained from the Academic Programs Office, Room 1-281.

At the graduate level, research and education go hand-in-hand. Students interested in physical processes or in the analysis and design of component facilities may work in a fundamental area such as soil, water, or structures. Students interested in the planning, design, construction, and operation of large-scale systems of facilities may work in such fields as transportation, water resources, and other public and private systems.

The functional Divisions of the Department and the Center for Construction Research each have responsibility for the administration of the research and academic programs of the Department, including graduate admissions and research assistant, teaching assistant, fellowship and traineeship awards and assignments. Prospective graduate students indicate their preferred affiliation when applying for admission.

Fields of Advanced Study

Integrated programs of advanced study are available in the following areas: geotechnical engineering, structural engineering and mechanics, construction engineering and management, transportation systems, hydrodynamics and coastal engineering, hydrology and water resource systems, water quality control and the aquatic environment, and environmental engineering. Major fields available for doctoral theses are included in the Civil Engineering list in Chapter IV. Fields other than those listed must be approved by the Department Registration Officer and the Dean of the Graduate School.

Entrance Requirements for Graduate Study

Applicants do not need to have an undergraduate degree in civil engineering.

Numerous opportunities for graduate education in civil engineering exist for students with backgrounds in other branches of engineering, science, and certain social sciences. These arise through the growth of interdepartmental research and degree programs which bring people of diverse backgrounds together in search of solutions to major societal problems.
Divisions, Laboratories, and Special Programs

Constructed Facilities Division

The academic and research programs of the Constructed Facilities Division are concerned with the broad field of development, design, analysis, and assessment of behavior of constructed facilities. Engineering programs in geotechnical engineering and in structural design and analysis build upon subjects in mechanical behavior of materials, engineering mechanics, applied probability and statistics, and computer-based analysis methods in designing a program that meets particular needs and interests, students may emphasize a particular engineering area or combination, or may focus more on one of several disciplinary areas, including engineering risk assessment, computer-aided engineering, and analytical mechanics.

The major areas of research and teaching in the Constructed Facilities Division are:

- **Geotechnical Engineering.** The graduate program in geotechnical engineering provides an understanding of advanced mechanical and geological principles that control the behavior of soil and rock and familiarizes the student with geotechnical analysis and design techniques and with the incorporating of geology in planning of civil engineering projects.

 The teaching program offers comprehensive treatment of theoretical soil mechanics and soil properties, engineering geology and rock mechanics, exploration and instrumentation, earth dams and foundations, and advanced subjects in soil dynamics, reliability, and computer-aided engineering. The major areas of research are: soft-ground construction, earthquake engineering, underground construction, stability of earth dams and natural slopes in soil and rock, behavior of soils under cyclic loading, pile foundations, applications of probability and decision theory, mining geotechnics, and in-situ testing — especially for offshore exploration.

- **Structural Design and Analysis.** A comprehensive treatment of the behavior of complex steel and concrete structures is the key element of the structural design and analysis program. Exposure to design procedures is provided by a set of laboratory subjects dealing with important design issues for buildings, bridges, and offshore structures. Additional study areas include structural analysis, analytical mechanics, structural dynamics, numerical modeling, structural loads, offshore structural engineering, structural mechanics for nuclear power facilities, and structural reliability.

A cooperative effort within the School offers a special opportunity to study structural mechanics for nuclear power engineering. Students studying this and other aspects of mechanics and materials may take advantage of subject offerings in all departments of the School.

The research program includes projects in the following areas: earthquake engineering, statistically based loading and serviceability criteria for design, three-dimensional models for failure of concrete, computational strategies for complex concrete structures, and offshore structures.

Engineering Risk Assessment is important for civil engineering projects, since uncertainties of site characterization, loading, and construction materials are large. The academic program of the Division has been designed to provide in-depth exposure to probability theory, statistics, modeling with random functions, and risk-based decision methods. Disciplinary subjects are complemented by application-oriented subjects in structural reliability, uncertainties in geotechnical engineering, and risks in construction.

Computer-Aided Engineering is based upon the disciplinary areas of information processing, computational methods, and artificial intelligence. A series of specific subjects in theory, methodology, and practice are offered, and applications are integrated in a number of civil engineering subjects.

Analytical Mechanics presents an in-depth treatment of the mechanics of solids and its extension to multiphase media. Students interested in engineering analysis can combine this program with additional geotechnical and structural mechanics subjects.

The following laboratories are associated with the Division:

- **The Structures Laboratory** is an educational facility for studying the behavior of structural elements and structural systems. The special laboratory equipment assists students in relating theoretical predictions to actual response and in visualizing the behavior of complex systems. Students also design and construct models of structural systems which are then tested for verification of the design.

- **The Materials Laboratory** is both an educational and a research facility. It helps students relate the mechanical properties of construction materials to their composition. Current research includes mechanical behavior of concrete and asphaltic composites under various environmental conditions, and development of new composite materials for construction.

- **The REMERGENCE Laboratory** is a joint effort of the Departments of Civil and Mechanical Engineering in the Resource Extraction, Materials, Energy, Reservoir, Geotechnical, Environmental, and Construction Engineering areas. The laboratory provides testing facilities for experimentation on geologic and construction materials both for teaching and research.

Transportation Systems Division

The educational and research programs of the Transportation Systems Division are based on the philosophy that the analysis, design, and implementation of transportation improvements result from combining: 1) quantitative analysis of alternative solutions; 2) an in-depth understanding of specific problem areas spanning freight, passenger, urban, intercity and international transportation; and 3) knowledge of the economic and institutional setting in which solutions are implemented.

The academic programs of the Division reflect a multi-modal orientation, emphasizing basic methods of analysis and their applications to a range of problems. The approaches include a synthesis of economics, statistics, and mathematical programming, as well as the tools of management and the social sciences. Subject offerings stress both the technical analysis of transportation systems and the social and political factors which must be considered in transportation decisions, including subjects in various applications areas.

The research in the Division also reflects a wide range of methodological and substantive interests. The current major research activities in which students are encouraged to participate include the following: railroad operations planning; travel demand analysis; network equilibration; microcomputer applications in transportation operations; analysis of the US
automobile industry; freight and urban passenger transportation in developing countries; regulation in the common carrier industry; transit operations and planning; institutional and organizational issues in transportation; and the relationship between transportation and downtown retail activity.

The faculty, students, and staff of the Transportation Systems Division actively participate in the MIT Center for Transportation Studies (CTS), which coordinates transportation research and educational activities at MIT. The interdepartmental degree of Master of Science in Transportation is offered in cooperation with the Center for Transportation Studies. Most Civil Engineering students studying transportation at the Master's level are enrolled in this interdepartmental program although the Master of Science in Civil Engineering degree is still offered for those students whose educational objectives are better served by that program. Requirements for the Master of Science in Transportation and a detailed description of the Center are contained in Chapter V.

Water Resources and Environmental Engineering Division — Ralph M. Parsons Laboratory

The programs of graduate study and research include both departmental and interdisciplinary programs in the analytical and managerial aspects of water resources. A joint degree program exists between MIT and the Woods Hole Oceanographic Institution.

The educational and research programs are broadly grouped in three areas:

Hydrodynamics and Coastal Engineering. A wide selection of subjects is offered including theoretical and applied fluid mechanics, hydrodynamics of wave motion, beach erosion and coastal sediment problems, wave interaction in harbors and offshore structures, estuaries and coastal circulation and water quality, energy extraction from waves and the ocean thermal gradient, economic development and environmental impact assessment in the coastal zone. Related subjects in Oceanography and Ocean Engineering are offered by other departments at MIT and at Woods Hole Oceanographic Institution.

Hydrology and Water Resource Systems. Emphasis is on both deterministic and stochastic representations of hydrologic processes in the surface and ground water regimes. Particular attention is given to the integration of hydrologic criteria and optimization methods for multi-objective urban and river basin development schemes with environmental, economic, and public policy issues. Opportunities may exist for summer fieldwork in developing countries. Related subjects in probability and systems methodology are also offered.

Water Quality Control, Aquatic Science, and Environmental Engineering. Major areas of activity, including possibilities for interdisciplinary work, are: environmental fluid mechanics, aquatic chemistry and biology, limnology, and the environmental impact of energy development and the fate of pollutants in various kinds of natural water bodies and groundwater. Emphasis is on the integration of hydrodynamic and hydrothermal transport and mixing processes with biogeochemical transformation processes including effects of heavy metals and hydrocarbons.

Research includes waste heat management, harbor and coastal modeling, local and regional water quality, resource and land use management and facility siting, microorganism/pollutant interaction, phytoplankton growth dynamics, inorganic and organic chemistry of surface and groundwater, and wetland geochemistry.

The Ralph M. Parsons Laboratory, which houses the Division, is a major unit for research in the water environment, containing more than 40,000 square feet of classrooms, teaching and research laboratories, shops, computer facilities, and offices. Laboratory facilities exist for hydrodynamic studies involving wave motion, jet turbulence and dispersion by means of laser-Doppler instrumentation. Flows with thermal and density stratification, and flows in porous media. Research facilities are also available to study aquatic biological and chemical interactions.

Center for Construction Research and Education

The Center was established to provide closer ties with the construction industry, and reflects a major commitment by the Department to advances which can help the industry meet the opportunities and challenges for the next several decades.

The Center provides a specific focus within the Department for students, faculty, and industry personnel to interact and collaborate on a wide range of projects of particular interest to the construction industry. For the student preparing for a career in the construction industry, the Center offers advanced degree programs, internships and summer jobs, and industry-sponsored thesis research opportunities.

The Center currently offers an integrated graduate degree program in Construction Engineering and Management. As construction problems become more complex, the industry must control, more reliably than ever, time, cost, and quality, cope with new technologies and means of production, and be concerned with increasingly complex human relations. There is increasing interdependence between the inception, feasibility, determination, design, and production phases of development, with a corresponding need for greater sophistication in planning, organization, and management.

In addressing this need, the program in Construction Engineering and Management encompasses the totality of activities from the initial needs analysis for a facility, through economic and technical feasibility studies, environmental and social impact analyses, design, construction, and operation.

The research activities of the Center are highly collaborative and focus on: management (at the industry, and project levels); resources (labor, materials, equipment, and finance); and technology (innovation, productivity, adaptation, and transfer). Major research programs include: the role of construction in energy; technology and productivity; rebuilding America's infrastructure; management of superprojects; computer applications in construction; construction and socio-economic development; and construction industry competitiveness in the world market.

The Center promotes and coordinates a number of liaison activities with the construction industry, which provides ways for industrial representatives to share their perspectives on the educational and research needs of industry.

Computational Facilities

The Civil Engineering Microcomputer Laboratory provides facilities for students and faculty to pursue interests in the application of microcomputers and microprocessor-based systems in civil engineering.
The Joint Computer Facility provides a wide range of sophisticated equipment and services in collaboration with several other Engineering departments, for use by students and faculty in the departments' academic and research programs.

Interdisciplinary Programs

In responding to the interdisciplinary character of many problems of interest, the Department of Civil Engineering has added faculty with training and professional experience in law, management, economics, political science, and sociology, as well as in mechanical and electrical engineering, ecology, chemistry, and geology. Accordingly, departmental research and subject offerings have been developed in many interdisciplinary areas of current and future importance such as environmental engineering, environmental management and control, public service systems, urban engineering, engineering and public policy, project evaluation and management.

Undergraduates and graduate students can build educational programs in these and other areas, and can select subjects from among the offerings of other departments of the Institute, such as Urban Studies and Planning, Architecture, Management, Mathematics, Economics, Political Science, the life and earth sciences, and the other fields of engineering. Each student's educational and research program may be arranged to reflect his or her personal and professional goals, whether they are intensive or extensive in nature.

Interdisciplinary programs at the graduate level are administered by interdepartmental committees. Those of particular interest to students from civil engineering are in environmental engineering, transportation, materials, applied earth sciences, operations research, computers and information systems, ocean engineering, public systems, the social applications of technology, management of technology, and mineral resources engineering and management.

Master of Science in Technology and Policy

Students interested in applying their civil engineering background to problems of policy and socioeconomic assessment of technology may apply for the interdepartmental Master of Science Program in Technology and Policy. This program combines subjects in advanced technology in the particular field of the student's choosing with subjects in economics, systems analysis, political science, and law. General requirements and application procedures are described in Chapter V of this catalogue.

Master of Science in the Management of Technology

Students who would like to apply their civil engineering background and at least five years of technical work experience to issues in technical management may want to explore the Joint Program in the Management of Technology. Jointly developed and offered by MIT's School of Engineering and the Sloan School of Management, this Program entails a rigorous 12-month curriculum, focusing on management principles for technical people in a technical environment. The Program is designed for scientists and engineers on a career path requiring increasing managerial responsibilities for technical activities. Details of the program and application procedures are described in Chapter V.

Joint MIT-WHOI Program

A joint program with the Woods Hole Oceanographic Institution is intended for students whose primary career objective is oceanographic engineering. Students divide their academic and research efforts between the campuses of the two institutions. While in residence at MIT, students enrolled in this course follow a program similar to that of other students in this Department. The program is described in more detail under the section at the end of this chapter on MIT's Joint Program in Oceanography and Oceanographic Engineering with the Woods Hole Oceanographic Institution.

Mining and Mineral Resources Research Institute

The MMRRI coordinates academic and research activities at MIT in the mineral resources field. The MMRRI and its various academic and research opportunities are described in Chapter V.

Inquiries

Detailed information about the academic policies and programs of the Department may be obtained by writing to the Academic Programs Office, Room 1-281, MIT, Cambridge, Massachusetts 02139, or by calling (617) 253-7106.
Department of Electrical Engineering
and Computer Science

Joel Moses, Ph.D.
Professor of Computer Science and Engineering
Head of the Department

Richard Brooks Adler, Sc.D.
Professor of Electrical Engineering
Associate Head of the Department for Electrical Science and Engineering

Fernando José Corbató, Ph.D.
Professor of Computer Science and Engineering
Associate Head of the Department for Computer Science and Engineering

Frederick Clair Hennie III, Sc.D.
Professor of Computer Science and Engineering
Executive Officer

Leonard Abraham Gould, Sc.D.
Professor of Electrical Engineering
Undergraduate Officer

Arthur Clarke Smith, Ph.D.
Professor of Electrical Engineering
Graduate Officer

Chairman of the Faculty

Professors

David Adler, Ph.D.
Professor of Electrical Engineering

Jonathan Allen, Sc.D.
Professor of Electrical Engineering and Computer Science

Michael Athans, Ph.D.
Professor of Systems Science and Engineering

Arthur Bernard Baggeroer, Sc.D.
Professor of Electrical Engineering and Ocean Engineering

Dimitri P. Bertsekas, Ph.D.
Professor of Electrical Engineering

Amar Gopai Bose, Sc.D.
Professor of Electrical Engineering

Harvey Kent Bowen, Ph.D.
Professor of Electrical Engineering

Louis Benjamin Daniel Braica, Ph.D.
Professor of Electrical Engineering

Harry Ellis Warren Professor of Electrical Engineering
(On leave)

James Donald Bruce, Sc.D.
Professor of Electrical Engineering

Director of Information Systems

Jack Bonnell Dennis, Sc.D.
Professor of Computer Science and Engineering

Michael Leonides Dertouzos, Ph.D.
Professor of Computer Science and Electrical Engineering

Director, Laboratory for Computer Science

Alvin William Drake, Sc.D.
Professor of Systems Science and Engineering

Mildred Spiewak Dresselhaus, Ph.D.
Professor of Electrical Engineering, Emeritus

Robert Gray Gallager, Sc.D.
Professor of Electrical Engineering

Clifton G. Fonstad, Jr., Ph.D.
Professor of Electrical and Computer Engineering

Alan Louis McWhorter, Sc.D.
Professor of Electrical Engineering

Barthold Klaus Horn, Ph.D.
Professor of Computer Science and Engineering

Erich Peter Ippen, Ph.D.
Professor of Electrical Engineering

Lan Jin, Ph.D.
Professor of Computer Science and Engineering
(Visiting)

John Gabriel Kassakian, Sc.D.
Professor of Electrical Engineering

Robert Spayde Kennedy, Sc.D.
Professor of Electrical Engineering

Jin Au Kong, Ph.D.
Professor of Electrical Engineering

Richard Charles Larson, Ph.D.
Professor of Electrical Engineering

William Tower Peake, Sc.D.
Professor of Electrical and Bioengineering

Paul Livingstone Penfield, Jr., Sc.D.
Professor of Electrical Engineering

J. R. M. Ziff Professor of Science in Information and Decision Systems

Marvin Lee Minsky, Ph.D.
Donner Professor of Science in the Department of Electrical Engineering and Computer Science

Sanjoy Kumar Mitter, Ph.D.
Professor of Electrical Engineering

Director, Laboratory for Information and Decision Systems

Frederic Richard Morgenthaler, Ph.D.
Professor of Electrical Engineering

Walter E. Morrow, Jr., Sc.D.
Professor of Electrical Engineering

Director, Lincoln Laboratory

Alan Victor Oppenheim, Sc.D.
Professor of Electrical Engineering

Ronald Richard Parker, Ph.D.
Professor of Electrical Engineering

Erich Peter Ippen, Ph.D.
Professor of Electrical Engineering

Barthold Klaus Horn, Ph.D.
Professor of Computer Science and Engineering

Professor of Computer Science and Engineering

Donner Professor of Science in Information and Decision Systems

Fred Charles Schweppe, Ph.D.
Professor of Electrical Engineering

Campbell Leach Searle, S.M.
Professor of Electrical Engineering

Stephen David Sentuna, Ph.D.
Professor of Electrical Engineering

William Francis Schreiber, Ph.D.
Professor of Electrical Engineering

Fred Charles Schweppe, Ph.D.
Professor of Electrical Engineering

William Conway Siebert, Sc.D.
Ford Professor of Engineering
Henry I. Smith, Ph.D.
Professor of Electrical Engineering

Dimitri A. Antoniadis, Ph.D.
Associate Professor of Electrical Engineering

Louis Dijour Smullin, S.M.
Dugald Caleb Jackson Professor of Electrical Engineering

David Hudson Staelin, Sc.D.
Professor of Electrical Engineering

Anvind, Ph.D.
Associate Professor of Computer Science and Engineering

Randall Davis, Ph.D.
Associate Professor of Computer Science and Engineering

John V. Guttag, Ph.D.
Associate Professor of Computer Science and Engineering

Carl Eddie Hewitt, Ph.D.
Associate Professor of Computer Science and Engineering

Pierre Amadee Humblet, Ph.D.
Associate Professor of Electrical Engineering

James Logan Kirtley, Jr., Ph.D.
Associate Professor of Electrical Engineering

Charles E. Leiserson, Ph.D.
Associate Professor of Computer Science and Engineering

Bernard Christophe Levy, Ph.D.
Associate Professor of Electrical Engineering

Jae Soo Lim, Ph.D.
Associate Professor of Electrical Engineering

Tomás Lozano-Pérez, Ph.D.
Associate Professor of Computer Science and Engineering

Nancy Ann Lynch, Ph.D.
Associate Professor of Computer Science and Engineering

Ellen Swallow Richards Associate Professor of Computer Science and Engineering

Roger Greenwood Mark, M.D., Ph.D.
Matsushita Associate Professor of Electrical Engineering in Medicine

José Manuel Fonseca de Moura, Sc.D.
Associate Professor of Electrical Engineering (Visiting)

Leo Rafael Reif, Ph.D.
Associate Professor of Electrical Engineering

Jeffrey Howard Shapiro, Ph.D.
Associate Professor of Electrical Engineering

Peter Szolovits, Ph.D.
Associate Professor of Computer Science and Engineering

Donald Eugene Troxel, Ph.D.
Associate Professor of Electrical Engineering

George C. Verghese, Ph.D.
Associate Professor of Electrical Engineering (On leave, spring)

Stephen Ashley Ward, Ph.D.
Associate Professor of Computer Science and Engineering

Cardinal Warde, Ph.D.
Associate Professor of Electrical Engineering (On leave)

John L. Wyatt, Jr., Ph.D.
Associate Professor of Electrical Engineering

Markus Zahn, Sc.D.
Associate Professor of Electrical Engineering

Assistant Professors

Robert Cregar Berwick, Ph.D.
Assistant Professor of Computer Science and Engineering

David John Edell, Ph.D.
Assistant Professor of Electrical and Bioengineering

David K. Gifford, Ph.D.
Assistant Professor of Computer Science and Engineering

Lance A. Glasser, Ph.D.
Assistant Professor of Electrical Engineering

Shafirra Goldwasser, Ph.D.
Assistant Professor of Computer Science and Engineering

Robert Hunter Halstead, Jr., Ph.D.
Assistant Professor of Computer Science and Engineering

Thomas Frederic Knight, Jr., Ph.D.
Assistant Professor of Computer Science and Engineering (Visiting)

Thomas Frederic Knight, Jr., Ph.D.
Assistant Professor of Computer Science and Engineering

Jeffrey Hastings Lang, Ph.D.
Esther and Harold E. Edgerton Assistant Professor of Electrical Engineering

Hae-Seung Lee, Ph.D.
Assistant Professor of Electrical Engineering

Raphael Carl Lee, M.D., Sc.D.
Assistant Professor of Electrical Engineering

Silvio Micali, Ph.D.
Assistant Professor of Computer Science and Engineering

Bruce Ronald Musicus, Ph.D.
Class of 1956 Career Development Assistant Professor of Electrical Engineering

Terry Philip Orlando, Ph.D.
Assistant Professor of Electrical Engineering

Martin Frederick Schlecht, Sc.D.
Assistant Professor of Electrical Engineering

Charles G. Sodini, Ph.D.
Assistant Professor of Electrical Engineering

Christopher Jay Terman, Ph.D.
Assistant Professor of Computer Science and Engineering

William E. Weihl, Ph.D.
Assistant Professor of Computer Science and Engineering

Vincenzo Zaccaria, Ph.D.
Assistant Professor of Electrical Engineering

Adjunct Professors

Edward Fredkin
Adjunct Professor of Computer Science and Engineering

H. Austin Spang, III, D.Eng
Adjunct Professor of Electrical Engineering

Gunter Stein, Ph.D.
Adjunct Professor of Computer Science and Engineering

Senior Lecturers

Robert Mario Fano, Sc.D.
John Francis Reintjes, M.E.E.
John George Trump, Sc.D.
Henry Joseph Zimmermann, S.M.
Lecturers
Guy Octo Barnett, M.D.
Stephen Kent Benton, Ph.D.
Stephen Kent Burns, Ph.D.
Chathen M. Cooke, Ph.D.
Charles Freed, S.M.
Stanley B. Gerashin, Ph.D.
Bernard Gold, D.E.E.
Alexander P. Kung, Ph.D.
Richard S. Marcus, E.E.
Michael J. Merritt, Ph.D.
(Visting)
Charles E. Miller, S.M.
Ronald S. Newbower, Ph.D.
Charles D. Paton, B.S.
Stephen J. Raymond, Ph.D.
David P. Reed, Ph.D.
Robert Harvey Rines, Ph.D.
Douglas T. Ross, S.M.
Howard E. Shrobe, Ph.D.
Marvin A. Sizimu, Jr., Sc.D.
Robert T. Tenney, Ph.D.
John Avery Tucker, M.Engg.
Stephen D. Umans, Sc.D.
Bruce D. Wedlock, Sc.D.
Allen W. Wignman, Ph.D.

Senior Research Scientists
David D. Clark, Ph.D.
Nathaniel Isaac Durisch, M.A.
Dennis H. Klett, Ph.D.
Robert Hamon Rediker, Ph.D.

Senior Research Associate
Arthur Linz, Ph.D.

Research Associates
A. N. Master Choudhury, Ph.D.
James J. Gullman, Ph.D.
Paul Maciel, A.E.E.

Visiting Scientists
Joan L. Bronberg, Ph.D.
Hisashi Morin, M.S.
Kazuo Nishimura, Ph.D.

Research Affiliates
George Edward Costley, B.E.E.
Mark H. Dow, S.M.
Kenneth J. Grimeshansau, S.B.
Theodore C. M. Lo, M.D.
Vernon E. MacRoberts
Peter W. Mui, S.B.
Robert Pose, M.D.
Ferdinand A. Salzman, M.D.
Robert S. Wentzur, Jr., Ph.D.
William B. Westpel, S.B.

Postdoctoral Associates
Zeev Feit, Ph.D.
Sudhir H. Madan, Ph.D.
Prabhakar Kirthi Tewari, Ph.D.

Technical Instructor
Charles D. Paton, B.S.
Lecturer

Director of VI-A Program
John Avery Tucker, M.Engg.
Lecturer

Administrative Officer
Richard Joseph Calogero

Facilities Officer
Frank J. O'Brien, B.B.A.

Integrated Circuit Fabrication
Facility Manager
Anthony Colorzi, B.S.

Administrative Assistants
Cheryl Ann Butters
Paul Jerome McQuillan, B.S.
Marilyn Andrea Pierce
Manuel L. Silva, A.E.E.
Horace McNutt Smith, Jr., B.A.

Robert Mario Fano, Sc.D.
Professor of Electrical Engineering
and Computer Science, Emeritus

Richard Henry Frazier, S.M.
Professor of Electromechanics, Emeritus

Truman Stretcher Gray, Sc.D.
Professor of Engineering
Electronics, Emeritus

Charles Kingsley, Jr., S.M.
Associate Professor of Electrical Engineering, Emeritus

Robert Louis Kyhi, Ph.D.
Professor of Electrical Engineering, Emeritus

Yuk-Wing Lee, Sc.D.
Professor of Electrical Engineering, Emeritus

Perry Moon, S.M.
Associate Professor of Electrical Engineering, Emeritus

Charles Kingsley, Jr., S.M.
Associate Professor of Electrical Engineering, Emeritus

Walter Alter Rosenblith, Ing. Rad.
Institute Professor, Emeritus
Professor of Communications
Biophysics, Emeritus

Claude Elwood Shannon, Ph.D.
Donor Professor of Science and
Professor of Electrical Engineering
and Mathematics, Emeritus

John George Trump, Sc.D.
Professor of Electrical Engineering, Emeritus

Arthur Robert Von Hippel, Ph.D.
Institute Professor, Emeritus
Professor of Electrophysics, Emeritus

Karl Leland Wildes, S.M.
Professor of Electrical Engineering, Emeritus

John McReynolds Wozencraft, Ph.D.
Professor of Electrical Engineering, Emeritus

Henry Joseph Zimmermann, S.M
Professor of Electrical Engineering, Emeritus
Many of the products and services in modern society are based upon the work of electrical engineers and computer scientists.

Electrical communication systems involving wires, optical fibers, or wireless technology abound in radio, television, telephone, and computer-communication networks. Modern electronics has made possible sophisticated instrumentation systems for use in all branches of the physical and biological sciences, as well as in most areas of engineering. Electrical machines and electronic circuits control a multitude of systems that deeply affect our lives in many ways. The large quantities of electric power that serve society are provided by electric motors and generators and are controlled and distributed by complex transmission and switching networks.

The tremendous reduction over the last decade in the cost of digital electronic devices has led to an explosive growth in the use of computers and computation. At the same time, our increased understanding of computer science has made possible the development of new software systems of increased power, sophistication, and flexibility.

Modern electronic systems are increasingly digital in nature, exceedingly complex, and would be inconceivable without today's VLSI "chip" technology. Indeed, such systems are so complex that the principles of their design bear great similarities to the design principles of large software systems. Thus, computer science and electronic system design require similar backgrounds in many respects, and computer aids to design are essential in this ever-expanding domain of engineering.

The pervasiveness and success of electrical engineering and computer science are due in large part to the conceptual models that electrical engineers and computer scientists have developed for the devices and systems with which they must deal. These models are based upon a background of mathematics and physical sciences, including the fundamental electric and magnetic properties of materials, and are employed in a wide range of applied problems, including both man-made and biological systems. Accordingly, the focus of the undergraduate curricula, and many of the subjects offered for graduate students, is on the fundamental principles and models of the electrical and computer sciences. Elective subjects, laboratory subjects, and thesis research complement this preparation by introducing more specialized techniques of analysis, design, and experimentation in a variety of fields.

The Department's undergraduate programs provide the intellectual tools and skills needed for professional work and form the basis for continuing study and learning that is characteristic of engineering leaders. The heart of the undergraduate programs is a Common Core of subjects (6.001, 6.002, 6.003, and 6.004, each including a laboratory component) which introduces all undergraduate majors in the Department to the principles of organizing computer software and hardware, as well as to the fundamentals of electrical circuits and linear systems. It, as well as many of the required subjects in the separate programs described below, emphasizes mathematical and physical principles along with the techniques used in their application to real problems. Beyond the required subjects, students may elect additional classroom or laboratory subjects of a more specialized nature. Each student's program is developed through personal discussion with, and guidance from, his or her faculty advisor.

The Department offers two undergraduate programs: Program 1, Electrical Science and Engineering; and Program 3, Computer Science and Engineering. Versions of these two programs combining study with industrial engineering practice are available under the designation VI-A. Both programs are accredited by the Accreditation Board for Engineering and Technology.

The curriculum requirements listed for the Department programs are not rigid. Some variations are routinely permitted, while others are considered on an individual basis. Approval of requests for substantial changes may be granted to well-prepared students whose proposed programs are comparable to the listed curricula in breadth, depth, and integrated approach to a well-defined educational objective. Changes affecting the Common Core portion of the curricula, however, are rarely approved.

The major part of each curriculum consists of classroom subjects presented in lecture-recitation format. These subjects provide an organized introduction to the principles and methods of electrical engineering and computer science — an introduction that is reinforced by regularly assigned homework exercises and, in many cases, elementary laboratory or design problems. In addition to these classroom subjects, there are two other important components of each program: laboratory-project subjects and undergraduate thesis.

Laboratory-project subjects expose the student to the design of experiments, equipment, or computer programs; the problems of implementation; and the evaluation of results. Because of the importance of this experience, students are expected to complete one Departmental Laboratory subject in addition to the General Institute Laboratory Requirement.

The undergraduate thesis is the one part of the curriculum in which the student bears the primary responsibility for success. He or she must take the initiative in planning and executing the work and must present the results both orally and in a formal written report. There are deadlines for the completion of these tasks and students must organize their efforts accordingly. Students are encouraged to think about thesis projects early, since preliminary work may begin even in the junior year.

The Departmental programs allow students to choose a number of unrestricted electives, some of which they are encouraged to select from the areas of science and public policy, engineering management, inventions, entrepreneurship, finance, or managerial economics. Other elective choices might, for example, lead to a "minor" in Program 1 or Program 3, or to gaining more experience with design activities.

All undergraduates are encouraged to acquire industrial experience during their program at MIT. Many aspects of engineering education can be more effectively pursued on the job than in the classroom, especially when students see that the knowledge they have gained at MIT does in fact help to solve real and important engineering problems. This experience may be acquired either through participation in the VI-A Program or through appropriate summer jobs.

Additional information about the Department's undergraduate programs may be obtained from Professor L. A. Gould, Electrical Engineering and Computer Science Undergraduate Office, Room 38-476, MIT, Cambridge, Massachusetts 02139, (617) 253-7329.

Bachelor of Science in Electrical Engineering
Course V
Program 1: Electrical Science and Engineering

Program 1 prepares students for electrical engineering careers in industry, research, or the academic world. Through a proper selection of elective subjects students may get a good foundation for an industrial career in one of the specialized branches of electrical engineering or prepare themselves for graduate study leading to an academic or research
career in engineering or such related fields as physics, mathematics, management, or some of the social sciences. Program 1 requires at least one term of mathematics, including differential equations, and one term of quantum physics or thermodynamics, beyond the General Institute Requirements. This background supports and complements the Common Core and the required subjects in electronics, electromagnetic fields, and electrodynamics. Additional restricted electives allow the student to choose from the fields of statistical physics, probability, or advanced mathematics.

The Bioelectrical Engineering Option is a variant of Program 1 that prepares students for a variety of careers in biomedical engineering and medicine. The required subjects in this Option are the same as those in the normal Program 1 curriculum, with the addition of three subjects in quantitative physiology: 6.021J Cells and Tissues, 6.022J Organ Transport Systems, and 6.023J Sensory and Motor Systems. The restricted elective requirement is satisfied by a single choice from among the subjects 6.041, 18.313, and 18.440. Other modifications may be appropriate for students who have specialized career objectives.

Most students in the Bioelectrical Engineering Option will wish to include several chemistry and biology subjects in their programs. Note that, although 5.11 Principles of Chemical Science, 5.60 Chemical Thermodynamics, and 7.01 General Biology are not specifically required in the Departmental Program, these subjects are prerequisites for many advanced chemistry and biology subjects. Only students with a good high school preparation in chemistry and biology should elect to take 5.11 and 7.01. Those who may be interested in applying for admission to medical school probably will want to elect additional chemistry and biology subjects, such as 5.310 Laboratory Chemistry, 5.12 Organic Chemistry I, and 7.011 Introduction to Experimental Biology or 20.002 Laboratory in Applied Biology. Further details about the Bioelectrical Engineering Option may be obtained from the Department.

Bachelor of Science in Electrical Engineering

Program 1: Electrical Science and Engineering

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Institute Requirements</td>
<td>60</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>72</td>
</tr>
<tr>
<td>The Science Distribution Requirement can be satisfied by 6.002, 18.03, and either 2.40, 5.60, or 8.211 in the Departmental Program.**</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>12</td>
</tr>
<tr>
<td>Departmental Program</td>
<td></td>
</tr>
<tr>
<td>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)</td>
<td></td>
</tr>
<tr>
<td>Required Subjects:</td>
<td>120</td>
</tr>
<tr>
<td>6.001 Structure and Interpretation of Computer Programs, 15</td>
<td></td>
</tr>
<tr>
<td>6.002 Circuits and Electronics, 15; 8.02, 18.03</td>
<td></td>
</tr>
<tr>
<td>6.003 Signals and Systems, 15; 6.002, 18.03</td>
<td></td>
</tr>
<tr>
<td>6.004 Computation Structures, 15; 6.001, 6.002</td>
<td></td>
</tr>
<tr>
<td>6.012 Electronic Devices and Circuits, 12; 6.002, 8.02</td>
<td></td>
</tr>
<tr>
<td>6.013 Electromagnetic Fields and Energy, 12; 6.002, 8.02</td>
<td></td>
</tr>
<tr>
<td>6.014 Electrodynamics, 12; 6.013</td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>8.02 Thesis, 12</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives:</td>
<td>48</td>
</tr>
<tr>
<td>1. One of the following three subjects:</td>
<td></td>
</tr>
<tr>
<td>2.40 Thermodynamics, 12; 8.02, 18.03</td>
<td></td>
</tr>
<tr>
<td>5.60 Chemical Thermodynamics, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>8.211 Introduction to Quantum Physics, 12; 18.03, 8.02</td>
<td></td>
</tr>
<tr>
<td>2. One subject from each of the following three groups:</td>
<td></td>
</tr>
<tr>
<td>Group A: Statistical Physics</td>
<td></td>
</tr>
<tr>
<td>6.018 Statistical Mechanics and Thermodynamics, 12; 8.02</td>
<td></td>
</tr>
<tr>
<td>Group B: Probability Theory</td>
<td></td>
</tr>
<tr>
<td>6.041 Probabilistic Systems Analysis, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>18.313 Probability, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>18.440 Probability and Random Variables, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>Group C: Advanced Mathematics</td>
<td></td>
</tr>
<tr>
<td>18.04 Complex Variables with Applications, 12; 18.03</td>
<td></td>
</tr>
<tr>
<td>18.063 Introduction to Algebraic Systems, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>18.100 Analysis I, 12; 18.03</td>
<td></td>
</tr>
<tr>
<td>18.06 Linear Algebra, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>3. One 12-unit subject selected from the Undergraduate Laboratory Subjects 6.100 — 6.182, described in Chapter VII (in addition to the General Institute Laboratory Requirement)</td>
<td></td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>54</td>
</tr>
<tr>
<td>Total Units Required for the S.B. Degree</td>
<td>366</td>
</tr>
</tbody>
</table>

* Complete prerequisites are listed in the subject description.
1 5.60 cannot be used to satisfy both the Science Distribution Requirement and the Chemistry/Biology portion of the Science Requirement.
2 Students who took 6.032 may use it to satisfy the 6.004 requirement, in which case the total number of units required for the S.B. degree will be 363.
Bachelor of Science in Computer Science and Engineering
Course VI Program 3: Computer Science and Engineering

General Institute Requirements Total Units
Science Requirement 60
Humanities, Arts, and Social Sciences Requirement 72
The Science Distribution Requirement can be satisfied by 6.034 or 6.002.
18.06, and 18.063 in the Departmental Program.
Laboratory Requirement 12

Departmental Program

Required Subjects: 132
6.01 Structure and Interpretation of Computer Programs, 15
6.02 Circuits and Electronics, 15; 8.02, 18.06
6.03 Signals and Systems, 15; 6.002, 18.06
6.04 Computation Structures1, 18.001, 6.002
6.03 Structure and Interpretation of Computer Programs, 15
6.045J Automata, Computability, and Complexity, 12; 18.063
6.170 Laboratory in Software Engineering, 12; 6.001
18.06 Introduction to Algebraic Systems, 12; 18.02
18.06 Linear Algebra, 12; 18.02
6.170 Thesis, 12

Restricted Electives: 24
1. One of the following two subjects:
 6.033 Computer System Engineering, 12; 6.032
 6.035 Computer Language Engineering, 12; 6.032, 6.170
2. One of the following four subjects:
 6.036 Problem-Solving Paradigms, 12; 6.034
 6.046 Introduction to Algorithms, 12; 6.001, 18.063
 6.801 Machine Vision, 12; 6.001
 6.802 Robot Manipulation, 12; 6.001, 6.01, 18.02

Unrestricted Electives 60

Total Units Required for the S.B. Degree 360

VI-A Program

The VI-A Program combines industrial and research experience with academic work through a series of organized assignments at affiliated companies interwoven with the regular course of study at MIT. Although students may stop at the Bachelor's degree, the Program encourages simultaneous completion of the Bachelor's and Master's degrees by the end of the fifth year with only the Master's thesis required for the two degrees. The work of the final two VI-A Company Assignments normally serves as the basis for this thesis. Since the VI-A Program maintains a continuing liaison between the participating companies and the faculty of the Department, students receive assignments of progressive responsibility and sophistication that are usually more professionally rewarding than typical summer jobs. While on Company Assignment, students are bona fide employees of the participating company and receive pay as well as academic credit for their work.

Second-year students who are registered and in good standing in any of the regular programs of Course VI may apply for admission to the VI-A Program during the annual selection period in February. The Department cannot guarantee the acceptance of a student into the Program, however, since openings are limited and the participating companies make the final selections.

Students in the VI-A Program usually complete the Bachelor's requirements in the normal four years, including a minimum of two, but occasionally three, Company Assignments. Academic credit is earned, while on Assignment, by registering for 6.921 Industrial Practice and, when appropriate, 6.922. Sometimes additional academic credit may be earned while at the company by taking subjects after hours at nearby colleges and obtaining transfer credit at MIT. VI-A students stopping at the S.B. degree may substitute work done as part of Industrial Practice for the Bachelor's thesis, provided the work is approved by a faculty member and includes both a written report in thesis format and an oral report at MIT or at the company.

Students who wish to receive both a Master's and a Bachelor's degree in the VI-A Program must apply for admission to the MIT Graduate School after the junior year. Students admitted to the combined S.B./S.M. program are normally expected to complete four Assignments with their cooperating company.

The companies and laboratories participating in the VI-A Program provide a wide spectrum of assignments in the various fields of electrical engineering and computer science, as well as an exposure to the kinds of activities in which engineers are currently engaged. In all cases, VI-A students must remain with the company with which they start the Program. At the conclusion of the Program, students are not obliged to accept employment with their company, nor in the company obliged to offer such employment.

Additional information about the VI-A Program can be obtained from the Director, John A. Tucker, VI-A Office, Room 38-473, MIT, Cambridge, Massachusetts 02139, (617) 253-4644.

Engineering Internship Program

Sophomore students in good standing in the Department may apply for admission to the schoolwide Engineering Internship Program. A general description of this program is provided in the School of Engineering section of this chapter. Like the Department's VI-A Program, the Internship Program provides a way to combine industrial experience with the Course VI academic program.

Electrical Engineering and Computer Science students who are accepted for the Engineering Internship Program register for the usual program of study in either Program 1 or Program 3. They receive academic credit for their two undergraduate work assignments by registering for 6.925.

Participants in the Program are encouraged to apply for admission to graduate school. If they are accepted to and enter graduate school, they complete their work experience with a seven-month assignment at their internship company. They receive graduate academic credit for this assignment by registering for 6.955. In many cases they also satisfy thesis requirements for both the S.B. and the S.M. during the graduate work assignment.

Additional information about the Engineering Internship Program as it applies to Electrical Engineering and Computer Science students can be obtained from Professor James K. Roberge, Room 38-494, MIT, Cambridge, Massachusetts 02139, (617) 253-5994.
Graduate Study

The program of graduate education in the Department of Electrical Engineering and Computer Science has three aspects. First, a variety of classroom subjects in physics, mathematics, and fundamental fields of electrical engineering and computer science is offered to permit students to develop strong theoretical backgrounds. Second, more specialized classroom and laboratory subjects and a wide variety of colloquia and seminars introduce the student to the problems of current interest in many fields of research, and to the techniques which may be useful in attacking them. Third, each candidate for any advanced degree conducts research under the direct supervision of a member of the faculty and reports the results in a thesis.

Three advanced degree programs are offered. A well-prepared student enrolled in the Master of Science degree program normally requires one calendar year plus a term to complete formal studies and the required thesis research. With an additional year of study a student who does superior thesis research can receive the degrees of Electrical Engineer and Master of Science concurrently. The completion of the doctoral program usually takes five years beyond the Bachelor's degree. The Department, with rare exception, requires a doctoral candidate to have completed a Master of Science degree at MIT or elsewhere.

There are no fixed programs of study for these degrees. Each student plans a program in consultation with a Graduate Counselor, a member of the faculty whose professional field is related to the student's interest. As the program moves toward thesis research, it usually centers in one of a number of areas, each characterized by an active research program. Areas of specialization in the Department which have active research programs and related graduate subjects include: systems, communication and control; computer science; artificial intelligence; electronics, computers and systems; electromagnetics and dynamics; energy conversion devices and systems; materials and devices; VLSI system design and technology; communication and probabilistic systems; operations research; optics and quantum electronics; bioelectrical engineering; high-voltage radiation engineering; stroboscopic photography and underwater sound.

In addition to graduate subjects in electrical engineering and computer science, many students find it profitable to study subjects in other departments such as Biology, Economics, Linguistics and Philosophy, Management, Mathematics, Physics, and Psychology.

The informal seminar is an important mechanism for bringing together members of the various research groups. About 16 seminars meet every week. In these, graduate students, faculty, and visitors report their research in an atmosphere of free discussion and criticism. These open seminars are excellent places to learn about the various research activities in the Department.

Research activities in electrical engineering and computer science are carried on by students and faculty in laboratories of extraordinary range and strength, including the Laboratory for Information and Decision Systems, the Research Laboratory of Electronics, the Laboratory for Computer Science, the Artificial Intelligence Laboratory, the Center for Materials Science and Engineering, the Laboratory for Electromagnetic and Electronic Systems, the Energy Laboratory, the Center for Space Research, Lincoln Laboratory, the High Voltage Research Laboratory, the Francis Bitter National Magnet Laboratory, the Operations Research Center, and the Stroboscopic Light and Pulsed Sonar Laboratory. Full descriptions of many of these laboratories, including a list of current projects, may be found in Chapter V of this catalogue.

Requirements for Graduate Study

Because the undergraduate backgrounds of applicants to the Department are varied (electrical engineering, computer science, physics, mathematics, biomedical engineering, for example), no specific admissions requirements are listed. The backgrounds of all applicants are studied carefully to assure that they meet the principal prerequisites necessary for their graduate programs. Applicants with unusual academic backgrounds are encouraged to communicate directly with faculty members in their proposed area of study for advice. In any case, superior achievement in undergraduate sciences is considered particularly important.

Master of Science in Electrical Engineering and Computer Science

The general requirements for the degree of Master of Science are given in Chapter IV of this catalogue. The Department requires that the program include at least four formal graduate-level classroom or laboratory subjects (listed as "A" subjects in this catalogue). Students working full-time for the Master of Science degree may take as many as four classroom subjects per term. The subjects are wholly elective and are not restricted to those given by the Department. The program of study must be well balanced, emphasizing one or more of the theoretical or experimental aspects of electrical engineering or computer science. A thesis is required.

Master's Degree Program for Students in Industry

A course of study leading to the degree of Master of Science in Electrical Engineering and Computer Science may be pursued by well-qualified students while employed by approved firms in the Greater Boston area. Much of the work is done on a part-time basis and the thesis project is done at the student's place of employment with the help and supervision of both MIT faculty and a company supervisor. This program requires one term as a full-time student. The academic course requirements to earn the Master's degree in this program are the same as those for a regularly enrolled full-time graduate student. Enrollment is limited.

Electrical Engineer

Able students who desire more extensive training than is possible within the Master of Science program are encouraged to study for the degree of Electrical Engineer. This degree may be awarded for work in either Electrical Engineering or Computer Science. The course of studies for this degree is elective, and a thesis is required. The program ordinarily requires at least four terms of graduate study beyond the Bachelor of Science level. The general requirements for the Engineer's degree are given in the graduate education chapter. The Department also requires that the program include at least eight approved graduate "A" subjects.

Doctor of Philosophy and Doctor of Science

The general requirements for the degree of Doctor of Philosophy or Doctor of Science are given in the graduate education chapter. Only students who have shown promise of performing truly creative work are encouraged to study for the doctoral degree. Doctoral candidates are expected to perform thesis work which is a significant contribution to knowledge and to participate in the educational program of the Department. Students beginning graduate work in the Department are required to qualify first for the Master of Science or the Electrical Engineer degree; the quality of the thesis submitted for these degrees is a major component in the decision to qualify a student for the doctoral program. Students who have
completed a Master’s degree elsewhere are required to submit evidence of research accomplishment before being qualified for the doctoral program.

All regular graduate students who intend to enter a doctoral program are required to complete a written examination early in their graduate study. For students not specializing in computer science, the examination occurs in January of their first year of graduate study and is designed to explore students’ undergraduate preparation for graduate study. For students specializing in computer science, the examination occurs in January of their second year of graduate study and is designed to evaluate student preparation in those areas of computer science which the faculty believe to be fundamental to graduate study in this field at MIT.

The General Examination consists of the written examination described above and two oral examinations. One oral examination is normally taken in the third term of graduate study and the other in the fifth term. When the doctoral thesis research is completed, a thesis examination is held. A Minor Program is required by the Department and must have departmental approval.

Joint MIT-WHOI Program

Course VI-W

A joint program with the Woods Hole Oceanographic Institution is intended for students whose primary career objective is oceanographic engineering. Students divide their academic and research efforts between the campuses of the two institutions. The program is described in more detail under the section at the end of this chapter on MIT’s Joint Program in Oceanography and Oceanographic Engineering with the Woods Hole Oceanographic Institution.

Other Degree Programs

Graduate students enrolled in the Department participate in several of the interdepartmental degree programs described in detail in Chapter V. Among those programs are: Biomedical Engineering, Management of Technology, Operations Research, and Technology and Policy.

Fellowships and Research and Teaching Assistantships

Studies toward an advanced degree can be supported by personal funds, by an award such as the National Science Foundation Fellowship which the student brings with him or her to MIT, by a fellowship or traineeship awarded by MIT, or by a graduate assistantship. Assistantships require participation in research or teaching in the Department or in one of the associated laboratories. Assistants normally register for two or three scheduled classroom or laboratory subjects, depending upon the terms of their appointments, and may receive additional academic credit for their participation in the teaching or research program. Many assistants spend two years in a program leading to the simultaneous award of the degrees of Master of Science and Electrical Engineer; the Department encourages assistants to pursue such programs. A brochure on Research and Graduate Study in Electrical Engineering and Computer Science at MIT describing research and teaching opportunities in detail, may be obtained from the Department.

Inquiries

Additional information concerning graduate academic and research programs, admissions, financial aid, assistantships, etc., may be obtained from Horace M. Smith, Jr., Room 38-444, MIT, Cambridge, Massachusetts 02139, (617) 253-4605.
The Department of Materials Science and Engineering is concerned with the extraction, production, and use of engineering materials; with how they can be produced economically in the shapes required and with the properties demanded by modern applications. The performance of all machines, devices, and structures is limited by the properties of the materials from which they are made. Thus, materials science and engineering is critical to all other fields of engineering, and advances in these other fields are often limited by advances in materials.

Materials with which the department concerns itself include electronic materials, ceramics, metals, and polymers. Modern computers and other electronic devices rely heavily on new electronic materials. Similarly, new ceramics and modern metal alloys are critical to high performance engines including aerospace engines, and polymeric materials continue to show startling improvements for many engineering applications.

Cutting across these four materials classes are the basic science and engineering of materials. Materials science emphasizes the study of the structure of materials and of structure-property relations in materials. It is the physics and chemistry of real materials. Almost all of the properties of importance to an engineer are structure-sensitive; that is, they can be modified in significant ways by changing the chemical composition, the arrangement of the atoms or molecules in crystalline or amorphous configurations, or the size, shape, and orientation of the crystals or other macroscopic units of a solid. To understand how the useful properties of a material can be modified, it is necessary to understand the relationships between structure and properties and how the structure can be changed and controlled by the various chemical, thermal, or mechanical or other treatments to which a material is subjected during manufacture and in use. The fundamental understanding of materials developed through materials science has replaced empiricism as the basis for development of new materials. Whole classes of new materials such as semiconductors, superconductors, and some high temperature alloys have their roots in modern materials science.

All recent achievements in materials have depended as much on developments in materials engineering as they have on materials science. When developing processes for preparation and production of materials, and when designing materials for specific applications, the modern materials engineer must have a grasp of the modern engineering sciences including heat and mass transfer and chemical kinetics. He or she must also have a proper concern for economic, social, and environmental factors.

Materials processing is a major part of materials engineering. Improved performance of materials depends directly on advances in processing. There are also many examples of challenging engineering problems in reducing the cost and improving the productivity of industrial processing of materials. The Department has strong academic and research activities in all aspects of the processing of materials, as well as in other parts of materials engineering.

The links between materials engineering and materials science are very strong, and the two activities are interwoven in the Department. There are some subjects which all students of materials should know — thermodynamics, kinetics, and certain aspects of solid mechanics, physics, and chemistry. Suitable core subjects in these areas are provided at the undergraduate and graduate levels. In addition, subjects covering a wide variety of topics from solid-state physics to the analysis of materials systems are offered. By the selection of appropriate subjects, the student can follow many different paths through the science and engineering of materials, with emphasis on engineering, science, or a mixture of the two.

Materials science and materials engineering disciplines seek to identify and understand the principles, phenomena, and ideas which are basic to all materials. Many large industries today manufacture products containing a large variety of different materials, and their materials engineers must acquire a working understanding of the basic behavior of all of them. However, there also are many large industries in which a single class of material (e.g., steel, polymers; glasses) is manufactured and processed, and their materials expert must have a knowledge of various aspects of the science and engineering of one class of material. Thus, programs are provided in the Department which enable a student to specialize in the science and engineering of ceramics, electronic materials, metals, or polymers.

Materials engineers and materials scientists, whether generalists or specialists in a particular class of material, are in continuing high demand by industry and government for jobs in research, development, production, and management. They find challenging opportunities in a wide variety of important positions in operations, development, and research in the fast-growing electronics industry, in aerospace, in consumer industries, and in the basic materials preparation and producing industries.
Undergraduate Study

Bachelor of Science in Materials Science and Engineering
Course III

The undergraduate program addresses the diverse needs of students who intend to pursue employment or graduate work in the engineering or science of materials. The decision to major in this field may be reached by students ing or science of materials. The decision to major in this field may be reached by students.

For these reasons, the curriculum is flexible. Understanding of materials is developed from a foundation of physical and engineering sciences and a core of subjects in mechanics, thermodynamics, crystal structure, and structure-property relations. While these essential subjects are taught within the Department using relevant examples to illustrate the material, appropriate substitutions of subjects taken in other departments are permitted and, indeed, encouraged when a student has somewhat different educational objectives. The degree programs in Course III and Course III-B are accredited by the Accreditation Board for Engineering and Technology, while the degree programs in Course III-A are not accredited.

The elective program in materials is chosen, with the help of an advisor, to give depth in one or more specific materials areas (metallurgy, ceramics, polymers, electronic materials) and breadth across these areas. The technical areas covered in the elective program include the extraction, preparation, and purification of materials; the processing and fabrication of materials by deformation, heat treatment and phase change; the study and control of structure-property relations in metallic, ceramic, polymeric, and electronic materials; and the physics of solid materials in general. Many graduate subjects are open to undergraduates with the necessary preparation.

Other choices under the elective program are also possible. A student may concentrate elective time on modern production or research management techniques in the materials industry, or on the technology appropriate to a specific industry, or the student may choose a program which provides a sound basis in materials science and engineering from which a coherent graduate program can be developed.

Participation in laboratory work by undergraduates is an integral part of the curriculum. Laboratories are not associated with particular subjects, and, especially in thesis work, the undergraduate student has access to extensive facilities for research in materials.

The teaching facilities, some of which are located in the Center for Materials Science and Engineering, and the Materials Processing Center, include an electron-optics laboratory; electron microscopes and microanalyzers; and complete test apparatus for the study of mechanical, thermal, electrical, and magnetic properties. In the ceramics laboratories most types of refractory as well as electrical ceramics and glasses can be prepared and their properties studied. Facilities for the growth and characterization of metallic and nonmetallic crystals are available. The chemical metallurgy laboratories contain equipment for the study of heat and mass flow and for thermodynamic and kinetic investigations at high temperatures, as well as for the processing of various materials. The materials processing laboratories are equipped for work on deformation, solidification, joining, and vapor deposition as processing techniques. Laboratories in polymer structure and properties, surface chemistry, and corrosion are also open to undergraduates.

Students who decide before the sophomore year to study materials science and engineering can facilitate their later progress by including 18.03, 3.00, and 3.01 (or equivalents) in their second-year subjects. The third and fourth years may then be devoted to study, in some depth and with adequate preparation, of areas such as ceramics, metallurgy, polymers, and electronic materials through appropriate use of upperclass elective time.

Some students, on the other hand, do not wish to make a choice of major until their junior year or may wish to use their upperclass elective time to the fullest possible extent in the second year. Generally, it is possible to complete the Departmental Program and Institute Requirements in two more years, especially if one of the second-year Science Distribution subjects is in mechanics of solids.

Bachelor of Science in Materials Science and Engineering
Course III

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>72</td>
</tr>
<tr>
<td>The Science Distribution Requirement can be satisfied by 3.00 or 3.11 and by 18.03 in the Departmental Program, plus appropriate subjects totaling 12</td>
<td></td>
</tr>
<tr>
<td>The Laboratory Requirement can be satisfied by 3.081 in the Departmental Program.</td>
<td></td>
</tr>
</tbody>
</table>

Departmental Program

- Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)
- Required Subjects:
- 3.00 Thermodynamics of Materials, 12; 18.02
- 3.01 Physical Chemistry of Materials, 12; 3.00
- 3.041 Thesis Seminar, 3
- 3.081 Materials Laboratory, 12
- 3.10 Chemical Physics of Materials, 9; 3.01, 8.02, 18.03
- 3.11 Mechanics of Materials I, 12; 8.01, 18.02
- 3.13 Structure of Solids, 12; 3.11, 8.02, 18.02
- 3.185 Mass, Heat, and Fluid Transport, 8; 3.01, 18.03
- 18.03 Differential Equations, 12; 18.02
- Thesis (9 to 15 units)

Restricted Electives:

- Six of the following subjects, including three from one specific materials area and at least one laboratory:
- **Ceramics**
 - 3.069 Introduction to Ceramics Processing, 12; 3.07
 - 3.07 Introduction to Ceramics, 12; 3.01, 3.13
 - 3.075 Ceramics and Glass Laboratory, 12; 3.081
- **Electronic Materials**
 - 3.083/3.084 Introduction to Microelectronic Technology/Introduction to Semiconductor Devices Project Laboratory, 12; 3.15
 - 3.146 Electronic Materials, 8; 3.01
 - 3.147 Electronic Materials Processing, 12; 3.01
 - 3.15 Electrical, Optical, and Magnetic Materials and Devices, 8; 3.10
- **Metallurgy**
 - 3.02 Phase Transformations and Structure Development, 9; 3.01
 - 3.03 Chemical Metallurgy, 9; 3.01
 - 3.062 Metals Processing Laboratory, 12; 3.081
 - 3.14 Physical Metallurgy, 9; 3.02, 3.15

- "Alternate prerequisites are also listed in the subject description.
- 1 Substitution of similar subjects may be permitted by petition.

* Alternate prerequisites are also listed in the subject description.

1 Substitution of similar subjects may be permitted by petition.
Department of Materials Science and Engineering

Restricted Electives (continued)

Polymers
3.061J Introduction to Polymer Science and Engineering, 12; 3.091 or 5.11
3.062 Introduction to Polymer Chemistry, 9; 3.091 or 5.11, 3.10
3.064 Polymer Engineering, 9; 3.11, 3.185
3.065 Polymer Laboratory, 9; 3.10, 3.11

Unrestricted Electives up to 61

Total Units Required for the S.B. Degree 380

Bachelor of Science
Course III-A

Major problems that our society must solve relate to the optimal development and exploitation of our energy, environmental, human, and material resources. Many aspects of materials science and engineering involve diverse considerations which no single department is qualified to handle. A National Academy of Sciences study has shown that while only a small fraction of scientists and engineers receive degrees in Materials Science and Engineering, fully a third of all scientists and engineers are professionally involved in materials-related problems. One of the basic objectives of Course III-A is to provide an opportunity for students to become familiar with the characteristics of materials and with methods used to control and evaluate their properties in parallel with the study of other areas of engineering or science. Generally, a program can be set up to satisfy individual student goals.

The curriculum requirements for Course III-A are similar to, but more flexible than, those for Course III. Four subjects are to be selected from among 3.00, 3.01, 3.10, 3.11, 3.13, 3.185, and 18.03; one laboratory subject from among 3.065, 3.075, 3.081, 3.082, and 3.083; and three subjects from among the remaining Restricted Electives shown under Course III. In addition, the student and his or her advisor should develop a program of six planned elective subjects, which are not specified in terms of department, in order to attain the goal defined by the student. Further details on the degree requirements and planned elective programs may be obtained from the Department.

Bachelor of Science in Materials Science and Engineering
Course III-B

This program provides a student with industrial experience concurrently with academic work through cooperative work assignments matched to the student's capabilities. A faculty advisor is assigned to each student to act, together with a company representative, as co-supervisor during his or her work assignments. Care is taken to ensure a more challenging and rewarding experience than is typical of summer jobs. Students earn a salary during their work periods and also receive academic credit. Growth in job responsibility is expected as the student progresses.

Admission to the program is preferably obtained during the second year so that the work periods follow during that summer and the summer of the third year. A suitable work program, properly reported, may be used to satisfy the undergraduate thesis requirement. Students who are admitted to the program in the junior year can complete only one work term and are generally expected to do a senior thesis.

The program is particularly attractive to students who wish to study for the combined S.B.-S.M. degree, requiring five years for completion. Such students, if they satisfy the requirements, apply for admission into the graduate school during the senior year. They then complete two further consecutive work terms, not necessarily at the same company as the earlier work term or terms. A single thesis, which is ordinarily based on the industrial experience, suffices for the combined degree.

Students electing the Engineering Internship Program, which is described in detail at the beginning of the School of Engineering in this chapter, would register in Course III-B.

The curriculum for Course III-B is the same as for Course III, except that 24 units of 3.930/3.931 Industrial Practice are substituted for the thesis, and the laboratory subjects are deleted from the choices of Restricted Electives. Further details may be obtained from the Department.

Inquiries

Additional information regarding undergraduate programs, admissions, and financial aid may be obtained from Professor D. R. Sadoway, Room 8-109, MIT, Cambridge, Massachusetts 02139, (617) 253-3487.
Graduate Study

Departmental Degrees

The Department offers the degrees of Doctor of Philosophy and Doctor of Science in Ceramics, in Electronic Materials, in Materials Engineering, in Materials Science, in Metallurgy, and in Polymers. It offers the degrees of Master of Science in these same fields and also offers the degrees of Materials Engineer and Metallurgical Engineer.

The fields are described briefly below. The various core subjects and the 15-20 elective subjects in each of these fields are described in detail in Chapter VII of this catalogue and in literature available from the Department.

Ceramics. The field of ceramics is concerned with the science and engineering involved in the manufacturing, processing, and utilization of a wide range of inorganic materials which include oxides, nitrides, carbides, silicates, and more complex compounds. Ceramic materials are essential to many diverse industries. In recent years a large research and development effort has resulted in important extensions of the useful properties of traditional ceramics and has led to the development of many exciting new materials. The core subjects are 3.20 Thermodynamics of Materials and 3.21 Kinetic Processes in Materials.

Electronic Materials. The field of electronic materials is concerned with the science and technology of materials for semiconducting, magnetic, optical, and superconducting device applications. It is further concerned with the design and realization of useful materials through understanding and control of the interplay between electronic processes and structural aspects — atomic arrangements, defects, interfaces, and phase constitution and morphology. Research within this field includes electronic materials processing in bulk and thin-film form; characterization of the semiconducting, optical, and magnetic properties of crystalline and amorphous materials in relation to their microstructure and composition; and theoretical and experimental study of the electronic characteristics of solid-solid, -liquid, and -gas interfaces and their implications for devices. The core subjects are 3.20 Thermodynamics of Materials, 3.21 Kinetic Processes in Materials, 3.43 Physics and Chemistry of Materials, and 6.732J Physics of Solids II.

Metallurgy. This well-established discipline encompasses the study of metallic materials, elemental, alloy, and composite. It includes the processing of ores and minerals; extracting and refining of metals by chemical processes; the melting, alloying, and casting of metals; and control of structure by techniques such as heat treatment and mechanical working. The relations between composition, structure, and properties of metallic materials and the study of the behavior of metals under service conditions are important parts of the field. Metallurgy is viewed as a coherent discipline and all candidates are expected to have a working knowledge of both chemical and physical areas — though not usually to the same depth. Suitable programs are likely to be individualistic, and may be constructed in a number of ways from the various subjects available. The core subjects are 3.20 Thermodynamics of Materials, 3.21 Kinetic Processes in Materials, 3.40 Physical Metallurgy, and 3.50 Physical Chemistry of Metallurgical Processes.

Polymers. Synthetic high polymers, "plastics," are long molecules, the principal constituents of which are typically carbon, hydrogen, oxygen, chlorine, and a few other elements. Because of the unusual nature of carbon bonding, an infinite number of combinations can be conceived and produced, with virtually all exhibiting low specific gravity, ease of melt forming, and a wide range of properties, depending upon composition, structure, and processing history. Both the science and the engineering of materials have reached a high level of sophistication in this field: linear, cross-linked, crystalline, amorphous, oriented, glassy, rubbery, strong, stiff, homopolymers, copolymers, terpolymers, blends, transparent, opaque, filled, reinforced, alloys, composites, laminates, and adhesives are but a few of the descriptive aspects which can be controlled and manipulated to achieve a desired profile of properties.

Numerous opportunities exist for a student to concentrate on specific areas of polymer science or engineering: physical properties, mechanical behavior, chemical synthesis and modification, surface characteristics, environmental interactions, and combinations with other substances are a few examples. Each student pursues a particular program of study and research consistent with individual interests. The core subjects are 3.20 Thermodynamics of Materials, 3.21 Kinetic Processes in Materials, 3.91J Mechanical Behavior of Polymers, 3.93 Materials Science of Polymers, and 3.961 Polymer Synthesis and Properties or 10.691 Synthesis of Polymers.

The various graduate fields are not separated by sharp boundaries. Each member of the departmental faculty works in at least two of these fields and a number of subjects appear in common on the lists of elective subjects in each degree program; there is a great deal of interaction between the fields. The graduate fields are also coupled to other activities on materials within the Institute. Faculty from other departments participate in the departmental teaching and research in these fields. Subjects offered by other departments are available whenever appropriate, included in the recommended electives, and many departmental students participate in multidisciplinary research projects with students and faculty from various parts of the Institute.

Students are expected to learn the fundamentals of their chosen field and to develop a deep understanding of one or more significant aspects of it. The general examinations for the doctoral degree are designed accordingly. A
full range of advanced-level subjects is offered in each graduate field. In addition, arrangements can be made for individually planned study of any topic. Students are not required to take any specified subjects, but it is strongly recommended that they take appropriate core subjects unless they have taken equivalent subjects earlier in their careers. The selection of subjects and decisions about combinations of subjects which constitute a minor usually require much thought by the student, as well as consultation with faculty advisors.

A large and active research program on the structure and properties, preparation, and processing of materials, with emphasis on ceramics, metals, polymers, and electronic materials, is conducted in the Department. Graduate research is an important part of the educational process, and much emphasis is placed on the research thesis. Students choose research projects from many alternative opportunities which exist within the Department, and work closely with an individual faculty member. The results of the research must be of sufficient significance to warrant publication in the scientific literature. There are a large number of well-equipped research laboratories in the Department, and there is much interaction between them, including sharing experimental facilities and equipment. Most members of the Department also are members of the Center for Materials Science and Engineering, which provides and maintains excellent central facilities including a machine and instrument shop. The Center promotes interdisciplinary research on materials and is described in Chapter V.

Master of Science in the Management of Technology

Students who would like to apply their materials science and engineering background and at least five years of technical work experience to issues in technical management may want to explore the Management of Technology Program. Jointly developed and offered by MIT's School of Engineering and the Sloan School of Management, this Program entails a rigorous twelve-month curriculum, focusing on management principles for technical people in a technical environment. The Program is designed for scientists and engineers on a career path requiring increasing managerial responsibilities for technical activities. Details of the program and application procedures are described in Chapter V.

Master of Science in Technology and Policy

Students interested in applying their materials science and engineering background to problems of policy and socioeconomic assessment of technology may apply for the interdisciplinary Master of Science Program in Technology and Policy. This program combines subjects in advanced technology in the particular field of the student's choosing with subjects in economics, systems analysis, political science, and law. General requirements and application procedures are described in Chapter V of this catalogue.

Mineral Resources Engineering and Management

Students in the Department with interests in the scientific, technical, and policy aspects of mineral resources can find related programs of study and research in the areas of metallurgy, ceramics, and materials engineering. These activities are also coordinated with the interdisciplinary program in Mineral Resources Engineering and Management described in Chapter V.

Simultaneous Award of Two Master of Science Degrees for Students from Other Departments

Graduate students may seek two Master of Science degrees simultaneously or in sequence, one awarded by the student's home department and the other by the Department of Materials Science and Engineering. The rules covering the matter are found in Chapter IV of this catalogue. Additional information on requirements that must also be met to obtain the Master of Science degree from the Department of Materials Science and Engineering may be obtained from the Department.

Joint MIT-WHOI Program

Course III-W

A joint program with the Woods Hole Oceanographic Institution is intended for students whose primary career objective is oceanographic engineering. The program is described in more detail under the section at the end of this chapter on MIT's Joint Program in Oceanography and Oceanographic Engineering with the Woods Hole Oceanographic Institution.

Requirements for Completion of Graduate Degrees

The general requirements for completion of graduate degrees are described in Chapter IV. The Department requires that candidates for the doctoral degrees go through a qualifying procedure before continuing with their programs of study and research, and that they satisfy a minor requirement. Information on this procedure and on the areas covered by the general examination is available from the Chairman of the Departmental Committee on Graduate Students.

Entrance Requirements for Graduate Study

The general admissions requirements are given in Chapter IV. Programs are arranged on an individual basis depending upon the preparation and interests of the student. Those who have not studied some thermodynamics and kinetics at the undergraduate level are advised to take 3.01 Physical Chemistry of Materials and 3.02 Phase Transformations and Structure Development. Students wishing to do graduate work in ceramics are asked to take 3.07 Introduction to Ceramics unless they have had a similar subject in their undergraduate programs.

Teaching and Research Assistantships

The Department offers assistantships and fellowships for graduate study. Research and teaching assistantships are available in the fields in which the Department is active.

Inquiries

Additional information regarding graduate programs, admissions, financial aid, etc., may be obtained by writing to the Chairman of the Departmental Committee on Graduate Students, Professor B. J. Wuensch, Room 8-303, MIT, Cambridge, Massachusetts 02139, (617) 253-3329.
Department of Mechanical Engineering

David Neal Wormley, Ph.D.
Professor of Mechanical Engineering
Head of the Department

James Collyer Keck, Ph.D.
Ford Professor of Engineering

Patrick Leehey, Ph.D.
Professor of Mechanical and Ocean Engineering
(On leave)

Padmakar Pratap Lele, M.D., Ph.D.
Professor of Experimental Medicine

Richard Harold Lyon, Ph.D.
Professor of Mechanical Engineering

Robert Wellesley Mann, Sc.D.
Whitaker Professor of Biomedical Engineering

Frank Ambroise McClintock, Ph.D.
Professor of Mechanical Engineering

Borivoje Budimir Mikić, Sc.D.
Professor of Mechanical Engineering

Herbert Heath Richardson, Sc.D.
Professor of Mechanical Engineering

Associate Dean, School of Engineering

Warren Max Rohsenow, D.Eng.
Professor of Mechanical Engineering
(On leave)

Ascher Herman Shapiro, Sc.D.
Institute Professor

Thomas Brown Sheridan, Sc.D.
Professor of Engineering and Applied Psychology

Joseph Leconte Smith, Jr., Sc.D.
Professor of Mechanical Engineering

Air Ants Sonin, Ph.D.
Professor of Mechanical Engineering

Nam Pyo Suh, Ph.D.
Professor of Mechanical Engineering

Nam Pyo Suh, Ph.D.
Professor of Mechanical Engineering

Manufacturing and Productivity

Taufiq Suh, Ph.D.
Professor of Mechanical Engineering

Yves Neyland, Ph.D.
Professor of Mechanical Engineering

John Benjamin Heywood, Ph.D.
Professor of Mechanical Engineering

Director, Sloan Automotive Laboratory

Bruce Michael Kramer, Ph.D.
Associate Professor of Mechanical Engineering

David Moore Parks, Ph.D.
Associate Professor of Mechanical Engineering

Igor Paul, Sc.D.
Associate Professor of Mechanical Engineering

Carl Richard Peterson, Sc.D.
Associate Professor of Mechanical Engineering
(On leave)

Derek Rowell, Ph.D.
Associate Professor of Mechanical Engineering

Warren Paul Seering, Ph.D.
Associate Professor of Mechanical Engineering

William Charles Unkel, Ph.D.
Associate Professor of Mechanical Engineering

Assistant Professors

Triantaphyllou R. Akylas, Ph.D.
Assistant Professor of Mechanical Engineering

Haruhiko Asada, Ph.D.
Assistant Professor of Mechanical Engineering

Gian Paolo Beretta, Ph.D.
Carl Richard Soderberg Assistant Professor in Power Engineering

Wai Kong Cheng, Ph.D.
Assistant Professor of Mechanical Engineering

Susan Finger, Ph.D.
Assistant Professor of Mechanical Engineering
(Visiting)

Ahmed Fouda Ghoniem, Ph.D.
Assistant Professor of Mechanical Engineering

Timothy George Gutowski, Ph.D.
Assistant Professor of Mechanical Engineering

David Edgar Hardt, Ph.D.
Assistant Professor of Mechanical Engineering

James E Hubbard, Jr., Ph.D.
Assistant Professor of Mechanical Engineering
Engineering is a creative profession concerned with the combining of human, material, and economic resources to satisfy the needs of society. Mechanical engineering is one of the broadest and most versatile of the engineering professions.

The educational program in mechanical engineering prepares students for professional practice in an era of rapidly advancing technology. It combines a strong base in the engineering sciences (mechanics and materials, fluid and thermal sciences, and systems and control) with project-based laboratory and design experience. It strives to develop independence, creative talent, and leadership as well as the capability for continuing professional growth.

Several broad areas of professional concentration described below are illustrative of the rewarding career opportunities for mechanical engineering graduates in the years ahead.

Energy Conversion and Conservation. This area includes the technology associated with the design, construction, and operation of equipment for energy conversion and conservation, especially the conversion of thermal, nuclear, chemical, mechanical, and electrical energy. New concepts in turbines, generators, boilers, and internal combustion engines, as well as heat pumps, fuel cells, thermionic converters, and solar heating systems are of interest.

Given the concerns about energy supply, this field is of vital importance. Mechanical engineering provides a broad background for a career in almost all aspects of the power and energy industries.

Environmental Engineering. The approach to environmental problems reflects the dual goals of halting environmental degradation and of designing technologies for conserving limited material and energy resources. Examples include: modeling the transport of pollutants in air and in water; increasing water supplies by desalinating salt water and by purifying waste waters; recycling solid wastes; increasing the durability of capital and consumer goods; controlling the ecological impacts of thermochemical pollutants; regulating thermal pollution by upgrading the heat-transfer technology of cooling towers; improving food supplies by exploiting the potentials of sewage and thermal wastes; and reducing the levels of toxic chemicals emitted from automobiles, aircraft, and various industrial facilities.

These diverse activities in the Department share a common commitment to reducing environmental hazards while converting potential liabilities into material and energetic assets. This commitment demands an understanding of physical, chemical, and biological aspects as well as of ecological processes.

Biomedical Engineering. There is a growing recognition of the enormous potential of science and engineering for the advancement of human health. This includes deeper understandings of physiology, advanced methods of medical diagnosis and therapy, more effective and economical health care systems, and the development of devices concerned with all the foregoing.

An undergraduate foundation in engineering can be directed either toward a career as a biomedical engineer, or toward medical school and practice and research in medicine. The Department of Mechanical Engineering, with its course offerings in biomedical engineering and its extensive research programs in medically related topics, provides an excellent undergraduate base for either of these directions. Ample opportunity exists, through project laboratories and thesis, for engineering-based medical research and/or clinical experience.

Manufacturing and Materials Processing. Mechanical engineers have a strong interest in the production of equipment, components, and materials. The manufacturing industry comprises a major element of the economy, and its productivity strongly influences domestic living standards and competitive positions in international trade.

Industrial production encompasses a range of subject areas from pure research to technical management, including physics of manufacturing processes; design and control of manufacturing processes and machinery; design, implementation, and operation of complex manufacturing systems; and optimization of processes and products relative to societal needs. This field includes computer-controlled automation of complete manufacturing systems, and robotics.

Mechanics and Materials. More than ever, new concepts in designs, the use of new materials, plus the economic need to conserve materials are challenging the ingenuity and resourcefulness of today’s engineers in the area of mechanics and materials. A disciplinary program in mechanics and materials has many diverse applications, and may include courses on the static and dynamic behavior of structures, acoustics, the mechanics of continua, the mechanical behavior of conventional and newly established engineering materials, and modern methods of computational mechanics to analyze solids and structures.

Mechanical Engineering Design. Design, in the engineering sense of deliberate creation of something new and useful, is at the heart of most of the diverse fields in mechanical engineering. Design itself can be rewarding, and core courses provide the broad background upon which advanced design courses in specific disciplinary fields are built. Undergraduate and graduate experience includes courses ranging from introduction to design, through machine elements, design projects, and computer-aided design, to advanced design projects offering an opportunity to develop prototype equipment. Several thesis topics each year are strongly oriented toward design, with ample opportunity to conceive, design, build, and test innovative solutions to "real world" problems.

Transportation. The transportation of people and goods vitally affects the economy and the quality of life. The growing need for better transportation services coupled with increasing emphasis on safety, environmental protection, and energy conservation creates many new and satisfying opportunities for mechanical engineering graduates to contribute to this important field. Mechanical engineering encompasses the basic technologies of transportation, including structures (vehicles, guide- ways, and terminals), power and propulsion, and automation and control. The core program provides a sound background for entering almost any of the many transportation fields, but particularly those related to ground transportation.

Systems, Computers, and Control. This field centers around the methodology for the analytical modeling, computer simulation, and control of all types of engineering systems. It includes the application of computers to engineering analysis, optimization, and design, and the use of feedback techniques and associated hardware to automate or control physical devices or processes. The low-cost microprocessor is already revolutionizing the design of devices in such developing fields as automated manufacturing, power generation, energy conservation, transportation, pollution control, and health care.

Mechanical engineering provides the strong engineering-science base needed for professional work in this field combined with a range of basic and applied courses and laboratories in automatic control, system dynamics, computers, and computer hardware design. Educational opportunities are enhanced by local computer facilities which allow students "hands-on" experience in digital, analog, and hybrid computers along with interactive graphics.
Research Laboratories and Programs

The Department is organized into three divisions: Mechanics and Materials, Thermal and Fluid Sciences, and Systems and Design, and has active research programs at the forefront of a wide range of fields in these areas.

The educational opportunities afforded students in mechanical engineering are enhanced by the availability of a wide variety of research laboratories and programs, and well-equipped shops and computer facilities.

Many are interdepartmental laboratories and centers, described in detail in Chapter V:

- Center for Transportation Studies
- Energy Laboratory
- Innovation Center
- Laboratory for Manufacturing and Productivity
- Mining and Mineral Resources Research Institute

Among the more important Departmental laboratories, and their major areas of research, are:

- Acoustics and Vibrations Laboratory — vibration and acoustical studies applied to a diverse range of problem areas.
- Eric P. and Evelyn E. Newman Laboratory for Biomechanics and Human Rehabilitation — technology appropriate to human rehabilitation, including development of artificial limbs and hip implants, basic studies of human mobility, and aids to the blind.
- Chemical Dynamics Research Laboratory — chemical reactions and excitation processes occurring in the fields of power generation and energy conversion.
- Combustion and Propulsion Laboratory — combustion-fluid mechanics problems arising from fire, explosion hazards, and energy conversion.
- Cryogenic Engineering Laboratory — superconducting electric generators and preservation of living biomaterials by freezing.
- Fibers and Polymers Laboratories — fiber physics, textile processing dynamics, polymer engineering, and the development of biological materials such as artificial skin.
- Fluid Mechanics Laboratory — research areas which reflect the great variety of applications of fluid mechanics: nuclear power plant safety; environmental protection; cardiovascular, pulmonary, and ocular drainage systems; computational fluid dynamics; laminar stability, turbulence, and oscillatory flows.
- Heat Transfer Laboratory — heat transfer and cooling in a variety of applications, including electronic devices, nuclear power, thermal modeling of biological tissue, and moisture migration in building materials.
- Man-Machine Systems Laboratory — interactions between people and the systems which they control.
- Mechanical Behavior of Materials Laboratory — mechanisms of deformation and fracture processes in engineering materials.
- Laboratory for Medical Ultrasonics — application of ultrasonic radiation to surgery, diagnosis, and to the treatment of tumors through hyperthermia.
- Sloan Automotive Laboratory — fundamental combustion studies, internal combustion engine research, gas turbine and burner research, and policy and technology studies.
- Surface Laboratory — various aspects of tribology, including high-speed friction, wear theory, lubrication, friction and adhesion, magnetic recording and sliding electric contacts.
- Vehicle Dynamics Laboratory — improving the dynamic performance characteristics of ground transport vehicles and their guideways with specific attention directed to dynamic performance, safety, ride quality, handling, and cost.

The undergraduate program provides a broad intellectual foundation. A firm technical background is essential for a career as diversified and challenging as that open to the mechanical engineer. Beginning with mathematics, physics, and chemistry, students acquire proficiency in the engineering sciences: dynamics, mechanics, and properties of materials; fluid dynamics; heat and mass transport; thermodynamics; systems analysis; and control. Further, students experience the ways in which scientific knowledge can be put to use in the development and design of useful devices and processes to solve engineering problems. Mastery of this art, largely by project-oriented work of a creative nature, is the primary object of subjects in laboratory and design. Design experience often involves consideration of economic, social, legal, and political factors.

Bachelor of Science in Mechanical Engineering
Course II

The Department provides many opportunities for undergraduates to establish a close relationship with faculty members and their research groups in the Department. Students interested in project work may consult their faculty advisors or approach other members of the faculty.

The curriculum for the Bachelor of Science in Mechanical Engineering has been designed to provide alternatives — through the Restricted and Unrestricted Electives — for students having a wide range of career goals. The Department recognizes in its curriculum three categories of students it wishes to serve:

1) those who base their professional careers as mechanical engineers on the bachelor's degree with no further formal study; 2) those who proceed to formal graduate study in mechanical engineering in an allied field; and 3) those for whom the undergraduate program provides a broad base — in intellectual style as well as intellectual content — for further professional study directed toward medicine, law, business, or industrial management.

The departmental requirements provide a balanced background in mechanical engineering while allowing students who defer entering the Department until the end of the second year to graduate in the normal four-year period. (The latter assumes that students have met the General Institute Science Requirements and have taken 18.03 Differential Equations.) This program is accredited by the Accreditation Board for Engineering and Technology.¹

¹ See discussion of significance of accreditation under "Degree Programs in Engineering" in the Dean's statement at the beginning of the School of Engineering section.
The departmental program for the Bachelor of Science in Mechanical Engineering, Course II, consists of three levels corresponding roughly to the second, third, and fourth years. The first and second levels constitute the universal core of subjects required of all candidates for the S.B. in Mechanical Engineering.

The first level provides a fundamental introduction to mechanical engineering through courses in system dynamics, solid mechanics, manufacturing and materials processing, instrumentation, and design. The second level emphasizes the basic engineering sciences and their integration through laboratory and design projects. The third level consists of professional electives and leads into areas of professional concentration, either in the engineering sciences, Group A; or the broader aspects of engineering systems and design, Group B. In the former category students interested in the technology of fields such as bioengineering, pollution, energy, materials, and automatic control may select additional courses from other engineering departments and the School of Science. Some students may place more emphasis on the humanities and social sciences, as preparation for graduate study in such fields as engineering of social systems, technology and policy, law, management, technology assessment and medicine. All students are required to complete a thesis, working on an individual basis with a faculty or research-staff member.

Students are urged to contact the Undergraduate Office as soon as they have decided to enter mechanical engineering so that faculty advisors may be assigned. Students together with their faculty advisors plan a program that best utilizes the 24 units of Restricted Electives and the 51 units of Unrestricted Electives available in the Course II degree program. Although the selection of elective courses is an individual decision, the faculty of the Department has developed areas of professional concentration in Power and Energy, Environmental Engineering, Manufacturing and Materials Processing, Biomedical Engineering, and Computers and Control. The detailed programs and suggested electives are available from the Undergraduate Office. These fields are not all-inclusive; students interested in other professional programs — including interdisciplinary programs — should consult their faculty advisor or the Department Head.

Bachelor of Science in Mechanical Engineering
Course II

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>72</td>
</tr>
</tbody>
</table>

The Science Distribution

Requirement can be satisfied by 2.01, 2.02, 2.20, or 2.40 and by 18.01 in the Departmental Program, plus appropriate subjects totaling

|自然科学要求 | 12 |
|自然科学人文社科要求 | 72 |

The Laboratory Requirement can be satisfied by any combination of the subjects 2.671, 2.672, and 2.86 in the Departmental Program.

Departmental Program

<table>
<thead>
<tr>
<th>Subject names below are followed by credit units, and by prerequisites if any (conferences in italics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01 Mechanics of Solids, 12; 8.01, 18.02</td>
</tr>
<tr>
<td>2.02 Introduction to Systems Dynamics, 12; 8.01, 18.02</td>
</tr>
<tr>
<td>2.03J Dynamics, 12; 2.01, 2.02, 18.03</td>
</tr>
<tr>
<td>2.20 Fluid Mechanics, 12; 18.02, 18.03</td>
</tr>
<tr>
<td>2.31 Mechanical Behavior of Materials I, 9; 2.01</td>
</tr>
<tr>
<td>2.32 Mechanical Behavior of Materials II, 9; 2.31, 2.86</td>
</tr>
<tr>
<td>2.40 Thermodynamics, 12; 8.02, 18.03</td>
</tr>
<tr>
<td>2.67I Measurement and Instrumentation, 9; 2.02</td>
</tr>
<tr>
<td>2.672 Project Laboratory, 6; 2.20, 2.40, 2.67I</td>
</tr>
<tr>
<td>2.70 Introduction to Design, 9</td>
</tr>
<tr>
<td>2.73 Design Projects, 9; 2.02, 2.20, 2.31, 2.40, 2.70</td>
</tr>
<tr>
<td>2.86 Manufacturing Processes, 9</td>
</tr>
<tr>
<td>18.03 Differential Equations, 12; 18.02</td>
</tr>
</tbody>
</table>

Restricted Electives

<table>
<thead>
<tr>
<th>Restricted Electives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two of the following nine subjects, at least one from Group A; additional subjects taken may be used for C (non-A) credit toward graduate degrees in mechanical engineering.</td>
</tr>
<tr>
<td>Group A</td>
</tr>
<tr>
<td>2.09J Mechanical Vibration, 12; 2.03J</td>
</tr>
<tr>
<td>2.14 Control System Principles, 12; 2.02</td>
</tr>
<tr>
<td>2.21 Applications in Fluid Mechanics, 12; 2.20, 2.40</td>
</tr>
<tr>
<td>2.34J The Mechanics of Fracture, 12; 2.31, 2.32</td>
</tr>
<tr>
<td>2.41J Thermodynamics of Power Systems, 12; 2.40</td>
</tr>
<tr>
<td>2.51 Heat and Mass Transfer, 12; 2.20, 2.40</td>
</tr>
</tbody>
</table>

Bachelor of Science in Mechanical Engineering
Course II-A

Many students have a defined goal which can best be met by organizing a curriculum specifically tailored to that goal. To meet such needs, the Department offers the Bachelor of Science, with a significant part of the curriculum made up of Planned Electives. These are chosen by agreement between the student and a departmental officer so that the complete curriculum is coherent and in pursuit of a clear objective.

For instance, some students may wish to go more deeply into some field of mechanical engineering by choosing additional courses in one of the professional fields of concentration already mentioned, as well as introductory graduate courses from among the related engineering sciences. Others interested in electromechanical devices might combine advanced courses in dynamics, systems analysis, and vibrations with courses in electric circuits and electromagnetic field theory.

Students interested in air pollution, fires, internal-combustion engines, and related fields involving chemical reaction might make up a package including work in fluid mechanics, heat transfer, physical chemistry, reaction kinetics, and statistical mechanics. Some combine subjects in mechanical engineering with subjects in economics and management. Students interested either in medical school or in a career in biomedical engineering may wish to develop backgrounds in biology, biochemistry, or physiology. Many other combinations are possible.

* Alternate prerequisites are also listed in the subject description.
1 The Department suggests that 6.071 Introduction to Electronics be elected.
2 Substitution of subjects of similar content may be permitted by petition to the senior registration officer. Certain graduate subjects may be substituted for restricted electives with permission of the senior registration officer.
3 To foster substantial research and design achievement, the Department permits up to 6 units of additional thesis credit, subject to approval of the student's faculty advisor.
Students who wish to pursue this degree must advise the Department's Undergraduate Officer by the beginning of their junior year in order that there be adequate opportunity for planning the complete curriculum. Registration for this degree program requires approval in writing from the Registration Officer in charge of Course II-A. This program leading to the undesignated Bachelor of Science is not accredited by the Accreditation Board for Engineering and Technology, and students should discuss the significance of this with their faculty advisor.

The Course II-A curriculum is similar to Course II. Course II-A is substantially more flexible in that, in addition to thesis, students need take only 78 units from among the lists of Required Subjects and Restricted Electives shown under Course II. The remainder of the program is Planned Electives (57 units) aimed at a well-defined educational goal. Further details may be obtained from the Department.

Engineering Internship Program in Mechanical Engineering
Course II-B

Students who wish to gain industrial experience during their undergraduate and graduate programs may do so by electing to participate in the Engineering Internship Program described in detail in the School of Engineering section through enrollment in Course II-B.

The Course degrees and curricular requirements are the same as for Course II; however, in addition, provision is made for the students to be employed at the cooperating companies. The plant work at the undergraduate level consists of two summers, starting with the summer after the sophomore year. The plant work is considered as equivalent to a 12-unit elective subject: 2.951 Engineering Internship. This program is accredited by the Accreditation Board for Engineering and Technology.

Students in this program interested in graduate study are encouraged to apply for early graduate-school admission under the combined Bachelor's and Master's program (See the following section). A student in this Program may spend an additional seven months (one summer and one term) at the cooperating company and write a single combined bachelor's and master's thesis. Subject to approval of the thesis supervisor, the thesis may be related to the work experience.

Additional information may be obtained from Professor Igor Paul, Room 3-451, MIT, Cambridge, Massachusetts 02139, (617) 253-4466.

Double Major (Second S.B. Degree in Mechanical Engineering)

Undergraduates enrolled in other MIT departments may also earn the S.B. in Mechanical Engineering by satisfying the previously described Departmental requirements and completing a minimum of 90 units, acceptable to the Department, beyond the units required for the first S.B. Degree. If an S.B. thesis is completed in another MIT department, the Mechanical Engineering thesis requirement is waived. Further details may be obtained from the Department.

Some students may wish to combine a professional education in Mechanical Engineering with a liberal education which links the development and practice of engineering with its social, economic, historical, and cultural contexts. For them, the Department of Mechanical Engineering and the Department of Humanities in cooperation with the Program in Science, Technology, and Society offer a double degree program which combines majors in Course II and in Course XXI. A detailed description of that integrated program will be found under the Program in Science, Technology, and Society.

Inquiries

Further information on undergraduate programs, admissions, and financial aid may be obtained from Professor David Gordon Wilson, Room 1-103, MIT, Cambridge, Massachusetts 02139, (617) 253-2305.

Combined Bachelor's and Master's Degree Program

Some students who obtain early admission to the graduate program may be permitted to delay satisfying all of the Bachelor's degree requirements until their fifth year, satisfying the requirements for both degrees simultaneously. This program permits students to complete some basic core graduate subjects in their senior year, leaving time to take more advanced subjects during the graduate year. With prior approval in their fourth year, students in this program may combine the work of the Bachelor's and Master's theses into a single thesis of scope comparable to both theses. The Master's study may be within the Department or in a cooperating department such as Nuclear Engineering. Students interested in these programs should consult the chairman of the departmental graduate committee early in the senior year.

The Department provides opportunities for graduate work leading to the Master of Science in Mechanical Engineering, the Master of Science, the Master of Science in Textile Technology, the Mechanical Engineer, the Materials Engineer, the Environmental Engineer, the Doctor of Science, and the Doctor of Philosophy.

Entrance Requirements for Graduate Study

Students beginning graduate study in mechanical engineering usually have received the equivalent of a Bachelor's degree in mechanical engineering at a recognized engineering school; however, in many cases they have had their undergraduate preparation in some other branch of engineering or science. Generally, their background includes preparatory studies in some or all of the following areas: applied mechanics, fluid mechanics, dynamics, thermodynamics, electric circuits, electromagnetic fields, and materials. The Department requirements for admission are not specific, since capable students with a more general preparation have the opportunity to establish their background in mechanical engineering by taking the most advanced undergraduate subjects which their abilities and preparation permit.

The Department requires that all incoming graduate students must demonstrate, by taking a test, satisfactory English writing ability, or be required to successfully complete remedial training.

Fields of Graduate Study

The fields of advanced study and research are those listed briefly in Chapter IV. As a guide to graduate students, the various avenues for forming a program of study and thesis research are described below.

Engineering Science. Some students elect to concentrate their studies in one or more of the various engineering sciences. Subjects in the engineering science areas are listed in Chapter VII, grouped under the following series of numbers and headings:

2.0- Mechanics, Dynamics, and Acoustics
2.1- System Dynamics and Control
2.2- Fluid Mechanics and Combustion
2.3- Materials
2.4- Thermodynamics and Statistical Mechanics
2.5- Heat and Mass Transfer
2.8- Manufacturing
2.9- Polymers and Fibers

Graduate Study
Professional Areas. The eight fields listed next represent some possible professional areas of concentration in graduate study in mechanical engineering. They are described more fully in the introduction to this Department. In addition to subjects offered by the Department in each of these areas, graduate subjects are offered by other departments as well. Lists of available subjects in each area may be obtained from the Department.

Energy Conversion and Conservation — problems of energy conversion and conservation, including cryogenic applications.

Environmental Engineering — problems of air, water, and land pollution, and of conserving material and energetic resources.

Biomedical Engineering — the application of engineering techniques to the advancement of human health, including diagnosis, therapy, health care systems, and development and production of devices used in the medical field.

Manufacturing and Materials Processing — manufacturing processes, design and control of process machinery, process optimization, and computer-controlled automation. Textiles, polymer and metals processing.

Transportation — transportation technology and systems including structures, power and propulsion, automation and control.

Computers and Control — the application of computers to problem solving and design and the use of automatic controls for processes and devices.

Design — problem solving applied to the creation of, principally, hardware involving any of the engineering disciplines.

Graduate Core Subjects

The Department offers the following series of basic core subjects which cover the major mechanical engineering disciplines, expose students to applications of the disciplines and to the modeling of real engineering situations, and bring the fields to the starting points of their more advanced and specialized branches. A selection of these subjects represents excellent preparation for more advanced work and for the doctoral qualifying examination.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Subject Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.032</td>
<td>Dynamics (A)</td>
<td></td>
</tr>
<tr>
<td>2.033</td>
<td>Applied Elasticity (A)</td>
<td></td>
</tr>
<tr>
<td>2.151</td>
<td>Advanced System Dynamics and Control (A)</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td>Advanced Fluid Mechanics (A)</td>
<td></td>
</tr>
<tr>
<td>2.301</td>
<td>Advanced Mechanical Behavior of Materials (A)</td>
<td></td>
</tr>
<tr>
<td>2.451J</td>
<td>General Thermodynamics I (A)</td>
<td></td>
</tr>
<tr>
<td>2.55</td>
<td>Advanced Heat Transfer (A)</td>
<td></td>
</tr>
<tr>
<td>2.731</td>
<td>Advanced Engineering Design (A)</td>
<td></td>
</tr>
<tr>
<td>2.810</td>
<td>Metals Processing (A)</td>
<td></td>
</tr>
</tbody>
</table>

Master of Science in Mechanical Engineering and Master of Science

The general requirements for these degrees are given in Chapter IV with the provision that the 66 required units must be taken during the two regular terms or during the summer term.

To qualify for the Master of Science in Mechanical Engineering a student must have had two terms of advanced mathematics and must take one course in each of two areas of engineering science. Students not satisfying this requirement are awarded the Master of Science without specification of field. (The latter requirement are awarded the Master of Science in Technology and Policy and professional areas in other fields.) The above requirements apply to students who have an S.B. degree in mechanical engineering. Other students may be required to take additional subjects to complete their background in mechanical engineering.

Further description of the requirements for these degrees may be obtained from the Graduate Registration Office.

Master of Science in Technology and Policy

Students interested in applying their mechanical engineering background to problems of policy and socioeconomic assessment of technology may apply for the interdepartmental Master of Science Program in Technology and Policy. This program combines courses in advanced technology in the particular field of the student's choosing with courses in economics, systems analysis, political science, and law. General requirements and application procedures are described in Chapter V.

Mechanical Engineer

For those who desire preparation for engineering practice at a professional level beyond the Master of Science, the Mechanical Engineer is offered. The degree requires approximately one year of study beyond the Master of Science. The program is centered around the application of engineering principles to advanced development problems and includes an applications-oriented thesis. The general requirements for the degree are given in Chapter IV; a detailed description of the Mechanical Engineer program may be obtained from the Graduate Registration Office.

Materials Engineer

Candidates interested in studying materials engineering in the Department should in general have training equivalent to that offered by the Institute in its undergraduate programs in any of several departments of engineering or science. The graduate program encompasses study in the areas of mathematics, physics, chemistry, electrical materials, continuum and dislocation mechanics, metallurgy, ceramics, elastomers, and plastics, as well as research. In general, two years are required for completion of the Materials Engineer degree. General requirements for the Materials Engineer, including qualifying examination, are described in Chapter IV.

Environmental Engineer

Candidates interested in studying environmental problems should have training equivalent to the Master of Science in Mechanical Engineering. The degree of Environmental Engineer goes beyond the Master's program but without the research focus of the doctorate. The program prepares students for careers in government, industry, and private practice where technical decision making is integrated with environmental planning and management functions. Detailed requirements, suggested subjects, and sample programs may be obtained from the Graduate Registration Office.
Joint MIT-WHOI Program
Course II-W

A joint program with the Woods Hole Oceanographic Institution is intended for students whose primary career objective is oceanographic engineering. The program is described in more detail under the section at the end of this chapter on MIT's Joint Program in Oceanography and Oceanographic Engineering with the Woods Hole Oceanographic Institution.

Doctor of Philosophy and Doctor of Science

Admission to the doctoral program is granted only after the candidate has passed a rigorous qualifying examination, which should be taken as soon as possible after completing the Master's program. The requirements for the doctoral degree include a program of advanced study, a minor program, and a thesis in the field of mechanical engineering or in the field of materials engineering.

The program of advanced study and research may be selected in any field of science or engineering approved by the Department Committee on Graduate Studies. While no fixed number of units is prescribed, the usual program includes a substantial number of courses in the student's principal area of interest. These, along with the minor program, usually require an additional two terms of work beyond the Master's degree. The major and minor programs must be approved by the student's doctoral committee and the components must have the advance approval of the Committee on Graduate Studies of the Department of Mechanical Engineering. The qualifying examination must be completed before the program of doctoral research is undertaken.

For the thesis, each candidate undertakes a program of research which contributes significantly to the major field of interest. This contribution may be analytical, experimental, or design knowledge. The program of advanced study and the thesis are under the supervision of a doctoral committee selected by the student and the thesis supervisor. The doctoral committee makes an annual evaluation of the candidate's progress and conducts a final examination based on the thesis. Successful completion of the doctoral program usually requires at least two years of registration beyond the master's degree.

Candidates who enter this doctoral program following award of the Master of Science in Textiles Technology must meet the foregoing requirements but with a thesis based on research in the field of fibrous materials.

Doctor of Philosophy in Biomedical Engineering

The Department has an extensive program of research and teaching in biomedical engineering. Qualified students registered in the Department may pursue programs for the regular Master's degree and doctorate awarded by the Department, with a focus in biomedical engineering, or, alternatively, may elect an interdepartmental doctoral program in biomedical engineering (administered by the Committee on Biomedical Engineering) which is described in Chapter V of this catalogue.

Fellowships and Assistantships

A large number of fellowships and research assistantships and a few teaching assistantships are available to incoming students. These appointments and awards provide adequate financial support for both tuition and living expenses. In practically all cases the thesis research is done as an integral part of the work associated with the research assistantship or fellowship. Application for these appointments and awards is made by checking the appropriate boxes on the application form for admission. Students are not considered for awards until they are assured of admission to the graduate school.

Inquiries

Additional information concerning academic and research programs, admissions, financial aid, etc., may be obtained by writing to: Professor Ain A. Sonin, Room 3-154, MIT, Cambridge, Massachusetts 02139, (617) 253-2291.
Department of Nuclear Engineering

Neil Emmanuel Todreas, Sc.D.
Professor of Nuclear Engineering
Head of the Department

Professors
Gordon Lee Brownell, Ph.D.
Professor of Nuclear Engineering
Soo-Hain Chen, Ph.D.
Professor of Nuclear Engineering
Michael John Driacoll, Sc.D.
Professor of Nuclear Engineering
Thomas Henderson Dupree, Ph.D.
Professor of Nuclear Engineering
Jeffrey Philip Friedberg, Ph.D.
Professor of Nuclear Engineering
Elias Panayiotis Gyftopoulos, Sc.D.
Ford Professor of Engineering
Professor of Nuclear and Mechanical Engineering
Kent Forrest Hansen, Sc.D.
Professor of Nuclear Engineering
Otto Karl Harling, Ph.D.
Professor of Nuclear Engineering
Director, MIT Nuclear Reactor Laboratory
Allan Francis Henry, Ph.D.
Professor of Nuclear Engineering
David Dayton Lanning, Ph.D.
Professor of Nuclear Engineering
Lawrence Mark Lidaky, Ph.D.
Professor of Nuclear Engineering
John Edward Meyer, Ph.D.
Professor of Nuclear Engineering
(On leave, spring)
Norman Carl Rasmussen, Ph.D.
McAfee Professor of Engineering
Professor of Nuclear Engineering
David John Rose, Ph.D.
Professor of Nuclear Engineering
Kenneth Calvin Russell, Ph.D.
Professor of Nuclear Engineering
and Metallurgy
Sidney Yip, Ph.D.
Professor of Nuclear Engineering

Associate Professors
Michael Warren Golay, Ph.D.
Associate Professor of Nuclear Engineering
Ian Hutchinson, Ph.D.
Associate Professor of Nuclear Engineering
Mujid Suliman Kazimi, Ph.D.
Associate Professor of Nuclear Engineering
Richard Keith Lester, Ph.D.
Associate Professor of Nuclear Engineering
Kim Molvig, Ph.D.
Associate Professor of Nuclear Engineering
Dietmar Winiw, Associate Professor of Nuclear Engineering
(Visiting)

Assistant Professors
Ronald George Pellinger, Sc.D.
Assistant Professor of Nuclear Engineering and Materials Science and Engineering
I-Wei Chen, Ph.D.
Assistant Professor of Nuclear Engineering and Nuclear Materials
Alan Carl Nelson, Ph.D.
W. M. Keck Assistant Professor of Biomedical Engineering
Assistant Professor of Nuclear Engineering and in the Whitaker College of Health Sciences, Technology, and Management
Andrei Schor, Ph.D.
Assistant Professor of Nuclear Engineering

Adjunct Professor
Dieter J. Sigmar, Ph.D.
Adjunct Professor of Nuclear Engineering

Administrative Officer
Jennifer deVries Gwinn

Administrative Assistants
Clare Marie Egan
William J. Fitzgerald

Senior Research Engineers
D. Bruce Montgomery, Sc.D.
Associate Director and Senior Research Engineer
Plasma Fusion Center
John E.C. Williams, B.Sc.
Francis Bitter National Magnet Laboratory

Research Affiliates
David C. Aldrich, Ph.D.
John H. Hoops, Jr., Ph.D.
William E. Vesely, Ph.D.
Lothar Wolf, Ph.D.

Principal Research Scientist
Marvin M. Miller, Ph.D.

Professors Emeriti
Manson Benedict, Ph.D.
Institute Professor, Emeritus
Professor of Nuclear Engineering, Emeritus
Irving Kaplan, Ph.D.
Professor of Nuclear Engineering, Emeritus

Administrative Assistants
Clare Marie Egan
William J. Fitzgerald
Department of Nuclear Engineering

The Department of Nuclear Engineering provides undergraduate and graduate education for students interested in developing the peaceful applications of nuclear reactions, plasma physics, and radiation. In keeping with MIT's traditional role in other branches of knowledge, the Department aims to educate the individuals who make the key scientific and engineering advances in these fields. The technological problems of energy generation by neutron-induced fission of heavy elements in nuclear reactors and fusion of light particles in thermonuclear plasmas receive primary emphasis.

In addition, faculty and students are strongly involved in the engineering physics of charged particles, neutrons, and photon radiation; in the broader problems of providing energy in socially acceptable ways; in the medical applications of radiation; and in health radiation physics.

Fission reactors are used to generate heat and electricity, to propel submarines and ships, to transmute elements, and to produce radioisotopes for medical and other applications. In some countries, the fraction of electricity obtained from nuclear power is over 20 percent. In the United States it is 13 percent. In recent years, the growth rate of electricity has declined because of more cost-effective uses of energy and the international economic recession. This has led to a significant reduction in new nuclear power plant orders. Nevertheless, many nations include a significant and expanding nuclear component in their energy programs because they are convinced that nuclear power is a comparatively reliable, inexpensive, and safe way to produce electricity.

The safe and economic development, design, construction, and operation of nuclear power plants and their related nuclear fuel processing facilities is a major field of engineering. Challenging tasks facing today's nuclear engineers are to reduce the capital cost of nuclear power stations, to increase their reliability, and to extend the life of nuclear fuels so that nuclear plants can be the most economic way of generating electricity in ever-widening regions of the world.

Another challenge to nuclear engineers is the development of economic nuclear power systems that regenerate or yield a net increase in their essential fuel, such as breeder reactors. Breeder reactors can provide an energy resource capable of supplying the needs of the world for thousands of years.

A potential source of energy and neutrons is controlled fusion of light elements. Energy from fusion would be practically inexhaustible. Fusion reactions must be carried out in a fully ionized plasma heated to many million degrees. Such plasmas are usually confined by strong magnetic fields. Recent progress increases the likelihood that controlled fusion will become a practical source of energy and neutrons within the lifetime of today's engineering students. Attainment of a fusion power plant requires improved behavior of plasmas in electric and magnetic fields, development of materials capable of withstanding high stresses and exposure to intense radiation, and great engineering ingenuity in combining fusion power components into a practical and economic system. The Department has strong programs in plasma fundamentals, materials for intense radiation fields, and engineering of fusion systems.

The fundamentals of plasmas also underlie astrophysical and ionospheric phenomena, magnetohydrodynamic energy conversion, ion propulsion, thermionic energy conversion, and high-power gas lasers, all topics of interest in the Department. Students concentrating on applied plasma physics are therefore trained not only to contribute to the advancement of controlled fusion but also to apply their knowledge in areas of immediate practical significance. In these plasma programs, the Department is an active participant in MIT's broad, interdepartmental program of research and instruction in plasma physics and its varied applications.

To achieve the full potential of nuclear energy from either fission or fusion reactors, it is necessary to develop special materials capable of withstanding intense radiation for long periods of time. The Department's nuclear materials engineering program is concerned with effects of radiation on materials and development of improved radiation-resistant materials. Other areas of concentration are the chemical and metallurgical engineering aspects of the production and fabrication of fuels for fission reactors, the processes for recovering these materials from the highly radioactive spent fuel discharged from reactors, and processing and enrichment of fuels for fusion reactors.

To fulfill society's needs, not only must new technologies be developed, but energy conversion plants must also be designed and operated so as to produce energy safely, reliably, economically, and with acceptable environmental impact. Consequently, the Department is involved actively across the entire field of energy production in the areas of structural mechanics, reliability analysis, safety and licensing, health physics, environmental impact of power production, and engineering economics.

The Department's radiation science and technology program is devoted to studying the production and uses of neutrons, charged particles, gamma rays, light and other radiations from fission reactors, radioisotopes, particle accelerators, and lasers. Topics treated include the detection and measurement of radiation, the interaction of radiation with matter, the use of radiation in processing materials, the design of irradiators, biological effects of radiation, and the use of scattering experiments with neutrons and coherent light to determine the structure and molecular dynamics of solids, liquids, and dense gases. In particular, the program of radiological sciences encompasses medical applications of radiations for therapy, diagnostics, and radiobiology. It includes not only nuclear radiations but also ultrasound, laser light, and nuclear magnetic resonance interactions.

The health radiation physics program is designed to provide students with a strong foundation in the scientific and engineering disciplines needed for the management and control of radiation exposures. It emphasizes principles of radiobiology, radiation measurement and dosimetry, risk assessment, and management of radiation exposure.

In all the programs, attention is focused on the related aspects of science and engineering — for example, low-energy nuclear physics, plasma physics, nuclear materials, high-flux heat transfer, and numerical methods. The approach is interdisciplinary and draws heavily upon important segments of physics, chemistry, applied mathematics, and metallurgy, and on the techniques of chemical, civil, electrical, and mechanical engineering.

Undergraduates and graduate students in other departments at MIT who wish to learn how their major professional fields may be utilized in nuclear developments may find certain offerings by the Department of Nuclear Engineering of interest, such as the medically oriented radiological sciences program, nuclear power plant engineering, applied plasma or radiation physics, nuclear materials engineering, and the interdepartmental program on structural mechanics in nuclear power technology.
Undergraduate Study

Bachelor of Science in Nuclear Engineering

The undergraduate programs in Nuclear Engineering prepare students for careers in the nuclear power industry or the applied radiation industry including medical technology, or for graduate study in nuclear engineering and related disciplines. The field is very broad and the program is arranged to provide a variety of subject combinations appropriate for career preparation. Three specific options have been defined (fission, fusion, and radiological sciences), but other subject combinations may be selected to satisfy the needs of individual students.

The Department offers two undergraduate programs leading to a Bachelor of Science in Nuclear Engineering. The first, Course XXII, is normally completed in four years. The second, Course XXII-A, is part of a five-year Engineering Internship Program; it leads to both a Bachelor of Science and a Master of Science in Nuclear Engineering and combines study with industrial engineering practice.

The departmental curriculum for each program has two major components (see table). The first component is Engineering Principles, in which a student is expected to become familiar with the foundations of engineering practice. The required areas of study include strength of materials, fluid flow, thermodynamics, heat transfer, and computer modeling of physical systems. Most of the engineering departments at the Institute offer subjects covering these topics, and there is considerable latitude in fulfilling this segment of the curriculum. The second component of the undergraduate curriculum is a broadly based introduction to the specialties of nuclear engineering and applied radiation physics. Students take subjects dealing with the physical phenomena of interest in nuclear power generation, nuclear and reactor physics, and nuclear engineering design. In addition, students may choose electives in radiation science and technology, radiological sciences, plasma physics, nuclear reactor engineering, or engineering of nuclear systems.

Engineering fundamentals constitute the major portion of the Departmental requirements. Engineering Principles I refers to subjects in the area of mechanics and materials, and can be satisfied by 1.04, 2.01, or 8.06. Engineering Principles II refers to the area of fluid mechanics; suitable subjects for this area include 1.60, 2.20, 8.263, or 10.301. Thermodynamics is the area of Engineering Principles III and includes 2.40, 3.00, 6.018, or 8.06. Engineering Principles IV deals with heat transfer, for which acceptable subjects are 2.51 or 10.302. Computer modeling constitutes the area of Engineering Principles V and can be satisfied by a subject chosen in consultation with the student’s departmental advisor.

The introduction to the specialties of nuclear engineering requires a total of 60 units of restricted electives from departmental offerings. Of these 60 units, at least 36 should be for subjects covering engineering design and systems and 12 should be for an appropriate physics subject.

The choice of specific subjects and the order in which they are taken are arranged in consultation with the student’s departmental advisor. The fission option is intended for students planning careers in design, analysis, and operations of light-water reactor plants and other fission reactor plant concepts, and for graduate study in these areas. The fusion option is intended for students planning for graduate study and careers in areas of engineering research or development related to fusion reactors. The radiological sciences option is intended for students planning careers in medicine or biomedical engineering with particular emphasis on the applications of radiation in diagnostics and therapy. Information on each option is available from the student’s departmental advisor or from the departmental undergraduate office (Room 24-212A).

The degree programs in Course XXII and Course XXII-A are accredited by the Accreditation Board for Engineering and Technology.

Bachelor of Science in Nuclear Engineering

Course XXII

Most requirements and options are described in the preceding paragraphs.

Engineering Design experience is an essential part of the curriculum, and the requirement of at least 36 units of engineering design and systems may be satisfied by an appropriate choice of subjects as approved by the advisor. The requirement may be partially satisfied by a design-oriented thesis or special topic (22.091).

A bachelor’s degree thesis of 12 units is also required.

Bachelor of Science in Nuclear Engineering

Course XXII

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>72</td>
</tr>
<tr>
<td>The Distribution Requirement can be satisfied by 8.03, 18.03, and 22.02 in the Departmental Program.</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departmental Program</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject names below are followed by credit units, and by prerequisites if any (in parentheses).</td>
<td></td>
</tr>
<tr>
<td>Required Subjects: 1</td>
<td></td>
</tr>
<tr>
<td>8.03 Physics III, 12; 8.02</td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>22.001 Seminar in Nuclear Engineering, 6</td>
<td></td>
</tr>
<tr>
<td>Engineering Principles I, 12</td>
<td></td>
</tr>
<tr>
<td>Engineering Principles II, 12</td>
<td></td>
</tr>
<tr>
<td>Engineering Principles III, 12</td>
<td></td>
</tr>
<tr>
<td>Engineering Principles IV, 12</td>
<td></td>
</tr>
<tr>
<td>Engineering Principles V, 12</td>
<td></td>
</tr>
<tr>
<td>22.02 Introduction to Applied Nuclear Physics, 12; 8.02, 18.02</td>
<td>Thesis (12 units)</td>
</tr>
</tbody>
</table>

| Restricted Electives: | 60 |
| Five undergraduate (or graduate) subjects offered by the Department of Nuclear Engineering, including: a) 22.021 Nuclear Reactor Physics or 22.061 Controlled Fusion Power, and b) a total of 78 units in nuclear engineering design and systems subjects to be selected with the approval of the advisor. 22.031 is encouraged. |

| Unrestricted Electives | 48 |
| Total Units Required for the S.B. Degree | 368 |

1. Suitable subjects for engineering principles are given in the text.
Combined Bachelor’s and Master’s Programs

The five-year programs leading to a joint Bachelor of Science in chemical engineering, civil engineering, electrical engineering, mechanical engineering, nuclear engineering, or physics, and a Master of Science in nuclear engineering, are helpful to students who, early in their undergraduate studies, decide to pursue a graduate degree in nuclear engineering. Students desiring to enter such a program must meet the graduate-admission requirements of the Department of Nuclear Engineering, and they must submit their applications for admission at the end of their junior year. If admitted, the student’s program is arranged between the registration officers of the two participating departments. For further information, interested students should contact either their undergraduate department or the Department of Nuclear Engineering.

Inquiries

Further information on undergraduate programs, admissions, and financial aid may be obtained from Professor J. E. Meyer, Room 24-208, MIT, Cambridge, Massachusetts 02139, (617) 253-3830.
Other subjects may be selected in accordance with the student's particular field of interest. Most master's candidates specialize in one of five alternative fields: fission reactor technology, applied plasma physics, radiation science and technology, nuclear materials engineering, and radiation health physics. Detailed descriptions of the subjects available in each of these areas may be found under the Department's descriptions of subjects in Chapter VII.

Students specializing in radiation health physics follow a special two-year curriculum which includes the core subjects General Health Physics, Nuclear Measurements Laboratory, Introductory Applied Nuclear Physics, and Radiobiology. Some subjects may be taken at the Harvard School of Public Health.

Students with adequate undergraduate preparation normally need one full year to complete the requirements for the Master of Science. Additional information concerning the requirements for the Master of Science in Nuclear Engineering, including lists of recommended subjects, may be obtained from the Department of Nuclear Engineering.

Master of Science in Technology and Policy

Students interested in applying their nuclear engineering background to problems of policy and socioeconomic assessment of technology may apply for the interdepartmental Master of Science Program in Technology and Policy. This program combines subjects in advanced technology in the particular field of the student's choosing with subjects in economics, systems analysis, political science, and law. General requirements and application procedures are described in Chapter V.

Master of Science in the Management of Technology

Students who would like to apply their nuclear engineering background and at least five years of technical work experience to issues in technical management may want to explore the Joint Program in the Management of Technology. Jointly developed and offered by MIT's School of Engineering and the Sloan School of Management, this program entails a rigorous twelve-month curriculum, focusing on management principles for technical people in a technical environment. The Program is designed for scientists and engineers on a career path requiring increasing managerial responsibilities for technical activities. Details of the program and application procedures are described in Chapter V.

Nuclear Engineer

The program of study leading to the Nuclear Engineer's degree provides deeper knowledge of nuclear engineering than is possible in the master's program and is intended to train students for creative professional careers in engineering application or design.

General requirements for this degree, described in Chapter IV, include 162 units of subject credit plus a thesis. Each student must plan an individually selected program of study, to be approved in advance by the faculty advisor, and must complete, and orally defend, a substantial project of significant engineering value.

The principal areas of study are: nuclear reactor physics, nuclear reactor engineering, nuclear materials engineering, nuclear fuel management, radiation science and technology, and applied plasma physics. The objectives of the program are to provide the candidate with a broad knowledge of the profession and to develop competence in engineering applications or design. The emphasis in the program is more applied and less research oriented than the doctoral program.

The engineering project required of all candidates for the Nuclear Engineer's degree is generally the subject of an Engineer's thesis. A student with full undergraduate preparation normally needs two years to complete the program. A student who satisfies the requirements for the Engineer's degree is simultaneously approved for the S.M. by the Department of Nuclear Engineering. Additional information may be obtained from the Department.

Doctor of Philosophy and Doctor of Science

The program of study leading to either the Doctor of Philosophy or the Doctor of Science degree aims to give a comprehensive knowledge of nuclear engineering or radiation science and technology, to develop competence in advanced engineering research, and to develop perspective in assessing the role of nuclear science and technology in our society.

General requirements for the doctorate are given in the Graduate Education chapter of this catalogue and in the Graduate School Manual. The specific requirements of the Department of Nuclear Engineering are the major program leading to the General Examination, the minor program, and the doctoral thesis. Upon satisfactory completion of the requirements, the student ordinarily receives a Ph.D. unless he or she requests an Sc.D. The requirements for both degrees are the same.

The major program gives students broad knowledge of nuclear engineering and detailed familiarity with the specific field in which they intend to undertake research. Prior to starting doctoral research, each student is required to pass a general examination demonstrating adequate undergraduate preparation in physics, chemistry, mathematics, and engineering fundamentals, and comprehensive knowledge at the graduate level of a chosen field in nuclear engineering.

Doctoral candidates may elect to study and be examined in one of the following fields: fission reactor physics, fusion reactor engineering, applied plasma physics, experimental radiation, nuclear materials engineering, nuclear fuel management, fusion reactor technology, nuclear and alternative energy systems and policy, radiological science, reactor safety analysis, nuclear chemical engineering and waste management. Details of the doctoral examination in each of these fields may be obtained from the Department.

The major program in radiological sciences focuses on diverse applications of radiation in medicine. In addition to a central concern with ionizing radiation, radiological sciences encompass such technologies as ultrasound, laser light, and nuclear magnetic resonance. The curriculum is a four- to five-year commitment leading to the Ph.D. or Sc.D. degree that can be pursued in medical therapy, imaging and diagnostic technology, radiation biophysics, or radiopharmaceutical chemistry. While most core subjects are taken at MIT, research is conducted primarily at Harvard-affiliated hospitals, the Harvard School of Public Health, and MIT, depending upon the student's specialty area.

The object of the minor program is to expose students to knowledge outside their fields of specialization. The minor consists of two or more related subjects, totaling at least 24 credit units, in a field other than nuclear engineering and of a more advanced character than would have been required for the student's undergraduate degree. The minor program must be approved by the student's registration officer. Graduate level subjects taken at other schools may satisfy the minor requirement if the registration officer judges them to be substantially equivalent to MIT graduate subjects.
Doctoral research may be undertaken either in the Department of Nuclear Engineering or in a nuclear-related field in another department. Appropriate areas of research are described generally in the introduction to the Department, and a detailed list may be obtained from the Department of Nuclear Engineering.

Research Facilities

The departmental programs are supported by a number of outstanding experimental facilities for advanced research in nuclear engineering.

The MIT Research Reactor in the Nuclear Reactor Laboratory operates at a power of 4,000 kw and is fueled with U-235 in a compact light-water cooled core surrounded by a heavy-water reflector. It is one of the finest university research reactors in the world. Details of the Laboratory's research programs and facilities are given in Chapter V.

The Department utilizes extensive experimental plasma facilities for production and confinement of large volumes of highly ionized plasmas and for studies of plasma turbulence, particle motions, and other phenomena. High-power lasers and other equipment are available both for plasma diagnostics and for study of basic physical interactions. The Department has facilities to support a unique program of controlled fusion engineering studies and has its own well-equipped graduate laboratory for instruction on plasma laboratory techniques.

The Department has played a major role in the design and operation of the high field Tokamak fusion device ALCATOR and in the design of the fusion magnetic mirror device TARA, both projects of the Plasma Fusion Center. ALCATOR is capable of producing dense, hot plasmas near the regime of fusion interest, and serves as an important educational and research facility.

Most of the departmental research on plasmas and controlled fusion is done in the Plasma Fusion Center, described in detail in Chapter V.

The Whitaker Laboratory of Computer-Aided Microscopy and Image Technology operates sophisticated scanning and transmission electron microscopes and light microscopes for microscopic analysis of materials. The facility has full capability in sample preparation and utilizes a dedicated computer for data analysis with an emphasis on quantitative work.

In addition to the above facilities, the Department has a nuclear instrumentation laboratory, a plasma physics laboratory, a 14 MeV neutron source, and two subcritical natural-uranium reactors, one moderated by water and the other by graphite. Laboratory space and shop facilities are available for research in all areas of nuclear engineering. MIT's extensive computer facilities are used in research and graduate instruction. The Whitaker Laboratory of Microscopy is available for ultrastructural research in materials.

Financial Aid

Financial aid for graduate students is available in the form of research and teaching assistantships, Department-administered fellowships, tuition awards, and supplemental subsidies from the College Work-Study Program. Assistantships are awarded to students with very good academic records. The duty of a teaching assistant is to assist a faculty member in the preparation of course materials and the conduct of classes, and that of a research assistant is to work on a research project under the supervision of one or more faculty members.

Fellowships are mostly awarded in April for the following academic year. Assistantships are awarded on a semester basis. The assignment of teaching assistants is made before the start of each semester while research assistants can be assigned at any time. Fellowships and research assistantships usually go to students already enrolled in the Department; for the entering students the majority of the aid therefore will be in the form of teaching assistantships.

Application for financial aid should be made to Professor S. Yip, Room 24-211, MIT, Cambridge, Massachusetts 02139, (617) 253-3809.

Inquiries

Additional information on graduate admissions and academic and research programs may be obtained from the Department's Graduate Office, Room 24-204, MIT, Cambridge, Massachusetts 02139, (617) 253-3814.
Department of Ocean Engineering

T. Francis Ogilvie, Ph.D.
Professor of Ocean Engineering
Head of the Department

Professors

Martin Aaron Abkowitz, Ph.D.
Professor of Ocean Engineering

Arthur Bernard Baggesen, Sc.D.
Professor of Ocean Engineering and Electrical Engineering
MIT Director, MIT/WHOI Joint Program in Oceanography and Oceanographic Engineering

Alexander Douglas Carmichael, Ph.D.
Professor of Power Engineering

Chrysostomos Chryssostomidis, Ph.D.
Professor of Naval Architecture
Director, Sea Grant College Program

Ira Dyer, Ph.D.
Professor of Ocean Engineering

Emet Gabriel Frankel, M. Mech.E.
Professor of Marine Systems

Justin Elliot Kerwin, Ph.D.
Professor of Naval Architecture

Patrick Lashey, Ph.D.
Professor of Ocean Engineering and Mechanical Engineering
(On leave)

Koichi Maebuchi, D.Eng.
Professor of Ocean Engineering and Materials Science

Jerome H. Milgram, Ph.D.
Professor of Naval Architecture

John Nicholas Newman, Sc.D.
Professor of Naval Architecture

J. D. Nyhart, J.D.
Professor of Ocean Engineering and Management

Tomasz Wierzbicki, Sc.D.
Professor of Applied Mechanics

Peter Nicholas Mikhalevsky, Ph.D.
Associate Professor of Ocean Engineering

Harilaos Nicholas Pearsall, Ph.D.
Associate Professor of Marine Systems

Michael Stefanos Triantafyllou, Sc.D.
Associate Professor of Ocean Engineering

John Kim Vandiver, Ph.D.
Associate Professor of Ocean Engineering

William David Whiddon, Ocean E.
Associate Professor of Ocean Engineering

Paul Christos Xiouchakis, Ph.D.
Associate Professor of Ocean Engineering

Assistant Professors

Dale George Karr, Ph.D.
Assistant Professor of Ocean Engineering

Paul Demetra Scavouros, Ph.D.
Assistant Professor of Naval Architecture

Dick Kau-Ping Yue, Sc.D.
Assistant Professor of Ocean Engineering

Adjunct Professor

Clark Graham, Ph.D.
Adjunct Professor of Naval Architecture

Senior Lecturers

Henry A. Jackson, B.S. (Visiting)

William S. Pellini, B.S. (Visiting)

Willard Franklin Searle, Jr., Nav.E. (Visiting)

Lecturers

Damon Ellis Cummings, Ph.D. (Visiting)

Maurice M. Sevak, Ph.D.

Paul Whitney Sparks, B.S.

John William Waterhouse, S.M.

Benjamin Whang, Ph.D.

Charalampos Ziogas, Ph.D. (Visiting)

Administrative Officer

Patricia A. LeBlanc-Gedney, B.S.

Postdoctoral Associate

Nicholas Marinos Patrikalakis, Ph.D.

Research Engineer

Sumner Dean Lewis, B.S.

Visiting Research Engineers

Jia-Su Fan, M.S.
Kenji Hara, B.S.
Eui-Pak Yoon, D.Eng.

Visiting Scholars

Peder Tyvand, Ph.D.
Caiu Zheng, M.S.

Research Specialist

Ysabel Mejia

Professors Emeriti

John Harvey Evans, B.Eng.
Professor of Naval Architecture, Emeritus

Alfred Adolf Heinrich Keil,
Dr. rer. nat.
Professor of Ocean Engineering, Emeritus

Ford Professor of Engineering,
Emeritus

Philip Mandel, B.S.
Professor of Naval Architecture,
Emeritus
For centuries the oceans have served societal needs by providing avenues of transportation, resources of food and minerals, and natural barriers of defense. These uses of the ocean are perhaps even more important today as the world faces problems of growing populations and shrinking resources. Out of the need for increased utilization of the ocean has come a heightened sense of purpose. Simply stated, the task in ocean engineering is to use the oceans effectively and wisely.

The Department of Ocean Engineering provides the essential skills that ultimately enable its students to conceive, initiate and direct complex engineering projects. Such tasks demand flexible and adaptive engineering minds. The department offers courses in ocean engineering with the same basic mathematics, science, and engineering disciplines and then extend beyond to prepare a professional who is capable of responding to the broad demands of complex engineering tasks. Through selection of degree programs and elective subjects, students may concentrate in areas such as structures, fluid mechanics, or naval architecture.

For nearly a century, MIT has been a leading center of research and design, and is widely recognized for its contributions in such areas as hydrodynamics, ship structural mechanics and dynamics, propeller design, and overall ship design. The Pratt School of Naval Architecture and Marine Engineering, which was established through a bequest to MIT in 1912, is an integral part of the Department of Ocean Engineering. Building upon this historical base, the Department's curriculum today offers studies in all systems that must operate in an ocean environment.

Marine transportation encompasses broad questions of international trade. The ocean engineer must be able to assess in an integrated fashion a wide range of technical, economic, and political considerations. Other aspects of marine transportation include designing deep-water ports, integrating harbor facilities with land-based transportation systems, and planning new uses of waterways to help solve urban transportation problems.

Oil and gas beneath the ocean floor are increasingly important sources of energy. An ocean engineer is concerned with all phases of discovering, producing, and delivering offshore petroleum resources, a complex and demanding task. Also of central importance is the development of new methods to protect marine wildlife and coastal regions against the undetected side effects of offshore oil production. Mining of seafloor minerals is assuming greater importance, and the ocean engineer has the task of developing technology for locating and recovering valuable minerals that lie beneath the oceans. Much new technology is required to explore the feasibility of ocean mining; more still is needed to make it economically attractive and compatible with the environment.

Once regarded as an inexhaustible source of food, the oceans are now approaching critical levels of depletion for some species. Engineering techniques of analysis and prediction are essential to maintain the delicate natural balances of the oceans. The ocean engineer, together with marine biologists, aquatic ecologists, and public policy planners, has a critical role to play in managing ocean resources to ensure survival of marine species and continuing supplies of food for the world.

Oceans serve as natural barriers of defense for many nations, and careers in ocean-related defense offer some students a logical extension of their ocean engineering education. The Department offers subjects designed to enable people to cope with technologies relevant to modern naval systems, including ship design alternatives, seafloor habitats, sonar systems, and underwater navigation and communication.

The education of an ocean engineer or a naval architect revolves around three central components. The first is a firm foundation in such basics as hydrodynamics, structural mechanics, vibratory phenomena, energy conversion, materials, and electronics. Second, the engineer needs broad exposure and practical experience in skills such as analysis and design. Third, the context for specific applications needs to be understood. The Department’s undergraduate and graduate programs combine these components in a balanced way to provide an educational base upon which to build a rewarding career.

Once a student has attained the engineering basics, individualized programs to meet particular interests are strongly encouraged. The Department’s faculty has wide and continuing research and industrial experience. Departmental facilities, which include a variable pressure propeller tunnel, a ship model towing tank, a channel for oil-water interface studies, an acoustics and vibration laboratory, a marine data systems laboratory, a design laboratory, and computer facilities, offer a variety of opportunities for laboratory experience.

Bachelor of Science in Ocean Engineering, in Naval Architecture and Marine Engineering, or without designation

The basic program offered by the Department is designed for students interested in engineering aspects of ocean sciences, ocean exploration, and the utilization of the oceans for transportation, defense, and/or resources. The program leads to the Bachelor of Science in Ocean Engineering, in Naval Architecture and Marine Engineering, or without designation of field. The curriculum without designation of field permits pursuit of broader marine-related interests. Graduates are prepared for work in industry or government, or for further study in graduate school.

All Course XIII undergraduates take the same required subjects in mathematics, science, and engineering fundamentals, along with subjects fulfilling the General Institute Requirements. Some departmentally prescribed subjects may be replaced by other subjects if such substitutions enhance student objectives. The elective program consists of two parts: planned electives, which are designed to meet the student’s Course objective, and unrestricted electives, which permit further study in specialized areas or a broadening of the student’s overall educational experience.

The Department offers counseling to students wishing to use some combination of planned and unrestricted electives for environmental studies. Such a course of study is similar to the other four-year MIT programs, supplemented with elective studies, that prepare students for environmentally related work.

Versions of the Course XIII program leading to the Bachelor of Science in Ocean Engineering, or to the Bachelor of Science in Naval Architecture and Marine Engineering, are accredited by the Accreditation Board for Engineering and Technology, while those leading to the Bachelor of Science without designation of field are not.
Bachelor of Science in Ocean Engineering, in Naval Architecture and Marine Engineering, or without designation
Course XIII

General Institute Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>50</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>72</td>
</tr>
</tbody>
</table>

The Science Distribution Requirement can be satisfied by 2.01 and 18.03 in the Departmental Program. The Laboratory Requirement can be satisfied by 13.901 in the Departmental Program, plus an appropriate subject totaling 6.

Departmental Program

Subject names below are followed by credit units, and by prerequisites if any (conquestus in italics)

Required Subjects: 1-2

- 13.771 Mechanical Vibration, 12; 2.05 or 13.303J
- 13.772 Fluid Mechanics, 12; 18.03
- 13.80J Thermodynamics, 12; 8.02, 18.03
- 13.901 Ocean Engineering Laboratory I, 6, 2.20
- 13.902 Ocean Engineering Laboratory II, 8, 2.20

Restricted Electives: 3-5

Thirty units are to be chosen by the student and faculty advisor to attain preparation for a career in Ocean Engineering or in Naval Architecture and Marine Engineering, or to attain another educational objective defined by the student.

Unrestricted Electives: 3

54 units are to be chosen by the student.

Total Units Required for the S.B. Degree: 360

Bachelor of Science in Ocean Engineering, in Naval Architecture and Marine Engineering, or without designation
Course XIII-C

Course XIII-C is an Engineering Internship program that enables students to combine professional experience with their academic work, while at the same time providing part of their educational expenses. The four-year program leads to the Bachelor of Science in Naval Architecture and Marine Engineering, or in Ocean Engineering, or without designation. Students in the internship program also apply for admission to the Graduate School to obtain the Bachelor of Science concurrently with the Master of Science at the end of their fifth year. This program is part of the Engineering Internship Program, described in detail in the School of Engineering section.

All MIT sophomores in good standing can apply for entrance to the program. Alternating periods at the Institute and at cooperating work sites are arranged so that graduation is not delayed beyond the normal date.

The companies and laboratories participating in the internship program cover all important aspects of ocean engineering, including naval architecture and marine engineering. Assignments with these organizations provide opportunities to participate in activities such as construction, testing, design, development, research, and technical planning.

Versions of the Course XIII-C program leading to the Bachelor of Science in Ocean Engineering, or in Naval Architecture and Marine Engineering, are accredited by the Accreditation Board for Engineering and Technology, while those leading to the Bachelor of Science without designation of field are not.

The Course XIII-C curriculum is identical to Course XIII, except that 13.771 Engineering Internship (12 units) and 13.772 Industrial Practice in Ocean Engineering (12 to 36 units) are taken in place of Special Problems in Ocean Engineering. Further details may be obtained from the Department. The Department also suggests that 13.901 and 13.902 be taken to satisfy the Institute Laboratory Requirement.

Combined Bachelor's and Master's Degree Program

Programs leading to a joint Bachelor of Science (in aeronautics and astronautics, civil engineering, electrical engineering, mechanical engineering, naval architecture and marine engineering, or ocean engineering), and a Master of Science (in ocean engineering or in naval architecture and marine engineering), are available to students who, early in their undergraduate studies, decide to pursue a graduate degree in ocean engineering or naval architecture and marine engineering. Students desiring to enter such a program must meet the graduate admission requirements of the Department of Ocean Engineering. They must submit their applications for admission at the end of their junior year. If admitted, the student's program is arranged in consultation with the registration officers of the two participating departments. For further information, interested students should contact the Departmental Student Administration Office.

Inquiries

Further information on undergraduate programs, admissions, and financial aid may be obtained by contacting Professor J. Kim Vandiver, Room 5-222A, MIT, Cambridge, Massachusetts 02139, (617) 253-4366.
Graduate Study

Graduate study in the Department of Ocean Engineering can lead to the following degrees: Master of Science; Ocean Engineer; Doctor of Philosophy; or Doctor of Science.

An acceptable program of subjects plus an acceptable thesis leading to the Master of Science usually requires from one to two academic years, depending upon undergraduate preparation.

The Ocean Engineer degree requires at least two years, including a substantial thesis.

The Doctor of Science or Doctor of Philosophy with a specification in an ocean-related field usually requires more than three years following a Bachelor of Science.

Students, together with their program advisors, usually can tailor their programs of graduate study to suit individual interests and career objectives. Detailed Departmental requirements are available from the Departmental Student Administration Office.

Entrance Requirements for Graduate Study

Undergraduate preparation for admittance to graduate study in the Department of Ocean Engineering ideally should be equal in quality, quantity, and breadth of coverage to the Department's undergraduate curricula. An undergraduate degree in ocean engineering is not required.

If undergraduate preparation is lacking in one or more areas, the deficiencies may be made up concurrently with graduate work, usually by successfully completing one or a few upper level undergraduate subjects. Undergraduate subjects so required may not count toward advanced degree requirements. Somewhat less broad undergraduate work is required of candidates for the degree of Master of Science without specification, provided that the student has a correspondingly increased competence in areas pertinent to his or her proposed graduate program.

Ocean Engineering/
Naval Architecture and Marine
Engineering
Course XIII

The Department's curriculum leading to a Master's degree in Ocean Engineering is based on a broad working knowledge of all the basic engineering skills. The intended outcome of this program is a person whose main interest is the development of the ocean for the good of humanity, and in following this ambition is prepared to use whatever engineering disciplines are needed to address the problem at hand. As a part of the more general field of Ocean Engineering, Naval Architecture and Marine Engineering is concerned with all aspects of waterborne vehicles operating on, below, and just above the sea surface. The S.M. degree in Naval Architecture and Marine Engineering is intended to develop an individual who plans to concentrate in areas related to waterborne vehicles and/or their subsystems.

Major fields of study or specialization include (but are not limited to) the following:

- Applied mechanics
- Environmental engineering
- Fluid mechanics
- Hydrodynamics
- Marine acoustics
- Marine data systems engineering
- Marine engineering
- Marine materials and fabrication
- Marine systems
- Offshore engineering
- Offshore platform design
- Seafloor engineering
- Ship design
- Ship and offshore rig dynamics
- Ship propulsion
- Ship systems
- Structural mechanics

Doctoral degrees are offered in the fields of Ocean Engineering and Naval Architecture and Marine Engineering. Students are admitted to the doctoral program after successful completion of the appropriate qualifying examinations. The student's program must be acceptable to the Departmental Committee on Graduate Students, both with respect to depth in the major area and breadth in collateral areas. Details on the examination process and other requirements, including the doctoral thesis, may be obtained from the Departmental Student Administration Office.

There are also a number of interdepartmental doctoral programs available to students in the Department. Details may be found in Chapter V.

Naval Construction and Engineering
Course XIII-A

This Program provides appropriate academic background for naval officers who later actively participate in concept formulation, design, and construction of naval vessels. In addition to general engineering and science and a core program of subjects in ocean engineering, each student follows one of several specialized curricula in aspects of, or applicable to, naval construction and engineering.

The Program leads to the Ocean Engineer or Master of Science. For programs leading to the Ocean Engineer, a Master of Science may be awarded simultaneously upon recommendation of the Department or of some other department related to the student's specialty. For programs leading to the Master of Science, an additional Master of Science may be awarded simultaneously in a second field of specialization upon recommendation of the department represented by that field.

Ocean Systems Management
Course XIII-B

The XIII-B Program in Ocean Systems Management (formerly Shipping and Shipbuilding Management) offers both Master of Science and Doctor of Philosophy degrees.

The Master's program is intended for students with solid engineering backgrounds who are interested in the business and government management aspects of ocean engineering systems and activities, including ocean transportation, marine resource development, public policy and ocean use, ocean mining, ports, and fisheries. Technical background should consist of a S.B. degree in engineering or science. Background should include at least one undergraduate subject each in differential equations, probability, and microeconomics. Any deficiency should be eliminated during the first term at MIT. Students not possessing a background in ocean engineering are required to take 13.40 Elements of Ocean Engineering Design.

Depending on background preparation, a student entering this program can take from one to two years to complete the degree. The program can be accomplished in one year by a Department undergraduate who carefully schedules his or her elective time from the junior year on. Such a student is awarded concurrently an S.M. in Ocean Systems Management and an S.B. degree. Further information on the Master's program requirements can be obtained from the Departmental Student Administration Office.
The doctoral degree program in Ocean Systems Management requires the development of new knowledge that enhances the state of the art in this area. To achieve that goal, the student is expected to complete a program of study and write a dissertation that successfully integrates theory, methodology, and experience in the fundamental disciplines that constitute the Ocean Systems Management area, such as engineering, economics, business administration, operations research, public policy analysis, and law. Students are admitted to the doctoral program after passing the appropriate written and oral qualifying examinations. Further information on the doctoral program requirements and examination process may be obtained from the Departmental Student Administration Office.

Ocean Engineer

The program leading to the Ocean Engineer degree requires a higher level and significantly broader range of professional competence in engineering than that required for the S.M. degree. The program for an Engineer’s degree ordinarily includes two subjects in the areas of economics, industrial management, and public policy or law, and at least 12 units of comprehensive design. Should the student be working toward the simultaneous award of the Engineer and Master’s degrees, a single thesis is generally acceptable, provided it is appropriate to the specifications of both degrees and demonstrates the educational maturity expected of candidates for the higher degree. Additional information on Departmental requirements is available from the Departmental Student Administration Office.

Technology and Policy (S.M.)

The Department also offers a Master’s degree in Technology and Policy. This program educates students with a strong technical foundation in a marine-related field as well as a strong competence in dealing with policy issues. This program is interdepartmental and is described in Chapter V. Requirements for entry into this program are the same as those required for the XIII-B Program with adjustments made for the special requirements of the Technology and Policy Program.

Transportation (S.M.)

The interdepartmental degree of Master of Science in Transportation is offered in cooperation with the Center for Transportation Studies. Most ocean engineering students studying transportation at the Master’s level are enrolled in this interdepartmental program. Requirements for the Master of Science in Transportation are described in Chapter V. Management of Technology Program

Individuals interested in applying their ocean engineering background and at least five years of technical work experience to issues in technical management may apply for admission to the Management of Technology Program. Jointly developed and offered by MIT’s School of Engineering and the Sloan School of Management, the program entails a rigorous twelve-month curriculum, focusing on management principles for technical persons in a technical environment. The program is designed for scientists and engineers on a career path requiring increasing managerial responsibilities for technical activities. Details of the program are described in Chapter V.

Joint MIT-WHOI Program

A joint program with the Woods Hole Oceanographic Institution is intended for students whose primary career objective is oceanographic engineering. Students divide their academic and research efforts between the campuses of the two institutions. While in residence at MIT, students enrolled in this course follow a program similar to that of other students in the Department. The program is described in more detail under the section at the end of this chapter on MIT’s Joint Program in Oceanography and Oceanographic Engineering with the Woods Hole Oceanographic Institution.

Assistantships and Graduate Scholarships

There are a limited number of teaching and research assistantships available to graduate students in the Department each year. These are awarded on the basis of both qualification and need. The duties associated with these assistantships contribute directly to the assistant’s educational program. An assistant may not register for more than 36 units per term, depending on the appointment held. Additional registration may be allowed when directly connected with an assistant’s assigned duties.

A limited number of awards and scholarships are available to graduate students in the Department. Scholarships are awarded each year by the Society of Naval Architects and Marine Engineers. These awards can be used for study at any institution of the recipient’s choice and usually are awarded to applicants who, through their education or their professional work, have evidenced strong interest in some field of naval architecture and marine engineering or in ocean engineering. Fellowships are also awarded each year by the Office of Naval Research (ONR) and the National Science Foundation (NSF).

Prospective students are invited to communicate with the Department regarding any of these educational and financial opportunities. Applications for the Society of Naval Architects and Marine Engineers Graduate Fellowships, and Office of Naval Research and National Science Foundation fellowships are made directly to the appropriate society. Inquiries for the fall term should be made late in the preceding fall term.

Inquiries

Additional information concerning academic programs, research opportunities, admissions, and financial aid may be obtained by writing to the Student Administrator, Department of Ocean Engineering, Room 5-225, MIT, Cambridge, Massachusetts 02139, (617) 253-1994.
The School of Humanities and Social Science reflects the great diversity of MIT today. In a university whose activities center around science and technology, the School represents the main fields of the liberal arts. Strong graduate programs exist in economics, linguistics, philosophy, political science, and psychology; students and faculty participate extensively in the research activities of numerous centers, laboratories, and departments outside the School. There is an ambitious and steadily broadening program of undergraduate education, which includes majors in economics, philosophy, language and mind, political science, and the various areas in the humanities, plus an interdisciplinary major in science or engineering and the humanities. A flourishing program of extracurricular activities attracts many students, notably in drama and in music. Student participation in musical activities is, indeed, perhaps more extensive at MIT than at any other major university, with a vigorous symphony orchestra, several strong choral groups, a fine jazz band, a concert band, and a wide variety of similar groups.

The graduate programs, while admitting relatively small numbers of students, are among the strongest at MIT. The esprit de corps is strong and there is a marked emphasis on developing new and exciting fields of inquiry. Many students take advantage of the opportunity to develop close associations with such interdisciplinary centers as the Center for International Studies, the Center for Policy Alternatives, the Artificial Intelligence Laboratory, the Energy Laboratory, the Research Laboratory of Electronics, and the Center for European Studies at Harvard. Some of the graduate programs stress the use of mathematical and computer-oriented skills, but many doctoral theses are concerned with non-quantitative social science or humanistic topics. Moreover, graduate students are not entirely confined to the established doctoral programs. There is always room for the occasional highly motivated student to develop a special program of his or her own.

The research achievements of the School are perhaps best known to the world at large through the widely publicized achievements of certain distinguished members of the faculty. The chief emphasis of research in the School, however, as in the rest of the Institute, has been less on the activities of brilliant individuals than on teamwork. In the field of communications, for example, there are many interdisciplinary projects, some involving collaboration among linguistics, philosophy, and psychology, which all have a special interest in cognitive science, and others involving political science and various branches of engineering. The Department of Economics and the
Special and Interdisciplinary Programs in Humanities and Social Science

The School offers a number of undergraduate academic programs which embrace several disciplines. In general, these programs are staffed collaboratively by faculty members from various departments and fields in the School of Humanities and Social Science and, in some cases, from the Institute’s other Schools as well.

Concentrations within the Humanities, Arts, and Social Sciences Requirement are available in all of these areas, degree programs in some of them.

Full information on subjects offered, names of participating faculty, and specific concentration and major requirements in these programs may be obtained from the individual program Coordinator or from the Humanities Undergraduate Office, Room 14N-409, (617) 253-4441. The lists of subjects also appear in the Guide to the Humanities, Arts, and Social Sciences Requirement.

Brief descriptions of the programs follow.

American Studies

American Studies at MIT offers students the opportunity to organize subjects from various fields (e.g., History, Anthropology/Archaeology, Literature, Political Science, Music, Art and Architecture, and Urban Studies) into personally constructed interdisciplinary programs as a way of gaining an integrated understanding of American society and culture.

American Studies is a field of concentration. It is also available as the humanistic part of a joint degree program (Course XXI-E or XXI-S). American Studies majors work out a coherent program of study with an advisor, usually including two subjects each in Literature and History, although variations are possible. Major programs can center on a particular interest (e.g., law in America, contemporary American politics, the 19th-century American novel) or aim more broadly at a comprehensive knowledge of various aspects of America. See Degree Program Requirements under the Department of Humanities.

Coordinator of American Studies for 1984-85 is Professor Arthur Kaledin, Room 14N-309, 253-4144.

The Sloan School of Management cooperate closely in a number of branches of applied economics. Studies of the labor market are conducted by economists, sociologists, and political scientists. A long-established concern with science and public policy involves people all over the Institute, and is particularly strong in Political Science and the Program in Science, Technology, and Society. A growing interest among musicians in acoustics and computers leads them to work jointly with electrical engineers. As the engineering departments have become increasingly concerned with questions of applied social science, such as energy management, urban transportation problems, and the exploitation of the sea bed, new opportunities have emerged for collaboration.

Undergraduates benefit in a variety of ways from these advanced research and training programs. Students majoring in economics, philosophy, and political science, for example, take part in graduate seminars and may find part-time professional employment on faculty research projects. The Department of Humanities does not undertake graduate training, but does offer a number of undergraduate degree programs. Through Course XXI, students may major in one of the humanistic disciplines (e.g., history, literature, anthropology, music) or combine the study of any of these disciplines with a science or an engineering field in one of the unique dual degree programs (Course XXI-E and XXI-S, Program 1) offered by the Institute.

In addition, Course XXI offers a major jointly administered by the Department of Humanities and the Program in Science, Technology, and Society. Undergraduates may indeed, once they have fulfilled the Institute Science Requirements, devote all of their time to the humanities and social sciences and acquire a solid foundation for advanced work in any of the disciplines represented in the School. The student of the humanities or social sciences who wishes to deepen his or her fluency in science or engineering, perhaps with an eye to a career in those fields, will also find a great deal of freedom (i.e., free elective time) to do so.

A chief concern of the School in undergraduate education has long been the provision of subjects to fulfill the purposes of the Institute Requirement in the Humanities, Arts, and Social Sciences. The School of Architecture and Planning offers some subjects that satisfy the requirement, but the great majority are provided by the School of Humanities and Social Science. The object of the requirement, broadly stated, is to ensure that every undergraduate at MIT is exposed to a wide range of cultural and intellectual influences. MIT seeks to offer much the same range of subjects as a first-rate liberal arts college, in addition to the special offerings made possible by well-developed graduate and research programs. There are numerous offerings in English and foreign literature, foreign languages, archaeology and anthropology, history, music, drama, and a wide variety of other subjects. The range of options is constantly changing, as new activities evolve at MIT and as student interests change.

The School is particularly anxious to encourage students equally concerned with the sciences and technology and with the humanities and social sciences to come to MIT. We are persuaded that modern society has been unduly constricted intellectually by the tradition that has tended to segregate scientific and humanistic education. Undergraduate education at MIT is moving increasingly in the direction already taken by research and placing growing emphasis on collaborative endeavors which connect the sciences and humanities.

The School's commitment to this view finds expression in a substantial Program in Science, Technology, and Society. This Program, which has both educational and research objectives, is concerned with the human consequences of scientific and technological advances.

To stress this new development is not to imply that MIT must emphasize science and technology in all its offerings in the humanities and social sciences. Ample room will remain for more or less conventional majors in economics, political science, philosophy, history, literature, foreign languages, anthropology, and music. Students will continue to demand the best in the humanities and social sciences as they demand the best in science and engineering. However, the emphasis will always be on making MIT undergraduate education something quite distinctive.
Ancient and Medieval Studies

Through a wide variety of subjects drawn from a number of disciplines, this program provides a curricular framework for exploring topics in ancient and medieval studies which range from the history of ideas and institutions to that of material artifacts, literature, and certain branches of the original languages. The chronological span of the program includes the 6,500 years between 5000 BC and 1500 AD. Subjects are drawn from Literature, Foreign Languages and Literatures, History, Anthropology/Archaeology, and Traditions and Texts. Ancient and Medieval Studies is available as a field of concentration.

The goal of this program is to develop knowledge and understanding of the more distant past both for itself, in its uniqueness, and as an object of specifically modern questions and methods of inquiry. Emphasis is placed on the structure of institutions and social systems, and on relationships among the social order and learned traditions, values, ideologies, and ideas. Ancient and medieval studies derive a special interest from the fact that the record is so full and various and that much of it is of exceptionally high quality in substance and in form.

Coordinator of Ancient and Medieval Studies for 1984-85 is Professor Richard M. Douglas, Room 14N-417, 253-4445.

Drama Program

The Drama Program offers an opportunity for the serious study of dramatic literature based on practical experience acquired through the production of plays in the theater. Students concentrating in drama are asked to divide their studies between subjects which explore the various forms and the traditional masterpieces of drama throughout the ages, from the Greeks to the present, and theater or dance practicum subjects that involve direct participation in various aspects of actual productions mounted in the Kresge Little Theater. The program is coordinated with the activities of the MIT Dramashop and the Dance Workshop where students work and study with a professional staff who teach directing, acting, choreography, dance aesthetics, scene and costume design, stage lighting, makeup arts, and general scenecraft.

For further information on a concentration in Drama and a list of the approximately 15 subjects which MIT offers in dramatic literature, theater arts, and dance, please contact Dr. Robert N. Scanlan, Room W16-108, 253-2908, or the Humanities Undergraduate Office, 14N-409, 253-4441.

Film and Media Studies

The program in film and media offers MIT undergraduates an opportunity for interdisciplinary study of film, television, and other media of mass communications. The goal of the program is to develop an understanding of the historical, cultural, and artistic significance of film and other modern media.

The curriculum is organized in three categories of subjects: 1) those devoted exclusively to film (which emphasize the historical and artistic perspectives of the liberal arts); 2) those concerned primarily with television and mass communications (which center on the political, ideological, and policy-oriented perspectives of the social sciences); 3) those which use both perspectives in comparing film and media forms of story-telling and communication with their ancestors in older cultures and with the forms of other contemporary technologies. Collateral subjects in several national literatures, in anthropology, and in Science, Technology, and Society (STS), are particularly relevant in this group.

Many of the subjects that comprise the core curriculum make extensive use of such resources as the MIT Cable Television System, which telecasts films and specially prepared tapes in conjunction with particular subjects; the University Film Study Center, an archive containing primary film and video materials as well as books and periodicals devoted to film and media; the Research Program on Communications Policy, which conducts seminars and research on the mass media; and the News Study Group, which archives and analyzes public affairs and news broadcasting.

Most core subjects also exploit video technologies in the classroom and encourage students to use video playback systems in preparing for tests and essays.

Faculty drawn from the following fields regularly teach subjects in the core curriculum: Art and Architecture, Foreign Languages and Literatures, Literature, and Political Science.

The coordinator of Film and Media Studies for 1984-85 is Professor David Thorslund, Room 14N-335, 253-6950.

Latin American Studies

The program in Latin American Studies offers MIT students the chance to explore interconnections among culture, society, and politics in a major third-world area. Its underlying purpose is to reveal the historical and contemporary forces that have shaped Latin American civilization and that delineate prospects and problems for future development, including the relationship to the United States and other parts of the industrial world. The subjects offered at MIT in Latin American Studies are drawn from various disciplines, primarily Foreign Languages and Literatures, History, Anthropology/Archaeology, and Political Science.

Latin American Studies is available as a concentration and also as the humanistic part of a joint degree program (Course XXI-E or XXI-S). For the major, students must take at least one advanced subject conducted in Spanish (or Spanish III and IV). No more than four subjects can be from a single discipline; no more than two can focus on the Iberian peninsula. See Degree Program Requirements under the Department of Humanities.

Coordinator of Latin American Studies for 1984-85 is Professor Peter Smith, Room ES5-365, 253-4430.

Russian Studies

Russian Studies is an undergraduate program of analytical, historical, and evaluative subjects about people with a tradition and form of life different from the American in ways that are sometimes complementary, sometimes competitive. With a focus on both the society and the culture of a significant area of the world, this interdisciplinary and interdepartmental program is designed to make possible concrete exploration of important concerns of modern humanity. These include tradition and radicalism; rural versus urban life; the place of the imagination in historical change; industrialization, technology, and the expressivistic modern sensibility; and humanism and terror. The subjects in Russian Studies are drawn primarily from History, Literature, Political Science, and Russian. Readings and classes in all subjects are in English.

Russian Studies may be taken as a concentration or as the humanistic part of a joint degree program (Course XXI-E or XXI-S). The major includes at least two subjects each in Russian society and Russian culture. Students may arrange Russian language credits within the major program and use the language in certain subjects. See Degree Program Requirements under the Department of Humanities.

Coordinator of Russian Studies for 1984-85 is Professor Robert MacMaster, Room 14N-421, 253-2641.
Traditions and Texts

This program provides a series of interdisciplinary humanistic subjects designed to introduce undergraduates to some of the major cultural traditions of civilization as expressed in written texts and works of art. Most of these subjects deal with principal periods in Western tradition, ranging from ancient Greek and Biblical studies through the Middle Ages and Renaissance to the Modern period, but there are also subjects focused on the traditions of East Asia and the Islamic world. Cutting across various forms of thought and expression — religion, philosophy, history, literature, and the arts — the consistent aim of this program is to make intelligible the changing network of values which link a society's present with its past and future, and to trace the processes of transmission and rebuilding which occur within it. The subjects are taught by faculty from several humanistic fields. Traditions and Texts is available as a field of concentration.

Information on Traditions and Texts for 1984-85 may be obtained from the Humanities, Arts, and Social Sciences Information Center, Room 14N-409, 253-4441.

Women's Studies Program

Women's Studies involves a re-cognition of the importance of gender as an analytic category in traditional academic disciplines. Subjects offered in this program provide students with an alternative way to think about fields of study, reading back into those fields the social, historical, and cultural experiences and contributions of women. A Women's Studies perspective adds an important and long-neglected dimension to traditional humanistic, scientific, and social scientific disciplines by reconstructing standards for theory and methodology in fields as diverse as biology, psychology, and literature.

Women's Studies subjects are designed to make women's reality visible whatever the area of study. They often examine sex roles and gender identity for men and for women at the individual level, at different times and in different societies. They ask whether or not there are cultural universals in the definition of gender. The curriculum includes both a core subject — Introduction to Women's Studies — and a selection of subjects from many departments at the Institute, listed in the Special Programs section of Chapter VII. The Program also offers a Humanities concentration in Women's Studies.

The program is described in greater detail in Chapter III. Further information may be obtained from Dr. Ruth Perry or Mary Wyer, Room 1E-319, 253-8944.

Office of the Dean

Ann Fetter Friedlaender, Ph.D.
Professor of Economics and Civil Engineering
Dean
Janet Romaine, B.A.
Assistant Dean for Administration
Travis Rhodes Merritt, Ph.D.
Associate Professor of Literature
Director, Humanities Undergraduate Office
Ruth V. Spear, B.A.
Coordinator, Humanities Undergraduate Office

School Faculty and Staff Without Departmental Affiliation

Martin Dyck, Ph.D.
Professor of German and Literature
Ruth Perry, Ph.D.
Senior Lecturer in Literature and Women's Studies
Director of Women's Studies
Robert N. Scanlan, Ph.D.
Lecturer in Drama and Theater Arts
Beth Soll, B.S.
Lecturer in Dance
William Nash Locke, Ph.D.
Professor of Modern Languages, Emeritus
Director of Libraries, Emeritus
Department of Economics

Edgar Cary Brown, Ph.D.
Professor of Economics
Acting Head of the Department

Paul Lewis Joskow, Ph.D.
Professor of Economics
Associate Head of the Department

Professors

Morris Albert Adelman, Ph.D.
Professor of Economics
(On leave)

Sidney Stuart Alexander, Ph.D.
Professor of Economics and Management
(On leave)

Robert Lyle Bishop, Ph.D.
Professor of Economics

Peter Arthur Diamond, Ph.D.
Professor of Economics

Rudiger Dornbusch, Ph.D.
Ford International Professor of Economics

Richard Samuel Eckaus, Ph.D.
Ford International Professor of Economics

Stanley Fischer, Ph.D.
Professor of Economics

Franklin Marvin Fisher, Ph.D.
Professor of Economics
(On leave, spring)

Ann Fetter Friedlaender, Ph.D.
Professor of Economics and Civil Engineering
Dean, School of Humanities and Social Science

Jean-Michel Grandmont, Ph.D.
Professor of Economics
(Visting)

Olivier Jean Blanchard, Ph.D.
Associate Professor of Economics

Henry Stuart Farber, Ph.D.
Associate Professor of Economics

Jeffrey Earl Harris, M.D., Ph.D.
Associate Professor of Economics

Timothy Jerome Keehoe, Ph.D.
Associate Professor of Economics

Jean Michel Tirole, Ph.D.
Associate Professor of Economics

William Cody Wheaton, Ph.D.
Associate Professor of Economics and Urban Studies

Assistant Professors

Joseph von Rosthorn Farrell, D.Phil.
Assistant Professor of Economics

Drew Douglas Fudenberg, Ph.D.
Assistant Professor of Economics
(Visting)

James Michael Poterba, D.Phil.
Assistant Professor of Economics

Garth Saloner, Ph.D.
Assistant Professor of Economics

Instructor

Nicholas Gregory Mankiw, Ph.D.

Administrative Officer

Idella Lyman Tapley, A.B.

Administrators for Finance and Operations

Pamela Shepherd-Hart, B.A.

Professors Emeriti

Evsey David Domar, Ph.D.
Ford International Professor of Economics, Emeritus

Harold Adolph Freeman, S.B.
Professor of Statistics, Emeritus

Everett Einar Hagen, Ph.D.
Professor of Economics and Political Science, Emeritus

Charles Poore Kindleberger, Ph.D., D.H.C.
Ford International Professor of Economics, Emeritus

Charles Andrew Myers, Ph.D.
Professor of Industrial Relations
Sloan Fellows Professor of Management, Emeritus

Senior Lecturer

Paul Pigors, Ph.D.
Professor of Industrial Relations, Emeritus

Paul Narcyz Rosenstein-Rodan, Dr.Rer.Pol.
Professor of Economics, Emeritus
Department of Economics

(Course 14)

Undergraduate Study

Economics is the study of the behavior of economic units, institutions, and systems and the choices that they make with respect to the allocation of scarce resources among production and consumption. The study of economics provides an understanding of important aspects of current society: the determinants of wealth, income, poverty, jobs, and prices; the impact of government policy upon the economic behavior of firms, individuals, and society; the structure of markets and their allocation of resources in the context of equity and efficiency.

Economics is concerned with a wide range of problems that directly affect society: the cause of unemployment and price rigidity; productivity and economic growth; foreign debt and trade linkages; union behavior and the structure of labor markets; taxation and incentives; and the role of government in private markets.

The introduction to the School of Humanities and Social Science found earlier in this chapter describes the Department in the larger context of the School and of MIT.

Bachelor of Science in Economics

Course XIV

The Course leading to the Bachelor of Science in Economics combines training in technical economics with opportunities for a broad and balanced undergraduate education. Students may select programs that emphasize the relation of technology to economics by concentrating their free elective time in science and engineering; they may choose programs that concentrate more heavily on economics and other social sciences; or they may undertake to relate economics to history, philosophy, or literature. The successful completion of the degree prepares students for study in economics, industrial relations, business administration, law, and related fields, or for careers in teaching, government, research, unions, finance, and business.

The aims of the degree program are threefold: to give students a firm grounding in modern economic theory; to provide a basic descriptive knowledge of the US and world economy; and to develop in students the capability for quantitative research and independent thought. These aims roughly correspond to the requirements in the Course XIV curriculum of theory, electives, statistics, and research.

The requirements allow substantial freedom for students in designing individual programs within economics and in balancing the programs with subjects in other disciplines. The large amount of unrestricted elective time encourages students to shape programs close to their own needs and interests.

Students who have taken 14.01 Economic Principles I and 14.02 Economic Principles II by the end of their second year can follow a program which permits considerable depth in electives in the third and fourth years. The most satisfactory plan is to take 14.04 Intermediate Microeconomic Theory and 14.06 Intermediate Macroeconomic Theory in successive terms of the third year and to complete 14.31 Econometrics before the end of the third year. This satisfies prerequisites for all subjects and prepares students for thesis research.

The Department specifies one science distribution subject and one laboratory subject, and strongly recommends that all students take an additional subject in computer techniques and, if professionally interested in economics, further work in mathematics.

Bachelor of Science in Economics

Course XIV

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>The Humanities, Arts, and Social Sciences Requirement can be satisfied by subjects in the Departmental Program, plus appropriate subjects totaling</td>
<td>45</td>
</tr>
<tr>
<td>The Science Distribution Requirement can be satisfied by 14.30 in the Departmental Program, plus appropriate subjects totaling</td>
<td>24</td>
</tr>
<tr>
<td>The Laboratory Requirement can be satisfied by 14.31 in the Departmental Program.</td>
<td></td>
</tr>
</tbody>
</table>

Departmental Program

<table>
<thead>
<tr>
<th>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects:</td>
</tr>
<tr>
<td>14.01 Economic Principles I, 9</td>
</tr>
<tr>
<td>14.02 Economic Principles II, 9</td>
</tr>
<tr>
<td>14.04 Intermediate Microeconomic Theory, 12; 14.01</td>
</tr>
<tr>
<td>14.06 Intermediate Macroeconomic Theory, 12; 14.02</td>
</tr>
<tr>
<td>14.30 Introduction to Statistical Method in Economics, 12; 18.02</td>
</tr>
<tr>
<td>14.31 Econometrics, 12; 14.30</td>
</tr>
<tr>
<td>14.39 Undergraduate Thesis Seminar, 6; 14.04, 14.06, 14.31</td>
</tr>
<tr>
<td>Thesis (9 units)</td>
</tr>
</tbody>
</table>

Restricted Electives: 45
Elective subjects in economics
Unrestricted Electives 105

Total Units Required for the S.B. Degree 360

1. No more than 27 units in Economics, excluding the required subjects, may be used for the Humanities, Arts, and Social Sciences Requirement.
2. Or an approved alternative in statistics.
3. 14 UR Undergraduate Research (6 units) approved as to content may be substituted for 14.39.
Graduate Study

Entrance Requirements for Graduate Study

The Department specifies the following prerequisites for graduate study in economics: one full year of college mathematics, including at least one term of calculus; one full year of college work in science; at least six term subjects in English, history, and other humanities or social science subjects (not in the candidate's own professional field) equivalent to those included in the undergraduate curriculum at MIT; and an appreciable number of professional subjects in economics for those qualified students who have majored in fields other than economics. A student whose deficiencies are of minor extent may be permitted graduate registration while taking appropriate subjects to remove them.

Master of Science in Economics

The majority of graduate students in the Department are doctoral candidates. Under special circumstances, however, admission may be granted to candidates seeking the Master of Science degree. The general requirements for the S.M. are given in Chapter IV of this catalogue.

Doctor of Philosophy

A candidate for the doctorate must 1) demonstrate a mastery of five fields of study, one of which is economic theory, both micro- and macro-; 2) achieve a specified level of competence in economic history and econometrics; 3) submit and defend a dissertation that represents a contribution to knowledge; and 4) be in residence for a minimum of two years. Three of the five fields, including economic theory, are covered by the General Examination. Two minor fields may be satisfied by one year of course work. The four major and minor elective fields may be chosen from advanced economic theory, monetary economics, fiscal economics, industrial organization, transportation, international economics, economic development, Russian and Soviet economics, comparative economic systems, urban economics, labor economics, economic history, statistical theory, econometrics, human resources and the distribution of income and wealth, and (given outside the Department) finance. The econometrics requirement may be satisfied by offering it as a field or by taking 14.388 Applied Econometrics and, in either case, completing a major piece of empirical research. The minimal economic history requirement can be satisfied by taking one subject in the field.

No stated number of graduate subjects in the Department is required. However, the candidate ordinarily needs two full academic years of study to prepare adequately for the General Examination and to meet the other pre-thesis requirements. The doctoral thesis must be written in residence; as a rule, it represents at least one year's research.

The Department has no foreign language requirements. When a foreign language is essential for full access to the literature in the field of major interest (for example, European economic history, Russian economics) or to thesis research, a language requirement is imposed by the Department upon the recommendation of the thesis supervisor or the Graduate Registration Officer. Such a requirement is administered by the Department of Humanities and can be met by satisfactory course work at other schools or at MIT or by examination.

Students interested in developing professional competence in economics and planning problems of the city may elect an interdepartmental program in the Departments of Economics and Urban Studies and Planning, which is described in more detail in Chapter V.

Teaching and Research Assistantships

A limited number of students are supported by teaching and research assistantships. Typically, these appointments are available only to students who have passed their general examinations, but in special circumstances, research assistantships may be held by second-year students.

Inquiries

Additional information concerning academic programs in the Department, admissions, and financial aid may be obtained by writing to Professor Robert L. Bishop, MIT, E52-344, 50 Memorial Drive, Cambridge, Massachusetts 02139, (617) 253-6181.
The introduction to the School of Humanities and Social Science found earlier in this chapter describes the Department in the larger context of the School and of MIT.

The Department of Humanities consists of a number of autonomous sections and programs, each with its own headquarters. There are currently six such units: 1) Anthropology/Archaeology, 2) Foreign Languages and Literatures, 3) History, 4) Literature, 5) Music, and 6) Writing.

All the programs in the Humanities provide subjects which help to satisfy the Institute Requirement in Humanities, Arts, and Social Sciences, including Distribution Subjects and Fields of Concentration, and are available as undergraduate degree programs in Course XXI, either in combination with Engineering or Science curricula (XXI-E, XXI-S) or as full majors (XXI), described later in this section.

Students interested in any of these degree programs should consult an advisor in the field, and the Course XXI Office, Room 14N-409, MIT, Cambridge, Massachusetts 02139, (617) 253-4446, as early as possible.

Anthropology/Archaeology

Arthur Steinberg, Ph.D.
Associate Professor of Archaeology

Heather Nan Lechtman, M.A.
Professor of Archaeology and Ancient Technology

Director, Center for Materials Research in Archaeology and Ethnology
(On leave, spring)

Martin Diskin, Ph.D.
Associate Professor of Anthropology

James Howe, Ph.D.
Associate Professor of Anthropology
(On leave)

Jean Elizabeth Jackson, Ph.D.
Associate Professor of Anthropology
(On leave)

Suzanne DeAtley, Ph.D.
Assistant Professor of Anthropology
(On leave, fall)

Sharck Travek, Ph.D.
Assistant Professor of Anthropology and Science, Technology, and Society

Cyril Stanley Smith, Sc.D.
Institute Professor, Emeritus
Professor of the History of Science and Technology, Emeritus
Professor of Metallurgy, Emeritus

Anthropology/Archaeology

Anthropology studies humankind from a comparative perspective that emphasizes the diversity of human behavior and the importance of culture in explaining that diversity. While the discipline encompasses the biological nature of our species and the material aspects of human adaptation, it takes as fundamental the idea that we respond to nature and natural forces in large part through culture. Anthropology, then, is the study of human beings as cultural animals. Archaeology, one of its principal branches, uses material remains to study cultures, often over long time periods. Cultural anthropology draws its data from the direct study of contemporary peoples living in a wide variety of circumstances, from peasant villagers and tropical forest hunters and gatherers, to urban populations in modern societies.

The Anthropology/Archaeology Program at MIT offers students a broad exposure to the discipline as well as an anthropological perspective on problems and issues relevant to other fields in the humanities, social sciences, and engineering. It also provides more intensive introductions to areas of faculty specialization, which include social and political organization, economics and human ecology, religion and symbolism, paleobotany, technology and materials science, and the anthropology of art and scientific research. Geographical specializations include ancient and modern cultures of the Americas, ancient civilizations of the Mediterranean and Near East, and modern Japan and the United States.

The scientific study of technologies and materials from ancient and contemporary non-western societies forms a special field of research and teaching for the Anthropology/Archaeology Program. MIT anthropologists, together with colleagues in the Department of Materials Science and Engineering and with anthropologists and archaeologists from six museums and universities in the Boston area, founded the Center for Materials Research in Archaeology and Ethnology (CMRAE). The center, which is directed by MIT Anthropology/Archaeology faculty, provides a focus for research, teaching, and graduate training in this field, and is described in further detail in Chapter V. Students may participate in research projects by arrangement with the appropriate faculty members.

The Anthropology/Archaeology curriculum is divided into two groups. Introductory subjects, whose numbers begin with 21.50, encompass broad topics such as human evolution and archaeological methods. Subjects with higher numbers focus somewhat more tightly on such specialized topics as magic and witchcraft, the decline of empires, or sex roles. With the exception of special topics and subjects given through the CMRAE, most offerings do not have prerequisites.

Students taking a concentration in anthropology are advised to choose a mix of subjects in archaeology and cultural anthropology with help from the program's concentration advisor. Anthropology subjects qualify for several interdisciplinary concentrations, including Women's Studies, Latin American Studies, and "Technology, Culture, and Development."

Degree programs in Anthropology/Archaeology include joint majors in combination with a field of engineering or science (Course XXI-E, Course XXI-S), as well as a more intensive full major in Anthropology/Archaeology (Course XXI). See Degree Program Requirements. Subject 21.50 is strongly recommended as a preliminary subject for these degree programs (in addition to the required program of studies).

Subjects in Anthropology/Archaeology are numbered 21.50 through 21.599 in Chapter VII. Further information on subjects and programs may be obtained from the Anthropology/Archaeology Program Office, Room 20B-131A, (617) 253-3065.

Foreign Languages and Literatures

Edward Baron Turk, Ph.D.
Associate Professor of French
Section Head

James Wesley Harris, Ph.D.
Professor of Spanish and Linguistics

Robe: Emmet Jones, Ph.D.
Professor of French and Humanities

Krystyna Pomorska, Ph.D.
Professor of Russian and Literature

Julia Alexsandratos, Ph.D.
Associate Professor of Russian
(On leave, fall)

Catherine Vakar Chvany, Ph.D.
Associate Professor of Russian and Italian

Isabelle de Courtivron, Ph.D.
Associate Professor of French

Elizabeth Garrets, Ph.D.
Associate Professor of French

Margery Resnick, Ph.D.
Associate Professor of Spanish
Foreign Languages and Literatures

The Foreign Languages and Literatures Section offers a variety of programs. There are subject sequences in French, German, Greek, Russian, Spanish language and literature taught in the original; a subject sequence on literature taught in English translation; and a comprehensive program in English as a second language.

The study of a foreign language broadens one’s cultural perspective, sharpens awareness of use and meaning of words in our own language, and increases one’s range of expression. At MIT, students have the opportunity to bring their knowledge of a foreign language to the level at which they can not only speak fluently, but also read with pleasure and critical awareness. If preserved through use, these skills constitute an intellectual and personal resource throughout a lifetime, and can be an important asset for those pursuing careers with international dimensions.

In the programs at MIT, “introductory subjects” familiarize students with the basic principles of the language in both its spoken and written forms, and introduce the culture of the countries where the language is spoken. The “intermediate level” provides for review and refinement of grammar, study of more difficult reading material with cultural and literary content, and compositions and discussions in the foreign language. “Advanced subjects” conducted in the foreign language stress analysis of the form and content of the literature and study of the culture and civilization of each country. A well-equipped language laboratory facilitates language learning.

Subjects in literature in translation make available in English great works from foreign literatures. These subjects enable students who do not know the original language to experience new avenues of thought, vision, and feeling. Although these subjects are given in English, students with a reading knowledge of a specific language will be encouraged to read works in the original. Courses in this sequence range from broad introductory subjects to more specific aspects of literary study.

In choosing language subjects, students should bear in mind that credit toward graduation is not given for repeating work offered for admission to MIT. Concentrations in any field of language and/or literature should be arranged on an individual basis in consultation with a designated advisor.

Proficiency in a foreign language is a prerequisite for election to Phi Beta Kappa.

Degree programs are offered in French, German, Russian, and Spanish, and include joint majors in combination with a field of engineering or science (Course XXI-E, Course XXI-S), as well as a more intensive full major (Course XXI). See Degree Program Requirements. There are circumstances under which one or more subjects not conducted in the language may be counted in the degree requirements.

Subjects in Foreign Languages and Literatures, both in the original and in translation, are numbered 21.201 through 21.349. Further information on subjects and programs may be obtained from the Foreign Languages and Literatures Section Office, Room 14N-207, (617) 253-4771.

History

Pauline Maier, Ph.D.
Professor of History
Section Head

Richard Mateer Douglas, Ph.D.
Professor of History

Robert Michael Fogelson, Ph.D.
Professor of History and Urban Studies

Lore Graham, Ph.D.
Professor of the History of Science

Harold John Hanham, Ph.D.
Professor of History and Political Science

Robert Ellsworth MacMaster, Ph.D.
Professor of History and Literature (On leave, spring)

Bruce Mazlish, Ph.D.
Professor of History

Harald Anton Thrup Olsen Reiche, Ph.D.
Professor of Classics and Philosophy (On leave, spring)

Robert Irwin Rotberg, D.Phil.
Professor of History and Political Science

Merrill Roe Smith, Ph.D.
Professor of the History of Technology

Peter Hopkinson Smith, Ph.D.
Professor of History and Political Science
History

History is the study of the recorded past. Since interest in the past is closely linked with a desire to understand the present, the history curriculum at MIT is tailored in part to put the modern world in historical perspective. Subjects explore the social, economic, and political transformations that shape the present; and efforts are made to suggest where traditional assumptions remain in present-day politics, society, and culture.

The curriculum seeks to encourage both an understanding of the human past and the development of skills necessary to express that knowledge effectively. Subject listings are divided into "Basic Fields" which provide surveys of scholarship organized by place and period, and "Special Subjects and Seminars," which are more limited in scope and specialized in focus.

Degree programs in History include joint majors in combination with a field of engineering or science (Course XXI-E, Course XXI-S), as well as a more intensive full major in History (Course XXI). See Degree Program Requirements.

Subjects in History are numbered 21.350 through 21.491 in Chapter VII. Further information on subjects and programs may be obtained from the History Faculty Office, Room 14N-408, (617) 253-4965.

Literature

The curriculum in literary studies at MIT aims to meet the interests of students who may be drawn to literary study only once or twice at the Institute, and provides a rich program of study for students concentrating or majoring in literature. To an extent unusual in an undergraduate program, the curriculum lays emphasis on interdisciplinary approaches to literary texts and on theoretical, generic, and thematic subjects that range across geographical and historical boundaries.

Every literature subject offers significant opportunities for individual participation in class discussion and every subject is centrally committed to improving students' writing skills.

A Supplement to this catalogue, available from the Humanities Department offices, offers more detailed descriptions of all literature subjects and includes specific information about required texts, writing assignments, and examinations.

The Literature curriculum is arranged in three graduated categories or tiers: 1) "Introductory subjects" (21.001-21.010) focus on major literary texts grouped in broad historical and generic sequences, all carrying Humanities Distribution credit. 2) "Intermediate subjects" (21.021-21.120) explore literary forms in greater depth and center on historical periods, literary themes, or genres. Students are encouraged to consult individual instructors about prerequisite requirements. 3) "Seminars" (21.171-21.178), restricted to students who have taken at least two previous subjects in literature, encourage a greater degree of independent work, such as oral reports and other special projects. Enrollment in seminars is strictly limited to a maximum of 12 students.
Concentrations in Literature are available in particular genres (e.g., poetry, drama, fiction) and in historical periods (e.g., ancient studies, 19th-century literature, modern and contemporary literature), as well as in popular culture, media and film studies, minority and ethnic studies, literary theory and a range of national literatures.

The Literature Major. The Literature Faculty offers a variety of major programs, including joint majors in combination with curricula in Engineering or Science (Course XXI-E and Course XXI-S) as well as a more intensive full major program (Course XXI). For the full major, three seminars are required as well as elective subjects in four of the following literary periods: 1) Ancient and Classical, 2) Medieval, 3) Renaissance, 4) 17th Century and Enlightenment, 5) 19th Century. The joint major requires two seminars and electives in three of these periods.

Subjects in Literature are numbered 21.001 through 21.199 in Chapter VII. Further information on subjects and programs may be obtained from the Literature Faculty Office, Room 14N-305, (617) 253-3581.

Music

Jeanne Shapiro Bamberger, M.A.
Associate Professor of Music
Section Head

David Mayer Epstein, Ph.D.
Professor of Music
Conductor of the MIT Symphony Orchestra

Stephen Erdely, Ph.D.
Professor of Music

John Harbison, M.F.A.
Class of 1949 Professor
Professor of Music

John LaBoiteaux Buttrick, M.S.
Associate Professor of Music
(On leave, fall)

Jane Cappock, Ph.D.
Associate Professor of Music

Lowell Edwin Lindgren, Ph.D.
Associate Professor of Music

Marcus Aurelius Thompson, D.M.A.
Associate Professor of Music

Barry Lloyd Vercoe, D.M.A.
Associate Professor of Music and Technology

Edward Cohen, M.A.
Senior Lecturer in Music

John Oliver, M.M.
Senior Lecturer in Music
Director, MIT Choral Society

Steven Hallick, M.Phil.
Lecturer in Music

Mark Harvey, Ph.D.
Lecturer in Music

Melissa Howe, Ph.D.
Lecturer in Music

Martin Marks, M.A.
Lecturer in Music

Roland Vazquez, M.A.
Lecturer in Music

Claudia Von Canon, M.A.
Lecturer in Music

James David Christie, M.M.
Institute Organist

Klaus Liepmann
Professor of Music, Emeritus

Director of Music, Emeritus

In the Music Section offers a broad range of opportunities to experience and explore the field of music. A great variety of subjects is given, ranging from early music performance to computer music composition. They are arranged into five categories: Introductory, History/Literature, Theory/Composition, Performance, and Seminars/Tutorials. Most students begin with introductory subjects, but anyone with musical training is encouraged to begin with history/literature or theory/composition subjects, which constitute the nucleus of the program. Graduate credit is available for nearly all of the seminars and tutorials.

A symphony orchestra, choral groups, concert and jazz bands, and chamber music groups are an integral part of MIT's cultural life and of any student's musical development, no matter what technical proficiency they possess. Academic credit is available for some performance activities and instrumental study. Auditions are held at the beginning of each term.

The music faculty comprises professional composers, performers, historians, and theorists, whose individual interest in the confluence of history, theory, and performance is essential to our integrated music program.

A full degree program in music is available under Course XXI. For students interested in combining the study of engineering or science with humanities, joint majors in Course XXI-E and XXI-S provide the opportunity to pursue special interests. (See Degree Program Requirements.) The full major program includes four subjects in composition and four subjects in history and literature of music. The joint major includes two subjects in each field. Students wishing to enroll in any of these degree programs should consult the Major advisor in the Music Section no later than the beginning of their junior year.

Students who declare music as their major must pass a test showing proficiency in instrumental or vocal performance. This test is given by three senior members of the music faculty at the beginning of each semester. Seniors in the Full Major participate in a tutorial program in preparation for a General Examination; those in the Joint Major take a Senior Music Seminar. Especially qualified students may be permitted to substitute a thesis on an analytical or historical topic or an original composition for the General Examination or Seminar.

Subjects in Music are numbered 21.60 through 21.695 in Chapter VII. Further information on subjects and programs may be obtained from the Music Section Office, Room 14N-434, (617) 253-3210.

The Writing Program

James Paradise, Ph.D.
Associate Professor of Technical Communication
Program Head

Elizaeta Ettinger Chodakowska, Ph.D.
Thomas Meloy Associate Professor of Rhetoric

Rae Goodell, Ph.D.
Associate Professor of Science Writing
(On leave, fall)

Joe Haldeman, M.F.A.
Associate Professor of Science Fiction
(Visiting)

Bernard Avishai, Ph.D.
Assistant Professor of Writing

Robin Becker, M.A.
Assistant Professor of Exposition and Rhetoric

David Dobrin, Ph.D.
Assistant Professor of Technical Writing

Marilyn Richardson, B.A.
Assistant Professor of Exposition and Rhetoric

Harriet Ritvo, Ph.D.
Assistant Professor of Writing
The MIT Writing Program

The MIT Writing Program provides students the opportunity to experiment with writing as a craft and as a means of self-expression. The Program helps preparatory students to communicate the results of their work forcefully and clearly to members of their professions and to larger audiences. All subjects in the Program emphasize the development of writing skills and strategies. Some subjects, including those at advanced levels and those offered for distribution, require substantial reading.

Subjects in the Program's three areas — 1) Exposition and Rhetoric, 2) Creative Writing, and 3) Science and Technical Communication — are taught at basic, intermediate, and advanced levels. All subjects require repeated writing and revision. In addition, manuscripts are typically discussed in workshops and receive the written commentary of the instructor. Students are encouraged to schedule private conferences with their instructors.

Concentrations in Writing establish a course of intensive study for prose, poetry, and fiction writers, or for engineers and scientists who expect writing to play a key role in their career development.

Degree Programs in Writing. The Course XXI-E and XXI-S Writing Major programs require a combination of subjects in science or engineering, an area of writing, and a related field of humanities, arts, or social sciences. The Course XXI full major in Writing offers students the opportunity to focus on a single area of the writing curriculum — exposition and rhetoric, creative writing, or science and technical writing — in conjunction with the study of a related field in the humanities, arts, or social sciences. See Degree Program Requirements. The degree requirements are flexible, and students must work out individual programs with their advisors.

The Writing Requirement. Students may satisfy Phase One of the writing requirement by earning a passing grade in any of several introductory writing subjects. Additional details may be obtained from the Office of the Writing Requirement (253-3039).

Writing Center. The MIT Writing Center offers individual writing consultation on a drop-in basis to all MIT students. In addition, each semester the center gives mini-sessions on a variety of writing topics. For further information, contact The Writing Center (253-3090).

Cooperative Writing Programs. The Science and Technical Communication staff of the Writing Program supports an interdepartmental program of writing instruction jointly with the undergraduate and graduate departments in the School of Engineering, as well as the graduate sections of the Sloan School of Management and the Department of Urban Studies and Planning.

Subjects in Writing are numbered 21.725 through 21.799 in Chapter VII. Further information on subjects and programs may be obtained from the Writing Program Office, Room 14E-310, (617) 253-7894.

Full, Joint, and Double-Degree Majoring

For students who wish to pursue their humanistic studies extensively and at an advanced level, two basic types of degree programs are available. The first, Course XXI, constitutes a full major in any one of seven fields of the humanities. The second, Course XXI-E or XXI-S, is a joint major which combines work in humanities with work in engineering, science, or psychology. Further, a student pursuing either a full or joint major may obtain interdisciplinary competence on a larger scale by adding a separate major in any other Course of study available at MIT, as part of a double-degree arrangement. In fact, one version of the full major, that in STS/Humanities, may be taken only in conjunction with another degree program in Engineering or Science. Descriptions and specifications for full and joint major programs follow.

Bachelor of Science in Humanities

Course XXI

This program provides a full major in any of the following fields:

- Anthropology/Archaeology
- Foreign Languages and Literatures (in French, German, Russian, or Spanish)
- History
- Literature
- Music
- Writing
- STS/Humanities

The required curriculum consists of eight to eleven subjects in the chosen discipline plus four subjects from a related field of humanities, arts, or social sciences. Depending on the field of specialization, the course of study may include special introductory or advanced seminars and a senior thesis or general examination. Faculty advisors in each of the disciplines help students to arrange programs suited to both their interests and professional objectives.
Bachelor of Science in Humanities and Engineering Course XXI-E

These Joint major programs combine humanities with scientific/engineering studies, creating an educational experience of unusual scope and balance. Groups of subjects from the humanistic and technical areas are conjoined to yield a substantial "dual literacy," a basic command of each mode of inquiry. One part is a selection from the undergraduate degree curriculum of a science or engineering department, or the Department of Psychology, approved by a faculty member in the field. The other part consists of subjects in some field of the humanities, chosen by the student in consultation with an advisor from the appropriate humanistic faculty. In most cases a senior thesis, general examination, or sequence of advanced seminars is also required.

This arrangement yields a humanities program of considerable depth while allowing for continuous serious commitment to a scientific or engineering interest. Available humanities fields include:

- Anthropology/Archeology
- Foreign Languages and Literatures (in French, German, Russian, or Spanish)
- History
- Literature
- Music
- Writing
- American Studies
- Russian Studies
- STS/Humanities

Any one of these fields may be joined with any Science or Engineering field to form a major. Some combinations naturally lend themselves not only to an understanding of each field but also to an integrative and comparative view of the relationship between the two.

In fact one field — STS/Humanities — is designed expressly for this purpose. It includes a group of specially designated relational subjects offered by the faculties in Humanities and the Program in Science, Technology, and Society, which provide a focus for interdisciplinary work.

1. As a matter of general Course XXI policy, subjects used to meet the General Institute Requirement, the Science Distribution Requirement, the Laboratory Requirement, and the Distribution element of the Humanities, Arts, and Social Sciences Requirement may not be counted toward either the major or minor component of the departmental requirement for the full major.

2. The minor program is usually formed within a single second discipline of the humanities, arts, or social sciences. In special cases it may draw together subjects from different disciplines to form a coherent grouping.

1. As a matter of general Course XXI policy, subjects used to meet the General Institute Requirement, the Science Distribution Requirement, the Laboratory Requirement, and the Distribution element of the Humanities, Arts, and Social Sciences Requirement may not be counted toward either the major or minor component of the departmental requirement for the joint major.

2. American Studies, Latin American Studies, and Russian Studies are also available as full majors by special arrangement with the Humanities Undergraduate Office.

3. When possible, the subject satisfying the Institute Laboratory Requirement and one of the subjects satisfying the Science Distribution Requirement should be selected from the same curriculum, in addition to the regular requirement.

Restricted Electives (continued)
Latin American Studies
7 elective subjects (including study in at least two disciplines and some work in Spanish) and a thesis
at least 77

Russian Studies
7 elective subjects (including two on society and two on culture) and a thesis
at least 81

STS/Humanities
8 subjects (including 21.901J/STS130J and 21.902J/STS131J and study in two STS areas) and a thesis
at least 90

And for the Engineering/Science component, one of the following
For XXI-E:
Six elective subjects restricted to one of the Engineering curricula and approved by a faculty member in the field
at least 54
For XXI-S:
Six elective subjects restricted to one of the Science curricula and approved by a faculty member in the field
at least 54
or
Six subjects in Psychology (detailed specifications available from the Department of Psychology or Humanities Undergraduate Office)

Unrestricted Electives
85 to 98

Total Units Required for the S.B. Degree
360

Inquiries
Additional information concerning degree programs and other opportunities in Course XXI may be obtained from Professor Travis R. Merritt, Director of the Humanities Undergraduate Office, Room 14N-405, MIT, Cambridge, Massachusetts 02139, (617) 253-4446.
Department of Linguistics and Philosophy (Course 24)

Undergraduate Study

As its name suggests, the Department of Linguistics and Philosophy houses a linguistics section and a philosophy section. Though they share a number of intellectual interests, these two sections are administratively autonomous in that they have separate chairpersons, faculties, admissions procedures, curricular and degree requirements, and financial aid programs.

The linguistics section offers a program leading to the Doctor of Philosophy in Linguistics. The Master of Arts degree is awarded only in exceptional circumstances. There is no undergraduate degree program in linguistics, though the section does offer undergraduate subjects that may be taken as electives by any student or as part of the Course IX Cognitive Science and the course XXIV Language and Mind programs.

The philosophy section offers two undergraduate programs leading to the degree of Bachelor of Science in Philosophy, as well as a program leading to the doctorate in philosophy. These programs are described in detail in the following paragraphs.

The introduction to the School of Humanities and Social Science found earlier in this chapter describes the Department in the larger context of the School and of the Institute.

Bachelor of Science in Philosophy Course XXIV

Philosophy aims at analysis and criticism of the concepts and principles fundamental to the sciences, to our commonsense view of the world, and to our modes of valuation. The study of philosophy is thus appropriate for those who enjoy thinking carefully and logically about basic issues, for those who seek perspective on a scientific education, and for those who wish breadth of educational experience prior to entering professional programs such as law or medicine.
Two programs are offered leading to the degree of Bachelor of Science in Philosophy. Program 1 is designed to provide: 1) familiarity with the history and current status of the main problems in epistemology, metaphysics, and ethics; 2) mastery of some of the technical skills requisite for advanced work in philosophy; 3) facility at independent philosophical study; and 4) work at an advanced level in an allied field. A relatively large amount of unrestricted elective time is available so that students can devise programs suited to individual needs and interests.

Program 2, called the program in Language and Mind, addresses itself to topics and problems related to philosophy, psychology, linguistics, and artificial intelligence that do not fall neatly into any one of those fields. Central among these topics are the nature of language, of mental representation of knowledge, and of the innate basis for the acquisition of such knowledge. A core set of seven subjects is required for the purpose of teaching students the central facts and issues in the study of language and the representation of knowledge. A further requirement of specialization within the program of four additional subjects in one of the fields is designed to ensure preparation for graduate study in either philosophy or psychology or linguistics. Lists of subjects in philosophy, linguistics, psychology, and artificial intelligence which may be used to satisfy the restricted elective requirement may be obtained from the Department.
Graduate Study

The Department offers two programs leading to the degree of Doctor of Philosophy, one in linguistics and one in philosophy.

Doctor of Philosophy in Linguistics

The linguistics section offers a demanding program leading to the degree of Doctor of Philosophy in Linguistics. The normal course of study is four years, including the writing of the dissertation. The orientation of the program is highly theoretical, its central aim being the development of a general theory that reveals the rules and laws that govern the structure of a given language and the general laws and principles that govern all natural languages. The topics that form the core of this program are the traditional ones of phonology, morphology, syntax, semantics, and historical linguistics; but the program’s interests also extend into questions of the interrelations between linguistics and other disciplines such as philosophy and logic, literary studies, mathematics and the study of formal languages, acoustics, artificial intelligence, and computer science.

Approximately eight to 10 students enter the program each year. The Department does not require that applicants have taken any particular set of subjects or that they be trained in any particular discipline. Instead, applicants must present evidence that they are able to engage in serious study of complex subject matter. Examples of such evidence might be mastery in depth of a language or group of languages, e.g., classical Greek, Semitic, Japanese; or work, academic or nonacademic, of high quality in a relevant area, especially if it required considerable application, imagination, or ingenuity.

All students in the linguistics program must complete a set of required subjects unless they have acquired adequate preparation elsewhere. A program of studies in a minor field is also required in order to broaden the student's educational experience. Before degree candidates begin their doctoral research, they are required to pass a comprehensive General Examination, in conformity with Institute regulations. The purpose of which is to broaden the interests and capacities of the student in areas other than those of his or her major intellectual objective.

Every candidate for the doctorate must complete a program of studies in a minor field, the purpose of which is to broaden the interests and capacities of the student in areas other than those of his or her major intellectual objective.

Doctor of Philosophy in Philosophy

The program of studies leading to the doctorate in philosophy provides courses and seminars in such traditional areas as logic, ethics, metaphysics, epistemology, philosophy of science, philosophy of language, philosophy of mind, aesthetics, social and political philosophy, and history of philosophy. Interests in philosophical problems arising from other disciplines, such as linguistics, psychology, mathematics, and physics, is also encouraged.

To enter the doctoral program, students must have done well in their previous academic work and must be formally accepted as candidates for the degree by the Department of Linguistics and Philosophy. Although there are no formal course requirements for admission, applicants must satisfy the committee on admissions that their preparation in philosophy and allied disciplines is sufficient for undertaking study of philosophy at the graduate level.

Before beginning dissertation research, students are required to take two years of course work including a seminar in contemporary philosophy which all students must complete in their first year of graduate study. Students are also required to pass general examinations and demonstrate competence in the following areas: value theory, logic, and the history of philosophy.

Interdisciplinary study is encouraged, and candidates for the doctorate may take a minor in a field other than philosophy. Options for minors include psychology, linguistics, and logic. Students who elect one of these options will be expected to complete three approved graduate subjects in their minor field. There is no general language requirement for the doctorate, except in those cases in which competence in one or more foreign languages is needed to carry on research for the dissertation.

Inquiries

Information regarding undergraduate or graduate academic programs, research activities, admissions, financial aid, and assistantships may be obtained from the Department of Linguistics and Philosophy, Room 20D-213, MIT, Cambridge, Massachusetts 02139, (617) 253-4141.
Department of Political Science

<table>
<thead>
<tr>
<th>Faculty Title</th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor of Political Science</td>
<td>Donald Laurence Morton Blackmer, Ph.D.</td>
<td>Head of the Department</td>
</tr>
<tr>
<td>Associate Professors</td>
<td>Joshua Cohen, Ph.D.</td>
<td>Associate Professor of Philosophy and Political Science</td>
</tr>
<tr>
<td></td>
<td>Stephen Michael Meyer, Ph.D.</td>
<td>Associate Professor of Political Science</td>
</tr>
<tr>
<td>Professors</td>
<td>Charles Frederic Sabel, Ph.D.</td>
<td>Associate Professor of Social Science</td>
</tr>
<tr>
<td></td>
<td>Richard Joel Samuels, Ph.D.</td>
<td>Mitsui Career Development Professor</td>
</tr>
<tr>
<td></td>
<td>Brian Henry Smith, Ph.D.</td>
<td>Associate Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Deborah Anne Stone, Ph.D.</td>
<td>(On leave, spring)</td>
</tr>
<tr>
<td></td>
<td>Martha Wagner Weinberg, Ph.D.</td>
<td>Associate Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>(On leave)</td>
<td></td>
</tr>
<tr>
<td>Professors Emeriti</td>
<td>Everett Hagen, Ph.D.</td>
<td>Associate Professor of Economics and Political Science, Emeritus</td>
</tr>
<tr>
<td></td>
<td>Harold Robert Isaacs, A.B.</td>
<td>Professor of Political Science, Emeritus</td>
</tr>
<tr>
<td></td>
<td>William Weed Kaufmann, Ph.D.</td>
<td>Professor of Political Science, Emeritus</td>
</tr>
<tr>
<td>Assistant Professors</td>
<td>Willard Raymond Johnson, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Michael Lipsky, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Lucian Wilmot Pye, Ph.D., L.L.D.</td>
<td>Ford International Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>George William Rathjens, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Robert Irwin Rotberg, D.Phil.</td>
<td>Professor of History and Political Science</td>
</tr>
<tr>
<td></td>
<td>Harvey Morton Sapolsky, Ph.D.</td>
<td>Professor of Public Policy and Organization</td>
</tr>
<tr>
<td></td>
<td>Eugene Bertram Skolnikoff, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Director, Center for International Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peter Hopkinson Smith, Ph.D.</td>
<td>Professor of History and Political Science</td>
</tr>
<tr>
<td></td>
<td>Myron Weiner, Ph.D.</td>
<td>Ford Professor of Political Science</td>
</tr>
<tr>
<td>Administrative Officer</td>
<td>Anne M. Grazewski</td>
<td></td>
</tr>
<tr>
<td>Administrative Staff</td>
<td>Frances F. Powell</td>
<td></td>
</tr>
<tr>
<td>Professors Emeriti</td>
<td>William Edgar Griffith, PhD.</td>
<td>Associate Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>George William Fried, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Robert Irwin Rotberg, D.Phil.</td>
<td>Professor of History and Political Science</td>
</tr>
<tr>
<td></td>
<td>Harvey Morton Sapolsky, Ph.D.</td>
<td>Professor of Public Policy and Organization</td>
</tr>
<tr>
<td></td>
<td>Eugene Bertram Skolnikoff, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Director, Center for International Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peter Hopkinson Smith, Ph.D.</td>
<td>Professor of History and Political Science</td>
</tr>
<tr>
<td></td>
<td>Myron Weiner, Ph.D.</td>
<td>Ford Professor of Political Science</td>
</tr>
<tr>
<td>Assistant Professors</td>
<td>Joshua Cohen, Ph.D.</td>
<td>Associate Professor of Philosophy and Political Science</td>
</tr>
<tr>
<td></td>
<td>Stephen Michael Meyer, Ph.D.</td>
<td>Associate Professor of Political Science</td>
</tr>
<tr>
<td>Professors</td>
<td>Charles Frederic Sabel, Ph.D.</td>
<td>Associate Professor of Social Science</td>
</tr>
<tr>
<td></td>
<td>Richard Joel Samuels, Ph.D.</td>
<td>Mitsui Career Development Professor</td>
</tr>
<tr>
<td></td>
<td>Brian Henry Smith, Ph.D.</td>
<td>Associate Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Deborah Anne Stone, Ph.D.</td>
<td>(On leave, spring)</td>
</tr>
<tr>
<td></td>
<td>Martha Wagner Weinberg, Ph.D.</td>
<td>Associate Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>(On leave)</td>
<td></td>
</tr>
<tr>
<td>Assistant Professors</td>
<td>Willard Raymond Johnson, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Michael Lipsky, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Lucian Wilmot Pye, Ph.D., L.L.D.</td>
<td>Ford International Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>George William Rathjens, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Robert Irwin Rotberg, D.Phil.</td>
<td>Professor of History and Political Science</td>
</tr>
<tr>
<td></td>
<td>Harvey Morton Sapolsky, Ph.D.</td>
<td>Professor of Public Policy and Organization</td>
</tr>
<tr>
<td></td>
<td>Eugene Bertram Skolnikoff, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Director, Center for International Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peter Hopkinson Smith, Ph.D.</td>
<td>Professor of History and Political Science</td>
</tr>
<tr>
<td></td>
<td>Myron Weiner, Ph.D.</td>
<td>Ford Professor of Political Science</td>
</tr>
<tr>
<td>Administrative Officer</td>
<td>Anne M. Grazewski</td>
<td></td>
</tr>
<tr>
<td>Administrative Staff</td>
<td>Frances F. Powell</td>
<td></td>
</tr>
<tr>
<td>Professors Emeriti</td>
<td>William Edgar Griffith, PhD.</td>
<td>Associate Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>George William Fried, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Robert Irwin Rotberg, D.Phil.</td>
<td>Professor of History and Political Science</td>
</tr>
<tr>
<td></td>
<td>Harvey Morton Sapolsky, Ph.D.</td>
<td>Professor of Public Policy and Organization</td>
</tr>
<tr>
<td></td>
<td>Eugene Bertram Skolnikoff, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Director, Center for International Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peter Hopkinson Smith, Ph.D.</td>
<td>Professor of History and Political Science</td>
</tr>
<tr>
<td></td>
<td>Myron Weiner, Ph.D.</td>
<td>Ford Professor of Political Science</td>
</tr>
<tr>
<td>Assistant Professors</td>
<td>Willard Raymond Johnson, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Michael Lipsky, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Lucian Wilmot Pye, Ph.D., L.L.D.</td>
<td>Ford International Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>George William Rathjens, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Robert Irwin Rotberg, D.Phil.</td>
<td>Professor of History and Political Science</td>
</tr>
<tr>
<td></td>
<td>Harvey Morton Sapolsky, Ph.D.</td>
<td>Professor of Public Policy and Organization</td>
</tr>
<tr>
<td>Administrative Officer</td>
<td>Anne M. Grazewski</td>
<td></td>
</tr>
<tr>
<td>Administrative Staff</td>
<td>Frances F. Powell</td>
<td></td>
</tr>
<tr>
<td>Professors Emeriti</td>
<td>William Edgar Griffith, PhD.</td>
<td>Associate Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>George William Fried, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Robert Irwin Rotberg, D.Phil.</td>
<td>Professor of History and Political Science</td>
</tr>
<tr>
<td></td>
<td>Harvey Morton Sapolsky, Ph.D.</td>
<td>Professor of Public Policy and Organization</td>
</tr>
<tr>
<td></td>
<td>Eugene Bertram Skolnikoff, Ph.D.</td>
<td>Professor of Political Science</td>
</tr>
<tr>
<td></td>
<td>Director, Center for International Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peter Hopkinson Smith, Ph.D.</td>
<td>Professor of History and Political Science</td>
</tr>
<tr>
<td></td>
<td>Myron Weiner, Ph.D.</td>
<td>Ford Professor of Political Science</td>
</tr>
</tbody>
</table>
Political science is concerned with the systematic study of government and the political process. Within the discipline, scholars analyze the development, distribution, and uses of political power; the determinants and consequences of various forms of political behavior and sources of political conflict; the ways in which conflicts are both intensified and resolved; and the relationship between the individual and the state. It is a discipline of special interest to scientists and engineers who must understand the political system within which they live in order to evaluate their influence upon that system. It is of interest as well to those students who are considering careers in public service or university teaching and research.

The Department has a research-oriented faculty which welcomes the association of both undergraduate and graduate students in ongoing research. Among the major features of the Department are: 1) an emphasis on empirical methods and research training; 2) a concern with issues of public policy, particularly in the areas of arms control and defense, science policy, transportation, urban affairs, health, communications, population and migration, nutrition, and foreign policy; 3) comparative studies involving the United States and other advanced industrial societies, the developing countries of the third world, and communist countries; and 4) a strong interdisciplinary perspective which incorporates political sociology, political psychology, political demography, and economic and political development.

The Department offers degree programs at the bachelor's, master's, and doctoral levels. The introduction to the School of Humanities and Social Science found earlier in this chapter describes the Department in the larger context of the School and of MIT.

Internships

The Department sponsors a number of activities for students who want to gain first hand experience in politics or public policy agencies and processes. Students can receive academic credit for working in government or policy-related agencies in the Boston area during the academic year in conjunction with 17.351J or selected other subjects with faculty permission. Arrangements can be made for students to work in Congress, executive branch, or advocacy organizations during the summer.

Bachelor of Science in Political Science

Course XVII

The political science curriculum for undergraduates combines professional social science training with opportunities for a broad liberal arts education. Students are able to choose subjects from a wide range of both undergraduate and graduate offerings, and they are also encouraged to engage in independent research projects. In addition, the Department sponsors a variety of fieldwork programs in governmental agencies at all levels.

The undergraduate program prepares students for study in political science, law, public policy, and related fields, and for careers in government, business, law, research, teaching, or journalism. This program is also designed to give students, whatever their career objectives, an understanding of political institutions and processes. Some students want to focus on political systems themselves; others choose to concentrate on the political aspects of public policy, focusing on such issues as transportation, health, or arms control. Both of these perspectives are found in the program.

Subjects are offered by the Department in the following fields: political theory, American politics and public policy, urban politics and policy, science and public policy, defense and arms control policy, political psychology, political development, political communications and behavior, comparative politics, and international relations and foreign policy. Students' individualized programs are worked out with the assistance of a faculty advisor.

The Department believes that every political science major should have the experience of conducting and writing at least one substantial research project, a requirement which is fulfilled by the senior thesis. Each undergraduate chooses a thesis advisor in his or her area of interest. The student then registers for Prethesis Reading Seminar in the fall term and for Thesis in the spring term of the senior year.

In addition to the thesis, there are numerous other opportunities for students to pursue research interests. For example, a student may wish to take an independent reading subject in an area for which no formal subject is being offered. Also, students are eligible to receive academic credit or limited funding for expenses or wages through the Institute-wide Undergraduate Research Opportunities Program. Students should consult the Department's UROP coordinator to discuss specific projects.
Graduate Study

The Department of Political Science offers work leading to the Master of Science in Political Science and the Doctor of Philosophy.

Entrance Requirements for Graduate Study

There are no absolute prerequisites for admission to the graduate program, but students are expected to have taken at least six term subjects in English, history, and other fields of the humanities and social sciences. It is recommended that candidates for the doctoral program take at least one upper-level subject on the history of political thought and one term of statistics. Candidates for master's and doctoral programs are advised to take undergraduate subjects in areas relevant to their special fields of interest, for example, introductory economics for work in public policy; languages for area studies; science or engineering subjects for study in science, technology, and public policy; and mathematics for work in defense and arms control.

Master of Science in Political Science and Public Policy

This program is intended both for mid-career professionals and for recent college graduates interested in career-oriented training for positions in government, the media, business, banking, research institutes, and nonprofit institutions. The program may also be suitable for students who think of working toward a Ph.D.

Four public policy fields are offered within this program: 1) Defense and Arms Control; 2) Science, Technology, and Public Policy; 3) Communications Policy; 4) International Development. Each specialty is structured so that each student takes one or more subjects on the policy process, methods of policy analysis, and substantive policy issues.

Students from a wide variety of disciplinary backgrounds and professional experience are welcomed. For mid-career professionals, at least eight courses are required for the S.M. degree, plus a thesis. Students without professional experience are ordinarily required to take 12 courses, plus a thesis. Students are expected to enter with or acquire an intermediate-level competence in both micro- and macroeconomics. The department places great importance on tailoring programs to meet the particular competences and needs of students. Interested students are encouraged to write to us about their interests or personally visit the department. The general requirements for the S.M. are described in Chapter IV.

Master of Science in Political Science

The Master of Science is intended for students who are concerned with developing skills in applied research and who are seeking careers in public service. The master's program emphasizes intensive preparation in a single field of study. Students wishing to concentrate in any of the specialized fields offered in the S.M. program in Political Science and Public Policy (described above) should apply to that program. Students interested in other fields offered by the Department should apply for the S.M. in Political Science. Applications should describe the field in which students wish to specialize.

Subjects need not be restricted to those offered within the Department, but the entire program must meet with the approval of the student's advisor. A thesis is required. See Chapter IV of this catalogue for the general requirements for the S.M.

Accelerated Master of Science in Political Science

The Department offers a five-year program leading to the Bachelor of Science and Master of Science, awarded simultaneously. This program is open to MIT undergraduates only. It allows the student to plan for a single combined S.B.-S.M. thesis written during the last three terms at the Institute. Undergraduate Institute requirements may be completed during the fifth year of the program.

Doctor of Philosophy

Candidates for the doctorate must prepare themselves in four approved fields of study. Two of these fields (the required field of political analysis and one other) are normally satisfied by completing stipulated subjects or demonstrating achieved competences. The remaining two fields are the focus of the student's General Examination, written and oral. The student is also required to present and defend an advanced research paper (Second Year Paper) prior to the General Examination. Established fields include political analysis, political communication and behavior, American government, comparative politics, communist studies, defense policy, science technology and public policy, international politics and foreign policy, political and economic development, concepts and methods, urban politics, West European politics, Latin American politics, political demography, and others.

1. 1.00 Introduction to Computers and Engineering Problem Solving and 14.30 Introduction to Statistical Method in Economics are suggested.
Approved combinations of some of these fields together with economics, industrial management, sociology, social psychology, or science and engineering fields may be acceptable. A program in urban politics and planning is offered jointly with the Department of Urban Studies and Planning, and a program in international planning is offered with the International Food and Nutrition Program (both described in Chapter V). There also are a variety of joint MIT-Harvard University teaching programs in subjects such as Analysis of Complex Systems, West European Studies, and political demography.

Programs of study logically combining advanced work in some scientific, engineering, management, or other social science field with political science are welcomed. For example, some political science students have developed programs around the interdisciplinary field of communications policy. Graduate work in this field at MIT is described in more detail in Chapter V. A candidate's qualifications must indicate promise of ability to develop fruitful new lines of inquiry on problems touching the relationship of government, human behavior, science, technology, and the political process. Guided field research and close working ties with faculty members engaged in major research activities are stressed.

Teaching and Research Assistantships

Financial assistance is available to qualified applicants in the form of research assistantships, graduate traineeships, and a limited number of fellowships, subject to the availability of funds. Research assistants work under faculty supervision on projects administered by the Department and through MIT affiliated research facilities such as the Center for International Studies, the Joint Center for Urban Studies, and the Center for Policy Alternatives (described in Chapter V). In addition, advanced graduate students may qualify to become teaching assistants.

Inquiries

Additional information regarding academic and research programs in the Department, admissions, assistantships, financial aid, etc. may be obtained from the Department Head, Professor Donald L. M. Blackmer, E53-470, MIT, Cambridge, Massachusetts 02139, (617) 253-5262.
Department of Psychology

Richard Marx Held, Ph.D.
Professor of Experimental Psychology
Head of the Department

Professors
Emilio Bizzi, M.D.
Eugene McDermott Professor in the Brain Sciences and Human Behavior
Director, Whitaker College of Health Sciences, Technology, and Management
Susan E. Carey, Ph.D.
Professor of Psychology
(On leave)
Stephan Lewis Chorover, Ph.D.
Professor of Psychology
(On leave, fall)
Jerry Alan Fodor, Ph.D.
Professor of Philosophy and Psycholinguistics
(On leave, spring)
Merrill Frederick Garrett, Ph.D.
Professor of Psychology
Norman Geschwind, M.D.
Professor, Harvard-MIT Division of Health Sciences and Technology
Professor of Psychology
Ann Martin Graybiel, Ph.D.
Professor of Neuroanatomy
Alan Hein, Ph.D.
Professor of Psychology
Nelson Yuan-Sheng Kiang, Ph.D.
Eaton-Peabody Professor of Communication Sciences
Walle Jetze Harinx Nauta, M.D., Ph.D.
Professor of Neuroanatomy
Institute Professor
Tomaso Armando Poggio, Ph.D.
Professor of Psychology
Mary Crawford Potter, Ph.D.
Professor of Psychology
Whitman Albin Richards, Ph.D.
Professor of Psychophysics
Peter Harkai Schiller, Ph.D.
Professor of Psychology
Gerald Edward Schneider, Ph.D.
Professor of Psychology
and Brain Science

Associate Professors
Suzanne Hammond Corkin, Ph.D.
Associate Professor of Psychology
Daniel Nathan Osherson, Ph.D.
Associate Professor of Education and Psychology
Shimon Ullman, Ph.D.
Associate Professor of Psychology

Assistant Professors
John Hollerbach, Ph.D.
Assistant Professor of Psychology
Steven Pinker, Ph.D.
Assistant Professor of Psychology
Jeremy Michael Wolfe, Ph.D.
Assistant Professor of Psychology

Adjunct Professor
Edward E. Smith, Ph.D.
Adjunct Professor of Psychology

Visiting Scholars/Scientists
Ferdinando Mussa Ivaldi, Ph.D.
Sonal Jhaveri, Ph.D.
Indra Mohindra, O.D.
Frank Thorn, O.D., Ph.D.

Technical Instructors
Henry Hall, S.B.
Diane Major
John Bruce Swan, A.E.

Principal Research Scientist
Joseph Aloysius Bauer, Jr., M.S.

Research Associates/Scientists
Benjamin Morgan Dawson, Ph.D.
Rhea Diamond Gendzier, Ph.D.
Lou Giordano, B.S.
Harris R. Lieberman, Ph.D.
David Owen Pettijohn, M.S.
T. John Rosen, Ph.D.
Edith V. Sullivan, Ph.D.

Postdoctoral Associates/Fellows
Tamar Flash, Ph.D.
Jane E. Gwiazda, Ph.D.
Christof Koch, Ph.D.
Rafael Malach, Ph.D.
John H. Maunsell, Ph.D.
Brian B. McKeon, Ph.D.
Marilee P. Ogren-Balkema, Ph.D.
Andrew Parker, Ph.D.

Administrative Officer
Carla Welch Kirmani

Administrator for Academic Programs
Janice Nagle
Psychology, the study of behavior, has grown in recent years with unforeseen rapidity. New avenues of approach have been opened by convergent developments of methods in the natural and social sciences and in mathematics. These raise the hope that human beings, who have achieved considerable mastery over the world around them, might also come closer to an understanding of themselves.

Psychology at MIT stresses the connections with basic science and concentrates its efforts on the search for new knowledge in three distinct but interrelated areas: the study of relationships between brain and behavior (physiological psychology); the study of perception and information processing (general experimental psychology); and the study of origins of individual behavior (developmental and cognitive psychology: psycholinguistics). Accordingly, instruction in psychology on all levels, undergraduate, graduate, and postdoctoral, is organized to fall into these three areas which border on such diverse fields as computer science, biophysics, neurology, neurochemistry, sociology, and philosophy, as well as linguistics and other communication sciences.

Programs of research on these three principal themes — those of brain and behavior, perception and information processing, and early development and psycholinguistics — are carried on in the Institute's psychology laboratories in close contact with the teaching program. The MIT psychology building contains machine shops and electronic shops, a specialized research library, and equipment and facilities for experimental projects and investigations ranging from psychophysical studies of the human visual system to studies of the acquisition by children of language, logic, and knowledge of the world. Facilities for brain research including electrophysiology, experimental surgery, and neurohistology are housed in the adjacent Whitaker College building where several Psychology faculty occupy office and laboratory space. Other faculty members occupy office and laboratory space in the Artificial Intelligence Laboratory. Students and faculty also use the facilities of other MIT departments and interdepartmental centers such as the Department of Aeronautics and Astronautics, the Research Laboratory of Electronics (Speech Communication Laboratory), the Center for Cognitive Science, and the Clinical Research Center. Interdepartmental centers are described in detail in Chapter V.

Undergraduate Offerings

Psychology subjects at the undergraduate level normally begin with 9.00 Introduction to Psychology, 9.62J Introduction to Cognitive Science, or 9.90 Human Development: Individual and Social Perspectives. The remaining, more advanced subjects fall into the three areas covered by the Department: brain and behavior, experimental, and cognitive psychology. For all undergraduates, many psychology subjects may be taken to fulfill the Institute Requirement in the Humanities, Arts, and Social Sciences. Students interested in developing strong backgrounds in psychology should consider the Bachelor of Science in Cognitive Science or the options listed under the Master of Science program.

Bachelor of Science in Cognitive Science Course IX

Cognitive science is an evolving field of study concerned with the psychology of human intellect. Central issues in the discipline include the structure, acquisition, use, and internal representation of human language, the interpretation of sensory experience, the development of formal and informal reasoning skills, the manipulation and storage of information within the nervous system, and the planning and execution of motor activity.

The Bachelor of Science in Cognitive Science prepares students for graduate training in psychology, linguistics, philosophy, or aspects of artificial intelligence (particularly those aspects concerned with vision) as well as for further work in the area of efficient human-machine interaction.

Methods of inquiry in Cognitive Science are drawn from Computer Science and Artificial Intelligence, Linguistics, Cognitive and Perceptual Psychology, Philosophy of Language and of Mind, Neurophysiology, and relevant parts of Mathematics. The undergraduate program is designed to provide instruction in the relevant aspects of these various disciplines. The program is administered by a committee made up of faculty members from these disciplines who also serve as advisors to majors, helping them select a coherent set of subjects within the requirements, including an independent research project. Members of the committee are available to guide the research.

Bachelor of Science in Cognitive Science Course IX

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>The Humanities, Arts, and Social Sciences Requirement can be satisfied by subjects in the Departmental Program (for the Field of Concentration), plus appropriate subjects totaling</td>
<td>45</td>
</tr>
<tr>
<td>Science Distribution Requirement</td>
<td>36</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departmental Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Subjects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.62J Introduction to Cognitive Science, 12</td>
</tr>
<tr>
<td>One of the following two subjects:</td>
</tr>
<tr>
<td>24.971 Formal Foundations of Linguistic Theory, 12</td>
</tr>
<tr>
<td>6.045J Automata, Computability, and Complexity, 12; 18.310 or 18.063</td>
</tr>
<tr>
<td>Four of the following six subjects:</td>
</tr>
<tr>
<td>24.900J The Study of Language, 9</td>
</tr>
<tr>
<td>9.65 Cognitive Processes, 9</td>
</tr>
<tr>
<td>6.001 Structure and Interpretation of Computer Programs, 15</td>
</tr>
<tr>
<td>9.01 Neuroscience and Behavior, 9; 9.62J*</td>
</tr>
<tr>
<td>9.35 Sensation and Perception, 9; 9.62J*</td>
</tr>
<tr>
<td>24.119 Minds and Machines, 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Twelve units of independent research (either 9.50, 9.91, 9.92, 24.292, or 24.295)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Restricted Electives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A total of 48 additional units, to be chosen with approval of the student's faculty advisor, from lists (provided by the Department) of subjects in: Experimental Cognitive Psychology, Aspects of Natural Language, Neurological Foundations of Cognition, Perception, Natural Computation, and Philosophy of Mind. Normally, the choice will be constrained by the subjects chosen under the Required Subjects above.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unrestricted Electives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>78-87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Units Required for the S.B. Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
</tr>
</tbody>
</table>
Graduate Study

The Department offers work leading to the Master of Science in Psychology and Brain Science and the Doctor of Philosophy. The programs of study leading to these graduate degrees are designed to prepare students for careers in teaching and research. The departmental program permits concentration in any one of the three areas already described: brain and behavior, experimental psychology, and developmental-cognitive psychology, including psycholinguistics. Throughout graduate study, students are involved in research projects occupying at least one-half of their time; aptitude is assessed as much in the light of demonstrated research abilities as in performance in seminars or tutorials.

Entrance Requirements for Graduate Degrees

Only one-half of the incoming graduate students have majored in psychology or related fields; the balance are promising candidates with other backgrounds. For admission, students are expected to have the equivalent of one year of college-level work in three of the following four areas: physics, chemistry, biology, and mathematics. Minor deficiencies in undergraduate preparation can be removed, with the permission of the Department, by taking the appropriate subjects at the Institute.

Master of Science in Psychology and Brain Science

This special program in psychology and the brain sciences, available to MIT undergraduates only, provides better preparation for students desiring graduate study in medicine, biology, psychology, and neurophysiology. The program allows a limited number of undergraduate students to conduct research in the departmental laboratories, with the fruits of the research providing the basis for our Master of Science degree. In order to enter this program, the applicant must already be enrolled as an undergraduate at MIT and then be accepted in the Graduate School by the Department of Psychology.

Students enrolled in the special master's program are provided a firm foundation in the physical and biological sciences during the first two undergraduate years. In the latter half of their junior year they should begin laboratory work in one of the following three areas: neurosciences, natural computation and perception, or cognitive systems. Since only a very limited number of Master of Science candidates can be accommodated in the Department, it is imperative that students wishing to enter this program begin their research experience in psychology as early as possible and no later than the second half of the junior year. In this way, the major portion of the senior year and the subsequent summer may be devoted to research and thesis.

In order to aid students in planning a flexible undergraduate curriculum which could lead into the master's degree program, it is recommended that the following basic subjects be incorporated into the student's undergraduate curriculum: 5.41, 7.01, 9.00, 9.01, 9.35, 9.921, 18.03, and 9.50 (to satisfy the Laboratory Requirement).

In addition to a graduate thesis of 36 units, students normally take one of the following suggested specializations, each group forming a cohesive unit for graduate study of 66-69 units:

Area I: Neurosciences
- 6.07 Introduction to Electronics
- 7.05 General Biochemistry
- 9.014J The Human Nervous System: The Neurosciences I
- 9.02 Nature, Nurture, and the Individual Brain
- 9.021 Topics in Brain and Behavior
- 9.036 The Visual System
- 9.015J The Neurosciences II

Area II: Natural Computation and Perception
- 6.034 Artificial Intelligence
- 2.10 Elementary Programming and Machine Computation
- 9.370 Control of Movement in Biological and Robotic Systems
- 9.36 Natural Computation and Control
- 9.036 The Visual System
- 24.966J Speech Communication

Area III: Cognitive Systems
- 1.00 Introduction to Computers and Engineering Problem Solving
- 6.034 Artificial Intelligence
- 9.591 Seminar in Psychology of Language and Communication I
- 9.401 Survey of Cognition and Psycholinguistics
- 9.88 Development of Behavior
- 9.90 Human Development: Individual and Social Perspectives
- 24.966J Speech Communication

Substitutions appropriate to individual objectives are proposed when applying at the end of the junior year to the Graduate School for admission to the Master of Science program.

Doctor of Philosophy

General Institute Requirements for the degree of Doctor of Philosophy are given in Chapter IV. The Department's program begins with a proseminar which is taken during the first graduate year and serves to acquaint the incoming student with the personnel, the major scientific thrusts, and the research directions of the Department. First-year graduate students also take core courses in major and minor fields chosen from the Department's areas of concentration, followed by upper-level courses in the second year. Course requirements are minimal, however, and can ordinarily be completed in about a year's full-time work spread out over the first two and one-half years. The remaining time is devoted primarily to research, with the opportunity for taking additional seminars and guided reading. Candidates have flexibility in choosing subjects that best supplement their research activities. A general examination in two parts, written and oral, is given in May or June of the second year. There is no general language requirement for the doctorate.

A feature of the program is the apprentice relationship between graduate students and faculty members, an arrangement intended as preparation for independent research careers. Throughout the stay, students are expected to pursue their own research projects with increasing independence, spending at least half their time in research. The doctoral thesis represents an outgrowth of two preceding research reports written in the first two years of graduate study. As a rule, the thesis itself represents one year's research and must be written in residence.

Assistantships and Fellowships

Financial assistance is available to qualified applicants in the form of traineeships, research assistantships, and a limited number of fellowships, subject to availability of funds.

Inquiries

Additional information regarding teaching and research programs in the Department, admissions, assistantships, and financial aid, may be obtained from Jan Nagle, Department of Psychology, Room E10-145, MIT, Cambridge, Massachusetts 02139, (617) 253-5741.
Program in Science, Technology, and Society

Carl Kaysen, Ph.D.
David W. Skinner Professor of Political Economy
Director

Peter Buck, Ph.D.
Associate Professor of the Social Study of Science
Academic Officer
(On leave, fall)

Professors
Donald Laurence Morton Blackmer, Ph.D.
Professor of Political Science
Head, Department of Political Science
Loren R. Graham, Ph.D.
Professor of the History of Science
Gerald Holton, Ph.D.
Professor of the Social Study of Science
(Visting)
Kenneth Keniston, Ph.D.
Andrew W. Mellon Professor of Human Development
Thomas Samuel Kuhn, Ph.D.
Professor of Philosophy and History of Science
Leo Marx, Ph.D.
William R. Kenan Professor of American Cultural History
Robert Swain Morison, M.D., D.Sc.
Professor of Science and Society
(Visting)
Michael Joseph Piore, Ph.D.
Mitsu Professor in Problems of Contemporary Technology
Professor of Economics
Walter Alter Rosenblith, Ing. Rad.
Institute Professor
Provost, Emeritus
Merritt Roe Smith, Ph.D.
Professor of the History of Technology
(On leave, fall)
Leon Trilling, Ph.D.
Professor of Aeronautics and Astronautics
Charles Weiner, Ph.D.
Professor of the History of Science and Technology
Jerome Bert Wiesner, Ph.D.
Institute Professor
President, Emeritus

Associate Professors
Louis Lawrence Bucciarelli, Ph.D.
Associate Professor of Engineering and Technology Studies
Kenneth Rogers Manning, Ph.D.
Associate Professor of the History of Science
Emma Rothschild, M.A.
Associate Professor of Technology, Society, and Rhetoric
(On leave, fall)
Charles Frederic Sabel, Ph.D.
Associate Professor of Social Science
Sherry Roxanne Turkle, Ph.D.
Associate Professor of Sociology

Assistant Professor
Sharon Traweek, Ph.D.
Assistant Professor of Anthropology and Science, Technology, and Society

Senior Lecturer
Irving Kaplan, Ph.D.
Professor of Nuclear Engineering, Emeritus

Principal Research Associate
Victor McElheny, B.A.

Professor Emeritus
Elting Emlure Morison, A.M.
Elizabeth and James Killian Class of 1926 Professor, Emeritus
Program in Science, Technology, and Society

(STS)

Undergraduate Study

The Program in Science, Technology, and Society (STS) focuses on the ways in which scientific, technological, and social factors interact to shape modern life. It traces the impact of scientific ideas and technological practices on society and cultural considerations in shaping developments in science and technology.

The STS Program brings together humanists, social scientists, engineers, and natural scientists, all committed to transcending the narrow boundaries of their disciplines in a joint search for new insights and new ways of reaching science and engineering students. The goal of the Program is to set up a forum for the Institute's wider concerns with the interactions between what scientists and engineers do and the constraints, needs, and responses of society. The introduction to the School of Humanities and Social Science found earlier in this chapter describes the Program in the larger context of the School and of MIT.

Engineering and science students are increasingly seeking to understand the social and historical contexts in which they will work and the social consequences of what they will do in their professional careers. STS subjects help them think realistically and creatively about the intellectual, moral, and social issues raised by the rapid growth of science and technology in the 20th century.

STS contributes to undergraduate education at MIT in several ways. It offers general subjects to introduce science and engineering students to broad social and intellectual perspectives on their fields. It also offers more specialized subjects in three areas: the social and historical study of science and technology; technology and the organization of industrial societies; and cultural dimensions of science and technology. Within each of these categories, students can choose both introductory and more advanced subjects.

All STS undergraduate subjects may count toward the Institute Requirement in the Humanities, Arts, and Social Sciences. The Program offers a number of Humanities Distribution subjects as well as a Field of Concentration.

Double Degree Program

For those students who wish to integrate their professional study of engineering or science with a rigorous treatment of its relation to social and historical forces, STS offers a double degree program through Course XXI in cooperation with the Department of Humanities and several departments in the Schools of Engineering and Science. The object of this degree program is to give such students the full technical and scientific education provided by a science or engineering major, and to enrich it with complementary studies of the historical and social contexts in which science and technology function.

Students in this double degree program must complete all the requirements of their technical majors as well as the Course XXI requirements described as follows. Altogether they must complete 450 units of study to receive the two S.B. degrees.

The Course XXI degree requirements in STS are specified in the following chart. The two Reading Seminars (STS 130J/21.901J and STS 131J/21.902J) are designed to provide a basic grounding in the study of science, technology, and society.

A coherent sequence of five elective subjects must be arranged to provide an understanding in depth of one of the following fields that comprise STS and some familiarity with the other two:

- a) Social and Historical Studies of Science and Technology
- b) Technology and the Organization of Industrial Societies
- c) Cultural Dimensions of Science and Technology

In the Project Seminar (STS 132J/21.903J), students reexamine from an STS perspective a laboratory project, or summer job experience in the sciences or engineering. The Project Seminar provides training for work in STS in much the same way as laboratory subjects do for engineering or science.

In the Thesis or Design Project (21.THU), students expand their senior technical thesis or design project to include the social effects and historical contexts of their work. In cases where an integrated study is not feasible, two separate but related projects may be considered.

Students must submit to the Registrar a petition which indicates the desire to work for this double degree and which has been approved by a faculty advisor in the two appropriate departments before the end of the entire program. Students who take a normal load of subjects may require five years to complete this program, but the majority of double degree candidates finish their work in four years.
Double Degree Program

Course XXI (STS/Humanities) with a Science or Engineering Course

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>The Humanities, Arts, and Social Sciences Requirement can be satisfied by subjects in the Departmental Program, plus three Humanities Distribution subjects totaling</td>
<td>27</td>
</tr>
<tr>
<td>Science Distribution Requirement</td>
<td>36</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>12</td>
</tr>
</tbody>
</table>

Departmental Program (STS/Humanities)

Required Subjects:
- Thesis (21.THU) — 14 units
- Project Seminar (STS 132J/21.903J) — 9 units

Planned Electives: at least 81 units
- A coherent group of five elective subjects (at least 45 units) drawn from the curricula of STS, the Department of Humanities, and other departments where appropriate.
- Three of these subjects must be in one of the following areas, and one must be in each of the other two:
 a) Social and Historical Studies of Science and Technology
 b) Technology and the Organization of Industrial Societies
 c) Cultural Dimensions of Science and Technology
- Four elective subjects (at least 36 units) in a second discipline of humanities, social sciences, or visual arts

Unrestricted Electives 103 units

Total Units Required for the S.B. Degree in Course XXI (STS/Humanities) 360 units

Joint Degree Program

Students who wish to integrate studies in STS, Humanities, and Science/Engineering on the smaller scale of a single degree program should consider this option. The program includes a group of specially designated subjects offered by STS and the Department of Humanities which provides a focus for interdisciplinary work. Central to this core is a year-long reading seminar (STS 130J/21.901J and STS 131J/21.902J), jointly taught by faculty members from STS and Humanities, which examines interaction of science, technology, and culture through critical discussion of major works.

The six elective subjects in STS/Humanities required for the degree may be taken from the curricula of Humanities, STS, and other departments when appropriate. They must form a coherent grouping that includes at least one basic subject in the history of science or technology and one subject treating the cultural dimensions of science and technology, and that has clear relevance to the scientific/technical field forming the other component of the program.

Further details on the requirements for this joint degree program may be found under the Department of Humanities.

Graduate Study

STS offers several graduate level subjects in addition to reading and research seminars. Graduate students are encouraged to participate in research projects. With departmental permission, they can structure special concentrations or minor fields in STS as part of their degree programs. Such arrangements have been made with students in the Departments of Political Science and Economics interested in the history of science and technology, science and public policy, or the comparative study of advanced industrial societies. STS has provided financial assistance for some of these students. We expect these interdepartmental arrangements to expand. Interested students may also take advantage of the opportunity MIT offers to arrange doctoral programs supervised by an ad hoc committee of faculty members from STS and one or more other departments.

Inquiries

Additional information on the Program in Science, Technology, and Society may be obtained from Professor Peter S. Buck, Room E51-128C, MIT, Cambridge, Massachusetts 02139, (617) 253-4043.

For detailed descriptions of subjects in Science, Technology, and Society, see STS 100-633 in Chapter VII.
The Sloan School of Management, founded in 1952 as the School of Industrial Management, is the outgrowth of a pioneering curriculum organized at MIT in 1914 which combined management and engineering education. Since those early years, Course XV, Management, has provided this unique pattern of education to MIT's undergraduates. During this period many of the Institute's most distinguished graduates made their reputations as managers and business leaders. However, the gift of Alfred P. Sloan, Jr., in 1952 was the landmark in establishing a new level and a broader scope in management education at MIT, and much of the story of management education at the Institute has been written since then.

The Sloan School now offers an undergraduate program leading to the Bachelor of Science in Management Science; graduate programs leading to the Master of Science in Management and the Doctor of Philosophy; a one-year Alfred P. Sloan Program in executive development leading to the Master of Science in Management; and a nine-week Program for Senior Executives in executive development. In addition, the Sloan School participates with the School of Engineering in the new interdepartmental Management of Technology Program, leading to a Master of Science in the Management of Technology. Over the past several years the School has developed a large number of summer subjects designed primarily to meet the needs of practicing professionals in the various areas of the School's program.

In its efforts, the Sloan School is committed to educating enterprise managers — men and women who have the will to manage and to risk, who can deal with complex systems, who have insight into themselves as well as others, who understand the total environment in which they live, and who continue to learn. In fulfilling this commitment, the School provides students with a solid grounding in the academic disciplines relevant to management — economics, mathematics, and the behavioral sciences — and develops their awareness of the multiple facets which characterize important management problems, from technical data to human factors. The School also endeavors to teach students to make decisions and to move decisively and responsibly in an increasingly complex world. The opportunities for such graduates in a society full of challenge, both social and technical, are substantial and growing in fields which include industrial management and the management of technology, of health services, of education, and of public and urban affairs.
In addition to educating men and women for management, the Sloan School is equally committed to research directed at new understanding of and better solutions to management problems. Together, research and education are mutually reinforcing goals, and the School is confident of the continued impact of work done at MIT on the fields of management and management education.

Office of the Dean

Abraham J. Siegel, Ph.D.
Professor of Industrial Relations
Dean

Alvin J. Silk, Ph.D.
Professor of Management
Science
Associate Dean

<table>
<thead>
<tr>
<th>Professors</th>
<th>Professors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidney Stuart Alexander, Ph.D. Professor of Management and Economics (On leave)</td>
<td>John Dutton Conant Little, Ph.D. George Maverick Bunker Professor of Management Science</td>
</tr>
<tr>
<td>Thomas John Allen, Jr., Ph.D. Professor of Organizational Psychology and Management</td>
<td>Thomas Lee Magnanti, Ph.D. Prc. Issor of Operations Research and Management</td>
</tr>
<tr>
<td>Lotte Lazarsfeld Bialyn, Ph.D. Professor of Organizational Psychology and Management</td>
<td>Francis E. McGovern, J.D. Professor of Management (Visiting)</td>
</tr>
<tr>
<td>Ernst R. Berndt, Ph.D. Professor of Applied Economics</td>
<td>Robert Bruce McKerlie, D.B.A. Professor of Industrial Relations</td>
</tr>
<tr>
<td>Gabriel Richard Bitran, Ph.D. Professor of Management Science</td>
<td>Robert Cox Merton, Ph.D. J.C. Penney Professor of Management</td>
</tr>
<tr>
<td>Fischer Black, Ph.D. Professor of Finance (On leave)</td>
<td>Franco Modigliani, D.Jur., D.Soc.Sci., LL.D. Institute Professor Professor of Finance and Economics</td>
</tr>
<tr>
<td>Michael G. S. Denny, Ph.D. Professor of Economics (Visiting, fall)</td>
<td>Stewart Clay Myers, Ph.D. Professor of Finance</td>
</tr>
<tr>
<td>Jay Wright Forrester, D.Eng. Germershausen Professor of Management</td>
<td>J. D. Nyhart, J.D. Professor of Management and Ocean Engineering</td>
</tr>
<tr>
<td>John Richard Hauser, Sc.D. Professor of Management Science</td>
<td>Robert Stephen Pindyck, Ph.D. Professor of Applied Economics</td>
</tr>
<tr>
<td>Arnoldo Cubillos Hax, Ph.D. Professor of Management</td>
<td>William Frank Pounds, Ph.D. Professor of Management</td>
</tr>
<tr>
<td>Daniel Mark Holland, Ph.D. Professor of Finance</td>
<td>Alexander Hendrik George Rinnooy Kan, Ph.D. Professor of Operations Research (Visiting)</td>
</tr>
<tr>
<td>Henry Donnan Jacoby, Ph.D. Professor of Management</td>
<td>Edward Baer Roberts, Ph.D. David Sarnoff Professor of Management of Technology</td>
</tr>
<tr>
<td>Howard Wesley Johnson, L.L.D. Special Faculty Professor of Management</td>
<td>Richard Dunlop Robinson, Ph.D. Professor of Management</td>
</tr>
<tr>
<td>Gordon Mayer Kaufman, D.B.A. Professor of Operations Research and Management</td>
<td>Edgar Henry Schein, Ph.D. Sloan Fellows Professor of Management (On leave)</td>
</tr>
<tr>
<td>Thomas Anton Kochan, Ph.D. Professor of Industrial Relations</td>
<td>Richard Lee Schmalensee, Ph.D. Professor of Applied Economics</td>
</tr>
<tr>
<td>Paul Robin Krugman, Ph.D. Professor of Management and Economics</td>
<td>Michael Stewart Scott Morton, D.B.A. Professor of Management</td>
</tr>
<tr>
<td>Edwin Kuh, Ph.D. Professor of Finance and Economics Director, Center for Computational Research in Economics and Management Science</td>
<td>Jeremy Frank Shapiro, Ph.D. Professor of Operations Research and Management Co-Director, Operations Research Center</td>
</tr>
<tr>
<td>Donald Roy Lessard, Ph.D. Professor of International Management</td>
<td>Abraham J. Siegel, Ph.D. Professor of Industrial Relations Dean, Sloan School of Management</td>
</tr>
</tbody>
</table>
Alvin John Silk, Ph.D.
Erwin H. Scheff Professor of Management
Associate Dean

Norman Stanley Stearns, M.D.
Professor of Health Management
(Visiting)

Raymond-Alain Thiart, Ph.D.
Professor of Management
(Visiting)

Lester Carl Thurow, Ph.D.
Gordon Y Billard Professor of Management and Economics

Glen Lee Urban, Ph.D.
Professor of Management Science

John Eastin Van Maanen, Ph.D.
Professor of Organizational Psychology and Management

Phyllis Ann Wallace, Ph.D.
Professor of Management

Roy Elmer Welsch, Ph.D.
Professor of Statistics and Management Science

Arthur W. Wright, Ph.D.
Professor of Management Science
(Visiting, spring)

Zenon Soteriou Zannetos, Ph.D.
Professor of Management

Associate Professors

Arnold Irving Barnett, Ph.D.
Associate Professor of Operations Research and Management
(On leave)

Douglas T. Breeden, Ph.D.
Associate Professor of Finance
(Visiting)

John Stephen Carroll, Ph.D.
Associate Professor of Behavioral and Policy Sciences

John Carrington Cox, Ph.D.
Associate Professor of Finance

John Joseph Donovan, Ph.D.
Associate Professor of Management Science
(On leave, fall)

Stan Neil Finkelstein, M.D.
Associate Professor of Health Management

Stephen C. Graves, Ph.D.
Associated Professor of Management Science

John C. Henderson, Ph.D.
Professor of Management Science

Mel Howitt, Ph.D.
Associate Professor of Management Science

Harry Charles Katz, Ph.D.
Associate Professor of Management and Economics

Ralph Katz, Ph.D.
Associate Professor of Management Science
(Visiting)

Stuart Elliot Madnick, Ph.D.
Associate Professor of Management Science
(On leave)

James Berger Orin, Ph.D.
Associate Professor of Management Science and Operations Research

Walter W. Powell, Ph.D.
Associate Professor of Behavioral and Policy Sciences

Julio Jacobo Rotemberg, Ph.D.
Associate Professor of Applied Economics

Richard S. Ruback, Ph.D.
Associate Professor of Finance
(On leave)

Thomas Martin Stoker, Ph.D.
Associate Professor of Applied Economics

H. David Sherman, D.B.A.
Assistant Professor of Management Science

Paul Healy, M.S.
Assistant Professor of Management Science

Chi-Fu Huang, M.A.
Assistant Professor of Management and Economics

Eric Joseph Johnson, Ph.D.
Assistant Professor of Management Science
(Visiting)

Sudhir Krishnamurthi, M.B.A.
Assistant Professor of Management Science

Thomas Wendall Malone, Ph.D.
Assistant Professor of Management Science

Deborah L. Marlin, Ph.D.
Assistant Professor of Management Science

Terry Alan Marsh, Ph.D.
Assistant Professor of Finance
(On leave)

Leigh McAlister, Ph.D.
Assistant Professor of Management Science

John Douglas William Morecroft, Ph.D.
Assistant Professor of Management Science

John Emery Parsons, M.A.
Assistant Professor of Finance

Ram T. S. Ramakrishnan, Ph.D.
Assistant Professor of Management Science

Peter Michael Senge, Ph.D.
Assistant Professor of Management Science

John Fralick Rockart, Ph.D.
Assistant Professor of Finance

Terence E. Westley, Ph.D.
Assistant Professor of Management Science

H. David Sherman, D.B.A.
Assistant Professor of Management Science

J. David Stempel, Ph.D.
Assistant Professor of Management Science

Katharine Gail Abraham, Ph.D.
Assistant Professor of Industrial Relations

David Groves Anderson, M.B.A.
Assistant Professor of Management

Max H. Bazerman, Ph.D.
Assistant Professor of Behavioral and Policy Sciences

Charles Harry Fine, Ph.D.
Assistant Professor of Management Science

Robert M. Freund, Ph.D.
Assistant Professor of Management Science

Gordon B. M. Walker, Ph.D.
Assistant Professor of Management Science

Dorothy Eleanor Westney, Ph.D.
Mitsubishi Career Development Assistant Professor in International Management

Adjunct Professors

Louis Layton Banks, A.B.
Adjunct Professor of Management

James Suren Hekimian, Ph.D.
Adjunct Professor of Management

Senior Lecturers

Thomas Andrew Barocci, Ph.D.

Gordon Falk Bloom, Ph.D., J.D.

Richard Alexander MacKinnon, M.B.A.

James Morrison McNees, D.B.A.

Harlan C. Meal, Ph.D.

Jeffrey Alan Meldman, Ph.D., J.D.
Associate Dean for Student Affairs

Edwin C. Nevis, Ph.D.

John Fralick Rockart, Ph.D.
Director, Center for Information Systems Research

Steven H. Star, D.B.A.

David O. Wood, B.S.

Lecturers

Charles Maria Jonscher, Ph.D.

Albert Andrew Marquette, Ph.D.

Joseph F. Vittek, Jr., L.L.M.

Administration

H. Janeal Austin, M.B.A.
Administrative Assistant

Jeffrey Allen Banks, Ph.D.
Director of Graduate and Undergraduate Programs

Donna Maria Behmer, M.Ed.
Assistant Director of Finance and Administration

Leo Francis Brody, B.S.
Programmer Analyst

Rosemary Brutico, B.A.
Assistant Managing Editor, Sloan Management Review

Eleanor Chin, B.A.
Administrative Assistant, Executive Education Programs
Bachelor of Science in Management Science
Course XV

The Sloan School of Management offers an undergraduate degree program based in the field of management science. It is particularly well suited to students who wish to understand problems of management within the context of fundamental disciplines and, where appropriate, with quantitative rigor and precision. The program provides a strong preparation for graduate study in management, while at the same time securing an advantageous market position for students seeking employment directly upon graduation.

In recent years, the field of management science has grown rapidly in conjunction with advances in computer technology, in methods for collecting and structuring large quantities of data, in mathematical programming, and in the building of sophisticated mathematical models. These advances have become increasingly applicable to the solving of difficult problems in business, government, and other public and private organizations. The Sloan School's undergraduate program develops necessary competence in the underlying disciplines of mathematical programming and modeling, statistics, and computer and communications technology. It also provides a strong background in the associated disciplines of managerial psychology and economics. It then demonstrates applications from a variety of functional areas of management. Beyond this, each student selects an option (of three to five subjects) in one specialized area such as information systems, operations research, marketing research, or behavioral science.

A number of unrestricted electives is included in the curriculum and these can be devouted to a variety of career or personal objectives. Students who take subjects in additional functional areas of management can usually complete requirements of the Master of Science in Management in one year after completing the Bachelor of Science degree in Management Science. Substantial exposure to an area of physical science or engineering, in addition to an education in management, can be achieved by a technically oriented elective program. Students who wish broader general education are encouraged to take additional subjects in the humanities, arts, and social sciences, beyond the Institute Requirements. Appropriate selection of electives should permit a student to meet admission requirements of medical, law, or other graduate schools.
Inquiries

For additional information on the undergraduate curriculum and referral to appropriate faculty counselors, students may consult the Undergraduate Program Office, Sloan School of Management, Room E52-119, MIT, Cambridge, Massachusetts 02139, (617) 253-2931.

Bachelor of Science in Management Science Course XV

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>72</td>
</tr>
</tbody>
</table>

The Science Distribution Requirement can be satisfied by 15.041, 15.053, and 18.06 in the Departmental Program.

The Laboratory Requirement can be satisfied by 15.301 in the Departmental Program.

Departmental Program

Subject names below are followed by credit units, and by prerequisites if any (concepts in italics)

Required Subjects:

- 6.041 Probabilistic Systems Analysis, 12; 18.02
- 15.001 Managerial Economics1, 12
- 15.053 Introduction to Management Science, 12; 18.02, 18.06
- 15.075 Applied Statistics, 9; 6.041
- 15.301 Managerial Psychology Laboratory, 12
- 15.501 Financial and Cost Accounting, 9
- 18.06 Linear Algebra, 12; 18.02

Restricted Electives: 54 to 81

One of the following four subjects:

- 1.00 Introduction to Computers and Engineering, Problem Solving, 12
- 2.10 Elementary Programming and Machine Computation, 9
- 6.001 Structure and Interpretation of Computer Programs, 15
- 15.564 Management Information Technology I, 12; 2.10 or 15.561

Two of the following four subjects:

- 15.351 Research and Development Management, 9; 15.301, 15.501
- 15.412 Financial Management, 12; 15.001
- 15.761 Operations Management, 9; 15.053, 6.041
- 15.812 Marketing Management, 9; 6.041

Planned Electives:

Three to five specified subjects in one of the following options: Information Systems, Operations Research, Marketing Research, Behavioral Science 27 to 45

Unrestricted Electives 96 to 69

Total Units Required for the S.B. Degree 380

* Alternate prerequisites are also listed in the subject descriptions.

1 14.01 and 14.02 may be substituted for 15.001.

2 Students who have highly motivated interests may select options in other areas. Further information about options and the subjects they include is available in the Undergraduate Program Office (E52-119).

The Sloan School of Management provides opportunities for graduate work leading to the degrees of Master of Science in Management and Doctor of Philosophy.

Entrance Requirements for Graduate Study

Applications are welcome from college graduates in all areas of concentration — the humanities, the social sciences, the physical sciences, and engineering — but applicants must have completed formal courses in differential and integral calculus and in economic theory, both macro- and microeconomics. The minimum level of preparation is normally a one-year course in economic theory and a one-year course in calculus. If these subjects have not been taken in a previous academic program, they may be covered by formal courses prior to enrollment in anticipation of diagnostic examinations given at the Sloan School at the beginning of the first term.

All applicants, including those from foreign countries, must take the Graduate Management Admission Test (GMAT). Information is available from the Graduate Management Admission Council, Educational Testing Service, Princeton, New Jersey 08541. The January test is the latest one appropriate for admission to MIT. GRE scores are not required and may not be substituted.

Master of Science in Management

Degree candidates are admitted in September to a program of study extending over two academic years.

The two-year Sloan Master's Program offers students with or without previous work experience a comprehensive education in management, as well as the opportunity to develop competence in a particular area of interest that may lead to positions of either general executive responsibility or technical leadership.

The program follows three distinguishable though closely related lines: theoretical studies, applied studies, and practical exposure.

Theoretical studies aim to improve the student's understanding of certain fundamental phenomena and relationships that characterize the changing world in which managers must operate. The principal fields covered by these studies are economics, behavioral science, and quantitative methods of analysis. The Sloan School was a pioneer in fitting these rigorous disciplinary subjects into the curriculum of a graduate business school. Although by now many comparable schools have followed this lead, the School continues to be
management skills in the exploration of a single topic of particular interest. Each thesis normally represents the original contribution of a single student, although in the case of collaborative research, joint theses are also encouraged. A third dimension to the thesis concept is the "project" thesis, in which faculty members engaged in research activities that lend themselves to teamwork may offer groups of students the opportunity to explore portions of the overall study, with each student reporting on a specific phase.

Doctor of Philosophy

The purpose of the Sloan School's doctoral program is to prepare students for careers in teaching and research or for nonacademic positions requiring advanced research and analytical capabilities. The doctoral program provides the opportunity to combine in-depth work in theory with work in broadly defined "applied" or "functional" fields.

A candidate entering with a bachelor's degree should be able to complete the program in three to four years. The first year is devoted to work in the "basic disciplines" of management and to preliminary work in the student's major and minor fields. The second year is primarily devoted to the major and minor fields. Finally, one to two years are required for the doctoral dissertation. A candidate entering with an advanced degree may be able to finish in less time depending on previous experience in research.

Breadth Requirement. The basic disciplines referred to above are behavioral science, economics, and quantitative methods. Students may demonstrate competence in each of these "breadth" areas by passing a qualifying examination or by successfully completing subjects specified by the Ph.D. Committee. Entering students with formal preparation in these disciplines are encouraged to take the qualifying examinations in September, when they enroll, so as to avoid unnecessary delays in progressing through the program.

Major and Minor Fields. Candidates must master the literature, theory, and application of a major field of concentration as well as a minor field. Successful completion of this requirement is determined by General Examinations. The major fields currently available in the Sloan School are the following (although individually constructed majors are possible):

- Accounting, Planning, and Control
- Applied Economics
- Finance
- Health Care Management
- Industrial Relations
- International Management
- Management Information Systems
- Management of Technological Innovation
- Marketing
- Operations Management
- Operations Research and Statistics
- Organization Studies
- Strategy and Policy
- System Dynamics

Most doctoral students enter the program with a fairly clear idea in mind of a major field of concentration, and it is typically an "applied field." An appropriate minor field is then selected — a theoretical discipline that provides a foundation for research in the major field. The following are examples of natural and usual combinations:

<table>
<thead>
<tr>
<th>Major Field</th>
<th>Minor Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance</td>
<td>Economics</td>
</tr>
<tr>
<td>Industrial Relations</td>
<td>Behavioral Science</td>
</tr>
<tr>
<td>Marketing</td>
<td>Statistics</td>
</tr>
<tr>
<td>Operations Management</td>
<td>Operations Research</td>
</tr>
<tr>
<td>Organization Studies</td>
<td>Behavioral Science</td>
</tr>
<tr>
<td>System Dynamics</td>
<td>Economics</td>
</tr>
</tbody>
</table>

The thesis, an MIT requirement for the Master of Science degree, is a major component of the Sloan Master's Program. It offers students, under the supervision of their faculty advisors, the opportunity to practice newly acquired skills in a specific area of study. The thesis is an original contribution to knowledge in management and is typically a research project. The thesis serves as a means to higher level management responsibility. In either case, students acquire basic knowledge and skills essential to general management.

Practical exposure to management takes place in the Sloan School through a variety of activities. Students in the master's program are expected to spend the intervening summer working in some activity that will contribute to their understanding of and effectiveness in dealing with management problems. During the academic year, some master's candidates work as paid research assistants for members of the faculty, or become involved with them in the consulting activities that they carry on for government, firms, and other public and private organizations. In addition, many students choose topics for their master's theses that involve research into the practice of management in particular organizations, industries, or sectors.

The thesis, an MIT requirement for the Master of Science degree, is a major component of the Sloan Master's Program. It offers students, under the supervision of their faculty advisors, the opportunity to practice newly acquired
There are no rigid subject requirements for the major and minor fields. There are normal groups of subjects for the standard fields, but substitutions of other subjects and independent study are possible. Regardless of the major and minor fields chosen, a plan of study designed to prepare the student for General Examinations is worked out by the student and his or her faculty advisor(s) and submitted to the Ph.D. Committee for approval at the beginning of the spring term in the student's first year.

General Examinations normally are taken in late May of the second year of study, after completion of the breadth requirement, major and minor course work, and a research paper (see below). The exact form of General Exams varies from area to area and may involve written examinations, critiques of research papers, or review papers on prescribed topics. In all cases, the last stage is an oral examination covering both major and minor fields.

Research. The Sloan School is deeply committed to research, and the philosophy and structure of the Ph.D. program reflect this professional commitment. There are two separate research requirements: the research paper and the thesis.

A substantial part of the student's work in the latter half of the first year and in the second year is devoted to an independent research project. The topic, design, and execution of the project are left to the student, while advice and criticism are provided by a research advisor and other interested faculty. Upon completion of the project, the student prepares a document which, after the evaluation and approval of faculty members, is published in the Sloan School's Working Paper Series.

The doctoral dissertation consists of significant scholarly research in some area of management. Close working relationships with senior faculty are established early so that the thesis can be defined as a manageable project as early as possible. Candidates typically require one to two years of full-time work to complete their theses.

Teaching Apprenticeship

Since the graduates of the doctoral program are almost invariably involved in teaching, whether in a university or in other organizational settings, there is a Teaching Apprenticeship requirement for the degree. Each candidate is given partial responsibility for conducting a Sloan School subject. The apprenticeship offers an opportunity for working closely with a faculty member who can provide constructive feedback and counsel. The apprenticeship is normally undertaken in the third year of study, after General Examinations have been passed, but may be completed earlier if a suitable teaching opportunity is available.

Language Requirement

There is no language requirement in the Sloan School's doctoral program, although in some cases the student and his or her advisor decide that further study of a foreign language is necessary if the student is to work effectively in his or her major field. This is usually true, for example, in the field of International Management.

Fellowships, Teaching and Research Assistantships

Except for some limited funds to aid needy students, fellowships for graduate study in management are given only to doctoral degree candidates. All graduate students who have completed a year (or sometimes a term) of graduate study in the Sloan School are eligible to apply for the approximately 100 part-time research and teaching assistantships each year.

Inquiries

For master's information call (617) 253-3730; for doctoral information call (617) 253-7188. Additional information concerning graduate programs, admissions, and financial aid, may be obtained from the Graduate Programs Office, Room E52-112, Sloan School of Management, MIT, Cambridge, Massachusetts 02139.

Alfred P. Sloan Fellows Program

Each year the Alfred P. Sloan Fellows Program admits approximately 50 mid-career executives who have demonstrated potential for filling positions of more general and senior management responsibility in the future. These men and women are sponsored by industry, government, and other organizations (or they may apply independently). Approximately one-third of the participants are selected from abroad. The 12-month Program, providing regular classroom work plus close contact with business and government leaders here and abroad, is taken in conjunction with the regular graduate program and leads to the degree of Master of Science in Management.

In 1975 the Sloan School initiated a Health Management Option within the Sloan Fellows Program, aimed at mid-career to senior level health-care practitioners, educators, researchers, and administrators. These health professionals participate fully in all aspects of the Sloan Fellows Program.

MIT Program for Senior Executives

The Program for Senior Executives is an intensive nine-week course of study designed for the senior level executive already in or preparing for a position of major managerial responsibility. Enrollment in this non-degree program, offered in the fall and spring of each year, is limited to groups of 50. A one-week trip to Washington, DC, to visit policymakers in the Federal government is an integral part of the Program.

Inquiries

Detailed information about these programs may be obtained from the Executive Education Programs Office, Room E52-126, Sloan School of Management, MIT, Cambridge, Massachusetts 02139, (617) 253-7166.
Our continually increasing understanding of the physical and biological worlds opens up new possibilities of applications for the benefit of humanity, and helps us to better appreciate the world in which we live. Today we are increasingly dependent on science for the knowledge that allows us to solve practical problems and to find better ways of providing for the world's needs.

Training in science provides a firm basis for many types of careers. Scientific training is not only needed for teaching and research but also provides an opportunity to enter many other professions. Students with bachelor's degrees in science often go on to medical school, law school, and other professional schools, including engineering.

The sciences and mathematics form an intellectual continuum, but for administrative purposes they are divided into six departments at MIT. There are many interrelations between the programs of these departments, and the interdepartmental laboratories help to form a bridge between fields and to provide contact with applications.

At MIT, the biological sciences are represented by a wide range of disciplines from cell biology, microbiology, biochemistry, and biophysics, to food science and technology, metabolism and human nutrition, toxicology, and biochemical engineering. The biological sciences have undergone tremendous change since the discovery of the structure of deoxyribonucleic acid (DNA). The Center for Cancer Research and the Cell Culture Center are interdepartmental laboratories which are closely related to the Department of Biology. The Clinical Research Center is an interdepartmental laboratory which is closely related to the Department of Nutrition and Food Science. The Whitaker College of Health Sciences, Technology, and Management has joint programs with the School of Science.

The physical sciences deal with the widest range of physical phenomena — from the shortest distances between particles inside the nucleus to the greatest distances over which we learn of the structure and substance of the universe from astronomy and astrophysics. In physics at MIT, the four main areas are astrophysics; experimental nuclear and particle physics; solid state, laser, plasma, and atomic physics; and nuclear and particle theory. A great deal of physics research is carried out in the various interdepartmental laboratories listed here.
In the Department of Chemistry, research and education are carried out in organic, inorganic, physical, analytical, biological, and biophysical chemistry, and in chemical physics. These sciences are heavily involved in industry, and many graduates find their careers in applications as well as in research. Science has, of course, contributed in the most fundamental way to the advancement of technology, and technology has contributed importantly to the advancement of science. At MIT, the relationships between science and technology are especially close and mutually reinforcing.

The earth sciences include geology, geochemistry, geophysics and planetary science, and meteorology and physical oceanography. The increased understanding of plate tectonics has revolutionized our views of the past and current changes in the structure of the earth. The increased use of computers in atmospheric and oceanographic models has revolutionized our understanding of circulation. The Wallace Astrophysical Observatory and the Wallace Geophysical Observatory provide opportunities for education and research, as do various interdepartmental laboratories. The joint doctoral program with the Woods Hole Oceanographic Institution provides opportunities to be involved in oceanographic research.

Mathematics provides a base and language for all types of research and is an area of active research itself in both the discovery of new mathematics and in applying mathematics in new ways to important applied problems. Pure mathematics is of interest in its own right, and it always has led in unexpected ways to a better understanding of the world. The core of the program in applied mathematics is concerned with the mathematical formulations of propagation, stability, optimization, cybernetics, statistics, and random processes.

The science departments and the related interdepartmental laboratories offer many opportunities for undergraduate research through the Undergraduate Research Opportunities Program. Through this program, students obtain firsthand research experience in fields that interest them, and learn in a different environment from the classroom or instructional laboratory. The Undergraduate Seminar Program provides study and associations with faculty members in smaller and less formal groups.

The School of Science also is involved in providing parts of the general education of undergraduate students through the Science Requirement Subjects, Science Distribution Subjects, and Laboratory Subjects.
Department of Biology

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head of the Department</td>
<td>Gene Monte Brown, Ph.D.</td>
</tr>
<tr>
<td>Professor of Biochemistry</td>
<td>Harvey Franklin Lodish, Ph.D.</td>
</tr>
<tr>
<td>Associate Professor of Genetics</td>
<td>Robert Allen Weinberg, Ph.D.</td>
</tr>
<tr>
<td>Associate Professor of Biochemistry</td>
<td>H. Robert Horvitz, Ph.D.</td>
</tr>
<tr>
<td>Associate Professor of Cell Biology</td>
<td>Frank Solomon, Ph.D.</td>
</tr>
<tr>
<td>Assistant Professor of Biology</td>
<td>Steven J. Burden, Ph.D.</td>
</tr>
<tr>
<td>Assistant Professor of Biology</td>
<td>Leonard Pershing Guarante, Ph.D.</td>
</tr>
<tr>
<td>Assistant Professor of Molecular Biology</td>
<td>Paul Thomas Matsudaira, Ph.D.</td>
</tr>
<tr>
<td>Assistant Professor of Biochemistry</td>
<td>Paul Thomas Matsudaira, Ph.D.</td>
</tr>
<tr>
<td>Assistant Professor of Immunology</td>
<td>Thereza Imanishi-Kari, Ph.D.</td>
</tr>
<tr>
<td>Assistant Professor of Molecular Genetics</td>
<td>Richard Charles Mulligan, Ph.D.</td>
</tr>
<tr>
<td>Assistant Professor of Molecular Biology</td>
<td>Richard Charles Mulligan, Ph.D.</td>
</tr>
<tr>
<td>Assistant Professor of Immunology</td>
<td>H. Earl Ruley, Ph.D.</td>
</tr>
<tr>
<td>Assistant Professor of Biology</td>
<td>Richard Allen Young, Ph.D.</td>
</tr>
<tr>
<td>Assistant Professor of Biology</td>
<td>Lisa Amelia Steiner, M.D.</td>
</tr>
<tr>
<td>Assistant Professor of Immunology</td>
<td>Susumu Tonegawa, Ph.D.</td>
</tr>
<tr>
<td>Assistant Professor of Biology</td>
<td>Ethan Royal Signer, Ph.D.</td>
</tr>
<tr>
<td>Assistant Professor of Biology</td>
<td>Lisa Amelia Steiner, M.D.</td>
</tr>
<tr>
<td>Assistant Professor of Immunology</td>
<td>Christopher Thomas Walsh, Ph.D.</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Erika A. Hartwig</td>
</tr>
</tbody>
</table>

Professors

- David Baltimore, Ph.D., American Cancer Society Professor of Microbiology, Director, Whitehead Institute for Biomedical Research
- Eugene Bell, Ph.D., Professor of Biology
- David Botstein, Ph.D., Professor of Genetics
- John Machlin Buchanan, Ph.D., D.Sc., John and Dorothy Wilson Professor of Biochemistry
- Harvey Franklin Lodish, Ph.D., Professor of Biology
- Irving M. London, M.D., Grover M. Hermann Professor of Health Sciences and Technology
- David Botstein, Ph.D., Professor of Genetics
- John Machlin Buchanan, Ph.D., D.Sc., John and Dorothy Wilson Professor of Biochemistry
- Herman Nathaniel Eisen, M.D., Whitehead Institute Professor of Immunology
- Gerald R. Fink, Ph.D., Professor of Genetics
- American Cancer Society Research Professor of Genetics at the Whitehead Institute for Biomedical Research
- Maurice Sanford Fox, Ph.D., Lester Wolfe Professor of Molecular Biology
- Malcolm Lawrence Gefter, Ph.D., Professor of Biochemistry
- Bernard Sidney Gould, Ph.D., Professor of Biochemistry, Emeritus
- Senior Lecturer
- Nancy Haven Hopkins, Ph.D., Professor of Biology
- Richard Olding Hynes, Ph.D., Professor of Biology
- Vernon Martin Ingram, Ph.D., D.Sc., Professor of Biochemistry
- Rudolf Jaenisch, M.D., Professor of Biology
- Har Govind Khorana, Ph.D., Alfred P. Sloan Professor of Biology and Chemistry
- Jonathan Alan King, Ph.D., Professor of Biology
- Jerome Yisrael Lettvin, M.D., Professor of Communications Physiology and Electrical and Bioengineering
- Harvey Franklin Lodish, Ph.D., Professor of Biology
- Irving M. London, M.D., Grover M. Hermann Professor of Health Sciences and Technology
- Grover M. Hermann Professor of Medicine and Medicine
- Joint Harvard-MIT Division of Health Sciences and Technology
- Salvador Edward Luria, M.D., D.Sc., Institute Professor, Emeritus
- Director, Center for Cancer Research
- Boris Magasanik, Ph.D., Jacques Monod Professor of Microbiology
- Mary Lou Pardue, Ph.D., Professor of Biology
- Sheldon Penman, Ph.D., Professor of Cell Biology
- Uttam Lai RajBhandary, Ph.D., Professor of Biochemistry
- Alexander Rich, M.D., Professor of Biophysics
- William Thompson Sedgwick, Professor of Biology
- Phillips Wesley Robbins, Ph.D., American Cancer Society Professor of Biochemistry
- Robert Daniel Rosenberg, M.D., Ph.D., Professor of Medicine and Biology
- Paul Reinha-J Schimmel, Ph.D., Professor of Biochemistry and Biophysics
- Phillip Allen Sharp, Ph.D., Professor of Biology
- Associate Director, Center for Cancer Research
- Ethan Royal Signer, Ph.D., Professor of Biology
- Lisa Amelia Steiner, M.D., Professor of Immunology
- Susumu Tonegawa, Ph.D., Professor of Biology
- Annamaria Torriani, Ph.D., Professor of Biology
- Christopher Thomas Walsh, Ph.D., Professor of Chemistry and Biology
- Uncas and Helen Whitaker Professor in the Whitaker College Head, Department of Chemistry
- David Floyd Waugh, Ph.D., Professor of Biophysics
- Robert Allen Weinberg, Ph.D., Professor of Biology
- H. Robert Horvitz, Ph.D., Whitehead Institute Career Development Associate Professor of Biology
- David Evan Housman, Ph.D., Associate Professor of Biology
- Ronald Davies Graham McKay, Ph.D., Associate Professor of Neurobiology
- Robert Thomas Sauer, Ph.D., Associate Professor of Biochemistry
- Frank Solomon, Ph.D., Associate Professor of Biology
- Alexander Varshavsky, Ph.D., Associate Professor of Biology
- Graham Charles Walker, Ph.D., Associate Professor of Biology
- Steven J. Burden, Ph.D., Assistant Professor of Biology
- Leonard Pershing Guarante, Ph.D., Assistant Professor of Biology
- Thereza Imanishi-Kari, Ph.D., Assistant Professor of Immunology
- Monty Krieger, Ph.D., Assistant Professor of Molecular Genetics
- Paul Thomas Matsudaira, Ph.D., Assistant Professor of Biology
- Barbara Jean Meyer, Ph.D., Assistant Professor of Biology
- Richard Charles Mulligan, Ph.D., Assistant Professor of Molecular Biology
- David Henri Raulet, Ph.D., Assistant Professor of Molecular Biology
- David Henri Raulet, Ph.D., Assistant Professor of Immunology
- H. Earl Ruley, Ph.D., Assistant Professor of Biology
- Richard Allen Young, Ph.D., Assistant Professor of Biology
- Erika A. Hartwig

Financial and Personnel Administrator
- Cynthia D. Kowal

Operations Administrator
- Thomas A. Lynch

Senior Research Associate
- Daniel H. Levin, Ph.D.

Principal Research Scientists
- Gary J. Quigley, Ph.D.
- Andrew H-J. Wang, Ph.D.

Research Scientists
- Stephanie Ellsworth Sher, Ph.D.
- Leon G. Shiman, Ph.D.
- Joan Lucia Sult, Ph.D.
- Arlene R. Wyman, Ph.D.
Department of Biology

(Course 7)

Undergraduate Study

Postdoctoral Associates

Mario Allieri, Ph.D.
William G. Bendena, Ph.D.
Michel Bergh, Ph.D.
Timothy H. Bestor, Ph.D.
Frank Boschelli, Ph.D.
Rathindra C. Das, Ph.D.
Guido F. DeVos, Ph.D.
Harold J. Drabkin, Ph.D.
Edward G. Fey, Ph.D.
Turlough M. Finan, Ph.D.
Gordon Foulikes, Ph.D.
Thomas D. Friedrich, Ph.D.
Subinay Gangopadhyay, Ph.D.
Edwin N. Geissler, Ph.D.
Adrian Hayday, Ph.D.
Keichi Hiramatsu, Ph.D.
Yun-Pung Hsu, Ph.D.
Kwang-Soo Kim, Ph.D.
Prasad Koka, Ph.D.
Judy H. Krueger, Ph.D.
Avraham Laban, Ph.D.
Hartmut Land, Ph.D.
Ihor R. Lernishchka, Ph.D.
Douglas N. Lutkie, Ph.D.
Carole A. Mikoryak, Ph.D.
Masataka Nakamura, Ph.D.
Alexander Ninfa, Ph.D.
Erich Odermatt, Ph.D.
Engin Ozkaynak, Ph.D.
David Page, Ph.D.
Vikram Patel, Ph.D.
Duncan R. Paton, Ph.D.
Jennifer Pinkham, Ph.D.
Narnakaje N. Rao, Ph.D.
Edward Reilly, Ph.D.
Regina M. Reilly, Ph.D.
Lawrence J. Reitzer, Ph.D.
Jean E. Schwarzbauer, Ph.D.
Robert Snapka, Ph.D.
Nancy A. Speck, Ph.D.
Paul Szauter, Ph.D.
Koichi Tamoto, Ph.D.
Martha M. Teeter, Ph.D.
Judith L. Toftella, Ph.D.
Suh-der Tsen, Ph.D.
David S. Ucker, Ph.D.
Shizue Ueno-Nishio, Ph.D.
Jing-lun Wu, Ph.D.

The Department of Biology offers undergraduate, graduate, and postdoctoral training in basic biology, and in a variety of biological fields of specialization. The quantitative aspects of biology, including molecular biology, biochemistry, biophysics, genetics, and cell biology, represent the core of the program. Students in the Department are encouraged to acquire a solid background in the physical sciences not only to master the applications of mathematics, physics, and chemistry to biology, but also to develop an integrated scientific perspective. The various programs, emphasizing practical experimentation, combine a minimum of formal laboratory exercises with ample opportunities for research work both in project-oriented laboratory subjects and in the Department's research laboratories. Students at all levels are encouraged to acquire familiarity with advanced research techniques and to participate in seminar activities.

Bachelor of Science in Life Sciences

Course VII

Two programs are offered leading to the Bachelor of Science in Life Sciences. The curriculum is designed to prepare students for a professional career in the area of the biological sciences. Graduates of this program are well prepared for positions in industrial or research institutes. However, experience has shown that most graduates probably will choose to continue their education at graduate schools in order to obtain a Ph.D. in biochemistry, microbiology, genetics, biophysics, cell biology, or physiology, followed by research or teaching in one of these areas. The undergraduate curriculum is also excellent preparation for students who wish to continue their education toward an M.D., particularly if their career plans include laboratory investigations bearing on human disease.

Bachelor of Science

Course VII-A

Course VII-A is designed for students who wish to obtain a background in the life sciences as preparation for careers without laboratory research such as medicine, graduate study of psychology, or management studies. This program, leading to the S.B., does not require 18.05 or a 24-unit laboratory subject, and allows 96 units in unrestricted electives so that students can plan their programs to suit their particular goals. Further details may be obtained from the Department.

Bachelor of Science in Life Sciences

Course VII-B

The curriculum of Course VII-B, Applied Biology, offers specialization in nutrition and food science. Students electing this area should consult with the Department of Nutrition and Food Science before registration. Although 5.311 Introductory Chemical Experimentation is not a Departmental Requirement, it is particularly useful for students whose interest is in biochemistry; it may also be required for admission to medical school. As part of their elective programs, students are encouraged to enroll in the more advanced subjects offered by the Department. The details of the curriculum requirements for Course VII-B, Applied Biology, are given under the Department of Nutrition and Food Science later in this chapter.
Graduate Study

The Department of Biology offers graduate work leading to the Doctor of Philosophy in biology, biochemistry, biophysics, or cell biology. Study may be pursued in the following fields of specialization.

Cell Biology, Virology, and Physiology. The study of the biology of cells from multicellular organisms and the viruses which grow in such cells is emphasized in this program. The major areas of research include cell culture, the macromolecular metabolism of cells, cellular genetics and cytogenetics, cellular immunology, tumor immunology, animal virology (both tumor viruses and non-tumor viruses), synthesis and structure of eukaryotic DNA, membrane structure and synthesis, sensory physiology, and differentiation. A major focus of the research in cell biology is the study of growth control and the aberrations of growth control in malignant cells.

Microbiology. The aim of this program is to provide the student with an understanding of the fundamental aspects of the structure, genetics, and physiology of microorganisms. Current research projects are in the areas of the genetics of bacteria, yeast, and bacteriophage; the assembly of bacteriophage; the molecular biology of slime molds; the function of bacterial membranes; the regulation of the biosynthesis of bacterial enzymes; and the biology of animal viruses.

Biochemistry. This program is designed to give the student training in the following areas of biochemistry: the chemistry of proteins and nucleic acids, physical biochemistry, intermediary metabolism, membrane biochemistry, enzymology, and molecular biology. Examples of current research are the structure and biosynthesis of macromolecules such as DNA, RNA, and proteins; the biosynthesis of amino acids and coenzymes; the chemical mechanisms underlying the action of enzymes; the regulation of the biosynthesis of macromolecules; membrane biochemistry; the biochemistry of development; and immunochemistry.

Biophysics. The objectives of research in this area are an understanding of the function of biological systems in terms of the structures and interactions of molecules. These objectives are approached through the application of techniques such as X-ray diffraction, electron microscopy, ultracentrifugation, electrophoresis, spectroscopy, genetics, and a variety of other physicochemical and physiological approaches. Current examples of research interests lie in the areas of the mechanisms of formation of tertiary structure of proteins and nucleic acids; the physical chemistry of macromolecules and their interactions; molecular aspects of blood coagulation; molecular biology, including assembly of macromolecular structures such as phase; the mechanism of allosteric control; DNA replication and mechanisms of genetic recombination; biophysical aspects of neurobiology; and communications biophysics. A program is provided whereby students with a variety of educational backgrounds can make the transition into biology (biophysics). For this reason applications are welcome from those who have majored in physical chemistry or physics and also from those holding degrees in medicine. To accomplish the transition, the program in biophysics is deliberately flexible so that complementary education may be obtained as part of the graduate program.

Entrance Requirements for Graduate Study

In the Department of Biology, the Master of Science is not a prerequisite for a program of study leading to the doctorate.

The Department modifies the General Institute Requirements for admission to graduate study as follows: 18.01, 18.02 Calculus; one year of college physics; 5.12 Organic Chemistry I; professional subjects including general biochemistry and genetics. Deficiencies in any of these subjects may be removed, if not too extensive, while enrolled in a graduate program.

1. Students who take 5.11 to fulfill the General Institute Requirement for Chemistry/Biology must take 12 additional units of Science Distribution Subjects.
2. Either 7.011 or 5.311 satisfies the Institute Laboratory Requirement. However, both or their equivalent are required in order to satisfy medical school entrance requirements. 20.002 may be substituted for 7.011.
Doctor of Philosophy

The General Institute Requirements for the Doctor of Philosophy are listed in Chapter IV on Graduate Education. There are no specific Departmental programs for the degree, since the subjects required vary with the field of specialization. Students select their own programs, according to certain broad principles, after consultation with the Graduate Committee of the Department.

Joint MIT-WHOI Program
Course VII-W

Biological Oceanography. MIT and the Woods Hole Oceanographic Institution administer a joint program in biological oceanography leading to a jointly awarded Doctor of Philosophy. For details of this program, see Joint Program in Oceanography and Oceanographic Institution, at the end of this chapter.

Teaching and Research Assistantships

A number of qualified students are appointed each year as teaching or research assistants. Research assistants may be permitted to use the results of their assigned research work in graduate theses, with the possible acceleration of their programs. In addition, a number of predoctoral and postdoctoral fellowships are available in cell biology, microbiology, physiology, biochemistry, and biophysics.

Inquiries

Additional information regarding graduate academic programs, research activities, admissions, financial aid, and assistantships may be obtained from Biology Headquarters, Graduate Secretary, Room 56-511, MIT, Cambridge, Massachusetts 02139, (617) 253-4701.
Department of Chemistry

Christopher Thomas Walsh, Ph.D.
Professor of Chemistry and Biology
Uncas and Helen Whitaker Professor in the Whitaker College
Head of the Department

<table>
<thead>
<tr>
<th>Professors</th>
<th>Professors Emeriti</th>
</tr>
</thead>
</table>
| Robert Arnold Alberty, Ph.D., Sc.D.
Professor of Chemistry | Edmund Lee Gamble, Ph.D.
Professor of Inorganic Chemistry, Emeritus |
| Glenn Allen Berchtold, Ph.D.
Professor of Chemistry | Louis Harris, Ph.D.
Associate Professor of Physical Chemistry, Emeritus |
| Klaus Biemann, Ph.D.
Professor of Chemistry | David Newton Hume, Ph.D.
Professor of Analytical Chemistry, Emeritus |
| George Hermann Büchi, D.Sc.
Camille Dreyfus Professor of Chemistry | John Withers Irvine, Jr., Ph.D., Sc.D.
Professor of Chemistry, Emeritus |
| Alan Davison, Ph.D.
Professor of Chemistry | Richard Collins Lord, Ph.D., Sc.D.
Professor of Chemistry, Emeritus |
| John Mark Deutch, Ph.D., Sc.D.
Arthur C. Cope Professor of Chemistry | Senior Lecturer |
| Dean of the School of Science | Ralph Chillingworth Young, Ph.D.
Associate Professor of Inorganic Chemistry, Emeritus |
| Robert Warren Field, Ph.D.
Professor of Chemistry | Avery Adrian Morton, Ph.D.
Professor of Organic Chemistry, Emeritus |
| Carl Wesley Garland, Ph.D.
Professor of Chemistry | John Clark Sheehan, Ph.D., Sc.D.
Professor of Organic Chemistry, Emeritus |
| Frederick Davis Greene II, Ph.D., Sc.D.
Professor of Chemistry | Clark Conkling Stephenson, Ph.D.
Professor of Chemistry, Emeritus |
| Daniel Schaeffer Kemp, Ph.D.
Professor of Chemistry | Senior Lecturer |
| Har Gobind Khorana, Ph.D.
Alfred P. Sloan Professor of Biology and Chemistry | Timothy Gerard Adams, B.S.
James Alexander Simms |
| James Lloyd Kinsey, Ph.D.
Professor of Chemistry | Lecturer |
| Stephen James Lippard, Ph.D.
Professor of Chemistry | Dagmar Ringe, Ph.D. |
| Satoru Masamune, Ph.D.
Professor of Chemistry | Principal Research Scientist |
| William Henry Orme-Johnson, Ph.D.
Professor of Chemistry | Catherine Elizabeth Costello, Ph.D. |
| Irwin Oppenheim, Ph.D.
Professor of Chemistry | Technical Instructors |
| Richard Royce Schrock, Ph.D.
Professor of Chemistry | Timothy Gerard Adams, B.S.
James Alexander Simms |
| Dietmar Seyferth, Ph.D.
Robert T. Haslam and Bradley Dewey Professor of Chemistry | Executive Associate |
| K. Barry Sharpless, Ph.D.
Professor of Chemistry | Lawrence William Ryan, Jr. |
| Robert James Silbey, Ph.D.
Professor of Chemistry | Financial Administrator |
| Jeffrey Irwin Steinfeld, Ph.D.
Professor of Chemistry, | Joan Marie Hutchins |
| Charles Gardner Swain, Ph.D.
Professor of Chemistry | Personnel Administrator |
| John Stewart Waugh, Ph.D.
Arthur Amos Noyes Professor of Chemistry | Anna Marie Lees |
| Mark Stephen Wrighton, Ph.D.
Frederick G. Keyes Professor of Chemistry | Professors Emeriti |

Associate Professors

- Rick Lane Danheiser, Ph.D.
 Rogers and Georges Firmenich Career Development Associate Professor of Natural Products Chemistry

- Gregory Anthony Petsko, D.Phil.
 Associate Professor of Chemistry

- Mary Fedarko Roberts, Ph.D.
 Associate Professor of Chemistry

- William Richard Roush, Ph.D.
 Associate Professor of Chemistry

Assistant Professors

- Stephen Leffler Buchwald, Ph.D.
 Assistant Professor of Chemistry

- Sylvia Teresa Ceyer, Ph.D.
 Assistant Professor of Chemistry

- Keith Adam Nelson, Ph.D.
 Assistant Professor of Chemistry

- Philip Whitt Phillips, Ph.D.
 Assistant Professor of Chemistry

Associate Professor of Chemistry

- Earl Bowman Millard, Ph.D.
 Professor of Physical Chemistry, Emeritus

- Avery Adrian Morton, Ph.D.
 Professor of Organic Chemistry, Emeritus

- John Clark Sheehan, Ph.D., Sc.D.
 Professor of Organic Chemistry, Emeritus

- Clark Conkling Stephenson, Ph.D.
 Professor of Chemistry, Emeritus

- Ralph Chillingworth Young, Ph.D.
 Associate Professor of Inorganic Chemistry, Emeritus

Lecturer

- Dagmar Ringe, Ph.D.

Principal Research Scientist

- Catherine Elizabeth Costello, Ph.D.

Technical Instructors

- Timothy Gerard Adams, B.S.
 James Alexander Simms
Department of Chemistry

(Course 5)

Undergraduate Study

Bachelor of Science in Chemistry

Course V

The Department offers an undergraduate program sufficiently flexible in its electives to provide excellent preparation for careers in many different areas of chemistry. The Course is designed to provide an education based on science both for those who intend to go on to graduate study and for those who intended to immediately pursue professional careers in either chemistry or an allied field in which a sound knowledge of chemistry is important. Students receive thorough instruction in the principles of chemistry, supplemented by a firm foundation in mathematics, physics, the humanities, and other subjects. The departmental Program is accredited by the American Chemical Society.

Unrestricted elective time allows students to extend their knowledge in areas of special interest. Those intending to do graduate work may elect subjects in the Department or in other departments which give them more detailed knowledge in the areas in which they wish to specialize. Students who plan to enter industry may elect subjects which offer the fundamentals in a selected field of science, engineering, or the humanities and social sciences. Five-year programs may also be elected which lead to simultaneous Bachelor of Science degrees in two fields of specialization.

The student’s faculty advisor can offer suggestions for elective subjects that are of value in preparation for specialization in the various broad areas of chemistry. The proper choice of electives is particularly important for students planning to continue their education in a graduate school.

Course V also aims to develop a strong grounding in research principles and experience, and the curriculum may include a research project giving students opportunities to demonstrate aptitude for creative efforts.

Inquiries

Additional information may be obtained from the Chemistry Department, Undergraduate Office, Room 2-325, MIT, Cambridge, Massachusetts 02139, (617) 253-7271.

Graduate Study

Bachelor of Science in Chemistry

Course V

The Department of Chemistry offers the Master of Science in Chemistry, the Doctor of Philosophy, and the Doctor of Science. The subjects offered for these degrees aim to develop a sound knowledge of fundamentals and a familiarity with current progress in the most active and important areas of chemistry. In addition to studying formal subjects, each student undertakes a research problem which forms the core of graduate work. Through the experience of conducting an investigation leading to the master’s or doctoral thesis, a student learns general methods of approach and acquires training in some of the specialized techniques of research.

The areas of research in the Department are organic, inorganic, physical, analytical, biological, and biophysical chemistry, biochemistry, and chemical physics. The thesis frequently involves more than one of these fields. Some of the research activities of the Department are carried out in association with the work of various interdisciplinary laboratories and centers such as the Center for Materials Science and Engineering, the Research Laboratory of Electronics, and the Spectroscopy Laboratory, described in Chapter V. These interdepartmental research laboratories provide stimulating interaction among the research programs of several MIT departments and give students the opportunity to become familiar with research work in disciplines other than chemistry. There also is an opportunity for research in cooperation with other departments such as Biology, Earth, Atmospheric, and Planetary Sciences, and Physics. Detailed information on the research activities of the faculty can be found in the Directory of Graduate Research published by the American Chemical Society.

During the first term of residence, all graduate students are encouraged to select research supervisors who serve as advisors for the balance of their graduate careers. In particular, the overall program of graduate subjects to be taken is established by each student and the research supervisor. In planning this program and in establishing the thesis problem, careful consideration is given to the candidate’s academic record and professional experience, as well as to long-range objectives.

Entrance Requirements for Graduate Study

Students intending to pursue graduate work in the Department should have excellent undergraduate preparation in chemistry. The Department, however, is flexible with respect to the specific mathematics and physics preparation; the essential requirement is demonstration of ability to progress with advanced study and research in some area of special interest. Mathematics and physics are important

Bachelor of Science in Chemistry

Course V

General Institute Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences</td>
<td>72</td>
</tr>
<tr>
<td>Requirement</td>
<td></td>
</tr>
<tr>
<td>The Science Distribution Requirement</td>
<td>24</td>
</tr>
</tbody>
</table>

The Laboratory Requirement can be satisfied by 5.311 in the Departmental Program.

Required Subiects:

1. 5.03 Principles of Inorganic Chemistry I, 12; 5.12
2. 5.11 Principles of Chemical Science, 12
3. 5.12 Organic Chemistry I, 12; 5.11
4. 5.13 Organic Chemistry II, 12; 5.11, 5.12
5. 5.311 Introductory Chemical Experimentation, 12; 5.12
6. 5.32 Intermediate Chemical Experimentation, 15; 5.311, 5.13, 5.60
7. 5.33 Advanced Chemical Experimentation, 18; 5.32, 5.61
8. 5.60 Chemical Thermodynamics, 12; 18.02
9. 5.61 Physical Chemistry, 12; 8.02, 18.02

Restricted Electives:

- 21-24

At least two of the following:

- 5.04 Principles of Inorganic Chemistry II, 9; 5.03
- 5.43 Organic Chemistry, 12; 5.13
- 5.62 Physical Chemistry, 12; 5.60

Unrestricted Electives

- 66-69

Total Units Required for the S.B. Degree: 360

The areas of research in the Department are organic, inorganic, physical, analytical, biological, and biophysical chemistry, biochemistry, and chemical physics. The thesis frequently involves more than one of these fields. Some of the research activities of the Department are carried out in association with the work of various interdisciplinary laboratories and centers such as the Center for Materials Science and Engineering, the Research Laboratory of Electronics, and the Spectroscopy Laboratory, described in Chapter V. These interdepartmental research laboratories provide stimulating interaction among the research programs of several MIT departments and give students the opportunity to become familiar with research work in disciplines other than chemistry. There also is an opportunity for research in cooperation with other departments such as Biology, Earth, Atmospheric, and Planetary Sciences, and Physics. Detailed information on the research activities of the faculty can be found in the Directory of Graduate Research published by the American Chemical Society.

During the first term of residence, all graduate students are encouraged to select research supervisors who serve as advisors for the balance of their graduate careers. In particular, the overall program of graduate subjects to be taken is established by each student and the research supervisor. In planning this program and in establishing the thesis problem, careful consideration is given to the candidate's academic record and professional experience, as well as to long-range objectives.

Entrance Requirements for Graduate Study

Students intending to pursue graduate work in the Department should have excellent undergraduate preparation in chemistry. The Department, however, is flexible with respect to the specific mathematics and physics preparation; the essential requirement is demonstration of ability to progress with advanced study and research in some area of special interest. Mathematics and physics are important.

Alternate prerequisites are also listed in the subject description.

Students who take either 5.11 or 5.60 to fulfill the General Institute Requirement in Chemistry/Biology must take 12 additional units of Unrestricted Elective.
prerequisites for graduate work in physical chemistry or chemical physics, whereas less preparation in these areas is required for work in organic chemistry.

Applicants for financial assistance from the Department of Chemistry are requested to submit scores from the Verbal and Quantitative sections of the Graduate Record Examination. Scores on the Advanced examinations are optional.

Although doctoral studies are the principal focus of the graduate program in the Department of Chemistry, applications are also accepted from students who do not wish to go beyond the Master's degree. Applicants whose ultimate goal is the Ph.D. or Sc.D. should apply to the Department as doctoral students, since the Master's degree is not a prerequisite for the Ph.D. or Sc.D. in Chemistry at MIT.

Master of Science in Chemistry

The general requirements for the Master of Science are listed in Chapter IV of this catalogue.

Doctor of Philosophy and Doctor of Science

The Department does not have any formal subject requirements for the doctoral degree. Each student, with advice of a research supervisor, pursues an individual program of study which is pertinent to long-range research interests.

Written major examinations are cumulative. Separate examinations in biological, inorganic, and physical chemistry are offered each month during October through May. The examinations demonstrate an understanding of the important principles of each field, and most of the examinations are based on recent seminars and current literature. Six cumulative examinations must be passed to complete the written major examination. No fixed time limit is set for completion of this requirement; however, progress is reviewed periodically. No other general written examinations are required. In particular, no qualifying (or "entrance") examinations are given.

A comprehensive oral examination in the candidate's major field of advanced study is held near the end of the third term of residence. Progress in the student's research is also examined at that time. A final oral presentation on the subject of the doctoral research is scheduled after the thesis has been submitted and tentatively evaluated by a committee of examiners.

Teaching and Research Assistantships

The Department appoints a number of degree candidates as teaching assistants who are usually assigned to laboratory subjects or to discussion sections of lecture subjects. Many students receive appointments to research assistantships after their first year, and Departmental fellowships also are available. Financial support after the first academic year is provided for students who maintain a satisfactory record, subject to the availability of funds.

Inquiries

Correspondence about the graduate program or appointments should be addressed to the Chairman of the Departmental Committee on Graduate Students, Professor G. Berchtold, Chemistry Graduate Office, Room 18-392, MIT, Cambridge, Massachusetts 02139, (617) 253-1845.
Department of Earth, Atmospheric, and Planetary Sciences

William Francis Brace, Ph.D.
Cecil and Ida Green Professor of Geology
Head of the Department

Professors
Burrell Clark Burchfiel, Ph.D.
Schlumberger Professor of Geology
Roger George Burns, Ph.D.
Professor of Geochemistry
Charles Claude Counselman III, Ph.D.
Professor of Planetary Sciences
John Marmion Edmond, Ph.D.
Professor of Oceanography
William Francis Brace, Ph.D.
Robert R Shrock Professor of Earth Sciences
Roger George Burns, Ph.D.
John M. Holt, Ph.D.
Richard Baron, Ph.D.
William I Oliver, Ph.D.

Associate Professors
Edward Allen Boyle, Ph.D.
Associate Professor of Chemical Oceanography
James Ludlow Elliot, Ph.D.
Associate Professor of Astronomy and Physics
Charles Curtiss Eriksen, Ph.D.
Associate Professor of Physical Oceanography
Glenn Richard Flierl, Ph.D.
Associate Professor of Oceanography
Barry Eaton Parsons, Ph.D.
Associate Professor of Geophysics
John Brelsford Southard, Ph.D.
Associate Professor of Geology
Frank S. Spear, Ph.D.
Associate Professor of Geology

Assistant Professors
Randall M. Dole, Ph.D.
Assistant Professor of Meteorology
Gregory L. Duckworth, Ph.D.
Assistant Professor of Geophysics
Kerry Andrew Emanuel, Ph.D.
Assistant Professor of Meteorology
J. Brian Evans, Ph.D.
Assistant Professor of Geophysics
Kip V. Hodges, Ph.D.
Assistant Professor of Geophysics
David C. Jewitt, Ph.D.
Assistant Professor of Planetary Science
Marcia K. McNutt, Ph.D.
Assistant Professor of Marins Geophysics

Research Associates
Richard Abbott, Ph.D.
Richard Baron
Stephen Daly, Ph.D.
Edward Dunham, Ph.D.
Peter Ford, Ph.D.
Gilles Garcia, Ph.D.
Hyman Hartman, Ph.D.
Robert Heinmiller, Ph.D.
Pillamarri Ila, Ph.D.
Robert King, Ph.D.
Christopher Messeres, Ph.D.
Jay J. Pulli, Ph.D.
Roger Tunpening, Ph.D.
Fay Wilken, Ph.D.

Postdoctoral Associates
Eric Bergman, Ph.D.
Haluk Eyidogan, Ph.D.
Rosemary L. Hickey, Ph.D.
Karen Kimball, Ph.D.
Dong Soo Lee, Ph.D.
Robert McCaffrey, Ph.D.
John Nabelek, Ph.D.
Sumant Nigam, Ph.D.
Jens G. Scholte, Ph.D.
Alan Shinler, Ph.D.
Earle Williams, Ph.D.
Jane Haung Woci, Ph.D.

Visiting Professors
Claude J. Allegre, Ph.D.
President of Geochemistry
Mark A. Cane, Ph.D.
Associate Professor of Oceanography
Ali Ben-Menahem, Ph.D.
Professor of Geophysics
Claude J. Frankignoul, Ph.D.
Professor of Oceanography
Don Edmunds Harrison, Ph.D.
Associate Professor of Oceanography
Erik L. Molle-Christensen, Sc.D.
Professor of Meteorology
Sandro Rambaldi, Ph.D.
Assistant Professor of Meteorology

Visiting Scientists
Christopher Brooks, Ph.D.
Luce Flotout
Fabienne Gaillard
Shuguxun Li
Herle Mercier
Robert Reilinger, Ph.D.
Jinzhong Zhang
Xiachen Zhi
Department of Earth, Atmospheric, and Planetary Sciences

(Course 12)

The Department of Earth, Atmospheric, and Planetary Sciences offers the bachelor’s degree in earth and planetary sciences, and the master’s and doctoral degrees in earth and planetary sciences, in meteorology, and in oceanography.

The study of earth and planetary sciences at MIT covers several broad fields — the evolution of the main features of the planetary system; the origin, composition, structure and state of the atmospheres, oceans, surfaces and interiors of planets; and the dynamics of planet and satellite motions. Special emphasis in research and education at MIT is placed on mineralogy-crystallography, petrology, rock mechanics, geochemistry, geochronology, tectonics, seismology, planetary magnetism and electricity, heat flow, high pressure geophysics, geophysical fluid dynamics, optical and radar astronomy, meteorology and dynamical astronomy, planetary atmospheres and surfaces, planetary rings, physical and chemical oceanography, and marine geology and geophysics.

Modern problems in these fields are approached by in situ physical and chemical measurements, laboratory studies, and theoretical treatments. Experimental facilities for training and research are available not only in the Department but also in MIT’s interdepartmental laboratories and centers such as the Center for Space Research, the Lincoln Laboratory, the Haystack radar and radio observatory, and the Wallace Astrophysical and Geophysical observatories (described in Chapter V), and in cooperating institutions such as the Woods Hole Oceanographic Institution.

The Department’s programs in meteorology and oceanography are provided through the Center for Meteorology and Physical Oceanography. Meteorology is the science of the atmospheres, primarily that of the earth but also of other planets. It is one of the sciences which deals with the physical properties of the earth. Many unsolved problems depend for their solution upon increased knowledge of our physical environment. The Center’s educational aim is to provide its students with a broad background in meteorology and related sciences, which prepares them to meet these challenging problems.

The Center also offers a program in physical oceanography, the study of how oceanic waves, currents, and density fields are created and how they interact with the atmosphere. Modern professional practice in both meteorology and oceanography emphasizes the quantitative aspect of the subject, which requires considerable background in the more basic sciences in addition to work directly in meteorology or oceanography proper.

The research programs of the Center are described later in this section.
Undergraduate Study

While MIT offers no undergraduate degree program in meteorology, a number of subjects is available to help students with various objectives — those who plan to stop at the baccalaureate level with a "minor" in meteorology, those who plan to continue with graduate studies in meteorology or oceanography, and those who wish to supplement their basic undergraduate program with an exposure to interesting environmental problems.

Students are encouraged to take advantage of the offerings in the Undergraduate Seminar Program and the Undergraduate Research Opportunities Program to become involved in the fields of earth and planetary sciences, meteorology, and oceanography.

Bachelor of Science in Earth, Atmospheric, and Planetary Sciences
Course XII

The Department offers undergraduate preparation for professional careers in the earth, atmospheric, and planetary sciences. Some students concentrate in specific fields in these areas. Others choose to combine basic studies in mathematics, physics, chemistry, or engineering with applications to the earth and planetary sciences.

The curriculum for the Bachelor of Science in Earth, Atmospheric, and Planetary Sciences contains only a minimum number of specific requirements, to allow maximum flexibility in arranging an individualized program of study. Lists of undergraduate research and employment opportunities are available from the Department.

Students are encouraged to enter the Department of Earth, Atmospheric, and Planetary Sciences at the beginning of the second year to obtain maximum benefit from advisor resources; however, interested students are encouraged to visit Department headquarters at any time to arrange conferences with advisors.

Restricted Elective Requirements. Each student's program of restricted electives is individually arranged in consultation with the advisor. For guidance, sample programs in geology, geochemistry, geophysics, meteorology and physical oceanography, atmospheric and oceanic chemistry, planetary physics, and observational astronomy are available from the Department. A variety of other programs can be worked out in consultation with the student's advisor.

Some of the restricted electives in these programs, or any alternate programs submitted, can be selected in part to meet the particular needs and interests of individual students. Approval of these programs is based on their scope, depth, and relevance to sound preparation in earth and planetary sciences. Programs normally should be submitted for approval by the middle of the student's third year.

Students who wish to defer choosing a field of concentration within Course XII can prepare for all of the options by completing 5.60 Chemical Thermodynamics, 8.03 Physics III, 12.02 Chemistry and Physics of Minerals and Rocks, and 18.03 Differential Equations during their second year.

Research Requirement. Each student is required to undertake a minimum of 12 units of research supervised in the Department. Many students take significantly more, and some petition the Committee on Curricula to have this research satisfy the Institute Laboratory Requirement as well. By petition to the Departmental Committee on Undergraduates, suitably planned and executed research or individual study also may be substituted for classroom subjects. Also by petition, students may satisfy the departmental research requirement by means of projects on which they have worked for pay rather than for credit, either within the department or elsewhere, provided that the student can demonstrate that the activity constitutes a substantial research experience.
Department of Earth, Atmospheric, and Planetary Sciences

Graduate Study

The Department of Earth, Atmospheric, and Planetary Sciences offers opportunities for graduate study and research in a wide range of fields, as outlined in Chapter IV of this catalogue and as indicated by the detailed subject descriptions in Chapter VII. Advanced work in these fields leads to the Master of Science in Earth and Planetary Sciences, in Meteorology, or in Oceanography, the Doctor of Philosophy, or the Doctor of Science with a thesis in the field of specialization.

In earth and planetary sciences, graduate students pursue both theoretical and experimental aspects. Modern laboratory facilities, computers, instrumentation, and extensive collections of specimens and data are available to students. Field study is an essential part of the graduate curriculum in geology, geophysics, and geochemistry, and special arrangements may be made for summer employment and field research on Departmental projects and with industrial organizations and government agencies.

In meteorology and oceanography, emphasis in the graduate program is given to the theoretical and quantitative approach, supplemented by empirical information and quantitative data analysis. Graduate study therefore includes a mixture of theoretical and descriptive courses, sharing a common appreciation of the dynamics of the underlying process.

Entrance Requirements for Graduate Study

In addition to the General Institute Requirements for admission, as found in Chapter IV, the Department requires preparation equivalent to the curriculum for the Bachelor of Science in Earth, Atmospheric, and Planetary Sciences at MIT for graduate studies in that field. For meteorology and oceanography, the most essential element is a sound preparation in mathematics and physics, supplemented if possible by some chemistry. Students taking their undergraduate work at other institutions are advised to include in their programs the equivalent of the mathematics and physics contained in the MIT undergraduate curriculum. If students are not fully prepared in certain of the fields or required subjects, they usually are asked to extend their studies in these areas while pursuing advanced work. The doctoral program can be entered without a Master of Science as a prerequisite.
Joint MIT-WHOI Program in Oceanography and Oceanographic Engineering

MIT and the Woods Hole Oceanographic Institution have established a joint program in oceanography which leads to a jointly awarded degree of the Doctor of Philosophy or the Doctor of Science. For details of this program, see Joint Program in Oceanography and Oceanographic Engineering with the Woods Hole Oceanographic Institution, at the end of this chapter.

Master of Science in Earth and Planetary Sciences or in Oceanography

The General Institute Requirements for the degree of Master of Science in Earth and Planetary Science or in Oceanography are described in Chapter IV. An individual program of study and research is tailored to each student's background, needs, and goals of each student. The program is worked out in detail by the student with his or her personal faculty advisor and a Departmental committee.

Master of Science in Meteorology or in Oceanography

The graduate ("A") subjects required for the Master of Science may be selected from those offered in meteorology or in oceanography and those in related fields offered by other departments. Undue specialization in one branch of either field is discouraged. There are no foreign language requirements for the degree. Master's students have access to the facilities of the Joint MIT-WHOI Program.

Doctor of Philosophy and Doctor of Science

General Institute Requirements for the degree of Doctor of Philosophy or Doctor of Science are given in Chapter IV. The Department does not require candidates for the doctorate to present evidence of competence in a foreign language but, because of the importance of communications with foreign scientists, it is strongly urged that candidates for the doctorate acquire intermediate competence in one or more languages. A specialized program of study and research is tailored to each student's background, needs, and goals by the student in consultation with a personal faculty advisor and a Departmental committee. A doctoral candidate's program is expected to be broad and to include formal study in other departments in addition to the specialized subjects which prepare the candidate for thesis research. Thesis research normally is begun immediately after successful completion of the general examination, by the end of the second year. The general examination is intended to test the candidate's aptitude and preparation for independent research.

Thesis research is closely supervised by one or more faculty members who are interested and knowledgeable in the research topic, who are chosen by the student, and who may be members of other departments. The thesis is expected to meet high professional standards, and to be a significant original contribution to the scientific field.

Teaching and Research Assistantships

The Department and the Center for Meteorology and Physical Oceanography offer a considerable number of research and teaching assistantships each year. Research assistants work on one of the many research projects in the Department or Center, which often is related to the student's thesis research. Teaching assistants assist in laboratory instruction or in the preparation of teaching materials and the grading of papers.

The Center also offers the Jule G. Charney Awards for graduate study. These awards are available to a few students to supplement the normal support from research assistantships or other fellowships. Selection of individuals is based on the excellence of the applicant's record, as evidenced by academic performance, letters of recommendation, professional accomplishments, and other awards such as National Science Foundation Fellowships.

Inquiries

Additional information regarding academic and current research programs in the Department, admission requirements, assistantship appointments, and financial aid may be obtained by writing to the Department of Earth, Atmospheric, and Planetary Sciences, Department Secretary, Room 54-912, MIT, Cambridge, Massachusetts 02139, (617) 253-3381.

Meteorology

Formal subjects of instruction are offered in most principal areas of meteorology, and usually are supplemented by reading courses in a student's special area of interest. The subjects are described in Chapter VII.

As the descriptions suggest, there are research and educational activities in all the principal areas of meteorology. There is a Doppler weather radar system, actively used in research, and equipped with data processing facilities. Current weather data are received from the National Weather Service, and data are kept on file for most areas of the world; some of these data are in computer-compatible formats. The Center has access to large-scale computing facilities via terminals, and has installed new facilities with the aim of taking better advantage of modern technology and communications in processing weather data and satellite information. Laboratory facilities also include a small fluid mechanics laboratory and an electronics shop used for the assembly and maintenance of measuring equipment.

Cambridge and its surroundings contain a number of institutions active in meteorological research, which, in addition to private commercial firms, include Harvard University, Woods Hole Oceanographic Institution, the Air Force Geophysics Laboratory, and the Boston Office of the National Weather Service. Contact with the personnel of these institutions is maintained through seminars and symposia in addition to the many informal contacts.

Oceanography

The Center for Meteorology and Physical Oceanography is active in physical oceanography research; faculty and students are currently engaged in theoretical studies of the oceanic circulation, observational studies at sea, laboratory models and field and laboratory investigations of the interactions between the atmosphere and the ocean. The programs of graduate students in oceanography also include subjects in oceanography and related areas offered by several other MIT departments and the Woods Hole Oceanographic Institution.
Department of Mathematics

Arthur Paul Mattuck, Ph.D.
Class of 1922 Professor of Mathematics
Head of the Department

Franklin Paul Peterson, Ph.D.
Professor of Mathematics
Chairman, Committee on Pure Mathematics

David John Benney, Ph.D.
Professor of Applied Mathematics
Chairman, Committee on Applied Mathematics

Professors
- Warren Ambrose, Ph.D.
- Nesmith Cornett Antony, Ph.D.
- Michael Artin, Ph.D.
- Hung Cheng, Ph.D.
- Herman Chernoff, Ph.D.
- Richard Mansfield Dudley, Ph.D.
- Daniel Z. Freedman, Ph.D.
- Dorian Goldfeld, Ph.D.
- Harvey Philip Greenspan, Ph.D.
- Victor William Guillemin, Ph.D.
- Sigurdur Helgason, Ph.D.
- Kenneth Myron Hoffman, Ph.D.
- Victor Kać, Ph.D.
- Daniel Marinus Kan, Ph.D.
- Steven Kleiman, Ph.D.
- Daniel J. Kleitman, Ph.D.
- Bertram Kostant, Ph.D.
- Chia-Chiao Lin, Ph.D.
- George Lusztig, Ph.D.
- Willem Van Renesseleer Malkus, Ph.D.
- Paul Malliavin
- Steven Alan Orszag, Ph.D.
- Daniel Gray Quillen, Ph.D.
- Hartley Rogers, Jr., Ph.D.
- Gian-Carlo Rota, Ph.D.
- Gerald Enoch Sacks, Ph.D.
- Richard Donald Schafer, Ph.D.
- Irving Ezra Segal, Ph.D.
- Isadore Manuel Singer, Ph.D.
- Richard Peter Stanley, Ph.D.
- Harold Mead Stark, Ph.D.
- William Gilbert Strang, Ph.D.
- Daniel W. Stroock, Ph.D.
- Alar Toomre, Ph.D.
- Michele Francoise Vergne, Ph.D.
- David Alexander Vogan, Ph.D.
- George William Whitehead, Ph.D.

Associate Professors
- Sy David Friedman, Ph.D.
- David S. Jerison, Ph.D.
- Ravindran Kannan, Ph.D.
- Gary Lee Miller, Ph.D.
- Frank Morgan, Ph.D.
- Michael Sipser, Ph.D.
- Ka Kit Tung, Ph.D.

Assistant Professors
- David Jay Anick, Ph.D.
- Anders Björner, Ph.D.
- Andrew Cadle Fowler, Ph.D.
- Jeffry Kahn, Ph.D.
- David J. McCarthy, Ph.D.
- Christopher J. C. Burges, Ph.D.

Instructors in Applied Mathematics
- David Kopka, Ph.D.
- William Alfredo Nazaret, Ph.D.
- M. Grae Worster, Ph.D.

Lecturers
- William Hermas DuMouchel, Ph.D.
- Steven Ellis, Ph.D.
- Jon Christopher Haass, Ph.D.

Postdoctoral Associates
- Christopher J. C. Burges, Ph.D.
- Christopher M. Hull, Ph.D.

Research Associate
- Arthur J. Rosenthal, Ph.D.

Administrative Officer
- James Edward Dalton

Administrative Assistants
- Martha L. Fox, A.B.
- Joanne E. Murray
- Phyllis Ruby, A.B.
Department of Mathematics

(Course 18)

Undergraduate Study

Professors Emeriti

Prescott Durand Crout, Ph.D.
Professor of Mathematics, Emeritus

Francis Begnaud Hildebrand, Ph.D.
Professor of Mathematics, Emeritus

Louis Norberg Howard, Ph.D.
Professor of Applied Mathematics, Emeritus

William Ted Martin, Ph.D.
Professor of Education and Mathematics, Emeritus

Claude Elwood Shannon, Ph.D.
Donner Professor of Science and Professor of Mathematics and Electrical Engineering, Emeritus

Dirk Jan Struik, Ph.D.
Professor of Mathematics, Emeritus

George Brinton Thomas, Jr., Ph.D.
Professor of Mathematics, Emeritus

George Proctor Wadsworth, Ph.D.
Professor of Mathematics, Emeritus

Bachelor of Science in Mathematics

Course XVIII

An undergraduate degree in mathematics provides an excellent basis for graduate work in mathematics or computer science, or for employment in such mathematics-related fields as systems analysis, operations research, or actuarial science.

Because the career objectives of undergraduate mathematics majors are so diverse, each undergraduate’s program is individually arranged through collaboration between the student and his or her faculty advisor. In general, students are encouraged to explore the various branches of mathematics, both pure and applied. Considerable elective time is available in each of the mathematics programs.

Undergraduates wishing to work in small groups under the supervision of a faculty member may elect to participate in a mathematics seminar. This is normally done during the junior year or the first semester of the senior year. The experience gained from active participation in a seminar conducted by a research mathematician is particularly valuable for a student planning to pursue graduate work in some branch of mathematics or a related field.

There are three undergraduate programs that lead to the degree Bachelor of Science in Mathematics: a General Mathematics Option, an Applied Mathematics Option for those who wish to specialize in that aspect of mathematics, and a Theoretical Mathematics Option for those who expect to pursue graduate work in pure mathematics.

The interaction that takes place in the classroom is an important component of the learning experience in mathematics. Therefore, in none of the programs is advanced standing credit accepted toward fulfillment of any part of the Departmental Requirements other than 18.03. It is accepted, however, as Unrestricted Elective.

Bachelor of Science in Mathematics

Course XVIII

General Mathematics Option

This option is the one followed by most students who major in mathematics. Besides the General Institute Requirements, the requirements consist of 18.03 Differential Equations and eight 12-unit subjects in Course 18 of essentially different content, including at least six advanced subjects (first decimal digit one or higher). This leaves available 84 units of unrestricted electives. The requirements are flexible in order to accommodate several categories of students:

1) those who wish to pursue programs that combine mathematics with a related field (such as computer science, physics, economics, or management), 2) those who wish to divide their time between theoretical and applied mathematics, and 3) those who wish to use mathematics as a general Institute major.

Applied mathematics is the mathematical study of general scientific concepts, principles, and phenomena which, because of their widespread occurrence and application, relate or unify various disciplines. The core of the program at MIT concerns the following principles and their mathematical formulations: propagation, equilibrium, stability, optimization, cybernetics, statistics, and random processes. The undergraduate program provides a general introduction to most areas of applied mathematics and to several specific areas for study in greater depth.

Freshmen interested in applied mathematics should consider taking 18.001 and 18.002 Calculus followed as soon as possible by 18.03 Differential Equations.

Sophomores interested in applied mathematics typically survey the field of applied mathematics by enrolling in both 18.310 and 18.311 Principles of Applied Mathematics. Subject 18.310, given only in the first term, is devoted to the discrete aspects of the subject and may be taken concurrently with 18.03. Subject 18.311, given only in the second term, is devoted to continuous aspects and makes considerable use of differential equations.

The subjects in Group I of the program correspond roughly to those areas of applied mathematics making heavy use of discrete mathematics, while Group II emphasizes those subjects which deal mainly with continuous processes. Naturally, there is a good deal of overlap; for example, such subjects as probability or numerical analysis have both discrete and continuous aspects. In general, students in the applied mathematics option are encouraged to acquire as good a background as possible in both types of applied mathematics.

For those who wish to emphasize particular areas within the applied mathematics curriculum, sample programs are available in the Undergraduate Mathematics Office for the following specialties: combinatorics, computer science, fluid dynamics, numerical analysis, statistics, and theoretical physics.
Bachelor of Science in Mathematics

Course XVIII

Applied Mathematics Option

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>72</td>
</tr>
<tr>
<td>The Science Distribution Requirement can be satisfied by 18.03 in the Departmental Program, plus appropriate subjects totaling</td>
<td>24</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>12</td>
</tr>
</tbody>
</table>

Departmental Program

Required Subjects:

- 18.03 Differential Equations, 12; 18.02
- 18.310 Principles of Applied Mathematics, 12; 18.02
- 18.311 Principles of Applied Mathematics, 12; 18.03

One of the following two subjects:

- 18.04 Complex Variables with Applications, 12; 18.03
- 18.284 Introduction to Functions of a Complex Variable, 12; 18.03

One of the following two subjects:

- 18.411 Applied Algebra, 12; 18.06 or 18.710, 18.063 or 18.703
- 18.06 Linear Algebra, 12; 18.02

Restricted Electives:

At least four subjects from the following two groups with at least one subject from each group:

Group I

- 18.440 Probability and Random Variables, 12; 18.02
- 18.313 Probability, 12; 18.02
- 18.441 Statistical Inference, 12; 18.440 or 18.313* or 18.443 Statistics for Applications, 12; 18.440 or 18.313* (or STAT 110)
- 18.314 Applied Combinatorial Analysis, 12; 18.02
- 18.420J Automata, Computability, and Complexity, 12; 18.310*(or CEE 100)

Group II

- 18.330 Introduction to Numerical Analysis, 12; 18.03
- 18.301 Introduction to Physical Mathematics I, 12; 18.03
- 18.302 Introduction to Physical Mathematics II, 12; 18.301, 18.04 or 18.284
- 18.354 Fluid Mechanics, 12; 18.04 or 18.302*

Unrestricted Electives

Total Units Required for the S.B. Degree: 380

Theoretical Mathematics Option

Theoretical mathematics (or "pure" mathematics) is the study of the basic concepts and structures that underlie the mathematical tools used in science and engineering. Its purpose is to search for a deeper understanding and an expanded knowledge of mathematics itself.

Traditionally, pure mathematics has been classified into three general fields: analysis, which deals with continuous aspects of mathematics; algebra, which deals with discrete aspects; and geometry. The undergraduate program is designed so that students become familiar with each of these areas. Students may also wish to explore such other topics as logic, number theory, complex analysis, and subjects within applied mathematics.

The subject 18.100B Analysis I is basic to the program. Since this subject is strongly proof-oriented, many students find an intermediate subject such as 18.03 Linear Algebra or 18.710 Abstract Linear Algebra useful as preparation.

Some flexibility is allowed in this program. For instance, students may, with permission, substitute 18.100A for 18.100B; and they may substitute 18.710 Abstract Linear Algebra, plus 18.703 Modern Algebra, for the recommended algebra sequence 18.701-18.702. Similarly, a thesis or (less desirably) a first-year graduate subject may be substituted. Theoretical Mathematics Option Total Units for the S.B. Degree: 360

Inquiries

Inquiries regarding academic programs may be addressed to Joanne Murray, Undergraduate Mathematics Office, Room 2-108, MIT, Cambridge, Massachusetts 02139, (617) 253-2416.

The following information sheets are available in Room 2-108: Undergraduate Subjects in Mathematics; Careers in Mathematics; Thinking of Majoring in Mathematics?; and Applied Mathematics: Sample Programs.

* Alternate prerequisites are also listed in the subject description.

These seminars are 18.104, 18.504, 18.704, 18.904, and 18.994.
Graduate Study

The Department offers programs covering a broad range of topics which lead to the Master of Science, the Doctor of Philosophy, and the Doctor of Science; however, students are admitted to a master's program only in statistics. Numerous informal seminars, as well as a joint weekly mathematics colloquium sponsored alternately by MIT, Brandeis University, and Harvard University, supplement the subject offerings.

Candidates whose primary interest is in the field of pure mathematics ordinarily take most of their subjects in the Department. In addition to their advanced specialization, students are encouraged to acquire breadth by taking basic subjects in analysis, algebra, geometry, Lie theory, logic, and topology. Candidates whose primary interest is in applied mathematics are expected to acquire breadth by taking subjects in astrophysics, combinatorics, fluid dynamics, theoretical physics, numerical analysis, statistics, and the theory of computation. Students are encouraged to study important aspects of one or more engineering or scientific fields closely related to research in applied mathematics. Assistance or collaboration in problems in pure or applied mathematics which are being investigated by members of the staff may constitute part of a graduate student's program.

Entrance Requirements for Graduate Study

Students are expected to have one year of college-level natural science in addition to an undergraduate mathematics program which approximates that of mathematics majors at MIT. Students may enter the applied mathematics program from any undergraduate field of concentration; however, special consideration is given to students with a strong scientific background.

Master of Science in Mathematics

General requirements for the Master of Science are given in Chapter IV. Specifically, a student must take not less than 72 units, including at least four 12-unit graduate ("A") subjects offered by the Department, as well as submitting an acceptable thesis.

Doctor of Philosophy and Doctor of Science

The basic requirements for these degrees are given in Chapter IV, and the details of the program are explained in a set of notes available from the Department. The first stage is to take subjects (normally 11 subjects totaling 132 hours of graduate credits) and to prepare for the general qualifying examination. Doctoral candidates are required to have a reading knowledge of mathematical French, German, Italian, or Russian.

For students in the pure mathematics program, the oral part of the general examination covers three areas chosen by the student in consultation with the Chairman of the Committee on Graduate Students. One of the three areas is examined in greater depth and normally becomes the field of specialization. The examiner in this area normally becomes the thesis advisor. The examination must be passed by the end of the second year.

For students electing the applied mathematics program, the basic objective is a proper balance of specialization and diversity. By the end of the first year of study, the degree candidate in consultation with an advisor must submit a "plan of study" for approval by the Applied Mathematics Committee. In addition to a list of subjects related to the major field, this plan must include the core curriculum, which assures familiarity with the basic concepts of applied mathematics. In order to achieve maximum flexibility, programs are considered individually.

The Guideline of Study for Doctoral Candidates in Applied Mathematics which is distributed to entering students provides more complete information on degree requirements, academic standards, and financial support.

In either the pure mathematics or applied mathematics program, after successfully passing the specific requirements set in the general examination, the student may officially begin thesis research under the supervision of a thesis advisor. The thesis must represent original research of high quality, done while a student at MIT, and should be finished by the end of the fourth year of graduate study. Upon submitting the thesis the student must pass an oral thesis examination.

Teaching and Research Assistantships

A limited number of fellowships and teaching and research assistantships are available. Normally, entering students who are offered financial aid are offered teaching assistantships and the assistantships are renewed so that students are supported for a total of four years. Entering students who have not been offered aid should not expect aid in later years.

Inquiries

Additional information regarding academic or research programs in mathematics, admissions, or financial aid, may be obtained from Phyllis Ruby, Graduate Mathematics Office, Room 2-233, MIT, Cambridge, Massachusetts 02139, (617) 253-2689.
Department of Nutrition and Food Science

Gerald Norman Wogan, Ph.D.
Professor of Toxicology
Underwood-Prescott Professor of Nutrition and Food Science
Head of the Department

Professors
John Francis Burke, M.D.
Professor of Experimental Surgery
(Visiting)

Charles Leland Cooney, Ph.D.
Professor of Chemical and Biochemical Engineering

Arnold Lester Demain, Ph.D.
Professor of Industrial Microbiology

Samuel Abraham Goldblith, Ph.D.
Professor of Food Science

Hamish Nisbet Munro, M.B., D.Sc.
Adjunct Professor of Physiological Chemistry

Nevin Stewart Scrimshaw, Ph.D., M.D.
Professor of Food Science

Associate Professors
Michael Jay Baum, Ph.D.
Associate Professor of Behavioral Endocrinology

Michael Francis Holick, M.D., Ph.D.
Associate Professor of Nutritional Biochemistry

Alexander M. Klibanov, Ph.D.
Associate Professor of Applied Biochemistry

Robert Samuel Langer, Sc.D.
Dorothy W. Poltstra, Associate Professor in Medical Engineering

Richard Alan North, M.D., Ph.D.
Associate Professor of Neuropharmacology

Cho Kyun Rha, Sc.D.
Associate Professor of Biomedical Science and Engineering

Assistant Professors
John Martin Essigmann, Ph.D.
Assistant Professor of Toxicology

Michael Anthony Marietta, Ph.D.
Assistant Professor of Toxicology

Marsha Rich Rosner, Sc.D.
Assistant Professor of Toxicology

Senior Lecturers
Charles S. Davidson, M.D.
Edward S. Josephson, Ph.D.
Paul Medford Newberne, D.V.M., Ph.D.
John Burton Stanbury, M.D.

Administrative Officer
Lydia S. Snover, M.B.A.

Senior Research Scientists
Mary O. Amdur, Ph.D.
Adrienne Elliffe Rogers, M.D.

Research Scientists
Andrew G. Braun, Ph.D.
William Fisher Busby, Ph.D.
Mary Dietz, M.D., Ph.D.
Mary Erskine, Ph.D.
Harris R. Lieberman, Ph.D.
Harry Lynch, Ph.D.
Anne Marie Suprenant, M.D., Ph.D.
John Sherman Wishnok, Ph.D.
John Williams, Ph.D.
Judith Hirschhorn Wurtman, Ph.D.

Research Associates
Carl A. Balt, Ph.D.
Jan Krzysztof Bluszcz, Ph.D.
Sally Holick, Ph.D.
Ahmed Kamarei, Ph.D.
Hua-Fuan Lam, Ph.D.
Kathleen M. Nauss, Ph.D.
Rahul Ray, Ph.D.
Paul Skipper, Ph.D.
Nadine Solomon, B.A.
Victor C. Yang, Ph.D.
Leona Zacharias, Ph.D.

Postdoctoral Associates
Tim Ahern, Ph.D.
Alfredo Fernandez Brana, Ph.D.
Pegram Johnson, Ph.D.
Kain Leong, Ph.D.
Anthony Macaluso, Ph.D.
Gerald McManus, Ph.D.
Patricia Miller, Ph.D.
Oliver Patrick Peoples, Ph.D.
Stephen Picataggio, Ph.D.
Rahul Ray, Ph.D.
Joanne Recchia, Ph.D.
Patricia Laura Rouet, Ph.D.
Mitsuyi Sakajah, Ph.D.
Voranunt Suphiphat Suphakan, Ph.D.
John Keith Vass, Ph.D.
Margaret Wheatley, Ph.D.
Michael Wildschute, Ph.D.
The research and teaching programs of the Department of Nutrition and Food Science deal with complex problems relating to interactions of people with various factors in the environment. Consequently, approaches to solution of these problems require integration of knowledge from several disciplines including biology, chemistry, engineering, and medicine. Some examples of problems of current interest at MIT include the etiology of degenerative diseases and cancer; regulation of metabolic processes in health and disease; role of diet in regulation of metabolic processes in health and disease; role of diet in regulation of brain function; health effects of environmental chemicals; biotechnology and biochemical engineering; development of engineered foods; food and nutrition policy planning; and mechanisms of action of neurotransmitters and hormones.

In response to such challenges, the Department has developed various programs involving a broad range of scientific disciplines. These programs involve both research and educational opportunities through which students can acquire the professional expertise and perspective necessary to contribute meaningfully to the solution of problems of a complex multidisciplinary nature.

Bachelor of Science in Life Sciences Course VII-B
Applied Biology Curriculum

The Department of Nutrition and Food Science offers an undergraduate curriculum in Applied Biology as part of the Life Sciences program offered by the Department of Biology. This curriculum in Applied Biology emphasizes fundamental subjects in the physical and biological sciences. It also permits exploration of a variety of more specialized areas leading to graduate or professional training in such fields as biotechnology, nutritional biochemistry and metabolism, food science, toxicology, pathology, medicine, and biochemical engineering. Programs of planned electives are arranged in consultation with an individual faculty advisor in the disciplinary area chosen by the student. Further discussion of Course VII-B may be found under the Department of Biology.
Graduate Study

The Department offers programs leading to the Master of Science, the Doctor of Philosophy, and the Doctor of Science. The degrees are awarded in five areas — Nutritional Biochemistry and Metabolism, Biochemical Engineering, Food Science and Technology, Toxicology, and Neural and Endocrine Regulation.

Excellent facilities are available for research, including well-equipped laboratories for chemical, biochemical, physical, and microbiological research. The Clinical Research Center, described in Chapter V, is available for metabolic studies on human subjects, and modern animal facilities are available for most experimental animal species. Laboratories also exist for research on the effects on various types of food processing (e.g., heat, dehydration, radiation, refrigeration, and freezing), and a modern pilot plant includes equipment for large-scale fermentations and other similar processes. A detailed summary of research activities by members of the departmental faculty is available on request.

Nutritional Biochemistry and Metabolism. This program leads to the Master of Science and doctoral degrees. It trains graduate students in biochemistry and physiological chemistry as these apply to metabolic and nutritional problems in normal and pathological states. Research projects in this area include: regulation of protein synthesis and turnover, mechanism of action of vitamin A on glycoprotein synthesis, validation of tracer techniques using radioactive and stable isotopes for metabolic and nutritional studies of normal and pathological states. Research projects in this area include: regulation of protein synthesis and turnover, mechanism of action of vitamin A on glycoprotein synthesis, validation of tracer techniques using radioactive and stable isotopes for metabolic and nutritional studies of normal and pathological states. Research projects in this area include: regulation of protein synthesis and turnover, mechanism of action of vitamin A on glycoprotein synthesis, validation of tracer techniques using radioactive and stable isotopes for metabolic and nutritional studies of normal and pathological states.

Biochemical Engineering. A program in Biochemical Engineering is offered leading to the Master of Science and doctoral degrees. Integration of studies in biological sciences with engineering is emphasized, with particular attention to industrial microbiology and fermentation processes. Research projects in Biochemical Engineering include: continuous culture of microorganisms, microbial utilization of renewable resources, enzyme production and enzyme technology, mammalian tissue cultures, use of molecular genetics to improve industrial microorganisms, performance characterization of polymers and biomaterials, and drug delivery techniques.

Food Science. The program in Food Science leads to both the Master of Science and Ph.D. degrees. Academic and research programs are offered in three broad areas in Food Science and Technology: applied chemistry, applied microbiology, and engineering. These programs stress fundamental principles. Research projects in Food Science include: formation, occurrence, and analysis of chemical substances in biological materials; physical, biochemical, and engineering properties of proteins; mechanisms of enzyme denaturation; reactivation of inactivated enzymes; changes in food composition and nutrient values due to food processing; control of undesirable microorganisms as well as utilization of beneficial ones.

Toxicology. A program is offered leading to the Master of Science and doctoral degrees. The program combines course instruction in these subjects with practice in experimental applications of this knowledge to research problems.

Neural and Endocrine Regulation. A multidisciplinary program is offered which leads to the Master of Science and doctoral degrees in Neural and Endocrine Regulation. The program provides graduate students with an opportunity to acquire a broad background in physiologic and metabolic regulation, and a detailed knowledge of brain function in mammals. Its principal objective is the training of independent basic-science and clinical investigators who explore the mechanisms by which the brain and endocrine system maintain homeostasis, control endocrine and reproductive function, and mediate the responses of the body to environmental inputs. The program requires basic subjects in mammalian biochemistry and physiology, and offers, in addition, advanced study in the fields of neuroendocrinology, neuropharmacology, neurochemistry, and psychopharmacology.

Entrance Requirements for Graduate Study

To qualify for graduate study in the Department, applicants should have a Bachelor of Science with a major in the life sciences, chemistry, food science, or chemical engineering or a professional degree such as the M.D., D.D.S., or D.V.M. The General Institute Requirements for graduate study are outlined in Chapter IV. The Graduate Record Examination is strongly recommended. Additional details concerning individual degrees given by this Department are summarized below.

Master of Science

Students who do not already possess a Master of Science or a professional degree are normally registered as S.M. candidates during their first year of graduate study. However, the S.M. is not a prerequisite for doctoral candidacy, and students may change to a doctoral program, by permission, based on academic performance during the first year. Each of the five curricula — Nutritional Biochemistry and Metabolism, Food Science and Technology, Biochemical Engineering, Toxicology, and Neural and Endocrine Regulation — consists of a limited number of recommended graduate subjects supplemented by sufficient elective units selected by the student in consultation with his or her advisor to fulfill the Institute Requirements. A thesis carried out under the direction of a Departmental faculty member, or as part of an interdepartmental program, is required of all Master of Science candidates.
Doctor of Philosophy and Doctor of Science

These programs consist of course study together with an original thesis. A limited number of required subjects are supplemented by electives.

Written doctoral qualifying and general examinations, taken during the second year of graduate study, establish competence with reference to a basic scientific background as well as in specialized areas of knowledge related to the specific degree programs. The written examination is followed by an oral presentation and defense of a research proposal on which the thesis research is to be based.

Thesis research is done under the supervision of faculty members in the various areas of specialization described above. Research progress is evaluated periodically by the thesis advisory committee, which also hears the student's oral defense of the completed thesis.

The written general examination for students in Biochemical Engineering is prepared by faculty members from the Departments of Nutrition and Food Science, Biology, and Chemical Engineering. Faculty members from these departments also make up the thesis committee for students in Biochemical Engineering.

Assistantships and Fellowships

Financial assistance is available to qualified applicants in the form of research assistantships, traineeships, and a limited number of fellowships, subject to availability of funds. Research assistantships are provided from grants obtained by members of the faculty for work on specific research projects.

Inquiries

Additional information concerning academic programs, research activities, admissions, financial aid, assistantships and fellowships may be obtained by writing to Student Office, Department of Nutrition and Food Science, Professor Steven R. Tannenbaum, Room 16-318, MIT, Cambridge, Massachusetts 02139, (617) 253-5804.
Department of Physics

Jerome Isaac Friedman, Ph.D.
Professor of Physics
Head of the Department

Professors

Michel Baranger, Ph.D.
Professor of Physics

Alan Hildreth Barrett, Ph.D.
Professor of Physics

Ulrich Justus Becker, Ph.D.
Professor of Physics

George Bekeli, Ph.D.
Professor of Physics

John Winston Belcher, Ph.D.
Professor of Physics

Robert Joseph Birgeneau, Ph.D.
Cecil and Ida Green Professor of Physics
Associate Director, Research Laboratory of Electronics

Hale Van Dorm Bradt, Ph.D.
Professor of Physics

Herbert Sage Bridge, Ph.D.
Professor of Physics

Bernard Flood Burke, Ph.D.
Professor of Physics

William A.M. Burden Professor of Astrophysics

Ronald Crosby Davidson, Ph.D.
Professor of Physics

Peter Theodore Demos, Ph.D.
Professor of Physics

Martin Deutsch, Ph.D., Sc.D.
Professor of Physics

Mildred Spiewak Dresselhaus, Ph.D.
Professor of Physics and Abby Rockefeller Mauzé Professor of Electrical Engineering

Thomas Henderson Dupree, Ph.D.
Professor of Physics

Harald Anton Enge, Dr. Phil.
Professor of Physics

Bernard Taub Feld, Ph.D.
Professor of Physics

Michael Stephen Feld, Ph.D.
Professor of Physics

Herman Feshbach, Ph.D.
Institute Professor

Anthony Philip French, Ph.D.
Professor of Physics

David Henry Frisch, Ph.D.
Professor of Physics

Lee Grodzins, Ph.D.
Professor of Physics

Kerson Huang, Ph.D.
Professor of Physics

Robert Inglis Hulitzer, Jr., Ph.D.
Professor of Physics

Karl Uno Ingard, Ph.D.
Professor of Physics

Roman Wladimir Jackiw, Ph.D.
Professor of Physics

Robert Loren Jaffe, Ph.D.
Professor of Physics

Ali Javan, Ph.D.
Professor of Physics

Francis Wright Davis
Professor of Physics

John Dimitris Joannopoulos, Ph.D.
Professor of Physics

Kenneth Alan Johnson, Ph.D.
Professor of Physics

Paul Christopher Josse, Ph.D.
Professor of Physics

Marc Aaron Kastner, Ph.D.
Professor of Physics

Henry Way Kendall, Ph.D.
Professor of Physics

Arthur Kent Kerman, Ph.D.
Professor of Physics

Director, Laboratory for Nuclear Science

John Gordon King, Ph.D.
Professor of Physics

Francis Friedman Professor

Benjamin Lux, Ph.D.
Professor of Physics

Patrick A. Lee, Ph.D.
Professor of Physics

Walter Hendrik Gustav Lewin, Dr. Tech Sci.
Professor of Physics

James David Lister, Ph.D.
Professor of Physics

Director, Center for Theoretical Physics

Earle Leonard Lomon, Ph.D.
Professor of Physics

Francis Eugene Low, Ph.D.
Professor of Physics

Karl Taylor Compton Professor of Physics

Provost

Margaret Love Agnes MacVicar, Sc.D.
Professor of Physical Science

Cecil and Ida Green Professor of Science

Milton Moniz, Ph.D.
Professor of Physics

Director, Bates Linear Accelerator

Associate Professors

Ahmet Nihat Berker, Ph.D.
Associate Professor of Physics

Philip Morrison, Ph.D.
Institute Professor

John William Negele, Ph.D.
Professor of Physics

Stanislav Obert, Ph.D.
Professor of Physics

On leave, fall

Louis Shreve Osborne, Ph.D.
Professor of Physics

Irwin Abraham Pless, Ph.D.
Professor of Physics

Miklos Porkolab, Ph.D.
Professor of Physics

David Edward Pritchard, Ph.D.
Professor of Physics

On leave, spring

Saul Alan Rappaport, Ph.D.
Professor of Physics

Lawrence Rosenstock, Ph.D.
Professor of Physics

Clifford Woodrow Shull, Ph.D.
Professor of Physics

Malcom Woodrow Pershing Strandberg, Ph.D.
Professor of Physics

Toyoichi Tanka, D.Sc.
Professor of Physics

Samuel C. C. Ting, Ph.D.
Professor of Physics

Holder of the Thomas Dudley Cabot Institute Chair

Felix Marc Herrmann Villars, D.Sc.
Professor of Physics

Rainer Weiss, Ph.D.
Professor of Physics

Peter Adalbert Wolff, Ph.D.
Professor of Physics

Director, Francis Bitter National Magnet Laboratory

Richard Kumene Yamamoto, Ph.D.
Professor of Physics

James Edward Young, Ph.D.
Professor of Physics

On leave

Associate Professors

Charles Alcock, Ph.D.
Associate Professor of Physics

Ahmet Nihat Berker, Ph.D.
Associate Professor of Physics
James Gordon Branson, Ph.D.
Associate Professor of Physics

Richard Jonathan Cohen, Ph.D., M.D.
Associate Professor of Physics

Hermann von Helmholtz
Associate Professor of Health

Sciences and Technology

James Ludlow Elliot, Ph.D.
Associate Professor of Physics and Astronomy

Director, George R. Wallace, Jr.
Astrophysical Observatory

Alan Harvey Guth, Ph.D.
Associate Professor of Physics

Robert Page Redwine, Ph.D.
Associate Professor of Physics

Scott D. Tremaine, Ph.D.
Associate Professor of Physics

John Scott Whitaker, Ph.D.
Associate Professor of Physics

Assistant Professors

John William Dreher, Ph.D.
Assistant Professor of Physics

Edward Henry Farhi, Ph.D.
Assistant Professor of Physics

Roscoe C. Giles, Ph.D.
Assistant Professor of Physics

Charles Joseph Horowitz, Ph.D.
Assistant Professor of Physics

Robert Joseph Ledoux, Ph.D.
Assistant Professor of Physics

Stephan Schutzmeister Meyer, Ph.D.
Assistant Professor of Physics

Ralph Leroy McNutt, Jr., Ph.D.
Assistant Professor of Physics

Jean-Pierre Charles Revol, Ph.D.
Assistant Professor of Physics

Senior Research Scientists

Roshan Lal Aggarwal, Ph.D.
Associate Director, Francis Bitter National Magnet Laboratory

Joseph Dennis Burger, Ph.D.

Thomas William Donnelly, Ph.D.

Simon Foner, D.Sc.

Stanley Benedict Kowalski, Ph.D.

Alan Jay Lazarus, Ph.D.

Paul David Luckey, Jr., Ph.D.

Charles Philip Sargent, Ph.D.

Stephen Geoffrey Steadman, Ph.D.

Edwin Floriman Taylor, Ph.D.

Director, Educational Video

and Video Operations

Frank E. Taylor, Ph.D.

William Ernest Turchinetz, Ph.D.

Associate Director, Bates Linear Accelerator

Claude Finley Williamson, Ph.D.

Lecturer

Frederic John Epping, Ph.D.

Associate Director, Laboratory for Nuclear Science

Technical Instructors

Eugene Michael DiSalvatore, A.B.

Angelo DeLara Larraga, B.S.E.E., J.D.

Harold Adolph Lundquist

Jan Orsula

Thomas Joseph White, Jr.

Principal Research Scientists

Paul Stanley Linsay, Ph.D.

Jeffrey Eugene McClintock, Ph.D.

George Rollins Ricker, Jr., Ph.D.

Anna Zytkow, Ph.D.

Administrative Officer

John Bruce Morway, B.S.

Administrative Staff

William John Billings, B.A.

Theodore Coleman

Jennie Johnson, M.Ed.

Gail Marlene Mochover, M.A.

Milou Bakkes Richardson, B.S.

Jane Wilbur-Brown, A.A.

Professors Emeriti

William Phelps Allis, Sc.D.

Professor of Physics, Emeritus

Walter Carlisle Barber, Ph.D.

Professor of Physics, Emeritus

William Weber Buechner, Ph.D., Sc.D.

Professor of Physics, Emeritus

Robley Dunglison Evans, Ph.D.

Professor of Physics, Emeritus

George Graham Harvey, Ph.D.

Professor of Physics, Emeritus

Albert Gordon Hill, Ph.D.

Professor of Physics, Emeritus

Consultant to the President

Milton Stanley Livingston, Ph.D., Sc.D.

Professor of Physics, Emeritus

Philip McCord Morse, Ph.D., Sc.D.

Professor of Physics, Emeritus

Bruno Benedetto Rossi, Ph.D.

Institute Professor, Emeritus

Professor of Physics, Emeritus

Lazlo Tisza, Ph.D.

Professor of Physics, Emeritus

George Edward Valley, Ph.D.

Professor of Physics, Emeritus

Bertram Eugene Warren, Sc.D.

Professor of Physics, Emeritus

Victor Frederick Weisskopf, Ph.D., Sc.D.

Institute Professor, Emeritus

Professor of Physics, Emeritus

Jerrold Reinach Zacharias, Ph.D., L.H.D., Sc.D.

Institute Professor, Emeritus

Professor of Physics, Emeritus

Administrative Officer

John Bruce Morway, B.S.
The Department of Physics offers undergraduate, graduate, and postgraduate training, with a wide range of options for specialization.

The emphasis of both the undergraduate curriculum and the graduate programs is on understanding the fundamental principles that appear to govern the behavior of the physical world, from phenomena in the small-scale domain of subatomic particles to the large-scale structure of the universe, spanning a spatial range stretching from 10^{-16} cm to 10^{26} cm. At each level of structural organization, active and exciting areas of investigation abound. Topics range from the basic constituents of matter, atomic and nuclear structure, to thermonuclear plasmas, the physics at extremely low temperatures or extremely high pressures, to the evolution of stars, the large-scale structure of the universe, and the mystery of gravity.

The Department has extensive facilities for experimental research as described in the section on graduate study. Many of these are accessible to interested undergraduates, in the context of the Undergraduate Research Opportunities Program (UROP). Students are encouraged to enrich their curriculum by taking advantage of this opportunity.

Bachelor of Science in Physics

Course VIII

An undergraduate degree in physics provides a good basis, not only for graduate study in physics and related fields, but also for professional work in such fields as astronomy, biophysics, engineering and applied physics, and geophysics. Many students have also found it to be an excellent preparation for subsequent graduate work in professional schools of medicine, law, and management. The undergraduate curriculum in physics offers students the opportunity to acquire basic competence in the fundamentals of both experimental and theoretical physics. The central core of requirements for the Bachelor of Science is designed not only to accomplish this objective but also to provide opportunity for students to select from a considerable variety of subjects and to proceed at the pace and degree of specialization best suited to their individual capabilities.

It is suggested that students in the second year take 6.071 Introduction to Electronics or 6.002 Circuits and Electronics in the second term in order to acquire a familiarity with and a knowledge of some topics in electrical engineering. Adequate elective time is made available in the second year, and students may wish to take a mathematics subject beyond 18.03 Differential Equations at this time. During the second year, the prospective physics major should also take a project laboratory (preferably, but not necessarily, the project laboratory administered by the Department) or some departmentally approved substitute, and get a first exposure to 8.04 Quantum Physics.

The departmentally prescribed subjects 8.05 Quantum Physics II, 8.13 and 8.14 Experimental Atomic Physics I and II are normally taken in the third year. This is also an appropriate time for students to take some of the restricted elective subjects. It is usual to begin the theoretical physics sequence with 8.06 Mechanics II in the second term of the third year. Students are urged to explore with faculty advisors possibilities of electing those subjects which are best suited to individual needs at this stage of study.

Bachelor of Science in Physics

Course VIII

<table>
<thead>
<tr>
<th>General Institute Requirements</th>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>60</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>72</td>
</tr>
<tr>
<td>The Science Distribution Requirement can be satisfied by 8.03 and 18.03 in the Department Program, plus appropriate subjects totaling</td>
<td>12</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>12</td>
</tr>
</tbody>
</table>

Departmental Program

Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)

Required Subjects:

- 8.03 Physics III, 12; 8.02, 18.02
- 8.04 Quantum Physics I, 12; 8.03, 18.03
- 8.05 Quantum Physics II, 12; 8.04
- 8.08 Statistical and Quantum Physics, 12; 8.05
- 8.13 Experimental Atomic Physics I, 15; 8.04
- 8.14 Experimental Atomic Physics II, 15; 8.04, 8.05
- 18.03 Differential Equations, 12; 18.02
- Thesis (12 units)

Restricted Electives: 36

Two subjects given by the Department of Mathematics beyond 18.03 (24 units)

At least one subject given by the Department of Physics in addition to those listed above (12 units)

Unrestricted Electives 56

Total Units Required for the S.B. Degree 360

* Alternate prerequisites are also given in the subject description.

1 Students may find it advantageous to elect 6.071 Introduction to Electronics or 6.002 Circuits and Electronics in the second term of the second year, to complete the Science Distribution Requirement.

2 8.11 or 8.12 is suggested. The Institute Laboratory Requirement will not be satisfied by 8.13 or 8.14.

3 8.211 may substitute for 8.04.

4 A thesis of 12 units is required. Not more than 30 units of thesis credit may be included in the minimum of 360 units required for the S.B. degree.

5 Catalogue descriptions indicate subjects which cannot be used for this purpose. Students planning to do graduate work in physics would normally take the theoretical sequence 8.06 and 8.07.
Graduate Study

In the fourth year, the theoretical sequence can be continued with 8.07 Electromagnetism II and 8.08 Statistical and Quantum Physics. Students intending to continue with graduate studies in Physics are encouraged to take both parts of this theoretical physics sequence.

An important component of the physics program is the undergraduate thesis, which is a project carried out under the guidance of a faculty member. Many thesis projects in the recent past have grown out of the Undergraduate Research Opportunities Program. It is advisable that students have some idea of a thesis topic by the middle of their junior year; they are required to submit a thesis proposal prior to registering for 8.07U. In order to introduce students to the research activities in the department, undergraduate physics colloquia are held weekly.

A relatively large amount of elective time usually becomes available during the fourth year and can be used effectively in a variety of ways, in physics or on other subjects.

Inquiries

Additional information concerning degree programs, admissions and financial aid may be obtained by writing to Dr. Alan Lazarus, c/o the Physics Undergraduate Office, Room 4-352, MIT, Cambridge, Massachusetts 02139, (617) 253-4841.

The Department offers programs leading to the degree of Master of Science in Physics, Doctor of Philosophy, and the Doctor of Science.

Master of Science in Physics

The requirements for the Master of Science in Physics are the General Institute Requirements listed in Chapter IV. The master's thesis must represent a piece of independent research work, in any of the fields described below, and carried out under the supervision of a Department faculty member. No fixed time is set for the completion of a master's program; two years of work is a rough guideline. There is no language requirement for this degree.

Doctor of Philosophy and Doctor of Science

Candidates for the Doctor of Philosophy or Doctor of Science are expected to enroll in those basic graduate subjects that will prepare them for the General Examination, which must be passed no later than in the sixth term after initial enrollment. No specific subjects of study are prescribed, except for the requirement of two subjects outside the candidate's field of specialization (breadth requirement). There is no language requirement. The doctoral thesis must represent a substantial piece of original research, carried out under the supervision of a Department faculty member.

The Department faculty offer subjects of instruction, and are engaged in research in a variety of fields in experimental and theoretical physics. This broad spectrum of activities is organized in the divisional structure of the Department, presented below. Graduate students are encouraged to contact faculty in the division of their choice to inquire about opportunities for research, and to pass through an apprenticeship (by signing up for "Special Problems in Graduate Physics") as a first step toward an engagement in independent research for a doctoral thesis.

Research Divisions

The Astrophysics Division of the Department has a varied program of observations across the entire electromagnetic spectrum, with principal emphasis on the radio, infrared, and X-ray parts, where modern electronic methods must be used. This work is complemented by theoretical work emphasizing high-energy phenomena, stellar evolution and galactic structure. Astrophysical plasmas are also an important area of study, both through the use of space probes and by complementary theoretical study. Research in astrophysics is a rapidly growing field at MIT, and, because of the strongly interdisciplinary and interdepartmental character of work in this area, a fuller description of it is found in the section entitled Astronomy and Astrophysics in Chapter V.

Research activities in the Division of Nuclei and Particles include the broad fields of nuclear reaction and heavy ion physics, intermediate-energy nuclear structure physics, and high-energy fundamental particle physics. The experimental research in these areas is based on MIT's 400 MeV Bates Linear Accelerator and on the accelerators at Brookhaven National Laboratory, the Fermi National Accelerator Laboratory in Batavia, Illinois, the Stanford Linear Accelerator, CERN (Geneva), and the National Bureau of Standards.

The large and active program in Solid-State Laser, Plasma, and Atomic Physics provides students with ample opportunities for study and research in these fields. Equipment is available for spectroscopic studies at radio, microwave, infrared, and optical frequencies. Currently available are facilities for the production of low temperatures, high pressures, and magnetic fields up to 100,000 gauss and for the study of matter using neutron diffraction techniques. A magnet capable of producing a steady magnetic field of 250,000 gauss is available at the Bitter National Magnet Laboratory. The 5,000 kw MIT Research Reactor is used for neutron diffraction studies, and the extensive facilities of the Information Processing Center and the Laboratory for Computer Science are available for research involving high-speed computation.

The chief emphasis of the Nuclear and Particle Theory research at the Center for Theoretical Physics is on understanding the fundamental particles of nature, as revealed by their interactions and by their decay, and on the characteristic quantum modes of motion of systems composed of strongly interacting particles such as atomic nuclei. Work is also conducted on theoretical astrophysics, as well as on the properties of other forms of matter. In all of this research, close contact is maintained with experimentalists, both within MIT and elsewhere.
The Center for Theoretical Physics houses a fairly large group of theorists including professional staff, postdoctoral fellows, senior visitors, and graduate students engaged in research in theory. Opportunities for communication and collaboration are maximized within the Center; lively interaction among the many specialists in the various areas of interest is characteristic of this MIT group and is one of the major sources of the Center's strength.

Much of the research in the Department is carried out as part of the work of various interdepartmental laboratories and centers, including the Laboratory for Nuclear Science, the Research Laboratory of Electronics, the Spectroscopy Laboratory, the Center for Materials Science and Engineering, the Center for Space Research, the Bitter National Magnet Laboratory, the Plasma Fusion Center, and the Program on Sciences and Technology and International Security. These facilities, most of which are described in Chapter V, provide close relationships among the research activities of a number of MIT departments and give students opportunities for contact with research carried out in disciplines other than physics.

Entrance Requirements for Graduate Study

Students intending to pursue graduate work in physics should have as a background the equivalent of the requirements for the Bachelor of Science in Physics from MIT. However, some deficiencies may be removed in the course of graduate work.

Inquiries

Additional information on degree programs, research activities, admissions, financial aid, teaching and research assistantships may be obtained by writing to Professor George Koster, Physics Graduate Office, Room 6-107, MIT, Cambridge, Massachusetts 02139, (617) 253-4851.
Joint Program in Oceanography and Oceanographic Engineering with the Woods Hole Oceanographic Institution

MIT and the Woods Hole Oceanographic Institution (WHOI) on Cape Cod offer joint doctoral degrees in oceanography and both doctoral and professional degrees in oceanographic engineering. Graduate study in oceanography encompasses virtually all of the basic sciences as they apply to the marine environment: physics, chemistry, geology, geophysics, and biology. Oceanographic engineering allows for concentration in the major engineering fields of civil, mechanical, electrical, and chemical, as well as materials science and ocean engineering. The graduate programs are administered by joint MIT/WHOI committees drawn from the faculty and staff of both institutions. Students accepted to the Joint Program have access to the extensive intellectual and physical resources available for advanced study at both Woods Hole and MIT.

The Joint Program involves several departments at MIT — Earth, Atmospheric, and Planetary Sciences and Biology in the School of Science; and Chemical Engineering, Civil Engineering, Electrical Engineering and Computer Science, Materials Science and Engineering, Mechanical Engineering, and Ocean Engineering in the School of Engineering. Details concerning entrance requirements and examinations may be found in the descriptions of each individual department. Financial aid, offered as research assistantships to most entering graduate students, is sufficient to cover tuition and fees and provide a stipend. Upon admission, students register in the appropriate MIT department and at WHOI simultaneously, and are assigned academic advisors at each institution. Because the Joint Program is not affiliated with any one particular MIT department, it is important that students who wish to be considered for the Joint Program indicate this intent on the front of their applications.

Research at WHOI is devoted to using the basic sciences and engineering to gain a better understanding of the marine environment. Some 200 scientists and technicians and a support staff of about 600 work in five large laboratories and smaller facilities located in Woods Hole and on the nearby Quissett Campus. Another 75 people operate three research vessels ranging from 177 to 245 feet in length, the deep-diving submersible ALVIN, and a small coastal vessel. Computer services are provided within WHOI and include links to other institutions. The library facilities are shared with the Marine Biological Laboratory and are supplemented by collections of the Northeast Fisheries Center of the National Marine Fisheries Service and the US Geological Survey's Office of Marine Resources Branch of Atlantic Geology, all located in Woods Hole. The village is situated on the southwest corner of Cape Cod, about 80 miles from Boston.

Marine Geology and Geophysics

The goal of Marine Geology and Geophysics is to understand the physical and chemical processes that determine the structure and evolution of the ocean basins and their margins. Research is being conducted in a wide range of specialties including micropaleontology, paleoceanography, petrology and volcanic processes, seismology, gravity, magnetics, heat flow, sediment dynamics, and isotope geochemistry. The Department of Earth, Atmospheric, and Planetary Sciences at MIT offers programs with WHOI in marine geology and geophysics which lead to the Doctor of Science or Doctor of Philosophy.

Biological Oceanography

Biological oceanography seeks to describe the biological processes which are active in the marine and bordering environments. The research of biological oceanographers is diverse, ranging from ecology and systematics to biochemistry and physiology. The programs in biological oceanography are coordinated by the Department of Biological and WHOI, and may involve research in other MIT departments such as Nutrition and Food Science. The programs lead to the Doctor of Science or Doctor of Philosophy.

Oceanographic Engineering

Oceanographic engineering involves the application of physics and the engineering sciences to the study of oceanic processes and the design of instruments, systems, and structures required to observe, measure, and work in the ocean. The Departments of Chemical Engineering, Civil Engineering, Electrical Engineering and Computer Science, Materials Science and Engineering, Mechanical Engineering, and Ocean Engineering offer joint programs with WHOI in oceanographic engineering. The programs lead to the Engineer, Doctor of Science, or Doctor of Philosophy degree.

Inquiries

Application for admission to the Joint Program should be made on the MIT Graduate Application Form which may be obtained from the Director of Admissions at MIT or from the Education Office at WHOI. Requests for further information may be addressed to the Dean of Graduate Studies, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, (617) 548-1400, x2200; or to the MIT Joint Program Office, Room 26-167, Cambridge, Massachusetts 02139, (617) 253-7544.
In 1977, MIT established the Whitaker College of Health Sciences, Technology, and Management to provide a major academic and administrative focus for the extensive development of health-related activities at the Institute. The College represents a major commitment by MIT to marshal its resources and strengths in science, engineering, and management in order to foster progress in the biological and health sciences and to improve the quality of health care. Since health-related activities in education and research transcend the concerns of any single department or School of the Institute, the term "college" is being used for the first time at MIT.

The concept of Whitaker College derives from MIT's belief that biomedical and health-related problems are complex in nature and require the combined efforts of a wide range of disciplines for their ultimate solution. These disciplines include not only biology and chemistry, but also physics, mathematics, various branches of engineering, computer science, economics, and management. Faculty members involved in the educational and research programs of Whitaker College hold joint appointments in the College and in other Schools, departments, and interdisciplinary laboratories at MIT.

The director of Whitaker College is Dr. Emilio Bizzi, Eugene McDermott Professor in the Brain Sciences and Human Behavior.

In defining the programmatic objectives of Whitaker College, MIT has sought to identify the fields in which the College can play an especially effective role by developing new activities, fortifying existing programs, and amplifying opportunities for faculty members and students. Initially, the College has identified four intellectual foci, which now serve as the basis for its divisions: neurosciences (including neurobiology, systems neuroscience, and communication sciences); biomedical engineering and biophysics (including biological imaging, under way in the College's Electron Microscopy Laboratory); human biology and experimental medicine; and health policy and management. Several graduate programs are being developed in the College. The Ph.D. program in health policy and management (described here) admitted its first class in September 1983. The interdepartmental Ph.D. program in Biomedical Engineering also operates under the auspices of the College. (See the program description in Chapter V of this catalogue.) In addition, the Ph.D. program in Radiological Sciences is operated under the joint auspices of the College and the Department of Nuclear Engineering. (See the program description under the Department of Nuclear Engineering.)

The Doctoral Program in Health Policy and Management

The goal of this program is to generate an understanding of the managerial/institutional context that determines the allocation of healthcare resources, as well as an understanding of the scientific and technological issues in medicine. The program draws on faculty from the Departments of Economics and Political Science and the Sloan School of Management, as well as other departments and Schools throughout the Institute. In addition, doctoral candidates benefit from the rich university environment and special strengths in academic medicine in the Greater Boston area.

The program offers a three- to four-year doctoral curriculum for new entrants into the health policy and management field. The program may be completed in a shorter time by matriculants with advanced preparation.

The core curriculum of the program provides the scientific methodology and tools needed to understand health policy and management, and offers alternative perspectives on ways to resolve policy and management issues in the field. Degree candidates are required to specialize in a related underlying discipline. Each Ph.D. candidate develops an advanced track of disciplinary study, such as economics, political science, or management. Students may design alternative courses, subject to faculty approval. In addition, each doctoral student is expected to carry out an independent research project, preferably in a clinical setting. The doctoral dissertation generally requires one year of field study and/or analysis, after completion of the qualifying examinations.

Applications are encouraged from physicians, medical students, and others who have completed two years of basic medical sciences or who demonstrate equivalent knowledge or preparation. All successful candidates will receive stipends to defray tuition and living expenses from funds granted to MIT by the Henry J. Kaiser Family Foundation. Applications for admission to the program may be obtained from Stan N. Finkelstein, M.D., Director, Laboratory for Health Care Studies, E25-143, MIT, 77 Massachusetts Ave., Cambridge, MA 02139, (617) 253-5285.
Harvard-MIT Division of Health Sciences and Technology

(HST)

Harvard University and MIT are engaged in a major collaborative effort, the Harvard-MIT Division of Health Sciences and Technology, designed to focus science and technology on human health needs. In this Division, the complementary resources and strengths of both institutions are being directed to the education of physicians, medical engineers, medical physicists, and other health scientists, and to the effective application of modern science and technology to major health problems.

The Division represents a fusion of the growing interests of MIT and Harvard in developing new patterns of education and research in health and medicine and in more effectively utilizing science and engineering in meeting important health needs. The Division is actively engaged in education, research, and development.

The Division offers two educational programs: a curriculum in Biomedical Sciences leading to the M.D. degree, and a curriculum in Medical Engineering and Medical Physics leading to the Ph.D.

The educational program in Biomedical Sciences is oriented toward students with a strong interest and background in quantitative science, especially in the biological, physical, engineering, and chemical sciences. The subjects in human biology developed for this curriculum represent the joint efforts of life scientists and physicians, physical scientists and engineers, selected from the faculties of both universities. The subjects are presented at Harvard Medical School or at MIT.

The programs of study are formulated to meet the interests and needs of the individual student. The student is encouraged to pursue advanced study in areas of interest that may complement the courses offered in the Division. Such study may be undertaken as part of the curriculum leading to the M.D. degree or may be pursued in a combined M.D.-master's degree or M.D.-Ph.D. program. HST students in the Program join the students of the regular Harvard Medical School curriculum in the clinical clerkships. HST students are expected to choose a field of concentration in which they spend approximately one half of their elective time. Faculty tutors provide guidance in the choice of subjects and in the pursuit of independent study. Prior to graduation, students are expected to present evidence of scholarly work in the form of a thesis based on laboratory research, clinical investigation, critical analysis of a significant medical problem, or other activities approved by the faculty tutors.

The programs of study are designed to develop physicians with a strong quantitative science base, e.g., a cardiologist with knowledge of fluid mechanics and electrophysiology; an internist with experience in molecular biology and biochemistry and qualified to study and treat metabolic disorders; a neurologist well versed in circuit theory or the physics of communications science; an orthopedic surgeon with extensive knowledge of mechanical engineering; a physician-administrator with extensive knowledge of the planning and management of health services.

Twenty-five students are admitted each year as candidates for the M.D. degree at Harvard Medical School. Qualified undergraduates at Harvard, Radcliffe, and MIT are eligible to apply to the Division in their junior or senior year (without prejudice to future possible applications to the Harvard-MIT program or the regular Harvard Medical School curriculum). Early admission permits them to begin studies in the medical curriculum while still engaged in undergraduate studies. For these students, it is not essential that all requirements for admission to Harvard Medical School be completed prior to enrollment in the Division (but must be no later than one year after matriculation in the HST Division). Further details on the program and application forms may be obtained from the Office of Admission, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115. Applications must be submitted by October 15 of the year prior to desired matriculation.

The doctoral curriculum in Medical Engineering and Medical Physics is intended to educate individuals who will be well qualified, as engineers and/or physicists with extensive knowledge of human biology and medicine, to engage in clinical investigation on important problems in medicine. These individuals will serve to develop the profession of medical engineering and medical physics, a profession focused on the application of science and technology to clinical medicine and the provision of health services.

There are four major components to the curriculum: 1) an S.M. degree program in engineering or physics requiring 66 units and a thesis; 2) advanced subjects in human biology and medical engineering developed specifically for this program; 3) a clinical year in which students participate in both patient care activities and clinical research activities under the supervision of engineer-physicist-physician teams; and 4) doctoral thesis research on a fundamental and clinically important problem in medical engineering or medical physics.

Faculty

The Director of the Division is Dr. Irving M. London, Professor of Medicine at Harvard University and MIT and Grover M. Hermann Professor of Health Sciences and Technology, and Professor of Biology, at MIT. The Associate Director is Professor Ernest G. Cravalho, Matsushita Professor of Mechanical Engineering in Medicine. There are over 200 faculty members from both MIT and Harvard Medical School associated with the Division.

Further information about the Division, including a complete listing of the faculty and description of all programs, may be obtained from the office of the Director of the Division, Room E25-519 at MIT, (617) 253-4305.

Information on the interdepartmental study opportunities in biomedical engineering may be found in Chapter V.

The Center for Health Effects of Fossil Fuels Utilization, which is under the aegis of the Division and the Energy Laboratory, is also described in Chapter V.

1 The subjects HST 010, HST 030, HST 061, HST 090, HST 100, HST 110, HST 130J, HST 580, HST 581J, and HST 590, totaling 120 units.
ROTC Programs

Air Force ROTC Program

The Air Force ROTC program is designed to prepare students for commissions in the United States Air Force upon successful completion of an MIT Course. The Office of Aerospace Studies offers two programs — one of four years and one of two years — for MIT students to qualify for commissions.

The Four-Year Program

The four-year program consists of classroom and Leadership Laboratory work during the four undergraduate years and one summer training period of four weeks between the sophomore and junior years at a United States Air Force Base. It is possible for students with three academic years remaining to enroll in the four-year program by combining the first two years.

While in Air Force ROTC, students are furnished uniforms and equipment required for the program. Undergraduate students enrolled in the four-year program are offered an opportunity to compete, on a nationwide basis, in the college scholarship program. These scholarships provide full coverage for tuition, required books, and required Institute fees plus $100 monthly for subsistence. At MIT, the four-year Air Force ROTC Scholarship is worth approximately $40,000. Scholarships are also available for 3½, 3, 2½, and 2 years. Non-scholarship students in the final two years of the program also receive the $100 per month subsistence allowance.

By the beginning of the junior year all students are required to have signed a formal agreement that they will complete the last two years of Air Force ROTC and accept a commission as a Second Lieutenant in the United States Air Force when granted a degree from MIT. The term of active duty commitment after graduation is six years after completion of flight training; for navigators it is five years. For pilots, the required term of service is six years after completion of flight training.

Students wishing to pursue an advanced degree may apply for delayed entry to active duty. Such applications do not guarantee that the newly commissioned officer will be allowed to delay entry onto active duty.

The Two-Year Program

The two-year program is for those students who do not complete the first two years of the four-year Air Force ROTC program. Such students may apply as undergraduates (during their sophomore or subsequent years) or graduates if they have a minimum of two years remaining in their academic program at MIT. In lieu of completing the freshman and sophomore years of the four-year program, these students receive six weeks of field training at an Air Force base during the summer preceding their entry into Air Force ROTC at MIT. They receive the same benefits and complete the same academic program required of the upperclass four-year students. Students applying for the two-year program may also compete for scholarships.

Program of Instruction

The program of instruction is listed below. None of the subjects listed gives MIT credit.

First year (6 units): AS 11, AS 111, AS 12, and AS 121. Second year (6 units): AS 21, AS 211, AS 22, and AS 221. Third year (14 units): AS 31, AS 311, AS 32, and AS 321. Fourth year (14 units): AS 41, AS 411, AS 42, and AS 421. These subjects are described in Chapter VII. In addition to this Air Force curriculum the student will take necessary subjects prior to graduation from an approved list of MIT elective subjects. Scholarship recipients must take a writing composition course and at least one term of a foreign language.

Eligibility Requirements

To be eligible to compete for a commission through the Air Force ROTC program at MIT students must be: 1) citizens of the United States by the time they sign a formal agreement with the Government; 2) physically qualified in accordance with existing Air Force regulations; 3) enrolled at MIT as a full-time student or enrolled at Harvard, Tufts, or Wellesley, where a consortium agreement allows cross-enrollment into AFROTC at MIT.

Application Procedure

Eligible freshmen can sign up for the AFROTC Program by simply electing AFROTC subjects (AS11 and AS111) when they arrive on campus; however, it is advisable that interested students contact the AFROTC office as soon as they have been notified of admission to the Institute. Other interested students can make application by a personal visit to the Office of Aerospace Studies, 20E-111, MIT, Cambridge, Massachusetts 02139, or by calling (617) 253-3755. The director of the program is Emmanuel J. Scivoletto, Colonel, US Air Force, and Visiting Professor of Aerospace Studies.

Army ROTC Program

All students at MIT, Harvard, Tufts, and Wellesley College are eligible to enroll in the Army ROTC Program, hosted at MIT, the completion of which leads to a commission as a Second Lieutenant in the Regular Army, Army Reserve, or Army National Guard. Freshmen and sophomores normally enroll in the standard four-year program, while graduate students and selected undergraduates with two or more academic years remaining may apply for the Army ROTC two-year program. Successful completion of both academic and summer training requirements qualifies the student for commission upon graduation.

The academic portion of the Army ROTC program consists of the Program of Instruction as listed and one related subject per year, plus a one-hour leadership laboratory each week. Although the normal pattern is for the student to progress through the Military Science programs sequentially, individual students may, on a case-by-case basis, be granted credit for part or all of the first two years for appropriate academic or military work experience. Selected subjects may be offered during the Summer Session. Elective subjects accepted for the ROTC program are derived primarily from the humanities, political science, management, and psychology areas. They are intended to instill in the potential officer a balanced appreciation of the development and dynamics of military and social institutions and their interrelationship with society, as well as an understanding of the interactions and management of individuals in groups. The purpose of this integrated approach to ROTC is to develop officers skilled not only in the pragmatics of military science, but in the related human and social institutions as well. The selection of approved elective subjects is not rigid, and any relevant subjects may be selected by the student and approved by the Professor of Military Science. Participation in the first two years of the ROTC program satisfies one-half of the Institute’s Physical Education Requirement.

Students completing the ROTC program will receive their commissions upon graduation and go on to serve as an active duty or reserve officer. The commitment depends upon the student’s choice of commissioning program, scholarship status, and the needs of the service. Commissions are offered in all of the Army’s functional branches with actual branch assignment determined by the needs of the Army, the desires of the student, and the academic background and experience of the student.

Enrollment in the first year of the four-year program is voluntary and does not obligate the student to any type of active duty or reserve.
commitment. ROTC scholarship students continuing the program beyond the freshman year may incur an active duty or reserve duty obligation.

The summer training requirement for students in the four-year program is limited to the six-week ROTC Advanced Camp which normally is completed between the junior and senior years. Students at the Advanced Camp are paid at the rate of half the pay of a Second Lieutenant, and are furnished food, housing, equipment, and medical care at Government expense, plus mileage to and from the camp location.

Two-, three-, and four-year scholarships are available each year, and are awarded on the basis of a national competition. In general, the scholarships cover the cost of tuition, books and supplies (a flat rate), and fees, plus a stipend of $100 per month. Non-scholarship students in the final two years of the program receive the $100 per month stipend. Details on the scholarship program may be obtained by contacting the Army ROTC Department.

In addition to the requirements outlined above, Army Airborne, Ranger, Air Assault, Aviation, Northern Warfare, and other Military schooling and training programs are available on a voluntary basis to qualified students. Full details on these programs are also available from the Army ROTC Department.

Program of Instruction

One Institute elective subject is required for each year in addition to the following (none of which gives MIT credit). First year (6 units): MS 111 and MS 121. Second year (9 units): MS 21, MS 211, and MS 221. Third year (9 units): MS 31, MS 311, and MS 321. Fourth year (9 units): MS 41, MS 411 and MS 421. These subjects are described in Chapter VII.

Eligibility Requirements

The requirement for entry into the Basic Course of the four-year program is that the student must be able to qualify for a commission before reaching his or her 28th birthday. A non-citizen may participate in and complete the first two years of the program, but must at least become a permanent resident alien in order to enroll in and complete the final two years, and receive a commission in the reserves.

Qualified applicants for the two-year program must successfully pass an aptitude test and an Army physical examination. Veterans may receive credit for the first two years of the program.

Application Procedures

Application for the four-year program normally is effected by enrollment in MS 111. Students enroll in this course during the regular registration period at MIT. The student should contact the Army ROTC Department if additional information is desired.

Students interested in the two-year program should apply through the Army ROTC Department. Further details may be obtained from the Army ROTC Department, 20E-126, MIT, Cambridge, Massachusetts 02139, (617) 253-4471. The director of the program is Lieutenant Colonel James P. Hassett, Corps of Engineers, Visiting Professor of Military Science.

Naval ROTC Program

The purpose of the Naval ROTC program is to provide instruction and training in essential Naval Science subjects, which when coupled with the prescribed MIT engineering or science curricula, qualify selected students for commissions in one of the many specialties in the Navy. Primary officer program options available to commissionees include nuclear propulsion training, submarine, surface or flight training, and the Marine Corps.

The Naval ROTC unit at MIT offers two officer development programs. The Scholarship Program provides full tuition, certain fees, use of books and uniforms, and $100 per month for two, three, or four years. All scholarship students incur a four- or five-year active duty obligation depending on duty option.

The College Program consists of both four- and the two-year programs. These students receive Naval Science books and all uniforms in addition to $100 per month during the last two academic years. Students in this program must complete one summer cruise after their junior year and incur a three-year active duty obligation.

NROTC Navy-Marine Corps College Program students may apply for the NROTC Three-Year Scholarship Program during their freshman year of a four-year curriculum (or second year of a five-year curriculum). If selected as scholarship students through the annual competitive selection procedures, they receive scholarship benefits for the last three years of college. College Program students may also gain scholarship status by competing for one of the Chief of Naval Education and Training scholarships, normally offered semiannually, by obtaining a Professor of Naval Science nomination.

Two-year Scholarship and College Program students attend the six-week Naval Science Institute at Newport, Rhode Island prior to beginning the junior year. This is to bring their training up to the point of the four-year students before entering the advanced course. All students receive travel costs to and from summer cruise, as well as the current active duty pay rate during the cruise.

Harvard, Wellesley College, and Tufts students are eligible for both the Scholarship and College programs.

Upon completion of the program and receipt of a Bachelor of Science from MIT, the student is commissioned as an Ensign, US Navy or 2nd Lieutenant, USMC, in the case of Scholarship Program students, and as Ensign, US Naval Reserve or 2nd Lieutenant, USMC Reserve in the case of College Program students. All
newly commissioned officers report directly to active duty. Upon completion of the active duty period, the officer may be released to inactive duty, but must retain the commission for a total of six years from the date of its original acceptance.

Program of Instruction

The NROTC program of instruction encompasses the science of nautical matters and principles of management — all vital to being a naval officer. The program has three interacting and equally important aspects. The first aspect consists of the professional academic subjects taught by the Office of Naval Science. The second aspect consists of the academic subjects taught by the Institute. These subjects comprise those outlined, as well as one year of calculus and physics. The third aspect consists of the professional training gained from leadership laboratories (two hours a week throughout the year), from tours conducted to local naval facilities, from short cruises aboard naval vessels, and from practical navigation and piloting practice conducted aboard training craft at Newport, Rhode Island.

Students entering their sophomore year, who are eligible for the four-year College Program, can complete the requirements for commissioning in three years. This is accomplished by beginning with the second-year Naval Science curriculum and making up the two missed Naval Science subjects (NS 11 and NS 12).

While completing degree requirements in one of the MIT Courses, all students in the Naval ROTC program must take the following subjects prior to graduation (none of which gives MIT credit). First year (9 units): NS 11 and NS 12. Second year (10 units): NS 21 and NS 22. Third year (14 units): NS 31 and NS 32. (NS 12, NS 21, and NS 32 are normally given in conjunction with MIT accredited seminars.) Fourth year (8 units): NS 41 and NS 42. Second-year students must also take a modern Indo-European or Asiatic language. Marine option only: NS 33 or a staff-specified MIT subject such as STS 321, in lieu of NS 31 and NS 32; NS 34 in lieu of NS 32; and NS 43 in lieu of NS 42. These subjects are described in Chapter VII.

Eligibility Requirements

To be eligible for the four-year Naval ROTC program, an entering student must be: 1) a citizen of the United States; 2) at least 17 years of age and not more than 25 years of age by June 30 of the year of college graduation; 3) physically qualified, and total visual acuity must meet the current standards, correctable to 20-20 by the use of lenses.

Application Procedure

Further inquiries regarding the MIT program should be addressed to the Commanding Officer, NROTC and Naval Administrative Unit, 20E-125, MIT, Cambridge, Massachusetts 02139, or any local US Navy Recruiting Station.
Description of Subjects
Explanatory Notes

The subject descriptions given in this chapter are subject to change. The final list of subjects to be given in 1984-85 will be published with the class schedules booklet prior to the beginning of each term.

The information given below the number and name of the subject is as follows:

- The number(s) of prerequisite subjects, if any. Numbers in italics indicate subjects which may be taken simultaneously with the subject described. Prerequisites may be waived by the instructor in charge for particularly well-qualified students.

- The year classification (and term) in which the subject is normally scheduled. "U" is an undergraduate subject; "G" is a subject given primarily for graduate students.

- SD or LAB or HUM-D following the term indicates that the subject is on the approved list for Science Distribution, Laboratory, or Humanities Distribution credit.

- The year offered comment states "Next offered 1985-86," "Not to be offered 1985-86," or there is no comment if it is offered both 1984-85 and 1985-86.

- The time distribution of the subject, showing in sequence the units allotted to: recitation and lecture; laboratory, design, or field work; and preparation. Each unit represents 14 hours of work. The total unit credit for a subject is obtained by adding together all the units shown. One unit of lecture or recitation credit is equivalent to one semester hour. "Arr." indicates that time units are specially arranged.

- The name of the instructor(s) in charge, when known at press time.

- (New) below the subject number and title indicates a new offering.

- (Revised Unit) or (Revised Content) below the subject number and title indicates a change from the previous catalogue.

- A renumbered subject is so indicated in parentheses below the current number.

- J at the end of a subject number indicates that the subject is offered jointly by more than one department. The subject numbers of the other departments are indicated (Same subject as J).
Fundamentals

1.02 Civil Engineering Systems Analysis I
Prereq.: 18.02
U (1) 3-2-7
Introduction to mathematical programming. A review of unconstrained and constrained programming including Kuhn-Tucker conditions and convexity. The role and use of Lagrangian and duality theory, linear programs and the simplex method, network models, integer and dynamic programming models. Mini-projects during required recitation period in conjunction with 1.04. Simultaneous registration with 1.04 required, except by permission of instructor.
Y. Sheffi

1.03 Civil Engineering Systems Analysis II
Prereq.: 1.02, 18.03
U (2) 3-2-7
Elements of probability and statistics with emphasis on engineering applications. Probability topics include analysis of Bernoulli Events, common distributions including exponential, Poisson, normal, lognormal, and extreme value. Statistics include point and interval estimation and hypothesis test. Mini-projects during required recitation in conjunction with 1.05. Simultaneous registration with 1.05 required except students in Course I-A Option 2, or by permission of instructor.
G. B. Baecher

1.04 Behavior of Physical Systems I
Prereq.: 8.01, 18.02
U (1) SD 3-2-7
Applies statics, geometric compatibility, and force-deformation relations in analysis of simple determinate and indeterminate structures. Reactions, internal forces, and deflections for beams and trusses. Introduces stress-strain behavior of construction materials, stress and strain in 2-dimensions (Mohr's circle), and stability and buckling. Exercises using computers. Mini-projects during required recitation period in conjunction with 1.02. Simultaneous registration with 1.02 required, except by permission of instructor.
R. V. Whitman

1.05 Behavior of Physical Systems II
Prereq.: 1.04, 18.03
U (2) 3-2-7
Applies basic physical principles to the engineering analysis of solid and fluid systems. Includes static equilibrium of fluids, conservation of mass and momentum of moving fluids, thermodynamic properties, first and second laws of thermodynamics. Applications to fluid forces on structures, flow in conduits and channels, state changes, mechanical and thermodynamic energy cycles. Mini-projects during required recitation period in conjunction with 1.03. Simultaneous registration with 1.03 required, except by permission of instructor.
K. D. Stoltenbach

For additional undergraduate introductory subjects, see: 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80.

Undergraduate Laboratory Subjects

1.02 Transportation Laboratory
Prereq.: —
U (2) LAB 0-3-3
Laboratory experience with the properties of transportation systems. Students formulate an experiment based upon readings and discussions of current transportation problems. Emphasis on formulation of hypotheses and effects of different types of transportation systems; planning of experiments and data collection in the field to test these hypotheses; analysis of results; development of recommendations for changes in transport systems plans and policies.
Y. Sheffi

1.105J Structural Engineering Laboratory
(Same subject as 4.315J)
Prereq.: —
U (1) LAB 0-3-3
Introduces students to properties of structural materials and behavior of simple structural elements and systems through a series of experiments. Several laboratory projects involve the student as both the designer and fabricator of a structure.
W. P. Zalewski

1.106 Laboratory Projects in Environmental Fluid Mechanics
Prereq.: —
U (1) LAB 0-3-3
The measurement, analysis, and modeling of physical parameters such as velocity, salinity, temperature, dissolved solids, etc., in natural water bodies. Application of these techniques in the context of laboratory experiments and one or more field studies. Certain experiments complement lectures in 1.60, but concurrent registration in 1.60 or previous fluid mechanics experience is not required.
E. E. Adams
1.107 Aquatic Chemistry and Biology Laboratory
Prereq.: 5.40 or 5.11
U (2) LAB 2-6-4
Field sampling and laboratory analysis techniques for determining chemical (e.g., salinity, O₂, nutrients, haloforms, petroleum hydrocarbons) and biological (e.g., coliforms, chlorophyll) parameters in aquatic samples. Both wet-chemical and instrumental (e.g., atomic absorption spectrometry and gas chromatography) methods. Three field trips are taken to acquire "real world" samples for analysis and interpretation of the data in terms of water quality and the processes affecting it. Permission of instructor required.
P. M. Gschwend, S. W. Chisholm

General Methods and Concepts

Listed below are a number of subjects concerned with general methods and concepts rather than specific applications areas. Topics include:

Information Systems and Computational Methods

1.12 Computer Models of Physical and Engineering Systems
Prereq.: 18.02, 8.01
U (2) SD 3-0-9
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
S. Shyam Sunder

1.121 Numerical Modeling of Physical Systems (A)
Prereq.: 18.03, 1.04
G (1) 3-0-6
Introduces computational methods for predicting the response of physical systems. Provides numerical analysis background for structural, geotechnical, hydrodynamics, and environmental modeling subjects. Topics: matrix algebra, solution techniques for linear and nonlinear systems of algebraic equations, eigenanalysis, Fourier analysis, finite difference methods, numerical integration of time-dependent equations, weighted residual methods. Emphasizes development and use of computer programs.
S. Shyam Sunder

Analytical Mechanics

1.131 Analytical Methods in Physical Systems (A) (Revised Unit)
Prereq.: 18.03
G (1) 4-0-8
C. C. Mei

1.132 Advanced Engineering Mechanics (A)
Prereq.: 1.121, 1.51
G (2) 3-0-6
V. C. Li

1.133 Geomechanics (A)
Prereq.: 1.572
G (1) 3-0-6
Civil Engineering

Transmitting boundaries and infinite elements. Computational techniques and applications to certain constructed facilities such as nuclear power plants, buried structures, pipelines, tall buildings, bridges.

E. A. M. Kausel

1.137 Studies in Analytical Mechanics (A)
Prereq.: Permission of Instructor
G (1, 2, S) Arr.
Individual study of advanced subject material under staff supervision. Information: G. B. Baecher.

For additional related subjects see: 1.351, 1.382, 1.541, 1.571, 1.572, 1.63, 1.64, 1.691.

Engineering Systems, Economics, and Management

1.143J Mathematical Optimization Techniques (A)
(Revised Unit)
(Same subject as 13.622J)
Prereq.: Permission of Instructor
G (1) 3-0-9
See description under subject 13.622J. D. H. Marks, H. N. Psaraftis

1.146 Engineering Systems Analysis (A)
Prereq.: Permission of Instructor
G (1) 3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page. R. de Neufville, J. P. Clark

1.147J Applied Microeconomic Analysis (A)
(Same subject as 14.110J, CTS 110J)
Prereq.: 14.01 or 1.01J
G (1) 3-0-6
See description under subject 14.110J. W. C. Wheaton

1.148J Economics of Project Evaluation (A)
(Same subject as 14.111J)
Prereq.: 14.03 or 14.120
G (2) 3-0-6
See description under subject 14.111J. J. Rothenberg

For additional related subjects see: 1.202J, 1.203J, 1.207, 1.283J, 1.284J, 1.44, 1.70, 1.731. Subjects dealing with management of engineering systems are: 1.253, 1.259, 1.40-1.487J, 1.78.

Engineering Risk Assessment and Probabilistic Analysis

1.151 Risk Assessment in Engineering I (A)
Prereq.: Permission of Instructor
G (1) 3-0-6
Quantitative analysis of uncertainty in planning, design, construction, and operation of engineered facilities. Interprets fundamentals of probability, random processes, statistics, and decision analysis in the context of engineering applications, in particular, description of variability of loads and environmental conditions, material properties, performance prediction, system reliability analysis, and risk-based decision analysis.
E. Vanmarcke, D. Veneziano

1.152 Risk Assessment in Engineering II (A)
Prereq.: 1.151
G (2) 3-0-6
D. Veneziano, E. Vanmarcke

1.155 Engineering Risk-Benefit Analysis (A)
Prereq.: 18.02
G (2) 3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page. A. W. Drake, A. R. Odoni

For additional related subjects see: 1.203J, 1.34, 1.44, 1.581, 1.587, 1.711, 1.712, 1.732.

Institutions and Public Policy

1.165 Introduction to Technology and Law
Prereq.: —
U (1) 3-0-9
School-Wide Elective Subject. Description given at end of this chapter on SWE page. J. D. Nyhart

For additional related subjects, see: 1.254J, 1.78, 1.811J, 1.812J.
Transportation

1.20 Transportation Systems Analysis
Prereq.: 1.03
U (1)
4-0-8

1.20J Transportation Systems Analysis (A)
(Same subject as CTS 100J)
Prereq.: Permission of Instructor
G (1)
3-0-6

Introduces the analysis of passenger and freight transportation systems. Deterministic and stochastic models of system performance. Determinants of demand for transportation: travel behavior, logistics analysis, and location theory. Analyzes transportation networks including prediction of flow patterns and service quality. Evaluates impacts and design of transportation services and facilities. Additional recitation section required for undergraduates to cover selected topics in more detail.
N. H. M. Wilson

1.202J Transportation Demand and Activity Analysis (A)
(Same subject as CTS 150J)
Prereq.: 1.147J; CTS 100J or 1.201J or 1.20
G (2)
3-0-6

Analysis and forecasting of demand for transportation services including urban, intercity, freight, and passenger demand. Includes theory of transportation demand for individuals and firms, aggregate and disaggregate methods for location and demand analysis, forecasting methods, applications to various sectors. Assumes knowledge of statistics at introductory level. Prerequisites may be met by equivalent subjects.
M. E. Ben-Akiva

1.203J Logistical and Transportation Planning Methods (A)
Prereq.: 6.431, 15.075
G (1)
3-0-9

Quantitative techniques of operations research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick up and delivery systems) and in the planning and design of logistically oriented urban service systems (e.g., fire and police departments, emergency medical services, emergency repair services). Unified study of functions of random variables, geometrical probability, multi-server queuing theory, spatial location theory, network analysis and graph theory, and relevant methods of simulation. Discussion of implementation difficulties.

1.204J Computer Algorithms in Transportation (A)
(Same subject as 16.71J)
Prereq.: 1.00 or 16.008; 1.03
G (2)
3-0-6

Applies software engineering and analytical techniques to transportation systems. Structured programming, data structures, systems analysis and design, and user interfaces. Case studies using operations research techniques for problems in transportation networks, vehicle routing and scheduling, crew scheduling, facility location, and operations management. Extensive micro- and mini-computer assignments. Permission of instructor required.
G. A. Kocur, D. F. X. Mathaisel

1.205 Advanced Transportation Demand Modeling (A)
Prereq.: 1.202J or CTS 150J
G (1)
3-0-6

In-depth consideration of theories and applications of travel and mobility behavior models. Includes: probabilistic choice models, structure of multi-dimensional choice models, statistical estimation techniques, aggregate forecasting and updating procedures. Issues in model specification, including treatment of intra-household interactions and complex travel patterns. Reviews recent modeling efforts to improve existing travel forecasting systems. Term paper required.
M. E. Ben-Akiva

1.207 Transportation Networks Equilibrium Analysis (A)
Prereq.: 1.2, 1.03
G (1) Next offered 1985-86
3-0-9

Analytical and algorithmic approaches to the formulation and solution of transportation network equilibrium assignment problems. Topics: mathematical programming formulation of user and stochastic user equilibrium problems; combined modal split, distribution and assignment formulation; implementation of solution algorithms; applications of discrete choice models. Alternate years.
Y. Sheffi

1.213 Introduction to Freight Transportation
Prereq.: —
U (2)
4-0-6

See description under subject 1.286.
G. A. Kocur, Y. Sheffi

1.214 Public Transportation
Prereq.: 1.20
U (2)
4-0-8

See description under subject 1.258.
N. H. M. Wilson

1.218 Case Study in Transportation Planning
Prereq.: 1.20
U (2)
3-3-9

In-depth study of large-scale transportation project in a real world environment. Review and application of transportation systems analysis techniques and related methodologies. Identification of overall objectives, generation and evaluation of alternative solutions, and development of implementation strategies. Shows how various technical, economic, social, institutional, and political factors must be considered in the problem-solving process. A new problem is selected each year. Alternate years. Information: N. H. M. Wilson

1.231J Planning and Design of Airport Systems (A)
(Same subject as 16.781J)
Prereq.: Permission of Instructor
G (2)
3-0-6

Equal emphasis on current practice and advanced concepts. Airport location and planning with full consideration of economic, environmental, and other impacts. Demand prediction, determination of the capacity of the airfield, estimation of levels of congestion. Design of terminals. Role of airports in the aviation and transportation system. Airport access problems. Optimal configuration of air transport networks and implications for airport development. Economics of the airport. Financing and institutional aspects. Special attention to international practice and developments.
R. de Neufville, A. R. Odoni

1.252J Urban Transportation Planning (A)
(Same subject as 11.380J)
Prereq.: —
G (2)
3-0-6

Development of urban transportation planning over the past two decades. Movement of the transportation policy perspective from limited interpretations to multi-objective planning, and from an emphasis on large-scale facility planning toward an increased reliance on small-scale, traffic management techniques. Discusses in detail the methodological change that has accompanied the evolution in transportation planning. Also presents promising theories for understanding institutional relations and change.
R. A. Gatenheimer

1.253 Regional Transportation Program Development and Management (A)
Prereq.: Permission of Instructor
G (1)
3-0-6

Provides an understanding of the technical and financial management issues to be faced by regional and state transportation program managers in the 1980s. All modes of transportation covered; focus on state, regional, and local issues with consideration of federal influences. Technical issues include analysis of transportation needs, including both engineering and economic analysis.
T. F. Humphrey
1.254J Transportation and Infrastructure in Developing Countries (A)
(Same subject as 11.384J)
Prereq.: Permission of Instructor
G (1)
3-0-6
See description under subject 11.384J.
R. A. Gakenheimer

1.258 Public Transportation Service and Operations Planning (A)
Prereq.: 1.201J
G (2)
3-0-6
Evolution and role of urban public transportation modes, systems, and services, including bus and rail. Description of technological characteristics and their impacts on capacity, service quality, and cost. Current practice and new methods for performance monitoring, route design, vehicle and crew scheduling. Effect of pricing policy and service quality on ridership. Methods for estimating costs associated with a proposed service change. Additional recitation section required for undergraduates to cover selected topics in more detail.
N. H. M. Wilson

1.259 Transit Management (A)
Prereq.: 1.258
G (1) Next offered 1985-86
3-0-6
Management methods of relevance to public transportation systems. Topics: strategic planning management; labor relations; maintenance planning and administration; financial planning; marketing; and management information and decision support systems. Shows how these general management tasks are dealt with in the transit industry and presents alternative strategies. Identifies alternative arrangements for service provision, including different ways of involving the private sector in public transportation.
N. H. M. Wilson

1.261 Transportation Workshop (A)
Prereq.: 1.201J or CTS 100J
G (2)
3-0-6
Integrates technical tools in concerted attack on a specific major transportation problem, such as development of a transportation plan for a carrier or a portion of a metropolitan area. Emphasizes generation and evaluation of alternative transportation solutions and on the ability to adapt technical analysis to data limitations, political considerations, and other realities. Enrollment limited. Information: N. H. M. Wilson.

1.27 Studies in Transportation Engineering (A)
Prereq.: Permission of Instructor
G (1, 2, S)
3-0-6
Individual advanced study of a topic in transportation systems selected with the approval of the instructor. Information: N. H. M. Wilson.

1.271 Research Seminar in Transportation (New)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Research seminar for graduate students in transportation. Discussion of current research at various stages of development, including problem definition, literature review, methodology, and evaluation of results. Intended for advanced doctoral students and for students preparing for the general examination.
M. Ben-Akiva, N. H. M. Wilson

1.282 Transportation Operations Management (A)
Prereq.: 1.201J or 1.20
G (2)
3-0-6
Builds upon and links basic concepts of transportation systems analysis and transportation management with emphasis on the use of analysis to support decisions made by carrier officials. Students review case studies involving all modes.
C. D. Martland

1.298 Research in Transportation
Prereq.: —
G (1, 2)
Arr.
For research assistants in transportation, when assigned research is not used for thesis, but is approved for academic credit. Credits for this subject may not be used for any degree granted by Course I. Information: N. H. M. Wilson.

1.299 Teaching in Transportation
Prereq.: —
G (1, 2)
Arr.
For teaching assistants, in recognition of the educational value derived from satisfactory performance of assigned duties, and for other qualified students interested in teaching in this area as a career. Laboratory, tutorial, or classroom teaching under supervision of a faculty member. Credits for this subject may not be used for any degree granted by Course I. Information: N. H. M. Wilson.

1.286 Freight Transportation Management (A)
Prereq.: 1.201J
G (2)
3-0-6
Analytical methods for freight systems emphasizing applications to shippers, rail and truck carriers. Logistics and inventory theory focusing on choice of carrier, routing, and facility location. Performance and cost models of terminals and line-haul operation for rail and truck. Integration of shipper and carrier perspectives in system models. Reviews regulatory, pricing, labor, and other issues facing the industry. Additional recitation section required for undergraduates to cover selected topics in more detail.
G. A. Kocur, Y. Sheffi

1.283J Urban Economic Analysis I (A)
(Same subject as 11.410J, 14.573J)
Prereq.: 14.03 or 14.04
G (1)
3-0-9
See description under subject 11.410J.
W. C. Wheaton

1.284J Topics in Transportation Economics (A)
(Same subject as 14.576J)
Prereq.: 14.03 or 14.04
G (2) Next offered 1985-86
3-0-9
Theory and behavior of large transportation systems: urban and intercity, passenger and freight; estimation and application of production, cost, and demand functions. Evaluation of governmental transportation policies: economic regulation, infrastructure investments, pricing and financing; cost-benefit analysis, and impacts upon economic efficiency, X-efficiency, and the income distribution.
C. Winston
1.30 Soil Mechanics
Prereq.: 1.04
U (1)
3-1-8
A. S. Azzouz

1.32 Introduction to Engineering Geology
Prereq.: 1.30
U (2) SD
3-3-6
Basic principles of physical geology, emphasizing topics pertinent to civil engineering, and a brief overview on mineral resources. Identification of minerals, igneous, metamorphic, and sedimentary rocks. Alluvial, glacial, eolian, lacustrine, marine, and colluvial sediments. Weathering. Rock defects. Earthquakes. Air photos and geologic maps. Field trips.
G. B. Baecher, H. H. Einstein

1.322 Soil Behavior (A)
Prereq.: 1.361
G (2)
3-1-5
Detailed study of soil properties with emphasis on interpretation of field and laboratory test data for use in practice. Topics include: consolidation and secondary compression; basic strength principles; stress-strain strength behavior of clays, emphasizing effects of sample disturbance, anisotropy and strain rate; strength and compression of granular soils; engineering properties of compacted soils. Laboratory on consolidation and strength testing. Some knowledge of field and laboratory testing assumed: 1.37 desirable.
C. C. Ladd

1.331 Soil Dynamics (A)
Prereq.: 1.30
G (2)
3-0-6
Applies theory of wave propagation and dynamics of lumped systems to problems in soil dynamics. Stress-strain behavior during transient and repeated loadings; relation to wave velocity. Analysis of machine foundations; effect of soils upon seismic motions; earth dams and retaining walls during earthquakes; soil-structure interaction; other selected applications.
R. V. Whitman

1.34 Reliability in Geotechnical Engineering (A)
Prereq.: 1.151, 1.30
G (2)
Arr.
D. Veneziano, G. B. Baecher

1.351 Theoretical Soil Mechanics (A)
Prereq.: 1.30
G (1)
3-0-6
Discusses elementary theories important in soil mechanics. Theories of elastic half-space and elastic layers. Applications of elastic theories, especially to settlement problems. Use of limit analyses for active and passive stresses, bearing capacity, and slope stability. Theory of consolidation for one-dimensional problems and introduction to three-dimensional consolidation. Mathematics, construction, and interpretation of flow nets. Introduction to finite element methods and their use.
M. M. Baligh

1.361 Advanced Soil Mechanics and Engineering (A)
Prereq.: 1.30
G (1)
3-0-6
Consideration of the following fundamentals of soil mechanics: the nature of soil; the effective stress principle; permeability and seepage; stress-strain-strength behavior of cohesionless and cohesive soil; lateral earth stresses; bearing capacity and slope stability; consolidation theory; settlement analyses.
C. C. Ladd

1.364 Foundation Engineering (A)
Prereq.: 1.361
G (2)
3-0-6
Types of foundation systems and design criteria. Design of shallow foundations (footings and rafts), and deep foundations (piers and caissons). Construction methods, problems and effects on nearby structures. Special topics and case studies.
M. M. Baligh

1.366 Geotechnical Engineering (A)
Prereq.: 1.30
G (1)
3-0-6
Identification, presentation and illustration of principles of soil mechanics. Considers the following topics: the nature of soil; the effective stress principle; permeability and seepage; stress-strain-strength behavior of soil; lateral earth stresses. Applies principles to stability and deformation problems. Restricted to graduate students not specializing in Geotechnical Engineering. Same lectures as for 1.361.
C. C. Ladd

1.368 Computer-aided Analysis in Geotechnical Engineering (A)
Prereq.: 1.351
G (2)
3-0-6
Use of computers in the analysis of geotechnical problems: steady and transient flow in porous media, stability of embankments and slopes, retaining structures, pile driving, excavations and tunneling. For each area, the necessary theoretical background reviewed and discrete modeling methods as implemented in computer programs discussed and applied to selected problems. Extensive use of digital computers. Working knowledge of FORTRAN expected.
A. S. Azzouz

1.37 Geotechnical Measurements and Exploration (A)
Prereq.: 1.30
G (1)
2-4-3
Students perform a variety of laboratory experiments illustrating fundamental aspects of soil behavior including classification, index, and engineering properties. Emphasizes measurement of load-deformation characteristics under several different boundary conditions. Exposure to special devices, geotechnical exploration, field investigation, and in situ testing. Experiments involve data reduction, evaluation, and presentation of results.
J. T. Germaine
1.38 Engineering Geology (A)
Prereq.: 1.30, 1.32
G (2)
3-0-6
H. H. Einstein

1.381 Rock Mechanics I (A)
Prereq.: 1.30, 1.32; or 12.01
G (1) Next offered 1985-86
3-0-6
Introduces geologic and theoretical aspects of rock mechanics: exploration; geologic and engineering classification; laboratory and field testing; strength, deformability and permeability of intact rock and rock masses. Application of geologic and theoretical principles to the solution of basic rock engineering problems. Alternate years.
H. H. Einstein

1.382 Rock Mechanics II (A)
Prereq.: 1.381
G (2) Next offered 1985-86
3-0-6
H. H. Einstein

1.383 Underground Construction (A)
Prereq.: 1.361, 1.381
G (1) 3-0-6
Familiarization with the most important aspects of planning, design, and construction of underground openings in soft ground and rock. Detailed engineering analysis and design. Major aspects of construction techniques and construction planning. General planning and economic problems. Alternate years.
H. H. Einstein

1.384J Introduction to Mining and Mineral Technology
(Same subject as 2.742J, 3.095J, 12.043J)
Prereq.: —
U (1)
3-0-6
See description under subject 3.095J.
H. H. Einstein, R. G. Burns, J. F. Elliott, C. R. Peterson

1.39 Studies in Geotechnical Engineering (A)
Prereq.: Permission of Instructor
G (1, 2, S)
Arr.
For graduate students desiring further individual study of special topics. Information: G. B. Baecher.

Construction Engineering and Management
1.40 Project Management
Prereq.: 1.30, 1.50
U (2)
3-2-7
Overview of construction industry, its organizations and interactions. Project and construction management methodologies presented for project and company planning, control, and decision making. Includes scheduling, accounting, estimating, resource planning, organization structure used throughout all project phases.
R. D. Logcher

1.411J Building Construction I
(Same subject as 4.402J)
Prereq.: —
U (1)
3-3-6
See description under subject 4.402J.
E. Dluhosch

1.412J Building Construction II
(Same subject as 4.403J)
Prereq.: 1.02, 1.04; or 4.402, 4.30 or 4.331
U (2)
2-4-3
See description under subject 4.403J.
E. Dluhosch

1.413 Construction Technology and the Building Development Process (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Investigates the nature of the building design and construction process with respect to the contractual, managerial, and financial implications of alternative technologies and construction methods. Particular attention to interfaces between various subsystems (e.g., structure, cladding, mechanical) and between design and construction activities. Uses cost estimating and scheduling as techniques to support analysis of alternatives.
H. G. Irwig, J. M. Becker

1.421 Learning From Construction Failures (A)
Prereq.: Permission of Instructor
G (2)
3-0-6
Uses case studies of failures to demonstrate the individual, group, enterprise, and institutional decision-making processes involved in the regulation and development of constructed facilities. Examines nature of these processes; identifies typical pathologies and their effect on the technical characteristics and ultimate performance of these facilities.
H. G. Irwig, J. M. Becker

1.431 Structuring Construction Industry Organizations (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Examination, from a socio-technical perspective, of the organizations and organizational processes underlying the operation of the construction industry. Studies the structure and functioning of firms, sub-units of firms, and conglomerations of firms with regard to the influence of a wide range of factors including strategy, human and other resources, and role in the project development process. Frameworks for observation, description, analysis, and design of both individual enterprises and project organizations presented and applied to real-world situations.
H. G. Irwig

1.432 Project Control (A)
Prereq.: 1.431
G (2)
3-0-6
Computer techniques and systems for control of design and construction projects. Relationship of project breakdown to estimating, budgeting, and financial control. Use of network-based systems for planning and time control of projects, including CPM and PERT and resource-constrained scheduling. Database design concepts for decision support systems. Integrating control of costs and time, with cash flow and manpower projections, with comparison of potential to current practice. Requires background in accounting principles.
R. D. Logcher

1.44 Analysis Methods in Construction Engineering and Management (A)
Prereq.: 1.151
G (2)
Arr.
A series of mini-subjects involving the use of analytic methods in construction engineering and management. Topics: decision analysis, simulation, queueing and optimization applications in such problems as bidding, infrastructure analysis, maintenance, comparison of alternatives, risk analysis and sharing, equipment selection. Offers a special three-unit section of private sector evaluation, supplementing public sector methods taught in 1.148J.
D. H. Marks, E. Vanmarcke, R. D. Logcher

1.481 Research Seminar in Construction Engineering and Management (A)
Prereq.: Permission of Instructor
G (2)
2-0-1
Seminar intended mainly for master's and doctoral candidates in the Center for Construction Research and Education. Oral and written presentation by students on thesis activities and by faculty on research topics.
D. H. Marks, R. D. Logcher, H. Irwig
Management of Technology

1.485J Current Issues in Engineering Management

(Same subject as 3.562J, 6.941J, 13.682J, 22.87J)
Prereq.: —
G (2) 3-0-6

Discusses the most important issues in engineering management. Some relate to the most advanced technologies, such as genetic engineering, computers, microelectronics, and energy. Others relate to management issues such as productivity, manpower development, dynamics of technological substitution, and engineering education. Interrelationship between technology and management emphasized throughout.

T. H. Lee

1.486J Cases and Projects in Engineering Management (A)

(Same subject as 3.563J, 6.942J, 13.683J, 22.88J)
Prereq.: 1.485J
G (1) 3-1-5

Case studies of real engineering and scientific issues in industrial firms and government agencies. Cases chosen as new ventures as well as mature firms, to illustrate different aspects of engineering management: strategic planning, product strategy, project management, technology assessment, engineered productivity, technology transfer, and R&D program planning. Knowledge in probability and regression analysis required.

T. H. Lee

1.487J Technology Planning (A)

(Same subject as 3.564J, 13.684J)
Prereq.: Permission of Instructor
G (1) 3-0-6

Methods for planning R&D projects and multi-project programs. Cost and schedule control of technical work. Approaches to technology forecasting and resource allocation among technical areas. Technical planning in companies and government agencies.

J. M. Utterback, R. D. Logcher

Structural Design and Analysis

1.50 Introduction to Structural Engineering
Prereq.: 1.04
U (1) 3-2-7

J. H. Slater

1.51 Mechanics of Construction Materials (New)
Prereq.: 1.04
U (1) 4-0-6

Mechanical behavior of materials used in structural and geotechnical engineering, with emphasis on steel and concrete. Problem formulation in mechanics of solids. Elasticity, energy methods, and principle of virtual work. Elementary plasticity, plastic yielding under combined stresses, and limit analysis. Torsion, plane stress, and plane strain. Stress concentrations. Study of failure mechanisms, brittle fracture and fatigue; influence of composition on mechanical properties of concrete. Lectures supplemented by computer-aided learning software.

V. C. Li

1.52 Structural Analysis and Design
Prereq.: 1.50, 1.51
U (2) 3-1-8

Design and analysis of structural systems including steel and concrete frame buildings, and reinforced and prestressed concrete beam and slab structures. Contemporary design criteria and practice, with emphasis on concrete, examined. Approximate and rigorous analysis techniques studied, with emphasis on their role in design process. Matrix methods of analysis. Use of computers in structural design. Plastic design in steel.

O. Buyukozturk

1.53 Constructed Facilities Project Laboratory
Prereq.: 1.50, 1.51
U (2) LAB 3-0-3

Students explore the concepts, techniques, and devices used to measure engineering properties of materials. Several of these devices are used to measure properties of common construction materials. These same materials are then used to construct simple systems which illustrate and test the performance concepts and hypotheses taught in basic mechanics subjects.

J. T. Germaine

1.541 Behavior of Concrete Structures (A)
Prereq.: 1.52
G (1) 3-0-6

O. Buyukozturk

1.542 Behavior of Steel Structures (A)
Prereq.: 1.51
G (2) 3-0-6

J. H. Slater

1.543 Bridge Design (A)
Prereq.: 1.541, 1.542
G (2) 2-0-4

O. Buyukozturk

1.544 Structural Design of Buildings (A)
Prereq.: 1.541, 1.542
G (1) 2-0-4

1.551J Analysis and Design of Offshore Structures (A)

(Same subject as 13.112J)
Prereq.: 1.51 or 13.10J
G (2) 4-0-8

Fundamental concepts in analysis and design of fixed offshore platforms. Design philosophies and criteria. Specification of environmental design criteria and computation of design loads; in-depth treatment of wave theories, wave statistics and hydrodynamic loads. Construction materials and their behavior in
d
1.552J Dynamics of Ocean Structures (A)
(Same subject as 13.88J)
Prereq.: 1.572 or 13.80J or 2.06J
G (2)
3-0-9
See description under 13.88J.
J. K. Vander, Shyam Sunder

1.56J Structural Mechanics in Nuclear Power Technology (A)
(Same subject as 2.08J, 3.82J, 13.14J, 16.26J, 22.314J)
Prereq.: Permission of Instructor
G (1)
3-0-9
See description under subject 22.314J.
O. Buyukozturk, J. E. Meyer

1.571 Advanced Structural Analysis (A)
Prereq.: 1.121, 1.51
G (1)
3-0-6

1.572 Structural Dynamics (A)
Prereq.: 1.121, 1.51
G (2)
3-0-6
Analysis of structures subjected to dynamic loads. Theory developed for single degree of freedom system and generalized to multiple degree of freedom and continuous systems. Analytical and numerical techniques for solution of equations of motion. Transient, steady-state, and modal response. Applications to earthquake loads, forced vibrations, and presentation of approximate (practical) methods. E. A. M. Kausel

1.581 Structural Reliability (A)
Prereq.: 1.151
G (2) Next offered 1985-86
3-0-6

1.587 Safety of Structures and Foundations Under Dynamic Loads (A)
Prereq.: 1.572 or 1.331, 1.03
G (2)
3-0-6

1.588 Structural Engineering Research Seminar (A)
Prereq.: Permission of Instructor
G (2)
1-0-2
For structural engineering students registered for thesis or seeking research topics. Presentation of ongoing or proposed research by students. Occasional seminars by faculty or outside speakers. Participants required to submit written critique on each lecture. E. Vanmarcke

1.589 Studies in Structural Design and Analysis (A)
Prereq.: Permission of Instructor
G (1, 2, S)
Arr.
Individual study of advanced subjects under staff supervision. Content arranged to suit the particular requirements of the student and interested members of the staff. Information: G. B. Baecher.

Construction Materials

1.59J Materials of Construction (Revised Content)
(Same subject as 3.143J)
Prereq.: — U (2) SD
1.04
3-0-9
Principles underlying the structure-properties interaction in materials important to civil engineers. Includes: atomic arrangements in crystalline and noncrystalline phases, thermodynamics of phase relationships and structural change; elasticity, microplasticity, viscoelasticity, and fracture; corrosion. Application of principles to structural metals, cementitious materials, structural-ceramics, wood, asphalt, and polymers. Mechanical properties of composite materials including Portland cement concrete, asphalt-aggregate mixtures, and reinforced plastics. F. Moavenzadeh, F. J. McGarry

1.591J Fracture of Structural Materials (A)
(Same subject as 3.90J, 13.16J)
Prereq.: 1.58J or 2.30 or 3.141 or 13.15J
G (1)
3-0-6
See description under subject 3.90J.
F. J. McGarry, K. Masubuchi

1.592 Mechanical Behavior of Construction Materials (A)
Prereq.: 1.58J
G (1)
3-0-6

1.593J Mechanical Behavior of Plastics (A)
(Same subject as 3.91J)
Prereq.: 3.064
G (1)
3-2-4
See description under subject 3.91J.
F. J. McGarry, D. K. Roylance

1.594J Composite Materials (A)
(Same subject as 3.92J)
Prereq.: 3.064
G (2)
3-2-4
See description under subject 3.92J.
F. J. McGarry

1.597 Studies in Construction Materials (A)
Prereq.: Permission of Instructor
G (1, 2, S)
Arr.
Advanced topics in construction materials selected by students for individual study with staff approval. Information: G. B. Baecher.

1.598 Research in Constructed Facilities
Prereq.: —
G (1, 2, S)
Arr.
For research assistants in constructed facilities, when assigned research is not used for thesis, but is approved for academic credit. Credits for this subject may not be used for any degree granted by Course I. Information: G. B. Baecher.

1.599 Teaching in Constructed Facilities
Prereq.: —
G (1, 2)
Arr.
For teaching assistants, in recognition of educational value derived from satisfactory performance of assigned duties, and for other qualified students interested in teaching in this area as a career. Laboratory, tutorial, or classroom teaching under supervision of a faculty member. Credits for this subject may not be used for any degree granted by Course I. Information: G. B. Baecher.
Water Resources and Environmental Engineering

Hydrodynamics and Coastal Engineering

1.60 Fluid Dynamics
Prereq.: 18.03, 1.05
U (1) 4-0-8
P. S. Eagleson

1.64 Dynamics of Stratified Fluids (A)
Prereq.: 1.63
G (2) 3-0-6
Advanced treatment of stratified-fluid dynamics, emphasizing the basic phenomena that influence environmental flows. Linear and nonlinear internal waves in multiple layer and continuously stratified fluids. Thermal and double-diffusive convection, dynamics of intrusions and selective withdrawal. Boundary layers, stability and onset of turbulence. Introduction to turbulence modeling and the dispersion of heat and pollutants. Two-phase flows.
W. K. Melville

1.66 Problems in Water Resources and Environmental Engineering (A)
Prereq.: Permission of Instructor
G (1, 2, 5) Arr.
Advanced topics selected by students for individual study with staff approval. Choice of subjects from the theoretical, experimental, and practical phases of hydromechanics, hydraulic engineering, water resources, and environmental engineering. Information: R. L. Bras.

1.67 Sediment Transport and Coastal Processes (A)
Prereq.: 1.60
G (2) Not to be offered 1985-86
3-0-6
O. S. Madsen

1.68 Physics of Natural Water Bodies (A)
Prereq.: 1.63
G (1) 3-0-6
Treats the principal physical processes in natural water bodies. Emphasizes the molecular and turbulent vertical transport of mass, momentum, heat, and mechanical energy. Includes: physical properties of air and water; governing conservation equations in exact and approximate form; meteorological forcing; fluxes across the water surface; mixed layer dynamics and stratification; bottom boundary conditions; hydrologic, tidal, wind, and density driven circulations; linkages between physical, chemical, and biological processes.
K. D. Stolzenbach

1.69 Introduction to Coastal Engineering (A)
Prereq.: 1.60
G (1) Next offered 1985-86
3-0-6
O. S. Madsen

1.691 Wave Dynamics in Coastal Engineering (A)
Prereq.: 1.69, 18.075, 18.076
G (2) 3-0-6
C. C. Mei

1.692 Wave Dynamics in Oceanographic Engineering (A)
Prereq.: 1.69, 18.075, 18.076
G (2) Next offered 1985-86
3-0-6
Problems in waves and currents of interest to oceanographic engineers. Transient aspects of dispersion and tsunamis. General theory of floating bodies, linearized radiation and diffraction, analytical and numerical aspects. Power absorption from sea waves. Short and long waves over uneven bottom. Nonlinear short waves: slow modulation and instability of Stokes waves by slender or blunt cylinders. Effects of currents or topography on wave evolution. Wave effects on a porous elastic sea bed. Alternate years.
C. C. Mei

1.697J Oceanographic Systems I
(Same subject as 13.990J)
Prereq.: —
G (S) 2-4-6
See description under subject 13.990J.
(Woods Hole Staff)

1.698J Oceanographic Systems II
(Same subject as 13.991J)
Prereq.: —
G (S) 2-4-6
See description under subject 13.991J.
(Woods Hole Staff)
Hydrology and Water Resource Systems

1.70 Analysis Methods in Water Resources and Environmental Engineering
Prereq.: 1.60
U (2)
3-3-6
Use of analytical tools (e.g., computer models) in the design and evaluation of water resources projects such as flood control, river basin development and water quality. Lectures discuss governing principles, common models, and typical applications. In case studies students select develop models, run simulations and interpret results in written and oral reports. For advanced undergraduates or graduate students wishing exposure to broad applications. Some programming experience assumed.
E. E. Adams

1.71 Introduction to Hydrology
Prereq.: 1.05
U (1)
3-1-8
Principles of meteorology and climate; earth water and energy balance; radiation; precipitation formation; evaporation; infiltration; runoff processes. Streamflow analysis. Flood routing and rainfall-runoff models. Groundwater, well hydraulics. Introduction to hydrologic probabilistic models. Deterministic, numerical, models in hydrology. Data analysis, design of collection systems. Useful for graduate students with no hydrology background.
R. L. Bras

1.711 Hydro-climatology (A)
Prereq.: 1.03, 1.60
G (2) Next offered 1985-86
3-0-6
P. S. Eagleson

1.712 Sampling, Synthesis, and Forecasting of Hydrologic Processes (A)
Prereq.: 18.444
G (2)
3-0-6
R. L. Bras

1.72 Groundwater Hydrology (A)
Prereq.: 1.60
G (1)
3-0-6
Introduces subsurface flow theory and applications; storage properties, Darcy's law, flow nets, mass conservation, the aquifer flow equation, heterogeneity and anisotropy, regional vertical circulation, unsaturated flow, and recharge. Well hydraulics, stream-aquifer interaction, distributed- and lumped-parameter numerical models. Groundwater quality, mixing cell models, contaminant transport processes, dispersion, decay and adsorption; pollution sources. Includes laboratory and computer demonstrations.
L. W. Gelhar

1.721 Advanced Subsurface Hydrology (A)
Prereq.: 1.72, 18.075
G (2)
3-0-6
L. W. Gelhar

1.723 Subsurface Water Quality (A)
Prereq.: 1.77
G (2)
3-0-6
Examines subsurface water quality problems from chemical and physical viewpoints. Physical transport of quality constituents, adsorption chemistry, microbiological transformations, and the mixing introduced by molecular diffusion, mechanical dispersion, and formation dispersion. Development of a mass transport equation, and analytical and numerical solutions. Case studies of quality problems including hazardous waste disposal.
H. F. Hemond, P. M. Gschwend

1.731 Water Resources Systems I (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Systematic approach to the analysis and management of large-scale water resource systems. This term deals with largely deterministic model formulation, optimization and multictiative evaluation methods applied to such problems as water quality management, urban water supply, river basin planning for multi-purpose use (irrigation, hydropower, low-flow augmentation, municipal and industrial water supply, recreation, environmental enhancement). Assumes some knowledge of economics, probability, and optimization methods.
D. H. Marks

1.732 Water Resources Systems II (A)
Prereq.: 1.731, 18.444
G (2)
3-0-6
R. L. Bras

Water Quality Control and Environmental Management

1.75 Limnology and Wetland Ecology (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Dominant physical, chemical, and biological features of lakes and wetlands: basin geology, water budget, wind-driven hydraulic phenomena, heat balance, thermal stratification, radiation environment, biological communities, and cycles of major elements. Characterization of wetlands, wetland biota, and chemical conditions of wetlands. Methodologies of modern limnology, including field methods and use of models; and current issues in lake and wetland management.
H. F. Hemond

1.76 Aquatic Chemistry (A)
Prereq.: 5.40 or 5.11
G (1)
3-0-6
Quantitative treatment of variables that govern chemical behavior of aquatic systems such as lakes, oceans, rivers, estuaries, groundwaters, and wastewaters. Topics: thermodynamics, acids and bases, dissolved carbon dioxide, interactions between solid phases and solutes,
coordination, and redox. Emphasis on quantitative study of model systems. Interactions between physical, chemical, and biological variables in natural waters stressed. 5.60 is a suggested prerequisite.

F. M. M. Morel

1.77 Water Quality Control (A)
Prereq.: 1.60
G (1)
3-0-6
Emphasizes mathematical models for predicting distribution and fate of effluents discharged into lakes, reservoirs, rivers, estuaries, and oceans; and on formulation and structure of models rather than on solution techniques. Role of element cycles, such as oxygen, nitrogen and phosphorus, as water quality indicators. Offshore outfalls and diffusion. Salinity intrusion in estuaries. Thermal stratification in lakes and reservoirs and its effect on water quality.

D. R. F. Harleman

1.78 Water Quality Management (A)
Prereq.: Permission of Instructor
G (2)
3-0-6
Systematically approaches management of water quality emphasizing role of physical and decision models on policy formation. Implications of control alternatives, institutional arrangements, regional management, standard setting, legal and regulatory process for point source (municipal and industrial) and nonpoint source (land use related) quality problems. Special topics include user effluent charges and water demand/conservation. Assumes some knowledge of economics, statistics and probability, and optimization methods.

D. H. Marks

1.79 Plankton Ecology (A)
Prereq.:—
G (2)
3-0-6
Basic graduate subject dealing with selected aspects of the ecology of marine and freshwater systems. Emphasizes physiological processes of planktonic organisms. Topics: primary and secondary productivity; phytoplankton physiology; biologically mediated nutrient cycles; phytoplankton competition and succession; nutrient limitation; phytoplankton/zooplankton interactions. Lecture seminar format with extensive outside readings. Permission of instructor required.

S. W. Chisholm

1.80 Fundamentals of Ecology
Prereq.:—
U (1)
3-1-8
Principles of interrelationships between organisms and their environment. Development of basic concepts of energy flow through ecosystems; productivity, trophic dynamics; community structure and stability; competition and predation; population growth; and physiological ecology. Emphasis on aquatic systems.

S. W. Chisholm

1.811J Environmental Law: Pollution Control (A)
(Same subject as TPP 33J)
Prereq.: Permission of Instructor
G (1)
3-0-6
Reviews and analyzes common law, legislation, and regulation of air and water pollution and hazardous wastes. Emphasizes use of legal mechanisms and alternative approaches for controlling environmental pollution. Economic consequences of pollution control discussed. The Clean Air Act, Clean Water Act, Resource Conservation and Recovery Act, and National Environmental Policy Act analyzed regarding the goals of pollution control, economic consequences, and role of the courts. Discusses both classical pollutants and highly toxic industrial chemicals.

N. A. Ashford, C. Caidart

1.812J Regulation of Health and the Environment: Selected Topics
(Same subject as TPP 34J)
Prereq.: 1.811J, 3.575J or 10.605J
G (2)
3-0-6
Topics related to environmental, health, and safety regulation are selected from the following: risk assessment techniques, toxic Substances Control Act, occupational safety and health, noise, pesticides, food additives, pharmaceuticals, radiation, endangered species. Both health and economic consequences of environmental policy discussed. Focuses on policy design and evaluation in environmental and safety area. Recommended: other law-related subject, or permission of instructor.

N. A. Ashford, D. B. Hattis, C. Caidart

1.82 Problems in Aquatic Biology and Chemistry (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Advanced topics in fields of aquatic chemistry and aquatic biology. Choice of independent study seminar, laboratory or field studies. Typical topics include analytical and bioassay methodologies, nutrient and trace metal interactions with aquatic biota, element cycles.

S. W. Chisholm, F. M. M. Morel

1.83 Organic Compounds in Aquatic Environments (A)
Prereq.: 5.41 or 5.11
G (1)
3-0-6
After an introduction to the cycling of natural organic matter in aquatic environments, discussion focuses on sources and fate of anthropogenic organic compounds. Uses physical chemical properties to predict chemical transfers between environmental compartments (air, water sediments, biota). Uses empirical approaches to estimate chemical and biochemical transformations. Ultimately develops models to assess the environmental concentrations (and related biological exposures) of hazardous organic compounds introduced into water resources.

P. M. Gschwend

1.85 Introduction to Wastewater Treatment Engineering
Prereq.: 1.60 or 1.80
U (2) Next offered 1985-86
2-0-4
Basic theory of mixing and transport in reactor vessels. Microbiology of water and wastewater treatment, biochemical processes related to the carbon, oxygen, nitrogen, and phosphorus cycles. Waste treatment by suspended culture processes and oxidation ponds. Theory and design of sedimentation tanks. It is recommended that students register for both 1.85 and 1.86. Taught first seven weeks of term.

D. R. F. Harleman

1.86 Element Cycles in the Environment
Prereq.:—
U (2) SD
2-0-4
Cycles of major elements such as water, oxygen, nitrogen, carbon, and phosphorus and some key trace elements such as lead and mercury. Energetic aspects of the cycles, interrelated physical, chemical, and biological processes. Approach is quantitative and focuses especially on human interaction with the environment as it affects distribution and processing of elements. It is recommended that students register for both 1.85 and 1.86. Taught last seven weeks of term.

F. M. M. Morel

1.898 Research in Water Resources and the Water Environment
Prereq.:—
G (1, 2, 5)
Arr.
For research assistants in water resources and the water environment, when assigned research is not used for thesis, but is approved for academic credit. Credits for this subject may not be used for any degree granted by Course I. Information: R. L. Bras

1.899 Teaching in Water Resources and the Water Environment
Prereq.:—
G (1, 2)
Arr.
For teaching assistants, in recognition of the educational value derived from satisfactory performance of assigned duties, and for other qualified students interested in teaching in this area as a career. Laboratory, tutorial, or classroom teaching under supervision of a faculty member. Credits for this subject may not be used for any degree granted by Course I. Information: R. L. Bras
Special Studies

1.91 Civil Engineering Internship
Prereq.: —
U (1, 2, S)
0-6-0

1.92 Advanced Civil Engineering Internship
Prereq.: 1.91
G (1, 2, S)
0-6-0

1.91 provides credit for the first two work assignments of Course I students affiliated with the Engineering Internship Program. 1.92 provides credit for the third and fourth work assignments for students affiliated with the Engineering Internship Program. Students register for both 1.91 and 1.92 twice and must complete both work assignments in order to receive academic credit for the subjects. Enrollment limited to students registered in the Course I Internship Option.

H. G. Irwig

1.961-1.965 Special Graduate Studies in Civil Engineering (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.

Graduate subjects taught experimentally; special subjects offered by visiting faculty; seminars on topics of current interest.

F. M. M. Morel

1.969 Graduate Studies in Civil Engineering (A)
Prereq.: Permission of Instructor
G (1, 2, S)
Arr.

Individual study, research, or laboratory investigations at the graduate level, under faculty supervision.

F. M. M. Morel

1.980J Engineering Policy Thesis Seminar (A)
(Same subject as 16.783J, TPP 13J)
Prereq.: Thesis Registration
G (1, 2)
2-0-1

See description under subject TPP 13J.
R. de Neufville, A. R. Odoni

1.991, 1.992 Special Undergraduate Studies in Civil Engineering
Prereq.: Permission of Instructor
U (1, 2)
Arr.

Undergraduate subjects taught experimentally; special subjects offered by visiting faculty; seminars on topics of current interest.

D. H. Marks
2.023 Dynamic Systems
Prereq.: —
G (S)
3-0-9
Review of system dynamics primarily for incoming graduate students; a shortened version of 2.02. No graduate credit allowed for students in Course II.
D. N. Wormley

2.03J Dynamics
(Same subject as 13.003J)
Prereq.: 2.01, 2.02, 18.03
U (1, 2) 4-0-6
J. H. Williams, Jr., H. M. Paynter, J. K. Vandiver

2.032 Dynamics (A)
Prereq.: 2.03J
G (2, S) 3-0-9
S. H. Crandall

2.04 Probabilistic Modeling and Analysis of Engineering Systems (A)
Prereq.: 16.075
G (2) 3-0-9
Fundamentals of probability and statistics for mechanical engineering applications. Presents material as a modeling tool. Discrete and continuous random variables, common distributions, integral transforms; multivariate distributions and geometric interpretation; parameter estimation, confidence intervals and sampling distributions; random processes, Markov property, autocorrelation and spectral density. Emphasizes analysis and solution of real mechanical engineering problems.
N. J. Hogan

2.05 Kinematics and Dynamics of Mechanisms and Manipulators (A)
Prereq.: 2.03J
G (1) 3-0-9
Analyzes kinematic and dynamic characteristics of planar and spatial mechanisms, including machines and robotics manipulators. Use of vector, complex variable and 4 by 4 matrices methods for kinematic analysis. Systems including flexible and rigid elements and active control systems. A brief introduction to kinematic synthesis methods and use of digital simulations for dynamics. Applications from industrial machine systems and robotic manipulators.
S. Dubowsky

2.06J Mechanical Vibration
(Same subject as 13.80J)
Prereq.: 2.03J or 13.003J
U (1) 3-0-9
See description under subject 13.80J.
R. H. Lyon, J. K. Vandiver

2.080J Principles of Acoustics (A)
(Same subject as 13.81J, 16.081J)
Prereq.: 2.03J or 16.004, 18.075
G (1) 3-0-9
Combined with subject 2.063, forms a two-term sequence in acoustics at advanced level; subjects may be taken in any order. Emphasizes acoustics of fluids: derivation of basic equations, radiation of sound, diffraction and scatterings. Acoustic, thermal, and vorticity fluctuations as first order perturbation of equations of fluid dynamics; energy density and intensity. Multipole expansions of source fields, spherical harmonics, radiation impedance and directivity. Scattering and diffraction of sound by obstacles. Natural modes excitation and reverberation of sound in rooms.
R. H. Lyon, P. Leehey, S. E. Widnall

2.081 Random Vibration (A)
Prereq.: 2.03J, 18.075
G (2) 3-0-9

S. H. Crandall

2.062 Wave Propagation (A)
Prereq.: 2.03J, 18.075
G (1) 3-0-9

S. H. Crandall, T. R. Akylas

2.063J Sound and Structural Vibration (A)
(Same subject as 13.82J)
Prereq.: 2.03J or 16.004, 13.004, or 18.075
G (2) 3-0-9

Combined with subject 2.060J, forms a two-term sequence in acoustics at advanced level; subjects may be taken in any order. Emphasizes interaction of sound in fluids with structural vibration. Review of dynamics of strings, beams, and plates. Normal modes, phase and group velocity, decay of vibrational energy. Radiation impedance of beams and plates, reciprocity, energy equilibrium between sound field and structure. Concepts of statistical energy analysis (SEA). Sound transmission through walls using "classical" and SEA procedures.

R. H. Lyon, P. Leehey

2.065J Flow Noise (A)
(Same subject as 13.84J, 16.082J)
Prereq.: 2.20, 16.02 or 13.021
G (1) Next offered 1985-86 3-0-9

See description under subject 13.84J
P. Leehey, S. E. Widnall

2.071J Introduction to Structural Mechanics
(Same subject as 13.10J)
Prereq.: 2.01 or 2.015 or 13.002
U (1) 3-0-9

See description under subject 13.10J.
J. H. Williams, Jr., D. Karr

2.072 Mechanics of Continuous Media (A)
Prereq.: Permission of Instructor
G (2) 3-0-9

Principles and practical application of continuum concept for deformation of solid, fluid, or multiphase bodies. Kinematics and thermomechanical conservation laws through compressive tensor notation. Stress and strain measures and constitutive equations. Solution of many basic problems for various materials as relevant in metallurgy, materials processing, geomechanics and fluid dynamics, fracture mechanics and structural analysis. Analytical and numerical solution methodology for differential and integral equations.

M. P. Cleary

2.073 Solid Mechanics — Plasticity and Inelastic Deformation (A)
Prereq.: 2.01, 2.31, 2.32
G (1) Not to be offered 1985-86 3-0-9

Focuses on analysis of inelastic deformations of solids emphasizing behavior of polycrystalline metals. Develops continuum constitutive models including consideration of physical bases of deformation. Limit analysis of continua, structures, and polycrystalline aggregates. Variational formulations of governing equations including finite element implementation. See also 13.131 and 16.24.

D. M. Parks

2.074 Applications of Mechanics for Porous/Geological Materials (A)
Prereq.: Permission of Instructor
G (1) 3-0-9

Extension of continuum mechanics to fluid-infiltrated porous media: coupled heat/flow and solid deformation/frictional yielding/fraction. Constitutive relations, micromodeling, localization instabilities, and structural analysis. Laboratory simulation. Examples from energy and materials resources, prospecting and extraction: machine excavation, oil/gas drilling, fracturing, solution mining, geothermal; from geophysics: wave propagation, earth-fault mechanisms, igneous intrusions; and from biomechanical load-bearing elements.

M. P. Cleary

2.083 Applied Elasticity (A)
Prereq.: 2.01, 18.075
G (1) 3-0-9

J. H. Williams, Jr., L. L. Bucciarelli, Jr.

2.084J Structural Mechanics in Nuclear Power Technology (A)
(Same subject as 1.56J, 3.82J, 13.14J, 16.261J, 22.314J)
Prereq.: Permission of Instructor
G (1) 3-0-9

See description under subject 22.314J.
O. Buyukozturk, J. E. Meyer

2.092 Methods of Engineering Analysis (A)
Prereq.: 18.075
G (1) 3-0-9

Study of nature of complex problems in engineering analysis and of means of obtaining practical solutions. Survey of formulations of mathematical models for complex physical situations and of computational procedures for their solution. Examples chosen from mechanics, hydraulics, heat transfer, elasticity, compressible flow, etc. Numerical methods including iteration, variational, finite difference and finite element methods.

K. J. Bathe

2.093 Computer Methods in Dynamics (A)
Prereq.: Permission of Instructor
G (2) 3-0-9

K. J. Bathe

2.094 Theory and Practice of Continuum Mechanics (A)
Prereq.: Permission of Instructor
G (1) Not to be offered 1985-86 3-0-9

Basic principles of continuum mechanics and finite element methods, modern application to solution of practical problems in solid, structural, and fluid mechanics, heat and mass transfer, other field problems. Kinematics of deformation, strain and stress measures, constitutive relations, conservation laws, virtual work, and variational principles. Discretization of governing equations using finite element methods. Solution of central problems using existing computer programs.

K. J. Bathe

System Dynamics and Control

2.10 Elementary Programming and Machine Computation
Prereq.: —
U (1, 2) 3-2-4

Introduces students to the use of digital computers in the fields of science and engineering. FORTRAN is taught since it is the most widely used and available scientific programming language. Covers methods of digital computation, algorithm formulation, elementary numerical
2.101 Computer Models of Physical and Engineering Systems
Prereq.: 18.02, 8.01
U (2) SD 3-0-9
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
S. Shyam Sunder

2.14 Control System Principles
Prereq.: 2.02
U (1, 2) 3-2-7
D. Rowell, P. K. Houpt

2.141 Modeling and Simulation of Dynamic Systems (A)
Prereq.: 2.151
G (2) 3-0-9
H. M. Paynter

2.151 Advanced System Dynamics and Control (A)
Prereq.: 2.02
G (1, 2) 3-0-9
Analytical and graphical descriptions of state-determined dynamic physical systems; time and frequency domain representations; system characteristics: controllability, observability, stability; linear and nonlinear system responses. Modification of system characteristics utilizing control techniques; feedback and compensation techniques; optimal control of linear systems; Pontryagin’s Maximum Principle. Emphasis on application of techniques to physical systems.
N. J. Hogan, D. Rowell

2.152 Modern Control Theory and Applications (A)
Prereq.: 2.151 or 6.231 or 16.31
G (2) 3-0-9
Applies linear-quadratic-Gaussian (L-Q-G) method to design multiple input-multiple output control systems. Response of linear dynamic systems to Gaussian inputs; includes propagation of mean and covariance and frequency domain description of stationary processes. Classical control methods include random disturbances. Deterministic linear-quadratic design including optimal integrators, full and reduced observer, and numerical methods. Kalman filtering and stochastic optimal control. Emphasizes practical application of modern control principles to engineering.
J. K. Hedrick

2.153 Nonlinear Analysis and Control Methods (A)
Prereq.: 2.151 or 6.231 or 16.31
G (1) 3-0-9
J. K. Hedrick

2.154 Dynamics and Control of Rotating Machine Systems (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
Unified study of dynamic behavior and control of systems of interconnected rotating machines used for power and propulsion and for instrumentation and control. Treatment of electromachines (AC and DC motors and generators), turbomachines (pumps, compressors, fans, blowers), and reciprocating engines (engines, pumps), together with their energy sources, power modulators, and control equipment. Case studies of a number of particular machine systems.
H. M. Paynter

2.155 Dynamics and Control of Thermofluid Processes and Systems (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
Unified study of dynamic behavior and control of complex systems of interconnected thermal and fluid elements, as typically encountered in industrial processes, power and propulsion systems, and systems for environmental control. Discussion of representative examples including heat pumps, steam generators, power plants, and distillation columns. Reviews fund-}

damental physical principles emphasizing mass, momentum, and energy balances. Treats system components, as well as complete systems. Case studies of actual plants and processes.
H. M. Paynter

2.157 Computer-Aided Design (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86 3-0-9
D. C. Gossard

2.161 Computer-Controlled Experimentation (A)
Prereq.: 2.14 or 2.151
G (2) 3-0-9
State-of-the-art techniques involving use of digital and analog computers to monitor and control physical processes. Topics: introduction to analog and digital hardware at the computing module level, programming techniques for digital minicomputers in real-time on-line applications and fundamental topics in signal conditioning and data reduction. Students should be able to program in FORTRAN and to set up elementary simulations on an analog computer.
D. Rowell, P. K. Houpt

2.171 Analysis and Design of Digital Control Systems (A)
Prereq.: 2.151; 2.14
G (1) 3-3-6
A comprehensive introduction to control system synthesis in which the digital computer plays a major role, reinforced with hands-on laboratory experience. Covers elements of real-time computer architecture; input/output interfaces and data converters; analysis and synthesis of sampled-data control systems using classical and modern (state-space) methods; analysis of trade-offs in control algorithms for computation speed and quantization effects. Laboratory projects emphasize practical digital servo interfacing and implementation problems with timing, noise, nonlinear devices.
P. K. Houpt
2.18J Human Factors in Design
(Same subject as 9.39J, 22.088J)
Prereq.: Permission of Instructor
U (2) 3-1-8
Analyzes human and computer roles, interfacing and reliability in nuclear and chemical plants, air traffic control, industrial robots, office automation, and other systems. Introduces methods for measurement of and statistical inference about human behavior in such interactions. Reviews human sensory and motor performance characteristics and the derivation of human engineering design criteria for displays and controls. Readings from the human factors engineering literature. Case studies and design projects.
T. B. Sheridan, D. D. Lanning, A. Hein

2.181J Models of Man-Machine Systems (A)
(Same subject as 16.355J)
Prereq.: 18.03 G (1) 3-1-8
T. B. Sheridan, S. R. Bussolari

2.192 Engineering Systems Analysis (A)
Prereq.: Permission of Instructor
G (1) 3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page. R. de Neuville, J. P. Clark

Fluid Mechanics and Combustion

2.20 Fluid Mechanics
Prereq.: 18.02, 18.03 U (1, 2) SD 4-0-6
A. A. Sonin

2.21 Fluid Mechanics of Power and Propulsion
(Revised Content)
Prereq.: 2.20, 2.40 U (2) 3-0-9
The functioning and design of fluid systems used for energy conversion and propulsion, with emphasis on showing how fundamentals of fluid mechanics may be applied. Analysis of incompressible flow in turbomachines such as pumps and fans; performance characteristics and scaling rules. Introduction to compressible flow theory. Performance of airfoil cascades. Thermo-fluid dynamics of compressible-flow machines, such as gas and steam turbines. Thrust and propulsion efficiency of propellers, turbosfans and turbojets, windmills.
M. A. El-Masri

2.25 Advanced Fluid Mechanics (A)
Prereq.: 2.20, 18.075 G (1) 3-0-9
A. H. Shapiro, A. A. Sonin

2.271 Compressible Fluid Mechanics (A)
Prereq.: 2.20, 2.40 G (2) 3-0-9
A. H. Shapiro, T. Y. Toong

2.272 Physicochemical Hydrodynamics (A)
(Revised Content)
Prereq.: 2.25 G (1) 3-0-9
R. F. Probstein

2.273 Turbulent Flow and Transport (A)
Prereq.: 2.25 or 2.272 G (2) 3-0-9
Turbulent flows, with emphasis on engineering methods. Governing equations for momentum, energy and species transfer. Turbulence: its production, dissipation, and scaling laws. Averaged (Reynolds) equations for momentum, energy, and species transfer. Simple closure approaches for free and bounded turbulent shear flows: jets, pipe and channel flows, boundary layers, plumes, dispersion problems, etc., including heat and species transport as well as flow fields. Introduction to more complex closure schemes and statistical methods in turbulence.
A. A. Sonin

2.274 Computational Fluid Dynamics (A)
Prereq.: 2.25 G (1) 3-0-9
A. T. Patera

2.275 Turbomachinery Design (A)
Prereq.: 2.20 or 2.25, 2.40 or 2.41J G (1) Next offered 1985-86 3-0-9
Momentum transfer in turbomachines. Axial compressors and turbines: design considerations, cascade aerodynamics including effects of viscosity and compressibility, three-dimensional flow, performance limitations; radial machines; hydraulic pumps and turbines; cavitation.
D. G. Wilson

2.277 Biomedical Fluid Mechanics (A)
Prereq.: 2.20 G (2) Next offered 1985-86 3-0-9
Engineering approach to the function of circulatory and respiratory systems and to other problems in physiology involving fluid dynamics. Reviews relevant anatomy and physiology emphasizing quantitative considerations. Presents and discusses mathematical or engineering models in relation to physiological phenomena they are intended to simulate. Directed to graduate students in Engineering and Science, but open to medical students and undergraduates with the permission of the instructor. Alternate years.
R. D. Kamm
2.281 Reacting Gas Dynamics (A)
Prereq.: 2.20 or 16.02
G (1) Not to be offered 1985–86
3-0-9
T. Y. Toong

2.282 Combustion (A)
Prereq.: 2.20 or 16.02
G (1) Next offered 1985–86
3-0-9
T. Y. Toong

Materials

(See also listing under Polymers and Fibers)

2.301 Advanced Mechanical Behavior of Materials (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
F. A. McClintock

2.31 Mechanical Behavior of Materials I
Prereq.: 2.01
U (1)
3-1-5
Introduces mechanical behavior of engineering materials emphasizing a combined materials science and continuum mechanics approach. Major topics: elasticity, rate-independent plasticity, linear elastic fracture mechanics, and fatigue failure. Laboratory experiments involving a variety of materials, testing methods, and analyses, and a special project. Requires competency in 2.01. Recommended that it be taken in term following.
L. Anand

2.32 Mechanical Behavior of Materials II
Prereq.: 2.31, 2.86
U (2)
3-1-5
Combined materials science and continuum mechanics treatment of rate-dependent deformation and failure. Major topics: reinforced polymeric materials; strengthening mechanisms in crystalline materials; phase microstructure of materials and methods for their control; mechanisms and mechanics of viscous plasticity, creep and creep fracture; materials selection. Project laboratory provides opportunity for independent research into mechanical behavior of materials. Competency required in 2.31 and taken in term following.
L. Anand

2.332J Physics of Deformation and Fracture of Solids I (A)
(Same subject as 3.25J)
Prereq.: 2.01, 2.30 or 2.31, 2.32
G (1) Next offered 1985–86
3-0-9
See description under subject 3.25J.
A. S. Argon

2.333J Physics of Deformation and Fracture of Solids II (A)
(Same subject as 3.26J)
Prereq.: 2.01, 2.30 or 2.31, 2.32
G (1) Not to be offered 1985–86
3-0-9
See description under subject 3.26J.
A. S. Argon

2.34J The Mechanics of Fracture
(Same subject as 3.41J)
Prereq.: 2.31, 2.32
G (2)
3-0-9
The understanding and prevention of fracture of engineering materials requires an integration of basic concepts in materials science and solid mechanics. Focuses on connecting microstructural fracture processes with appropriate macroscopic (continuum) models. Topics: linear elastic and elastic-plastic fracture; fatigue and fatigue crack growth; creep rupture and creep crack growth.
D. M. Parks, R. M. N. Pelloux

2.451J General Thermodynamics I (A)
(Same subject as 22.571J)
Prereq.: Permission of Instructor
G (1)
3-0-9
General foundations of thermodynamics valid for small and large systems, and equilibrium and non-equilibrium states. Definitions of state, property, work, energy, stable equilibrium, available energy, entropy, thermodynamic potential, and interactions other than work (nonwork, heat, mass transfer). Applications to properties of materials, bulk flow, energy conversion, chemical equilibrium, combustion, and industrial manufacturing.
E. P. Gyftopoulos, G. P. Beretta

2.452J Quantum Thermodynamics (A)
(Same subject as 22.572J)
Prereq.: Permission of Instructor
G (2)
3-0-9
E. P. Gyftopoulos, G. P. Beretta
Heat and Mass Transfer

2.51 Heat and Mass Transfer

Prereq.: 2.20, 2.40
U (1, 2) 3-0-9

Heat conduction in solids; steady and transient conditions; finned surfaces. Heat and momentum transfer associated with laminar and turbulent flow of fluids in forced and free convection; fully developed flows and boundary layer development in ducts over flat plates and blunt bodies, through tube bundles and packed beds. Condensation. Boiling. Heat exchanger design; heat transfer in nuclear reactors. Radiative heat transfer. Mass transfer in stationary systems; mass transfer associated with laminar and turbulent flows.

B. B. Mikic, H. M. Paynter

2.54 Heat Transfer

Prereq.: —
G (2) 3-0-3

Fundamentals of conduction, radiation of heat, and effects of convection, with applications to problems arising in practice. (Primarily for selected officers of US Navy and Coast Guard.)

W. M. Rohsenow

2.55 Advanced Heat Transfer (A)

Prereq.: 2.20, 2.40, 18.075
G (1, 5) 3-0-9

W. M. Rohsenow

2.56 Conduction Heat Transfer (A)

Prereq.: 2.40, 18.075
G (2) 3-0-9

B. B. Mikic

2.57J Two-Phase Flow and Boiling Heat Transfer (A)

(Same subject as 22.36J)
Prereq.: 2.20 or 2.25 or 10.52; 2.51 or 2.55 or 10.50; or 22.312
G (2) 3-0-9

See description under subject 22.36J.

W. M. Rohsenow, P. Griffith, M. S. Kazimi

Power Systems

2.601J Thermal Power Systems (A)

(Same subject as 13.26J)
Prereq.: 2.20; 2.40 or 2.402, 2.51
G (2) 3-0-9

Design of thermal power system components and system optimization. Reviews thermodynamics, gas dynamics, and heat transfer. Design of axial and centrifugal compressors and pumps, axial and radial inflow turbines, heat exchangers, evaporators, boilers and condensers. Takes problems and examples from the fields of space, electrical utility and marine power systems. Assumes knowledge of elementary heat transfer and simple thermal power cycles.

W. M. Rohsenow, A. D. Carmichael

2.615 Internal Combustion Engines (A)

Prereq.: 2.20, 2.40
G (2) 3-0-9

Analytical approach to the engineering problems and performance analysis of internal combustion engines. Study of fluid flow, thermodynamics, combustion, friction, heat transfer and other factors affecting power, efficiency, and emissions. Design and operating characteristics of different types of engines: spark-ignition, stratified charge, diesel, and mixed cycle engines. Engine laboratory project. For graduate and selected undergraduate students.

J. B. Heywood

2.621 Gas-Turbine Design (A)

Prereq.: 2.20; 2.40 or 2.41J or 2.51
G (1) Not to be offered 1985-86 3-0-9

Applies engineering science to design and development of gas turbines. Thermodynamics and fluid mechanics of flow phenomena in turbines and compressors. Design of turbines, compressors, heat exchangers and combustion chambers. Operating characteristics of gas-turbine power plants in various applications. Alternate years.

D. G. Wilson

2.63 Energy Production from Renewable Resources (A)

Prereq.: 2.20, 2.51
G (2) 3-0-9

Basic elements of energy production from wind, solar light, ocean waves, tides and thermal gradients, geothermal gradients, and biomass. Significant physical properties of solar radiation, the atmosphere and the ocean which affect design and operation of energy-gathering machines and systems. System dynamics of production, storage, and demand. Elements of component design, including economic factors.

J. A. Fay

2.649 Low Temperature Refrigeration (A)

Prereq.: 2.40
G (1) Next offered 1985-86 3-3-6

Thermodynamic processes for producing low-temperature refrigeration. Problems of heat exchangers, insulation and rectification. Applications of low-level refrigeration to liquefaction of helium and to application of superconductors. Laboratory projects on related topics according to individual interests.

J. L. Smith, Jr.

Experimental Engineering

2.671 Measurement and Instrumentation

Prereq.: 2.02
U (1, 2) LAB 2-3-4

Experimental techniques for observation and measurement of fundamental system variables such as: force, pressure, temperature, flow, and acceleration. Emphasizes electrical measurement, associated instrumentation, and understanding of statistical and dynamic implications. Typical laboratory experiments involve: oscilloscopes, strain gages, accelerometers, thermocouples, digital recorders, etc. Background for lab projects is developed in lectures. Six units may be applied to the General Institute Laboratory Requirement.

R. H. Lyon
2.672 Project Laboratory
Prereq.: 2.20, 2.40, 2.671
U (1, 2) LAB
1-3-2
Engineering laboratory subject for mechanical engineering majors. Emphasis on interdisciplinary integration between analytical and experimental methods in solution of research and development problems. Communication (written and oral) of results is also a strong component of the course. Groups of three students work together on three problems during the term.
W. C. Unkel

2.68 Theory and Application of Modern Diagnostics (New)
Prereq.: Permission of Instructor
G (2)
3-2-4
Introduction to modern techniques for determining the mechanical, thermal, and chemical properties of engineering systems. Principles of operation and applications of instruments such as interferometers, spectrometers, infrared detectors, lasers, chromatographs, nuclear and electron spin detectors, electron and ion microscopes. Theory includes optics, quantum physics, and molecular theory. Computer-based measurement and control introduced. Laboratory project using instruments selected by students. Graduate students only.
W. C. Unkel, J. C. Keck

Design

2.70 Introduction to Design
Prereq.: —
U (1)
2-3-4
Introduces design process in engineering, stressing creative approach. Problem definition and concept generation, visual thinking and graphical communication, design analysis and optimization. Familiarization with standard machine elements, design specifications, production techniques, and economic considerations. Instruction via case, project, and independent resource methods to simulate professional engineering practice.
W. C. Flowers

2.701 Drafting for Engineers Revised Unit
Prereq.: —
U (1, 2)
2-2-2
Lectures and laboratory sessions on basics of drafting as used to delineate engineering design information and data. Introduces descriptive geometry, orthographic projection, sectional and auxiliary views, techniques of dimensioning and tolerancing, and computer-aided drafting. Use of drafting tools explained and practiced in addition to orthographic and pictorial sketching techniques.
W. C. Flowers, J. B. Grinnell, Jr.

2.72 Elements of Mechanical Design
Prereq.: 2.01, 2.70
U (1)
3-3-6
Examination and practice in the application of many mechanical design elements, including control components. Typically two or more individual design projects selected to employ a variety of machine elements, demanding integration into a functional and practical device. Topics: typical machine elements, power transmission elements, motors and prime movers, control elements, material selection, and assembly techniques. Taken prior to 2.73, this subject enhances the design experience in the latter.
C. R. Peterson

2.73 Design Projects
Prereq.: 2.03J, 2.20, 2.30 or 2.31, 2.40, 2.70
U (2)
2-3-4
Practice in engineering design through projects specifically chosen to integrate significant portions of material covered in prerequisites. Typically, one group project and two individual projects. Emphasizes pursuing creative solutions to current, real engineering design problems. Guest lecturers invited to provide problem backgrounds and insights. Other lecturers address the breadth of topics involved in engineering design from analytical techniques to human-machine interactions, economics, and patent laws.
C. R. Peterson

2.731 Advanced Engineering Design (A)
Prereq.: 2.73
G (1)
3-3-6
Two sections. 1) Involves advanced topics in engineering design: optimization, kinematics and mechanics, human factors engineering, and idea generation and creative problem solving. 2) As ongoing case studies of the design process, students design, build, and test pieces of mechanical hardware for industrial clients. Requires two semesters for design, assembly, and "debugging" of the mechanical devices. During the fall, defines problems, creates and evaluates solutions, and generates a detailed design. Graduate status or permission of instructor.
W. P. Seering

2.732 Advanced Design Projects (A)
Prereq.: 2.731
G (2)
3-3-6
Continuation of 2.731. Includes discussions of such topics as applications of microprocessors, product liability and safety, entrepreneurship, marketing of a product, patent applications, and methods of redesign. From parts built for them by participating industrial clients, students assemble and "debug" devices which they designed during term 1 in 2.731. By the end of term devices are brought to specification and presented to the respective sponsors. Permission of instructor required.
W. P. Seering

2.733J Engineering Design in Social Context
(See subject as STS 430J)
Prereq.: —
U (2)
3-0-6
See description under subject STS 430J.
L. L. Bucciarelli

2.742J Introduction to Mining and Mineral Technology (A)
(Same subject as 1.384J, 3.095J, 12.043J)
Prereq.: —
U (1)
3-0-6
See description under subject 3.095J.

Biomedical Engineering

(See also 2.277, 2.900J and 2.907)

2.75 Physiology and Biomechanics of Human Movement (A)
Prereq.: Permission of Instructor
G (1) Not to be offered 1985-86
3-3-6
Synergistic study of anatomy-physiology and biomechanics of human movement. Human sensory, nervous, muscular, and skeletal systems and their integration as they relate to posture, gait, and manipulation. Biomechanics of muscle, bone, and skeletal joints. Human performance measurement and sports biomechanics. Focus on normal human system leads to pathological conditions and to technological responses, i.e., amputation prosthesis, arthroplasty, joint deterioration and replacement.
R. W. Mann
2.76J Ultrasound: Physics, Biophysics, and Technology (A)
(Same subject as 6.562J, HST 530J)
Prereq.: Permission of Instructor
G (1) Not to be offered 1985-86
4-1-7
Physics and technology of generation and detection of ultrasound, Transducers and arrays. Propagation and fields. Diagnostic, therapeutic, and processing applications in medicine and industry. State of the art of imaging and Doppler systems. Biophysics, biological effects, linear and nonlinear phenomena. Hazards and safety levels.
P. P. Lele, F. R. Morgenthaler

2.76J Principles of Medical Imaging (A)
(Same subject as 22.56J, HST 561J)
Prereq.: Permission of Instructor
G (2)
4-0-8
See description under subject 22.56J.
P. P. Lele, G. L. Brownell, Staff

2.762J Laser, Microwaves, Ultraviolet, Magnetic Fields, and Ultrasound in Biomedical Sciences (A)
(Same subject as HST 531J)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
4-1-7
Fundamental physics and biophysics, biological effects and mechanisms, hazards and safety levels of Laser, Microwaves, Magnetic fields, Ultrasonics, and Ultraviolet. Special emphasis on current techniques and applications in medicine and biomedical research.
P. P. Lele, Staff

2.77 Research in Biological Effects and Applications of Ultrasound and Other Non-Ionizing Radiations (A)
Prereq.: 2.76J
G (1, 2)
Arr.
Opportunity for graduate students and advanced undergraduates desiring to pursue substantial theoretical or practical projects of their own choice or to conduct critical analysis of literature in this area. Details arranged on an individual basis.
P. P. Lele

2.78 Seminar on Rehabilitation Engineering Research and Practice
Prereq.: Permission of Instructor
G (1, 2)
2-0-4
Seminar providing a contemporary overview of research, professional roles, and conceptual framework in application of engineering to rehabilitation medicine and underlying pathophysiology. A critical review paper and presentation related to a seminar topic required. Lecturers include authorities from the Boston area, including MIT and Harvard Medical School faculty; members of the international research community; students conducting research and participants in the seminar series. Open to undergraduates with permission of instructor.
M. J. Rosen, R. W. Mann

2.781J Biomedical Instrumentation Electronics (New)
(Same subject as 16.608J, HST 570J)
Prereq.: Permission of Instructor
G (S)
6-6-6
See description under subject HST 570J.
D. Rowell, R. V. Kenyon, S. K. Burns

2.791J Quantitative Physiology: Cells and Tissues
(Same subject as 6.021J, HST 541J)
Prereq.: 2.02 or 6.002 or 6.071; 18.03
U (1)
4-2-6
See description under subject 6.021J.
I. V. Yannas, T. F. Weiss

2.792J Quantitative Physiology: Organ Transport Systems
(Same subject as 6.022J, HST 542J)
Prereq.: 2.791J; 2.20 or 6.013
U (1)
3-2-7
See description under subject 6.022J.
B. B. Mikic, R. D. Kamm, R. G. Mark

2.793J Quantitative Physiology: Sensory and Motor Systems
(Same subject as 6.023J, 16.351J, HST 543J)
Prereq.: 2.02 or 6.003 or 16.30
U (2)
3-2-7
See description under subject 6.023J.
R. W. Mann, L. S. Frishkopf, L. R. Young

Manufacturing
(See also 2.922)

2.800 Tribology (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
E. Rabinowicz, N. P. Suh

2.810 Metals Processing (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
N. H. Cook, B. M. Kramer

2.820J Polymer Processing (A)
(Same subject as 10.57J)
Prereq.: 10.301 or 2.20
G (2)
3-0-9
See description under subject 10.57J.
L. Erwin, T. G. Gutowski, R. C. Armstrong

2.822 Processing of Polymeric Composites (A) (New)
Prereq.: 2.01, 2.20
G (1)
3-0-9
Scientific and engineering aspects of manufacturing with polymeric composite materials. Effects of processing on mechanical performance, interfaces, rheological behavior of polymers and reactive systems. Modeling of processing steps including forming, flow and mold filling, fiber orientation and breakage, consolidation, cure, solidification, and bonding. Discussion and models taken from major processing technologies. Topics in automation and new and innovative processes.
T. Gutowski

2.830 Control for Manufacturing Automation (A)
Prereq.: 2.14
G (2)
3-0-9
Provides background for applying computer-based control system techniques to batch manufacturing processes. Follows a brief review of classical control concepts and servosystems with an in-depth study of the modeling and control problems associated with several manufacturing processes. These include metal cutting, metal forming, and welding processes, as well as the control problem associated with robots in a manufacturing context.
D. E. Hardt

2.835 Design and Analysis of Robotic Manipulators (A)
Prereq.: 2.05, 2.151
G (2)
3-0-9
H. Asada, S. Dubowsky, N. J. Hogan
2.842 Managing Systems of People and Machines for Quality and Productivity (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Applies statistical and managerial principles to processes involving systems of people and machines. Relation between quality of process and system productivity. Practical problems of applications taken from industrial experience.
M. Tribus

2.850 Theory and Practice of Machine Tools (A) (New)
Prereq.: Permission of Instructor
G (1)
3-0-9
G. Chryssolouris

2.86 Manufacturing Processes and Systems
Prereq.: —
U (1, 2) LAB
3-3-3
Introduction to modern manufacturing techniques for metals, polymers, ceramics, and composite materials. Examples of the application of computer automation, engineering mechanics, thermodynamics, and fluid mechanics to the design and control of manufacturing systems. Laboratories supplement lectures in computer applications, metal and polymer processing. Six units may be applied to the General Institute Laboratory Requirement.
B. M. Kramer

2.900 Biomedical Materials
Prereq.: 2.901J or 3.091 or 7.01
U (2)
2-0-4
I. V. Yannas

2.901J Introduction to Polymer Science and Engineering
(Same subject as 3.061J)
Prereq.: 3.091 or 5.41
U (2) SD
3-0-9
See description under subject 3.061J.
I. V. Yannas, D. R. Uhlmann

2.907 Science and Engineering of Biological Membranes and Structural Tissue (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
Covers biophysical design and function of the cellular membrane and of skin considered as a membrane. First part: introduces basic molecular components of the cellular membrane, models of membrane structure and experimental models of membrane proteins. Second part: molecular biology of components of skin (collagen, elastin, mucopolysaccharides, protein polysaccharides), interaction of fibrous components with the protein polysaccharide matrix, physiological and pathological aspects of structural tissue, and an analysis of skin as an engineering composite material.
I. V. Yannas

2.921 Polymer Deformation and Fracture (A)
Prereq.: 2.30 or 2.31, 2.32
G (2)
3-0-9
Linear and nonlinear viscoelasticity below and above Tg. Phenomenology of plastic deformation in crystaline, and glassy polymers, molecular theories for yielding, post yield extensions for intermediate and large strains, development of deformation textures, anisotropic yield conditions. Fracture in polymers, statistical damage accumulation. Crazing as a precursor to fracture, kinetics of nucleation of crazes, mechanics of craze extension, development and propagation of cracks. Fatigue in polymers under both static and cyclic loading.
I. V. Yannas

2.922 Fiber Processing Mechanics (A)
Prereq.: 2.01 or 3.11, 2.31, 2.32
G (2) Next offered 1985-86
3-0-9
Analysis of mechanical processes used to convert natural or synthetic fibers into useable forms such as bonded, twisted, woven, knitted, stitched, or tufted materials. Review of mechanical principles of textile technological processes used in fiber producing, textile, and apparel industries. Focus on mechanics of selected processes such as drafting, twisting, texturing, weaving, and knitting. Treatment of material-process interactions in steady state and during transient operation. Effect of process variables on product quality and performance.
S. Backer

2.924 Structural Mechanics of Fiber Assemblies (A)
Prereq.: 2.01 or 3.11, 2.31, 2.32
G (2) Not to be offered 1985-86
3-0-9
S. Backer

Special Studies

2.941J Invention
(Same subject as 10.802J, 13.77J, 16.671J)
Prereq.: Permission of Instructor
G (1)
3-0-6
Analyzes invention process. Presents methodology for invention. Topics: 1) observing technology; 2) analyzing needs; 3) indentifying critical parameters to trigger potential solutions; 4) creative synthesis based on key parameters. Also patents, licensing, and marketing. Requires term project. Students work on inventing to meet needs of their own choice as well as those from companies belonging to the Innovation Center's industry program.
D. G. Jansson, A. D. Carmichael, W. R. Markay, J. P. Longwell

2.942 Entrepreneurship
Prereq.: —
G (2)
4-0-5
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
D. G. Jansson

2.943 Engineering Risk-Benefit Analysis (A)
Prereq.: 18.02
G (2)
3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
A. W. Drake, A. R. Odoni
2.944 The Idea/Product Transformation
Prereq.: Permission of Instructor
G (2)
3-1-5
Project-centered subject addressing transformation of new ideas into technology-based products, attaining a proper match between product and marketplace, from the perspective of both source and customer. Product design issues: evaluation, market perception, aesthetics and human interfacing, design for manufacturability, reliability, and repairability, pricing, and legal implications.
D. G. Jansson, W. C. Flowers, W. P. Seering

2.951 Engineering Internship
Prereq.: —
U (1, 2, S)
0-6-0

2.952 Advanced Engineering Internship (A)
Prereq.: 2.951
G (1, 2, S)
0-6-0
Provides academic credit for undergraduate and graduate work assignments for Mechanical Engineering students participating in the Engineering Internship Program. Undergraduate participation is approximately six months over two summers of practical work in manufacturing, engineering, research and development at an industrial plant. Graduate participation by students admitted to the Department's graduate program consists of approximately seven months at industrial plant. Credit is awarded after evaluation and approval of the actual work performed.
I. Paul

2.96 Management in Engineering
Prereq.: —
U (1)
3-0-9
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
D. P. Hoult, H. S. Marcus

2.97 Independent Activities
Prereq.: —
U (J)
Arr.
For undergraduates desiring to carry on independent studies during the (January) period between terms. Each student will carry on a program of his or her own choosing, either as an independent worker, or as a member of a team, or class. Special lectures, seminars, and laboratory projects arranged when appropriate. Programs arranged on an individual basis in consultation with the instructor. Credit arranged with the coordinator.
D. G. Wilson

2.981J Project Proseminar in Technology and Policy I (A)
(Same subject as TPP 11J)
Prereq.: Permission of Instructor
G (1)
4-0-8

2.982J Project Proseminar in Technology and Policy II (A)
(Same subject as TPP 12J)
Prereq.: TPP 11J
G (2)
4-0-8
See description under subjects TPP 11J and TPP 12J.
T. B. Sheridan, J. T. Kildow, L. Bucciarelli

2.995 Special Topics in Mechanical Engineering
Prereq.: —
U (1, 2, S)
Arr.
For undergraduates desiring to carry on substantial projects of own choosing in mechanical engineering. Work may be of experimental, theoretical, or design nature. Projects may be arranged individually in most fields of department interest. i.e., in mechanics and materials, thermal and fluid sciences, systems and design, and biomedical engineering. Coordinator:
D. G. Wilson

2.996 Advanced Topics in Mechanical Engineering (A)
Prereq.: —
G (1, 2, S)
Arr.
Assigned reading and special problems or research in special areas, either theoretical or experimental, or design. Arranged on individual basis with instructor in the following areas: Mechanics and Materials, Thermal and Fluid Sciences, Systems and Design, and Biomedical Engineering. Coordinator:
W. M. Rohsenow

2.998 Introduction to Technology and Law
Prereq.: —
U (1)
3-0-9
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
J. D. Nyhart

2.999 Engineer's Degree Thesis Proposal Preparation (A)
Prereq.: —
G (1, 2, S)
Arr.
For students who must do additional work to convert an S.M. Thesis to an M.E. Thesis, or for students who do an M.E. Thesis after having received an S.M. degree.
W. M. Rohsenow
3.01 Physical Chemistry of Materials
Prereq.: 3.01 or 10.14
U (1)
4-0-8
Reactions involving pure condensed phases and gaseous phase, behavior of solutions, free energy-composition and phase diagrams of binary and ternary systems, reaction equilibria in systems containing components in condensed solution. Electrochemistry, corrosion, Gibbs phase rule, chemical kinetics, elementary mechanisms, reaction rate constant, activation energy, surface tension.
R. M. Rose

3.02 Phase Transformations and Structure Development
Prereq.: 3.01 or 10.14
U (1)
3-0-6
K. C. Russell

3.03 Chemical Metallurgy
Prereq.: 3.01 or 10.14
U (1)
3-0-6
T. B. King

3.04 Special Problems in Materials Science and Engineering
Prereq.: —
U (1, 2, S)
Arr.
For undergraduates desiring to carry on projects of their own choosing which may be experimental, theoretical, or of a design nature. Also for undergraduate studies arranged by students or staff which may consist of seminars, assigned reading, or laboratory projects.
D. R. Sadoway

3.041 Thesis Seminar
Prereq.: —
U (1, 2)
Arr.
Lectures on basic skills necessary for conducting thesis planning, research, analysis, and preparation of final document. Included: library resources, how to plan experiments, departmental central facilities, laboratory safety, data analysis, technical writing, and thesis format. Seminar also requires that each student present an initial oral research proposal and deliver a lecture reporting on completed thesis. Must be taken both terms to receive 3 units of credit.
S. M. Allen

3.05 Computer Models of Physical and Engineering Systems
Prereq.: 18.02, 8.01
U (2) SD
3-0-9
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
S. Shyam Sunder

3.06 Engineering of Glasses and Polymers
Prereq.: 3.11, 3.01 or 10.14
U (1)
3-0-5
Considers structure and micro-structure of polymers and glasses and their relation to processing and properties. Attention to glass formation, viscous flow and relaxation phenomena, glass melting, glass forming processes, fabrication and properties of glass-ceramic materials. Also discusses: crystallization of polymers, forming processes for polymers, rubber elasticity, viscoelasticity, yield and fracture behavior of polymers, and polymer-based composite materials. Emphasizes recent developments, and on present state of the particular industries.
R. M. Rose
3.064 Polymer Engineering
Prereq.: 3.11, 3.185
U (2)
3-0-6
Quantitative models for engineering analysis and design as applied to polymers. Includes linear and nonlinear viscoelasticity, yield models, homogeneous and flaw models for fracture and fatigue, rheological properties of polymer fluids, governing equations for thermomechanical fluid processing, and models for industrially important processing methods.
F. J. McGarry, D. K. Roylance

3.065 Polymer Laboratory (Revised Unit)
Prereq.: 3.10, 3.11
U (1)
1-5-3
D. K. Roylance, G. E. Wnek

3.069 Introduction to Ceramics Processing
Prereq.: 3.07
U (2)
3-0-9
Principles for processing technical ceramics based on an understanding of and application of fundamental principles for reliable and reproducible manufacturing. Case studies: ferrite magnets, alumina chip carriers, oxide varistors, and heat engine components. Topics: powder formation and conditioning, powder packing, densification and microstructure development, melt and vapor processing. Description of industrial manufacturing processes and how these relate to the fundamental concepts.
E. A. Barninger, H. K. Bowen

3.07 Introduction to Ceramics
Prereq.: 3.01 or 10.14, 3.13
U (1) SD
3-0-9
Characteristics of the crystal structures, including crystal defects, of oxide materials and local atomic arrangements in silicate glasses discussed with regard to relative stability of alternate possible arrangements and influence of structure on properties. Applies phase equilibria, interface properties, atomic mobility, and phase transformations to development of structure discussed together with relationship of structure to certain physical properties: Individual study of a particular ceramic, ceramic property, or ceramic process selected by the student required.
W. D. Kingery

3.070J Materials for Nuclear Applications
(Same subject as 22.070J)
Prereq.: 3.091 or 3.14 or 3.071J
U (2)
3-0-9
See description under subject 22.070J.
R. G. Ballinger

3.071J Physical Metallurgy Principles for Engineers
(Same subject as 22.071J)
Prereq.: 3.091
U (1)
3-0-9
See description under subject 22.071J.
W. D. Kingery

3.075 Ceramics and Glass Laboratory
Prereq.: 3.081
U (1)
2-7-3
Laboratory investigates ceramic and glass processing by means of a series of laboratory experiments plus an extensive project. Laboratory experiments cover a range of powder and glass processing together with physical property measurements. Laboratory project is undertaken with faculty supervision. Limited enrollment. Permission of instructor required.
W. D. Kingery, P. B. Vandiver

3.08 Economics of Engineering Materials
Prereq.: —
U (2)
3-0-6
J. P. Clark

3.081 Materials Laboratory
Prereq.: —
U (1, 2) LAB
1-6-5
Introduces study of materials by light, X-ray, and electron microscopy. Examines structures and relationship of structure to mode of fabrication. Applies both classical techniques and recently developed methods in transmission and scanning electron microscopy. In special project part of laboratory students employ many of these modern analytical tools. Limited enrollment. Permission of instructor required.
L. W. Hobbs, R. E. Ogilvie

3.082 Metals Processing Laboratory
Prereq.: 3.081
U (1)
1-6-5
Introduces relationship between processing-structure-properties and performance of materials. Each student participates in three laboratory experiments drawn from metals processing. Includes instruction in safety, technical writing, oral presentation, and experimental design.
R. M. N. Pelloux

3.083J Introduction to Microelectronic Technology
(Same subject as 6.150J)
Prereq.: 3.15 or 6.012
U (1, 2)
1-3-2
See description under subject 6.150J.
C. V. Thompson, D. J. Edell, L. R. Reif, C. G. Sodini

3.084 Semiconductor Devices Project Laboratory
Prereq.: 3.083J
U (1, 2)
0-6-0
Student use of facilities of Microelectronics Laboratory at CMSE for individual or team projects in the area of design, fabrication, modeling and characterization of individual MOS or bipolar devices and of integrated circuits using these devices. Each term, project topics are selected to fit the general areas of development in the Laboratory. When taken in conjunction with 3.083J it may be used to satisfy Institute Lab requirement. May be taken in same term as 3.083J. Permission of instructor required.
C. V. Thompson, H. L. Tuller

3.091 Introduction to Solid-State Chemistry
Prereq.: —
U (1, 2) SD
5-0-7
Development of relationships between electronic structure of elements, bonding characteristics, and crystal structure. Characterization of atomic and molecular arrangements in crystalline solids. Mechanisms and energy changes in chemical reactions and phase transformations. Chemical and physical properties of solids — metals, semiconductors, insulators, glasses, and polymers — as they relate to basic atomic parameters and processing technology.
J. B. Vander Sande, A. F. Witt

3.092 Perspectives in Materials Science
Prereq.: —
U (2)
2-0-4
Surveys, in some depth, materials science and its applications at levels suitable for those with no prior experience in the field. Lectures by MIT staff and guests form series of integrated seminars on important aspects of field.
A. F. Witt

3.094 Materials Technology
Prereq.: —
U (2)
3-0-9
B. L. Averbach
3.095J Introduction to Mining and Mineral Technology

(Same subject as 1.384J, 2.742J, 12.043J)
Prereq.: —
U (1)
3-0-6

A basic introduction to mining and the minerals industry with emphasis on state-of-the-art technology. Includes mineral exploration, surface and underground mining, extractive metallurgy, health and safety, and environmental considerations. Integration of diverse subject matter stressed. Guest lectures by a variety of faculty members, classroom discussions based on assigned reading.
J. F. Elliott, R. G. Burns, H. H. Einstein, C. R. Peterson

3.10 Chemical Physics of Materials
Prereq.: 3.01 or 10.14, 8.02, 18.03
U (2) SD
3-0-6

Introduction to quantum physics of electronic structure and chemical bonding of atoms, molecules, and solids. Emphasis on those concepts which are basic to an understanding of the chemical and physical properties of materials. Topics: wave mechanics and Shrodinger’s equation; atomic and molecular orbitals; the nature of the chemical bond; electronic structure of semiconductors and insulators; electronic structure of metals and alloys.
G. Kaloni

3.11 Mechanics of Materials I
Prereq.: 8.01, 18.02
U (1) SD
4-0-8

Aspects of solid mechanics necessary for understanding the response of polymers, metals, and ceramics to applied loads; static equilibrium, states of stress and strain, material stress-strain-temperature relations, response to torsion and bending, stability. Subject includes an introduction to computational mechanics, including FORTRAN/CMS student projects.
D. K. Royiance

3.12 Mechanics of Materials II
Prereq.: 2.01 or 3.11
U (2)
3-0-5

S. M. Allen

3.13 Structure of Solids
Prereq.: 3.11, 8.02, 18.02
U (2)
4-0-8

Uses symmetry theory in the description of the atomic arrangement in crystals. Derivation of space lattices, point groups, crystal systems, and plane groups. Principles of space group derivation and equivalent positions and their use in specifying structure. Interprets structures in terms of packing and coordination polyhedra. The nature of imperfections in real materials: point defects and the structure of line and planar defects.
B. J. Wunsche

3.14 Physical Metallurgy
Prereq.: 3.02, 3.13
U (2)
3-0-6

Relationship between structure and properties of engineering alloys presented and discussed in detail. Alloy systems covered include steels, stainless steels, aluminum and titanium alloys, and superalloys. Processing history, microstructure, and properties of each alloy system illustrated by case studies. Fracture analysis of alloys widely used in engineering applications emphasized.
K. C. Russell

3.143J Materials of Construction

(Same subject as 1.59J)
Prereq.: 8.01
U (2) SD
3-0-9

See description under subject 1.59J.
F. J. McGarry, F. Moavenzadeh

3.146 Electronic Materials
Prereq.: 3.01
U (2)
2-0-6

Various aspects of semiconductors such as crystal growth, impurity segregation, crystal structure, and electronic properties relevant to device applications. Emphasizes relationships among structure, bonding, and properties in elemental and compound semiconductors. Meets with 3.46J, 6.761J.
H. C. Gatos

3.147 Electronic Materials Processing
Prereq.: 3.01
U (2)
3-1-8

Focus on preparation of electronic materials emphasizing formation and compound semiconductors for device applications. Growth of single crystals from the melt, solution and vapor phase analyzed through respective phase equilibria. Studies effects of heat and mass transfer on composition and defect formation. Discusses in detail processes such as epitaxy, junction formation, annealing, wafer oxidation, external and internal gettering in silicon.
H. C. Gatos

3.15 Electrical, Optical, and Magnetic Materials and Devices
Prereq.: 3.10 or 6.017J
U (2)
3-0-6

Electronic, optical, and magnetic properties of materials in terms of electronic structure, chemical composition, and bonding. Properties of metals, semiconductors, and insulators including electrical conduction, thermoelectric power, Hall effect, optical absorption and reflection, luminescence, magnetism related to microstructure, impurities, and degree of disorder. Manipulation of properties for incorporation into devices. Can be taken concurrently with 3.10.
H. L. Tuller

3.16 Corrosion Science and Engineering
Prereq.: 3.01
U (2)
3-0-6

Electrochemical, environmental, and materials aspects of corrosion at both high and low temperatures. Forms of corrosion, corrosion testing, and corrosion control. Thermodynamics and kinetics of aqueous corrosion and high-temperature oxidation. Extension to fuel cells, batteries, and photoelectrodes. Discusses corrosion of materials in established and emerging technologies.
R. M. Latanision, G. J. Yurek

3.17J History and Anthropology of Materials Technology

(New)

(Same subject as 21.547J)
Prereq.: —
U (1)
3-0-6

Evaluates development of several major materials technologies and their impact on preindustrial societies. Considers criteria societies use when selecting and processing materials and why people engineer certain properties of materials to exclusion of others. Explores ideological and aesthetic criteria and social values so often overwhelmingly influential in materials development. Meets with 3.79. Research term project required for graduate credit.
L. W. Hobbs, H. N. Lechtman

3.171 Ceramic Artifact Interpretation
Prereq.: —
U (2) Next offered 1985-86
1-3-5

Ceramic artifact examination and interpretation form the basis for failure analysis, product development, and many inferences in archaeology, art history, and the history of technology. In combination with laboratory investigations of actual artifact samples, seminar discussions focus on the nature of the induction process applied to artifact data. In particular, the use of statistical hypotheses and the nature of plausible reasoning examined as applied to materials technology. Limited enrollment. Permission of instructor required.
W. D. Kington
3.172 Inventions and Patents
Prereq.: 14.02
U (1)
3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
R. H. Rines

3.185 Mass, Heat, and Fluid Transport
Prereq.: 3.01, 18.03
U (2)
3-0-5
Definition of viscosity, simple overall mechanical energy balances, elements of laminar flow and turbulent flow. Thermal conductivity, steady and unsteady conduction problems, forced and natural convection, heat transfer coefficient and radiative heat transfer. Definition of binary diffusivity, convection mass transfer, and mass transfer coefficient. Illustrative examples given throughout, chosen from the materials processing field.
T. A. Ring

3.20 Thermodynamics of Materials (A)
Prereq.: 3.01
G (1)
4-0-8
Offers advanced treatment of thermodynamic properties of inorganic materials including introductory statistical thermodynamics and surface thermodynamics. Applies laws of thermodynamics to chemical behavior of elements, compounds, and solutions. Discusses heterogeneous equilibria, chemical reactions, and thermodynamics of interfaces and structural defects.
R. M. Rose

3.21 Kinetic Processes in Materials (A)
Prereq.: 3.01, 3.02
G (2)
4-0-8
Presents unified treatment of kinetics from phenomenological and atomistic viewpoints. Covers diffusion in metals and non-metals, chemical kinetics, and kinetics of phase transformations including nucleation, growth, coarsening and spinodal decomposition. Also includes non-catalytic gas-solid reactions and oxidation of metals and alloys.
D. R. Sadoway

3.22J Solid-State Surface Science (A)
(Same subject as 10.613J)
Prereq.: 3.02 or 10.40
G (2) Not to be offered 1985-86
3-0-6
Structural, chemical, and electronic properties of surfaces of crystalline solids. Surface analytical tools used to characterize surfaces including Auger and photoelectron spectroscopies and electron diffraction techniques. Surface thermodynamics and kinetics. Phase transitions at surfaces. Engineering applications.
R. M. Latanision, H. H. Sawin

3.25J Physics of Deformation and Fracture of Solids I (A)
(Same subject as 2.332J)
Prereq.: 2.01, 2.30 or 2.31, 2.32
G (1) Next offered 1985-86
3-0-9
A. S. Argon

3.26J Physics of Deformation and Fracture of Solids II (A)
(Same subject as 2.333J)
Prereq.: 2.01, 2.30 or 2.31, 2.32
G (1) Not to be offered 1985-86
3-0-9
A. S. Argon

3.27 Diffraction and Structure (A)
Prereq.: 8.03, 18.03
G (2) Not to be offered 1985-86
4-0-8
X-ray and neutron production, absorption, and scattering. Overview of symmetry theory, point groups, and space groups. Interprets diffraction effects through the Ewald construction, reciprocal lattice, and Fourier transforms. Instrumentation and the interpretation of diffract pattern produced by the Laue, Debye-Scherrer, Weissenberg, and precession techniques. Diffractometer geometries. Applies diffraction to determination of particle size, pole figures, texture, and crystal structure.
B. J. Wueensch

3.271 Structure of Materials (A)
Prereq.: 18.03, 3.10
G (1)
4-0-8
B. J. Wueensch

3.29 Special Problems in Materials Science (A)
(New)
Prereq.: —
G (1, 2, S)
Arr.
Advanced work in the field for qualified students. Course work involves lectures, conferences, assigned readings, or supervised laboratory work.
L. W. Hobbs

3.30 Electron Microscopy: Image Interpretation (A)
Prereq.: 3.08I, 3.12, 3.13
G (2)
3-2-7
L. W. Hobbs

3.31 Phase Transitions (A)
Prereq.: 3.20, 3.21
G (1)
3-0-9
S. M. Allen

3.32 Introduction to Electron Optical Instruments (A)
Prereq.: 3.13, 3.14
G (1)
2-4-6
Treats interaction of electrons with materials in detail. Describes modern scientific tools employing results of these interactions to obtain information about structure and chemistry of materials on a microscale. Techniques: electron microanalysis, Auger spectrometry, scanning and transmission electron microscopy, low-energy electron diffraction, and field ion microscopy.
J. B. Vander Sande

3.33 Defects in Crystals (A)
Prereq.: 3.02, 3.12
G (1)
3-0-9
Unified treatment of point, line, and planar defects in crystals. Point defects include vacancies, self-interstitials, and solute atoms. Line defects include dislocations. Planar defects include stacking faults, small, and large angle grain boundaries, and interphase boundaries.
3.34 Physical Metallurgy of Deformation (A)
Prereq.: 3.14, 3.20, 3.21
G (2) 3-0-9
Advanced treatment of basic deformation mechanisms in single-crystal and polycrystalline metals and single-phase alloys. Dismutation, arbitrary strain of single crystals and polycrystals. Deformation twinning. Deformation by martensitic transformation, reversible deformation, shape memory. Thermally activated deformation, dislocation climb, diffusional mass flow under applied stress, temperature dependence of martensitic deformation. Strain-rate effects in dislocation dynamics, twinning, and martensitic deformation.
W. S. Owen

3.35 Solidification Processing (A)
Prereq.: 3.02 or 3.141
G (2) 2-0-4
Principles of control of structure, properties, and shape in processes involving liquid-solid and vapor-solid transformations. Heat flow, solute redistribution, nucleation, growth kinetics. Resultant structures and properties. Examples drawn from commercial processes, including metal casting, zone refining, electrodeposition, and crystal growth from the melt, vapor, and solution.
R. W. Balluffi

3.36J Welding Engineering (A)
(Same subject as 13.17J)
Prereq.: 3.02 or 3.141
G (1) 3-0-6
See description under subject 13.17J.
K. Masubuchi

3.38 Behavior of Metals at Elevated Temperatures (A)
Prereq.: 3.14 or 3.141
G (1) 3-0-6
N. J. Grant

3.39 Mechanical Behavior of Materials (A)
Prereq.: 2.30 or 3.11
G (1) 3-0-9
R. M. N. Pelloux, R. G. Ballinger

3.40 Physical Metallurgy (A)
Prereq.: 3.02, 3.11
G (1) 3-0-9
Discusses structure-property relationships in metallic alloys selected to illustrate some basic concepts of physical metallurgy and alloy design. Considers mostly mechanical properties. Also considers structural features: structural stability, grain size, interstitial and substitutional solutes, precipitates, second-phase particles, eutectics and eutectoids, and composites.
W. S. Owen

3.41J The Mechanics of Fracture
(Same subject as 2.34J)
Prereq.: 2.31, 2.32
G (2) 3-0-9
See description under subject 2.34J.
R. M. N. Pelloux, D. M. Parks

3.42 Physics and Chemistry of Materials (A)
Prereq.: 8.03, 18.03
G (1) 4-0-8
Introduces physics and chemistry of materials, based on unified treatment of quantum physics, chemistry, and statistics of electrons, atoms, molecules, and solids. Includes: review of classical mechanics and electromagnetic theory; basic concepts and formalism of quantum mechanics; free electron, molecular-orbital, and band theories; quantum statistics of electrons; defect and interface states; lattice heat capacities; Boltzmann theory of electrical and thermal transport; Ising model of order-disorder transformations; electronic phase transitions.
K. H. Johnson

3.44 Advanced Topics on the Physics and Chemistry of Materials (A)
(New)
Prereq.: 3.43
G (2) 4-0-8
Covers advanced topics on the physics and chemistry of materials not covered in the core subject 3.43. Includes: molecular and crystal symmetry group theory; ligand field theory; computer applications of quantum chemistry to the electronic structures of materials; electronic structures of crystalline and noncrystalline materials, surface physics, chemisorption and catalysis; structural and electronic phase transitions, including superconductivity, lattice instabilities (martensitic transformation), and melting.
K. H. Johnson

3.45 Magnetic Materials (A)
(New)
Prereq.: 3.43
G (1) 3-0-9
Magnetization phenomena, origin of magnetism in a material, magnetic domains and domain walls, magnetic anisotropy, reversible and irreversible magnetization processes. Special topics: ferromagnetism of thin films and fine particles, magnetic recording, magnetic circuits, amorphous magnetic materials.
B. L. Averbach

3.46J Electronic Materials (A)
(Same subject as 6.761J)
Prereq.: 3.15, or 6.012, 6.301
G (1) 2-0-6
Advanced and quantitative homework assignments. See description under subject 3.146.
H. C. Gatos

3.47 Electronic Materials Processing
Prereq.: 3.20, 3.21
G (2) 3-1-8
C. V. Thompson

3.49 Special Problems in Electronic Materials (A)
(New)
Prereq.: —
G (1, 2, S) Arr.
Advanced work in the field for qualified students. Course work involves lectures, conferences, assigned readings, or supervised laboratory work.
H. C. Gatos
3.50 Physical Chemistry of Metallurgical Processes (A)
Prereq.: 3.20
G (2) 3-0-6
J. F. Elliott

3.501 Physical Chemistry in Pyrometallurgical Processes (A)
Prereq.: 3.20
G (1) Next offered 1985-86 3-0-6
Studies current state of understanding of the thermodynamic and kinetic behavior of reactions, components, and phases in pyrometallurgical systems. Advanced treatment of the reactions among components in metals, gases, slags, and mattes. Emphasizes current literature on the subject.
J. F. Elliott

3.51 Process Metallurgy (A)
Prereq.: 3.03
G (2) 3-0-6
Applications of fundamental treatment of 3.03 to integrated metallurgical processes such as the iron blast furnace; basic oxygen steelmaking; direct reduction and electric furnace steelmaking; stainless steelmaking by the AOD process; copper smelting; manganese nodule processing by liquid ion exchange separation; halide processes; ferroalloy production. Term report on topics of current interest required.
T. B. King

3.52 Dynamic Behavior of Metallurgical Systems (A)
Prereq.: 3.01, 18.03
G (2) Not to be offered 1985-86 3-0-6
Investigates metallurgical systems by decomposing them into unit operations and evaluates the dynamic behavior of each unit operation by model development or control theory. Then assembles these model unit operations into a metallurgical system model and characterizes its dynamic behavior.
J. F. Elliott, T. A. Ring

3.53 Electrochemical Processing of Materials (A)
Prereq.: 3.20 or 3.54
G (2) Not to be offered 1985-86 3-0-6
Discussion of principles of electrochemistry: thermodynamics and kinetics of electrode processes, polarization, electrical charge double layers, electrokinetic phenomena, nature of ionic media. Application and use of electrochemical principles in fuel cells and batteries, electroslag remelting, electroplating, electrolysis, electrowinning, fused-salt electrolysis of metals, electrolytic production of gases and chemicals, solid-state electrolysis. Alternate years.
J. F. Elliott, R. M. Latanision

3.54 Corrosion — The Environmental Degradation of Materials (A)
Prereq.: 3.00
G (1) 3-0-6
Applies thermodynamics and kinetics of electrode processes to aqueous corrosion of metals and alloys. Forms of corrosion and corrosion testing. Methods of corrosion control including alloy selection, water chemistry, design rules, anodic and cathodic protection, and coatings. Extension to environmental degradation of ceramics and polymers. Discusses materials degradation problems in marine environments, oil and gas production, energy conversion and generation systems.
R. M. Latanision

3.541 Oxidation and Corrosion of Materials at Elevated Temperatures (A)
Prereq.: 3.20, 3.21
G (2) Not to be offered 1985-86 3-0-6
Application of fundamental principles of thermodynamics and kinetics to determination of the mechanism of the oxidation and corrosion of materials at elevated temperatures. Relationship of oxidation theory to design of alloys and of coating materials for protection against attack. Discussions of high-temperature oxidation and corrosion problems that occur in systems for the conversion and utilization of energy, and in petrochemical and metallurgical industries.
G. J. Yurek

3.55 Macroscopic Transport in Materials Processing (A)
Prereq.: 18.03
G (1) 3-0-9
Elements of laminar and turbulent flow, heat transfer by conduction, convection, and radiation, mass transfer in laminar and in turbulent flow. Modeling of transport phenomena in industrial systems, including steaming, continuous casting, and vacuum degassing.
J. Szekely

3.551J Gas-Solid Reactions (A)
(Same subject as 10.48.J)
Prereq.: 3.55, 10.50
G (2) Next offered 1985-86 3-0-6
Gas-solid reactions, involving single particles; chemical kinetics, heat and mass transfer, pore diffusion, and structural changes. Reaction of porous and non-porous particles, reactions between solids, proceeding through gaseous intermediates. Reviews experimental techniques for study of gas-solid reactions, including physical characterization of solid specimens. Multi-particle systems, such as packed beds, fluidized beds, and rotary kilns. Gas-solid reactions of industrial importance.
J. Szekely

3.56 Engineering Systems Analysis (A)
Prereq.: Permission of Instructor
G (1) 3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
J. P. Clark, R. de Neufville

3.562J Current Issues in Engineering Management
(Same subject as 1.485J, 6.941J, 13.682J, 22.87J)
Prereq.: —
G (2) 3-0-6
See description under subject 1.485J.
T. H. Lee

3.563J Cases and Projects in Engineering Management
(Same subject as 1.486J, 6.942J, 13.683J, 22.88J)
Prereq.: 6.941J
G (1) 3-1-5
See description under subject 1.486J.
T. H. Lee

3.564J Technology Planning (A)
(Same subject as 1.487J, 13.684J)
Prereq.: —
G (1) 3-0-6
See description under subject 1.487J.
J. M. Utterback, R. D. Logcher

3.565J Manufacturing/Technology Interface (A)
(Same subject as 13.685J, 15.365J)
Prereq.: Permission of Instructor
G (2) 3-0-6
See description under subject 15.365J.
J. M. Utterback

3.566 Entrepreneurship
Prereq.: —
G (2) 4-0-5
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
D. G. Jansson

3.57 Particulate Technology
Prereq.: 3.21
G (2) Next offered 1985-86 3-0-6
Methods of particle size analysis are presented in detail to set the stage for a discussion of the following ceramic and metallurgical processes in particulate technology: comminution, classification, sedimentation, crystallization, agglomeration, and powdered metal generation. Analysis of these topics provides familiarity with population balance theory of particulate processes.
T. A. Ring
3.576J Law, Technology and Public Policy
(Same subject as TPP 32J)
Prereq.: Permission of Instructor
G (2) 3-0-6

See description under subject TPP 32J.
N. A. Ashford

3.577 Engineering Risk-Benefit Analysis (A)
Prereq.: 18.02
G (2) 3-0-6

School-Wide Elective Subject. Description given at end of this chapter on SWE page.
A. W. Drake, A. R. Otoni

3.58 Seminar on Problems in Materials Policy
Prereq.: —
G (2) 2-0-4

Discussion of materials scarcity, production capacity, position of Socialist block and third-world countries, financial factors affecting capacity expansion, costs and prices, history and prospects of producer cartels, stockpiles and international buffer stocks, competition of materials for markets. Emphasis on metals or other materials, depending on choice of instructor in charge.
M. B. Bever, S. D. Strauss

3.581J Ocean Resources Management (A)
(Same subject as 13.961J)
Prereq.: Permission of Instructor
G (2) Not to be offered 1985-86 3-0-6

See description under subject 13.961J.
J. P. Clark, J. T. Kildow

3.59 Research Proposals — Planning for Discovery (A)
Prereq.: —
G (2) Next offered 1985-86 2-0-4

Analyzes individual research proposals aimed at new discoveries in relationship to concepts such as market for discovery, importance of paradigms, importance of anomalies, influence of communities, distinction between discovery and proof of discovery, and nature of plausible reasoning. Requires preparation of research proposals and includes individual counseling and evaluation by a faculty member other than advisor or thesis supervisor. Limited enrollment. Permission of instructor required.
W. D. Kingery

3.595 Special Problems in Materials Engineering (A)
(New)
Prereq.: —
G (1, 2, S) Arr.

Advanced work in the field for qualified students. Course work involves lectures, conferences, assigned readings, or supervised laboratory work.
J. P. Clark

3.60 Thermal and Tensor Properties of Ceramics (A)
Prereq.: 3.06 or 3.07
G (2) Next offered 1985-86 3-0-6

Analyzes tensor representation of properties of crystalline ceramics. Includes anisotropy, representation surfaces and effects of crystal symmetry, as well as application to piezoelectric and elastic properties and propagation of elastic waves in crystals. Discusses thermal properties: heat capacity, thermal expansion, and thermal conductivity, emphasizing materials and influences of microstructure.
B. J. Wuest

3.601 Electrical, Optical, and Magnetic Properties of Ceramics (A)
Prereq.: 3.07
G (1) Next offered 1985-86 3-0-6

Analyzes electrical, optical, and magnetic properties of ceramics in terms of band theory, transport theory, and defect chemistry. Examines effects of materials processing, composition and microstructure on properties. Discusses applications of theory towards new materials development.
H. L. Tuller

3.602 Mechanical Properties of Ceramics (A)
Prereq.: —
G (2) Next offered 1985-86 3-0-6

Discusses use of ceramics as structural materials including both fracture and deformation as related to engineering applications.
W. D. Kingery

3.604 Problems in Nonstoichiometry (A)
Prereq.: 3.601
G (1) 2-0-4

Derives thermodynamics of nonstoichiometric phases and analyzes inherent limitations of this approach. Extends theory to highly defective systems. Applies defect chemical analysis to binary and higher order systems. Analyzes cluster models and extended defects in highly nonstoichiometric systems. Examines implications of defect structure on structural, kinetic, electrical, and other properties of such materials.
L. W. Hobbs, H. L. Tuller

3.61 Glass Structure and Properties (A)
Prereq.: 3.06 or 3.07
G (2) Not to be offered 1985-86 3-0-6

Considers topics of interest in the science and technology of amorphous solids, including glass formation, crystallization of glass-forming liquids, flow and relaxation phenomena, structure of glasses, phase separation in glasses, mechanical, electrical, and thermal properties of glasses. Emphasizes information from recent publications. Alternate years.
D. R. Uhlmann

3.611 Polyphase Ceramics (A)
Prereq.: 3.06, 3.07
G (2) Not to be offered 1985-86 3-0-6

Applies phase transformation kinetics and multi-component phase equilibria to structure and properties of polyphase ceramics such as glass-ceramic compositions, triaxial porcelains, glazes, clay products, and refractories.
W. D. Kingery, D. R. Uhlmann

3.63 Ceramic Processes (A)
Prereq.: 3.06 or 3.08, 3.20
G (1) Not to be offered 1985-86 3-0-6

Presents quantitative treatment of unit operations in powder processing-powder preparation, fabrication, and firing. Discusses glass processing-homogenization during melting; relationship to mixing theory-glass forming. Also covers growth of crystals, thermodynamics, transport processes, and kinetics in relation to structures developed.
R. L. Coble

3.631 Processing of Metals, Ceramics, and Glasses (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86 3-0-6

Powder preparation, grinding, precipitation, sol-gel processing, fabrication, and firing.赫式的 scale laws and application of the diffusion sintering-hot pressing models. Cast ceramics — normal and rapid solidification. Melting and fusing glasses and glass ceramics. Fabrication, annealing, tempering, optical fiber, sol-gel glasses.
R. L. Coble

3.64 Special Problems in Ceramics (A)
Prereq.: —
G (1, 2, S) Arr.

Explores advanced work in this field. Coursework includes lectures, conferences, assigned readings, and laboratory work.
W. D. Kingery

3.691-3.699 Teaching Materials Science and Engineering
Prereq.: —
G (1, 2) Arr.

Laboratory, tutorial, or classroom teaching under the supervision of a faculty member. Students selected by interview. (Enrollment limited by availability of suitable teaching assignments.)
D. R. Sadoway

3.70 Special Problems in Metallurgy (A)
Prereq.: —
G (1, 2, S) Arr.

Minor investigation in one of the special branches of metallurgy. (Open only to students properly qualified in the special field.)
R. M. Latanision
3.71J Physical Metallurgy Principles for Engineers (A)
(Same subject as 22.71J)
Prereq.: Permission of Instructor
G (1)
3-0-9
See description under subject 22.71J.
I-W. Chen

3.71J Materials for Nuclear Applications (A)
(Same subject as 22.70J)
Prereq.: 3.14 or 3.71J
G (2)
3-0-9
See description under subject 22.70J.
R. G. Ballinger

3.71J Materials for Nuclear Applications (A)
(Same subject as 22.70J)
Prereq.: 3.14 or 3.71J
G (2)
3-0-9
See description under subject 22.70J.
R. G. Ballinger

3.72J Nuclear Fuels (A)
(Same subject as 22.72J)
Prereq.: 3.14 or 22.71J
G (1)
3-0-9
See description under subject 22.72J.
R. G. Ballinger

3.72J Radiation Effects in Crystalline Solids (A)
(Same subject as 22.73J)
Prereq.: 3.02 or 3.71J or 22.071J or 22.71J
G (2)
3-0-9
See description under subject 22.73J.
I-W. Chen

3.74J Computational Methods in Materials Science and Engineering (A) (New)
(Same subject as 22.44J)
Prereq.: —
G (2)
3-0-9
See description under subject 22.44J.
G. Kalonji, S. Yip

3.75J Radiation Effects in Reactor Structural Materials (A)
(Same subject as 22.75J)
Prereq.: 3.71J or 22.71J, 22.73J
G (2) Not offered 1985-86
3-0-9
See description under subject 22.75J.
K. C. Russell

3.77 Laboratory Measurement and Control
Prereq.: —
G (1)
2-1-3
J. T. Blucher

3.79 History and Anthropology of Materials Technology (A)
(New)
Prereq.: Permission of Instructor
G (1)
3-0-6
Evaluates development of several major materials technologies and their impact on preindustrial societies. Considers criteria societies use when selecting and processing materials and why people engineer certain properties of materials to exclusion of others. Explores ideological and aesthetic criteria and social values so often overwhelmingly influential in materials development. Research term project required for graduate credit.
L. W. Hobbs, H. N. Lechman

3.82J Structural Mechanics in Nuclear Power Technology (A)
(Same subject as 1.56J, 2.08J, 13.14J, 16.26J, 22.314J)
Prereq.: Permission of Instructor
G (1)
3-0-9
See description under subject 22.314J.
J. E. Meyer, O. Buyukozturk

3.90J Fracture of Structural Materials (A)
(Same subject as 1.59J, 13.16J)
Prereq.: 1.59J or 2.30 or 3.141 or 13.15J
G (1)
3-0-6
F. J. McGarry, K. Masubuchi

3.91J Mechanical Behavior of Plastics (A)
(Same subject as 1.59J)
Prereq.: 3.064
G (1)
3-2-4
Relation among chemical composition, physical structure, and mechanical behavior of plastics or synthetic high polymers. Study of types of polymers; fundamentals of viscoelastic phenomena such as creep, stress relaxation, stress rupture, mechanical damping, impact; effects of chemical composition and structure on viscoelastic and strength properties; methods of mechanical property evaluation. Emphasizes on recent research techniques and results. Individual laboratory projects investigating related to current research.
F. J. McGarry, D. K. Roylance

3.92J Composite Materials (A)
(Same subject as 1.594J)
Prereq.: 3.064
G (2)
3-2-4
Concepts underlying formation, characteristics, and behavior of plastics-based composites such as fiberglass laminates, structural sandwich, plywood, and load-bearing adhesive joints. Typical components such as metals, glass, synthetic and natural adhesives, plastics, foams, wood, paper, fabrics, and rubber. Correlation between adhesion principles and physical behavior. Methods of design, analysis, fabrication, and testing. Discusses failure mechanisms of chemical, and mechanical types. Individual laboratory projects investigating problems related to current research.
F. J. McGarry

3.93 Materials Science of Polymers (A)
Prereq.: 3.061J, 10.691
G (1) Next offered 1985-86
3-0-9
Considers structure and properties of polymers from viewpoint of materials science. Specific attention to polymerization processes, melt and crystal structures, crystallization from the melt and dilute solutions, rheology and relaxation behavior, rubber elasticity, mechanical properties, and effects of orientation and fillers on various properties. Emphasizes student participation in class discussion. Permission of instructor.
D. R. Uhlmann

3.930 Industrial Practice
Prereq.: —
U (S)
0-12-0
Enrollment restricted to students in Course III-B. Provides academic credit for first approved work assignment at a company.
J. M. Dhosi, T. B. King

3.931 Industrial Practice
Prereq.: —
U (S)
0-12-0
Enrollment restricted to students in Course III-B. Provides academic credit for second approved work assignment at a company.
J. M. Dhosi, T. B. King

3.932 Industrial Practice (A)
Preprq.: —
G (1, 2, S)
0-6-0
Provides academic credit for graduate students in Course III-B for approved work assignments at companies. May be repeated.
J. M. Dhosi, T. B. King
3.95 Environmental Properties of Polymers (A)
Prereq.: 3.062
G (2) Next offered 1985-86
3-0-9
Discussion of the many ways in which polymers influence and are influenced by environmental and societal factors, to include polymer weatherability and stabilization effects of solvents, thermal degradation, flammability, recycling and disposal, toxicity, response of polymer industry to current economic and societal trends. Illustrated by case studies. Projects.
D. K. Roylance, G. E. Wnek

3.96 Spectroscopy and Electrical Properties of Polymers (A)
Prereq.: 3.062, or 10.641
G (2) Next offered 1985-86
3-0-9
The first two-thirds of subject focus on working knowledge of modern spectroscopic techniques (primarily UV-VIS, IR, and NMR) for determination of polymer composition, microstructure, and molecular dynamics. Selected instrumentation available for laboratory work. Also discusses topics of current interest concerning electrical properties including dielectric behavior and highly conductive polymers.
G. E. Wnek

3.961 Polymer Synthesis and Properties (A)
Prereq.: 10.691
G (1)
3-1-5
Fundamental chemistry of polymerization reactions. Reaction mechanisms and polymerization techniques. Emphasizes relationships among preparation, structure, and properties. Topics: coupling reactions, radical, ion, and coordination polymerization and chemical modification of polymers.
G. E. Wnek

3.99 Special Problems in Polymer Science and Engineering (A)
Prereq.: —
G (1, 2, S)
Arr.
Advanced work in the field. Lecture, conferences, assigned readings, and laboratory work.
D. R. Uhlmann
4.131, 4.132 Architectural Design
Prereq.: 4.125, 4.126
U (1, 2)
0-12-8

4.143, 4.144 Architectural Design (A)1
Prereq.: 4.125, 4.126
G (1, 2)
0-12-8

4.155, 4.156 Architectural Design (A)1
Prereq.: 4.144
G (1, 2)
0-12-8

4.163J Urban Design (A)
(Same subject as 11.332J)
Prereq.: Permission of Instructor
G (2)
Arr.

4.164 Housing Design and Methods (A)
Prereq.: 4.211, 4.224
G (2)
0-12-8

4.165 Architectural Design for Islamic Cultures (A)
(New)
Prereq.: 4.144
G (2)
0-12-8

Note about the subjects in Architectural Design: The sequence in Architectural Design is a cumulative program. Its successful completion by the student is subject to the evaluation of the staff independently of formal grades accumulated.
4.17, 4.171 Special Problems in Architectural Design

Prereq.: —
U (1, 2)
Arr.

4.19, 4.191 Special Problems in Architectural Design (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.

Supplementary work on individual or group basis. Registration subject to prior arrangement for subject matter and supervision by staff.

Architectural Design Staff

4.211 Interventions to Urban Housing (A)
Prereq.: 4.125 or 4.126
G (1)
3-3-6
Introduces the relative roles which users and institutions play in shaping the urban residential environment and the processes of planning and building. Evaluating the evolution of these processes in various cultural and historical contexts, tackling related design information and regulatory controls. Assessing professional, governmental, and industrial interventions in these processes, types, tools, and implications. Case studies illustrate alternative approaches at dwelling and neighborhood levels.

N. Habraken

4.224 Thematic Design: Theory (A)
Prereq.: 4.125, 4.126
G (2)
3-4-5
Lectures and exercises on the principles of thematic design. Theme, pattern, and type as ordering devices. Spatial and physical thematic systems. Levels among thematic systems. Change and the dimension of time in design. Territory and territorial order. Inside-outside and public-private transitions. Social and personal values and their relations to form. Provides understanding and skills for general use in architectural and urban design.

N. J. Habraken

4.227 Issues of Theory and Method in Design (A)
Prereq.: —
G (1)
2-0-4
Examines questions of methodology in design, theory of design, and theory of the built environment based on readings and visual documents. Topics vary each semester.

N. J. Habraken

4.231 Computers and Graphics
Prereq.: Permission of Instructor
G (1)
4-2-6
A general introduction to computer graphics and its applications in design, architecture, and the graphic arts. Practical assignments provide experience in the use of 2-D and 3-D graphics in the extensive facilities of the Architecture Machine Group, including touch-sensitive screens, color raster displays, and computer-linked video systems. PL1 is the programming language most in use. Programming experience not mandatory. Open to undergraduates.

P. Purcell

4.232 Advanced Computer Graphics and its Applications (A)
Prereq.: 4.231
G (2)
4-0-8
Main thrust is enhancement of human/machine communication at computer graphics interface. Formulation of individual projects within current research of the Architecture Machine Group: modeling of human form and gesture and integrating of text and visual images in development of graphic information systems. Presents a wide spectrum of interactive techniques, including gesture modeling systems, voice recognition, synthesis methods, and touch-sensitive displays.

P. Purcell

4.241 Computer Graphics Programming
Prereq.: —
U (1)
4-0-8
Overview of the techniques of computer image synthesis, including both hardware and software. Line drawing and color raster graphics. Homogeneous coordinates, hidden surface, and smooth-shading algorithms. Programming problems and a term project. Limited enrollment. Previous programming experience required.

A. Lippman

4.242 Advanced Computer Graphics (A)
Prereq.: 4.241
G (2)
4-0-8
Treats in-depth current research in 3-D computer graphics. Readings from recent papers. Significant term projects including an implementation, written report, and classroom presentation.

A. Lippman

4.251 Digital Video (A)
Prereq.: Permission of Instructor
G (2)
2-0-7
Provides a technical introduction to video imaging, storage, and display devices, and their digital counterparts. Regards the video system as a general communications link capable of transmission of analog images as well as computer data, connected to image processing equipment as well as digital computers and displays. Topics: raster scan display architecture, anti-aliasing, optical storage, video encoding. Requirements include individual term projects.

A. Lippman

4.254J Media Communications Technology and Policy (A)
(Same subject as 17.742J)
Prereq.: Permission of Instructor
G (2)
3-0-9
See description under subject 17.742J.

A. Lippman, W. R. Neuman

4.259 Special Projects in Media Technology (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.

Supplementary work on individual or group basis. Registration subject to prior arrangement for subject matter and supervision by staff.

Staff

4.26 Observing Form in Context (Revised Content)
Prereq.: 4.01
U (2)
3-3-6
Introduction to disciplined observation of the built environment. Study of architectural places and gestures in their context by observing qualities of space, light, form, and materials. Lectures, field studies, drawings, sketches, designs, and discussions.

F. P. Domeyko

4.261 Design Skills Workshop
Prereq.: Permission of Instructor
G (1)
Arr.

Supplements Level I Architectural Design Studio. Emphasizes acquisition of drawing and observational skills. Field trips, guest lectures, and presentations focus on issues specific to developing a design drawing repertoire. Individual tutorials in graphic skills. Restricted to and intended for entering M. Arch. students.

J. R. Myer
4.273 Methods of Inquiry in Architecture Studies
Prereq.: Permission of Instructor
G (1)
Introduces ways of acquiring systematic knowledge about the built environment. Examines what constitutes valid knowledge in architecture and compares various approaches to the understanding of the built environment. Emphasizes theory building and testing appropriate to architectural studies. Requirements include exercises aimed at improving skills in conceptualizing problems; developing concepts; interpreting information; and communicating results. Required of all first-year S.M.Arch.S. students.
E. Robbins

4.276 Introduction to Building Economics
Prereq.: Permission of Instructor
G (2)
Introduces basic analytical concepts of micro and macroeconomics, with applications to building and the building industry. Prepares for microeconomic analysis of firms engaged in planning, real estate development, design, construction, and maintenance of buildings, as well as for macroeconomic analysis of the building industry in developed and developing countries. Required of all first-year S.M.Arch.S. students.
R. B'n

4.278 Preparation for M.Arch. Thesis (A)
Prereq.: 4.228
G (2)
Supplementary work on individual or group basis. Registration subject to prior arrangement for subject matter and supervision by staff.

4.291 Special Topics in Design Information
Prereq.: Permission of Instructor
U (1, 2)
Arr.
Supplementary work on individual or group basis. Registration subject to prior arrangement for subject matter and supervision by staff.

4.295-4.299 Special Topics in Design Information (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Supplementary work on individual or group basis. Registration subject to prior arrangement for subject matter and supervision by staff.

4.30 Basic Structural Theory
Prereq.: 8.02, 18.02
U (2) SD
3-3-6
Introduces the static behavior of structures and strength of materials. Reactions, truss analysis, stability of structures. Stress and strain at a point, shear and bending moment diagrams. Stresses in beams, Mohr's Circle, column buckling. Deflection of beams. Laboratory to solve structural problems by building simple models and testing them.
L. B. Groisser

4.315J Structural Engineering Laboratory
(Same subject as 1.105J)
Prereq.: —
U (1) LAB
0-3-3
See description under subject 1.105J.
W. P. Zalewski

4.331 Synthesis of the Behavior of Structural Systems I
Prereq.: —
G (2)
4-0-4
Classification of the most characteristic patterns of the behavior of basic structural materials, structural systems, and their components. Catenary, arch, and shell structures. Flow of internal forces in deep walls and beams; trusses; frames and plates. Studies relationship between shape of structure and its technological and mechanical efficiency as a way to general optimization. Applies mastery of simplified procedures — graphical and numerical — to the design of structural systems.
W. P. Zalewski

4.332 Synthesis of the Behavior of Structural Systems II
Prereq.: 4.331
G (2)
4-0-4
Approximate methods for the initial selection of framing systems for vertical loading. Loading conditions and building codes. Design of beams for shear, bending moment, and deflection criteria; design of columns. Application to a wood house including alternative wood floor framing, walls, columns, and rafters. Optimum truss depth.
L. B. Groisser

4.341 Framing Systems for Small Structures
Prereq.: 4.30 or 4.331
G (1)
4-0-4
 Allows participation in faculty-initiated structural design research projects related to architectural applications of new building components and methods of their assembly.
W. P. Zalewski

4.39 Special Problems in Structural Design (A)
Prereq.: 4.30 or 4.331
G (1, 2)
Arr.
Supplementary structural design on individual or group basis. Registration subject to prior arrangement for subject matter and supervision by staff.
W. P. Zalewski

4.402J Building Construction I
(Same subject as 1.411J)
Prereq.: —
U (1)
3-3-6
Basic principles of materials and methods of construction as applied to common generic building types. Emphasizes integrated team approach from preliminary design to on-site implementation. Lectures, problem sets, demonstrations, and field trips illustrate principles.
E. Dluhosch

4.403J Building Construction II
(Same subject as 1.412J)
Prereq.: 1.02, 1.04; or 4.402J, 4.30 or 4.331
U (2)
2-4-3
Technical analysis and on-site case studies of selected building projects and/or their constituent sub-systems and elements. Investigates operational integration and technical implementation of materials and processes to realize explicitly stated design criteria by means of best current building practice. Develops construction documentation, details, and basic specifications within given limits of codes, regulations, and other legal restrictions.
E. Dluhosch

4.409 Special Problems in Building Technology (A)
Prereq.: 4.30, 4.402J, 4.43
G (2)
Arr.
Supplementary work on individual or group basis. Registration subject to prior arrangement for subject matter and supervision by staff.
E. Dluhosch

4.43 Acoustics In Architecture and Planning
(Revised Content)
Prereq.: 4.402J
U (1)
4-0-4
Describes desirable and undesirable interactions between people and sound, indoors and outdoors, and uses this information to develop acoustical design criteria for architecture and planning. Physical principles of sound generation, propagation, and reception. Techniques and data used to provide good hearing conditions in interior and exterior spaces, and to control noise in rooms, buildings, sites, and regions. Practical examples and case-history illustrations.
R. H. Bolt
4.45 Uses of Energy in Buildings
Prereq.: 4.402J
U (1) 3-0-6
Explores energy utilization in buildings specially emphasizing energy conservation. Emphasizes a qualitative understanding of the various energy flows affecting buildings as well as a quantitative understanding of the major factors influencing building design and operation. Topics: thermal comfort, climatic analysis, thermophysical properties of building materials, psychrometrics, heat gain and loss, lighting, and HVAC selection and integration.
H. J. Bryan

4.46 Solar Architecture (A)
Prereq.: 4.45
G (2) 3-0-6
Develops and applies principles for the utilization of solar energy in buildings. Covers methods for designing solar energy systems and predicting their performance. Topics: solar movement, solar radiation, fundamentals of solar heating and cooling, active solar design for space heating, cooling, and domestic hot water, passive solar design for space heating and cooling, performance and economic analysis, and the integration of solar concepts into building design.
H. J. Bryan

4.468 Energy Conscious Design (A)
Prereq.: 4.071J, 4.131 or 4.143, 4.45, 4.46
G (2) 4-4-12
Examines energy-conscious design issues using a commercial design problem in a studio format. Presents design and modeling methods for predicting thermal and lighting behavior. Studies building material choices and introduces the latest building technology for conserving energy.
T. E. Johnson

4.474 Uses of Daylighting in Buildings (A)
Prereq.: 4.45
G (1) 3-0-6
Explores and analyzes in detail the principles associated with utilization of daylighting in buildings. Topics: history of daylighting, fundamentals of light, daylight availability, strategies for daylighting design, architectural considerations, calculations and design methods, thermal and energy considerations, integration of daylighting with artificial lighting, lighting control strategies and integration of daylighting into building design.
H. J. Bryan

4.497-4.499 Special Problems in Environmental Controls (A)
Prereq.: —
G (1, 2) Arr.
Supplementary work on individual or group basis. Registration subject to prior arrangement for subject matter and supervision by staff.
H. J. Bryan

4.51 Building Systems I
Prereq.: Permission of Instructor
G (1) 3-0-6
Studies technological innovation in building construction, including mechanization, prefabrication, industrialization, and automation. Analyzes processes for building system production and delivery on-site, based on user-friendly design performance criteria. Applies appropriate building systems in both industrialized and developing countries. Lectures, case studies, and field trips.
E. Dluhosch

4.52 Building Systems II (A)
Prereq.: 4.51
G (2) 3-0-6
Seminar on applying and/or adapting appropriate technological solutions to selected generic building types and/or construction systems. Develops innovative strategies for planning, programming, procurement, and on- or off-site assembly of rationalized, prefabricated, or industrialized building systems or subsystems. Evaluates solutions in terms of functional and spatial adaptability to changing user needs.
E. Dluhosch

4.55 Building Economics: Project Life Cycle Analysis (A)
Prereq.: 4.276
G (1) 3-0-6
Examines microeconomic aspects of building and building technology in framework of project life cycle analysis. Analyzes economic role of design professionals in network of key actors participating in project life cycle: planning, real estate development, design, construction, financing, maintenance, reconstruction. Requires empirical research projects into life cycle phases and/or facets in a unified case study format.
R. Bon

4.56 Building Economics: Inter-industry Analysis (A)
Prereq.: 4.276
G (2) 3-0-6
Studies macroeconomic aspects of building and building technology in framework of inter-industry analysis. Emphasizes input-output analysis and extensions: social accounting matrices, multiregional input-output analysis, development network analysis. Requires empirical research projects into industrial and regional interdependencies of building industry in developed and developing countries.
R. Bon

4.59 Special Topics in Systems Building (A)
Prereq.: Permission of Instructor
G (1, 2) Arr.
Supplementary study on selected topics such as managerial, economic, socioeconomic, and/or political problems connected with the building industry. Registration subject to prior arrangement for subject matter and supervision.
E. Dluhosch

4.601 Topical Studies in the History and Theory of Art (Revised Unit)
Prereq.: —
U (1) HUM-D 4-0-5
Introduces the history and theory of painting and sculpture from prehistoric times to late Baroque. Examines key objects in terms of style, iconography, and function and considers them as expressions of the social, political, religious, and intellectual values of their respective cultures. Emphasizes discussion of the different functions of art and basic modes of artistic formation. May count toward Humanities Requirement.
A. M. Wagner

4.605 Introduction to the History and Theory of Architecture
Prereq.: —
U (2) HUM-D 4-0-5
Provides an outline of the history of architecture and urbanism from Ancient Egypt to the present. Examines buildings as the products of culture and in relation to the special problems of architectural design. May count toward Humanities Requirement.
D. H. Friedman

4.615 Selected Topics in Architecture of the Ancient World
Prereq.: 4.602
G (1) 3-0-6
Analysis of role of mass, space, structure, light, surface, and related social, political, and economic factors in architecture and urban design from prehistory through Roman times. Open to qualified undergraduates. Permission of instructor required.
D. H. Friedman

4.625 Selected Topics in Architecture in the Middle Ages
Prereq.: 4.602
G (1) Next offered 1985-86 3-0-6
A history of buildings from the time of Rome's conversion to Christianity to the beginning of the Renaissance. Deals with the history of architectural form, methods of design and construction, and the historical and physical contexts of the buildings. Open to qualified undergraduates. Permission of instructor required.
D. H. Friedman
4.635 Late Gothic and Early Renaissance Architecture
Prereq.: 4.602
U (1) HUM-D
G (2)
3-0-6
A history of the recreation in late medieval Europe of the classical style in architecture. Examines trends in late Gothic architecture from which new style emerged in Florence in 1419. Traces its development through the work of Brunelleschi, Alberti, Bramante, and others. Deals with the architectural profession, theory, and historical and physical contexts of the buildings. Open to qualified undergraduates. Permission of instructor required. May count toward Humanities Requirement.
D. H. Friedman

4.636 High Renaissance and Baroque Architecture
Prereq.: 4.602
G (2)
3-0-6
A history of the establishment of the normative style of European classicism in architecture in Rome at the beginning of the 16th century and its transformations through 1750 in Mannerist, Baroque, and Rococo form. Discusses the architectural profession, the place of architecture among the arts, and the historical and physical context of the buildings. Open to qualified undergraduates. Permission of instructor required.
D. H. Friedman

4.642 Modern Art from Impressionism to Cubism (Revised Unit)
Prereq.: 4.602
U (2) HUM-D
G (2)
4-0-5
Presents Cezanne, Gauguin, Van Gogh, and Seurat against a background of Impressionism and other 19th-century styles and their relationship to the Synthetist, Nabis, and Symbolist groups. Required readings from letters and other writings by the artists, their art and writer friends, and their critics. May count toward Humanities Requirement.
A. M. Wagner

4.645 Selected Topics in Architecture — 1750 to the Present
Prereq.: 4.602
G (1)
3-0-6
General study of modern architecture in Europe and America in the context of architectural and social programs. Open to qualified undergraduates. Permission of instructor required.
S. Anderson

4.646 American Landscapes, Towns, and Buildings
Prereq.: 4.602
G (1)
3-0-6
Introduces environmental history in the US concentrating on 19th- and 20th-century developments. Open to qualified undergraduates. Permission of instructor required.
S. Anderson, D. H. Friedman

4.647 American Architecture: Boston
Prereq.: Permission of Instructor
G (2)
3-0-6
Studies urban and architectural development of Boston and its region. Selected topics in American architecture and urbanism as context for or comparison with Boston. Open to qualified undergraduates.
S. Anderson, D. H. Friedman

4.650 Modern Art from Cubism to the Present (Revised Unit)
Prereq.: —
U (1) HUM-D
G (2)
4-0-5
Cubism, Futurism, Constructivism, and other phases of early 20th-century art during which the theories, styles, and attitudes of contemporary art were formulated. Dadaism, Surrealism, and other intermediate phases leading to Abstract Expressionism in New York. Considers Post-Painterly Abstraction styles, Pop Art, Minimalism, and the resurgence of Realism both historically and critically. May count toward Humanities Requirement.
A. M. Wagner

4.652 Advanced Study in 20th Century Art (A)
Prereq.: Permission of Instructor
G (2)
Arr.
Seminar on a selected topic from 20th-century art. Requires original research and presentation of oral and written reports.
A. M. Wagner

4.654 Advanced Studies in Iconography and Symbolism (A)
Prereq.: Permission of Instructor
G (2)
3-0-6
Selected topics and guided research in iconography and symbolism in 19th- and 20th-century art. Registration subject to prior arrangement for subject matter and supervision by instructor.
W. V. Andersen

4.656 Modern Architecture in Europe from 1895 to the Bauhaus (A)
Prereq.: 4.645
G (2)
3-0-6
Art and architecture in Europe from the late 19th century to the time of the Nazi repression of modern art. Intensive study of the people, works, and controversies from which the European 'modern movement' emerged, leading in turn to the transformation of American architecture.
S. Anderson

4.661 Theory and Method in the Study of Architecture and Art (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Studies theoretical and historiographical works pertaining to the fields of architecture, art, and environmental studies. Members of seminar pursue work designed to elucidate and criticize their own presupposition and methods. Open only to Ph.D. candidates and other advanced students.
S. Anderson

4.663 Studies Toward a Theory of Architecture and Environmental Design (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Considers contemporary theoretical positions. Requires reports in the context, criticism, or support of the seminar thesis.
S. Anderson

4.664 Criticism of Architecture (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Surveys various approaches (social, environmental, economic, compositional, structural, functional) and bases for the criticism of architecture. Emphasizes the formal bases of criticism. History of criticism, relation of criticism and history, value of criticism to the profession, criticism as a means of achieving quality in architecture, and criticism as a rational and emotional response to architecture.
S. Anderson

4.671 History of Urban Form (A)
Prereq.: —
G (1)
3-0-6
Studies in the history of the physical city from Antiquity to the present with points of special focus determined by the instructor. Analyzes the typologies of urban buildings, public places, and city plans in their relation to changing contexts of culture, politics, and the structure of public and private institutions.
D. H. Friedman

4.672 Elements of Urban Evolution
Prereq.: —
U (2)
3-0-6
Considers the forces, in different periods, determining the character and principal functions of cities — military, religious, commercial, political, industrial, and utopian. Readings in literary, artistic, and historical sources. Independent individual student projects with a wide range of topics for term papers dealing with a particular city over a manageable time span. Lectures and seminars. Limited enrollment. May count toward Humanities Requirement.
D. H. Friedman
4.673 Seminar in Urban Communal Space (A)
Prereq.: Permission of Instructor
G (2) Arr.
A working seminar conducting continuing research on the sociophysical structure of urban communal space. Attention to the literal qualities of this space and especially to the models by which the form, meaning, and use of communal space are understood and changed. The seminar to produce theoretical or critical essays, graphic analyses, formalizations or designs. Limited enrollment. S. Anderson

4.681 Introduction to Building in East Asia
Prereq.: —
U (2) 3-0-6
Promotes understanding of society in East Asia through the study of conscious and unconscious making, perception, and representation of the built environment as well as attitudes toward and behavior within it, both historically and at present. Historical and anthropological approach. Emphasizes India, China, and/or Japan. May count toward Humanities Requirement. G. Nitschke

4.682 Selected Topics in the Study of East Asian Architecture (A)
Prereq.: Permission of Instructor
G (2) 2-0-7
Research seminar on the development, structure, and module of the traditional Japanese house and garden and their relation to folk and religious architecture as well as to their urban contexts or their setting in nature. Historic and structural approach based on measured drawings and translations of early texts on the subject written by craftsmen, priests, and literati. G. Nitschke

4.683J The 'Islamic' City: History, Culture, and Form
(Same subject as 21.482J)
Prereq.: Permission of Instructor
G (2) 3-0-6
Introduces Islamic civilization, past and present, through a study of the city in the Muslim world. Illustrates how the lenses of social and architectural history, anthropology, and planning reveal different phenomena in the city and different aspects of urban culture and form. Poses the question: How far can the socioeconomics, political, architectural, and spatial features of such cities as Fez, Cairo, and Lahore be explained in terms of Islam? Open to qualified undergraduates. P. S. Khoury, W. L. Porter, Y. Tabbaa

4.684 Islamic Art and Architecture
Prereq.: —
U (2) 3-0-6
Introduces the architecture, painting, and decorative arts of the Islamic world. Emphasizes the major monuments of Islam in terms of their functions within the urban setting, their formal qualities and aesthetic principles, and their cultural connotation. Discusses such traditional elements of Islamic architecture as inscriptions, arabesque, the minbar, the minaret and muqarnas. Also surveys the development of Islamic painting and decorative arts. May count towards Humanities Requirement. Y. Tabbaa

4.685 Islamic Architecture and Urban Form (A)
Prereq.: Permission of Instructor
G (1) 3-0-6
Studies the Islamic built environment at the urban scale. Urban and rural case studies, history of urban design, preservation of historic sites. Y. Tabbaa

4.686 The Mosque (A)
Prereq.: Permission of Instructor
G (1) 3-0-6
The Mosque in Islamic architecture. Emphasizes geographic and formal elements rather than chronological development. Relation of the Mosque to the Islamic community and its practices. Y. Tabbaa

4.687-4.689 Special Studies in the History, Theory, and Criticism of Architecture and Urban Form in the Islamic World (A)
Prereq.: Permission of Instructor
G (1, 2) Arr.
Special topics in the history, theory, and criticism of architecture and urban form in the Islamic World, varying at the discretion of the instructor. Y. Tabbaa

4.691 Special Studies in the History, Theory, and Criticism of Art
Prereq.: —
U (1, 2) Arr.

4.692, 4.693 Special Studies in the History, Theory, and Criticism of Art (A)
Prereq.: Permission of Instructor
G (1, 2) Arr.
Individual or group projects on topics in the history, theory, and criticism of art. Registration subject to prior arrangement for subject matter and supervision by staff. A. M. Wagner

4.695 Special Studies in the History, Theory, and Criticism of Architecture and Urban Form
Prereq.: —
U (1, 2) Arr.
Individual or group projects in the history, theory, and criticism of architecture and urban form. Registration subject to prior arrangement for subject matter and supervision by staff. S. Anderson

4.696-4.699 Special Studies in the History, Theory, and Criticism of Architecture and Urban Form (A)
Prereq.: Permission of Instructor
G (1, 2) Arr.
Special topics in the history, theory, and criticism of architecture and urban form, varying at the discretion of the instructor. S. Anderson

4.724 Design for Development (A) (New)
Prereq.: —
G (1) 4-0-8
Introduction to the design process from the perspective of the developer. Includes: the developer/architect relationship; quality and design; interrelationship of form, function, and financial outcome. M. Buckley

4.726J Site Analysis and Planning (New)
(Same subject as 11.336J)
Prereq.: Permission of Instructor
G (2) 1-8-3
See description under subject 11.336J. G. A. Hack

4.736J Introduction to Urban Design and Development (New)
(Same subject as 11.301J)
Prereq.: Permission of instructor
G (1) 3-0-9
Examines both the structure of cities and ways they can be changed. Includes: historical forces that have produced cities, models of urban analysis, contemporary theories of urban design, implementation strategies. Core lectures supplemented by discussion group focusing on student work. Speakers present cases involving current projects illustrating the scope and methods of urban design practice. D. Fr anchman

4.743J Neighborhood Planning (A)
(Same subject as 11.420J)
Prereq.: 11.200, 11.210, 11.220; or 4.144
G (2) 3-0-6
See description under subject 11.420J. P. L. Clay
Architecture

4.745J Environmental Programming Workshop (A) (Revised Content)
(Same subject as 11.311J)
Prereq.: Permission of Instructor
G (2)
3-0-9
The methods of determining and specifying needs for change in the built environment. Includes utilization of social science information and feedback from existing projects, formulation of issues with respect to proposed environments, development of consensus on degree of change and design approach. Case studies of programming efforts at the building and city scales for various public, institutional, and residential environments, and "hands-on" exercises in conjunction with private and public decision-making agencies.
S. C. Howell

4.746J Implementation Strategies for Urban Design (New)
(Same subject as 11.337J)
Prereq.: 11.001 or 4.736J or 11.301J
G (2)
3-0-6
Theories about the form that settlements should take. Attempts a distinction between descriptive and normative theory by examining examples of various theories of city form over time. Concentrates on the origins of the modern city and theories about its emerging form, including the transformation of the 19th-century city and its organization. Analyzes current issues of city form in relation to city making, social structure, and physical design.
J. Beinart

See description under subject 11.337J.
D. Frenchman

4.747J Theory of City Form (A)
(Same subject as 11.330J)
Prereq.: 11.001 or 4.736J or 11.301J
G (2)
3-0-6
Theories about the form that settlements should take. Attempts a distinction between descriptive and normative theory by examining examples of various theories of city form over time. Concentrates on the origins of the modern city and theories about its emerging form, including the transformation of the 19th-century city and its organization. Analyzes current issues of city form in relation to city making, social structure, and physical design.
J. Beinart

4.748J Cities of Tomorrow (A) (New)
(Same subject as 11.335J)
Prereq.: Permission of Instructor
G (1)
3-0-6
See description under subject 11.335J.
D. Frenchman

4.751 Urbanization in Developing Countries: People, Dwellings, Land (A)
Prereq.: Permission of Instructor
G (1)
3-3-6
Identifies changing dwellings/land situations in relation to cultural, social, economic, and physical factors. Provision of land and services for the most needy sectors of the population. Actual practice in Africa and Latin America forms the frame of reference as well as its main sources. Extensive use of case studies of actual projects.
R. Goethert

4.753J Urban Settlements in Developing Countries (A)
(Same subject as 11.313J)
Prereq.: Permission of Instructor
G (2)
3-0-6
See description under subject 11.313J.
L. R. Peattie

4.763J International Cases in Urban Planning and Design (A)
(Same subject as 11.331J)
Prereq.: Permission of Instructor
G (2)
3-0-6
Focuses on the evolution of four recent national efforts in developed and developing countries to shape and manage urban growth through ongoing state intervention and implementation (Paris, London, Bogota, and Tunis). Each case studied along sectoral lines and of different design scales. Structured approach to studying physical planning. Topics: appropriateness of export models, spatial allocation of activities, dislocation and diseconomics of growth and modernization, and centralized vs decentralized planning.
J. de Monchaux

4.784 Culture, Place, and Architecture (A)
Prereq.: Permission of Instructor
G (2)
3-0-6
Introduces issues about culture, place, and architecture. Discusses appropriateness of various definitions of culture in explaining and describing the built environment and looks at cultural sources for the design of place and buildings in several different societies — traditional and contemporary. Research about culture to effect a richer understanding of architectural meaning and form.
E. Robbins

4.786J Community, Class, and Race: A Social Perspective (A)
(Same subject as 11.328J)
Prereq.: Permission of Instructor
G (2)
3-0-6
The nature of the community as a social reality. Emphasizes the different meanings of the concept "community." Discusses the methodological assumptions and problems underlying notions of community. Cases cover the theory of community; the community study in America and Europe; community as place; class, race, ethnicity, and community. Readings and evaluations of theoretical, descriptive, and methodological writings on community.
E. Robbins

4.787J Planning in Socialist Countries (A)
(Same subject as 11.417J)
Prereq.: Permission of Instructor
G (1)
3-0-6
See description under subject 11.417J.
R. Bon, K. R. Polenske

4.771 Behavior in the Built Environment
Prereq.: Permission of Instructor
G (1)
3-3-6
Introduces behavioral science theories and methods as they relate to interactive affects of people in residential, working, and therapeutic settings. Readings supplement lectures and assigned fieldwork. Reading and interpretation of social science literature; application of research methods such as behavior mapping, interviewing, and perceptual measures in systematic evaluations of environments in use.
S. C. Howell

4.772 User Needs Programming (A)
Prereq.: 4.771
G (2)
3-0-6
Advanced seminar in selection and utilization of social science information in the formulation of architecture and planning programs. Current programming issues form basis of case studies. Stresses principles of information transfer and feedback in evaluation of existing programs and their built/occupied results. Representatives of public and private decision-making agencies may participate.
S. C. Howell

4.781, 4.782 Research Topics in Architecture Studies (A)
Prereq.: 4.273
G (1, 2)
Arr.
Research work on individual or group basis. Registration subject to prior arrangement for subject matter and supervision by staff.
Staff

4.795-4.799 Special Problems in Architecture and Social Change (A)
(4.797-4.799)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Supplementary work on individual and group basis. Registration subject to prior arrangement for subject matter and supervision by staff.
Staff
4.801 Art and the Environment
Prereq.: —
U (1) 3-0-6
Reviews art, architecture, and celebrations and their positions in workaday, religious, and political life. Reconsiders the present position of art and redifnes the artist's options in the contemporary environment. Examines fact and chances effected by current science and technology vis-à-vis our place in nature and history. May count toward Humanities Requirement.
O. Plene

4.802 Visual Form and Expression
Prereq.: —
U (2) HUM-D 3-0-6
Introduces the language of art and emphasizes experiencing the artist's process of seeing, thinking, and performing with the objective of developing visual awareness, imagination, and creative insight. Gestalt theories of perception and art from the past and present clarify assignments involving manipulation of the visual elements that constitute the vocabulary of non-verbal expression. May count toward Humanities Requirement.
R. O. Preusser

4.821 Visual Projects I
Prereq.: —
U (1, 2) 3-0-6
Emphasizes the interaction of media concepts and design principles in creating visual form and explores the potential for new modes of artistic performance inherent in science and technology. Projects involve experimental manipulation of materials, tools, techniques, physical processes, natural forces, and optical phenomena as means for visual invention, organization, and expression. Visual Projects II engages students in independently formulated projects. May count toward Humanities Requirement.
R. O. Preusser

4.822 Visual Projects II
Prereq.: 4.821
U (2) 3-0-6
Emphasizes the interaction of media concepts and design principles in creating visual form and explores the potential for new modes of artistic performance inherent in science and technology. Projects involve experimental manipulation of materials, tools, techniques, physical processes, natural forces, and optical phenomena as means for visual invention, organization, and expression. Visual Projects II engages students in independently formulated projects. May count toward Humanities Requirement.
R. O. Preusser

4.823 Form and Design I
Prereq.: —
U (1) 2-4-6
Studies the visual elements of form to understand the processes of form synthesis. Studio experiments and lectures on proportion, shape, rhythm, visual quality of materials, and three-dimensional composition. Emphasizes imagination and visual sensitivity directed to enlarge the individual's ability to create an aesthetic form. May count toward Humanities Requirement.
R. Filipowski

4.824 Form and Design II
Prereq.: —
U (2) 2-4-6
Three-dimensional experiments and lectures on the organization of quantities, unit to volume relationships, modularity and form, volume and structure, surface structure of volume, space composition, point, line, plane composition, and sculptural composition. Emphasizes architectonic and sculptural aesthetic of form. May count toward Humanities Requirement.
R. Filipowski

4.825 Form and Color
Prereq.: —
U (1, 2) 3-0-6
Examines color in natural form. Experiments involving the color and form relationship to proportions, percentages, repetition, directions, quantity organization, structural order, angle position, and volume composition. A study to gain knowledge of color for the refinement of architectural form. May count toward Humanities Requirement.
R. Filipowski

4.826 Form and Color Workshop
Prereq.: 4.825
U (1, 2) 0-6-3
Sequence of study projects involving color and area, texture, periodic patterns, random configurations, color depth, black and white, visual vibrations, color and natural form, volume, structure, motion, object and the color environment, and the visual influence of color on spaces. May count toward Humanities Requirement.
R. Filipowski

4.827 Plastic Composition
Prereq.: 4.824
U (2) 2-4-6
Continuity of surfaces, synthesis of diverse geometries, group form relationships, object and the landscape, and the optimum three-dimensional relationship of the object form basis for studying plastic sculptural composition. Emphasizes inventiveness and meaning of sculptural form. May count toward Humanities Requirement.
R. Filipowski

4.828 Special Problems in Visual Design
Prereq.: 4.822 or 4.824
U (1, 2) Arr.
Supplementary work on individual and group basis. Registration subject to prior arrangement for subject matter and supervision by staff.
R. O. Preusser

4.831 Environmental Art
Prereq.: —
U (1) 0-4-8
Design and planning of environmental art installations in given and chosen existing settings. Emphasizes daring ideas in conjunction with realistic approach and possibility for execution. Artistic means ranging from large-scale painting and graphic design to kinetic architecture and natural elemental growth-and-change systems and to sound and video installations and performances. May count toward Humanities Requirement.
O. Plene

4.838 Special Problems in Environmental Art
Prereq.: 4.831
U (1, 2) Arr.
Supplementary work on individual or group basis. Registration subject to prior arrangement for subject matter and supervision by staff.
O. Plene

4.841 Environmental Light and Color I (A)
Prereq.: Permission of Instructor
G (1) 2-4-8

4.842 Environmental Light and Color II (A)
Prereq.: Permission of Instructor
G (1) 2-4-8

4.845, 4.846 Advanced Visual Design (A)
Prereq.: Permission of Instructor
G (1) 0-8-12
Individual concepts, projects, design, and execution of installations, objects, and events in environmental art and performance involving elemental and science-technology means and media.
O. Plene
4.855-4.859 Special Problems in Environmental Art (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Special work on an individual or group basis using specific means such as video, holography, and multimedia. Registration subject to prior arrangement of subject matter and supervision by staff.
O. Piene

4.861 Life Drawing
Prereq.: —
U (1, 2)
0-3-2
Approaches life drawing emphasizing the dynamic rather than realistic aspect of rendering. Encourages making impressions of the human figure by relying on creative instincts and natural ability to create illusions using the conte crayon and an eraser. Some exercises deal with precise observations and skill in graphic representation. May be repeated for credit.
N. Bichajian

4.862 Still-Life Drawing
Prereq.: —
U (1, 2)
0-3-2
Approaches still-life drawing emphasizing light and shadow and linear and perspective renderings of varied subject matter. Value, color, texture, and form using conte, pen and ink, brush, and chalk to mix and create images. May be repeated for credit.
N. Bichajian

4.863 Advanced Figure Drawing
Prereq.: 4.861
U (1, 2)
0-3-2
Emphasizes the formal elements of line, mass, texture, and spatial development and the expressive, emotional value of the figure drawn on two-dimensional surfaces. Experimentation with a wide variety of techniques using a conte crayon and an eraser.
N. Bichajian

4.870 Words, Images, Graphics Tools, and Ideas
Prereq.: —
U (1)
2-4-6
Introduces the spectrum of graphics ideas and tools available at the Visible Language Workshop. Public and personal ways of seeing, thinking, and communicating in visual and verbal modes including making ideas visible, perception and personal response. Uses photographic, print, typographic, electrostatic, video, electronic, and other graphics/imaging tools in two and three dimensions. Group exploration of mass-media tools from printing to video and audio as a final public presentation. Lab fee. May count toward Humanities Requirement.
M. R. Cooper

4.871 Graphics Communication Workshop
Prereq.: —
U (2)
2-4-6
Thinking and communicating visually andsensorially by design. Applies static and dynamic graphic principles to the design of drawing, typography, symbols, diagrams, maps, photography, video, computer-grapics, color, word and image organization, sound and animation. Develops perspective and conceptual skills culminating in a coordinated media presentation of issues and ideas in such forms as photo essays, printed reports, slide shows, videotapes. Lab fee. May count toward Humanities Requirement.
M. R. Cooper

4.872 Graphics Imaging Workshop: Print Media
Prereq.: 4.870 or 7.871
G (1)
2-4-6
Comprehensive, production-based workshop in graphic systems from photography to typography to lithography addressing the relationship between tools and the messages they convey. Emphasizes synthesis of verbal and visual communication skills and development of work from concept to product. Graphic arts darkroom experience leads to individual and group projects in variety of print media from photographic techniques and offset printing to electronic scanning and digital typesetting. Open to qualified undergraduates.
M. R. Cooper

4.873 Graphics Imaging Workshop: Transmission Media
Prereq.: 4.870 or 4.871
G (2)
2-4-6
Explores image processing systems and transformations allowing their output in two-, three-, or four-dimensions through any of the senses. Centers on analog and digital forms of expression that can be transmitted locally and globally through such means as personal and public networks, telephone, cable, and satellite in order to gain a heightened understanding of communication systems and their physical and ideational transforms. Explores notions of "image" beyond those traditionally accepted. Open to qualified undergraduates.
M. R. Cooper

4.874 Graphics Imaging Workshop: Color
Prereq.: 4.870 or 4.871
G (1)
2-4-6
Explores the uses of color theories such as modern additive and subtractive synthesis. Creates graphic color expressions in analog and digital imaging systems at the Visible Language Workshop and transforms them through color image enhancement, manipulation, and conversion from one medium to another. Uses both the VLW electronic scanner and computer graphic/system to allow realization in traditional photomechanical print systems such as color-coupler materials, offset lithography, and dye transfer. Open to qualified undergraduates.
R. L. MacNeil

4.875 Computer Graphics Workshop I
Prereq.: 4.870 or 4.871
G (1)
2-4-6
Project-based survey introduces the computer as an expressive tool in image and word manipulation/synthesis. Graphical problem solving in PL1 and Magic6 using sample programs. Connections to traditional and experimental print forms using the Visible Language Workshop's full-color computer graphics system, color graphic arts scanner, plotter, small hardware projects in digital markmaking. Requires final project produced on VLW system and a software or hardware tool which can be installed as part of that system. Open to qualified undergraduates.
R. L. MacNeil

4.876, 4.879 Graphics Imaging Media Projects
Prereq.: 4.870 or 4.871
U (1, 2)
Arr.
Special work on an individual or group basis combining research and projects in graphics/imaging media. Registration subject to prior arrangement for project and supervision by staff.
M. R. Cooper

4.880 Media Communication Seminar and Workshop (A)
Prereq.: Permission of Instructor
G (1)
2-4-6
Explores synthesized production of media art and technology in a three-part format of research, projects, and presentations: 1) the production and evaluation of personal projects. 2) presentations by participants and researchers in art and technology. 3) seminars on media art and technology theory and issues. Topics: computer typography, animation, and imaging systems work culminates in a short conference, exhibition, and documentation of projects.
M. R. Cooper, R. L. MacNeil

4.881 Graphics Imaging Media Research Methods (A)
Prereq.: 4.880
G (2)
2-4-6
Investigates the intrinsic similarities and differences between research modes and issues in the arts, humanities, science and technology. Develops new models of research communication. Selected speakers and presentations. Final project includes the documentation, presentation, and defense of a pre-thesis project.
M. R. Cooper, R. L. MacNeil
Architecture

4.887-4.889 Graphic Imaging Media Projects (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Special work on individual or group basis combining research and projects in graphics/imaging media. Registration subject to prior arrangement for subject matter and supervision by staff.
M. R. Cooper

4.901 Creative Seeing
Prereq.: —
U (1) HUM-D
3-0-6
Creative Seeing offered by photographers, filmmakers, visual designers, and art critics. While each has a unique way of presenting and visually manipulating the world, all are involved in Creative Seeing. Their common aim is to allow students to experience this level of vision by personal subjective discovery. Organized into parts each conducted within one of the fields. Limited enrollment. Preference to freshmen and sophomores. May count toward Humanities Requirement.
M. R. Cooper

4.905 Small Built-Collage (A)
Prereq.: 4.143
G (1)
3-0-9
The intrinsic attributes/generative principles of built- and landscape-form/additive directional-field organization. A progression of intensifications includes surfaced relief, "habitable" planar assemblages, and territorial screens.
M. K. Smith

4.908 Special Projects in Visual Arts
Prereq.: Permission of Instructor
U (1, 2)
Arr.

4.909 Special Projects in Visual Arts (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Supplementary work on individual and group basis on visual arts projects involving more than one medium. Registration subject to prior arrangement of subject matter and supervision by staff.
Staff

4.915 Basic Photography for Architects
Prereq.: Permission of Instructor
G (1, 2)
3-0-9
A basic approach to architectural photography including film processing, printing, techniques, copy work, filtration, and metering. Technical information to better understand the relationship between film, camera, and light. Topics include the role of daylight and artificial light and their relation to forms, tone, and texture in picture taking, basic design, and composition. 35mm camera necessary.
N. Bichajian

4.921 Creative Photography I
Prereq.: —
U (1, 2)
4-4-4
Introductory subject covering both large and small format cameras, exposure and development of film, printing, and final presentation. Varied assignments encourage exploration of all aspects of creative photography. Assumes that possibilities for personal expression increase as technique grows. Lab fee. May count toward Humanities Requirement.
B. Swift

4.923 Creative Photography II — Color Photography
Prereq.: 4.921
U (2)
3-0-9
Introduces theory and craft of various color photographic printmaking processes. Emphasizes color theory. Weekly critiques, demonstrations, and slide lectures. Requires a substantial project. Lab fee. May count toward Humanities Requirement.
B. Swift

4.924 Creative Photography II — A Personal Approach
Prereq.: 4.921
U (2)
3-0-9
Intermediate level production subject emphasizing the student's unique vision. Requires a substantial project. Weekly critiques, readings, and intensive study of related well-known photographic work. Lab fee. May count toward Humanities Requirement.
B. Swift

4.926 Advanced Photography
Prereq.: 4.931 or 4.932
U (1)
2-5-5
Advanced photographic production projects on an individual or group basis. Work in various fields of photography not covered by regular subjects. Registration subject to prior arrangements of subject matter and supervision.
B. Swift

4.928 Special Projects in Photography
(4.938)
Prereq.: 4.921
U (1, 2)
Arr.
Photographic production projects on an individual basis. Work in various fields of photography not covered by regular subjects. Registration subject to prior arrangements of subject matter and supervision.
B. Swift

4.943 Learning Environments (A)
(New)
Prereq.: Permission of Instructor
G (1, 2)
3-0-6
Seminar to develop a framework for understanding the entry of new technologies — computers, video technologies, communications — into the process of learning. Reading covers a broad range of topics in human sciences, epistemology, and computer sciences; research projects, either self-initiated or assigned. May be repeated for credit.
S. Papert

4.949 Special Topics in Learning Environments (A)
(New)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Supplementary work on individual or group basis. Registration subject to prior arrangement for subject matter and supervision by staff.
S. Papert

4.953 Spatial Imaging Systems
Prereq.: Permission of Instructor
G (1)
3-3-3
Surveys the technology of spatial imaging from stereoscopes to holograms, emphasizing unaided viewing systems, and explores the perceptual, technical, and aesthetic bases of satisfying three-dimensional image communication. Includes a review of the elements of imaging optics. Lab fee. Open to qualified undergraduates.
S. Benton
4.954 Holographic Imaging
Prereq.: Permission of Instructor
G (2) 3-3-3
A laboratory-based exploration of the principles, techniques, and applications of holography as a visual medium, emphasizing white-light holograms and digital/photo/optical syntheses of quasi-holographic images. Lab fee. Enrollment limited. Open to qualified undergraduates.
S. Benton

4.959 Special Projects in Spatial Imaging (A)
Prereq.: 4.953 or 4.954 G (1, 2)
Arr.
Advanced spatial imaging and/or holographic work on individual or group basis. Registration subject to prior arrangement of subject matter and supervision by staff.
S. Benton

4.971 Introduction to Moviemaking
Prereq.: Permission of Instructor
U (2) 4-6-2
Workshop in unscripted synchronous sound moviemaking with Super-8 film and portable video. Emphasizes approaches to filming real life experience, while exploring moving images in their relation to sound. Introduces techniques of camerawork, sound recording, and editing with regard to theoretical considerations of subject presentation and modes of personal expression. Lab fee. May count toward Humanities Requirement.
G. Davenport

4.973 Intermediate Motion Picture Production
Prereq.: 4.971 U (1) 4-6-2
Intermediate moviemaking with film and video, plus studio and cablecasting facilities. Planning and execution of individual or group projects. Emphasizes refinement of technique and theory, and encourages specialized application of movie media. Concentration on particular problems such as bio-autobiographical, space/time, performance, science movies. Possible use of cable or local broadcast television. May count toward Humanities Requirement. Permission of instructor required.
G. Davenport

4.977 Special Projects in Cable TV
Prereq.: Permission of Instructor
U (2) Arr.
Supplementary work on individual or group basis. Registration subject to prior arrangement of subject matter and supervision by staff. Development of a significant project using the MIT cable TV system.
R. Leacock

4.978 Independent Projects in Film/Video Production
Prereq.: Permission of Instructor U (1, 2) Arr.
Supplementary work on individual or group basis. Registration subject to prior arrangement of subject matter and supervision by staff.
R. Leacock

4.981 Advanced Moviemaking Workshop (A)
Prereq.: Permission of Instructor
G (1) 8-12-4
Intensive advanced workshop in unscripted moviemaking. Combines a thorough review of sound, single and double system, super 8, and video technologies and production techniques with screening and discussing other filmmakers' work. Following initial exercises in sound, super 8, and video, students complete two short but significant movies, one in super 8, one in video. Average cost of supplies $300 per student. Required of all entering graduate students in Film/Video section.
G. Davenport

4.982 Advanced Production: Problems in Editing (A)
Prereq.: 4.981 G (2) 4-6-2
Close analysis on a flatbed of editing techniques in student work in progress and significant work by other filmmakers. Discusses theoretical problems. Students edit scenes shot by other filmmakers as well as complete two movies of their own. Required of all second semester graduate students in Film/Video section.
R. Leacock

4.983 Visiting Artists Workshop (A)
Prereq.: 4.981 G (2) Arr.
Advanced seminar sharing theoretical and technical problems of moviemaking approach, structure and subject development, and editing with visiting film/video makers, technical experts, fellow students, faculty, and staff. May include special workshops in group production or technical subjects. Final paper. Required of all graduate students in Film/Video section.
R. Leacock

4.984 Design Project in Film/Video Technology (A)
Prereq.: Permission of Instructor
G (1) Arr.
Independent engineering project, involving electronic or mechanical modification of low-cost moviemaking systems, video-computer interface, audio and image processing, hardware design for special applications. Registration subject to prior arrangement of research topic and approval of instructor.
R. Leacock

4.985 Film/Video and its Technology (A)
Prereq.: 4.981 G (2) 4-4-4
A direct approach to technical concerns of the independent filmmaker for all phases of film/video production including sound, super 8 and 16 mm film, video. Topics: lens and camera options, raw stocks, printing techniques; microphones and recording techniques, audio processing and mixing: lighting; basic electricity, electronics, and power systems; video cameras, recorders, and editing systems and options; film video transfers; field maintenance.
R. Leacock

4.988 Workshop in Elastic Movie Time (A)
Prereq.: 4.982, 4.985 G (1) 6-8-2
Intensive workshop in electronic image, sound, and time manipulations exploring new movie forms. Participants use the Film/Video group's video editing and research facility to create works that expand and contract motion picture time. Projects involve multiple edits of two movies and a presentation of possible applications of elastic time: multiple-media performance events, interactive movies, personalized editing.
B. Bergery

4.989 Independent Projects in Motion Picture Production (A)
Prereq.: Permission of Instructor
G (1, 2) Arr.
Individual or group work of advanced and experimental scope. Registration contingent upon prior determination of subject matter and plan for treatment, as well as arrangement for staff supervision and project funding.
R. Leacock

4.991 Introduction to the History of Film
Prereq.: — U (1) 3-0-6
Views and discusses movies particularly in light of technological innovation. Analyzes various film genres revealing the relation of the historical development of production technology to film form and content. Some elementary moviemaking exercises. Requires final paper. Lab fee. May count toward Humanities Requirement.
R. Leacock

4.999 Special Topics in Film History and Criticism (A)
Prereq.: 4.991 G (1, 2) Arr.
Individual projects in film history and criticism. Prior arrangement and approval of instructor necessary.
R. Leacock
Chemistry

5.03 Principles of Inorganic Chemistry I
- **Prereq.**: 5.41 or 5.11
- **U (1)**
- **3-0-6**

Presents theoretical principles of chemical bonding and molecular structure, and their application to the chemistry of all the elements of the periodic system. Special emphasis placed on ligand coordination compounds of the transition elements. Includes: atomic and molecular electronic structure and stabilities of these inorganic complexes. 5.61 background encouraged.

D. Seyferth, A. Davison

5.04 Principles of Inorganic Chemistry II
- **Prereq.**: 5.03
- **U (2)**
- **3-0-6**

Systematic presentation of the chemistry of coordination compounds of the transition elements. Special emphasis placed on ligand field theory, to interpret the electronic spectra, magnetic properties, reaction mechanisms, structure and stabilities of these inorganic complexes. 5.61 background encouraged.

M. S. Wrighton, S. J. Lippard

5.05 Principles of Inorganic Chemistry III
- **Prereq.**: 5.03, 5.04
- **U (1)**
- **3-0-9**

Continued development of systematic inorganic chemistry of the elements. Application of valence theory and advances in structural chemistry to topics not covered in 5.03 and 5.04. Emphasizes synthesis and reactivity, metal complexes with n–π acceptor ligands, organometallic chemistry, bioinorganic chemistry, and reactivity patterns of the heavier elements.

R. R. Schrock, S. J. Lippard

5.06 Advanced Inorganic Chemistry (A)
- **Prereq.**: 5.03
- **G (2)**
- **3-0-6**

Extended treatment of some special topics of current interest in modern inorganic chemistry, organometallic compounds of non-transition elements; treatment in terms of modern electronic and structural theory. Alternate years.

D. Seyferth

5.066 Introductory Bioinorganic Chemistry
- **Prereq.**: 5.03
- **G (1)**
- **2-0-4**

Emphasizes structural, spectroscopic, and functional properties of transition metals coordinated to proteins. Overviews metabolism, storage, toxicity, and catalytic roles of metal ions, followed by description of the principle methods useful in metallobiochemistry. Considers the principal types of metalloproteins. Students prepare and present library research papers on selected topics not covered in lecture.

W. H. Orme-Johnson

5.067 Inorganic Chemistry (A)
- **Prereq.**: 5.03
- **G (2)**
- **2-0-4**

Transition metal catalysis. Consists of 1) a discussion of principles of catalysis, evolution of catalytic systems and experimental techniques; 2) a survey of reaction types and metal catalysts; and 3) detailed exploration of several exemplary catalytic reactions from a mechanistic viewpoint.

R. R. Schrock

5.11 Principles of Chemical Science (New)
- **Prereq.**: —
- **U (1, 2) SD**
- **5-0-7**

Introduction to chemistry with emphasis on basic principles and their applications. Includes: atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, mechanisms and catalysis.

Term 1: D. S. Kemp, M.S. Wrighton
Term 2: A. Davison, G. A. Petsko

5.12 Organic Chemistry I (New)
- **Prereq.**: 5.11
- **U (2) SD**
- **5-0-7**

K. B. Sharpless, W. R. Roush

5.13 Organic Chemistry II (New)
- **Prereq.**: 5.11, 5.12
- **U (1)**
- **Next offered 1985-86**
- **5-0-7**

Intermediate organic chemistry. Synthesis, structure determination, mechanism, and the relationships between structure and reactivity emphasized. Special topics in organic chemistry included to illustrate the role of organic chemistry in biological systems and in the chemical industry.

G. A. Berchetold, R. L. Danheiser

5.196 Interpretive Spectroscopy (A)
- **Prereq.**: 5.42, 5.61
- **G (1)**
- **3-0-6**

Discusses spectrometric techniques and their application to identification of organic chemical compounds. Major emphasis on complementary use of infrared, nuclear magnetic resonance, and mass spectrometry. Also discusses instrumental and operational aspects of mass spectrometry.

K. Biemann, S. Masamune

5.310 Laboratory Chemistry
- **Prereq.**: 5.41 or 5.11
- **U (1, 2) LAB**
- **2-8-2**

Introduces experimental chemistry for students who are not majoring in Course V. Principles and applications of chemical laboratory techniques including preparation and analysis of chemical materials; measurement of pH, gas and liquid chromatography, visible-ultraviolet spectrophotometry, infrared spectroscopy, electrophoresis, kinetics, data analysis, and elementary synthesis. Enrollment limited to 100 students in Term 1 and to 180 students in Term 2.

Term 1: R. A. Alberty
Term 2: R. A. Alberty, K. A. Nelson

5.311 Introductory Chemical Experimentation
- **Prereq.**: 5.41 or 5.11
- **U (1) LAB**
- **2-8-2**

First term of a three-semester laboratory subject sequence for Course V majors. Experimental work emphasizes development of fundamental laboratory skills and techniques: volumetric and colorimetric analysis; preparation, purification, and characterization of chemical substances; and data analysis. Enrollment limited to 80 students. Registration in Course V or permission of instructor required.

J. L. Kinsey
5.32 Intermediate Chemical Experimentation
Prereq.: 5.310 or 5.311, 5.42, 5.60
U (2) 0-12-3
Experimental work more advanced than in 5.310 or 5.311 emphasizing polarographic analysis, thermodynamic and kinetic measurements of organic reactions, and synthesis, purification, and analysis of organic compounds employing IR, NMR, UV, mass spectroscopy, and thin layer and gas-liquid phase chromatography.
S. L. Buchwald

5.33 Advanced Chemical Experimentation
Prereq.: 5.32, 5.61
U (1) 0-15-3
Advanced experimentation with particular attention to the synthesis of compounds, measurement of kinetic phenomena, and use of modern instrumentation. Included are projects involving IR, NMR, and ESR spectroscopy; enzyme and electrode kinetics; diffusion and viscosity measurements; inert atmosphere techniques; and synthesis of polymers and organometallics. Enrollment limited to 80 students.
K. A. Nelson

5.42 Organic Chemistry
Prereq.: 5.41 or 5.11
U (1) Not to be offered 1985-86
5-0-7
Chemistry of organic molecules: organic functional groups and their interrelations. Synthesis, structure determination, mechanism; the relationships between structure and reactivity. R. L. Danheiser, K. B. Sharpless

5.43 Organic Chemistry
Prereq.: 5.42
U (2) 4-0-6
Studies reaction mechanisms emphasizing reactive intermediates, structure-reactivity relationships, and reactions of synthetic value.
F. D. Greene

5.50 Advanced Biochemistry (A)
(Revised Unit)
Prereq.: 5.50J
G (2) 2-0-4
Studies reaction mechanisms emphasizing reactive intermediates, structure-reactivity relationships, and reactions of synthetic value.
F. D. Greene

5.511 Synthetic Organic Chemistry I (A)
(New)
Prereq.: 5.53
G (1) 3-0-6
Introduction to the design of syntheses of complex organic compounds.
W. R. Roush

5.512 Synthetic Organic Chemistry II (A)
(New)
Prereq.: 5.511
G (2) 3-0-6
General methods and strategies for the synthesis of complex carbocyclic and heterocyclic organic compounds.
R. L. Danheiser

5.52 Advanced Biological Chemistry
Prereq.: Permission of Instructor
G (1) 2-0-4

5.53 Molecular Structure and Reactivity (A)
Prereq.: 5.32, 5.42
G (1) 3-0-6
Reaction mechanisms in organic chemistry: types of mechanisms, reactive intermediates, methods of investigation, relation of structure to reactivity.
F. D. Greene

5.54 Physical Organic Chemistry (A)
(Revised Unit)
Prereq.: 5.53
G (2) 3-0-6
Mechanisms of representative organic reactions in homogeneous liquid systems. Kinetic and other physical methods useful in studying organic reactions. Types of experimental evidence upon which current theoretical interpretations of reactivity are based.
D. S. Kemp

5.55 Organic Chemistry: Natural Products (A)
Prereq.: 5.511
G (2) 2-0-4
Chemistry and physiological action of natural products. Methods of isolation; determination of structures and synthesis.
G. H. Büchi

5.56 Special Topics in Organic Chemistry (A)
(Revised Unit)
Prereq.: 5.511, 5.53
G (2) 2-0-4
Advanced topics of special current interest.
S. Masamune

5.57 Chemistry of Amino Acids, Peptides, and Proteins (A)
Prereq.: 5.42
G (2) Next offered 1985-86
3-0-6
D. S. Kemp

5.58 Biochemistry of Membranes (A)
Prereq.: 5.42, 7.05
G (1) 3-0-6
Structure of biological membranes. Model lipid systems. Chemistry of the lipid, steroid, carbohydrates, and protein constituents of membranes and lipoproteins. Membrane assembly and polarity. Biochemical activities and specialized structure/function relationships in membranes, including energy transduction and active transport (chemiosmotic hypothesis), rhodopsin, cell surface receptors, blood group determinants, cell contact formation and specialized subcellular membrane functions.
M. F. Roberts

5.59 Enzyme Physical Chemistry
Prereq.: 5.62
G (2) 2-0-4
Biophysical approaches to mechanisms of enzyme-catalyzed reactions. Analyzes kinetic mechanisms from fit of algebraic models to steady-state and pre-steady-state rate data. Interprets structural and spectroscopic data to yield chemical mechanisms. Evaluates evidence on sources of rate enhancement. Thermodynamic profiles and evolution of enzyme mechanisms. Emphasizes use of physical methods, particularly with metalloenzymes. Examples mainly from major cellular oxidative processes.
W. H. Orme-Johnson

5.60 Chemical Thermodynamics
Prereq.: 18.02
U (1, 2) SD 4-0-8
Term 1: R. J. Silbey, W. H. Orme-Johnson
Term 2: C. W. Garland
5.61 Physical Chemistry
Prereq.: 8.02, 18.02
U (1) SD
4-0-6
Introductory quantum chemistry; elementary atomic spectra; particles and waves; wave mechanics; atomic structure and the Periodic Table; valence theory; experimental methods of determining molecular structure; structure of crystals and liquids; photochemistry.
J. S. Waugh

5.62 Physical Chemistry
Prereq.: 5.60 or 10.13
U (2)
4-0-6
Elementary kinetic theory and statistical mechanics; transport properties of gases and liquids; rates of chemical reactions.
J. L. Kinsey, S. T. Ceyer

5.64J Biophysical Chemistry
(Revised Unit)
(Same subject as 7.71J)
Prereq.: 5.60, 7.05
U (1)
3-0-9
See description under subject 7.71J.
G. A. Petsko, R. T. Sauer, P. R. Schimmel

5.65 Physical Chemistry of Macromolecular Solutions
Prereq.: 8.02, 5.50, 5.62
U (2)
2-0-4
Introduces the theory of polymer conformations and dynamics in solutions. Topics: conformations of random coil polymers and excluded volume effects; thermodynamics of macromolecular solutions, light scattering from polymer solutions, frictional properties of dilute polymer solutions, including diffusion and viscosity, models of helix-coil transitions.
J. M. Deutch

5.66 Spectroscopic Techniques in Biochemistry (A)
Prereq.: 7.05, 5.61
G (2)
3-0-6
Theory and selected applications of the following techniques to protein structure and function: X-ray diffraction, NMR, ESR, CD, and light scattering. Each of these techniques is applied to the same proteins, yielding a comprehensive picture of protein structure and function.
M. F. Roberts

5.68 Kinetics of Chemical Reactions (A)
Prereq.: 5.62
G (2) Next offered 1985-86
3-0-6
Experimental and theoretical aspects of reactive and inelastic molecular processes, including collision and transition — state theories, homogeneous reactions in gas and liquid phases, molecular beam scattering, Information Theory of kinetic processes. Case studies in chemical kinetics including chemical lasers, atmospheric chemistry, combustion dynamics. Advanced undergraduate students need permission of instructor. Information: J. I. Steinfeld.

5.70 Introduction to Statistical Thermodynamics (A)
Prereq.: 5.62
G (1)
3-0-6
Reviews classical thermodynamics and introduces elementary statistical mechanics, with applications to simple physical and chemical systems.
I. Oppenheim

5.72 Statistical Mechanics (A)
Prereq.: 5.70, 5.73, 18.075
G (2)
3-0-6
Principles and methods of statistical mechanics. Classical and quantum statistics, grand ensembles, fluctuations, molecular distribution functions, and other topics in equilibrium statistical mechanics. Advanced topics in thermodynamics, including irreversible processes.
I. Oppenheim

5.73 Introductory Quantum Mechanics I (A)
Prereq.: 5.61, 8.03
G (1)
3-0-6
R. W. Field

5.74 Introductory Quantum Mechanics II (A)
Prereq.: 5.73, 18.075
G (2)
3-0-6
Continuation of 5.73 Permutation symmetry and angular momentum. Molecular dynamics. Time-dependent problems, radiation and matter scattering by a central field. Many-electron systems, approximate molecular and atomic wave functions.
R. J. Silbey

5.76 Molecular Spectra and Molecular Structure (A)
Prereq.: 5.61 or 5.73 or 8.05
G (2)
3-0-6
R. W. Field

5.80 Special Topics in Chemical Physics (A)
Prereq.: 5.70, 5.73
G (1, 2)
Arr.
Advanced topics of special or current interest. The specific areas announced in advance of each term. Information: R. W. Field.

5.82 Advanced Topics in Solid-State Chemistry (A)
Prereq.: 5.70, 5.73
G (1 or 2)
Arr.
Selected topics from areas such as: structure of crystals, surface structure, symmetry groups, diffraction methods, lattice dynamics, order-disorder and magnetic phenomena, molecular motions in solids, relaxation phenomena, optical properties and exciton theory. Information: I. Oppenheim.

5.89 Special Problems in Chemistry for Undergraduates
Prereq.: —
U (1, 2)
Arr.
Program of study to be arranged by the student and a departmental faculty member. M. S. Wrighton

5.90 Special Problems in Chemistry (A)
Prereq.: —
G (1, 2)
Arr.
Directed research and study of special chemical problems. For graduate students only.
G. A. Berchtold

5.912 Seminar in Chemistry for Undergraduates
Prereq.: Permission of Instructor
U (1, 2)
1-0-2
Seminar program for chemistry majors. Research seminars led by faculty in Chemistry. Open to juniors and seniors majoring in chemistry. May be repeated for credit, not to exceed 12 units.
C. T. Walsh, M. S. Wrighton
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prereq.</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.913</td>
<td>Seminar in Organic Chemistry (A)</td>
<td>G (1)</td>
<td>1-0-2</td>
</tr>
<tr>
<td>5.914</td>
<td>Seminar in Organic Chemistry (A)</td>
<td>G (2)</td>
<td>1-0-2</td>
</tr>
<tr>
<td></td>
<td>Discusses current journal publications in organic chemistry by graduate students and staff members.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term 1: R. L. Danheiser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term 2: W. R. Roush</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.915</td>
<td>Seminar in Analytical Chemistry (A)</td>
<td>G (1)</td>
<td>1-0-2</td>
</tr>
<tr>
<td></td>
<td>Discusses topics of current interest in analytical chemistry by graduate students and staff members.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K. Biemann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.916</td>
<td>Seminar in Analytical Chemistry (A)</td>
<td>G (2)</td>
<td>1-0-2</td>
</tr>
<tr>
<td></td>
<td>Discusses topics of current interest in analytical chemistry by graduate students and staff members.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K. Biemann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.931</td>
<td>Seminar in Physical Chemistry (A)</td>
<td>G (1)</td>
<td>1-0-2</td>
</tr>
<tr>
<td>5.932</td>
<td>Seminar in Physical Chemistry (A)</td>
<td>G (2)</td>
<td>1-0-2</td>
</tr>
<tr>
<td></td>
<td>Discusses topics of current interest in physical chemistry by staff members and students.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term 1: C. W. Garland</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term 2: R. W. Field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.941</td>
<td>Seminar in Inorganic Chemistry (A)</td>
<td>G (1)</td>
<td>1-0-2</td>
</tr>
<tr>
<td></td>
<td>Discusses current research in inorganic chemistry by graduate students and staff.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term 1: D. Seyferth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Term 2: R. R. Schrock</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electrical Engineering and Computer Science

Basic Undergraduate Subjects

6.001 Structure and Interpretation of Computer Programs
Prereq.: —
U (1, 2)
5-3-7
Control of complexity in large programming systems. 1) Building abstractions: computational processes; higher-order procedures; compound data; data abstractions. 2) Controlling interactions: generic operations; self-describing data; message passing; streams and infinite data structures. 3) Metalinguistic abstraction: interpretation of programming languages; machine model; compilation; embedded languages. Substantial weekly programming assignments are an integral part of the course. Enrollment may be limited.
H. Abelson, G. J. Sussman

6.002 Circuits and Electronics
Prereq.: 8.02 or 8.021 or 8.022 or 8.023, 18.03 or 18.06
U (1, 2) SD
4-2-9
Fundamentals of lumped networks, resistive elements and networks, energy storage elements, dynamics of first- and second-order networks, sinusoidal steady-state analysis, network equivalence theorems, electronic devices, circuits, and applications. Alternate week laboratory. Students with appropriate experience in electronic circuits may treat the 8.02 prerequisite as a corequisite. Enrollment may be limited.
S. D. Senturia, C. L. Searle, J. K. Roberge

6.003 Signals and Systems
Prereq.: 6.002, 18.03 or 18.06
U (1, 2)
4-2-9
Unilateral Laplace transform and its applications to networks and electronic systems including feedback. Description of linear time-invariant systems in the time and frequency domains; convolution, Fourier series, and integrals. Uncertainty relations and sampling theorems. Discrete-time systems and signals. Applications to analog and digital filtering systems and modulation systems. Alternate week laboratory.
W. M. Siebert, R. S. Kennedy

6.004 Computation Structures
Prereq.: 6.001, 6.002
U (1, 2)
4-3-8
Introduces architecture of digital systems, emphasizing structural principles common to a wide range of technologies. Multi-level implementation strategies; definition of new primitives (e.g., gates, instructions, procedures, processes) and their mechanism using lower-level elements. Analysis of potential concurrency; precedence constraints and performance measures; pipelined and multidimensional systems. Instruction set design issues; architectural support for contemporary software structures.
S. A. Ward

6.012 Electronic Devices and Circuits
Prereq.: 6.002, 8.02
U (1, 2)
4-0-8
Modeling of electronic devices and analysis of nonlinear circuits. Physical electronics of semiconductor junction and MOS devices and development of circuit descriptions for these devices; relation of electrical behavior to internal physical behavior, and limitations of circuit models. Development of incremental and large-signal techniques for analyzing circuits containing nonlinear devices. Analysis of signal-processing circuits which employ these devices, with examples chosen from switching circuits, single-ended and differential amplifiers, and integrated-circuit amplifiers.
C. G. Fonstad, D. J. Epstein

6.013 Electromagnetic Fields and Energy
Prereq.: 6.002, 8.02
U (1, 2)
4-0-8
H. A. Haus, J. R. Melcher

6.014 Electrodynamics
Prereq.: 6.013
U (1, 2)
4-0-8
Plane waves in three dimensions; radiation from elementary electric dipoles, current distributions, and arrays; diffraction and interference. Waves on continuous transmission lines, periodic structures, and dielectric and metallic waveguides; propagation and evanescence; energy flow and impedance matching. Phase and group velocity. Natural frequencies and modes of closed electromagnetic structures; coupling to resonant structures, loaded and unloaded Q's. Examples taken from the fields of acoustics, optics, and microwaves.
J. A. Kong, D. H. Staelin

6.018 Statistical Mechanics and Thermodynamics
Prereq.: 8.02, 18.03
U (2) SD
4-0-8
Statistical description of large physical systems. Laws of thermodynamics developed from statistical mechanics: phase space; entropy and temperature; work and heat; chemical potential; equations of state; free energies; heat engines and refrigerators; phase transitions. Quantum statistics: Fermi-Dirac and Bose-Einstein gases; statistics of electrons in metals and semiconductors; superfluidity and superconductivity; blackbody radiation.
D. Adler

6.021J Quantitative Physiology: Cells and Tissues
(Same subject as 2.791J, HST 541J)
Prereq.: 2.02 or 6.002 or 6.071, 8.02, 18.03
U (1)
4-2-6
T. F. Weiss, I. V. Yannas
6.022J Quantitative Physiology: Organ Transport Systems
(Same subject as 2.792J, HST 542J)
Prereq.: 2.20 or 6.013, 6.021J
U (1) 3-2-7
Application of the principles of energy and mass flow to major organ systems of humans and other animals. Mechanisms of regulation and homeostasis. Anatomical, physiological, and pathophysiological features of the cardiovascular, respiratory, and renal systems. Emphasis on those systems, features, and devices that are most illuminated by the methods of physical sciences. For juniors and seniors in engineering; others admitted by permission of instructor.
R. G. Mark, B. B. Mikić, R. D. Kamm

6.023J Quantitative Physiology: Sensory and Motor Systems
(Same subject as 2.793J, 16.351J, HST 543J)
Prereq.: 2.02 or 6.003 or 16.30
U (2) 3-2-7
Studies of sensory and motor physiology with objectives of establishing quantitative models. Peripheral signal processing in eye, ear, and vestibular systems. Physiology and psychophysics of audition, vision, orientation, and body stabilization. Organization of neuromuscular and proprioceptive systems at level of spinal cord reflex. Postural control and kinetics of movement. Supplemented by laboratory exercises. 6.021J recommended background.
L. S. Frishkopf, L. R. Young, R. W. Mann

6.033 Computer System Engineering
Prereq.: 6.032 or 6.004
U (1) 4-0-6
J. H. Saltzer

6.034 Artificial Intelligence
Prereq.: 6.001
U (1) SD 4-0-8
Studies the ideas and techniques that enable computers to behave intelligently. Case studies of programs that solve engineering problems like experts, diagnose disease, learn from experience, understand the visual environment, and engage in English discourse. The role of search, constraint propagation, logic, common sense, reasoning and representation.
P. H. Winston, R. C. Berwick, T. Lozano-Perez

6.035 Computer Language Engineering
Prereq.: 6.032 or 6.004, 6.170
4-4-4
Analyzes issues associated with the implementation of higher-level programming languages. Fundamental concepts, functions, and structures of compilers. The interaction of theory and practice. Using tools in building software. Includes a substantial multi-person project on compiler design and implementation.
J. V. Guttag

6.036 Problem-Solving Paradigms
Prereq.: 6.034
4-0-8
Investigates the basic paradigms for problem solving including the use (and misuse) of logic, procedural knowledge, debugging skills, and the reformulation of problems. Detailed study of natural deduction, pattern-directed procedures, and systems for reasoning effectively and efficiently within sterotypical situations. Examples drawn from mathematics, natural language comprehension, and programming. Applications of theoretical results to human problem solving and education.
C. E. Hewitt

6.041 Probabilistic Systems Analysis
Prereq.: 18.02
4-0-8
Modeling, quantification, and analysis of uncertainty. Formulation and solution in sample space. Random variables, transform techniques, simple random processes and their probability distributions, Markov processes, limit theorems, elements of statistical inference, and decision making under uncertainty. Interpretations, applications, and lecture demonstrations.
A. W. Drake

6.045J Automata, Computability, and Complexity
(Same subject as 18.420J)
Prereq.: 18.310 or 18.063
9-0-9
Introduces basic mathematical models of computation and the finite representation of infinite objects. Finite automata and regular languages. Pushdown automata and context-free languages. Turing machines and their variants. Partial recursive functions and grammars as models equivalent in power to Turing machines — Church's Thesis. Undecidable problems concerning machines, languages, grammars, and combinatorial systems. Reducibility and completeness. The time complexity of algorithms and NP-complete problems. Introduces mathematical logic.
A. R. Meyer, M. Sipser

6.046 Introduction to Algorithms
Prereq.: 6.001, 18.06j
U (1) 3-0-9
R. L. Rivest

6.071 Introduction to Electronics
Prereq.: 8.02, 18.01
U (1, 2) SD 4-2-6
Introductory subject suitable for students with little or no previous background in electronics. Elementary network theory, diode and transistor circuits, analysis and design of analog and digital circuits. Examples emphasize uses of electronics in experimental science. Alternate week laboratory.
L. D. Braida

6.074 Introduction to Telecommunications Systems
Prereq.: 6.003
U (2) 3-0-9
Introduces basic concepts and principles utilized in telecommunication systems as well as an overview of current and evolving communications technology. Characterization of data sources, signals and noise, sampling, information content, modulation and demodulation methods (CW and pulse), channel capacity, multiplexing and transmission systems. Discusses some of the basic technological aspects of telecommunications systems such as satellite systems and data networks. Outside speakers are invited to participate.
J. P. Ruina, R. S. Kennedy
Undergraduate Laboratory Subjects

6.100 Electrical Engineering and Computer Science Laboratory
Prereq: —
U (1, 2, S) Arr.
Individual experimental work at the undergraduate level related to electrical engineering and computer science not covered by other subjects offered by the Department. Student must initiate arrangements with a project supervisor and must file a proposal endorsed by the supervisor. Proposal must be approved by the Department. Written report must be submitted upon completion of the work. If 6.100 is to be used to satisfy the Departmental Laboratory Requirement, student must register for 12 units of laboratory credit in the term the work is done.
L. A. Gould

6.101 Introductory Electronics Laboratory
Prereq: 6.002 or 6.071
U (1, 2) LAB 3-8-1
Introductory experimental laboratory involving design and construction of electronic analog and digital circuits. Introduces electrical measuring and display instrumentation. Studies the operation and use of modern electronic devices. Independent project on design and construction of a practical electronic circuit. Project includes the conceptual design phase, generation of the circuit schematic and parts list, construction and testing of the circuit, and successful demonstration that original objectives have been met.
C. D. Paton, J. K. Roberge

6.111 Introductory Digital Systems Laboratory
Prereq: 6.002 or 6.071
U (1, 2) LAB 3-7-2
Initial lecture format treats combinational logic, flip flops, counters, timing circuits, synchronization techniques, finite-state machines, and the design of more complicated digital systems using microprogramming techniques. This material, accompanied by problem sets and lab exercises, prepares students for the conception, design, and implementation of a complicated digital systems project of their choice: e.g., games, music, microcomputers, digital filters, bit-mapped displays, graphics. Enrollment limited to 250.
D. E. Troxel

6.114 Real-Time Computing and Control Laboratory
Prereq: 6.001, 6.032 or 6.004
U (1, 2) 3-7-2
Effective use of mini- and micro-computer systems in laboratory and on-line applications. Software development using a combination of high-level and assembly language to achieve performance consistent with real-time needs. Input/output programming, interrupt systems, direct memory access (DMA), high-speed data acquisition, multi-tasking. Laboratory exercises involve open and closed loop control of physical devices, interactive graphics, and data acquisition.
F. F. Lee, B. R. Musica

6.115 Microcomputer Project Laboratory
Prereq: 6.111
U (1) 3-7-2
Explores the use of microprocessors as elements in larger systems. Lectures cover microprocessor architectures and assembly languages, LSI peripheral support chips, interfacing single-chip and special purpose microcomputers, design and debugging aids, communication strategies, and multiprocessor systems. Laboratory exercises include data acquisition, interrupt control, DMA. Major project: the design, construction, programming, and testing of a system using microprocessors as processing elements. Familiarity with assembly language required. Limited enrollment.
B. R. Mucius, F. F. Lee

6.141 Energy and Electromechanical Systems Project Laboratory
Prereq: 6.012 or 6.013
U (1, 2) LAB 0-10-2
Independent laboratory work involving electromechanical systems, power electronics, high voltage systems, rotating electric machinery, bioelectromechanics, energy systems, and control. Student's choice of project, either from a list of suggested topics or developed by student in conjunction with instructor.
S. D. Umans

6.142 Microcomputer Control of Energy Systems
Prereq: 6.001, 6.003
U (2) 2-7-3
Microcomputer-based control system laboratory. Lectures: analysis and design of sampled-data control systems, microcomputer-based control system implementation, and energy system control objectives. Laboratory experiments and term project on design and hardware/software implementation of microcomputer-based control systems. Typical projects: control of ac and dc motors, gasoline engine, chops control, regulating, heater system, and solar photovoltaic power generation. Limited to 25.
J. H. Lang, L. A. Gould, R. D. Thornton

6.150J Introduction to Microelectronic Technology
(Same subject as 3.083J)
Prereq.: 6.012
U (1, 2) 1-3-2
Introduces some of the basic techniques and processes used in the fabrication of silicon monolithic integrated circuits. Lectures and laboratory sessions on the theory and technology of device fabrication and integrated circuit processing, including wafer cleaning, oxidation, photoengraving, chemical etching, diffusion, thin film deposition, and device testing. This subject is a suitable introduction for students wishing to do project lab work in 6.151 or thesis work in the microelectronics field. Also available in IAP.
C. G. Sodini, L. R. Reif, D. J. Edel, C. Thompson

6.151 Semiconductor Devices Project Laboratory
Prereq.: 6.150J, 6.720
U (1, 2) LAB 0-12-0
Student use of facilities of the Microelectronics Laboratory for individual or team projects in the area of design, fabrication, modeling and characterization of individual MOS or bipolar devices and of integrated circuits using these devices. Each term, the project topics are selected to fit the general areas of development in the Laboratory. Enrollment limited.
C. G. Sodini, L. R. Reif

6.161 Modern Optics Project Laboratory
Prereq.: 6.013, 6.003
U (1) LAB 2-8-2
Lectures, laboratory exercises, and projects in modern optics. Topics: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, imaging and transforming properties of lenses, spatial filtering, coherent optical processors, holography, optical properties of materials, spectroscopy, lasers, nonlinear optics, Electrophoretic materials and devices, optical detectors, fiber optics and optical communication. Seniors may use this laboratory to find a thesis.
C. Warde
6.162 Image Transmission Systems Project Laboratory
Prereq.: 6.012
U (1,2) LAB
0-12-0
Students use facilities of the Image Processing Laboratory of the Cognitive Information Processing Group in RLE for projects related to picture transmission or reproduction systems. Facilities available for computer simulation studies as well as hardware projects. Possible topics: image enhancement and compression; implementation of image processing algorithms in hardware; optical, mechanical, or electronic development of scanners; image processing software development; development of apparatus for study of or demonstration in visual psychophysics.
W. F. Schreiber

6.183 Strobe Project Laboratory
Prereq.: —
U (1,2) LAB
2-8-2
A project laboratory for experiments, involved mainly with the characteristics of electronic flash sources of light and their applications to photography and to measurement problems. A program of experimentation concerned with electronic flash organized with each group of students, at the start of the term. Permission of instructor required.
H. E. Edgerton, C. E. Miller

6.170 Laboratory in Software Engineering
Prereq.: 6.001
U (1,2)
3-6-3
Introduces concepts and techniques related to the production of large software systems. Students taught a programming method based on the recognition and description of useful abstractions. Topics: programming methodology; procedural, data and control abstractions; specifications; top-down design, implementation and testing. Several programming projects of varying size undertaken by students working singly and in groups.
J. V. Guttag, B. H. Liskov

6.182 Psychoacoustics Project Laboratory
Prereq.: —
U (1) LAB Next offered 1985-86
3-4-5
Introduces the methods used to measure human auditory abilities. Discusses auditory function, principles of psychoacoustic measurement, models for psychoacoustic performance and experimental techniques. Project topics: absolute and differential auditory sensitivity, operating characteristics of human observers, span of absolute judgment, adaptive measurement procedures, scaling sensory magnitudes, etc. Oral presentation and written report. Knowledge of probability helpful. Alternate years.
L. D. Braida, N. I. Durlach

Advanced Undergraduate Subjects and Graduate Subjects by Area

Systems Science and Control Engineering

6.201 Introduction to Dynamic Systems
Prereq.: 6.003
U (1)
3-0-9
Introduces modern system theory; applications to control, communications, and operations research. Topics: recursive least-squares estimation; state-space models of discrete- and continuous-time multi-input-output systems; structure, behavior, and control of linear, time-invariant systems (controllability, observability, modes, transfer functions, compensators, root loci, state feedback, optimal regulation, observers, frequency-domain design); nonlinear systems (stability); basics of optimal control.
G. C. Verghese, S. K. Mitter

6.202 Introduction to Decision Making with Uncertainty
Prereq.: 6.041 or 18.440 or 18.313
U (2)
3-0-9
Introduces techniques for analyzing dynamic systems which are subject to random disturbances over time. Emphasizes methods for acquiring, processing, and using information in a noisy environment, in support of automated decision making. Topics: discrete time systems modeled as Markov chains or linear difference equations, the Kalman filter, and dynamic programming in deterministic and stochastic settings. Examples illustrate applications in operations research, communications, and automatic control.
R. R. Tenney

6.230 Linear System Theory (A)
Prereq.: 6.003, 18.031 or 18.06
G (1)
3-0-9
A. V. Oppenheim, A. S. Willsky

6.231 Dynamic Programming and Stochastic Control (A)
Prereq.: 6.041 or 18.313 or 18.440
G (2)
3-0-9
Introduces sequential decision making via dynamic programming. Unified approach to optimal control of stochastic dynamic systems and Markovian decision problems. Applications from control theory and operations research include linear-quadratic problems, inventory control, and resource allocation models. Optimal decision making under perfect and imperfect state information. Certainty equivalent and open loop-feedback control, self-tuning controllers. Infinite horizon problems, successive approximation, policy iteration.
D. P. Bertsekas

6.232 Multivariable Control Systems (A)
Prereq.: 6.201 or 6.230 or 2.151 or 16.311, 6.432 or 2.152 or 16.371
G (2)
3-0-9
M. Athans, G. Stein

6.251J Introduction to Mathematical Programming (A)
(Same subject as 15.081J)
Prereq.: 18.06
G (1,2)
3-0-9
A first subject in mathematical optimization emphasizing both methodology and the underlying mathematical structures. Covers linear programming and related topics: the simplex method, duality theory, sensitivity analysis, network flow algorithms, decomposition, integer programming, and polyhedral geometry.
R. G. Gallager, J. B. Orlin

6.252J Nonlinear Programming and Discrete-Time Optimal Control (A)
(Same subject as 15.084J)
Prereq.: 18.06, 18.100
G (2)
3-0-9
S. K. Mitter, J. F. Shapiro
6.253 Algebraic System Theory (A)
Prereq.: 6.230
G (2) Not to be offered 1985-86
3-0-9

Advanced topics; varying focus. Polynomial matrix descriptions of linear time-invariant systems; equivalence; internal and external properties. Fractional representations of transfer matrices; parametrization of stabilizing compensators; robustness; sensitivity. Output feedback. Decentralized control. Geometric theory of controlled-, conditionally- and almost-invariant subspaces. Multidimensional systems; systems over rings, groups and finite fields. Bilinear systems. Alternate years.
B. C. Levy, G. C. Verghese

6.254 Qualitative Theory of Dynamical Systems (A)
Prereq.: 6.230, 18.100
G (1) Not to be offered 1985-86
3-0-9

S. K. Mitter

6.255 Optimal Control Theory (A)
Prereq.: 6.230
G (2) Not to be offered 1985-86
3-0-9

Advanced topics in deterministic and stochastic optimal control theory. Topics: nonlinear control, the Pontryagin Minimum Principle, discrete and continuous time, static and dynamic games (Nash, Stackelberg, and Pareto solution concepts), team theory, optimal decentralized estimation and control, and large-scale systems. Applications and computational aspects also discussed. Alternate years.
R. R. Tenney, M. Athans

6.262 Markov Models and Their Applications (A)
Prereq.: 1.07 or 6.041 or 6.431 or 18.313
G (1)
3-0-9

Formulation and analysis of dynamic probabilistic models, emphasizing Markov processes and their extensions. Linear systems theory applied to discrete state, discrete and continuous time, stationary and nonstationary, Markov and semi-Markov processes. Dynamic programming and its application to the control of Markov systems. Partially observable Markov processes. Applications in societal and engineering systems; population growth, social mobility, systems reliability and maintenance, and congestion processes in communication networks.
R. C. Larson, A. W. Drake

6.263 Data-Communication Networks (A)
Prereq.: 6.041 or 18.313
G (1)
3-0-9

Modeling of the control processes in computer and data communication networks. Develops and utilizes elementary concepts from queueing theory, algorithms, linear and nonlinear programming to study the problems of line and network protocols, distributed algorithms, quasi-static and dynamic routing, congestion control, deadlock prevention, local networks, and radio and satellite multi-access schemes.
D. P. Bertsekas

6.264 Queueing Theory with Applications (A)
Prereq.: 6.262 or 6.432 or 15.973J or 18.445J
G (2) Next offered 1985-86
3-0-9

Introduces analysis of queueing systems, with applications in communications, computers, manufacturing, transportation and urban systems. Material presented varies, depending partly on student interests. Typical topics: simple Markovian queues, networks of queues, general (non-Markovian) single and multiple server queues, priority queues, bounds and approximations. Current research opportunities discussed. Alternate years.
P. A. Humblet, R. C. Larson

6.271 Introduction to Operations Research
Prereq.: Permission of Instructor
G (1)
3-0-9

A two-term introduction to important techniques and problem formulations of operations research. Homework exercises with user-friendly, on-line computer programs. Emphasizes overall approach rather than mathematical theory. Topics: linear programming models and methods, network analysis, optimal sequential decision making, decision analysis, Markov models, queuing models, inventory theory, and simulation. Case studies developed on the computer.
R. C. Larson

6.281J Logistical and Transportation Planning Methods (A)
(Same subject as 1.203J, 11.526J, 13.665J, 15.078J, 16.76J, TPP 43J)
Prereq.: 6.431, 15.075
G (1)
3-0-9

See description under subject 1.203J.

6.291 Seminar in Systems, Communications, and Control Research
Prereq.: Permission of Instructor
G (1, 2)
3-0-9

A seminar dealing with advanced topics in systems, communications, and control. Selected topics according to student and instructor interest. See instructor for specific topics to be offered in a particular term.
S. K. Mitter

6.301 Solid State Circuits
Prereq.: 6.012
U (1)
3-3-6

Analysis and design of transistor circuits, based directly on the semiconductor physics and transistor circuit models developed in 6.012. High-frequency and low-frequency design calculations of multistage transistor circuits using a computer. Trans-linear circuits. The charge-control model. Introduction to operational-amplifier design and application. Some previous laboratory experience assumed.
J. K. Roberge

6.302 Feedback Systems
Prereq.: 6.003 or 2.02
U (2)
4-2-6

L. A. Gould

6.311 Telephony
Prereq.: 6.002 or 6.071 or 6.101
U (2) Next offered 1985-86
2-0-4

Reviews current telephone technology. Examines the sequence of events occurring as a call is originated, connection made, and call completed for commonly used systems including manual switchboards, step-by-step, crossbar, and ESS offices. Interoffice connection, signal methods, and traffic problems. Technical and economic characteristics of equipment used for voice and data communications. Tours of representative facilities arranged. Alternate years.
S. K. Burns
6.312 Acoustics
Prereq.: 6.002
U (1) 3-1-8
A. G. Bose

6.331 Advanced Circuit Techniques (A)
Prereq.: 6.301, 6.302
G (2) Next offered 1985-86
3-2-7
Following a brief classroom discussion of relevant principles, each student completes the paper design of several advanced circuits such as multiplexers, sample-and-holds, gain-controlled amplifiers, analog multipliers, digital-to-analog or analog-to-digital converters, and power amplifiers. One of each student's designs may be presented to the class, and one may be built and evaluated. Associated laboratory emphasizing the use of modern analog building blocks. Enrollment limited. Permission of instructor required. Alternate years.
J. K. Roberge

6.332 Advanced Instrumentation Electronics (A)
Prereq.: 6.003
G (1) 3-0-9
S. K. Burns

6.333 Electronic Circuits (A)
Prereq.: 6.003
G (2) 3-0-9
Theory, analysis, and design of linear and nonlinear electronic circuits emphasizing the use of computers to solve symbolic and numerical circuit problems. Topics: network representations and transformations, relations between time, frequency, and circuit domains; basic limitations and optimal design; sparse circuit methodology. Examples: amplifiers; oscillators; switching circuits; VLSI; feedback; circuit analogs for electromechanical systems.
R. D. Thornton, J. L. Wyatt

6.334 Power Electronics (A)
Prereq.: 6.012, 6.013
G (2) 3-0-9
The application of electronics to energy conversion and control. Electrical and thermal characteristics of power semiconductor devices — diodes, bipolar and field effect transistors, and thyristors. Magnetic circuits. Active and passive filtering techniques. Emphasizes device limitations, circuit techniques, computer-aided analysis and design, and system control. Application examples include controlled rectifiers, high-frequency inverters, dc-dc conversion, motor drives, and battery electronics. Assumes background in elementary device physics.
J. G. Kasakian

6.335 Fundamental Theory of Nonlinear Networks (A)
(Revised Content)
Prereq.: 6.003, 6.201 or 6.230 or 18.06
G (1) Next offered 1985-86
3-0-9
J. L. Wyatt

6.336 Simulation of Large-Scale Circuits (A)
(New)
Prereq.: 6.003, 6.201 or 6.230 or 18.06
G (1) Not to be offered 1985-86
3-0-9
J. L. Wyatt

6.341 Digital Processing of Signals (A)
Prereq.: 6.003, 18.075 or 18.04, 6.041 or 6.431
G (1, 2) 4-0-8
Representation, analysis, and design of discrete signals and systems. Z-transforms and the discrete Fourier transform. The fast Fourier transform (FFT) algorithm. High-speed convolution and correlation. Time and frequency domain design techniques for recursive (IIR) and nonrecursive (FIR) systems. Finite wordlength implementation of discrete-time linear systems. Realization of discrete-time linear systems. Additional topics may include homomorphic signal processing, power spectrum estimation, and applications to speech and image processing.
A. V. Oppenheim

6.343 Digital Speech Processing (A)
Prereq.: 6.341
G (2) Not to be offered 1985-86
4-0-8
Applications of digital techniques to the processing of speech signals. Time- and frequency-domain models for speech processing. Speech analysis techniques, including homomorphic, linear prediction, and short-time Fourier analyses. Principles of speech bandwidth compression, speech synthesis, and speech recognition. Survey of applications in the area of human-machine communication, including voice-response systems, speaker recognition systems, and speech recognition systems. Alternate years.
V. W. Zue

6.344 Multidimensional Signal Processing (A)
Prereq.: 6.341
G (2) Next offered 1985-86
3-0-9
J. S. Lim

6.361 Image Processing (A)
Prereq.: 6.003
G (1) 3-0-9
W. F. Schreiber

6.371 Introduction to VLSI Systems (A)
Prereq.: Permission of Instructor
G (1, 2) 3-3-6
Provides background in integrated devices, circuits, and digital subsystems needed for design and implementation of integrated systems. Design methodology, use of ratioed design rules and library modules, symbolic layout languages, computer-aided design techniques. Students required to complete through layout, the design of a digital subsys-
Probabilistic Systems and Communication

6.431 Applied Probability
Prereq.: 18.02
G (1, 2)
4-0-8
Meets with 6.041. Requires the completion of additional advanced home problems.
A. W. Drake

6.432 Stochastic Processes and Applications (A)
Prereq.: 6.003, 6.041 or 6.431 or 18.313
G (1, 2)
4-0-8
Basic graduate subject in stochastic processes and applications. Intended primarily for students interested in communication, control, operations research, but also an appropriate foundation for study of stochastic phenomena in signal processing and biomedical engineering. Applications covered include: hypothesis testing, parameter estimation, discrete-time Kalman filter, stochastic processes in linear systems and queueing processes. Stochastic process theory is developed in sufficient depth to permit thorough treatment of these applications.
J. H. Shapiro

6.435 System Identification (A)
Prereq.: 6.003, 6.041 or 6.431 or 18.313
G (1) Next offered 1985-86
3-0-9
Determination of valid mathematical models for physical and social systems using observations of their behavior. Different philosophies of modeling: state space, time series, multiple input-output, nonlinear, and time varying systems. Parameter estimation algorithms: full information maximum likelihood, least squares.
J. H. Shapiro

6.441 Transmission of Information (A)
Prereq.: 6.041 or 6.431 or 18.313
G (2)
3-0-9
Introduces the quantitative study of information with emphasis on concepts fundamental to the engineering of reliable, efficient communication systems. Mathematical definition of information and study of its properties; efficient representation of message sources; communication channels and their capacity; coding for reliable transmission of data over noisy channels. Additional topics of interest such as representing data and control information in data communication networks are included.
R. G. Gallager

6.451 Principles of Communication (A)
Prereq.: 6.003, 6.041 or 18.313
G (1)
3-0-9
Fundamental principles underlying the transmission of digital data over noisy channels. Mathematical description of signals and noise. Digital modulation and signal design. Decision regions and optimum receivers. Intersymbol interference. Introduction to channel capacity and error-free communication over noisy channels. Elements of block and convolutional coding. Topics of current interest.
P. A. Humblet

6.452 Stochastic Filtering and Detection (A)
Prereq.: 6.230, 6.432
G (2)
3-0-9
A unified approach to the areas of filtering, detection, and system identification. Detection of known and stochastic signals in Gaussian and Poisson noise. Linear filtering, Wiener and Kalman filters, parameter identification. Nonlinear filtering for signals in Gaussian noise and point process observations. Applications to areas such as control, communications, radar, sonar, optical communications, and computer networks.
A. B. Baggenor, S. K. Mitter

6.453 Optical Detection and Communication (A)
Prereq.: 6.041, 6.014
G (2) Next offered 1985-86
3-0-9
J. H. Shapiro

6.454 Advanced Topics in Optical Communication Research (A)
Prereq.: Permission of Instructor
G (1) Not to be offered 1985-86
3-0-9
Discusses advanced topics and current research activities in optical detection, propagation, and communication. Material presented and detailed prerequisites vary from year to year. Term paper required. Alternate years. Topic for 1984-85: Fiber-optic communications.
J. H. Shapiro

6.455J Marine Data Systems (A)
(Same subject as 13.74J)
Prereq.: 2.02 or 6.003 or 13.004, 6.041, 18.075
G (1) Not to be offered 1985-86
3-0-9
Systems and techniques used in oceanographic data analysis. Temporal random processes, correlation and spectral analysis by indirect, DFT, and adaptive methods. Sonar, radar, echosounders, and seismic systems. Space/time random processes, frequency-wave number characterizations, array and spatial processing; applications in arrays for ambient noise and passive sonar, surface, and internal waves. Alternate years.
A. B. Baggenor, P. N. Mikhailovsky, (Woods Hole Staff): R. C. Spindel

Bioelectrical Engineering

6.501 Sound, Speech, Hearing
Prereq.: 6.003
U (1) Next offered 1985-86
3-0-9
Introduces the physical, physiological, and psychological bases of auditory communication. Physical acoustics, properties of neural and muscular elements, the vocal tract and speech generation, signal transmission in the auditory system, perception of attributes of speech and speech-like sounds, and the linguistic units that underlie speech events. Disorders of human communication. Alternate years.
K. N. Stevens, L. D. Braida

6.523J Computers and Patient Care
(Same subject as HST 550J)
Prereq.: —
G (2)
2-0-4
See description under subject HST 550J.
G. O. Barnett

6.524J General Physiology
(Same subject as 7.51J)
Prereq.: —
U (2) SD
3-0-9
See description under subject 7.51J.
J. Y. Lettvin
J. Allen
and semantic formalism. Representation of language understanding systems. Alternate speech recognition, question answering, and underlying syntax and semantics in speech ural language. Studies word formation, lexical

Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-9

Detailed consideration of a number of sen-

nary-neural systems with respect to anatomy, physiology, and mode of operation. Reading of relevant papers and critical discussion of the methods and results described. Topics se-

lected on the basis of their current research interest, with emphasis on systems in which physical input and sensory cell neuron output can be quantitatively related. Examples from vertebrate and invertebrate species including mechanical, visual, and other modalities. Alternate years.

L. S. Frithkopt, C. M. Oman

6.541J Speech Communication (A)
(Same subject as 24.968J)
Prereq.: Permission of Instructor
G (2) Not to be offered 1985-86
3-0-9

Survey of structural properties of natural lan-

guages with special emphasis on the sound pattern. Physiology of speech production, arti-

culatory phonetics. Acoustical theory of speech production; acoustical and articulatory descrip-

tions of phonetic features. Perception of speech: the auditory capabilities of humans; evidence for perceptual correlates of phonetic categories. Mechanical recognition and gener-

ation of speech. Recommended prerequisite: mathematical background equivalent to 6.003. Alternate years.

K. N. Stevens, S. J. Keyser

6.542J Laboratory on the Physiology, Acoustics, and Perception of Speech (A)
(Same subject as 24.966J)
Prereq.: Permission of Instructor
G (1) Not to be offered 1985-86
2-2-8

Experimental investigations of speech pro-

cesses. Topics: a) interpretation of x-ray mo-

tion pictures, b) measurements of pressure

and volume velocity, c) computer-aided wave-

form analysis and spectral analysis of speech,

d) synthesis of speech, e) identification and
discrimination of speech-like sounds, and oth-

er topics. Recommended prerequisites: 6.501, 6.002 or 18.03. Alternate years.

D. H. Kliatt

6.543 Natural Language Processing (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-9

Computational theories for the analysis of natu-

ral language. Studies word formation, lexical

structure, syntax and parsing, sound structure,

and semantic formalism. Representation of underly-

ing syntax and semantics in speech. Applications to text-to-speech conversion, speech recognition, question answering, and language understanding systems. Alternate years.

J. Allen

6.551 Signal Processing by the Auditory System: Physiology (A)
Prereq.: 6.003, 6.023J
G (2) Next offered 1985-86
3-0-9

Physiological mechanisms involved in signal transmission and processing in the normal and pathological auditory system. Emphasizes the normal ear and brain stem with some discus-

sion of higher brain levels. Background other

than listed prerequisites may be accepted. Alternate years.

W. T. Peake, T. F. Weiss, N. Y. Kiang

6.552 Signal Processing by the Auditory System: Perception (A)
Prereq.: 6.015 or 6.003, 6.041 or 6.431
G (1) Next offered 1985-86
3-0-9

Studies behavioral aspects of human hearing in relation to current physiological knowledge. Examines performance in processing information from acoustic stimuli. Correlations be-

tween behavior and physiology reflecting the to-

no-topic organization and stochastic re-

sponses of the auditory system. Mathematical

models of psychophysical relations incorporat-

ing quantitative knowledge of physiological

transformations by the peripheral auditory sys-

tem. Discusses related research on diagnosis

and aids for partially deaf. Alternate years.

H. S. Colburn, L. D. Braida

6.561J Fields, Forces and Flows: Background for Physiology (A)
(Same subject as HST 544J)
Prereq.: 6.013, 6.021J
G (1)
3-0-9

Conduction, diffusion, convection in electro-

lytes; fields in heterogeneous media; electrical
double layers; Maxwell stress tensor and elec-

trical forces in physiological systems. Fluid

and solid continua: equations of motion useful

for porous, hydrated media. Case studies: mem-

brane transport; electrode interfaces;

electrical, mechanical, and chemical transduc-

tion in tissues; electrophoretic, electro-osmotic

flows; diffusion/reaction; ECG. Electromechan-

cal interactions in biomaterials and cells; ex-

amples from orthopaedic research.

A. J. Grodzinsky

6.562J Ultrasound: Physics, Biophysics and Technology (A)
(Same subject as 2.76J, HST 530J)
Prereq.: Permission of Instructor
G (1) Not to be offered 1985-86
4-1-7

See description under subject 2.76J.

F. R. Morgenhalter, P. P. Lele

6.565J Measurements in Medicine and Biomedical Research (A except VI)
(Same subject as HST 581J)
Prereq.: 6.003, 6.022J, 6.041
G (1)
2-5-5

See description under subject HST 581J.

R. G. Mark, E. D. Trautman

Electrodynamics

6.801 Fields, Forces, and Motion
Prereq.: 6.013
U (1)
3-0-9

Electromechanical interactions in lumped-par-

meter and continuum systems. Integral and dif-

ferential electromagnetic laws, including move-

tion. Lumpened electrical and mechanical ele-

ments; thermodynamics of discrete electro-

mechanical coupling, equations of motion.

Synchronous and induction rotating machines.

Linear and nonlinear transducers, transient

and steady-state dynamics; electromechanical

time constants. Field transformations, dc ro-

tating machines, magnetic diffusion and charge

relaxation in moving conductors. Electromag-

netic force densities and stress tensors.

J. R. Melcher

6.811 Introduction to Optical Electronics
Prereq.: 6.013, 6.003
U (2)
4-0-9

Introduces Fourier optics. Spatial and temporal

cohereance of lasers and applications made

possible by coherence. Characteristics of opti-

cal system components: propagation media,

resonators, fiber guides; detectors and their

signal-to-noise ratios; laser media, types and

properties; modulation techniques. Discusses

specific applications.

J. H. Shapiro

6.831 Optics and Optical Electronics (A)
Prereq.: 6.014 or 8.07
G (1)
3-0-9

A first-year graduate subject on fundamental

concepts and techniques of modern optics and

quantum electronics. Review of Maxwell's

equations and the vector properties of light.

Interference and interferometers. Temporal

and spatial coherence. Scalar diffraction the-

ory. Propagation of spherical and Gaussian-

spherical beams. Thin film and "fiber" wave-

guides. Device applications of electro-optic ef-

fect and nonlinear optics.

H. A. Haus, S. Ezekiel

6.832 Advanced Electromagnetic Theory (A)
Prereq.: 6.014 or 8.03
G (1)
3-0-9

A first-year graduate subject on electromagnetic field theory emphasizing mathematical approaches, problem solving, and physical interpretation. Examples deal with guidance, propagation, radiation, and scattering of electro-

magnetic waves; metallic and dielectric

waveguides, resonators, antennas, and radiat-

ing structures. Cerenkov radiation, moving

media, plasmas, crystals, integrated optics,

lasers and fibers, remote sensing, geophysical

probing, dipole antennas, and stratified media.

J. A. Kong
6.633 Electrodynamics of Waves, Media and Interactions (A)
Prereq.: 6.014, 18.075 or 18.04
G (2) Not to be offered 1985-86
3-0-9
Intended for first-year graduate students and seniors whose interest is in the interaction of electromagnetic fields with charged particles, plasmas, and continuous media. Wave propagation in media with temporal and spatial dispersion. General stability criteria and techniques for identifying and classifying wave-type instabilities. Energy, momentum, and their flow associated with small-amplitude wave propagation in passive and active media. Linear and nonlinear coupling of modes in stable and unstable systems. Alternate years.
A. Bers

6.634 Nonlinear Optics (A)
Prereq.: 6.014 or 8.07
G (2) 3-0-9
E. P. Ippen

6.635 Topics in Electrodynamics (A)
Prereq.: 6.014 or 6.632 or 8.07
G (2) 3-0-9
Material covered differs from year to year according to interest of students and instructor in charge. Typical topics include electrodynamics of moving media, waves in dispersive media, quantum optics, remote sensing, radiative transfer theory and random media. Offered when there are suitable topics with enough student and staff interest.
J. A. Kong

6.637 Optical Information Processing (A)
Prereq.: 6.003, 6.014
G (1) Next offered 1985-86 3-0-9
C. Warde

6.638 Electrical and Optical Processes in Gases (A)
Prereq.: 8.03, 8.211
G (2) Next offered 1985-86 3-0-9
Basic processes in plasmas, lasers, and electrical insulation. Collisions involving particles and radiation fields including classical and quantum effects, resonant and non-resonant excitations and recombinations. Collective particle behavior, mobility, diffusion, and distribution functions with Max-Boltzmann, Druyvesteyn, and Fokker-Planck approximations. Analysis of surface effects, charge multiplication, breakdown, excitation and inversion mechanisms, and plasma properties. Applications in diagnostics, lasers, switches, dielectrics, and on sources. Alternate years.
C. M. Cooke

6.641 Microwave Circuits (A)
Prereq.: 6.014
G (2) Next offered 1985-86 3-1-8
H. A. Haus

6.642 Antennas and Radiation (A)
Prereq.: 6.014
G (2) Not to be offered 1985-86 3-0-9
General theory of radiation and its application to the analysis of representative types of antennas; emphasizes the design of antenna arrays, microwave reflectors, and lenses. Alternate years.
J. A. Kong, F. R. Morgensthaler

6.651J Introduction to Plasma Physics I (A)
(Same subject as 22.613J, 22.611J)
Prereq.: 6.014 or 8.07, 6.018 or 8.08, 18.04 or 18.075
G (1) 3-0-9
See description under subject 8.613J.
A. Bers, K. Molvig, M. Porkolab

6.652J Introduction to Plasma Physics II (A)
(Same subject as 6.614J, 22.612J)
Prereq.: 6.651J or 8.613J or 22.611J, 18.076
G (2) 3-0-9
See description under subject 22.612J.
A. Bers, R. C. Davidson, K. Molvig, J. P. Freidberg

6.653J MHD Theory of Magnetic Fusion Systems I (A)
(Same subject as 22.615J)
Prereq.: 6.651J or 22.611J or 8.613J
G (1) 3-0-9
See description under subject 22.615J.
R. R. Parker

6.661 Receivers, Antennas, and Signals (A)
Prereq.: 6.014
G (2) Not to be offered 1985-86 3-0-9
Detection and measurement of radio and optical signals encountered in astronomy, radar, and communications. Statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems. Matched filters and ambiguity functions. Measurement of random electromagnetic fields, including their spatial, angular, time, and polarization correlation properties. Angular filtering properties of antennas, interferometers, and aperture synthesis systems. Radiative transfer and parameter estimation. Alternate years.
D. H. Staelin

6.662J Radar Astronomy, Astrometry, and Geodesy (A)
(Same subject as 12.620J)
Prereq.: 6.014 or 8.03, 18.075
G (1) Next offered 1985-86 3-0-9
See description under subject 12.620J.
D. H. Staelin, G. H. Pettengill, C. C. Counselman

6.671 Continuum Electromechanics I (A)
Prereq.: 6.013, 6.601 or 2.03J
G (2) 3-0-9
J. R. Melcher

6.672 Continuum Electromechanics II (A)
Prereq.: 6.671
G (1) Not to be offered 1985-86 3-0-9
Laws, approximations, and relations of fluid mechanics. Mechanical and electromechanical transfer relations. Statics and dynamics of electromechanical systems having a static equilibrium. Electromechanical flows. Field coupling with thermal and molecular diffusion. Electrokinetics. Streaming interactions. Applications to materials processing, magnetohy-
6.683 Operation and Planning of Electric Power Systems (A)
Prereq.: Permission of Instructor
G (2) Not to be offered 1985-86
3-0-9
Electric power system generation, transmission distribution at a regional (e.g., New England) level. Customer interaction and feedback. Integration of diverse physical, economic, and social phenomena covering time frames ranging from seconds to years. Methods of control, analysis, design, and decision making for such large-scale systems. Special consideration of small distributed generation, rates and load management, and the impact of microprocessors. Alternate years.
F. C. Schwegge

6.685 Electric Machines (A)
Prereq.: 6.061 or 6.601
G (2) Not to be offered 1985-86
3-0-9
J. L. Kirtley, Jr.

(Same subject as 22.85J)
Prereq.: —
G (2)
3-0-9
See description under subject number 22.85J.
D. C. White, M. M. Miller

Solid-State Materials and Devices

6.720 Semiconductor Devices
Prereq.: 6.012
U (1)
4-0-8
The physics, modeling, fabrication, and application of selected semiconductor devices. Emphasis on devices in integrated circuit contexts. Introduces use of the energy band viewpoint. Topics: metal-oxide-semiconductor (MOS) devices including charge coupled devices (CCDs) and MOSFETs; MOS logic and memory; planar diffused and lateral bipolar transistors; bipolar logic including current injection logic (FL); Schottky barriers, MESFETs and heterostructures.
C. G. Fonstad, C. G. Sodini

6.721 Contemporary Digital MOS Circuits
Prereq.: 6.032 or 6.004
U (1)
3-0-9
Reviews and elaborates models of MOS transistors. Discusses scaling effects on device performance. Overview of organization and operation of contemporary MOS integrated circuits, especially microprocessors and static and dynamic RAMs. Uses circuit techniques to optimize speed/power tradeoffs. Systemic influences on device architectures and circuits.
R. E. Zippel

6.725 Solar Energy Systems
Prereq.: 6.002 or 6.071 or 2.02
U (1)
3-0-9
Examines energy conversion systems, primarily solar. Topics: solar radiation, blackbody radiation; photovoltaic power generation including theory, materials, devices; systems analysis of solar heating, cooling, and hybrid electrical-thermal combinations; flat plate collectors, heat mirrors, heat transfer; alternate energy sources including photochemical, hydro, wind, and tidal power; energy storage systems. Guest lectures on topics of intensive current research. Elementary knowledge of thermodynamics helpful.
G. W. Pratt, Jr., R. D. Thornton

6.730 Physics for Solid-State Applications (A)
(New)
Prereq.: 6.013
G (1)
4-0-8
Fundamental physics for solid-state applications including a review of quantum mechanics and statistical physics: classical and quantum models of electrons in solids; crystal lattices; energy band structures in the nearly free electron and tight binding approximations; effective masses and semiclassical equations of motion; lattice vibrations and phonons; band structures and properties of selected semiconductors. Recommended for first-year graduate students interested in solid state physics and devices.
T. P. Orlando

6.731J Physics of Solids I (A except VIII)
(Same subject as 8.231J)
Prereq.: 8.04 or 8.211, 6.018
G (1)
4-0-8
See description under subject 8.231J.
M. Kastner

6.732J Physics of Solids II (A)
(Same subject as 8.500J)
Prereq.: 6.730 or 6.731J
G (2)
4-0-8
Second term of solid-state physics presenting basic concepts of the quantum theory of solids. Emphasizes simple physical models. Topics: electronic structures, dynamics of electrons in solids, Fermi surfaces, transport phenomena in metals and semiconductors; optical properties of metals, semiconductors and insulators; lattice modes; magnetic phenomena in solids such as paramagnetism, diamagnetism, ferromagnetism, resonance studies in a magnetic field; superconductivity.
M. S. Dresselhaus

6.734J Application of Group Theory to the Physics of Solids (A)
(Same subject as 8.513J)
Prereq.: 6.731J
G (1) Not to be offered 1985-86
3-0-9
Group theory techniques: mathematical background, representation theory, character tables, basis functions, point groups, space groups, double groups, time reversal symmetry. Applications: crystal field structure, selection rules, directed valence and bonds, molecular vibrations, group of the wave vector with application to energy bands, lattice modes. Alternate years.
M. S. Dresselhaus

6.741J Theory of Solids I (A)
(Same subject as 8.511J)
Prereq.: 6.732J
G (1)
3-0-9
See description under subject 8.511J.
D. Adler, J. D. Joannopoulos

6.742J Theory of Solids II (A)
(Same subject as 8.512J)
Prereq.: 6.741J
G (2)
3-0-9
Second term of a theoretical treatment of the physics of solids. Semiconductors: survey of band structures; effective mass theory; effective g-factor; transport; optical properties. Metals: band structures; electron dynamics; transport; magnetic properties; optical properties. Many body theory: the random phase approximation; collective effects in normal metals; Fermi liquid theory; superconductivity.
D. Adler, J. D. Joannopoulos

6.751 Quantum Electronics (A)
Prereq.: 6.731J or 8.05
G (2)
3-0-9
Basic phenomena of quantum electronics including development of background quantum mechanics and optical properties of solids. Quantization of electromagnetic field and spontaneous plus stimulated optical transitions between energy levels. Resonant processes including electric dipole transitions, absorption dispersion and saturation. The laser and its operating characteristics. Rate equations, optical pumping, Q-switching, and mode locking. Nonlinear optics. Electrooptical devices, picosecond switches and pulse generation, optical logic gates. Fiber optics.
G. W. Pratt, Jr.
6.753 Microwave Magnetics (A)
Prereq.: 6.014 or 6.601
G (2) Next offered 1985-86
3-0-9
Introduces the propagation and mutual interaction of microwave photons, magnons, and phonons in ferro-, antiferro- and ferrimagnetic crystals. Elementary domain theory, including magnetic bubbles. Linear and nonlinear effects associated with magnetic resonance. Propagation of electromagnetic, magnetostatic and magnetoelastic waves in ferrite-loaded waveguides and thin ferrite films; reciprocal and non-reciprocal microwave circuit elements such as rotators, isolators, and circulators. Electromagnetic quantum-mechanical exchange and elastic channel of power flow. Alternate years.
F. R. Morgenthaler

6.754 Signal Processing with Coherent Wave States in Crystals (A)
Prereq.: 6.014, 6.003
G (2) Not to be offered 1985-86
3-0-9
Study of coherent waves that arise from collective excitations in dielectric, magnetic, and piezoelectric crystals, for use in processing electromagnetic signals in the microwave and optical portions of the spectrum. Signal characteristics and processing methods currently used in modern radar and spread-spectrum communications. Propagation of bulk and surface waves of electromagnetic, ultrasonic, and magnetostatic varieties; application to signal processing systems. Guest lecturers with expertise in industrial state-of-the-art techniques. Alternate years.
F. R. Morgenthaler

6.761J Electronic Materials (A)
(Same subject as 3.46J)
Prereq.: 3.02 or 3.71J or 22.071J or 22.71J
G (1)
2-0-6
See description under subject 3.46J.
H. C. Gatos

6.762 Dielectric and Optical Materials and Devices (A)
Prereq.: 6.013
G (2) Not to be offered 1985-86
3-0-9
D. J. Epstein

6.763 Microwave Magnetics (A)
Prereq.: 6.014 or 6.601
G (2) Next offered 1985-86
3-0-9
6.763 Applied Superconductivity (A)
Prereq.: 6.013 or 8.07
G (2)
3-0-9
T. P. Orlando

6.771 Physics of Semiconductor Devices (A)
Prereq.: 6.730, 6.012
G (2)
3-0-9
The physical basis of semiconductor device operation. Homogeneous and inhomogeneous semiconductors in equilibrium; electrochemical potential; generation-recombination mechanisms; Boltzmann transport equation; ambipolar transport; pn homojunctions and heterojunctions; Schottky diodes, MOS capacitors; profiling and deep level characterization methods; Gunn effect approach to bipolar devices; Zener and avalanche breakdown; high-level injection; quasi-static behavior of bipolar and MOS transistor.
S. D. Senturia

6.772 Integrated Circuit Devices and Processes (A)
Prereq.: 6.720
G (1) Next offered 1985-86
3-0-9
Silicon integrated circuit technology. Theory and practice of IC fabrication and device design emphasizing their relation to circuit performance. Topics: materials and fabrication processes; large-signal models for bipolar and field-effect transistors; components and circuit building blocks for modern digital ICs; circuit layout considerations in LSI; computer-aided analysis and design of processes, devices and circuits using state-of-the-art simulators.
D. A. Antoniadis

6.773 Topics in Semiconductor Device Research (A)
Prereq.: 6.720, 6.018, or 6.771
G (2) Next offered 1985-86
3-0-9
Topics selected from current device research areas. In recent years subject matter has included Schottky barriers and heterojunctions, charge coupled devices, surface acoustic wave devices, diode lasers, integrated and guided-wave optical components and circuits, and ultrahigh-speed transistors, including the permeable base transistor. Emphasis on device physics as it relates to device performance. Alternate years.
A. L. McWhorter

6.774 Physics of Microelectronic Fabrication (A)
Prereq.: 6.720, 6.150J
G (1)
3-0-9
Fundamental principles of the processes used in the fabrication of silicon monolithic integrated circuits. Physical models of bulk crystal growth, thermal oxidation, solid state diffusion, ion implantation, epitaxial deposition, chemical vapor deposition, and thin film deposition. Refractory metal silicides, plasma and reactive ion etching, laser/electronic beam processing. Technological limitations on integrated circuit design and fabrication. VLSI fundamentals.
L. R. Reif

6.775 Design of Analog MOS LSI (A)
Prereq.: 6.301
G (2)
3-0-9
C. G. Sodini

6.776 Plasma Processing in Integrated Circuits (A)
(Same subject as 10.616J)
Prereq.: Permission of Instructor
G (2) Not to be offered 1985-86
3-0-9
Studies glow discharge properties and processes as applied to integrated circuit fabrication. The physics and chemistry of nonequilibrium plasmas. Emphasizes the plasma kinetics and plasma-surface interactions. Extensively reviews plasma etching processes, sputter deposition, and plasma enhanced chemical vapor deposition for the fabrication of VLSI devices. Alternate years.
L. R. Reif, H. H. Sawin

6.781 Submicrometer Structures Technology (A)
Prereq.: —
G (2)
3-1-8
H. I. Smith
6.791 Special Topics in the Solid State and Its Application (A)
Prereq.: —
G (1)
3-0-9

6.792 Special Topics in the Solid State and Its Application (A)
Prereq.: —
G (2)
3-0-9
Primarily for those interested in research on solid-state materials and devices for electrical and electronic applications. Topics and staff to be announced each term. Given independently or sequentially as circumstances require. Permission of instructor required.
D. J. Epstein

Computer Science

6.801 Machine Vision
Prereq.: 6.003
U (1)
3-0-9
Deriving a symbolic description of the environment from an image. Understanding physics of image formation. Image analysis as an inversion problem: Binary image processing and filtering of images as preprocessing steps. Recovering shape, lightness, orientation and motion. Using constraints to reduce the remaining ambiguity. Photometric stereo and extended Gaussian sphere. Applications to robotics; intelligent interaction of machines with their environment.
B. K. P. Horn

6.802 Robot Manipulation
Prereq.: 6.001, 6.01, 18.02
U (2)
3-0-9
T. Lozano-Perez

6.821 Concepts in Modern Programming Languages (A)
Prereq.: Permission of Instructor
G (1)
4-0-8
Core graduate subject in programming languages. Programming language concepts and design, with emphasis on abstraction mechanisms. Denotational semantics. Functional and imperative languages. Procedure call and parameter passing mechanisms. Generic and polymorphic definitions. Abstract data types.

6.823 Computer System Architecture (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
Emphasizes the relationships among hardware organization, systems programming, and language support in the evolution of computer architecture. Effect of instruction set design on performance and programmability; methods of addressing, creating, protecting, and storing data and procedure objects; processor and memory design and programming issues in vector and multiprocessor systems. Assumes undergraduate knowledge of programming languages and computer systems.
Arvind

6.824 Artificial Intelligence (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
Intensive introduction to central issues of constructing intelligent systems. Historical trends in AI research: generality in problem solving, role of particular knowledge. Formalisms for knowledge representation: predicate logic, semantic networks, "frame" systems, production rules. Problem-solving techniques: goal-directed behavior, natural deduction, resolution, production system architectures, reasoning about control, planning, dependency-directed control, constraints, truth maintenance. Explores working knowledge of LISP.
P. Szolovits, R. Davis, H. E. Shrobe

6.830 Program Semantics and Verification (A)
Prereq.: 6.821, 6.045J
G (2) Not to be offered 1985-86
3-0-9
Mathematical approaches to defining semantics of simple programming languages: denotational, operational, and axiomatic semantics. Formal systems for program verification: soundness and completeness. Logics of programs, type theory, lambda calculus. Further topics selected from: semantics and verification of complex languages with concurrent and parallel constructs; current verification technology. Alternate years.
A. R. Meyer

6.835 Concurrent Systems for Artificial Intelligence (A)
(Revised Content)
Prereq.: 6.035, 6.033
G (1)
3-0-9
Concurrent systems and their relationship to artificial intelligence. Organizations as exemplars of highly intelligent parallel systems. Parallel architectures for artificial intelligence (e.g., Apiary, Connection Machine, and parallel Prolog machines). Incrementally evolving networks of computers. Mathematical models of concurrent systems (e.g., Actor Model, Milner's algebraic model, and Hoare's process model).
C. E. Hewitt

6.840J Theory of Computation (A)
(Same subject as 18.427J)
Prereq.: 6.045J or 18.511
G (1)
3-0-9
See description under subject 18.427J.
S. McIlain, M. Sipser

6.845 Topics in Computer Systems Research (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
Seminar on a selected research topic in the engineering of computer systems. Emphasizes software and hardware as a single system, and case studies of actual system implementations. Usually includes extensive reading in journals, discussion and preparation of reports. Content varies from year to year. Typical topics: information protection, design of physically distributed systems, and performance analysis. See instructor for topic to be offered. Limited enrollment.
J. H. Saltzer

6.847 Dataflow and Reduction Architectures (A)
Prereq.: 6.001, 6.032 or 6.004
G (1)
3-0-9
Dataflow and reduction models as bases for the organization of high performance and distributed computer systems. Suitability of functional languages for programming concurrent applications; data and demand-driven execution models and their relationship to lambda-calculus reduction rules. Streams and managers; dataflow program graphs; the unraveling interpreter. Static and dynamic dataflow architectures; sequential and parallel reduction machines. Parallel machines for logic programming.
Arvind, J. B. Dennis
Electrical Engineering and Computer Science

6.851J Algorithms (A)
(Same subject as 18.437J)
Prereq.: 18.06, 18.063, 6.046 or 18.424 or 18.411
G (2) 3-0-9
R. L. Rivest, R. Kannan

6.852 Distributed Algorithms (A) (New)
Prereq.: —
G (1) Not to be offered 1985-86 3-0-9
Design and analysis of concurrent algorithms, emphasizing those suitable for use in distributed networks. Process synchronization, allocation of computational resources, distributed consensus, distributed graph algorithms, election of a leader in a network, distributed selection, distributed termination, deadlock detection, concurrency control, communication, clock synchronization. Special consideration given to issues of efficiency and fault tolerance. Formal models for distributed computation. Alternate years.
N. A. Lynch

6.853 Computer Systems (A) (New)
Prereq.: 6.033
G (1) Next offered 1985-86 3-0-9
Study and discussion of the literature of computer systems. Computer architecture, networks, operating systems, programming language/system interface, network protocols, file systems, replication, protection, transactions, database systems, computer graphics, user interfaces, application systems. Alternate years.
D. K. Gifford

6.856 Algebraic Manipulation (A)
Prereq.: 6.821, 18.063
G (2) Not to be offered 1985-86 3-0-9
J. Moses, R. E. Zippel

6.863 Natural Language and the Computer Representation of Knowledge (A)
Prereq.: 6.034
G (2) 3-0-9
Relationship between computer representation of knowledge and the structure of natural language. Emphasizes development of the analytical skills necessary to judge the computational implications of grammatical formalisms, and uses concrete examples to illustrate particular computational issues. Efficient parsing algorithms for context-free grammars; augmented transition network grammars. Models for the semantics of English relevant to symbolic computation; question answering systems; computer acquisition of syntactic knowledge.
R. C. Berwick

6.866 Machine Vision (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
Intensive introduction to the process of generating a symbolic description of the environment from an image. Students expected to attend the 6.801 lectures as well as occasional seminar meetings on special topics. Material presented in 6.801 is supplemented by reading from the literature. Students required to prepare a paper analyzing research in a selected area.
B. K. P. Horn

6.867 Robot Manipulation (A)
Prereq.: Permission of Instructor
G (2) 3-0-9
Intensive introduction to the planning and control of robot motion. Students expected to attend the 6.802 lectures as well as occasional seminar meetings on special topics. Material presented in 6.802 is supplemented by reading from the literature. Students required to prepare a paper analyzing research in a selected area.
T. Lozano-Perez

6.868 Topics in Artificial Intelligence (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
Seminar on selected, currently active research topics in artificial intelligence. One or two topics covered in depth each term. Intended primarily for advanced students in artificial intelligence but open to students with backgrounds in areas related to the topics discussed.
M. L. Minsky

6.871 Knowledge-Based Applications Systems (A)
Prereq.: 6.035, 6.034 or 6.824
G (2) Not to be offered 1985-86 3-0-9
Development of programs containing a significant amount of knowledge about their application domain. Topics: 1) theories of human problem solving, 2) identification, representation, and dissemination of expert knowledge, and 3) technological problems arising from attempts to mechanize expertise (including program architecture, human-machine natural language dialogue, and automatic programming). Case studies in applied mathematics, management, medicine, and software, plus term project building an expert system. Alternate years.
P. Szolovits

6.875 Cryptography and Cryptanalysis (A) (Revised Content)
Prereq.: 6.045J, 18.063, 18.05
G (2) 3-0-9
Public-key cryptosystems. Cryptographic protocols. Reduction techniques for proving the relative complexity of cryptographic problems. Algorithmic definitions of randomness and pseudorandom number generation. Relationship of cryptography to complexity theory and information theory.
S. Micali

6.880J Perspectives on Computers and Society (A)
(Same subject as STS 1333J)
Prereq.: Permission of Instructor
G (1, 2) 3-0-9
Seminar on the interface between computers and society. Topics are: the influence of ideas derived from computers and computation on the individual's reconstruction of reality; modern society's dependence on computers; what the general public believes about computers and what computer scientists' role in creating beliefs about computers is and ought to be; questions of responsibility raised by large, possibly incomprehensible computer-based systems; ethical issues confronting computer scientists and engineers.
J. Weizenbaum

6.891-6.899 Special Topics in the Computer Sciences (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
Arr.
A seminar-type discussion of special topics in the computer sciences. Opportunity for graduate students and instructors to investigate a topic of common interest. Topic and staff announced each term.
F. J. Corbató
Special Subjects

6.901 Inventions and Patents
Prereq.: 14.02
U (1)
3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
R. H. Rines

6.910 Special Studies in Electrical Engineering and Computer Science
Prereq.: —
U (1, 2, S)
Arr.
Opportunity for individual study at the undergraduate level related to electrical engineering and computer science not covered by other subjects offered by the Department. Student is responsible for initiation of arrangements and filing of proposal. Permission of instructor required.
L. A. Gould

6.911-6.919 Special Subjects in Electrical Engineering and Computer Science
Prereq.: —
U (1, 2)
Arr.
Opportunity for group study of undergraduate subjects related to electrical engineering and computer science not otherwise included in curriculum. Programs subject to approval of professor in charge.
L. A. Gould

6.921 Industrial Practice
Prereq.: —
U (S)
0-12-0
Provides academic credit for the first two Company Assignments of VI-A students at companies affiliated with the Department's VI-A Program. Students register for this subject twice. The grade of "J" is given following completion of the first Assignment. Students must complete the second Assignment in order to receive the full academic credit of 12 units for this subject. Enrollment limited to students participating in the VI-A Program.
J. A. Tucker

6.922 Advanced Industrial Practice
Prereq.: 6.921
U (2, S)
0-12-0
Provides academic credit for the third Company Assignment of VI-A students at companies affiliated with the Department's VI-A Program. Enrollment limited to students participating in the VI-A Program.
J. A. Tucker

6.925 Engineering Internship
Prereq.: —
U (1, 2, S)
0-6-0
Provides academic credit for the first two Work Assignments of Electrical Engineering and Computer Science students participating in the Engineering Internship Program. Students register for the subject twice. The grade of "J" is given following completion of the first Work Assignment. Students must complete the second Work Assignment in order to receive the full academic credit of 12 units for this subject. Enrollment limited to Course VI students participating in the Engineering Internship Program.
J. K. Roberge

6.929 Undergraduate Thesis Presentation
Prereq.: —
U (1, 2, S)
3-0-9
Registration for written and oral presentation of the undergraduate thesis when the thesis work is an extension of a project laboratory or is carried out as part of a VI-A Assignment.
D. Adler

6.930 Management in Engineering
Prereq.: —
U (1)
3-0-9
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
D. P. Hoult, H. S. Marcus

6.931 Development of Inventions and Creative Ideas (A)
Prereq.: 14.002
G (2)
3-0-6
Role of the engineer as patent expert and as technical witness in court and patent interference and related proceedings. Rights and obligations of engineers in connection with educational institutions, government, and large and small businesses. Various manners of transplanting inventions into business operations, including development of New England electronics industry and its different types of institutions. American systems of incentive to creativity apart from the patent laws in the atomic energy and space fields. For graduate students only; others see 6.901.
R. H. Rines

6.932 Technology of Nuclear Weapons and Arms Control
Prereq.: —
G (1)
4-0-8
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
G. W. Rathjens, J. P. Ruina

6.933J Telecommunications Technology and Policy (A)
(Same subject as 17.740J)
Prereq.: —
G (1)
3-0-9
See description under subject 17.740J.
M. A. Sirbu

6.934 Defense and Arms Control Issues (New)
Prereq.: —
U (2)
3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
R. Lester, G. W. Rathjens, J. P. Ruina

6.936 Entrepreneurship
Prereq.: 18.02
G (2)
4-0-5
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
A. W. Drake, A. R. Odoni

6.938 Engineering Risk-Benefit Analysis (A)
(Same subject as 1.485J, 3.562J, 13.682J, 22.87J)
Prereq.: —
G (2)
3-0-6
See description under subject 1.485J.
T. H. Lee

6.941J Current Issues in Engineering Management
(Same subject as 1.485J, 3.562J, 13.682J, 22.87J)
Prereq.: —
G (2)
3-0-6
See description under subject 1.485J.
T. H. Lee

6.942J Cases and Projects in Engineering Management (A)
(Same subject as 1.486J, 3.563J, 13.683J, 22.88J)
Prereq.: 6.941J
G (1)
3-1-5
See description under subject 1.486J.
T. H. Lee

6.951 Graduate Industrial Practice
Prereq.: 6.922
G (1, S)
0-12-0
Provides academic credit for a Graduate Company Assignment of graduate students at companies affiliated with the Department's VI-A Program. Enrollment limited to graduate students participating in the VI-A Program.
J. A. Tucker
Electrical Engineering and Computer Science

6.952 Graduate Industrial Practice
Prereq.: 6.951
G (1, 2, S)
0-12-0
Provides academic credit for graduate students who require an additional term at the company to complete the Graduate Company Assignment of the Department's VI-A Program. This academic credit is for registration purposes only and cannot be used toward fulfilling the requirements of any degree program. Enrollment limited to graduate students participating in the VI-A Program.
J. A. Tucker

6.955 Advanced Engineering Internship
Prereq.: 6.925
G (1, 2, S)
0-6-0
Provides academic credit for the third Work Assignment of Electrical Engineering and Computer Science graduate students participating in the Engineering Internship Program. Students register for the subject twice. The grade of "J" is given following completion of the first term of the Work Assignment. Students must complete the second term of the Work Assignment in order to receive the full academic credit of 12 units for this subject. Enrollment limited to Course VI graduate students participating in the Engineering Internship Program.
J. K. Robarge

6.961 Introduction to Research in Electrical Engineering and Computer Science
Prereq.: —
G (1, 2)
Arr.
Opportunity to become involved in graduate research, under guidance of a staff member, on a problem of mutual interest to student and supervisor. Recommended for all entering full-time graduate students in the Department of Electrical Engineering and Computer Science. Individual programs subject to approval of professor in charge. Enrollment restricted to regular graduate students in Electrical Engineering and Computer Science.
D. J. Epstein

6.962-6.969 Special Studies in Electrical Engineering and Computer Science
Prereq.: —
G (1, 2)
Arr.
Opportunity for study of graduate level topics related to electrical engineering and computer science but not included elsewhere in the curriculum. Registration under this subject normally used for situations involving individual study, under supervision of a faculty member, of topics of mutual interest to student and supervisor, but may, when appropriate, be used for small study groups. Normal registration is for 12 units. Registration subject to approval of professor in charge.
D. J. Epstein

6.971-6.979 Special Subjects in Electrical Engineering and Computer Science (A)
Prereq.: —
G (1, 2)
Arr.
Opportunity for group study of advanced subjects related to electrical engineering and computer science not otherwise included in curriculum. Programs subject to approval of professor in charge.
D. J. Epstein

6.980 Teaching Electrical Engineering and Computer Science
Prereq.: —
G (1, 2)
Arr.
For qualified students interested in gaining teaching experience. Classroom, tutorial, or laboratory teaching under the supervision of a faculty member. Enrollment limited by availability of suitable teaching assignments. Students selected by interview.
F. C. Hennie

6.981-6.989 Teaching Electrical Engineering and Computer Science
Prereq.: —
G (1, 2)
Arr.
For Teaching Assistants in Electrical Engineering and Computer Science in cases where teaching assignment is approved for academic credit by the Department.
F. C. Hennie

6.991-6.999 Research in Electrical Engineering and Computer Science
Prereq.: —
G (1, 2, S)
Arr.
For Research Assistants in Electrical Engineering and Computer Science in cases where the assigned research is approved for academic credit by the Department. Hours arranged with research supervisor.
A. C. Smith

6.UR Undergraduate Research in Electrical Engineering and Computer Science
Prereq.: —
U (1, 2, S)
Arr.
Extended participation in the work of a faculty member or research group, including independent study of the literature, direct involvement in the group's research, and project work under an individual faculty member. Research is arranged by mutual agreement between the student and a member of the faculty of the Department of Electrical Engineering and Computer Science, and may continue over several terms. An initial letter of intent and a summary report must be submitted to 6.UR coordinator. Grading P/F only.
R. D. Thornton

6.ThU Undergraduate Thesis
Prereq.: —
U (1, 2, S)
Arr.
Program of undergraduate research leading to the writing of an S.B. thesis; to be arranged by the student and an appropriate MIT faculty member.
A. C. Smith

6.ThG Graduate Thesis (A)
Prereq.: —
G (1, 2, S)
Arr.
Program of graduate research leading to the writing of an S.M., E.E., Ph.D. or Sc.D. thesis, to be arranged by the student and an appropriate MIT faculty member.
A. C. Smith
7.01 General Biology (Revised Content)

Prereq.: —
U (2) SD
4-0-8

Description of a variety of animals and plants (including parasites), organ systems, cell types, subcellular organelles, and macromolecular assemblies; metabolism of animals and plants; membranes, nucleic acid, and protein structure; an introduction to Mendelian and prokaryotic genetics; evolutionary ideas: the relationship of cell and organ structure to function; development of vertebrate, insect, and plant embryos; immunity in animals; neurobiology of simple systems.

V. M. Ingram

7.011 Introduction to Experimental Biology

Prereq.: 7.01 or 7.05
U (1, 2) LAB
2-8-4

Application of experimental techniques in biochemistry, microbiology, and cell biology. Emphasizes integrating factual knowledge with understanding of the design of experiments and data analysis to prepare the students for research projects.

J. M. Buchanan, A. Torrani-Gorini, D. Raulet, P. W. Robbins

7.03 Genetics

Prereq.: —
U (1)
4-0-8

H. R. Horvitz, E. R. Signer

7.031 Experimental Microbial Genetics

Prereq.: 7.011
U (2) Next offered 1985-86
2-16-6

Laboratory project in microbiology and genetics. Enrollment limited.

G. C. Walker

7.04 Cell and Developmental Biology

Prereq.: 7.03, 7.05
U (2)
4-0-8

R. O. Hynes, M. L. Pardue

7.05 General Biochemistry

Prereq.: 5.12
U (1) SD
5-0-7

Contributions of biochemistry toward an understanding of the structure and functioning of organisms, tissues, and cells. Chemistry and functions of constituents of cells and tissues and the chemical and physical-chemical basis for the structures of nucleic acids, proteins, and carbohydrates. General metabolism of carbohydrates, fats, and nitrogen-containing materials such as amino acids, proteins, and related compounds.

G. M. Brown, F. Solomon

7.06 Metazoan Cell Biology

Prereq.: 7.01 or 7.05
U (2)
3-0-9

Molecular and structural biology of cells and higher organisms. Macromolecular biochemistry including RNA synthesis and processing and protein synthesis. Structure, function, and formation of subcellular components and organelles. Structural networks in cells and their relation to tissue. Emphasizes biochemistry and electron microscopic anatomy.

S. Penman

7.08 Cell and Molecular Biology (New)

Prereq.: 7.03, 7.05
U (2)
4-0-8

H. F. Lodish, B. J. Meyer

7.11 Biology Teaching

Prereq.: —
U (1, 2)
Arr.

For qualified undergraduate students interested in gaining some experience in teaching. Laboratory, tutorial, or classroom teaching under the supervision of a faculty member. Students selected by interview. Consult Department headquarters.

7.15 Experimental Molecular Biology: Biotechnology I

Prereq.: 7.011, 7.03, 7.05
U (1)
2-16-6

Laboratory project applying recombinant DNA and other modern genetic techniques to problems in prokaryotic genetics. Cloning of genes from a variety of prokaryotic and lower eukaryotic organisms, and characterization of the cloned genes for structure and function. Consult Department headquarters.

7.16 Experimental Molecular Biology: Biotechnology II

Prereq.: 7.011, 7.03, 7.05
U (2)
2-16-6

Laboratory methodology and theoretical basis for cloning and manipulation of genes in eukaryotic organisms. Mammalian cell culture, biological assays with mammalian cells, isolation of hybridomas that secrete monoclonal antibodies, and cloning and expression of genes in eukaryotic organisms.

R. C. Mulligan, D. Housman
7.21 Microbial Physiology
Prereq.: 7.05
U (1)
4-0-8
Biochemical properties of bacteria and other microorganisms that enable them to grow under a variety of conditions. Interaction between bacteria and bacteriophages. Genetic and metabolic regulation of enzyme action and enzyme formation.
B. Magasanik, S. E. Luria

7.24 Topics in Bacteriology (A)
Prereq.: 7.21
G (1)
2-0-6
Recent developments in bacteriology: regulatory mechanisms and membrane phenomena. Permission of instructor required. Consult Department headquarters.

7.25 Topics in Bacterial Viruses
Prereq.: 7.21, 7.27
G (2)
2-0-6
Biological and molecular properties of bacteriophages as model systems for the study of viruses and as prototypes of noncellular organisms are presented and discussed on the basis of specific examples from current literature. Consult Department headquarters.

7.26 Animal Virology
Prereq.: 7.21
G (1)
3-0-9
General survey of animal virology including studies of their genome organization, virion structure, genetics; virus interaction with the infected cell and the immune system. The virus is viewed as a model system of the macromolecular metabolism of the cell. The pathogenesis of medically important virus diseases is discussed.
D. Baltimore, P. A. Sharp, N. H. Hopkins

7.27 Regulation of Gene Expression (A)
Prereq.: 7.03, 7.05
G (2)
4-0-6
Studies molecular mechanisms responsible for the regulation of gene expression in bacteria, bacterial viruses, and eukaryotic microorganisms.
B. Magasanik, L. P. Guarente

7.28 Nucleic Acid Biochemistry: Replication and Repair of DNA and the Biosynthesis of RNA and Proteins (A)
Prereq.: 7.03, 7.05
G (1)
3-0-9
Genome structure and function, emphasizing regulation of chromosome metabolism and protein synthesis in both prokaryotes and eukaryotes. Each topic is covered by in-depth discussion of specific recent developments in the field.
A. J. Varshavsky

7.30 Method and Logic in Molecular Biology (A)
Prereq.: Permission of Instructor
G (1)
4-0-6
Logic and experimental design: an in-depth discussion and assessment of biochemical, physical, and genetic methods employed in testing hypotheses. Limited to Course VII graduate students.
D. Botstein, F. Solomon

7.32 Analysis of Differentiation and Development
Prereq.: 7.05 or 7.33
G (2)
2-0-4
Graduate discussion seminar examining in depth fundamental aspects of development and differentiation. In addition, particular attention paid to the critical appraisal of current published research in important areas of the field. Consult Department headquarters.

7.33 Genetics for Graduate Students (A)
Prereq.: Permission of Instructor
G (1)
4-0-8
Principles of genetics, including Mendelian systems and prokaryotic genetics. Application of principles to biological function, including regulation and development. Mechanisms of recombination, mutation, and evolution. Discussion of original scientific papers and review of problem sets and exams supplement lectures.
D. Botstein, R. F. Fink

7.36 Advanced Neurophysiology (A)
Prereq.: 7.06
G (1)
3-0-6
A series of lectures, with student participation, on some aspects of the nervous system. Foundation for work on the structure and function of the nervous system.
J. Y. Latruffe

7.411-7.419 Seminars in Biological Oceanography (A)
Prereq.: —
G (1, 2)
Arr.
Selected topics in biological oceanography. Permission of instructor required.
(Woods Hole Staff)

7.421 Special Problems in Biological Oceanography (A)
Prereq.: —
G (1, 2)
Arr.
Advanced problems in biological oceanography with assigned reading and consultation.
(Woods Hole Staff)

7.43 Phytoplankton Ecology (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Overview of major algal classes, physiological processes, and large scale systems as they relate to phytoplankton in the marine environment. Attention to interactions of environmental parameters (light, temperature, nutrients, trace metals, physical factors) on the growth and distribution of phytoplankton. Discusses multidisciplinary programs and modeling. Emphasizes current problems in the field through lectures, readings, and discussions. Students evaluate selected papers and present a seminar.
(Woods Hole Staff): D. M. Anderson, P. Gilbert

7.44 Ecology of Oceanic Zooplankton
Prereq.: 7.43
G (1) Next offered 1985-86
3-0-6
Provides a general context for understanding current problem areas in oceanic zooplankton ecology. Major topics for lectures and demonstrations include zoogeography, behavioral and morphological adaptation to pelagic existence, secondary production and zooplankton energetics, and field and laboratory problems involved in their study. Opportunity for student participation in preparing material and in structuring portions of the course.
(Woods Hole Staff)

7.45 Benthic Ecology (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Aspects of the ecology of marine benthos. Includes communities, with consideration of sampling, life histories, population dynamics, biotic interrelationships, zoogeography, diversity, and evolution. Emphasizes recent literature including some historical perspective. Environments considered are shallow and deep soft bottoms, sandy beaches, rocky shores, coral reefs, estuaries, and salt marshes.
(Woods Hole Staff): J. F. Grassle

7.46 Topics in Physiology and Biochemistry of Marine Animals (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-6
Features aspects of the metabolism, biochemistry, and physiology of marine animals. Particular emphasis on perception, response and adaptation to, changing and varied conditions of the physical and chemical environment in the sea. Respiration and anaerobic metabolism, food and nutrition, osmoregulation, thermal and pressure adaptation, chemoreception and foreign compound metabolism, and other topics considered. Special topics include light in the sea, locomotion and diving, cycles and migration.
(Woods Hole Staff): J. J. Stegeman, J. M. Capuzzo
Directed research in biological oceanography not leading to graduate thesis and generally oriented to the physiology and cytology of marine microorganisms, plankton, influence of organisms on the composition of seawater, systematics, physiology and ecology of pelagic larvae, zooplankton, bentho, and mesopelagic fishes, physiology and migration of large fishes, diving physiology and use of sound by marine mammals.

(Woods Hole Staff)

7.51J General Physiology
(Same subject as 6.524J)
Prereq.: —
U (2) SD
G (1, 2)
3-0-9
Form-function relations. How local actions determine global geometry in development. Strategies of growth. Special problems in respiration, circulation, excretion, and animal movement illustrating how function and form direct each other. Structure and action of muscle. Physiology of perception. How the senses of predators affect the evolution of their prey. Mimicry and protective coloration of prey as guides to the nature of vision in predator. Tactile of color vision and form vision. Introduction to the physiology of nerve membrane and to the action of nervous tissue.

J. Y. Lettin

7.53 Laboratory in Biological Electron Microscopy
Prereq.: Permission of Instructor
G (2)
2-2-5
Introduces the use of visualization techniques for studying biological problems. Operation of the transmission and scanning electron microscopes. Biological sample preparation including negative staining, shadowing, Kneissl Schmidt techniques for nucleic acids, embedding and sectioning, autoradiography, and specific antibody staining. Interpretation of ultrastructure from micrographs. Limited to 16 students.

J. A. King, E. R. Hartwig

7.54J Human Physiology
(Same subject as 20.022J)
Prereq.: 7.05
U (1)
3-0-9
Comprehensive course in human physiology emphasizing the molecular basis and applied aspects of organ function and regulation in health and disease. Material covered includes a review of cell structure and function as well as the mechanisms by which the endocrine and nervous systems integrate cellular metabolism. Special emphasis on examining the cardiovascular, pulmonary, gastrointestinal, and renal systems.

M. F. Hollick, M. Krieger, R. D. Rosenberg

7.60 Cell Biology (A)
Prereq.: 7.06
G (1)
4-0-8
Advanced subject covering the structure and function of eukaryotic cells, emphasizing the major experimental techniques and approaches on which this knowledge is based. Readings from literature and outside speakers used extensively. Topics: sub-cellular structure, biochemistry, genetics, biology, and differentiation. 7.06 or graduate standing required.

H. F. Lodish, R. A. Weinberg

7.62 Tumor Biology (A)
Prereq.: 7.05
G (2)
3-0-9
Broadly concerned with the natural history and causal mechanisms of cancer in humans and animals. Subjects include: differences between normal and tumor cells, gene deviation and its chemical carcinogenesis in culture and in animals, activation of chemical carcinogenic, chromosomal and genetic influences, monoclonal cell hybrids, host-tumor interactions, tumor immunology, reversibility of malignant phenotype, causes and treatment of human cancer. Lectures and student papers.

D. Baltimore, H. N. Eisen

7.63 Immunogenetics and Cellular Immunology
Prereq.: 7.73
G (2)
4-0-8
Discusses mammalian immune system emphasizing cellular interactions and genes which control immune responsiveness. Topics include lymphoid anatomy and lymphocyte regulation, lymphocyte ontogeny, helper T cells, suppressor T cells, cell interactions in antibody synthesis, role of the major histocompatibility complex in cellular interactions, genetics and serology of the major histocompatibility complex, genetics of immunoglobulin H and L chains, control of idiotype expression. Lectures and discussions of current papers.

T. Imami-Kari, S. Tonegawa

7.64 Cell Matrix Biology
Prereq.: 7.05
G (2)
2-0-4
The structuring and ordered maintenance of extracellular space by cells in tissues and organs. How and what cells contribute to matrices, how matrices direct biosynthetic and replicative activities of constituent cells, and how matrices serve as substrates for constituent cells and for cells which live on their surfaces. The structure, biosynthesis, and processing and assembly of collagen. The diversity of collagen genes, integrated matrix structure, and matrix modeling and remodeling in development, wound healing, and regeneration.

E. Bell

7.71J Biophysical Chemistry
(Revised Unit)
(Same subject as 5.64J)
Prereq.: 5.60, 7.05
U (1)
3-0-9

P. R. Schimmel, R. T. Sauer, G. A. Petsko

7.73 General Immunology
Prereq.: 7.05
G (1)
4-0-8
Lectures on basic concepts in immunology (10 weeks) followed by discussions of papers prepared by students on material of current research interest (4 weeks). Topics include: antigens and immunogenicity, structure and heterogeneity of immunoglobulins, antigen-antibody reactions, biological activities of immunoglobulins, cells and tissues of the immune system, antibody formation, cellular immunity, complement, ontogeny, and phylogeny of the immune response, tolerance, immune surveillance, theories of the origins of antibody diversity.

L. A. Steiner, H. N. Eisen, M. L. Gefter

7.75J Advanced Biochemistry (A)
(Same subject as 5.50J)
Prereq.: 7.05
G (2)
4-0-8
Major metabolic pathways for the synthesis of amino acids, coenzymes, lipids and steroids emphasizing enzyme mechanisms, regulation, and coenzyme-catalyzed reactions. Oxidative phosphorylation and photosynthesis.

G. M. Brown, C. T. Walsh

7.77 Structure and Function of Proteins and Nucleic Acids (A)
(Revised Unit)
Prereq.: Permission of Instructor
G (1)
4-0-8
Studies of proteins, nucleic acids, their interactions, and their assembly into large complexes. Biochemical and physical principles underlying enzyme mechanism and macromolecular structure and function. The use of chemical, enzymatic, genetic, and physical methods in the analysis of tertiary and quaternary interactions. Symmetry, design, and assembly principles used by viruses, chromosomes, and cytoskeletal arrays.

U. L. Alba, A. T. Sauer, P. R. Schimmel
7.78 Seminar in Lipid and Carbohydrate Biochemistry (A)

Prereq.: 7.05
G (2)
2-0-4
Discusses recent research in the area of complex lipids and carbohydrates. Lipid topics include phospholipids, prostaglandins, and steroids. In the carbohydrate area emphasizes membrane and cell surface components of bacteria, yeast, and animal cells. Format includes lectures, discussions of recent literature, and student reports.
P. W. Robbins

7.86 Molecular Genetics (A)

Prereq.: 7.05, 7.27
G (2)
3-0-9
Examines in depth selected topics by study and discussion of the literature in seminar format. Special emphasis on experimental details supporting current ideas about replication of nucleic acids, genome organization, genetic recombination, and gene function as developed in microbial systems. Subject designed to establish familiarity with literature and patterns of thought in the field and develop ability of critically evaluating papers. Undergraduates who have taken 7.03 and 7.21 admitted with permission of instructor.
M. S. Fox

7.90 Special Problems in Biology for Undergraduates

Prereq.: —
U (1, 2)
Arr.
Program of study or research to be arranged with a department faculty member. Written report required. Permission of Department required. Consult Department headquarters.

7.93 Selected Topics in Biology (A)

Prereq.: —
G (1 or 2)
Arr.
Class work in various fields of biology not covered by the regular subjects of instruction. Consult Department headquarters.

7.941 Research Problems (A)

Prereq.: —
G (1)
Arr.
Directed research in a field of biological science, but not contributory to graduate thesis. Consult Department headquarters.

7.942 Research Problems (A)

Prereq.: —
G (2)
Arr.
Directed research in a field of biological science, but not contributory to graduate thesis. Consult Department headquarters.
General Undergraduate Subjects

8.UR Undergraduate Research

Prereq.: —
U (1, 2)
Arr.

Undergraduate research opportunities in physics. For further information contact the Departmental UROP Coordinator.

C. Alcock

8.01 Physics I

Prereq.: —
U (1, 2)
5-1-6

Introduces classical mechanics Space and time: straight line kinematics; motion in a plane; forces and equilibrium; experimental basis of Newton's laws; particle dynamics; universal gravitation; collisions and conservation laws; work and potential energy; vibrational motion; conservative forces; inertial forces and non-inertial frames; central force motions; rigid bodies and rotational dynamics. Heat and an introduction to kinetic theory.

E. R. Cosman

8.012 Physics I

Prereq.: —
U (1)
5-1-6

Elementary mechanics, presented at greater depth than in 8.01. Newton's laws, concepts of momentum, energy, angular momentum, rigid body motion, non-inertial systems. Uses elementary calculus freely. Concurrent registration in a math subject more advanced than 18.01 is recommended.

J. S. Whitaker

8.013J Physics I

(Same subject as HST 500J)
Prereq.: —
U (1)
5-1-6

Designed for students interested in medicine and the life sciences. Elementary kinematics and vector algebra. Newton's laws of motion. Conditions of static equilibrium; forces acting on the human body. Elasticity and strength of materials. Momentum conservation; application to ballistocardiography and to fracture and concussion during impacts. Work, kinetic and potential energy, and the law of energy conservation; the first law of thermodynamics; applications to metabolism and work done by various organs of the body. Harmonic motion.

T. Tanaka

8.02 Physics II

Prereq.: 8.01 or 8.012 or 8.013J; 18.01
U (1, 2)
5-1-6

Electromagnetism: electrostatics and field concepts; electric currents and magnetic fields; induction laws; field energies; Maxwell's equations; circuit electricity.

Term 1: R. I. Hulinza, Jr.
Term 2: W. H. G. Lewin

8.021 Physics II

Prereq.: 8.01 or 8.012 or 8.013J; 18.01
U (2)
5-1-6

Intended for students who wish a broader view of physics in their second semester, with more emphasis on conceptual understanding and less on mathematical details. Electrostatics, electric currents, magnetic fields, Maxwell's equations and light, elements of the quantum theory, the Bohr atom, introduction to nuclear and particle physics. May be followed by 8.03 without too much difficulty.

R. P. Redwine

8.022 Physics II

Prereq.: 8.012
U (2)
5-1-6

Parallel to 8.02, but at a mathematically more advanced level. Some knowledge of vector calculus assumed. Maxwell's equations, in both differential and integral form. Electrostatic and magnetic vector potential. Properties of dielectrics and magnetic materials.

R. Weiss

8.03 Physics III

Prereq.: 8.02 or 8.021 or 8.022 or 8.023J; 18.02
U (1, 2) SD
5-0-7

Mechanical vibrations and waves; simple harmonic motion, superposition, forced vibrations and resonance, coupled oscillations and normal modes; vibrations of continuous systems; reflection and refraction; phase and group velocity. Optics; wave solutions to Maxwell's equations; polarization; Snell's Law, interference, Huygens' principle, Fraunhofer diffraction, gratings.

Term 2: Consult A. J. Lazarus.

A. H. Barrett

8.04 Quantum Physics I

Prereq.: 8.03 or 6.014, 18.03
U (1, 2) SD
5-0-7

Experimental basis of quantum physics: Photoelectric effect, Compton scattering, photons, Franck-Hertz experiment, the Bohr atom, electron diffraction, deBroglie waves, wave-particle duality of matter and light. Introduction to Wave Mechanics: Schroedinger's equation, wave functions, wave packets, probability amplitudes, stationary states, the Heisenberg uncertainty principle and zero-point energies. Solutions to Schroedinger's equation in one dimension: transmission and reflection at a barrier, barrier penetration, potential wells, the simple harmonic oscillator.

Term 2: Consult A. M. Bernstein

Term 1: C. R. Canizares, S. A. Rappaport

8.06 Mechanics II

Prereq.: 8.03
U (2)
4-0-8

F. M. H. Villars
8.07 Electromagnetism II
Prereq.: 8.03, 18.03
U (1) 4-0-8
J. W. Becher

8.08 Statistical and Quantum Physics
Prereq.: 8.05
U (2) 4-0-8
G. Benedek

Undergraduate Laboratory and Special Project Subjects

Undergraduate Elective Subjects

8.11 Physics Project Laboratory I
Prereq.: —
U (1) LAB 1-6-5
8.12 Physics Project Laboratory II
Prereq.: —
U (2) LAB 1-6-5
A project laboratory in which students develop experiments of their own selection, by themselves, with faculty guidance. Instruments and associated facilities available to construct and run experiments in many areas of physics: atomic electron and ion physics; mechanics; optics and spectroscopy; acoustics; physical and circuit electronics; and some areas of nuclear and cosmic ray physics. Machine shop facilities available. Not usable as a restricted elective for physics majors.
H. W. Kendall

8.13 Experimental Atomic Physics I
Prereq.: 8.04 or 8.211
U (1) 0-6-9
8.14 Experimental Atomic Physics II
Prereq.: 8.04 or 8.211, 8.05
U (2) 0-6-9
About 6 fundamental laboratory experiments carried out each term, covering most aspects of modern physics relating to names such as Rutherford, Franck-Hertz, Hall, Ramsauer, Doppler, Fraunhofer, Faraday, Mossbauer, Compton, Stern-Gerlach. Stresses basic experimental techniques and data analyses, and written and oral presentation of experimental results. Second term requires knowledge of quantum mechanics at the 8.05 level.
R. K. Yamamoto

8.18 Special Problems in Undergraduate Physics
Prereq.: —
U (1, 2) Arr.
Opportunity for undergraduates to engage in experimental or theoretical research under the supervision of a staff member. Specific approval required in each case.
A. J. Lazarus

8.19 Readings in Physics
Prereq.: —
U (1, 2) Arr.
Supervised reading and library work. Choice of material and allotment of time according to individual needs. For students finding it desirable to do work not provided for in the regular subjects. Specific approval required in each case.
A. J. Lazarus

8.20 Introduction to Special Relativity
Prereq.: 8.01, 18.01
U (2) SD 2-0-7
E. F. Taylor

8.206J Public Controversies on the Control of Technology
(Same subject as STS 413J)
Prereq.: —
U (2) Next offered 1985-86 2-0-7
See description under subject STS 413J.
B. T. Feld, C. Weiner

8.211 Introduction to Quantum Physics
Prereq.: 18.03, 8.02
U (1) SD 5-0-7
D. Adler

8.231J Physics of Solids I
(Same subject as 6.731J)
Prereq.: 6.018, 8.211 or 8.05
U (1) 4-0-8
First term of a sequence presenting basic concepts of the quantum theory of solids. Emphasizes simple physical models. Topics: periodic structure and symmetry of crystals; diffraction; reciprocal lattice; chemical bonding; lattice dynamics, phonons, thermal properties; free electron gas; nearly free electron approximation; tight binding approximation; semiconductors: electrons, holes, impurities; materials with s, p, d, and t electrons. The second half of this sequence, 8.501J, is listed among the graduate subjects.
M. Kastner
Physics

8.236 Topics in Quantum Theory of Matter
Prereq.: 8.05
U (2) Next offered 1985-86
3-0-9
M. W. P. Strandberg

8.242 Quantum Electronics
Prereq.: 8.05 or 8.211
U (2)
4-0-8
M. S. Feld

8.243 Modern Optics
Prereq.: 8.03
U (1) SD Next offered 1985-86
3-0-9
R. L. Aggarwal

8.251 Physics of Noise and Fluctuations
Prereq.: 8.04
U (1) Not to be offered 1985-86
Next offered 1985-86 3-0-9
T. J. Graytak

8.253 Physics of Fluids
Prereq.: 8.03
U (1) SD Not to be offered 1985-86
Next offered 1985-86 3-0-9
Introduction to the physics of fluids. Emphasis on phenomena rather than mathematics. Topics: physical properties of liquids, gases, plasmas, dynamics, waves, and turbulence.
K. L. Ingard

8.272 Introduction to Nuclear Physics
Prereq.: 8.05 or 8.211
U (2) Next offered 1985-86
4-0-8
Properties of atomic nuclei, from the deuteron to the superheavy. Strong, electromagnetic, and weak interactions. Radioactive decay, scattering and reaction processes, interactions of photons and mesons with nuclei. Theoretical models of nuclear structure. Discusses modern experimental techniques and research in progress at MIT.
A. M. Bernstein

8.274 Introduction to Particle Physics
Prereq.: 8.05
U (2)
4-0-8
B. T. Feld

8.282 Introduction to Astrophysics and Astronomy
Prereq.: 18.01
U (2) SD
3-0-9
Quantitative introduction to physics of the Galaxy and the universe as determined from a variety of astronomical observations and from cosmic ray and neutrino experiments. Topics: the sun and “normal” stars, supernovae, pulsars, globular clusters, compact objects (white dwarfs, neutron stars, black holes), optical and X-ray stellar binary systems, interstellar medium and star formation, galaxies, quasars, and cosmology. Prior knowledge of astronomy not necessary. Not usable as a restricted elective by physics majors.
J. W. Dreher

8.284 Modern Astrophysics
Prereq.: 8.05
U (2)
3-0-9
Applications of physics to fundamental processes which occur in celestial objects and in the interstellar medium, e.g., synchrotron radiation, thermal bremsstrahlung, inverse Compton effect. Applications to the Galaxy, main sequence stars, neutron stars, radio galaxies, supernovae, pulsars, the “big bang” universe. Observational data discussed.
C. R. Canizares

8.287J Observational Techniques of Optical Astronomy
(Same subject as 12.117J)
Prereq.: One subject in Astronomy or Astrophysics
U (1) LAB
3-4-5
Fundamental physical and optical principles used for astronomical measurements at visible wavelengths and practical methods of astronomical observations. Topics: astronomical coordinates, time, geometrical optics, telescopes, photomultipliers and other detectors, photon counting, signal-to-noise ratios, limitations imposed by the earth's atmosphere on optical observations, photography, photometry, spectroscopy and time variability. Project at Wallace Astrophysical Observatory.
J. L. Elliot, L. M. French

8.291J Planetary Science I
(Same subject as 12.131J)
Prereq.: 8.03
U (1) SD
3-0-9
See description under subject 12.131J.
G. H. Pettengill, C. C. Counselman

8.292J Planetary Science II
(Same subject as 12.132J)
Prereq.: 12.131J or 8.291J
U (2) SD
3-0-9
See description under subject 12.132J.
D. C. Jewitt, G. H. Pettengill

8.293J Dynamical Astronomy
(Same subject as 12.115J)
Prereq.: 18.03
U (2) SD
3-0-9
Kepler's laws and the law of gravitation. One- and two-body motion: orbits in space and time. General and special cases of the n-body problem. Disturbed motion of two bodies; variation of orbital elements; planetary and satellite theory; periodic and secular effects; orbital resonance. Astronomical coordinate systems and time. Numerical integration of orbits. Maximum-likelihood estimation of orbital initial conditions and astronomical constants. Emphasizes throughout applications to actual problems, both historical and current, rather than on mathematical theory per se.
C. C. Counselman
Physics

8.299 Physics Teaching
Prereq.: —
U (1, 2)
Arr.
For qualified undergraduate students interested in gaining some experience in teaching. Laboratory, tutorial, or classroom teaching under the supervision of a faculty member. Students selected by interview.
A. J. Lazarus

8.ThU Undergraduate Physics Thesis
Prereq.: —
U (1, 2, 3)
Arr.
Program of undergraduate research leading to the writing of an S.B. thesis; to be arranged by the student under approved supervision.
R. Weiss

Graduate Subjects

An asterisk (*) denotes subjects not routinely offered but that can be given when sufficient interest is indicated.

General and Mathematical Physics

8.312 Electromagnetic Theory (A)
Prereq.: 8.07
G (2)
4-0-8
J. Goldstone

8.321 Quantum Theory I (A)
Prereq.: 8.07
G (1)
4-0-8
K. A. Johnson

8.322 Quantum Theory II (A)
Prereq.: 8.321
G (2)
4-0-8
E. H. Farhi

8.323 Relativistic Quantum Field Theory I (A)
Prereq.: 8.322
G (1)
3-0-9

8.324 Relativistic Quantum Field Theory II (A)
Prereq.: 8.323
G (2)
3-0-9

8.333 Statistical Mechanics I (A)
Prereq.: 8.321
G (1)
4-0-8

8.334 Statistical Mechanics II (A)
Prereq.: 8.333
G (2)
4-0-8

8.361 Quantum Theory of Many-Particle Systems (A)
Prereq.: 8.322, 8.333
G (2) Next offered 1985-86
3-0-9

Introduces general many-body theory applicable to low temperature, nuclear, and solid-state physics. Reviews occupation number representation and classical Mayer expansion. Perturbation theory; diagrammatic expansions and linked cluster theorem for zero or finite temperature systems of fermions or bosons. Green's functions: analytic properties, equations of motion, relation to observables, approximations, linear response theory, random phase approximation. Superconductivity: electron-phonon interaction, instability of normal state, BCS ground state, perturbation theory.
J. W. Negele
Physics

8.582 Correlations and Critical Behavior in Condensed Matter (A)
Prereq.: 8.511J, 8.333
G (2) Next offered 1985-86
3-0-9
Views condensed matter physics through space- and time-dependent correlation functions measured by scattering spectroscopy. Treats in detail experimental techniques of x-ray, light, electron, and neutron scattering. Theoretical development is strongly phenomenological to elucidate physical behavior with minimal mathematical complexity. Uses conservation laws, broken symmetry, and the fluctuation-dissipation theorem to illustrate the interconnection between apparently diverse systems with special attention to behavior near phase transitions.
R. J. Birgeneau

8.613J Introduction to Plasma Physics I (A)
(Same subject as 6.651J, 22.611J)
Prereq.: 6.014 or 8.07; 6.018 or 8.08; 18.04 or 18.075
G (1)
3-0-9
Introduces plasma phenomena relevant to energy generation by controlled thermonuclear fusion and to astrophysics. Coulomb collisions and transport processes. Motion of charged particles in magnetic fields; plasma confinement schemes. MHD models; simple equilibrium and stability analysis. Two-fluid hydrodynamic plasma models; wave propulsion in a magnetic field. Introduces kinetic theory; Vlasov plasma model; electron plasma waves and Landau damping; ion-acoustic waves; streaming instabilities.
A. Bers, K. Molvig, M. Porkolab

8.614J Introduction to Plasma Physics II (A)
(Same subject as 6.652J, 22.612J)
Prereq.: 8.651J or 8.613J or 22.611J, 18.075
G (2)
3-0-9
See description under subject 22.612J.
R. C. Davidson, A. Bers, K. Molvig, J. P. Freidberg

8.621J Plasma Kinetic Theory (A)
(Same subject as 22.64J)
Prereq.: 8.613J
G (1)
3-0-9
Content varying from year to year. Typical subjects: the linearized Vlasov equation, Fokker-Planck and diffusion approximations for the average distribution function, autocorrelation functions, resonant and nonresonant diffusion, free energy, energy and momentum conservation, resonant wave coupling, nonlinear Landau damping, strong turbulence theories. Selected applications to enhanced diffusion, stochastic acceleration, turbulent resistivity, shock waves, radio emission.
T. H. Dupree

8.622J Advanced Topics in Plasma Kinetic Theory (A)
(Same subject as 22.65J)
Prereq.: 8.621J or 22.64J
G (2)
3-0-9
Varying content, including topics of current interest. Typical subjects: theories of collective phenomena such as linear instability and nonlinear saturation mechanisms in plasma, particularly in regimes described by the Vlasov-Maxwell equations. Effects of wave-particle resonance; trapping and scattering of particles by waves. Linear theory of instabilities in inhomogeneous plasmas. Reflection and eigen-mode problems in bounded systems. Diffusion phenomena and anomalous resistivity associated with wave-particle interaction. Discussion of experiments.
T. H. Dupree

8.624 Waves, Instabilities, and Radio Frequency Heating of Plasmas and Nonlinear Effects (A)
Prereq.: 8.613J
G (2)
3-0-9
M. Porkolab

8.641 Physics of High Temperature Plasmas I (A)
Prereq.: 8.613J
G (1) Not to be offered 1985-86
3-0-9
8.642 Physics of High Temperature Plasmas II (A)
Prereq.: 8.613J
G (1) Next offered 1985-86
3-0-9
Basic concepts of plasmas, with temperatures of thermonuclear interest, relevant to fusion research and to astrophysics. Microscopic transport processes due to inter-particle collisions and to collective modes (e.g., microinstabilities). Relevant macroscopic transport coefficients (electrical resistivity, thermal conductivities, particle "diffusion"). Runaway and slide-away regimes. Magnetic reconnection processes and their relevance to experimental observations. Radiation emission from inhomogeneous plasmas. Conditions for thermonuclear burning and ignition (D-T and "advanced" fusion reactions, plasmas with polarized nuclei). Role of "impurity" nuclei. "Finite-T-β" (pressure) regimes and ballooning modes. Convective modes in configuration and velocity space. Trapped particle regimes. Nonlinear and explosive instabilities. Interaction of positive and negative energy modes. Each subject can be taken independently.
B. Coppi

8.681, 8.682 Selected Topics in Fluid and Plasma Physics (A)
Prereq.: 8.613J
G (1, 2)
3-0-9
Presentation of topics of current interest, with content varying from year to year. Information: G. F. Koster.

Nuclear and Particle Physics

8.711 Nuclear Physics I (A)
Prereq.: 8.05
G (1)
3-0-9
Introduces nuclear physics, stressing experimental results and correlating the data with current theory and nuclear models. Neutron-nucleon interaction. Static properties of nuclei, the shell model, the Hartree-Fock method. Models of nuclear collective motion: rotations, vibrations, and giant resonances.
J. W. Negelie

8.712 Nuclear Physics II (A)
Prereq.: 8.711
G (2)
3-0-9
Electromagnetic and weak interactions of nuclei: electron scattering; beta decay and muon capture. Study of nuclear structure through nuclear reactions; optical models; resonance reactions; heavy ion collisions; nucleon transfer reactions; high energy scattering from nuclei; meson-nucleus interactions.
T. W. Donnelly

8.751 Theory of Nuclear Structure (A)
Prereq.: 8.322
G (1)
3-0-9
Nature of internuclear forces. The nuclear many-body problem: Brueckner-Bethe-Goldstone theory and its application to nuclear matter and finite nuclei; the Hartree-Fock approximation; the nuclear shell model. Collective models of the nucleus; rotational states in deformed nuclei. Particle-hole formalism for excited states; random phase approximation. Nuclear pairing theory, time permitting. Unified theory of nuclear reactions; theory of the optical potential.
C.J. Horowitz

8.781, 8.782 Selected Topics in Nuclear Theory (A)
Prereq.: 8.751
G (1, 2)
3-0-9
Presents topics of current interest in nuclear structure and reaction theory, with content varying from year to year. Information: G. F. Koster.
Physics

8.810 Particle Physics I (A)
Prereq.: 8.05, 8.321
G (2)
4-0-8
J. G. Branson

8.811 Particle Physics II (A)
Prereq.: 8.810
G (1)
3-0-9
U. J. Becker

8.871, 8.872 Selected Topics in Theoretical Particle Physics (A)*
Prereq.: 8.323
G (1, 2)
3-0-9
Presents topics of current interest in theoretical particle physics, with content varying from year to year. Information: G. F. Koster.

8.881, 8.882 Selected Topics in Experimental Particle Physics (A)*
Prereq.: 8.811
G (1, 2)
3-0-9
Presents topics of current interest in experimental particle physics, with content varying from year to year. Information: G. F. Koster.

Space- and Astro-physics

8.910 Astrophysics (A)
Prereq.: 8.05, 8.08
G (2)
3-0-9
Size and time scales in astrophysics. Stellar structure equations and survey of stellar evolution. Degenerate stars and interacting binary stars. Radiative transfer, line formation, spectroscopy of interstellar medium. The equilibrium of stellar systems and the distribution of stars in our galaxy. Introduces cosmology.
S. Tremaine

8.913 Physics of Space Plasmas I (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-9
8.914 Physics of Space Plasmas II (A)
Prereq.: Permission of Instructor
G (2) Not to be offered 1985-86
3-0-9
For students interested in space physics, astrophysics, and plasma physics in general. Magnetospheres of rotating magnetized planets, ordinary stars, neutron stars, and black holes. Pulsar models: processes for slowing down, particle acceleration, and radiation emission; accreting plasmas and x-ray stars; stellar winds; heliosphere and solar wind: relevant magnetic field configuration, measured particle distribution in velocity space and induced collective modes; stability of the current sheet and collisionless processes for magnetic reconnection; theory of collisionless shocks; solitons; Ferroaro-Rosenbluth sheet; solar flare models; heating processes of the solar corona: earth's magnetosphere (auroral phenomena and their interpretation, bowshock, magnetotail, trapped particle effects); relationship between gravitational (galactic) plasmas and electromagnetic plasmas. 8.913 deals with heliospheric, 8.914 with extra-heliospheric plasmas.
B. Coppi

8.921 Stellar Structure and Evolution (A)
Prereq.: 8.910
G (1) Next offered 1985-86
3-0-9
Observables stellar characteristics; overview of observational information. Principles underlying calculations of stellar structure interiors. Physical processes in stellar interiors: properties of matter and radiation; radiative, convective, and conductive heat transport; nuclear energy generation; nucleosynthesis; neutrino emission. Protostars: main sequence, and the solar neutrino flux: advanced evolutionary stages; variable stars; planetary nebulae, supernovae, white dwarfs, and neutron stars; close binary systems: abundance of chemical elements. Permission of instructor required.
P. C. Joss

8.922 Physics of the Galaxy (A)
Prereq.: 8.910
G (2) Next offered 1985-86
3-0-9
Observations of the distribution of stars, clusters, gas, and dust in the galaxy. Theory of the equilibrium of stellar systems: Vlasov equation, Fokker-Planck equation, Jeans' theorem and the third integral. Introduces spiral structure theory. Interstellar clouds, evolution of supernova envelopes, star formation, and the energy budget of the interstellar medium. Permission of instructor required.
S. Tremaine

8.923 High Energy Astrophysics (A)
Prereq.: 8.910
G (1) Not to be offered 1985-86
3-0-9
C. Alcock

8.942 Cosmology (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
Thermal backgrounds in space. Cosmological principle and its consequences. Newtonian cosmology with types of "universes"; survey of relativistic cosmology; horizons. Overview of evolution in cosmology; radiation and element synthesis; physical models of the "early stages." Formation of large-scale structure to variability of physical laws. First and last states. Some knowledge of relativity expected. 8.962 recommended though not required.
P. Morrison

8.962 General Relativity and Gravitation (A)*
Prereq.: 8.07
G (2)
3-0-9
Staff

8.981, 8.982 Selected Topics in Astrophysics (A)*
Prereq.: Permission of Instructor
G (1, 2)
3-0-9
Topics of current interest, varying from year to year. Information: G. F. Koster.

8.993 Thesis Papers I (A)
Prereq.: —
G (1, 2, 3)
Arr.
Program of graduate research leading to the writing of an S.M., Ph.D. or Sc.D. thesis, to be arranged by the student and an appropriate MIT faculty member.
G. F. Koster
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prereq.</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00</td>
<td>Introduction to Psychology</td>
<td>-</td>
<td>U (1, 2, S) 4-0-5. A survey of the science of human mental life and behavior. Explores sensation, perception, learning, memory, thinking, feeling, emotion, motivation, personality. Uses psychological, social, and biological data. Considers cultural, political, and literary impact of psychology. Examines controversies about mental illness, IQ, sex roles. J. M. Wolfe.</td>
</tr>
<tr>
<td>9.01</td>
<td>Neuroscience and Behavior (Revised Unit)</td>
<td>Prereq.: 9.00 or 9.62J</td>
<td>U (1) 3-0-9. Relation of structure and function at various levels of neuronal integration. Topics include: functional neuroanatomy and neurophysiology, motor systems, centrally programmed behavior, sensory systems, arousal, sleep and dreaming, motivation and reward, emotional displays of various types, “higher functions” and the neocortex, and neural processes in learning and memory. May be counted toward Humanities Requirement only by students concentrating in Psychology; see Department for details. G. E. Schneider.</td>
</tr>
<tr>
<td>9.019</td>
<td>Topics in Neuropsychology (A)</td>
<td>Prereq.: Permission of Instructor</td>
<td>G (2) Not to be offered 1985-86 2-3-7. Introduces current research on the effects of brain disease on human behavior. Lectures by neuropsychologists, neurologists, and psychiatrists, emphasizing specific neural mechanisms underlying memory, attention, language, perception, spatial abilities, motivation, and emotion. Also includes hemispheric specialization and the role of neurotransmitters and hormones in brain diseases. Laboratory sessions include demonstrations of behavioral testing methods and presentations of patients. Alternate years. S. Corkin, Guest Lecturers.</td>
</tr>
<tr>
<td>9.021</td>
<td>Topics in Brain and Behavior (A)</td>
<td>Prereq.: Permission of Instructor</td>
<td>G (2) Next offered 1985-86 3-0-6. Detailed discussion of the neuroanatomy, neurochemistry, neurophysiology, and neuropsychology of selected regions of the forebrain. Seminar sessions in which participants take turns leading class discussions on the readings and presenting reports on special topics. Occasional clinical demonstrations during the term and a final test during the last class. Alternate years. S. Corkin, A. M. Graybiel.</td>
</tr>
<tr>
<td>9.022</td>
<td>Biochemical Neuroanatomy (A)</td>
<td>Prereq.: 9.014J</td>
<td>G (2) Not to be offered 1985-86 3-0-6. Focuses on recent findings and functional concepts dealing with neurotransmitter systems in the central nervous system. Includes lectures and seminar sessions in which student participants take turns leading class discussions and presenting reports. Alternate years. Permission of instructor required; HST 130 or equivalent recommended. A. M. Graybiel.</td>
</tr>
<tr>
<td>9.036</td>
<td>The Visual System (A)</td>
<td>Prereq.: Permission of Instructor</td>
<td>G (1) Next offered 1985-86 3-0-6. Reviews the current neurophysiological and neuroanatomical research literature on the mammalian visual system. Alternate years. P. H. Schiller.</td>
</tr>
</tbody>
</table>
9.05 Psychotechnology: Scientific and Ethical Issues in Behavior Control

Prereq: —
U (2) Next offered 1985-86
3-0-6

The behavior of animals — including human beings — can be altered in various ways through the use of physical methods and chemical agents. Discusses biomedical and psychotechnological approaches to delinquency, drug addiction, and other social problems in terms of their alleged scientific bases, scope, power and limitations. Emphasizes throughout questions bridging the traditional gap between science/technological/social policy. Alternate years.
S. L. Chorover

9.051 Human Nature and Sociobiology (A)

Prereq: Permission of Instructor
G (2) Next offered 1985-86
3-0-6

Critical survey of attempts to account for human social behavior in terms of evolutionary and psychobiological mechanisms. The "nature vs nurture" controversy and its influence from ancient times to the present. Particular emphasis on motivation, territoriality, aggression, competition, cooperation, etc. and alleged implications for laissez-faire and planned economic systems, conformity and deviance, social stability and social change. Readings in scholarly and popular sources. Alternate years.
S. L. Chorover

9.30 Animal Behavior

Prereq: 9.00
U (1)
3-0-6

Reviews basic concepts in the study of animal behavior. Examines the natural history of selected species (e.g., fields, canids, and cephalopods). Contributions of environment and heredity to the shaping of behavior. Inquires into the contribution of behavior to meeting requirements for individual and species survival. Analyzes selected problems including animal communication, navigation, sexual behavior, aggression, defense, perception and learning.
A. Hein

9.35 Sensation and Perception

Prereq: 9.00 or 9.62J
U (2)
3-0-6

The senses are our gateways to the world. Everything we know about what is going on out there comes to us through vision, hearing, touch, taste, smell, etc. How do the senses work? How do physical stimuli get transduced into signals in the nervous system? How can the brain use those signals to determine the flavor of a banana, the sound of a flute, or the shape of a cow? Vision is covered most extensively. Includes: perception of color, motion, form and depth, individual differences, and development.
J. M. Wolfe, R. Held

9.351 Human Vision (A)
(Revised Content and Unit)

Prereq: 9.35
G (2) Not to be offered 1985-86
3-0-9

Covers major issues and basic findings in the study of human vision. Emphasis is on understanding the physical plant in the biological and artificial systems. Synthesizes recent approaches toward motor control in the fields of neurophysiology, artificial intelligence, and systems theory. Topics: understanding the physical plant in biological and artificial systems. Kinematics, statics, dynamics. Actuators and effectors. Control of unconstrained movements: open loop control and trajectory determination. Feedback control and reflexes. Control of constrained movements: handwriting, manipulation, and locomotion. Alternate years.
E. Bizzi, J. Hollerbach

9.372 Movement: Mechanisms and Models (A)

Prereq: 9.370
G (1) Not to be offered 1985-86
3-0-6

Research seminar directed at surveying basic concepts and methods in the study of the vertebrate motor system. Reviews current investigations on neural integration in movement control emphasizing spinal cord, cerebellar and cortical mechanisms; arm trajectory formation, physiology, and biomechanics; eye-head and eye-hand coordination; manipulation. Permission of instructor required for students without 9.370 background. Alternate years.
E. Bizzi, J. Hollerbach

9.380 Vision Algorithms and Psychophysics (A)

Prereq: Permission of Instructor
G (1,2) Not to be offered 1985-86
3-0-6

Seminar on the theory of visual information processing and applying algorithmic techniques to vision by humans or machines. Discusses interactions between psychophysics of human vision, computational studies, and machine vision. Topics include properties of light, sampling and interpolation, edge detection, motion, stereo, and neural hardware. Alternate years.
S. Ullman, T. Poggio

9.382 Seminar on Visual Information Processing (A)
(New)

Prereq: Permission of Instructor
G (1, 2) 3-0-6

Discusses various computational problems in machine vision and biological vision. Topics: edge detection, stereo vision, analysis of time-varying images, surface interpolation, visual recognition, hardware for computer vision, and biological mechanisms of vision. Centers around ongoing work by participants and presentations by them.
T. Poggio, S. Ullman, W. E. L. Crimson

9.39J Human Factors in Design

(Same subject as 2.18J, 22.088J)

Prereq: Permission of Instructor
U (2)
3-1-8

See description under subject 2.18J.
A. Hein, T. B. Sheridan, D. D. Lanning
<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.401</td>
<td>Survey of Cognition and Psycholinguistics (Revised Content and Unit)</td>
<td>Prereq.: Permission of Instructor G (2) 4-0-8 Survey of theories, methods, and findings in human information processing and psycholinguistics. Includes pattern recognition, imagery and mental codes, memory and attention, and language comprehension and production. M. C. Potter, S. Carey, M. F. Garrett, S. Pinker</td>
</tr>
<tr>
<td>9.50</td>
<td>Research in Psychology</td>
<td>Prereq.: 9.00 or 9.62J or 9.901; and one other subject in Psychology U (1, 2, S) LAB 2-0-2 Laboratory research in the areas of perception, learning, memory, and development. Each student carries out an experimental study in one of these areas under the direction of a member of the faculty. Written presentation of results is required. Consult P. H. Schiller.</td>
</tr>
<tr>
<td>9.591</td>
<td>Seminar in Psychology of Language and Communication I (A)</td>
<td>Prereq.: 9.59 or 9.901 G (1) Next offered 1985-86 3-0-6 Reads, discusses, and criticizes selected topics. Emphasizes one or more of the following themes in a particular term: theories of language, speech perception, communication in sub-human species, aphasia, language acquisition, language and thought, interaction between grammatical structure and verbal performance. Permission of instructor required for students without 9.59 or 9.901 background. Alternate years. J. A. Fodor, M. F. Garrett</td>
</tr>
<tr>
<td>9.592</td>
<td>Seminar in Psychology of Language and Communication II (A)</td>
<td>Prereq.: Permission of Instructor G (2) Not to be offered 1985-86 3-0-6 Advanced topics in psycholinguistics, emphasizing current studies of language production and language disorders. A research paper required as part of this subject. Alternate years. M. F. Garrett</td>
</tr>
<tr>
<td>9.601J</td>
<td>Seminar on Language Acquisition (A)</td>
<td>Prereq.: Permission of Instructor G (2) Next offered 1985-86 3-0-6 Reading and discussion of current theory and data concerning language acquisition. Emphasizes learning of syntax and morphology, and especially research relating syntactic theory and learnability theory to empirical studies of children’s linguistic abilities. Alternate years. S. Pinker</td>
</tr>
<tr>
<td>9.605</td>
<td>Seminar on Spatial Cognition (A) (New)</td>
<td>Prereq.: Permission of Instructor G (1) 3-0-6 Reading and discussion on current theory and data relevant to spatial cognition. Principal emphasis is on attention, mental imagery, visual memory, and spatial reasoning, with secondary emphasis on shape recognition and knowledge representation as they bear on those topics. Studies from experimental psychology, human neuropsychology, and artificial intelligence are discussed. S. Pinker</td>
</tr>
<tr>
<td>9.62J</td>
<td>Introduction to Cognitive Science</td>
<td>Prereq.: — U (1) 3-0-9 Surveys major issues that occupy contemporary cognitive science. Topics: induction and inductive logics as psychological theories; formal learning theory in linguistics; is English a finite state language?: deduction and deductive logics as psychological theories; concepts and conceptual composition; the problem of natural concepts; images and percepts. Emphasizes clear formulation of questions and theoretical criteria of adequacy. Examines specific proposals in response to these questions. D. N. Osherson</td>
</tr>
<tr>
<td>9.63</td>
<td>Laboratory in Cognitive Science (New)</td>
<td>Prereq.: 9.62J or 24.116J U (2) LAB 0-3-6 Students conduct a set of demonstration experiments on human perception, memory, language comprehension, and imagery, and then perform an experiment of their own design on one of these topics. All experiments are run online in a computer-based lab. Enrollment limited. S. Pinker, M. F. Garrett</td>
</tr>
<tr>
<td>9.661</td>
<td>Seminar in Cognitive Development (A)</td>
<td>Prereq.: Permission of Instructor G (1) Next offered 1985-86 3-0-6 Critical survey of selected topics. Emphasizes one or more of the following: growth of logic; relation between conceptual change in the history of science and in the individual child; cognitive development from an information processing point of view. Open only to graduates or undergraduates who have taken a subject in either cognitive psychology, developmental psychology, or artificial intelligence. S. Carey</td>
</tr>
<tr>
<td>9.68</td>
<td>Affect: Biological, Psychological, and Social Aspects of “Feelings”</td>
<td>Prereq.: — U (2) Next offered 1985-86 3-0-6 What is affect: This seminar addresses this question in an effort to make an important aspect of human experience comprehensible. Considers the nature of affect and traces both its development within the individual human being and its connections with various cognitive and behavioral variables. Reviews some relevant features of brain organization. Examines some familiar aspects of human culture to determine the extent to which they may properly be regarded as socially organized counterparts of individual feelings. Alternate years. S. L. Chorover</td>
</tr>
</tbody>
</table>
9.70 Social Psychology
Prereq.: —
U (2)
3-0-6
Examines the basic processes by which people interact, perceive and make judgments of others, influence each other, and develop social beliefs and values, in the context of small and large groups and societies.
S. L. Chorover

9.75J Psychology of Gender (New)
(Same subject as SP 460J)
Prereq.: —
U (1) Next offered 1985-86
3-0-6
Examines evidence (and lack thereof) for differences in the ways in which men and women think, act, and feel; and in the ways their brains are organized. Topics: biological mechanisms of physical gender differentiation in mammals; male and female brain; sex differences in personality (aggression, capacity for intimacy) and in cognitive abilities (spatial and verbal skills); mechanisms of gender development (biological, psychoanalytic, social, cognitive); role of gender in differences in conceptualization of the world.
S. Carey

9.88 Development of Behavior
Prereq.: 9.00 or 9.62J
U (2)
3-0-6
History of the changing concepts of infancy, childhood and development. Interaction of innate and experiential factors in the development of learning capacities, perception, social behavior and motor patterns in both animals and humans. Implications of evolution, genetics, embryology and early experience for the ontogeny of behavior.
A. Hein

9.90 Human Development: Individual and Social Perspectives
Prereq.: —
U (2)
3-0-6
Examines psychological processes and structures from a developmental perspective. The evolution of individual personality and social awareness treated first, followed by an overview of leading theories of cognitive growth. Gives special attention to the perceptual, cognitive, and affectional systems operative in the human infant; links the organization of these immature systems to the theoretical problem of the role of childhood experience in mature intellectual and emotional organization.
D. N. Osherson

9.901 Proseminar in Psychology (A)
Prereq.: Permission of Instructor
G (1)
6-0-6
General introduction to graduate work in psychology and brain science, to be taken in conjunction with other, more specialized subjects depending upon student's background and interests. Restricted to Course IX graduate students. Consult R. Held.

9.91, 9.92 Topics in Psychology
Prereq.: 9.00 or 9.62J and any other two subjects in Psychology
U (1, 2)
Arr.
Critical survey of contemporary problems in psychology. Programs directed by individual members of the faculty. Consult P. H. Schiller.

9.911-9.916 Special Topics in Psychology (A)
Prereq.: Permission of Instructor
G (1, 2, S)
Arr.
Opportunity for graduate study of advanced subjects in psychology not included in other subject listings. Programs subject to approval of professor in charge. Consult M. C. Potter.

9.921 Research in Psychology (A)
Prereq.: 9.901
G (1)
Arr.

9.922 Research in Psychology (A)
Prereq.: 9.901
G (2)
Arr.

9.923 Research in Psychology (A)
Prereq.: 9.901
G (S)
Arr.
Guided research under the sponsorship of individual members of the faculty. Ordinarily restricted to candidates for the doctoral degree in psychology. Consult M. C. Potter.
10.14 Chemical Engineering Thermodynamics
Prereq.: 10.13
3-0-6
Extension of 10.13, intended primarily for chemical engineering majors. Thermodynamics of multicomponent systems, criteria of equilibrium and stability, phase equilibrium, chemical equilibrium in homogeneous and heterogeneous systems, electrochemical systems.
C. M. Mohr, R. C. Reid

10.17 Air Pollution Fundamentals
Prereq.: 5.11, 18.02
U (2) SD
2-0-4
Introduces the causes, effects, and control of air pollution emphasizing combustion generated pollution and industrial process sources; origin and fate of air pollutants; air pollution meteorology; combustion processes and the formation of gaseous and particulate pollutants; air pollution control principles; measurement methods for gaseous air pollutants and for particulates, sampling and analytical techniques.
G. C. Williams

10.19 Experimental Methods in Combustion and Heat Transfer
Prereq.: 10.302, 10.37
U (2)
2-0-2
Students receive instructions on methods of measurements of temperatures and radiative heat transfer, in high temperature reacting systems, on collection and analyses of representative gas and solid samples, measurement of gas and particulate velocities and in general, the characterization of particulate clouds and fuel sprays. Working in small teams students are assigned projects preferably relating to ongoing research programs. Enrollment limited. Permission of instructor required.
J. M. Beer

10.21 Structures and Properties of Matter
Prereq.: 5.11, 5.62
U (1)
3-0-6
Atomic and molecular interactions and their importance in determining physical and chemical properties of matter. Dielectric properties of materials. Description of physical and specific chemical intermolecular forces, including hydrogen bonds. Bulk and interfacial properties of pure and mixed gases and liquids. Techniques for characterizing molecular structure and for predicting properties of matter.
U. W. Suter

10.24 Principles, Processes, and Synthesis in Industrial Chemistry (A)
(New)
Prereq.: 10.37
G (2)
3-0-6
Studying factors determining flowsheets, equipment design, internal interactions in plants for producing industrial chemicals. Case studies for variety of organic/inorganic chemicals used to demonstrate application of engineering principles in analysis and synthesis of process flowsheets. Examples illustrate impacts of raw material availability, reactor design developments, new process chemistry, and process economics. Extensive problem work on influence of stoichiometry, energy requirements, kinetics, and transfer processes.
M. P. Manning

10.25 Industrial Chemistry and Chemical Process Pathways (A)
Prereq.: 5.11, 10.14, 10.37
G (1)
3-0-6
Chemical and engineering principles involved in creation and operation of viable industrial processes. Topics: analysis of process chemistry by p-pathways (i.e., radical, ionic, and pericyclic reactions of organic syntheses) and d-pathways (i.e., catalysis by transition metal complexes). Use of reaction mechanisms for inference of co-product formation, kinetics, and equilibria: process synthesis logic related to reaction selectivity, recycle, separations. Illustrations drawn from current and contemplated commercial practice.
P. S. Virk
10.26 Chemical Engineering Laboratory
Prereq.: 5.11, 10.14, 10.302, 10.37
U (1) 2-8-2
Laminar and turbulent flows. Natural convection and transient conduction and diffusion. Conduction transfer.
R. F. Baddour, M. P. Manning

10.27 Chemical Engineering Processes Laboratory (New)
Prereq.: 10.13, 10.14, 10.301
U (2) 1-8-3
Introduces practical chemical engineering operations through hands-on experience with representative pilot-scale equipment and processes. Intended to provide instruction in the art of experimentation and data analysis and to reinforce theoretical background gained during formal classroom tutoring by providing practical appreciation for operational characteristics of different processes. Some emphasis given to developing oral and written communication skills.
T. A. Hatton

10.301 Fluid Mechanics
Prereq.: 18.03
U (1) 3-0-6
J. F. Brady

10.302 Transport Processes
Prereq.: 10.13, 10.301
U (2) 3-0-6
A. F. Sarofim, H. H. Sawin

10.33 Analytical Treatment of Chemical Engineering Processes (A)
Prereq.: 10.301, 18.03
G (1) 3-0-6
Mathematical techniques for handling rate problems with diffusion, heat transfer, and chemical reactions basic to most chemical engineering operations. Formulation of problems corresponding to specific physical situations in terms of ordinary and partial differential equations. Solution of these equations by analytical methods.
H. Brenner

10.331 Nonlinear Analysis in Chemical Engineering
Prereq.: 10.33
G (2) 3-0-6
Employs both classical and modern methods for analyzing nonlinear ordinary and partial differential equations arising in reaction engineering and transport phenomena. Topics: dynamical stability theory and bifurcation analysis of steady states; introduction to time periodic phenomena; numerical methods for tracking multiple-steady and time-periodic states.
R. A. Brown

10.34 Numerical Methods Applied to Chemical Engineering (A)
Prereq.: 10.33
G (2) 3-0-6
R. A. Brown

10.341 Finite Element Methods for Problems in Transport Phenomena (A)
Prereq.: 10.34
G (2) 3-0-6
Advanced methods for solving problems in fluid mechanics and heat and mass transfer. Emphasis on efficient techniques for handling highly irregular boundaries, non-linearities, complicated boundary conditions, and singularities. Variational, Galerkin, and collocation schemes discussed.
R. A. Brown

10.35 Chemical Process Dynamics and Control (A)
Prereq.: 10.37, 18.03
G (2) 3-0-6
Optimum steady-state design and control. Dynamic behavior of chemical process units such as chemical reactors, separation units, and heat exchangers. Examination of linear, linearized, and nonlinear process models. Stability analysis. Design of simple PID controllers. Bode diagrams and root locus techniques. Introduction to multivariable control systems. Cascade, modal, and feedback control. Selection of control and measurement variables. Open to qualified undergraduates.
M. Kramer

10.351 Advances in Process Control (A)
Prereq.: 10.35 or 6.231 or 2.14 or 6.302 or 16.20
G (2) 3-0-9
Detailed exposure to areas of multivariable control theory of importance to process control applications. Emphasis on distributed parameter and large finite-dimensional systems. Examples drawn from industrial flows and processes with emphasis on chemical engineering systems such as chemical reactors, distillation columns, multiphase effect evaporators.
G. Stephanopoulos

10.36 Process Design
Prereq.: 10.302, 10.32
U (2) 3-0-6
Presents and discusses real process design problems, with case studies in chemical processing and petrochemicals. Emphasizes conception and invention of processes, as well as analysis and economic balances, to specify optimum design and operating conditions. Discusses a variety of cases throughout the term.
C. M. Mohr

10.37 Chemical Kinetics and Reactor Design
Prereq.: 10.13, 10.301
U (2) 3-0-6
Introduces design of commercial chemical reactors emphasizing synthesis of chemical kinetics, transport phenomena. Topics: Kinetics and Equilibrium — elementary steps, transition state theory, multi-step reactions and multiple paths, network algebra. Ideal Reactors —
Chemical Engineering

10.38 Analysis and Simulation of Chemical Processing Systems (A)
Prereq.: 10.302, 18.03
G (2)
2-2-4
L. B. Evans

10.381 Computer-Aided Process Design (A)
Prereq.: 10.302, 10.32
G (1)
2-0-7
Use of the computer for steady-state process simulation and design with the aid of the ASPEN software system. Modeling the flow-sheet, selection of thermophysical property models, use of data regression to fit constants in models, unit operation models, development of specialized models for chemical reactors, cost estimation, and economic evaluation. Techniques for convergence of recycle streams and design specifications. Students gain experience in the use of ASPEN to solve case study problems.
L. B. Evans

10.382 Synthesis and Design of Chemical Processing Systems (A)
(New)
Prereq.: 10.302, 10.32
G (1)
3-0-6
G. Stephanopoulos

10.39 Energy Technology (A)
Prereq.: 10.19, 10.14
G (2)
3-0-6
Studies the factors determining the choice of energy technologies and their individual design and performance features. Considers energy supply-demand patterns, economics, efficiency of resource utilization, and environmental and social effects. Gives special emphasis to synthetic fuel systems and to utilization-related energy technologies. Special subjects such as fuel cells, solar energy, and geothermal energy can be studied and presented as term paper topics. Open to undergraduates by permission of instructor.
J. B. Howard, J. P. Longwell

10.40 Chemical Engineering Thermodynamics (A)
Prereq.: 10.13
G (1, 2)
4-0-6
R. C. Reid, H. Brenner, J. W. Tester

10.42 Advanced Thermodynamics (A)
Prereq.: 10.40
G (2)
2-0-6
Equilibrium and stability concepts examined in depth. Surface thermodynamics, equilibrium in body force fields, irreversible thermodynamics comprise other topics.
R. C. Reid, H. Brenner

10.48J Gas-Solid Reactions (A)
(Same subject as 3.55J)
Prereq.: 3.55, 10.50
G (2) Next offered 1985-86
3-0-6
See description under subject 3.55J.
J. Szekely

10.49J Biomedical Transport Phenomena (A)
(Same subject as HST 521J)
Prereq.: 10.301, 10.302
G (2)
2-0-5
W. M. Deen, C. K. Colton

10.50 Heat and Mass Transfer (A)
Prereq.: 10.302
G (1, 2)
4-0-6
R. A. Brown, W. M. Deen, J. F. Brady

10.51 Macromolecular Hydrodynamics (A)
Prereq.: 10.301
G (2)
3-0-6
R. C. Armstrong

10.52 Mechanics of Fluids (A)
Prereq.: 10.50
G (2)
3-0-6
Advanced course in fluid and continuum mechanics. Content may vary, drawing from such topics as low Reynolds number hydrodynamics, Brownian motion, suspension mechanics, flow in porous media, multiphase/particulate flow, ideal fluid theory, laminar boundary-layer theory, stability theory, and turbulence.
J. F. Brady, H. Brenner

10.54 Advanced Topics in Heat and Mass Transfer (A)
Prereq.: 10.50
G (2)
3-0-6
Generalized Taylor dispersion theory with applications to chromatographic separation processes and flow and dispersion in porous media. Mixing at the macroscopic and microscopic levels, emphasizing scale-up of industrial processes, including chemical reaction phenomena. Transport problems in evaporation, dissolution, and crystallization in liquid-solid and vapor-solid systems. Applies stability and kinematic wave theory to transport processes in multi-phase/particulate systems.
J. F. Brady, H. Brenner, T. A. Hatton, J. W. Tester
10.565 Seminar in Separation Processes for Biochemical Products (A) (Revised Unit)

Prereq.: —
G (1) 3-0-6

Focuses on the fundamental problems of separation operations important to the recovery of products from biological processes. Biotechnology is placing new demands on chemical engineers to separate both large and small molecule weight molecules from aqueous media. Lectures cover membrane filtration, chromatography, centrifugation, electrochemical separation, and other techniques.
C. L. Cooney, C. K. Colton

10.57J Polymer Processing (A)
(Same subject as 2.820J)
Prereq.: 10.301 G (2) 3-0-9

Reviews physicochemical, mechanical, and rheological properties of polymers. Surveys processing techniques. Modeling, analysis, and scale-up of extrusions, molding, thermoforming, calendering, and mixing. Case studies in process syntheses. Relationship between selected processing techniques and properties of end products. Limitations of the present state of the art. Assigned projects.
R. C. Armstrong, L. Erwin, T. G. Gutowski

Biochemical Engineering

10.59J Biochemical Engineering (A)
(Same subject as 20.811J)
Prereq.: Permission of Instructor G (2) 4-0-8

Interaction of chemical engineering, biochemistry, and microbiology. Mathematical representations of microbial systems. Kinetics of growth, death, and metabolism. Continuous fermentation, agitation, mass transfer and scale-up in fermentation systems, product recovery, enzyme technology.
C. L. Cooney, D. I. C. Wang

10.591J Biochemical Engineering Laboratory (A)
(Same subject as 20.812J)
Prereq.: 20.811 G (2) 0-5-1

Laboratory portion of Biochemical Engineering, experiments focus on mass transfer problems, microbial kinetics, product formation and recovery processes, and computer-aided fermentation. Fermentation process plant design. Permission of instructor required.
D. I. C. Wang, C. L. Cooney

Applied Chemistry

10.60 Heterogeneous Catalysis and Catalytic Processes (A)
Prereq.: 5.62 or 10.37 G (1) 3-0-6

C. N. Satterfield

10.61J Solid-State Surface Science (A)
(Same subject as 3.22J)
Prereq.: 10.40 or 3.20 G (2) Not to be offered 1985-86 3-0-6

See description under subject 3.22J.
R. M. Latanision, H. H. Sawin

10.615 Integrated Circuit Processing (A)
Prereq.: 10.302 G (1) 3-0-6

Introduces the basic process techniques used in silicon monolithic integrated circuits. Reviews fundamental solid-state chemistry and physics. Introduces basic semiconductor device physics. Prime emphasis on application of transport phenomena, thermodynamics, chemical kinetics, process design, and process control to integrated circuit processing. Topics include crystal growth, chemical vapor deposition, oxidation, etching, lithography, dopant diffusion, metallization.
H. H. Sawin

10.616J Plasma Processing in Integrated Circuit Fabrication (A)
(Same subject as 6.776J)
Prereq.: Permission of Instructor G (2) Not to be offered 1985-86 3-0-9

See description under subject 6.776J.
H. H. Sawin, L. R. Reif

10.641 Molecular and Morphological Engineering of Polymers (A)
Prereq.: 5.42, 5.62 G (1) 3-0-6

Introduces structure and properties of polymers. Describes macromolecular architecture and morphologies of solid polymers. Polymer surfaces and interfaces. Properties covered include thermal transitions, transport properties, solid-state mechanical behavior. Also discusses the effects of various non-polymeric additives.
R. E. Cohen

10.642 Molecular and Phenomenological Interpretation of Polymer Viscoelasticity (A)
Prereq.: 5.60 or 5.62 G (2) 2-0-7

R. E. Cohen

10.65 Chemical Reactor Engineering (A)
Prereq.: 10.37 G (1, 2) 3-0-6

Applies chemical kinetics to development and improvement of industrial processes. Non-ideal reactor analysis, including residence time distributions, concepts of mixedness and segregation dispersion and CSTR models. Mass and energy transfer limitations in heterogeneous non-catalytic, catalytic and electrocatalytic reaction systems. Reactor stability and sensitivity to operating parameters. Choice and design of reactors for heterogeneous reactions.
R. F. Baddour, J. B. Howard, M. Kramer

10.651J Fluidization (A)
(Same subject as 2.65J)
Prereq.: Permission of Instructor G (1) Next offered 1985-86 3-0-9

A. F. Sarofim, L. R. Glicksman
10.655 Multiphase Chemical Reactors (A)
Prereq.: 10.37
G (2) Not to be offered 1985-86
3-0-6
Mass transfer with simultaneous chemical reaction in gas-solid, gas-liquid, and gas-liquid-solid systems. Analyzes contacting patterns and of mass and energy effects in multiphase chemical reactors including slurry-type reactors, trickle beds, and fluidized beds. Attention to reactions catalyzed heterogeneously or homogeneously, and to applications in fossil fuel processing and new synfuel processes.
C. N. Satterfield

10.86 Polymer Rheology Laboratory (A)
Prereq.: 10.301
G (2) Not to be offered 1985-86
1-5-6
R. C. Armstrong, R. E. Cohen

10.87 Polymer Science Laboratory (A)
Prereq.: Permission of Instructor
G (1, 2)
1-6-3
Acquaints students with a selection of techniques employed in the synthesis and characterization of polymeric materials. Experiments chosen for practical importance and instructional value. Studies free radical polymerization kinetics, condensation polymerization, thermodynamic and viscometric molecular weight determinations, thermal analysis, nuclear magnetic resonance and mechanical properties testing. Enrollment limited, qualified undergraduates welcome.
U. W. Suter, R. E. Cohen

10.881 Physical Chemistry of Polymers (A)
Prereq.: 5.60 or 10.14 or 10.40
G (1)
3-0-6
E. W. Merrill

10.682 Structure and Shape of Macromolecules (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-6
J. W. Suter

10.691 Synthesis of Polymers (A)
Prereq.: 5.42
G (2)
3-0-6
Studies synthesis of polymeric materials employing interrelationships of chemical pathway, process conditions, and "microarchitecture" of molecules produced. Chemical pathway: anionic, radical, condensation, ring-opening, etc. Process conditions: bulk, solution, emulsion, suspension, gas phase, batch vs continuous fluidized bed, etc. "Microarchitecture": tacticity, molecular weight distribution, sequence distributions in copolymers, "errors" in chains such as branches, head-to-head addition, peroxide incorporation.
E. W. Merrill

10.70 Principles of Combustion (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
J. M. Beer

10.73 Seminar in Fuel Conversion and Utilization (A)
Prereq.: Permission of Instructor
G (1, 2)
2-0-4
Seminar covering topics in combustion and fuel conversion related to current research interests.
J. B. Howard, J. P. Longwell

10.74J Radiative Transfer (A)
(Same subject as 2.58J)
Prereq.: 10.302 or 2.51
G (1)
3-0-9
A. F. Sarofim, L. R. Glicksman

10.75 Principles of Fuel Conversion (A)
Prereq.: 10.302, 10.37
G (2)
3-0-6
J. B. Howard

10.79J Introduction to Nuclear Chemical Engineering (A)
(New)
(Same subject as 22.76J)
Prereq.: 22.311 or 10.302
G (1) Not to be offered 1985-86
3-0-9
See description under subject 22.76J.
M. Miller, M. J. Driscoll

10.801 Entrepreneurship
Prereq.: —
G (2)
4-0-5
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
D. G. Jansson
10.821J Invention
(Same subject as 2.941J, 13.77J, 16.671J)
Prereq.: —
G (1)
3-0-6
See description under subject 2.941J.
J. P. Longwell, D. G. Janssen, W. R. Markey

10.802J Introduction to Technology and Law
Prereq.: —
U (1)
3-0-9
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
J. D. Nyhart

10.805J Technology, Law, and the Working Environment
(Same subject as TPP 35J)
Prereq.: Permission of Instructor
G (1)
3-0-6
Addresses relationship between technology-related problems and the law applicable to work environment. National Labor Relations Act, Occupational Safety and Health Act, Toxic Substances Control Act, state worker's compensation and suits by workers in the courts discussed. Problems related to occupational health and safety, collective bargaining as a mechanism for altering technology in the workplace, job alienation, productivity, and the organization of work addressed. Prior courses or experience in the environmental, public health, or law-related areas.
N. A. Ashford, L. B. Evans

10.806 Management in Engineering
Prereq.: —
U (1)
3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
D. P. Hoult, H. S. Marcus

10.808 Thermoeconomics (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
New method for optimum design of thermodynamic system. A plant is divided into separate zones and a miniature economy is erected governing the buying/selling of generalized availability from one zone to another. Proper transfer prices for interzonal trading are found from the Lagrangian of the system guaranteeing that local optima coincide with plant optimum. Lectures cover generalized availability analysis, Lagrangian prices and their determination, methods of calculation for real systems, computational techniques in thermodynamic analysis.
J. P. Longwell, W. M. Rohsenow, M. Tribus

10.816 Engineering Risk-Benefit Analysis (A)
Prereq.: 18.02
G (2)
3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
A. W. Drake, A. R. Odori

School of Chemical Engineering Practice

10.82 (10.80, 10.81, 10.83) School of Chemical Engineering Practice — Albany Station (A)
Prereq.: Permission of Instructor
G (1, 2, S) 0-12-0
Conducted at General Electric Company plants of their Noryl Plastics Division at Selkirk, NY, and Silicone Products Division at Waterford, NY. Group problem assignments conducted at plant sites involve development of existing polymer manufacturing processes. Exposure to highly diversified unit operations at pilot-scale or production levels including distillation, extraction, filtration, extrusion, and fixed and fluidized bed reactor systems. Credit granted in lieu of Master's thesis; see section on School of Chemical Engineering Practice for details. Enrollment limited and subject to plant availability.
J. W. Tester

10.84 (10.85, 10.86, 10.87) School of Chemical Engineering Practice — Bethlehem Station (A)
Prereq.: Permission of Instructor
G (1, 2, S) 0-12-0
Conducted at Bethlehem Steel Corporation's Steel Plant and Research Laboratories in Bethlehem, PA. Group problem assignments involve process metallurgy, coke manufacture and by-product recovery, water and air treatment for environmental control, energy conservation, and process control and simulation. Credit granted in lieu of Master's thesis; see section on School of Chemical Engineering Practice for details. Enrollment limited and subject to plant availability.
J. W. Tester

10.88 (10.89) School of Chemical Engineering Practice — Brookhaven Station (A)
Prereq.: Permission of Instructor
G (S) 12-0
Conducted at Brookhaven National Laboratory, Upton, NY. Group problem assignments emphasizing application of chemical engineering to synthetic hydrocarbon fuels and alternate energy resources, electrochemistry, environmental science, and nuclear technology. Credit granted in lieu of a Master's thesis; see section on School of Chemical Engineering Practice for details. Enrollment limited and subject to plant availability.
J. W. Tester
General

10.90 Experimental Research Problem (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
For special and graduate students who wish to carry out some minor investigation in a particular field. Subject and hours to fit individual requirements.
R. C. Reid

10.91 Experimental Research Problem
Prereq.: —
U (1, 2)
Arr.
For undergraduate students who wish to carry out a special investigation in a particular field. Topic and hours to fit individual requirements.
C. M. Mohr

10.93 Teaching Experience In Chemical Engineering
Prereq.: Permission of Instructor
G (1, 2)
2-0-4
For qualified graduate students interested in teaching as a career. Tutorial or classroom teaching under the supervision of a faculty member. Students selected by interview. Total enrollment limited by availability of suitable teaching assignments.
R. C. Reid

10.94 Special Problems In Chemical Engineering
Prereq.: Permission of Instructor
U (1, 2)
Arr.
Problem of current interest, varying from year to year.
J. P. Longwell

10.95 Special Problems In Chemical Engineering (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Directed research and study of special chemical engineering problems.
R. C. Reid

10.96 Selected Topics in Chemical Engineering (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Topics of current interest, varying from year to year.
J. P. Longwell

10.991 Seminar In Chemical Engineering (A)
Prereq.: Permission of Instructor
G (1)
2-0-4

10.992 Seminar In Chemical Engineering (A)
Prereq.: Permission of Instructor
G (2)
2-0-4
For students working on doctoral theses.
J. Wei
Undergraduate Subjects

Introductory Subjects

11.001 Introduction to Urban Design and Development
Prereq.: —
U (1)
3-0-9
Examines both the structure of the cities and ways that they can be changed. Includes: historical forces which have produced cities, models of urban analysis, contemporary theory of urban design, and implementation strategies. A series of core lectures focuses on student work. Speakers present cases, involving current projects, which illustrate the scope and methods of urban design practice.

D. Frenchman

11.002 Introduction to Public Policy Analysis and Government Action (Revised Unit)
Prereq.: —
U (1)
3-1-8
Presents major analytic techniques of public policy analysis: deterministic and probabilistic models, cost-benefit analysis, decision analysis, linear programming. Class sessions organized in order of main tasks of policy analysts: identifying alternatives, implementation, evaluation. Compares alternative approaches to public policy analysis. Same subject as 11.500.

J. Ferreira, Jr.

11.003 Planning and Applied Social Research I
Prereq.: 11.007J, 14.01
U (1)
4-0-6
Concerned with these questions: What theories from the social sciences are applicable to the design, implementation, or evaluation of public policies and programs? How good should such theories be? What theories of social science do current public policies and programs presume? How good are these theories? Same subject as 11.507.

M. Rein

11.004 Planning and Applied Social Research II
Prereq.: 11.003
U (2) Next offered 1985-86
3-0-9
Develops an understanding of the reasons why public-sector programs and policies sometimes fail and sometimes succeed. Emphasizes theories of implementation, intervention, and regulation and concepts of the public interest. Contrasts alternative theories of social change and conflict management. Develops the skills needed for effective intervention in a variety of planners' roles. Students build personal theories of action. Same subject as 11.503.

K. R. Polenske

11.005 Urban Social Structure and Process
Prereq.: —
U (2) HUM-D
3-0-6
Sociological analysis dealing primarily with transformations from the turn of the century to the present in the major institutions of urban society. Contemporary structures, changes, and interrelations of ecological and demographic bases; age and sex structures; stratification, economic, political, educational, and religious institutions. Examines ethnic and racial relationships in the US. May count toward Humanities Requirement.

G. T. Marx

Fundamentals of Applied Social Research

11.007J Politics and Public Policy
(Same subject as 17.201J)
Prereq.: —
U (1, 2) HUM-D
3-0-6
See description under subject 17.201J.

G. T. Marx, M. Lipsky, D. A. Stone

11.009J Urban Economics
(Same subject as 14.51J)
Prereq.: 14.01
U (1)
3-0-6
See description under subject 14.51J.

J. Rothenberg

11.012 Institutions and Communities
Prereq.: 11.005 or 11.007J
U (1)
3-0-6
Structure, behavior, and processes of change in communities and formal organizations. Emphasizes formulation and implementation of public policies. Background in communities and organizations for students interested in planning or design. Perspectives on communities and organizations as environments for planners, designers, and policy analysts, and as objects of interventions. Organizational and community theories using case study materials from housing, health, urban design and development, and law. May count toward Humanities Requirement. Same subject as 11.448.

Y. Camyd-Freixas

11.013J American Urban History I
(Same subject as 21.412J)
Prereq.: —
U (1) HUM-D
3-0-6
Seminar on the history of institutions and institutional change in urban America from roughly 1890 to the present. Among the institutions considered are political machines, police departments, schools, courts, hospitals, prisons, welfare departments, and universities. Focuses on readings and discussions. May count toward Humanities Requirement.

R. M. Fogelson

11.014J American Urban History II
(Same subject as 21.413J)
Prereq.: —
U (2) HUM-D
3-0-6
Seminar on the history of selected features of the physical environment of urban America. Among the features considered are parks, cemeteries, tenements, suburbs, zoos, skyscrapers, department stores, supermarkets, and factories. May count toward Humanities Requirement.

R. M. Fogelson

11.015 Models and the Metropolis
Prereq.: 18.01, 18.02
U (1) SD Next offered 1985-86
3-0-9
The science in social science, thinking about complex systems. Making models, their contribution to knowing, their interplay with experiment, their place in deciding policy. Usually draws materials from problems in urban studies and planning but the local interests of the students can also be accommodated.

A. Fleisher

Urban Studies and Planning
11.016 Introduction to Technology and Environmental Analysis
Prereq.: — U (1) 3-0-6
Comparative analysis of technological impacts on natural resources and the environment. Case studies of oil drilling, coal mining, power plants, dams, agricultural, automobile, and architectural impacts on national and global air, water, land, plant, and animal resources and marine environments. Analytic frameworks include natural science, economic, political, problem solving, and design approaches. May count toward Humanities Requirement.
M. Klapp

Specialization in Environmental Planning

11.122 Environmental Policy and Regulation
Prereq.: — U (2) 3-0-9
Analyzes rationales for government intervention to protect the environment. Reviews policy instruments available to promote environmental quality including standards, taxes, marketable rights, and liability rules. Meets with 11.361. May count toward Humanities Requirement for undergraduates.
M. Klapp

11.123 Environmental Quality Assessment
Prereq.: 18.02 or 8.02; 11.016 U (2) SD Next offered 1985-86 3-2-7
The estimation of changes in the environment from human activities; qualities of the built environment; externalities and societal interventions, population interactions, and species diversity; relation of standards to technological capabilities, societal choice, and regulatory schema.
A. Fleisher

Specialization in Neighborhood and Community Planning

11.131 The Urban Neighborhood
Prereq.: — U (2) HUM-D 3-0-9
Covers theories, studies, and policy issues concerning the urban neighborhood. Reviews neighborhood theory from the neighborhood unit to neighborhood territoriality; examines methods for studying neighborhoods, including research design and participant observation. Considers issues of policy such as municipal decentralization, neighborhood abandonment, and maintaining public safety in the neighborhood. May count toward Humanities Requirement.
Y. Camayd-Freixas

11.139 Introduction to Community Development
Prereq.: — U (2) 3-0-6
Surveys basic policy issues surrounding community development. Lectures deal with actual community development activities in urban and rural settings. Overall strategy is to synthesize theories of development through use of actual cases. Material covered is especially relevant for students interested in planning practice. May count toward Humanities Requirement.
F. S. Jones

Specialization in Planning for Developing Countries

11.143 Urban and Regional Planning In Developing Countries
Prereq.: — U (2) 2-0-7
Problems of cities and regions in developing countries in relation to national economic and social development policies. Stresses case studies and comparative analysis. Requires paper. May count toward Humanities Requirement.
L. Rodwin

11.144 Urban and Regional Economic Issues in Developing Countries
Prereq.: 14.74 U (1) 2-0-7
Examines and analyzes a range of urban and regional problems in developing countries with emphasis on public policy. Discusses theoretical and methodological problems associated with the planning of balanced regional development, along with appropriate institutional arrangements for linking national and regional plans. Analyzes urban economic problems focusing on housing, public utilities, social services, transport, land use, and employment. May count toward Humanities Requirement.
A. M. Strout

Specialization in Public Policy, Urban Management, and Law

11.155 Law and Public Policy
Prereq.: — U (2) HUM-D 3-0-9
Introduces law, organized around the theme of how the law shapes, influences, and constrains the design and implementation of policy. Examines relationship between courts and line agencies. Analyzes how courts differ from other policy-making institutions. Includes basic legal research.
M. Wheeler

11.160J Design with Microclimate
(Same subject as 4.071J)
Prereq.: 8.01, 18.01 U (1) LAB 3-6-3
See description under subject 4.017J.
T. E. Johnson

Laboratories

11.185J Design Laboratory in Research Methods
Prereq.: Permission of Instructor U (2) LAB 2-5-5
Logic, processes, and techniques of applying social science to problem solving. Conducted as a laboratory. Students design and run experiments to check ideas, test hypotheses, and generate data. Interplay of model and experiment, in manipulation of numerical and categorical data, in exercise of various modes of inference, and in measurement of their worth. Several individual and group projects. Students must have taken at least one subject in statistics or probability before enrolling.
J. Ferreira, Jr.

Tutorials, Fieldwork, and Internships

11.191 Undergraduate Tutorial in Urban Studies
Prereq.: — U (1, 2) Arr.
Undergraduate research opportunities in Urban Studies and Planning. For further information consult the Departmental Coordinators.
P. L. Clay

11.192 Undergraduate Tutorial in Urban Studies
Prereq.: — U (2) 3-0-6

11.193 Preparation for Undergraduate Thesis
Prereq.: — U (1, 2) Arr.
Selects thesis subject, defines method of approach, and prepares preliminary thesis outline. Independent study, supplemented by frequent individual conference with staff members.
K. R. Polenske
Urban Studies and Planning

11.194 Special Topics in Urban Studies and Planning
Prereq.: —
U (1, 2) Arr.

11.195 Special Topics in Urban Studies and Planning
Prereq.: —
U (1, 2) Arr.

Small group study of special topics under staff supervision. For undergraduates wishing to pursue further study or fieldwork in specialized areas of urban studies or city and regional planning not covered in regular subjects of instruction.
K. R. Polenske

11.196 Urban Fieldwork and Internships
Prereq.: —
U (1, 2) Arr.

Practical application of city and regional planning techniques to towns, cities, and regions, including problems of replanning, redevelopment, and renewal of existing communities. Includes internships in municipal and state agencies and departments under staff supervision.
K. R. Polenske

11.197J State and Local Government Internships
(Same subject as 17.351J)
Prereq.: —
U (1, 2) Next offered 1985-86
3-0-9

See description under subject 17.351J.
M. W. Weinberg

Graduate Subjects

Core Subjects and Methods Modules

11.200 Planning and Institutional Processes
Prereq.: Permission of Instructor
G (1) 4-4-8

Basic paradigms and theories of planning practice. Evaluates historical and current developments in planning with special emphasis on the institutional setting of planning in American society. Lectures, case studies, and comparative analyses explore the changing roles of the planner and the key dilemmas in planning practice. Focuses on strategies of institutional intervention and implementation. Taught in conjunction with 11.210 and 11.220. Restricted to first year M.C.P. students.
P. L. Cley, L. C. Keyes, D. A. Schon

11.205 Comparative Planning and Institutions (New)
Prereq.: —
G (1) 4-4-8

Comparative analysis of various planner roles and varying institutional contexts, focusing especially on processes in third world countries. Particular issues, for example, centralization-decentralization, comprehensive vs incremental planning, cost-recovery, are used to focus the comparison of particular strategies of planning and implementation. Smaller class groups join in exploring special issues and problems.
L. Rodwin

11.210 Political Economy for Planners
Prereq.: Permission of Instructor
G (1) 4-2-6

Introduces political economy for planners, emphasizing economic institutions and structural analysis of standard economic theory and public policy grounded in that theory. Models of individual and aggregative economic behavior, institutional analysis of economic power, introduces Marxist political economy. Topics vary (e.g., poverty and discrimination, changing urban form, industrial location). Some recitation sessions in conjunction with 11.200 and 11.220. Restricted to first-year M.C.P. students.
B. Harrison

11.216 Writing for Public Policy and Planning
Prereq.: —
G (2) 2-1-1

Strategies for organizing and expressing ideas in writing. Students draft and redraft projects of their own choice while sharpening their awareness of the writing process through exercise and feedback. Techniques for structuring analytical presentations, making use of intuition, anticipating reader response, and editing for academic or professional audiences.
Limited to 15.
L. Dunlap

11.217 Bargaining and Negotiation
Prereq.: —
G (1) 2-1-1

Introduces methods and formal theory of bargaining and negotiation. Analyzes ways in which procedure, structure of bargaining situation, preferences of negotiators, and tactics of bargainers can lead to the success or failure of negotiations. Uses case study and gaming materials in class. Permission of instructor required.
L. E. Susskind

11.218 Fundamentals of Real Estate Financial Analysis (Revised Content)
Prereq.: —
G (2) 2-1-1

L. Sagalyn

11.219 Library Research Methods
Prereq.: —
G (1) 4-2-6

Teaches planning students skills needed to access library information while in school and later as practicing professionals. Problem-oriented; learn by doing. Class time spent discussing and practicing appropriate methodologies for researching specific topics of interest. Examples of resources covered: periodical indices, government documents, the U. Census, computerized literature searching, and the union catalogue.
R. Gregory
Urban Studies and Planning

11.220 Quantitative Reasoning and Statistical Methods for Planning
Prereq.: Permission of Instructor
G (1) 4-2-6

M. Schuster

11.222 Decision Analysis for Planning (Revised Unit)
Prereq.: 11.220
G (2) 2-1-2

Analytical approaches to decision making and policy analysis when uncertainty is a central issue. Emphasizes decision trees, preference measurement, social choice problems, and determining an appropriate level of formal analysis. Includes analysis and critique of planning cases.

J. Ferreira, Jr.

11.223 Graphic Methods for Analysis
Prereq.: --
G (1) 2-1-1

Module covers four basic techniques of visualization: drawing, photography, video, and visual design in print. Provides planning students with a condensed introduction to visual communication techniques and the issues surrounding their use. Class sessions devoted to presentations, lectures, and instruction.

G. A. Hack

11.224 Impact Assessment Techniques (A) (Revised Unit)
Prereq.: 11.220
G (2) 3-0-6

Methods for predicting and evaluating impact of development, stressing predictive techniques for use by public officials without formal training in quantitative methods. Uses both computer-based modeling and non-quantitative techniques as aids in evaluation of alternatives. Includes: traffic, fiscal, employment, and visual impacts.

P. B. Harr

11.226 Cost-Benefit Analysis for Planning
Prereq.: 11.220
G (1) 2-1-1

Module introduces students to the techniques of project analysis and to the strengths and weaknesses of cost-benefit analysis. Exercises provide practice in discounting, calculating rate of return, and calculating or applying shadow prices. Explores underlying rationales of various cost-benefit precepts and tools. Permission of instructor required.

A. M. Strout

11.227 Introduction to Computers in Public Management (Revised Unit)
Prereq.: 11.220
G (1) 2-1-2

Meets concurrently with the first six weeks of 11.521. Topics: database management, spreadsheet analyses, and decision support systems. See description under subject 11.521.

J. Ferreira, Jr., R. C. Larson

11.228 Survey Research Methods (Revised Content and Unit)
Prereq.: 11.220
G (2) 3-3-6

Covers survey and sampling design, instrument conceptualization, data collection and analysis, indices and scales, data representation techniques; includes telephone surveys, organization and administration of field work, ethics. Case critique method focuses on policy and theory-testing surveys, community needs and population estimation, attitudinal and political polls. Counts as two modules toward M.C.P. requirement. Advanced students should also consider 11.234.

Y. Camayd-Freixas

Intermediate Methods Subjects

11.230 Workshop in Institutional Analysis
Prereq.: 11.200
G (2) 4-0-8

Basic theories of institutional behavior, structure, and change for planners. Emphasizes institutions that directly affect the ability of planners to implement designs, policies, and development strategies. While students expected to demonstrate ability to work with fundamental conceptual frameworks in institutional theory, primary focus is on application of institutional perspectives to practice-related issues.

M. Schuster, D. A. Schon

11.232 Microeconomic Analysis for Planners (A)
Prereq.: 11.210, 11.231
G (2) 4-0-8

Systematic survey of microeconomic theory and mathematical methods used to develop that theory. For students of economic analysis skills — at an intermediate level. Teaches calculus and other mathematical tools in parallel with microeconomic theory. Emphasizes examples and applications of the theory to planning problems.

W. C. Wheaton

11.233 Qualitative Analysis in Public Policy and Planning
Prereq.: Permission of Instructor
G (2) 2-4-6

Uses of qualitative methods in exploring issues of public policy and planning. Interviewing and group papers. Analyzes the connection between qualitative analysis and broader issues of political economy. Topics selected each year. Research can be used in developing M.C.P. or Ph.D. thesis.

L. R. Peattie

11.234 Laboratory in Data Analysis for Planners (A)
Prereq.: 11.220 or 18.057
G (2) 3-6-3

Hands-on experience analyzing social science data of interest to planners using statistical computer packages. The methodological focus is on hierarchical models: regression and analysis of variance for metric data; and logit, ordit, and loglinear models for categorical data. Requirements include five short data analyses and a term paper.

A. Fleisher

Environmental Planning and Design

11.240 Images of Cities
Prereq.: --
G (2) 2-0-7

Covers: popular attitudes toward the city, metaphors and values that guide urban professionals’ thinking and that shape their work, the intellectual and the city, radicals’ views of the city, attitudes toward urban size and function, concepts of great and terrible cities, urban romanticism and anti-urbanism. Includes readings from literature, history, philosophy, and selected films. Open to qualified seniors as well as graduate students.

L. Rodwin

11.252 Legal Issues in the Development Process
Prereq.: Permission of Instructor
G (1) 3-0-9

Reviews land use law that provides the legal basis for regulation of the development process. Includes: contracting law, alternative forms of property ownership, and secured interests.

L. Bacow

11.301J Introduction to Urban Design and Development
(Same subject as 4.736J)
Prereq.: Permission of Instructor
G (1) 3-0-9

See description under subject 4.736J.

D. Frenchman
11.311J Environmental Programming Workshop (A) (Revised Content)
(Same subject as 4.745J)
Prereq.: Permission of Instructor
G (2)
3-0-9
See description under subject 4.745J. S. C. Howell

11.313J Urban Settlements in Developing Countries (A)
(Same subject as 4.753J)
Prereq.: Permission of Instructor
G (2)
3-0-6
Critically analyzes conflicting views on urbanization processes, squatters, and low-income housing policy. Alternative strategies with respect to: infrastructure, design and construction, land markets, financing, employment generation, building standards and regulations. Draws case materials of industrialized housing, aided self-help sites and services, and squatter and speculative settlements from capitalist, socialist, and mixed economies. L. R. Peattie

11.320 History of Urban America (Revised Content)
Prereq.: —
G (2)
3-0-6
Leaves and readings on urban America from roughly 1820 to the present. Focuses on the city as an arena in which social classes and ethnic groups struggle over distribution of wealth, power, and prestige. Includes: emergence of political machines; transformation of police, schools, and courts; regulation of land use; construction of roads, sewers, and rail transit; reforms in municipal finance; and changes in city-state and city-Federal relations. R. M. Fogelson

11.325 Understanding the Development Process (A)
Prereq.: 11.200
G (2)
4-0-8
Examines urban and suburban developments of varied size and complexity, emphasizing housing, using cases. Develops a conceptual framework which facilitates analyzing each development, and understanding the interrelationships between the disciplines involved, the impact of policies chosen and their implementation over a period of time. F. S. Jones

11.326J Community, Class and Race: A Social Perspective (A)
(Same subject as 4.766J)
Prereq.: —
G (2)
3-0-6
See description under subject 4.766J. E. Robbins

11.330J Theory of City Form (A)
(Same subject as 4.747J)
Prereq.: 4.796J or 11.301J
G (2)
3-0-9
See description under subject 4.747J. J. Behnart

11.331J International Cases in Urban Planning and Design (A)
(Same subject as 4.763J)
Prereq.: Permission of Instructor
G (2)
3-0-6
See description under subject 4.763J. J. de Monchaux

11.332J Urban Design (A)
(Same subject as 4.163J)
Prereq.: Permission of Instructor
G (2)
3-0-9
Arr.
See description under subject 4.163J. D. Frenchman

11.333 Urban Aesthetics
Prereq.: —
G (1)
3-0-9
Focuses on the form and meaning of the urban landscape, its role in communicating about its inhabitants, popular visions of the beautiful cities, programs which have tried to improve city appearance and their results. Legal, economic, and cultural issues in improving the appearance of urban areas. G. A. Hack

11.334 Environmental Ecology and Natural Resource Management
Prereq.: —
G (2)
3-0-6
Analyses scientific and engineering information for purposes of setting environmental standards and regulatory policy. Issues include differences among ecological, engineering, and economic models; measurement, assessment, and certainty; sufficient expertise; information access and overload; and extrapolation from poor or biased data. Cases cover multiple-use, siting, pollution, and design problems. M. Klapp

11.335J Cities of Tomorrow (A) (New)
(Same subject as 4.748J)
Prereq.: Permission of Instructor
G (1)
3-0-6
Research seminar on the future of urban design to focus on developing a realistic projection of the organization, function, and form of cities, based on an analysis of contemporary trends. Review of historical efforts in the tradition of predicting urban change. Analysis of contemporary urban design projects and proposals. Supplemented by readings and speakers in parallel fields likely to have impact on urban form, including: information processing, communications, entertainment. D. Frenchman

11.336J Site Analysis and Planning
(Same subject as 4.726J)
Prereq.: Permission of Instructor
G (2)
1-8-3
Considers the physical relationship of development to its site and context and includes methods of site evaluation, feasibility studies, site improvements, infrastructure requirements, and site planning techniques. G. A. Hack

11.337J Implementation Strategies for Urban Design (New)
(Same subject as 4.746J)
Prereq.: Permission of Instructor
G (1)
Arr.
Focuses on the means, methods, and tools for achieving urban design objectives and complementary projects. Reviews classic and contemporary problems faced by the profession and strategies utilized to resolve them, such as: new town development, downtown revitalization, neighborhood preservation, and transportation development. Includes: public finance and development, zoning and land-use control, development incentives, innovative public and private partnerships. D. Frenchman

11.360 Community Growth and Land Use Planning
Prereq.: —
G (1)
3-0-6
Seminar and fieldwork on applying methods of planning and control for growth and land use. Approaches to the design of intervention strategies, chiefly at the municipal level, discussing growth and its local consequences, land use planning approaches, implementation tools including zoning, subdivision controls, infrastructure systems, and fiscal techniques. Projects arranged with students as small teams serving municipal clients. P. B. Herr

11.361 Environmental Policy and Regulation (A)
Prereq.: 11.210 or 14.01
G (2)
3-0-9
See description under subject 11.122. M. Klapp
11.362 Land Use and Environmental Policy Implementation (A)
Prereq.: 11.360
G (2) 3-0-6
Analyzes national, state, and regional efforts to plan for the allocation and use of land resources in the US. Discussions focus on strengths and weaknesses of traditional planning and regulatory mechanisms. Political obstacles to plan implementation and strategies for citizen participation in land use policy making receive special attention. Students prepare in-depth case studies of land use policy reforms and policy implementation strategies.
L. E. Suskind

11.354 Environmental Dispute Resolution
Prereq.: Permission of Instructor
G (1) 3-0-6
Introduces methods and formal theories of negotiation, mediation, and compensation as techniques to resolve environmental disputes. Examines ten current EPA cases involving rule making, permitting, and enforcement. Includes disputes over power plant siting, energy conversion from oil to coal, and sewage treatment standards. Considers specific bargaining tactics and their strategic implications.
L. Bacow

11.365J Coastal Zone Management (A)
(Same subject as 13.98J)
Prereq.: Permission of Instructor
G (2) 3-0-6
See description under subject 13.98J.
J. T. Kildow

11.367 The Politics of Development (A)
(New)
Prereq.: Permission of Instructor
G (2) 4-0-6
Analysis of development in a political context. Includes: interest group politics, the politics of public approvals, impact of development on neighboring groups, public-private partnerships.
L. Bacow, B. Frieden

11.368 Community Energy Planning (New)
Prereq.: Permission of Instructor
G (2) 3-0-6
Introduces concepts and strategies of community energy planning at scales ranging from buildings to metropolitan areas. Reviews financing and policy incentives useful to public authorities. Case studies and approaches for conservation and energy supply, including district heating, resource recovery, zoning for daylighting, and appropriate technologies. Analyzes experiences of successful city and neighborhood programs. Provides basic technological literacy and skills for energy analysis. Focuses on the US and reviews experiences from abroad.
P. B. Herr, M. Joroff

11.370 Theories of Settlement Patterns
Prereq.: —
G (2) 3-0-6
Examines locational theories and empirical evidence related to human settlement patterns and associated phenomena. Includes the spatial location of regional growth, size distribution of cities, migration patterns, area location of economic and noneconomic activities and gravity modeling of spatial flows of goods and services. Requires an analytical term paper or empirical project.
A. M. Strout

11.380J Urban Transportation Planning (A)
(Same subject as 1.252J)
Prereq.: Permission of Instructor
G (2) 3-0-6
See description under subject 1.252J.
R. A. Gakenheimer

11.384J Transportation and Infrastructure in Developing Countries (A)
(Same subject as 1.254J)
Prereq.: Permission of Instructor
G (1) 3-0-6
Analysis and planning for transportation, water supply, sewerage, and other services in developing countries, especially urban areas. Major policy and planning issues in growth and rehabilitation of systems. Political and cultural factors in service decision making. Institutional arrangements, coordination with other sections, integration of planning and programming. Overview of technical methods: demand analysis, technology tradeoffs, evaluation procedures, simple policy analysis techniques, management information systems.
R. A. Gakenheimer

Community and Economic Development

11.410J Urban Economic Analysis I (A)
(Same subject as 1.283J, 14.573J)
Prereq.: 14.04 or 14.03
G (1) 3-0-9
Patterns and processes of growth and structural change within metropolitan areas. The land use market, spatial structure of the metropolitan community, and the transportation system. Congestion, indivisibilities, and optimal pricing and investment policies. Analyzes modal demand. Models of the metropolis and the transport system. Relationships between the housing market and the transport network.
W. C. Wheaton

11.411J Urban Economic Analysis II (A)
(Same subject as 14.574J)
Prereq.: 11.410J
G (2) 3-0-9
See description under subject 14.574J.
J. Rothenberg

11.413 Social Aspects of Development (A)
Prereq.: Permission of Instructor
G (1) 2-0-7
Seminar discusses the social and cultural aspects of economic development and planning in developing countries. Considers strategies with respect to urban growth, city planning, education, family policy in the context of issues of choice as to the general path of development, linking "social issues" with their technical, economic, and institutional parameters.
L. R. Peattie

11.417J Planning in Socialist Countries (A)
(Same subject as 4.767J)
Prereq.: Permission of Instructor
G (1) 3-0-6
Introduces political economy of development strategies of the USSR, Eastern Europe, Yugoslavia, People's Republic of China, and Cuba. Examines significant debates leading to or emerging from experiences with three approaches to planning: administrative, indicative, and participative. Emphasizes links between physical, economic, and social planning, as well as between planning, design, and building. Requires participation in study groups.
R. Bon, K. R. Polenske

11.420J Neighborhood Planning (A)
(Same subject as 4.743J)
Prereq.: 11.200, 11.210, 11.220; or 4.144
G (2) 3-0-6
Techniques of neighborhood planning. Class organized around issues commonly faced by planners working at the neighborhood scale. Professional techniques: how to define information needs; how to get and use the data; mapping; zoning; surveying physical conditions; and resident attitudes and behavior; alternative methods of allocating resources among neighborhood units; approaches to citizen involvement.
P. L. Clay

11.431 Real Estate Finance and Investment (A)
Prereq.: 11.218
G (1) 4-0-8
Basic techniques for analyzing the financial feasibility of real estate investments. Includes: cash flow and appraisal analysis, capital budgeting, tax considerations, debt and equity financing, and deal structuring.
L. Sagayn

11.432 Urban Land Development (A)
Prereq.: 11.431, 11.450
G (2) 2-0-7
Management problems involved in developing many kinds of real estate, ranging from multifamily housing, office buildings, hotels and motels, to shopping centers, industrial parks, residential subdivisions, recreational facilities, urban renewal projects, and new towns. Ap-
proaches real estate as a commodity determined by market and demographic forces and subject to unique financial requirements. Consider optimal use and price of land, market demand for kind of space developed, design and type of structure, the framework of zoning and building codes, minimum rent levels.

P. David

11.433 Market Analysis for Development Projects (A) (New)

Prereq.: 14.01 G (2) 3-0-6

Focuses on developing an understanding of the factors that shape and influence markets for real property. Includes: demographic analysis, patterns of regional growth, business cycles, modeling techniques for predicting demand, and marketing of completed properties.

W. C. Wheaton

11.435 Introduction to Economic Development Planning in the US (A)

Prereq.: 11.210 or 14.64 or 14.671 or 14.74 G (2) 3-0-6

Theoretical foundations of economic development processes in capitalist economies. Dependent development and internal colonialism. History of economic development policy in the US since the New Deal. Interregional/international conflicts over development policy. Critical assessment of plans for community economic development, city or state-level programs, national policies for "reindustrialization."

B. Harrison

11.436 Labor Markets and the Organization of Work (A)

Prereq.: 11.210 or 14.01 G (1) 3-0-6

Neoclassical and Marxian economic theories of labor market structure: human capital, screening and credentialism, queueing, dual/segmented markets, labor theory of value, and occupational stratification by race and gender. Issues in measurement and policy evaluation. Development since the 19th century of theories about the changing organization of work (the "labor process").

B. Harrison

11.437 Financing Community Economic Development

Prereq.: —

G (2) 3-0-9

Examines role of capital in the economic development process, capital access problems of small, minority, and community-based businesses, and government options for overcoming these problems. Emphasizes role and operation of public-sector finance institutions. Presents and critiques case studies of interventions by development finance agencies. Student projects analyze either a specific intervention or the operation of a particular agency.

B. Daniels

11.438 Job Creation and Economic Development (New)

Prereq.:

G (2) 3-0-6

Explores the process by which jobs are created, and traces through the implications for the labor force and for economic development in general. Deals with job generation generally, location decisions, special forms of enterprise (minority, women, high tech), international comparisons, future predictions, and the implications for Federal, state, and local governments.

D. Birch

11.441 Issues and Strategies in Community Development (Revised Unit)

Prereq.:

G (1) 3-0-6

Current issues in community development: tactics, experiences, alternative strategies. Primarily for those in the Community Fellows Program; others admitted by permission of instructor.

M. H. King, Y. Camay-Freixas

11.442 Seminar in Community Development (Revised Unit)

Prereq.:

Permission of Instructor G (2) 3-0-6

Continuation of 11.441. Discusses and analyzes case studies presented by Community Fellows. Emphasizes preparation of written reports. Permission of instructor required.

M. H. King, Y. Camay-Freixas

11.445 Community Development in Urban Neighborhoods

Prereq.: Permission of Instructor G (2) 3-0-6

Politics of community-oriented economic development, focusing on minority areas of large cities. The problems of increasing political and economic power of ghetto residents.

M. H. King

11.446 Social and Demographic Aspects of Public Policy in Urban Communities (A)

(11.514)

Prereq.: Permission of Instructor G (1) 3-0-6

Focuses on the social structure differentiation and metropolitan communities. Helps students understand issues of program design and public policy and community development that have a territorial basis. Gives special attention to impact of demographic changes on the nature of housing demand. While the class focuses on housing, much of the material is generic to public policy analysis in substantive areas in which social structure must be taken into account.

P. L. Clay

11.448 Systems and Networks in Neighborhood Planning (Revised Unit)

Prereq.:

G (2) 2-2-5

Introduces "systems thinking" and provides grounding on social system and network theory. Covers methods of analysis and intervention strategies in neighborhoods, applied to organizational assessment and planned change; building collaborative human services networks; community organizing; and development planning. Serves as human services core course in the Community Development specialization. Same subject as 11.012.

Y. Camay-Freixas

11.450 Housing issues and Policy

Prereq.:

G (1) 2-0-7

Introduces housing issues and public policy. Focuses on the interdisciplinary nature of the field — the social, physical, economic, and political components. Readings, lectures, and class discussions give students a working familiarity with the elements of the housing system, a sense of current policy issues, and historic context from which those policies have emerged.

L. C. Keyses

11.451 Housing Practicum (A)

Prereq.: 11.450 G (2) 4-0-6

Focuses on actual housing problems in conjunction with a governmental or community client. Collaborative interaction with other students and client provides an opportunity to develop and apply professional planning skills. While topic changes from year to year, issues of housing management, public housing design, neighborhood revitalization, and financing strategies are likely to be emphasized.

P. L. Clay

11.452 Housing Analysis and Public Policy (A)

(11.562)

Prereq.: 11.210, 11.450 G (2) 2-0-7

Economic and institutional factors affecting housing with applications to policy analysis. Reviews housing concepts, market dynamics, impacts of racial discrimination on market behavior. Examines different modes of housing policy: tenure choice, market segmentation, and distribution analysis. Evaluates several modes of intervention — tax expenditures, regulation, credit aids — using examples of Federal, state, and local government housing policy.

L. Sagalyn
11.461 Planning and Urban and Regional Growth in Developing Countries (A)

Prereq.: 11.210

G (1)

Arr.

Examines ideas of planning in relation to urban growth issues and policy options. Covers problems of diagnosis and implementation of these policy options mainly in Third World countries; and technical and political, national and sub-national, sectoral and intersectoral, and rural and urban aspects of these problems. Requires extended readings and paper. L. Rodwin

11.462 Housing Problems, Goals, and Policies in Developing Countries

Prereq.: —

G (2)

2-0-7

Focuses on how the definition of housing problems and goals affect design and management of national policies and handling of issues related to land taxation, financing, building processes, self-help, tenure, and existing stock of housing. Concerned with price and subsidy policy and linkages between housing and national development strategies. Examined from several standpoints, including the paradigms of the mixed economy and of Marxism. L. Rodwin

11.466 The Implementation of Metropolitan Planning in Developing Countries

Prereq.: Permission of Instructor

G (2)

3-0-9

Emphasizes techniques for management and guidance of housing programs and land occupancy and their effects on development and equity in developing countries. Roles of urban planning in developing countries. Analyzes cases of planning and decision making, the study of "terms of relevance" for planning services, and the programming of urban infrastructure. Conducted jointly with Harvard School of Design. H. A. Gakenheimer

11.468 Regional Economic Accounts, Theories, and Techniques (A)

Prereq.: 14.03, 14.04

G (2)

3-0-9

Surveys the basic accounting frameworks, theories, and techniques used in regional and multiregional economic analyses. Emphasizes the aspects of each relevant to their use in program impact and distribution studies. Uses problem sets to illustrate the different accounts, theories, and techniques. K. R. Polenske

11.482 Research Seminar on Public Infrastructure (A)

Revised Unit

Prereq.: Permission of Instructor

G (1)

3-0-9

Seminar covers development and application of analytical and accounting techniques for the planning and evaluation of public infrastructure. Four broad analytical areas are reviewed: capital budgeting, fiscal capacity, assessment of current facilities and future needs, evaluation, and planning of infrastructure. Each area is discussed in the domestic and the international context.

K. R. Polenske

11.483 Theories of Political Economy and Planning for Developing Countries (A)

Revised Content and Unit

Prereq.: Permission of Instructor

G (2)

3-0-9

Examines ideas of planning in relation to urban-rural and national economic issues. Examines theory of development and planning of infrastructure. Each area is discussed in the domestic and the international context.

K. R. Polenske

11.484 Social Cost-Benefit Analysis of Projects and Programs

Prereq.: —

G (1)

3-3-6

Practical introduction to theory and practice of project analysis and evaluation. Develops basic quantitative skills through case study or practice. Problem-solving emphasis on cost and benefit valuation (both economic and non-economic) and on considerations of time, space, scale, externalities, multiple-objectives, risk and uncertainty, and indirect benefits and costs. Examines various institutional settings and practical influences of analytical procedures or project design and selection.

A. M. Strout

11.485 Rural Development: Agriculture and Industry in the Regional Context

Prereq.: —

G (2)

2-0-7

Role of nonmetropolitan, largely rural areas in regional development and problems of ensuring that rural development leads to equitable improvements in rural welfare. Examines agricultural growth and transformation and the prospects for rural industrialization, largely in the developing countries. Social and political as well as economic aspects of rural development. Considerable student participation, especially in working with case study materials from Africa, Latin America, Asia and, occasionally, from the US or Europe. Consult A. M. Strout.

11.487 Practicum in Area Planning for Developing Countries (A)

Prereq.: 11.461, 11.413, 11.481

G (1)

4-4-8

Focuses on actual area planning problems in conjunction with an international planning and development agency or a client group in one of the developing countries. Collaborative interaction with other students and clients provides an opportunity to develop and apply professional planning skills. Topics change yearly but may include issues of development, regional growth strategies, urban-rural relations. Permission of instructor required. Consult A. M. Strout.

Public Policy

11.500 Introduction to Public Policy and Management (Revised Unit)

Prereq.: —

G (1)

3-1-6

J. Ferreira, Jr.

11.503 Implementation (A)

Prereq.: 11.200, 11.230 or TPP 11J, TPP 12J

G (2) Next offered 1985-86

2-0-7

Explores problems of implementation by comparing case studies and contemporary theories. Examines four theories of why programs fail: ineffective management control; inherent resistance to change in bureaucracies; poor negotiation with interest groups; inadequate interpersonal relations among implementors. Emphasizes building useful guidelines for reform; students consider strategies in light of their professional practice. Same subject as 11.004.

K. R. Polenske

11.506 Theory of Action Seminar (A)

Prereq.: 11.230

G (2)

3-3-3

Students examine their theories of intervention. Discusses theories of action drawn from the work of Argyris and Schon, Vickars, Bate, Simon, and others. Students prepare cases of own actual past or proposed future interventions and then examine them in terms of the frameworks suggested above. Sessions on the analysis and criticism of student scenarios, and practice in discovering, inventing, and producing alternative interventions. Permission of the instructor required.

D. A. Schon
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prereq.</th>
<th>Credits</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.507</td>
<td>Seminar on the Uses of Knowledge for Public Action (New)</td>
<td>—</td>
<td>4-0-8</td>
<td></td>
</tr>
<tr>
<td>11.510</td>
<td>Seminar on Sociological Aspects of Policy Research</td>
<td>—</td>
<td>3-0-6</td>
<td></td>
</tr>
<tr>
<td>11.515</td>
<td>Urban Public Finance and Intergovernmental Relations (A) (Revised Content)</td>
<td>11.210, 11.200</td>
<td>4-0-8</td>
<td></td>
</tr>
<tr>
<td>11.516</td>
<td>Public Expenditure and Program Budgeting (New)</td>
<td>11.515</td>
<td>3-0-9</td>
<td></td>
</tr>
<tr>
<td>11.520</td>
<td>Policy Analysis of Social Service Systems (A)</td>
<td>11.210, 11.220</td>
<td>3-0-6</td>
<td></td>
</tr>
<tr>
<td>11.521</td>
<td>Computer-Based Analysis for Public Management I (A) (Revised Content and Unit)</td>
<td>—</td>
<td>3-2-7</td>
<td></td>
</tr>
<tr>
<td>11.522</td>
<td>Computer-Based Analysis for Public Management II (A) (New)</td>
<td>11.521</td>
<td>3-2-7</td>
<td></td>
</tr>
<tr>
<td>11.523</td>
<td>Evaluation of Public Programs (A)</td>
<td>11.521</td>
<td>2-0-7</td>
<td></td>
</tr>
<tr>
<td>11.540</td>
<td>Practicum on Public Management and Policy I (New)</td>
<td>Permission of Instructor</td>
<td>3-0-9</td>
<td></td>
</tr>
<tr>
<td>11.541</td>
<td>Practicum on Public Management and Policy II (New)</td>
<td>11.540</td>
<td>3-0-9</td>
<td></td>
</tr>
<tr>
<td>11.550</td>
<td>Conflict, Dispute Resolution, and Negotiation in the Public Sector</td>
<td>11.200, 11.230</td>
<td>3-0-6</td>
<td></td>
</tr>
<tr>
<td>11.551</td>
<td>Comparative Issues in Planning</td>
<td>—</td>
<td>2-1-1</td>
<td></td>
</tr>
<tr>
<td>11.800</td>
<td>Doctoral Seminar I (A)</td>
<td>Permission of Instructor</td>
<td>3-0-9</td>
<td></td>
</tr>
<tr>
<td>11.801</td>
<td>Doctoral Seminar II (A)</td>
<td>Permission of Instructor</td>
<td>3-0-9</td>
<td></td>
</tr>
<tr>
<td>11.803</td>
<td>The Theory and Practice of Planning</td>
<td>11.200</td>
<td>3-0-9</td>
<td></td>
</tr>
</tbody>
</table>

Doctoral Seminars

<table>
<thead>
<tr>
<th>Prereq.</th>
<th>Credits</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advanced seminar for masters and doctoral students. Historical and comparative analyses of the best known plans, planners, and planning theories in the US and Europe. Reviews and critiques prevailing approaches to practice. Analyzes planning successes and failures at local, metropolitan, and regional levels. Emphasizes the persistent gap between theory and practice. Departmental students only. Enrollment limited to 15. Permission of instructor required.

M. Rein, R. C. Larson
11.850 Social Research Methods

Prereq.: --
- G (2)
- 3-0-9

Introduces methods and process of social research. Explores various methods — surveys, case studies, comparative research, social area analysis. Emphasizes development of research designs, selection of appropriate methods, and use of primary and secondary data. For Ph.D. students or permission of instructor required.

P. L. Clay, J. Ferreira, Jr.

11.900 Doctoral Proseminars (A)

Prereq.: Permission of Instructor
- G (1, 2)
- Arr.

Designed primarily for advanced doctoral candidates. A selection of Proseminars is offered each year for groups of students affiliated with the various research clusters in the Department.

G. A. Hack

Tutorials, Research, and Fieldwork Subjects

11.901 Research Seminar: Topics in Urban Studies and Planning (A)

Prereq.: Permission of Instructor
- G (1)
- 3-0-6

11.902 Research Seminar: Topics in Urban Studies and Planning (A)

Prereq.: Permission of Instructor
- G (2)
- 3-0-6

Special research issues in urban planning selected each term for special study. Open to graduate students with permission of instructor.

G. A. Hack

11.911 Reading Seminar in Urban Studies and Planning (A)

Prereq.: Permission of Instructor
- G (1)
- Arr.

11.912 Reading Seminar in Urban Studies and Planning (A)

Prereq.: Permission of Instructor
- G (2)
- Arr.

Reading and discussion of special topics in urban studies and planning.

G. A. Hack

11.932 Preparation for Thesis (A)

Prereq.: --
- G (1, 2)
- Arr.

G. A. Hack

11.941-11.948 Special Studies in Urban Studies and Planning (A)

Prereq.: --
- G (1, 2)
- Arr.

Small group study of advanced subjects under staff supervision. For graduate students wishing to pursue further study in advanced areas of urban studies and city and regional planning not covered in regular subjects of instruction.

G. A. Hack

11.962 Urban Fieldwork and Internships (A)

Prereq.: Permission of Instructor
- G (1, 2)
- Arr.

Practical application of planning techniques to towns, cities, and regions, including problems of replanning, redevelopment, and renewal of existing communities. Includes internships in municipal and state agencies and departments under staff supervision.

G. A. Hack

11.961 Graduate Tutorial

Prereq.: --
- G (1)
- Arr.

11.982 Graduate Tutorial

Prereq.: --
- G (2)
- Arr.

Planned programs of individual instruction. Students and faculty members must make arrangements prior to the beginning of the term.

G. A. Hack
Undergraduate Subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.012</td>
<td>Sedimentary Processes: Glaciers</td>
<td>Prereq.: 12.01; U (2) Next offered 1985-86</td>
<td>1-0-3</td>
</tr>
<tr>
<td>12.013</td>
<td>Sedimentary Processes: The Wind</td>
<td>Prereq.: 12.01; U (1) Not to be offered 1985-86</td>
<td>1-0-3</td>
</tr>
<tr>
<td>12.014</td>
<td>Sedimentary Processes: Coastlines</td>
<td>Prereq.: 12.01; U (2) Not to be offered 1985-86</td>
<td>1-0-3</td>
</tr>
<tr>
<td>12.016</td>
<td>Sediments and Sedimentary Rocks (Revised Unit)</td>
<td>Prereq.: 12.01; U (2)</td>
<td>2-2-5</td>
</tr>
</tbody>
</table>

12.01 Geologic Processes, Features, and History

Prereq.: —

3-4-5

Introduction to geological processes, structures, and their relationship observable in the field. Geologic time scale, dating of rocks by fossil and radiometric methods. Development of landforms by moving water, wind, and ice. Crustal processes and evolution in terms of global plate tectonics; surveys geologic history of the continents. Laboratory work on geologic mapping techniques. Two non-required weekend days of field trips. J. B. Southard

12.03 Structural Geology

Prereq.: —

3-5-6

Introduces mechanics of rock deformations. Discusses and interprets faults, folds, structural features of igneous and metamorphic rocks, and superposed deformations. Introduces regional structural geology and tectonics. Laboratory includes techniques of structural analysis, recognition and interpretation of structures on geologic maps, and construction of interpretive cross sections. B. C. Burchfiel

12.043J Introduction to Mining and Mineral Technology

(Same subject as 1.384J, 2.742J, 3.095J)

Prereq.: —

U (1) 3-0-6

See description under subject 3.095J. J. F. Elliott, R. G. Burns, H. H. Einstein, C. R. Peterson

12.051 Field Geology I

Prereq.: 12.02, 12.03

U (1) 2-2-2

Introduces techniques of geological field study. Several weekend field exercises provide practical experience in preparation for 12.052. Presents in addition some introductory material on the regional geology of the locale of 12.052. B. C. Burchfiel
During January, methods of modern geological field study during an intensive four-week excursion. Exercises include geological mapping on topographic and photographic base maps, correlating geochemical and geophysical field measurements with geology, examining and sampling a wide variety of geological features. Following term includes: 1) preparation of reports based on field studies conducted during January, and 2) laboratory analysis of samples, interpretation of geological, geophysical, and geochemical data.

B. C. Burchfiel

12.061 Petrology I
Prereq.: 12.02
U (1)
3-6-3

T. L. Grove, F. S. Spear

12.062 Petrology II
Prereq.: 12.061
U (2)
3-6-3
Continuation of 12.061. Introduces mineral facies concept and graphical representation of metamorphic mineral associations. Petrographic examination of metamorphic rocks in thin section. Interpreting metamorphic rock paragenesis through application of experimental petrology to natural rock systems. Relationship of metamorphic rock associations to plate tectonic environment. One day field trip.

F. S. Spear, T. L. Grove

12.066 Analysis of Geological Materials
Prereq.: 12.02
U (2) LAB
2-6-4
Determines the chemical composition of geologic materials. Analytical techniques include X-ray fluorescence, neutron activation, atomic absorption, mass spectrometry, electron microprobe, experimental petrology, Mössbauer, and other absorption spectral methods. Laboratory projects utilize these techniques to solve specific geologic problems. Limited to 12.

12.069-12.094 Special Problems
Prereq.: —
U (1, 2)
Arr.
Reading, laboratory, or fieldwork in Earth, Atmospheric, and Planetary Sciences. Requires written report.
Staff

12.095 Teaching Earth and Planetary Sciences
Prereq.: Permission of Instructor
U (1, 2)
Arr.
For undergraduate students with appropriate course experience to assist in laboratory and classroom teaching, or in the composition and grading of outside assignments, under faculty supervision. Available positions listed in department headquarters well before the start of each semester. Students selected by interview. Pass/fail subject.
Staff

12.101 Physics of the Earth
Prereq.: 8.03, 18.03
U (1)
3-0-9
Surveys the earth's interior, thermal regime, composition, structure, elastic and inelastic properties, equation of state as revealed by physical measurements on the surface and on laboratory samples. Reviews results of heat flow, seismology, earth gravity and magnetism, high-pressure geophysics and regional geophysics.

G. Simmons

12.105 Introduction to Field Geophysics (Revised Unit)
Prereq.: 18.03
U (1) Not to be offered 1985-86
3-3-3
Introduces geophysical field techniques and instruments. Describes seismic, gravity, magnetic and electrical methods and instruments. Some local field trips on weekends to test these techniques. For students with no experience in field geophysics.

P. Molnar, T. R. Madden

12.106 Geophysics Field Study
Prereq.: 12.105
U (J, 2) Not to be offered 1985-86
Arr.
Applies geophysical field techniques and data interpretation to studying crustal structure and geological problems. Intensive four-week field measurements in snow-free area during January, and interpretation of data during spring term. Fieldwork includes seismic, gravity, magnetic and electrical measurements, and geological studies. Data interpretation includes data reduction and computer modeling to determine structure and properties of the field area.

P. Molnar, T. R. Madden

12.107 Introduction to Geophysics (12.581)
Prereq.: 8.02, 18.03
U (1)
3-0-9
Survey course in geophysics aimed at earth science undergraduates or students from other departments interested in the applications of math and physics in studying the interior of the earth. Includes: gravity (shape of the earth, isostasy, mass anomalies, earth tides), seismology (body waves, surface waves, earthquake sources, normal modes), geomagnetism (main field, secular variation, magnetic induction, rock magnetism), heat budget (radioactivity, heat flow, temperature structure), and geodynamics.

M. McNutt

12.113 Astronomy: Stars and Galaxies (Revised Unit)
Prereq.: —
U (2) SD
3-0-6
An introduction to stellar and galactic astronomy, emphasizing the underlying physical principles. Includes: astronomical instruments; radiation laws and stellar spectra; physical properties of stars; stellar structure and evolution; supernovae, pulsars, neutron stars, and black holes; the interstellar medium; star clusters and galactic structure; galaxies and quasars; cosmology. Trips to Wallace Observatory.

L. M. French

12.114 Astronomy: Solar System (Revised Content and Unit)
Prereq.: —
U (1) SD
3-0-6
Introduction to the study of the solar system. Emphasizes directed toward basic principles rather than mathematical or physical details. Includes: simple celestial mechanics, terminology of distances and magnitudes, optical properties of planets and satellites, planetary geology, interiors of the terrestrial and giant planets, magnetic fields, planetary atmospheres, comets and asteroids, solar physics and the formation of the solar system. Trips to Wallace Astrophysical Observatory.

D. C. Jewitt, S. C. Solomon
12.115J Dynamical Astronomy
(Same subject as 8.293J)
Prereq.: 18.03
U (2) SD
3-0-9
See description under subject 8.293J.
C. C. Counselman

12.117J Observational Techniques of Optical Astronomy
(Same subject as 8.287J)
Prereq.: One subject in Astronomy or Astrophysics
U (1) LAB
3-4-5
See description under subject 8.287J.
J. L. Elliot, L. M. French

12.118 Project in Optical Astronomy
Prereq.: 12.117J
U (J, 2) Next offered 1985-88
Arr.
Students select an observing project to be carried out at one of MIT's observatories or another facility, depending on telescope and instrument scheduling constraints. Regular seminar meetings discuss the observations, data analysis, and interpretation of the results. Requires a written report on the project. Permission of instructor.
L. M. French, J. L. Elliot

12.131J Planetary Science I
(Revised Content)
(Same subject as 8.291J)
Prereq.: 8.03, 18.03
U (1) SD
3-0-9
Study of the solar system with emphasis on the physical interpretation of its properties. Comprehensive overview of the solar system; accretion of the planets; solar system dynamics with applications to planetary orbits and rings; physics of comets, asteroids, and the interplanetary medium.
C. C. Counselman, D. C. Jewitt, J. L. Elliot

12.132J Planetary Science II
(New)
(Same subject as 8.292J)
Prereq.: 12.131J or 8.291J
U (2) SD
3-0-9
Study of the solar system with emphasis on the physical interpretation of its properties. Impact, volcanic, and other surface processes on planets and satellites; thermodynamics, convection and magnetic fields in planetary interiors; dynamical, radiant, and chemical properties of planetary atmospheres.
D. C. Jewitt, G. H. Pettengill

12.20 Environmental Chemistry of the Ocean-Atmosphere System
Prereq.: 5.03, 8.03
U (1) Next offered 1985-86
3-0-9
J. M. Edmond, R. E. Newell

12.21 Physics of the Ocean
Prereq.: 8.03, 18.03
U (2) SD
3-0-9
Introductory survey of oceanic circulation and dynamics. Descriptive aspects of water mass movement, currents, and physical properties of the ocean. Dynamic models of currents and waves based on fundamental physical principles.
G. R. Flierl

12.221-12.229 Project Studies in Oceanography
Prereq.: —
U (1, 2)
Arr.
Extended participation in work of a research group, including independent study of the literature, direct involvement in group's research (commensurate with student's skills and preparation), or project work under an individual faculty member extending over more than one term. Admission by arrangement with individual MIT and Woods Hole faculty members.
Staff

12.23 Environmental Chemistry: Human Impact
(New)
Prereq.: 5.60 or 10.13
U (1)
3-0-9
An examination of these current problems in environmental chemistry: 1) acid rain, 2) chlorofluorocarbons and ozone, and 3) carbon dioxide and climate, introducing the basic relevant principles and concepts in biogeochemistry, marine chemistry and physics, and atmospheric chemistry and physics. An introduction to environmental chemistry for students in basic sciences and engineering. One or two field trips with instrumental analysis of environmental parameters are planned.
R. G. Prinn, E. A. Boyle

12.24 Topics in the Physics of Atmospheres and Oceans
(New)
Prereq.: 8.03, 18.03
U (1)
3-0-9
Representative problems in meteorology and physical oceanography selected to illustrate the scientific methods and principles used in these fields. Includes: the evolving view of extratropical cyclones, the general circulation of the oceans, tides, predictability, El Niño and the Southern Oscillation, and the impact of changes in solar constant on climate. Primarily for juniors and seniors.
P. H. Stone, Staff
Graduate Subjects

12.33 Petroleum Geology
Prereq.: Permission of Instructor
G (1, 2) 3-0-6

12.34 Mineral Deposits
Prereq.: Permission of Instructor
G (1, 2) 3-0-6
Geological occurrence of the principal types of mineral deposits. Description of important examples in each category, together with examination of the ores. Modern hypotheses of origin of deposits and of metallogenic provinces. Discussion of relationships with plate margins. Taught by Crosby Visiting Professors. Consult Department headquarters.

12.355 Seminar in Rock Mechanics (A)
Prereq.: —
G (1, 2) 2-0-4
Discussion of current research or advanced topics in continental tectonics, rock mechanics, or experimental structural geology. W. F. Brace, J. B. Evans

12.37 Stresses in the Crust (A)
Prereq.: 12.03
G (1) 3-0-6
Reviews observed failure conditions for fracture and friction of rocks at crustal pressure and temperatures. Measurement of in situ stress in drill holes and surface outcrops. Use of active faulting, orientation of plutons, and fault plane solutions to infer stress directions. For regions where many measurements are available, comparison with stresses deduced from plate motions and plate geometry. Review of paleostress techniques. W. F. Brace

12.385-12.399 Special Problems in Geology-Geochemistry (A)
Prereq.: —
G (1, 2) 3-0-9
For graduate students desiring to perform special investigations, special laboratory work, or special fieldwork in geology, petrology, mineralogy or geochemistry. F. S. Spear (12.385); K. V. Hodges (12.386); T. L. Grove (12.387); R. G. Burns (12.388); J. M. Edmond (12.389); F. A. Frey (12.390); S. R. Hart (12.393); Staff (12.394); B. C. Burchfiel (12.395); J. B. Southard (12.396); E. A. Boyle (12.397); Staff (12.398, 12.399).

12.401 Meteorites: From Stones to Stars
Prereq.: 12.02
U (2) 2-0-2
Discusses various classification schemes for meteorites based on metamorphic, chemical, and isotopic criteria; early chronology of the solar system and cosmochronology based on long- and short-lived isotopes; chemical composition of meteorites and its relationship to other solar system objects; condensation theory; nucleosynthesis and the isotopic composition of meteorites; the origin of cosmic rays and solar wind and their record in meteorites; ancient sun activity and ancient galactic evolution. Subject offered last half of semester. Consult C. J. Allegre, S. R. Hart.

12.402 Isotopic Tracers in Metallgenesis
Prereq.: 12.02
U (2) 2-0-2
Discusses principles of stable isotope fractionation; systematics of the stable isotopes of hydrogen, carbon, oxygen, and sulfur in ore deposits; principles of radiogenic isotopes as geologic tracers and the systematics of Sr, Nd, Pb, and rare-gas isotopes in ore deposits; chemical studies of the use of both stable and radiogenic isotopes in ore deposit genesis; regional aspects of ore deposits and their relationship to the chemical geodynamics model. Subject offered last half of semester. Consult C. J. Allegre, S. R. Hart.

12.411 Isotope Geology (A)
Prereq.: 12.02
G (2) Next offered 1985-86 3-0-6
Applications of the variation in the relative abundance of radiogenic and stable isotopes to geologic problems. Topics: geochronology, studies of petrogenesis, geologic processes that can be traced by stable isotope fractionations, techniques, and instrument design. S. R. Hart

12.42 Geochemistry of the Transition Elements (A)
Prereq.: 3.091; 12.02
G (2) Not to be offered 1985-86 3-0-6
Applications of resonance spectroscopic techniques to the study of energy levels and bonding of f nuclides transition elements in minerals. Theory and applications of Mossbauer, EPR, ESCA, and electronic absorption spectroscopy of minerals in the earth and planetary sciences. R. G. Burns

12.45 Trace Element Geochemistry (A)
Prereq.: 12.071
G (1) 3-0-9
Studies element distribution in rocks and minerals using data obtained from natural and experimental systems. Emphasizes models describing trace element partitioning and applications of trace element geochemistry to problems in igneous geology. F. A. Frey
12.46 Geochemical Kinetics (A)
Prereq.: 12.02
G (2) Not to be offered 1985-86
2-0-4
Basic principles of kinetics, both theoretical and phenomenological. Solutions of diffusion equation; reviews experimental data and techniques for
silicate liquids and solids. Applications to natural geochemical systems.
S. R. Hart

12.47 Advanced Metamorphic Petrology (A)
Prereq.: 12.062
G (1) Next offered 1985-86
3-3-6
Advanced topics in metamorphic petrology including graphical and algebraic analysis of mineral composition space, thermodynamics of heterogeneous phase equilibria. Investigation of properties of fluid phase during metamorphism. Application of experimentally determined phase equilibria to interpretation of physio-chemical conditions of metamorphism, investigation of metamorphic processes such as reaction kinetics, diffusion and infiltration metasomatism.
F. S. Spear

12.48 Advanced Igneous Petrology (A)
Prereq.: 5.80 or 3.00
G (2) Not to be offered 1985-86
3-3-6
Thermodynamics, experimental phase equilibria, and kinetics combined to infer the physical conditions of igneous rock crystallization and magma production. Uses results of experimental studies to constrain processes that control magma genesis and give rise to the diversity of igneous rocks. Discusses theoretical approaches to thermometry-barometry techniques involving solid-solid and mineral/liquid reactions, kinetic controls on crystallization, and properties of silicate melts.
T. L. Grove

12.490-12.499 Advanced Seminar in Geology and Geochemistry (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Problems of current interest in geology and geochemistry. Subject matter varies from term to term. Staff (12.490); T. L. Grove (12.491); R. G. Burns (12.492); F. A. Frey (12.493); S. R. Hart (12.494); K. V. Hodges (12.495); Staff (12.496); F. S. Spear (12.497); B. C. Burchfiel (12.498); J. B. Southard (12.499).

Geophysics and Planetary Physics

12.502 Plate Tectonics and Marine Geophysics (A)
Prereq.: 8.03, 18.075
G (2)
3-0-9
M. McNutt, B. E. Parsons

12.512 Geoelectricity (A)
Prereq.: 8.03, 18.076
G (2) Next offered 1985-86
3-0-9
Electrical properties of earth's crust and mantle and application of electrical measurements to a variety of geological and geophysical problems both practical and impractical. Subject matter includes electrical properties of porous media and high-temperature conduction in minerals. Applications include electrical and electromagnetic measurements to investigate rock types, mineral concretions, fluid flow, earth strains, and mantle temperatures.
T. R. Madden

12.514 Geomagnetism (A)
Prereq.: 8.03, 18.076
G (2) Not to be offered 1985-86
3-0-9
Surveys magnetic and electromagnetic properties and processes in the earth's environment. Plasma environment of earth's magnetosphere and ionosphere and electromagnetic wave and particle phenomena occurring therein. Electric properties of the earth's interior. Magnetohydrodynamic origin of magnetic fields of earth and other astronomical bodies.
T. R. Madden

12.521 Elements of Seismology (A)
Prereq.: 18.075
G (1)
3-1-8
A basic subject in seismology and the utilization of seismic waves for the study of the earth's interior. Introduces techniques necessary for understanding of elastic wave propagation in layered media. Seismic ray theory and interpretation of travel times. Surface wave dispersion and layered media. Seismicity, earthquake magnitude, energy.
M. N. Toksöz

12.522 Advanced Seismology (A)
Prereq.: 12.521, 18.284
G (2)
3-0-9
Advanced methods of theoretical seismology; the general properties of seismic waveforms; separate discussions on sources and media; head waves, normal modes, leaky modes, and exact synthetic seismograms in layered media; seismic scattering due to lateral heterogeneity of the earth; near-field and far-field of seismic radiation from natural and artificial sources; wave propagation in anisotropic media; mechanism of attenuation. Information W. F. Brace.

12.523 Seismology Seminar (A)
Prereq.: 12.521
G (1, 2)
2-0-6
An advanced reading and seminar subject on topics in seismology and closely related fields involving critical analysis of current literature.

12.53 Inverse Problems in Geophysics (A)
Prereq.: 18.075
G (1)
3-0-6
Problems of determining physical parameters of the earth's interior from surface observation of wave and potential fields. Iterative methods and linear analysis of parameter sensitivity and data error effects. Stochastic models of parameter fluctuations. Exact inversion methods for one-dimensional problems. Topics: seismic reflection, refraction and dispersion, free oscillations, seismic source properties, holography, magnetotellurics, magnetic variations, resistivity, magnetics and gravity.
T. R. Madden

12.54 Planetary Interiors (A)
Prereq.: 12.07, 18.075
G (2) Next offered 1985-86
3-0-9
S. C. Solomon

12.55 Properties of Rocks (A)
Prereq.: 8.03, 18.03
G (1)
3-0-9
Physical properties of rocks and their relation to cracks, pores, and minerals. Topics: elastic, transport, electrical, and magnetic properties; methods of measurement; and the factors that control each property. Applications to geo-technical engineering, borehole logging, geophysical exploration.
G. Simmons
Earth, Atmospheric, and Planetary Sciences

12.56 Advanced Seminar in Plate Tectonics (A)
Prereq.: 12.07, 12.502
G (2) 3-0-6
Basic observations and theoretical developments in sea-floor spreading, plate tectonics, continental tectonics, and marine geophysics. Data from seismic, magnetic, heat flow, gravity measurements and other sources used to study the properties of the lithosphere, asthenosphere, and the motions of the plates. Reviews key papers and latest articles.

12.57 Mechanical Properties of Rocks (A) (New)
Prereq.: 8.03, 18.03
G (2) 3-0-9
A survey of the mechanical behavior of rocks in natural geologic situations. Topics: brief survey of field evidence of rock deformation, physics of plastic deformation in minerals, brittle fracture and sliding, and pressure solution processes. Results of field petrologic and structural studies compared to data from experimental structural geology.

12.575 Geological Fluid Mechanics (A) (New)
Prereq.: 8.03, 18.076
G (2) Next offered 1985-86 3-0-9
Treats heat transfer and fluid mechanics in the earth. Low Reynolds number flows, convection in stability and double diffusion. Non-Newtonian flows, flow in porous media, and the interaction of flows with accreting and deforming boundaries. Applications include the flow under plates, postglacial rebound, diapirism, and the mantle convection problem.

12.58 Geodynamics (A)
Prereq.: 8.03, 18.076
G (2) Next offered 1985-86 3-0-9

12.590-12.599 Special Problems in Geophysics (A)
Prereq.: —
G (1, 2) Arr.
For graduate students desiring to perform special investigations, special laboratory work, or special fieldwork in geophysics. Staff (12.590); J. B. Evans (12.591); M. N. Toksöz (12.592); S. C. Solomon (12.593); T. R. Madden (12.594); G. Simmons (12.595); M. McNutt (12.596); B. E. Parsons (12.597); W. F. Brace (12.598); P. Molnar (12.599).

12.620J Radar Astronomy, Astrometry, and Geodesy (A)
(Same subject as 6.662J)
Prereq.: 8.03, 18.075
G (1) Next offered 1985-86 3-0-9
Applies techniques of radio and radar to measurement of the positions, orbital and rotational motions, surface and atmospheric characteristics, and gravity fields of the planets and satellites. Observations from spacecraft and from the ground. Propagation of medium effects. Radar equation. Ambiguity resolution in active radar, passive radar interferometry. Modulation, signal processing, detection, and analysis techniques. Radio-wave scattering. Uses of interferometry in radar mapping astrometry and geodesy.

12.690 Topics in Planetary Science and Astronomy (A) (New)
Prereq.: Permission of Instructor
G (1, 2) 1-0-5
Discussion of diverse topics within the field of planetary science. Suitable subjects include, but are not limited to: results of recent, as well as plans for forthcoming, spacecraft missions to the planets; application of laboratory experiments to the study of the solar system; modern ground-based and in-situ investigations of comets; relation among recent near-Earth asteroid findings concerning the formation of the planets and the planetary system.

12.691-12.699 Special Problems in Planetary Physics (A)
Prereq.: —
G (1, 2) Arr.
For graduate students desiring to perform special investigations, special laboratory work, or special fieldwork in planetary physics. Staff (12.691); D. C. Jewitt (12.692); G. H. Pettengill (12.693); Staff (12.694); J. L. Elliot (12.695); C. C. Counselman (12.696); Staff (12.697); Staff (12.698), W. Bryan, H. Dick, M. Mottl.

12.700 Oceanic Volcanology and Petrology (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86 3-2-4
Igneous processes occurring within and around the major ocean basins. Focuses on current observational data and hypotheses proposed to explain the observations. Discusses volcanic processes at spreading centers, tectonics and vulcanism along fracture zones, island arcs, and subduction zones. Vulcanism and magmatic trends along linear island chains. Some practical training in data interpretation, petrography, and mineralogy may be arranged.

12.703 Marine Geology (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86 3-0-6
Designed to acquaint those with a background in geology and/or geophysics with the techniques used to study the processes responsible for the composition, structure, and morphology of the ocean floor. Topics: techniques/instruments with emphasis on multibeam sonar imagery and remote sensing, structure and processes on passive/active continental and interoceanic margins and in ocean basins, tectonic evolution, sedimentary processes, ocean paleoenvironment, Deep Sea Drilling Project.

12.720 Internal Structure of Oceanic Lithosphere (A)
Prereq.: 12.702
G (1) Not to be offered 1985-86 3-0-6
Treats geologic structures observed on sea floor and within ophiolite complexes in relation to stress at various depths; asthenosphere flow characteristics; and response of rock materials to tectonic processes. Discusses assemblages of structures expected to evolve at
accreting plate boundaries, transform faults, and subduction zones. Emphasizes geometric analysis of dikes, igneous and metamorphic layering, faults, folds, and their overprinting relationships. Permission of instructor required.

(Works Hole Staff): J. Karson

12.706 Marine Micropaleontology (A)
(12.74)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
2-3-4

Basic principles of micropaleontology and stable isotope geochemistry with historic development and applications in biostratigraphy and biogeography. Paleontology and paleoclimatology, for non-specialists. Major groups of marine microfossils, emphasizing those used as tools in paleoceanography (e.g., planktonic and bentonic foraminifera, calcareous nannoplankton, radiolarians and diatoms). Laboratory work includes light and SEM microscopic work, and introduces quantitative methods.

(Works Hole Staff): B. Corliss, W. Berggren, T. Bracher

12.708 Cenozoic Foraminifera (A)
(12.742)
Prereq.: 12.706
G (2) Not to be offered 1985-86
3-2-4

Studies ecology, paleoecology, and stratigraphy of planktonic and bentonic foraminifera, including application in paleoenvironmental reconstructions. Surveys Recent and Cenozoic assemblages, emphasizing quantitative analysis in paleoceanography. Includes application of stable isotope geochemistry in marine micropaleontology. Laboratory work includes sample preparation techniques and survey of important species using light microscope and SEM. Permission of instructor required.

(Works Hole Staff): B. Corliss, W. Berggren

12.711 Marine Geophysics (A)
(12.77)
Prereq.: Permission of Instructor
G (1)
3-2-6

Introduction to theory and practice of marine geophysics. Overall purpose is to bridge the gap between geophysical method and geological understanding. Topics: measurements and geological modeling of marine magnetic anomalies, gravity, topography, heat flow, seismology, geochronology, and borehole logging. Laboratory sessions devoted to actual data. Extensive readings of geophysical literature.

(Works Hole Staff): R. Stephen, T. Brocher

12.712 Advanced Marine Seismology (A) (New)
Prereq.: 12.711
G (2) Not to be offered 1985-86
3-0-6

Advanced course on theory and practice of marine seismology. Topics: seismic wave propagation; marine reflection and refraction seismology, including seismic data processing, modeling, and inversion. Extensive readings of geophysical literature.

(Works Hole Staff): R. Stephen, M. Purdy, T. Brocher

12.713 Topics in Geophysical Time Series Analysis (A)

(12.783)
Prereq.: Permission of Instructor
G (2)
3-0-6

Introduces selected aspects of geophysical time series analysis, emphasizing step-by-step transformation of raw data to a usable format for statistical or dynamical modeling. Includes implementation of filtering techniques, fourier transforms, sampling strategies, auto- and cross-spectra, data adaptive techniques, and empirical orthogonal function analysis. Demonstrates application of these techniques to high-frequency geophysical phenomena common to the shallow marine shelf.

(Works Hole Staff): D. Aubrey

12.720 Special Problems in Physical Oceanography at Woods Hole (A)
(19.891-19.899)
Prereq.: —
G (1, 2) Arr.

Reading, consultation, and original investigation on oceanographic problems.

(Works Hole Staff)

12.721 Special Problems in Marine Geology and Geophysics at Woods Hole (A)
(12.791)
Prereq.: Permission of Instructor
G (1, 2) Arr.

For graduate students desiring to perform special investigations, special laboratory work, or special fieldwork in marine geology and geophysics.

(Works Hole Staff)

12.722 Special Problems in Chemical Oceanography at Woods Hole (A)
(12.781)
Prereq.: Permission of Instructor
G (1, 2) Arr.

For graduate students desiring to perform special investigations, special laboratory work, or special fieldwork in chemical oceanography.

(Works Hole Staff)

12.740 Paleoceanography (A)

(12.82)
Prereq.: Permission of Instructor
G (1) Not to be offered 1985-86
3-0-9

History of the earth surface environment as deduced from the record in deep-sea sediments. Uses micropaleontological, isotopic, geochemical, and mineralogical changes observed in piston cores and DSDP materials to infer changes in temperature and current field of the ocean and atmosphere, changes in seawater chemistry, and to evaluate and constrain theories of environmental change. E. A. Boyle

12.741 Marine Geochemistry (A)
(12.83)
Prereq.: 5.11 or 3.091, 5.60
G (2)
3-0-9

Composition of seawater: chemistry of aqueous solutions, ionic association and dissociation, and relevant calculations: concepts of steady state and residence times of species and discussion of static versus dynamic chemical models of the ocean. Effect of oceanic circulation on the chemistry illustrated by the CO2, silicate, and isotopic distributions. Discussion of authigenic sediments, control of seawater composition, geochemical cycles. Emphasizes development of problems and topics by students and on calculations. J. M. Edmond

12.742 Marine Chemistry (A)
(12.80)
Prereq.: Permission of Instructor
G (1) Not to be offered 1985-86
4-0-10

Chemistry of the oceanic water column and its interaction with sediments. Salinity, major ion speciation, physical properties of seawater. Gaseous equilibrium and exchange with the atmosphere. General circulation and the use of advection-diffusion models with specific application to the ocean nutrient-oxygen-carbon dioxide system. Applications of natural and artificial radionuclides. Minor elements in seawater, oxidation-reduction processes, chemistry of the surface micro-layer.

(Works Hole Staff): M. Bacon, P. G. Brewer

12.743 Geochemistry of Marine Sediments (A)
(12.82)
Prereq.: 5.11 or 3.091, 5.60
G (1) Not to be offered 1985-86
3-0-9

E. A. Boyle

12.745 Marine Organic Geochemistry (A)
(12.84)
Prereq.: Permission of Instructor
G (2) Not to be offered 1985-86
3-0-6

Includes: air-sea interactions and atmospheric chemistry; sources, transport, transformation, and ultimate fate of organic materials in the sea with an emphasis on specific organic compounds: Geochemistry of pollutants, organic compounds in the sea; origin of fossil fuels; stable isotope geochemistry applied to organic compounds; organometallic interactions; and marine natural products chemistry.

(Works Hole Staff): J. Farrington, R. Gagosian
12.751-12.759 Seminar in Oceanography at Woods Hole (A)

(12.771-12.779)
Prereq.: --
G (1, 2) Arr.
Topics in marine geology and geophysics, physical, dynamical, and chemical oceanography. Content varies from term to term.
(Woods Hole Staff)

12.761 Oceanographic Time Series (A)

(12.85) Prereq.: 18.075
G (1) Next offered 1985-86
3-0-6
Examines aspects of the problems encountered in using real, finite, discrete time series data from oceanographic experiments. Includes z-transforms, Wiener filters, minimum phase systems, spectra, bi-spectra, array antennas, data adaptive methods. C. I. Wunsch

12.762 Experimental Physical Oceanography

(19.99) Prereq.: -- Permission of Instructor
G (1) Not to be offered 1985-86
3-0-6
Philosophy and design of physical experiments in the ocean. Review of dynamic and kinematic equations, scaling and sampling theory. Description of previous experiments with regard to formulation of a hypothesis from a conceptual or theoretical model; translation of the hypothesis into an experimental design; and analysis of measurements.
(Woods Hole Staff): H. L. Bryden

12.763 Numerical Modeling In Oceanography (A)

(New)
Prereq.: Permission of Instructor
G (2) 3-0-6
Introduction to numerical modeling techniques with emphasis on oceanographic applications. Survey of standard methods for numerical approximation of partial differential equations, including explicit and implicit time-stepping, over-relaxation, stability analysis, sources of error, and the use of spectral (Galerkin) methods. Focus on applications to ocean modeling, including the implementation of general circulation and shelf models. Extensive "hands on" experience in applying techniques. Some background in FORTRAN programming required.
(Woods Hole Staff): T. Keffer, D. Chapman

12.764 Laboratory Course in Geophysical Fluid Dynamics (A)

(19.97) Prereq.: Permission of Instructor
G (2) 0-3-3
A substantial portion devoted to simple experiments which simulate large scale geophysical flows and hence involving rotating or stratified fluids. Topics include properties of surface and internal waves, flow over topography, convection, and boundary layers. Aspects of smaller scale flows (low Reynolds number, surface tension, Langmuir cells) covered. The last third devoted to a student project.
(Woods Hole Staff): J. A. Whitehead

12.771 Internal Waves in the Ocean (A)

(12.86) Prereq.: 12.802
G (2) Not to be offered 1985-86
3-0-6
Introduces oceanic internal gravity wave motion. Kinematic and dynamic properties of internal waves. Ray and mode description. Mechanisms of generation, dissipation, and nonlinear interaction. Observations of wave-number-frequency structure in the deep ocean. Relationships of internal waves to both geostrophic currents and to fine-structure and turbulent mixing. Draws material from areas of current research interest. C. C. Ericksen

12.772 Dynamics of Eddies and Circulation (A)

(19.842) Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-9
Theory of ocean eddies and waves of scales > 50 kilometers, and periods longer than a day. Planetary and topographic waves; baroclinic and barotropic instability; geostrophic turbulence; energy cycles; general circulation of an ocean containing eddies. Reference to data and numerical models, with term projects involving theory or computer modeling.
(Woods Hole Staff): P. B. Rhines

12.773 Air Sea Interactions (A)

(19.98) Prereq.: Permission of Instructor
G (2) Not to be offered 1985-86
3-0-6
Concentrates on methods, instruments, and recent results in the interaction of the atmosphere and the ocean on spatial scales less than 1,000 km and time scales less than seasonal. Topics emphasize are vertical fluxes of momentum, heat and moisture over the ocean, mixed layer development, and parameterization of ocean forcing by synoptic scale meteorology. Examples taken from recent experiments.
(Woods Hole Staff): R. Weller, J. Price

12.780 The General Circulation of the Oceans (A)

(19.86) Prereq.: --
G (1) 3-0-6
Extensive reading list on observation basis of modern interpretations of global and regional ocean circulation with lectures providing an overview synthesis. Material is predominantly concerned with low frequency and large-scale circulations. Discusses higher frequency and smaller scale processes only in connection with their impact on larger scale distributions. Requires written report on a general circulation topic and final exam (essay) given. Permission of instructor required.
(Woods Hole Staff)

12.781 Dynamics of Shelf Circulation I (A)

(Revised Content)
(19.78) Prereq.: 12.800
G (1) Next offered 1985-86
3-0-6
General introduction to the dynamics governing flow over the shelf. Transient response to wind forcing in closed basins and along open coasts. Simple effects due to stratification, topography, and to bottom friction as well as some aspects of thermocline circulation. Permission of the instructor required for students without 12.800 background.
(Woods Hole Staff): K. Brink, R. Beardsley

12.782 Dynamics of Shelf Circulation II (A)

(New)
Prereq.: 12.781
G (2) Next offered 1985-86
3-0-6
More specialized topics in the dynamics of flow over the shelf, including boundary layer physics, tides, and coastal-trapped waves. Emphasis placed on the relationship between theory and observations and on the design and analysis of field experiments. Topics covered depend somewhat on the background and research interests of the students enrolled.
(Woods Hole Staff): K. Brink, R. Beardsley

12.783 Equatorial Physical Oceanography (A)

(12.87J) Prereq.: 12.801
G (1) Not to be offered 1985-86
3-0-6
Observations of equatorial oceans and dynamical models intended to explain various features. Comparative review of measurements in each ocean and discussion of meteorological forcing. Theories of steady circulation and equatorially trapped waves. Discusses equatorial undercurrents, El Niño, monsoons, ocean variability, and other topics. Permission of instructor required. C. C. Ericksen
12.791 Topics in Modern Observational Physical Oceanography (A)
(12.88)
Prereq.: 18.075
G (1) Not to be offered 1985-86
3-0-6
Topics in large-scale observational/theoretical oceanography not included in more conventional courses. The theme is the problem of observing the ocean on basin and global scales through recent developments in observational techniques and their associated mathematical methods. Introduces acoustic tomography, satellite altimetry, large-scale general circulation and chemical tracers, inverse methods, linear and quadratic programming, objective mapping, optimal estimation theory.
C. I. Wunsch

12.800 Fluid Dynamics of the Atmosphere and Ocean (A)
(19.69)
Prereq.: 8.03, 18.04
G (1) 3-0-9
E. N. Lorenz

12.801 Steady Circulation of the Atmosphere and Ocean (A)
(19.70J)
Prereq.: 12.800
G (2) 3-0-9
Uses fundamental principles in modeling steady flows in the atmosphere and ocean illustrating general methods which apply to either fluid and also important contrasts between the two. Including quasi-geostrophy on the beta plane and sphere. Ekman pumping, Hadley and Ferrel circulations, wind and thermally driven ocean circulation models, steady waves in the atmosphere.
R. S. Lindzen, C. I. Wunsch

12.802 Wave Motions In The Atmosphere and Oceans (A)
(19.71J)
Prereq.: 18.350 or 12.800
G (2) 3-0-9
Introduces general concepts in wave theory, dispersive and nondispersive waves, energy flux, wave action, ray theory. Derivation of wave equations in geophysical systems: Laplace tidal equation, shallow water theory, planetary waves, topographic waves, internal gravity waves. Wave-mean flow and wave-wave interactions.
P. Malanotte-Rizzoli, R. S. Lindzen

12.805 Synoptic Scale Dynamics in the Atmosphere and Oceans (A)
(19.681)
Prereq.: 12.800, 12.801, 12.802
G (1) 3-0-9
(Woods Hole Staff): P. B. Rhines

12.806 Instability and Turbulence in Geophysical Systems (A)
(19.682)
Prereq.: 12.805
G (2) 3-0-9
Comprehensive introduction to the methodology of stability theory as applied to problems of interest in geophysical fluid dynamics. Emphasizes problems governed by quasi-geostrophic dynamics. Topics in linear theory include: baroclinic-barotropic instability, numerical methods for eigenvalue problems, Rossby wave instability, symmetric instability, and solution of initial value problems. Nonlinear processes discussed include: instability, strange attractors, and equilibrium chaos in geostrophic turbulence.
P. H. Stone

12.810 Past and Present Climate
(19.10)
Prereq.: 8.03
G (2) Next offered 1985-86
3-0-9
Properties of climate system. Climatic fluctuations on time scales up to 100,000 years. Phenomena of drought, biennial oscillation and Southern Oscillation. Role of volcanoes, carbon dioxide changes and anthropogenic effects in forcing climate. Reconstruction of ice age climate from ocean bed cores, pollen records, isotope ratios in ice cores. Theories of ice ages. Recent climate forecasting. Relationships between climate, agriculture, and energy. Suitable for undergraduate and graduate students with little or no previous background in meteorology.
R. E. Newell

12.811 Introduction to Meteorology (New)
(19.46)
Prereq.: 8.03, 18.03
U (1) 3-3-6
Development of elementary dynamical concepts such as geostrophic and hydrostatic balance, conservation of momentum and energy, and circulation and vorticity conservation. Atmospheric thermodynamics. Kinematics of atmospheric flows. Exposition and basic physics of atmospheric phenomena, including the general circulation, extratropical cyclones and anticyclones, tropical storms, stationary waves, and cumulus convection. Laboratory studies illustrating fundamentals of meteorological data analysis and forecasting. Serves as a general introductory course open to juniors and seniors and encouraged for graduate students with no prior exposure to meteorology.
R. Dole, K. A. Emanuel

12.844 Numerical Modeling In Meteorology and Oceanography (A)
(19.44)
Prereq.: 12.811
G (2) 3-3-6
Staff

12.846 Synoptic Meteorology (A)
12.850 Physical Meteorology (A)
(19.50)
Prereq.: 5.60, 18.075
G (1)
3-0-9
Introduces atmospheric thermodynamics, physics, and chemistry. Thermodynamics of moist and dry air. Physics and chemistry of clouds and precipitation. Transfer of solar and thermal radiation through the atmosphere and radiative heating. Atmospheric electricity. Remote sensing of atmospheric temperature, winds, precipitation, and composition by passive (e.g., infrared radiance) or active (e.g., radar) techniques.
K. A. Emanuel

12.873 Upper Atmosphere and Ionosphere (A)
(19.73)
Prereq.: 12.800, 12.850
G (2) Not to be offered 1985-86
3-0-9
R. G. Prinn, J. C. Foster, J. M. Holt, W. L. Oliver

12.874 Cloud and Precipitation Physics (A)
(19.74)
Prereq.: 12.850, 18.03, 5.60
G (1)
3-0-9
Introduces physics and chemistry of hydrometeor nucleation and growth in convective and stratiform cloud systems, with discussions of the physics and state-of-the-art of cloud seeding.
Staff

12.980-12.989 Special Problems in Meteorology (A)
(19.95)
Prereq.: —
G (1, 2)
Arr.
Reading, consultation, and original investigations on meteorological problems.
Staff

12.990-12.999 Special Subjects in Meteorology (A)
(19.961-19.969)
Prereq.: —
G (1, 2)
Arr.
Organized lecture or laboratory subject on some aspect of meteorology not normally covered in the regularly scheduled subjects.
Staff
13.UR Undergraduate Research

Prereq.: —
U (1, 2, S)
Arr.

Research in engineering for the ocean environment including naval architecture, wave energy, seakeeping, ocean exploration, ocean transportation, ocean vehicles, utilization of resources, marine economics, systems analysis, marine policy, marine hydrodynamics, ocean acoustics, ocean structures, sailing yachts, and some aspects of marine-related management. Well-equipped and modern laboratory facilities.
J. K. Vandiver

13.00 Computer-Aided Hydrostatics and Hull Surface Definition

(New)

Prereq.: 8.01, 18.02
U (1) SD 3-3-6

Principles of hydrostatics with application to ships and floating offshore platforms. Static response to small disturbances, intact and damaged stability, floodable length. Mathematical representation of plane curves and surfaces by polynomials and spline functions. Computer graphical representation of three-dimensional shapes including perspective transformations. Numerical integration and differentiation with application to hydrostatics. Homework projects include writing FORTRAN programs and using existing interactive software.
J. E. Kerwin

13.003J Dynamics

(Same subject as 2.03J)

Prereq.: 2.01, 2.02, 18.03
U (1, 2) 4-0-8

See description under subject 2.03J.
J. K. Vandiver, J. H. Williams, Jr., H. M. Paynter

13.012 Applied Hydrostatics

Prereq.: —
G (5) 1-7-2

Elementary principles of naval ship design and statics of naval architecture. Pairing of naval ship lines, calculations for and drawing of displacement and other curves, cross curves of stability, curves of statical stability and floodable length curves. Primarily for students in Course XIII-A; others admitted by permission of instructor.
D. V. Burke, Jr.

13.021 Marine Hydrodynamics I

Prereq.: 1.05 or 2.20, 18.075
U (1) 4-1-7

D. K. Yue

13.022 Marine Hydrodynamics II (A)

Prereq.: 13.021, 18.075
G (2) 4-0-8

P. D. Sciauouos

13.04 Hydrofoils and Propellers (A)

Prereq.: 18.076 or 18.304
G (2) 3-0-9

Theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. Computer-aided design of low drag, cavitation free sections. Lifting line and lifting surface theory with applications to hydrofoil craft, rudder and control surface design. Propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. Flow about axially symmetric bodies and low aspect ratio lifting surfaces. Experimental projects in the variable pressure water tunnel.
J. E. Kerwin, P. Leehey

13.06 Numerical Methods in Marine Hydrodynamics (A)

Prereq.: 13.021, 13.50, 18.075, 18.076
G (2) 3-0-9

Formulation, methodology, and techniques of numerical solutions of potential flow problems. Rudiments of finite-difference, finite-element, boundary-integral-equation and spectral methods with illustrations of applications to marine hydrodynamics. Emphasizes treatment of free-surface and open boundaries, characteristics and effectiveness of various approaches. Projects involving hands-on development of simple computer programs.
D. K. Yue

13.07 Free Surface Hydrodynamics (A)

Prereq.: 13.022; 18.076 or 18.304
G (1) Next offered 1985-86 3-0-6

Water wave phenomena pertinent to problems in naval architecture and ocean engineering. Generation, propagation, and diffraction of plane progressive waves. Exciting and restoring forces on floating and submerged bodies. Ship waves and wave resistance. Selected topics of interest in non-linear wave propagation, internal waves, slender-body theory, or seakeeping. Some background in water waves assumed, equivalent to that covered in 13.022. Alternates with 13.09.
J. N. Newman

13.08 Stability and Motion Control of Ocean Vehicles (A)

Prereq.: 13.021, 18.075
G (2) 4-0-6

Motion equations in six degrees of freedom, mathematical simulation models for ocean vehicle motions, and effects of excitations from control systems and ocean environment on motion response. Solutions for stability and important motions and comparisons between simulation model results and physical reality. Applications to typical ocean vehicles such as ships, submarines, hydrofoils, platforms, buoys, and towed systems.
M. A. Abkowitz

J. N. Newman

13.10J Introduction to Structural Mechanics

(Same subject as 2.071J)

Prereq.: 2.01 or 2.015

U (1)

3-0-9

Selected structural mechanics concepts applicable to marine and mechanical structures; thick-walled spheres, mooring lines. Beam design and optimization. Stability and determinacy of structures. Methods for computing deflections, principles of virtual forces and displacements, theorem of stationary potential energy, statically indeterminate structures. Matrix analysis of structures. Introduces plastic analysis, stability of equilibrium, and plastic buckling of columns.

D. Karr, J. H. Williams, Jr.

13.11 Structural Mechanics (A)

Prereq.: 13.10J

G (1)

3-0-9

T. Wierzbicki

13.11J Analysis and Design of Offshore Structures (A)

(Same subject as 1.551J)

Prereq.: 1.51 or 13.10J

G (2)

4-0-8

See description under subject 1.551J.

J. K. Vandiver, S. Shyam Sunder

13.121 Ship Structures (A)

Prereq.: 13.111

G (2)

3-0-6

P. C. Xirouchakis

13.122 Ship Structural Design (A)

Prereq.: 13.10J

G (2)

1-5-0

P. C. Xirouchakis

13.123 Advanced Analysis and Design of Ocean Engineering Structures (A)

Prereq.: 13.111 or 13.112J

G (2)

Not to be offered 1985-86

P. C. Xirouchakis, T. Wierzbicki

13.124 Response of Marine Structures to Impulsive Loading (A)

Prereq.: 13.111

G (2)

Next offered 1985-86

3-0-6

T. Wierzbicki

13.131 Plastic Analysis of Structures (A)

Prereq.: 13.111

G (1)

3-0-6

T. Wierzbicki

13.132 Advanced Structural Topics (A)

Prereq.: 13.111

G (1)

Next offered 1985-86

3-0-6

Advanced topics in structural analysis and design with various contents. Offers students the possibility to become acquainted with some of the current research within the Department. Includes potential topics such as imperfection sensitivity and post-buckling behavior of shells, plastic buckling of structures, dynamics and creep buckling of structures, composite materials, reinforced concrete structures, behavior of ships and offshore structures in ice-infested waters.

P. C. Xirouchakis

13.14J Structural Mechanics in Nuclear Power Technology (A)

(Same subject as 1.56J, 2.084J, 3.82J, 16.261J, 22.314J)

Prereq.: Permission of Instructor

G (1)

3-0-9

See description under subject 22.314J.

13.15 Materials for Ocean Engineering

Prereq.:—

G (2)

3-0-6

Properties of metals used for the construction of ships and ocean engineering structures. Microstructures, processing, heat treatment, service behavior, and failures with special emphasis on corrosion resistance of ferrous and nonferrous metals.

K. Masubuchi

13.16J Fracture of Structural Materials (A)

(Same subject as 1.591J, 3.90J)

Prereq.: 1.02J or 2.30 or 3.141 or 13.15

G (1)

3-0-6

See description under subject 3.90J.

K. Masubuchi, F. J. McGarry

13.17J Welding Engineering (A)

(Same subject as 3.36J)

Prereq.: 3.02 or 3.141 or 13.15

G (1)

3-0-6

Detailed study of processing variables involved in joining materials by welding, brazing, and adhesive bonding. Synthesis of elementary physical phenomena such as transient heat flow, phase transformations, and dimensional changes into the complex overall...
reactions associated with joining. Testing, inspection, and properties of finished joints. Laboratory demonstrations of arc, electron beam, resistance, and other electric welding processes.

K. Masubuchi

13.18 Case Studies in Welding Design (A)
Prereq.: —
G (2) Next offered 1985-86
2-0-4
Problems occur in various welded structures, including ships, offshore oil drilling rigs, pressure vessels, bridges, and aerospace structures. Discusses problems: brittle fracture, fatigue, weld cracking, and distortion. Through examination of past and current cases, develops techniques for preventing these problems by proper selection of materials, joining processes, and procedures during the design stages.

K. Masubuchi

13.21 Ship Power and Propulsion (A)
Prereq.: 2.40
G (1)
3-1-8
Examines ship power and propulsion systems for commercial and naval ships. Considers steam, diesel, and gas turbine power plants together with speed reducers and propulsors. Project study and economic evaluation of the propulsion system for a commercial or a naval ship.

A. D. Carmichael

13.25J Thermodynamics of Power Systems
(Same subject as 2.41J)
Prereq.: 2.40 or 16.006
U (2)
3-0-9
See description under subject 2.41J.
A. D. Carmichael, J. B. Heywood, J. L. Smith, Jr.

13.26J Thermal Power Systems (A)
(Same subject as 2.601J)
Prereq.: 2.402 or 2.40 or 16.006; 2.20; 2.51
G (2)
3-0-9
See description under subject 2.601J.
A. D. Carmichael, W. M. Rohsenow

13.39 Analysis of Techniques for Fabricating Structures (A)
Prereq.: 3.13 or 3.15 or 3.17J
G (2) Not to be offered 1985-86
2-0-4
Analyzes problems related to fabrication of structures, such as ships, aircrafts, rockets, pressure vessels, buildings, and ocean engineering structures by various joining processes including welding, riveting, and adhesive bonding. Discusses such problem areas as fracture characteristics of welded structures; residual stress, distortion, and stress relieving; advanced welding metallurgy; non-destructive testing of structural welds. Laboratory demonstrations of some tests.

K. Masubuchi

13.40 Elements of Ocean Engineering Design
Prereq.: 2.01
U (2)
3-3-6
Brief overview of an integrated design approach to ocean-based structures and vehicles. Models and modeling techniques applicable to the field of ocean engineering. Hydrostatics and stability calculations for ocean engineering structures and vehicles. Preliminary calculations to ensure that an ocean engineering structure and vehicle have sufficient structural strength. Selection of main propellers to match vehicle and power plant. Morison's equation, loads on fixed platforms and other offshore structures.

C. Chryssostomidis

13.41 Ocean Engineering Design Principles (A)
Prereq.: 13.40, 13.021
G (1)
3-3-6
Loads and motions of ships and offshore structures caused by waves, winds and current; Morison's equation; inertia-dominated flows; impact loads; wave drift forces in regular and irregular seas. Short term and long term statistics, wave spectra and wind spectra, the one hundred year wave. Mooring statics and dynamics; dynamic positioning. Emphasizes appropriate selection of coefficients and parameters involved, and design considerations that lead to safe and economic systems.

M. Triantafyllou, C. Chryssostomidis

13.411 Principles of Naval Ship Design (A)
(Revised Unit)
Prereq.: 13.012 or 13.40; 13.10J or 13.121 or 13.122; 13.21; 13.021
G (1)
3-3-6
Design of surface ship platforms for naval applications; formal design optimization procedures; mathematical model of ship design process; engineering and economic principles governing selection of dimensions and coefficients; influence of hull form and dimensions on mobility in calm water and rough seas; internal subdivisions for efficient arrangement and maximum survivability; damage stability. Design exercises in applications of principles.

D. V. Burke, Jr., T. L. Tinkel

13.412 Principles of Ship Design (A)
Prereq.: 13.021; 13.10J or 13.111 or 13.122; 13.41
G (2) Not to be offered 1985-86
2-4-6
Ship in context of a larger system; formal optimization procedures applied to ship design; assumption of subsystems sufficiency; mathematical model of ship design process; engineering and economic principles governing selection of dimensions and coefficients of ships and submarines; design of hull form; principles governing internal subdivision for maximum survivability; influence of hull form and dimension selection on operability in rough seas. Design exercise in application of principles. Not recommended for students who have taken 13.441.

M. Triantafyllou, C. Chryssostomidis

13.431 Methods of Naval Ship-System Design (A)
Prereq.: 13.012 or 13.40
G (S)
3-0-9
Overview of naval ship design and acquisition process; mechanisms of designing a ship system, formulation of a systematic design plan, requirements and constraints, design philosophy and design elements; selection/optimization criteria; design trade-offs; analysis of ship design trends; marginal cost factors. Design exercises and projects in application of principles.

T. L. Tinkel

13.441 Offshore Engineering Design (A)
Prereq.: 13.10J, 13.40
G (2) Next offered 1985-86
2-4-6
Methodology for offshore system design. Definitions of design problem emphasizing problem objectives, design criteria, and modeling techniques. Analyzes probability of failure using environmental data, short- and long-term statistics; extreme loads; fatigue. Presents a complete example for a semisubmersible or a tension leg platform and requires a term project.

M. Triantafyllou

13.451 Projects In Naval Ships Conversion Design (A)
Prereq.: 13.411 or 13.412; 13.431; 13.21
G (2)
Arr.
Project studies focused on conversion design of a naval ship. A new mission requirement is defined requiring significant ship modification. Design plan formulation. Technical aspects addressed in sufficient detail to demonstrate feasibility and desirability. Requires formal written and verbal reports. Encourages participation by several students in a single project.

D. V. Burke, Jr., T. L. Tinkel

13.461 Projects In New Construction Naval Ship Design (A)
Prereq.: 13.411 or 13.412; 13.431; 13.21
G (1, 2, S)
Arr.
Project studies focused on preliminary design of a new naval ship fulfilling a given set of mission requirements. Design plan formulation. System level trade-off studies. Emphasizes achieving a balanced design and total system integration. Requires formal written and oral reports. Encourages participation by several students in a single project extending over two terms.

D. V. Burke, Jr., T. L. Tinkel
13.462 Projects in Ocean Engineering
System Design (A)
Prereq.: 13.441, 13.411 or 13.412
G (1, 2, S) Arr.
Determines design criteria for ocean-based systems such as ships, submarines, platforms, etc. derived from a set of system mission requirements specified by the student in consultation with the instructor. Preparation of preliminary design of system fulfilling selected criteria. Students intending to take 13.462 should plan a two-term sequence, preferably beginning in the first term. Participation by several students in a single project is particularly encouraged. Primarily for graduate students in Ocean Engineering; others admitted by permission of instructor.
C. Chrysostomidis, M. Triantafyllou

13.463 Engineering System Design (A)
Prereq.: Permission of Instructor
G (2) 2-4-6
Develops basic techniques employed in planning and design of complex systems through involvement in a specific project. Develops specific background through lectures dealing with the selected project. Student results presented formally at the end of term. Each year's project announced during IAP.
C. Chrysostomidis

13.47 Control Theory Applications in Ocean Engineering (A)
Prereq.: 18.076, 13.08, 6.003, or 2.02
G (1) 3-3-6
Time and frequency domain representations of linear time invariant systems. Controllability, observability, stability. Compensation techniques to achieve satisfactory performance. Control force producing devices available in ocean engineering. Selects specific applications from such areas as dynamic positioning of drilling vessels, antitrolling mechanisms, submarine control. Control theory background preferred but not required.
M. Triantafyllou

13.50 Computer Applications to Marine Problems
Prereq.: 18.03
G (1) 3-0-9
P. D. Sclavounos

13.51 Computer Models of Physical and Engineering Systems
Prereq.: 18.02, 8.01
U (2) SD 3-0-9
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
S. Shyam Sunder

13.52 Management in Engineering
Prereq.: —
U (1) 3-0-9
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
D. P. Houtl, H. S. Marcus

13.62 Engineering Systems Analysis (A)
Prereq.: Permission of Instructor
G (1) 3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
R. de Neufville, J. P. Clark

13.621 Engineering Risk-Benefit Analysis (A)
Prereq.: 18.02
G (2) 3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
A. W. Drake, A. R. Octavi

13.622J Mathematical Optimization Techniques (A)
(Revised Unit)
(Same subject as 1.143J)
Prereq.: Permission of Instructor
G (1) 3-0-9
Systematic survey of a broad spectrum of mathematical optimization techniques. Emphasis on formulation, solution methodology, algorithmic efficiency, and applications. Covers Lagrange multiplier and Kuhn-Tucker theory; duality; network problems; linear, integer, dynamic, stochastic, large-scale, and quadratic programming; and heuristics. Assumes some familiarity with linear algebra, calculus, and the computer.
H. N. Psarafitis, D. H. Marks

13.63J Advanced Reliability Analysis and Risk Assessment (A)
(Same subject as 22.40J)
Prereq.: 22.38, 22.82, 1.143J or 13.622J
G (2) 3-0-9
See description under subject 22.40J.
E. G. Frankel, C. D. Hausing

13.631 Port Planning and Development (A)
Prereq.: Permission of Instructor
G (2) Not to be offered 1985-86
3-0-9
Lectures, discussions, and panel reviews of critical areas in port planning and development including offshore and prefabricated ports. Systems engineering study of one or more major port projects. Approach to planning and development of port based on modern concepts of systems analysis. Topics: modern trends in port development; port functions and requirements; forecasting of port demand; port design, investment planning, operations, analysis, regulation and environmental impact assessment.
E. G. Frankel

13.64 Projects in Ocean Systems Management
(New)
Prereq.: Permission of Instructor
G (2) 3-3-6
Group projects based on current or past research in ocean systems management. Designed to develop student's ability to analyze problems involving ocean engineering and economics, operations research, management, policy and the law, and integrate this information to formulate solutions. Projects may include ocean dumping systems, deep-sea mining systems, and oil-spill containment systems. Restricted to Course XIII-B students; others admitted by permission of instructor.
J. T. Kildow, H. S. Marcus, J. D. Nyhart, H. N. Psarafitis

13.65 Production Analysis (A)
Prereq.: 1.143J or 13.622J, or 13.441 or 13.412
G (1) 3-0-6
Analyzes production processes; evaluation of facility layout, production and material flow; process and facility design; production process control; mathematical and economic analysis of production; production and inventory scheduling; management information system; organization of manufacturing plants.
E. G. Frankel

13.661J Economics of Ocean Transportation (A)
(Same subject as 15.937J)
Prereq.: 14.120 or 15.012 or CTS 110J
(1.182J)
G (2) 3-0-6
Studies the economics of the principal ocean transportation markets and of resource allocation to ocean transportation. Structure of the markets and of the industries involved; barriers to entry and competition; theory of international trade; spot and term freight rate formation in the tanker, dry bulk and tramp shipping markets; analysis of risks facing the industry, charter market operators and charterers; world petroleum transportation network; liner shipping rate making; impact of maritime policies and regulations on the industry.
H. N. Psarafitis, Z. S. Zannetos
13.665J Logistical and Transportation Planning Methods (A)
(Same subject as 1.203J, 6.281J, 11.526J, 15.076J, 16.76J, TPP 43J)
Prereq.: 6.431, 15.075
G (1) 3-0-9
See description under subject 1.203J.

13.68 Management of Marine Systems (A)
Prereq.: Permission of Instructor
G (1) 3-0-6
Analyzes current technological, market, and regulatory trends in various segments of the marine industry and government development programs such as: liner trades, vessel chartering, shipbuilding, defense systems, coastal facilities, and fishing; description of resources and constraints involved; impact of trends on management decisions; analysis of problems actually existing in the field.
H. S. Marcus

13.682J Current Issues in Engineering Management
(Same subject as 1.485J, 3.562J, 6.941J, 22.87J)
Prereq.: —
G (2) 3-0-6
See description under subject 1.485J.
T. H. Lee

13.683J Cases and Projects in Engineering Management (A)
(Same subject as 1.486J, 3.563J, 6.942J, 22.88J)
Prereq.: 13.682J
G (1) 3-1-5
See description under subject 1.486J.
T. H. Lee

13.684J Technology Planning (A)
(Same subject as 1.487J, 3.564J)
Prereq.: —
G (1) 3-0-6
See description under subject 1.487J.
J. M. Utterback, R. D. Logcher

13.685J Manufacturing/Technology Interface (A)
(Same subject as 3.565J, 15.365J)
Prereq.: Permission of Instructor
G (2) 3-0-6
See description under subject 15.365J.
J. M. Utterback

13.69 International Shipping (A)
Prereq.: 13.68
G (2) 3-0-6
Explores internal operating, financial, and marketing issues as well as external market and technological factors which define the international shipping environment. Includes effect of world energy crisis and changing trade patterns upon demand for shipping; evaluation of shipping capacity requirements in terms of capital needs; new ships and terminal technologies; and effect of changing international relationships. Other students admitted by permission of the instructor. Taught jointly with Harvard Business School.
H. S. Marcus

13.700-13.709 Special Problems in Ocean Engineering
Prereq.: —
U (1, 2, S) Arr.
Special reading, study, design, and/or investigation under supervision of a qualified member of the staff. Topics in ocean engineering, naval architecture, or marine engineering individually arranged to suit interests of the student. Consult Department Student Administration Office for subject number which will be assigned in accordance with the technical area of the topic selected.
J. K. Vandiver

13.710-13.719 Special Problems in Ocean Engineering (A)
Prereq.: —
G (1, 2, S) Arr.
Special reading, study, design, and/or investigation under supervision of a member of the staff. Topics in ocean engineering, naval architecture, or marine engineering individually arranged to suit interests of student. Consult Department Student Administration Office for subject number which will be assigned by the Department in accordance with the technical area of the topic selected.
A. D. Carmichael

13.73 A Survey of Ocean Engineering (Revised Unit)
Prereq.: —
U (2) 1-0-1
Series of lectures acquaints undergraduate students in ocean engineering with the many facets of the field including naval architecture and marine engineering. Explores relationships and interfaces with the various engineering and scientific disciplines. Uses current problems and research projects for illustration. Each session conducted by a different faculty member, concentrating on that faculty member's area of interest. Undergraduate and graduate students from all departments are welcome. Consult Department headquarters.

13.730-13.739 Seminar in Ocean Engineering
Prereq.: Permission of Instructor
G (1, 2) Arr.
Weekly lectures on new topics in ocean engineering by members of the MIT staff. Consult Department Student Administration Office for subject number assigned in accordance with the technical area of the topic selected. Consult Department headquarters.

13.74 Marine Data Systems (A)
(Same subject as 6.455J)
Prereq.: 2.02 or 6.003, 6.041, 18.075
G (1) Not to be offered 1985-86 3-0-9
See description under subject 6.455J.
A. B. Baggeroer, P. N. Mikhailovsky, (Woods Hole Staff): R. C. Spindel

13.76 Introduction to Random Processes in Ocean Engineering (A)
Prereq.: 18.04 or 18.075
G (2) Not to be offered 1985-86 3-0-9
Fundamentals of random process theory and its application to physical and engineering problems. Elements of probability theory and statistics, harmonic analysis of deterministic and random processes, correlation, linear systems including those with frequency dependent parameters such as ships in a seaway, analog and digital filtering, spectral analysis and extraneous statistics. Applications include ocean waves, seakeeping, offshore structures in storms, and the establishment of design criteria.
J. H. Milgram, R. J. Van Houten

13.77J Invention
(Same subject as 2.941J, 10.802J, 16.671J)
Prereq.: —
G (1) 3-0-6
See description under subject 2.941J.
D. G. Jansson, A. D. Carmichael, W. R. Markey, J. P. Longwell

13.771 Engineering Internship
Prereq.: —
U (1, 2, S) 0-6-0

13.772 Industrial Practice in Ocean Engineering
Prereq.: 13.771
U (1, 2, S) Arr.

13.774 Advanced Engineering Internship
Prereq.: 13.771
G (1, 2, S) 0-6-0
Enrollment restricted to students registered in Course XIII-C Program. Provides academic credit for assignments affiliated with XIII-C Program. Students register for 13.771 during their first and second company assignments, accumulating a total of 12 units. 13.774 provides academic credit for the seven month
13.85 Fundamentals and Applications of Underwater Sound (A) (Revised Unit)
Prereq.: 13.851 or 13.861, 6.003, 6.041
G (2) Next offered 1985-86
3-0-9

I. Dyer, P. N. Mikhalevsky

13.852 Advanced Sonar Systems Engineering (A) (New)
Prereq.: 13.851 or 13.861, 6.003, 6.041
G (2) Next offered 1985-86
3-0-9

P. N. Mikhalevsky, I. Dyer

13.861 Ocean and Seabed Acoustics I (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-9

Surveys properties of the ocean and seabed and of predictive models of sound propagation, in relation to sonar and seismic system design and/or to the use of sound to uncover oceanic properties. Ray and wave theories of propagation in vertically stratified media. Approximate propagation theories for a horizontally varying ocean. Reflection and transmission of sound by a stratified ocean bottom. Scattering from a random sea surface and seafloor. Introductory knowledge of Fourier analysis, probability, and wave propagation necessary.
A. B. Baggeroer,
(Woods Hole Staff): G. Frisk

13.862 Ocean and Seabed Acoustics II (A)
Prereq.: 13.861
G (2) Next offered 1985-86
3-0-9

Continues 13.861, treating ray and normal mode theory in greater depth, and introducing new topics. Emphasizes "state-of-the-art" level in ocean acoustics. Topics: ray theory corrections, coupled normal mode theory, adiabatic approximation, continuum and virtual modes, rough surface scattering in mode theory, ray-mode picture connections, parabolic equation, Thomson-Haskell propagator matrix, seismic wave (body and surface) overview, WKBJ synthetic seismograms, and hydrophone-geophone intercomparisons. Permission of instructor required.
(Woods Hole Staff): J. Lynch

13.87 Wave Propagation in Random Media (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-9

Emphasizes physical principles and mathematical techniques common to most problems of wave propagation through and scattering in random media. The ocean and atmosphere as random medium. Scattering by discrete scatterers and by a continuous inhomogeneous medium. Statistics of the medium and the propagating wave. Single and multiple scattering, saturation. Geometric, Rytov, and parabolic approximations; path integral method; transport equations; propagation of moments. Given at MIT.
(Woods Hole Staff): Y. Desaubies

13.88 Dynamics of Ocean Structures (A)
Prereq.: 1.572, 13.80J or 2.06J
G(2) 3-0-9

Presents prediction of structural dynamic response and acquisition and analysis of experimental data for contemporary ocean structures. Evaluates fixed platforms and moored tension leg platforms. Includes dependence on predicted response on natural frequencies, damping ratios, and characteristics of the wave spectrum. Response of long cylindrical cables, pipelines, and marine risers to vortex shedding. Discusses and demonstrates experimental, data reduction, and analysis techniques. Introduction to fatigue life calculation.
J. K. Vander, S. Scrum Sunder

13.901 Ocean Engineering Laboratory I
Prereq.: 2.20
U (2) LAB
1-5-0

Experimental projects in the fields of ocean engineering and naval architecture and marine engineering, conducted at the MIT Ship Towing Tank and the MIT Variable Pressure Water Tunnel. Ocean engineering experiments arranged to solve one or more design problems selected by the instructor.
A. D. Carmichael

13.902 Ocean Engineering Laboratory II
Prereq.: 13.901, 13.003J
U (1) LAB
1-5-0

Experimental projects in the fields of ocean engineering and naval architecture and marine engineering, conducted at laboratory facilities in the Department of Ocean Engineering. Ocean engineering problems arranged to solve one or more design problems selected by the instructor.
A. D. Carmichael
13.91 Defense and Arms Control Issues (New)
Prereq.: —
U (2) 3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
R. Lester, G. W. Rathjens, J. P. Ruina

13.92 Marine Policy (A)
Prereq.: Permission of Instructor
G (1) 3-0-6
Surveys major ocean uses and their associated policy issues; demonstrates relationships among uses and among the scientific, technical, economic, and political/legal aspects. Topics: law of the sea, seabed mining, offshore oil development, marine pollution, fisheries, and national security.
J. T. Kildow

13.93 Technology of Nuclear Weapons and Arms Control (New)
Prereq.: —
G (1) 4-0-8
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
G. W. Rathjens, J. P. Ruina

13.94 Law for Ocean Systems (A)
Prereq.: Permission of Instructor
G (1) 3-0-6
Legal framework for managing ocean resources and systems, combining public law of the sea, admiralty, and the US regulatory law. OCS, tanker, shipping, and environmental regimes. Law for new ocean technologies. Questions of jurisdiction and implementation arising from new economic zones or unilateral extensions. Principles governing applicability of civil and criminal law offshore. Focus on relationships of law and technology.
J. D. Nyhart

13.961J Ocean Resources Management (A)
(Same subject as 3.581J)
Prereq.: Permission of Instructor
G (2) Not to be offered 1985-86 3-0-6
Comparative study of nature, utilization, management of seabed mining, offshore oil development, fishing. Topics: changing perceptions of natural resources, availability, costs; results of increased demand; effects of technology on development; factors that compel new management systems; institutional and process changes in public and private sectors; role of resources in international political and economic affairs.
J. T. Kildow, J. P. Clark

13.97 Introduction to Technology and Law
Prereq.: —
U (1) 3-0-9
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
J. D. Nyhart

13.96J Coastal Zone Management (A)
(Same subject as 11.365J)
Prereq.: Permission of Instructor
G (2) 3-3-6
Lecture and field work subject in methods and concepts for balanced management of land and water resources in coastal regions. Topics: physical and ecological coastal processes; implications of the range of human activities that place demands on the limited coastal resource base; institutional and regulatory framework for coastal management systems.
J. T. Kildow

13.990J Oceanographic Systems I
(Same subject as 1.697J)
Prereq.: —
G (S) 2-4-6
Orientation subject for students entering the MIT—Woods Hole Oceanographic Institution program in oceanographic engineering. Oceanographic experiments of research interest in Cape Cod waters carried through experiment design, instrumentation design, construction and test, deployment, data taking and interpretation of results. Research teams made up of students in 13.990J and 13.991J together. Participation in summer seminars at WHOI. Given at Woods Hole Oceanographic Institution.
(Woods Hole Staff)

13.991J Oceanographic Systems II
(Same subject as 1.698J)
Prereq.: —
G (S) 2-4-6
Continuation of 13.990J during second summer term in the MIT—WHOI joint program in oceanographic engineering. Given at Woods Hole Oceanographic Institution.
(Woods Hole Staff)

13.994 Buoy Engineering (A)
Prereq.: 2.01 or 2.03J/13.003J or 13.80J; 18.03
G (2) Not to be offered 1985-86 3-0-6
(Woods Hole Staff): H. O. Berteaux

13.998 Principles of Oceanographic Instrument Systems — Sensors and Measurements (A)
Prereq.: 2.03J/13.003J, 18.075
G (2) Not to be offered 1985-86 3-3-6
Introduces theoretical and practical principles in design of oceanographic sensor systems. Transducer characteristics for acoustic, current, temperature, pressure, electric, magnetic, gravity, salinity, velocity, heat flow, and optical devices. Limitations on these devices imposed by ocean environment. Signal conditioning and recording; noise, sensitivity, and sampling limitations; standards. Examples of system design from physical oceanography, geophysics, submersibles, acoustics. Laboratory project required.
(Woods Hole Staff): A. J. Williams

13.999J Special Projects in Oceanographic Engineering (A)
(Same subject as 1.699J)
Prereq.: Permission of Instructor
G (1, 2, S) Arr.
Special problems in oceanographic engineering carried out under supervision of members of the staff of the Woods Hole Oceanographic Institution. Given at Woods Hole Oceanographic Institution.
(Woods Hole Staff)
14 Economics

General Economics and Theory

14.02 Economic Principles II
Prereq.: —
U (1, 2, S)
3-0-6
Introduces macroeconomics. Determinants of the overall levels of economic activity, fiscal and monetary policy, price controls, distributional effects of macroeconomic policies, inflation, and unemployment. Applications to problems of current economic policy. A special section is offered for potential majors.
T. J. Kehoe

14.03 Applied Microeconomics
Prereq.: 14.01
U (1, 2)
3-0-6
Designed for non-majors who desire further exposure to microeconomics and its applications. Presents basic theory of consumer and producer behavior and welfare analysis at an intermediate level. Emphasizes applications, including cost-benefit analysis, transportation, price regulation, research and development, and pollution.
Term 1: J. v. R. Farrell
Term 2: W. C. Wheaton

14.04 Intermediate Microeconomic Theory
Prereq.: 14.01
U (2)
4-0-8
Basic theory of consumer behavior, production and costs, partial equilibrium analysis of pricing in competitive and monopolistic markets, general equilibrium, welfare and capital. Credit not given for both 14.03 and 14.04. May not count toward Humanities Requirement.
J. Tirole

14.06 Intermediate Macroeconomic Theory
Prereq.: 14.02
U (1, 2)
4-0-8
Theory of national income determination, static and dynamic; components of aggregate demand; analysis of aggregate supply. Theory of growth and inflation.
Term 1: O. J. Blanchard
Term 2: R. M. Solow

14.07 History of Economic Thought
Prereq.: 14.01, 14.02
U (2)
3-0-6
A selective historical survey of the development of economic analysis; gives varying degree of attention to the contributions of Aristotle, Aquinas, Mun, Hume, Smith, Malthus, Ricardo, Marx, Mill, Walras, Marshall, Keynes, and Schumpeter.
R. L. Bishop

14.08 Current Economic Problems (New)
Prereq.: 14.01, 14.02
U (1)
3-0-6
Discussion of selected economic problems and policies under current public consideration, such as stabilization, unemployment and inflation, capital formation, taxes, energy, agriculture, regulation, foreign trade and lending. Limited to 30.
E. C. Brown

14.09 Reading Seminar In Economics
Prereq.: —
U (1, 2)
Arr.
Reading and discussion of particular topics in economics. Open to advanced undergraduate students by arrangement with individual faculty members. Consult E. C. Brown.

14.101 Mathematics for Economists
Prereq.: 18.02
G (1)
4-0-8
Linear algebra emphasizing topics of interest to economists. Also topics in multivariate differential calculus and optimization theory. Provides mathematical prerequisites for econometrics.
J. E. Harris

14.110J Applied Microeconomic Analysis (A)
Prereq.: 14.01
G (1)
3-0-6
For students with primary interests outside of economics who wish to acquire some expertise in applied economic analysis. Development of microeconomic theory at an intermediate level, including consumer and producer theory, imperfect competition, capital and welfare economics, emphasizing applications of particular relevance to engineers, such as problems related to transportation, energy, water resources, and constructed facilities. Credit not given for this subject and 14.03, 14.04.
W. C. Wheaton
Economics

14.111J Economics of Project Evaluation (A)
(Same subject as 1.148J)
Prereq.: 14.03 or 14.120
G (2) 3-0-6
Economic concepts of costs and benefits: consumers' and producers' surplus; shadow prices; and valuation of non-market costs and benefits. Investment criteria and the discount rate: static and dynamic; treatment of risk and uncertainty. Pricing policies and investment rules. Case studies in developed and underdeveloped countries: transportation, water resources, pollution abatement, and energy.
J. Rothenberg

14.120 Microeconomic Theory (A)
Prereq.: 14.03
G (1) 3-0-9
Comprehensive survey, emphasizing more advanced aspects as compared with similar undergraduate subjects. Equilibrium of the household, the firm, and markets with various degrees of competition and monopoly. Resource allocation and income distribution in static general equilibrium. Capital, interest, and dynamic equilibria. Cost-benefit analysis and welfare economics.
R. L. Bishop

14.121 Microeconomic Theory I (A)
Prereq.: 14.04
G (1) 2-0-4

14.122 Microeconomic Theory II (A)
Prereq.: 14.04
G (1) 2-0-4
J. M. Tirole, F. M. Fisher

14.123 Microeconomic Theory III (A)
Prereq.: 14.122
G (2) 2-0-4

14.124 Microeconomic Theory IV (A)
Prereq.: 14.121, 14.123
G (2) 2-0-4
E. S. Maskin
P. A. Diamond

14.125 General Equilibrium (A)
Prereq.: 14.122
G (1) 3-0-9
Theory of general competitive equilibrium from modern mathematical points of view. Topics include properties of aggregate demand functions, existence of equilibrium, fixed-point theorems and computational techniques, core of an economy, nonconvexities, stability and uniqueness of equilibrium, and empirical general equilibrium models.
T. J. Kehoe

14.126 Game Theory (A)
Prereq.: 14.122
G (1) 2-0-4
Two-person zero sum games and the minimax theorem; non-cooperative games and Nash equilibrium; the core and market games; Shapley value, the bargaining set, and other cooperative solution concepts. Half-term subject.
E. S. Maskin

14.127 Economics of Uncertainty (A)
Prereq.: 14.124
G (2) 3-0-9
O. D. Hart, C-F. Huang

14.128 Mathematical Optimization and Economic Theory (A)
(Revised Unit)
Prereq.: 14.124
G (1) 2-0-4
Linear and nonlinear programming, duality theory, dynamic programming, and optimal control. Half-term subject.
M. L. Weitzman

14.129 Microeconomic Theory (A)
Prereq.: 14.122
G (2) 3-0-9
E. S. Maskin
P. A. Diamond

14.130 Microeconomic Theory (A)
Prereq.: 14.122
G (2) 3-0-9
E. S. Maskin
P. A. Diamond

14.131 Disequilibrium Foundations of Equilibrium Economics (A)
Prereq.: 14.122
G (2) Next offered 1985-86
2-0-4
F. M. Fisher

14.132 Schools of Economic Thought (A)
Prereq.: 14.124
G (1) 2-0-4
Advanced topics in microeconomic theory of current interest.
Staff
Industrial Economics

14.20 Industrial Organization and Public Policy
Prereq.: 14.01
U (1)
3-0-6
Analyzes the structure, behavior, and performance of industrial markets in the US economy. Topics include the measurement of monopoly power, behavior of firms in oligopoly markets, static and dynamic measures of market performance, anti-trust policy, and public utility regulation.
G. Saloner

14.21J Health Economics
(Same subject as HST 901J)
Prereq.: 14.01
U (2)
3-0-6
Applies theoretical and empirical tools of economics to problems of health and medical care delivery. Concentrates on selected problems, such as: the welfare economics of "health" as a commodity; hospitals and the nonprofit sector; human capital and medical manpower; and innovation in medicine. HST 901J may also count toward Humanities Requirement.
J. E. Harris

14.23 Government Regulation of Industry
Prereq.: 14.04
G (2)
3-0-6
Examines economic rationale for and against government regulation of prices, entry, product quality, and production processes in various US industries. Theoretically and empirically examines economic effects of current regulatory practices through case studies.
A. F. Friedlaender

14.271 Problems in Industrial Economics (A)
Prereq.: 14.04
G (1)
3-0-9
Small and large enterprises in the American economy; market structures; degrees of monopoly and competition; requisites of public policy.
P. L. Joskow, G. Saloner

14.272 Government Regulation of Industry (A)
Prereq.: 14.04
G (2)
3-0-9
Use and evaluation of a variety of public policy instruments that affect the behavior and performance of industrial markets, such as anti-trust policy, public utility regulation, consumer protection, environmental policy, peak load pricing, and public enterprise.
P. L. Joskow, J. E. Harris

14.281 The Energy Industries
Prereq.: 14.01
G (1)
Next offered 1985-86
3-0-6
Surveys the main trends in production, pricing, and investment costs of coal, electric power, crude oil, and refined products. Economics of nuclear power. Intended for students of either economics or engineering.
M. A. Adelman

14.285J Current Economic and Regulatory Problems in Toxicology (A)
(Same subject as 20.619J, HST 902J)
Prereq.: Permission of Instructor
G (1)
Next offered 1985-86
3-0-9
See description under subject 20.619J.
J. E. Harris, S. R. Tannenbaum

14.286J Health Economics Seminar (A)
(Same subject as HST 903J)
Prereq.: 14.04
G (2)
Next offered 1985-86
3-0-9
Advanced subject in economics of health care sector. Considers selected topics in depth, such as design and financing of health insurance; behavior of nonprofit hospitals; role of competition in the medical care market; determinants of technological change; and effects of government regulations. Permission of instructor required.
J. E. Harris

14.291 Industrial Economics Seminar (A)
Prereq.: 14.271
G (2)
3-0-6
Particular problems in industrial economics.
J. v. R. Farrell
14.30 Introduction to Statistical Method in Economics
Prereq.: 18.02
U (1, 2) SD
4-0-8
Self-contained introduction to statistics with economic applications. Elements of probability theory, sampling theory, statistical estimation, regression analysis, and hypothesis testing. Elementary econometrics and other applications of statistical tools to economic data. May not count toward Humanities Requirement. Term 1: J. M. Poterba Term 2: C-F. Huang

14.31 Econometrics
Prereq.: 14.30
U (1, 2) LAB
3-4-5
Introduces basic econometric techniques strongly emphasizing applications. Problems in estimating such economic variables as consumption-income-price relationships, production functions, and in simulating economic models. May not count toward Humanities Requirement.
Term 1: J. L. Powell
Term 2: E. Kuh

14.381 Statistical Method in Economics
Prereq.: 18.02
G (1)
4-0-8
Self-contained introduction to probability and statistics as background for advanced econometrics. Elements of probability theory, sampling theory, asymptotic approximations, decision theory approach to statistical estimation focusing on regression, hypothesis testing, and maximum likelihood methods. Illustrations from economics and application of these concepts to economic problems.
J. L. Powell

14.382 Econometrics I (A)
Prereq.: 14.101, 14.381
G (2)
4-0-8

14.383 Econometrics II (A)
Prereq.: 14.382
G (1)
4-0-8
J. A. Hausman

14.384 Time-Series Analysis (A)
Prereq.: 14.382 or 14.388
G (1)
2-0-4
Theory and applications of time-series models, including stochastic processes, ARIMA processes, spectral analysis, and distributed lags.
H. L. White

14.386 Advanced Topics in Econometrics (A)
Prereq.: 14.383
G (2)
3-0-9
Selected topics including specification error, nonlinear estimation, simulation, aggregation and the derivation of economic policy models.
H. L. White

14.388 Applied Econometrics (A)
Prereq.: 14.101, 14.381
G (2)
3-0-9
T. M. Stoker

14.389 Econometrics Paper (A)
Prereq.: 14.382 or 14.31
G (1)
0-0-3
Paper in econometrics required of all Ph.D. candidates who do not take 14.383.
J. A. Hausman

14.39 Undergraduate Thesis Seminar
Prereq.: 14.04, 14.06, 14.31
U (1)
2-0-4
Develops a workable thesis proposal through critical reading of current research, review and written commentary on topical literature, individual reports, and conferences. For senior economics majors. Half-term subject.
E. C. Brown

14.391 Workshop in Economic Research (A)
Prereq.: 14.124, 14.454
G (1)
2-0-10
Develops research ability of students through intensive discussion of dissertation research as it proceeds, carrying out of individual or group research projects, and critical appraisal of current reported research. Workshops divided into various fields, depending on interest and size.
Staff

14.40 Monetary and Banking Policy
Prereq.: 14.06
U (1)
3-0-9
Monetary factors affecting the level of real income and relationships of financial institutions to these factors. Financial organization of society: the money-banking system, credit institutions, capital markets, and international financial relations. Monetary history.
P. A. Diamond

14.42 Economics of Pollution
Prereq.: 14.01
U (1)
3-0-6
J. Rothenberg

14.43 Public Finance
Prereq.: 14.03 or 14.04; 14.06
U (2)
3-0-9
J. M. Poterba

14.451 Macroeconomic Theory I (A)
Prereq.: 14.06
G (2)
2-0-4
R. Dornbusch, S. Fischer
14.453 Macroeconomic Theory III (A)
Prereq.: 14.452
G (1)
2-0-4
14.454 Macroeconomic Theory IV (A)
Prereq.: 14.453
G (1)
2-0-4
14.453: O. J. Blanchard
14.454: R. M. Solow

14.456, 14.459 Advanced Topics in Macroeconomic Theory (A)
Prereq.: 14.454
G (1, 2)
Arr.
Advanced topics in macroeconomic theory of current interest.
J-M. Grandmont

14.462 Monetary Economics I (A)
Prereq.: 14.121, 14.451
G (1)
3-0-9
Determinants of supply of money with special attention to role of Federal Reserve System. Discusses nature of demand for money. Role of monetary policy in determination of level of economic activity. Cost of inflation and unemployment.
S. Fischer, O. J. Blanchard

14.463 Monetary Economics II (A)
Prereq.: 14.122, 14.452
G (2)
3-0-9
General equilibrium theory of money, interest, prices, and output; portfolio problems, and the effects of monetary phenomena on investment and accumulation of wealth with special reference to problems arising from uncertainty.
S. Fischer, O. J. Blanchard

14.471 Fiscal Economics I (A)
(Revised Unit)
Prereq.: 14.04
G (1)
3-0-9
J. M. Poterba

14.472 Fiscal Economics II (A)
(Revised Unit)
(14.477)
Prereq.: 14.04
G (2)
3-0-9
Quantitative analysis of economic effects of fiscal instruments and fiscal changes, such as negative income tax, corporate income tax integration, general fiscal incidence, expenditure taxation.
J. A. Hausman

14.474 Fiscal Economics III (A)
Prereq.: 14.124
G (2) Next offered 1985-86
2-0-4
Topics of current research interest in advanced fiscal theory, such as optimal taxation, optimal expenditure policy, policies to deal with externalities. Half-term subjects.
J. M. Poterba

14.476 Social Insurance (A)
Prereq.: 14.121, 14.122
G (2)
Next offered 1985-86
3-0-9
Theory of social insurance and examination of some of existing and proposed US programs including some subset of Social Security, Unemployment Compensation, Worker's Compensation, National Health Insurance.
P. A. Diamond

14.482 Income Distribution Economics (A)
Prereq.: 14.124
G (2)
3-0-9
Modern theories and empirical studies of the determinants of the distribution of income.
L. C. Thurow

International, Interregional, and Urban Economics

14.50 State and Local Government Finance
Prereq.: 14.01
U (2) Next offered 1985-86
3-0-6
Issues in state and local government finance, paying particular attention to role of labor costs and labor relations. Topics include urban fiscal crisis, school finance reform, public sector impasses, and impacts of public employee unions.
H. C. Katz

14.51J Urban Economics
(Same subject as 11.008J)
Prereq.: 14.01
U (1)
3-0-6
Analyzes urban problems in US using an economic methodology. Metropolitan growth and suburbanization, housing markets, segregation and urban renewal, transportation systems, ghetto economic development, municipal finance, and social service provision. Develops theoretical perspectives primarily through discussion of policy issues. 11.008J may also count toward Humanities Requirement.
J. Rothenberg

14.53 Comparative Economic Systems
Prereq.: 14.02
U (1)
3-0-6
Comparative study of the treatment of economic problems under different economic systems. Analyzes the economic ideology of capitalism, utopian writings, market socialism, workers' management, and Marxism. Functions of prices, profits, and planning in allocation of resources. Compares several capitalist and socialist countries including the US and Yugoslavia.
M. L. Weitzman

14.54 International Trade
Prereq.: 14.03 or 14.04
U (1)
3-0-9
Theory of international trade and finance, and application to current problems, such as exchange restrictions, economic development, and foreign aid.
R. Dornbusch

14.573J Urban Economic Analysis I (A)
(Same subject as 1.283J, 11.410J)
Prereq.: 14.04
G (1)
3-0-9
See description under subject 11.410J.
W. C. Wheaton
14.574J Urban Economic Analysis II (A)
(Same subject as 11.411J)
Prereq.: 11.410J or 14.573J
G (2)
3-0-9
J. Rothenberg

14.576J Topics in Transportation Economics (A)
(Same subject as 1.284J)
Prereq.: 14.03 or 14.04
G (2) Next offered 1985-86
3-0-9
See description under subject 1.284J.
C. Winston

14.581 International Economics I (A)
Prereq.: 14.04
G (1)
3-0-9
Theory of international trade and applications in commercial policy.
P. R. Krugman

14.582 International Economics II (A)
Prereq.: 14.06, 14.581
G (2)
3-0-9
Adjustment in international economic relations with attention to foreign exchange markets, balances of payments, and the international monetary system.
R. Dornbusch

Labor Economics and Industrial Relations

14.63 Labor in Industrial Society
Prereq.: —
U (1, 2) HUM-D
3-0-6
Introductory analysis, through an integrated social science approach, of the nature of labor problems in an industrial society; emphasizing unemployment, participation in the labor force, development of labor organizations, accommodation of management and unions through the dynamic bargaining process, industrial conflict, and other selected issues arising between management and labor in American society.
H. C. Katz

14.64 Labor Economics and Public Policy
Prereq.: 14.01
U (2)
3-0-6
Theory and evidence concerning the functioning of the labor market. Particular emphasis on the roles played by government and unions. Topics: minimum wages, labor market effects of social insurance and welfare programs, the collective bargaining relationship, discrimination, and unemployment. Permission of instructor required for students without 14.01 background.
K. G. Abraham

14.671J Labor Economics (A)
(Same subject as 15.671J)
Prereq.: 14.64 or 15.663
G (1)
3-0-6
Emphasizes structure of labor markets and determinants of wage levels, unemployment, the distribution of income and employment opportunity. Gives special attention to impact of unions on both wage and nonwage elements of collective bargaining in light of the characteristics and objectives of particular unions. Other special topics growing out of recent research in labor economics.
M. J. Piore

14.672J Public Policy on Employment and Industrial Relations (A)
(Same subject as 15.672J)
Prereq.: 14.64 or 15.663
G (2)
3-0-6
Major trends in legislation and other government activities affecting the work place. Topics: wage and price controls, equal employment opportunity, and government regulation of union organization, collective bargaining, industrial disputes, wages and hours of work, and workplace health and safety. Also explores the broad economic and social questions raised by these trends.
H. S. Farber

14.674J Comparative Systems of Industrial Relations and Human Resource Development (A)
(Same subject as 15.674J, STS 512J)
Prereq.: 14.64 or 15.663
G (2)
3-0-6
See description under subject 15.674J.
M. J. Piore

14.691J Research Seminar in Industrial Relations (A)
(Same subject as 15.691J)
Prereq.: 14.671J or 14.672J
G (1)
3-0-6

14.692J Research Seminar in Industrial Relations (A)
(Same subject as 15.692J)
Prereq.: 14.691J
G (2)
3-0-6
See description under subject 15.691J, 15.692J.
Staff
Economic History

14.71 Topics in Economic History
Prereq.: 14.02
U (2) HUM-D
3-0-6
Applies economic analysis to historical problems. Topics vary from year to year. In the past they included: "The Economic Effects of the Black Death," "The Economic Cause of Slavery and Serfdom," and others. The focus this year is on the US. Limited to 20. Some knowledge of history desirable.

P. Temin

14.731 American Economic History (A)
Prereq.: 14.04, 14.06
G (1)
3-0-9
Surveys the beginnings of American industrialization, emphasizing a quantitative approach and the 19th century. Topics: effects of government economic policies such as land distribution and tariffs, importance of railroads, profitability of slavery. Limited to 20.

P. Temin

14.732 Problems in Russian Economic History (A)
Prereq.: 14.04, 14.06
G (2) Next offered 1985-86
3-0-9
Comparative study of major problems in Russian economic history prior to 1917 both for their own sake and as a background for an understanding of the events of 1917 and of Soviet policies since. Topics vary yearly, but emphasizes land and peasant problems and industrialization methods. Consult P. Temin.

14.733 European Economic History: Monetary and Financial Aspects (A)
Prereq.: 14.121
G (2) Next offered 1985-86
3-0-9
Surveys the development of money, banking, central banking, government and private finance, including capital markets, in Western Europe from 1600, emphasizing comparative institutional changes in national systems and the development of European-wide institutions. Consult P. Temin.

14.734 Problems in Economic History (A)
Prereq.: 14.731, 14.732 or 14.733
G (2)
3-0-9
Analyzes problems of industrial society, focusing on the century after 1860 and on the American experience. Topics vary yearly including effects of wars on welfare and growth, nature of the long deflation of late 19th century, contrast in international relations before and after 1914, depression of the 1930s.

P. Temin

Economic Development

14.74 Economic Growth and Development
Prereq.: 14.02
U (1)
3-0-6
Analytical treatment of the problems of economic growth and development combined with comparative studies of the growth of advanced and underdeveloped economies. Considers policy measures to promote economic development and growth.

R. S. Eckaus

14.771 Problems of Economic Development (A)
Prereq.: 14.121, 14.451
G (1)
3-0-9
Analyzes problems of the rural sector in developing countries, urban-rural migration, unemployment, sectoral balance and efficiency of private resource allocation.

R. S. Eckaus

14.772 Theory of Economic Development (A)
Prereq.: 14.121, 14.451
G (2)
3-0-9
Analyzes problems in international trade and development; studies structure and use of planning models for development policy and use of cost-benefit analysis.

R. S. Eckaus

14.774 Technology and Development (A)
Prereq.: 14.74
G (2) Next offered 1985-86
3-0-9
A survey, for noneconomics majors, of issues in identifying, choosing, and using particular technologies in developing countries and consequences of decisions made. Topics: economic analysis of implications of social, political, and technological criteria and constraints on choice in rural as well as urban production conditions. International transfer and adaptation of technology, including role of transnational corporations. Case studies develop and illustrate problems.

R. S. Eckaus

14.775 Theory and Problems of Economic Development (A)
Prereq.: 14.02
G (2)
3-0-9
For non-economics majors on survey and analysis of problems of developing countries. Special attention to interrelationships between agricultural and industrial sectors and urban-rural migration, analysis of dual economies in development processes, resource allocation, international trade and development problems, monetary and structural changes, applications of cost-benefit analysis and planning models for development.

R. S. Eckaus

14.780 Alternative Approaches to Macroeconomic Theory: Distribution, Growth, and Price Formation (A)
Prereq.: 14.04, 14.06
G (2)
3-0-9

L. J. Taylor

14.781J Political Economy I: Theories of the State and the Economy (A)
(Same subject as 17.156J)
Prereq.: Permission of Instructor
G (1)
3-0-9
See description under subject 17.156J.

M. J. Piore, S. Berger

14.782 Comparative Economic Systems (A)
Prereq.: 14.121, 14.451
G (2)
3-0-9

M. L. Weitzman
Managerial Economics

15.001 Managerial Economics
Prereq.: —
U (1, 2)
4-0-8
J. J. Rotemberg

15.011 Applied Microeconomics (New)
Prereq.: 14.01 or 15.001
G (1)
3-0-6
Applies basic principles of microeconomic analysis to management decision making and analysis of public policy. Cost and production, utility and demand, competitive and noncompetitive market behavior. Analyzes pricing and related policies. Rationales for and effects of antitrust and government regulation.
E. R. Berndt, R. S. Pindyck, R. L. Schmalensee, T. M. Stoker

15.012 Applied Macro and International Economics (Revised Content and Units)
Prereq.: 14.02 or 15.001
G (2)
3-0-6
Macroeconomics, international trade and finance emphasizing implications for business behavior. Macroeconomic topics: business cycles and their effects on industries, monetary and fiscal policy, inflation and unemployment, long-term economic growth, macroeconomic forecasting. International topics: balance of payments, exchange rates, trade and specialization, trade policy and international competition, international lending and investment, international debt problem and world financial system.
P. R. Krugman, J. J. Rotemberg, L. C. Thurow

15.013 Industrial Economics for Strategic Decisions (A) (Revised Content)
Prereq.: 15.011
G (1, 2)
3-0-6
Applies principles of industrial economics most relevant for corporate strategy to analysis of particular industries. Topics: market structure and its determinants; rational strategic behavior in "small numbers" situations; strategies for price and non-price competition; dynamic pricing, output, and advertising decisions; entry and entry deterrence; evolution of industries. R. S. Pindyck, R. L. Schmalensee, T. M. Stoker

15.014 Macroeconomic Problems and Policies (A) (Revised Content)
Prereq.: 15.012
G (2)
3-0-6
Focuses on determination of aggregate economic variables of interest to business and the use and interpretation of macroeconomic models and forecasts. Discusses the design of macroeconomic stabilization policies and the role of macroeconomic institutions like the Federal Reserve.
J. J. Rotemberg

15.016 Public Sector Economics and Finance (A) (Revised Content)
Prereq.: 15.012
G (2)
3-0-6
Analyzes investment and operating choices where strong interdependence of public policy and private action exists. Evaluates government intervention through expenditures, financial subsidy, taxation, regulation and public participation, and private response in environments which these actions create. Sample applications in energy and natural resources, environmental control, industrial promotion. Content relevant to private firms, public agencies, and their consultants.
H. D. Jacoby
Economics of Government Regulation (A)

Prereq.: 15.011
G (1)
3-0-6

Considers rationale, origin, and effects of the major forms of government regulation of firms and markets. Uses experience in the US to illustrate principles and problems. Economic and political foundations, ideal and actual public utility regulation, utility regulation applied to competitive markets, new policies aimed at health, safety, consumer protection, and environmental preservation.
R. L. Schmalensee

Economics of International Business (A)

Prereq.: 15.012
G (1, 2)
3-0-6

Studies key factors shaping the international economic environment and their implications for business. Topics: the causes of exchange rate volatility, its effects, and its implications for business strategy; international lending and country risk, emphasizing causes and prediction of debt crises; international competition, including both competitive strategies of firms and effects of international trade and industrial policies.
P. R. Krugman

Energy Economics and Policy (A)

Prereq.: 15.011
G (1)
3-0-6

Surveys recent work in energy economics and management, paying particular attention to US energy situation. Develops analytical methods and stresses use of research tools and results in public and private sector decision making. Topics: International aspects of energy policy, domestic price controls, energy and the environment, demand modeling and management, new energy technologies, and interactions between energy sectors and the macroeconomy. Information: H. D. Jacoby, R. S. Pindyck.

Economics and Finance: Principles and Policies

Prereq.: —
G (S)
4-0-9

Introduces determination of national income and its fluctuations; composition and pricing of output; determination of factor prices and inputs; industrial economics; relations of government and business, and current problems of applied economics; and general economic policy. Restricted to Sloan Fellows.
Staff

Case Studies in Strategic Economic Analysis (A)

Prereq.: 15.011
G (1)
3-0-6

Analyzes public and corporate policy problems emphasizing pricing and solving complex problems. Students work through several actual policy problems during semester. Examples: a decision to import liquified natural gas under a long-term contract, design of an optimal strategic stockpile of crude oil for the US, and financing of a new copper venture in a less developed country.
R. S. Pindyck, S. N. Finkelstein

Economics of International Trade and Industrial Policy (A)

Prereq.: 15.012
G (1)
3-0-6

Designed for students interested in applied econometric methods and business forecasting. Emphasizes problems typically encountered in conducting empirical econometric analysis, evaluating results and testing hypotheses, and in constructing forecasts. Requires term paper. Problem sets involve working with econometric models and the computer.
E. R. Berndt, E. Kuh, T. M. Stoker

Applied Econometrics and Forecasting for Management (A)

Prereq.: 15.061
G (1)
3-0-6

Introduces students interested in applied econometric methods and business forecasting. Emphasizes problems typically encountered in conducting empirical econometric analysis, evaluating results and testing hypotheses, and in constructing forecasts. Requires term paper. Problem sets involve working with econometric models and the computer.
E. R. Berndt, E. Kuh, T. M. Stoker

Research Seminar in Applied Economics

Prereq.: Permission of Instructor
G (1, 2)
2-0-4

Discusses current research problems in applied economics. Topics vary from term to term. Designed primarily for doctoral students.
T. M. Stoker, R. L. Schmalensee

Decision Models for Management

Prereq.: 15.065
G (1)
3-0-6

Introduces management science concepts as applied to managerial problem solving. Emphasizes identifying problems, formulating models, assessing assumptions and data requirements, and evaluating model-based recommendations. Topics: decision analysis, simulation, linear programming, and network flows.
J. B. Orlin

Decision Analysis (A)

Prereq.: Permission of Instructor
G (1)
3-0-6

Basic theory of decision making under uncertainty. Topics: decision trees, quantification of judgments and preferences, the value of information, Bayesian theorems, the structuring of complex decisions, and multi-attribute utility theory.
G. M. Kaufman
15.067 Competitive Decision Making (A)

Prereq.: Permission of Instructor
G (2)
4-0-5

Problems of decision making in competitive and conflict situations, when behavior of competitors or adversaries affects decisions. Basic theoretical results in relevant fields. Participation in out-of-class negotiation exercises simulating real competitive business situations provides experience in making rapid but calculated decisions in situations characterized by high degree of uncertainty and sophisticated competitors.

R. E. Welsch

15.071 Management Decision Support Models

Prereq.: —
G (5)
3-0-6

Model-based approach to modern managerial analysis. Introduces various techniques that support managerial decision making, including decision analysis, simulation, statistics, and linear programming. Emphasizes basic understanding and evaluation of techniques and their application rather than technical expertise. Restricted to Sloan Fellows.

T. L. Magnanti

15.073J Introduction to Stochastic Processes (A)

(Same subject as 18.445J)
Prereq.: 18.313 or 18.440 or 6.041
G (1, 2)
4-0-8

See description under subject 18.445J.

Arr.

15.074 Mathematical Models and Policy Analysis (A)

Prereq.: 15.061 or 15.075
G (2)
3-0-6

Case-study method exploring strengths and weaknesses of mathematical models, especially those related to data analysis, that affect decision making of legislatures, corporations, courts, and regulatory agencies. Topics: carcinogenic hazards of various substances, deterrent effect of criminal sanctions, statistical evidence in job-discrimination proceedings, effective operation of mass-transit systems.

A. I. Barnett

15.075 Applied Statistics (A)

Prereq.: 18.440 or 6.041
G (1, 2)
3-0-6

Introduces statistical data analysis concentrating on specific techniques used in management science. Topics: exploratory and graphical data analysis, smoothing, regression models, and diagnostics, statistical inference for linear models, sampling and data collection. Open to qualified undergraduates.

R. E. Welsch, M. A. Wong

15.076J Statistics for Model Building (A)

(Same subject as 18.457J)
Prereq.: 15.075 or 18.443, 18.06
G (2)
3-0-9

Linear and nonlinear regression analysis emphasizing detection and correction of model failures and variable selection. Robust methods, bootstrap, jackknife, and cross-validation. Data transformation, graphics, and non-parametric multiple regression. Topics illustrated on actual case material. Heavy use of statistical computer packages.

R. E. Welsch

15.078J Logistical and Transportation Planning Methods (A)

Prereq.: 6.431, 15.075
G (1)
3-0-9

See description under subject 1.203J.

15.079 Workshop in Applied Statistics

Prereq.: Permission of Instructor
G (1, 2)
Arr.

Presentations by faculty, students, and guest speakers concerned with research in applied statistics, data analysis projects related to management, statistical consulting, and statistical computing. Discussions of recent literature dealing with subjects of special interest to participants. Primarily for doctoral students.

R. E. Welsch

15.081J Introduction to Mathematical Programming (A)

(Same subject as 6.251J)
Prereq.: 18.06
G (1, 2)
3-0-9

See description under subject 6.251J.

J. B. Orlin, R. G. Gallager

15.082 Network Optimization (A)

Prereq.: 15.081J
G (2)
3-0-9

Network models for industrial logistics systems, transportation systems, communication systems, and other applications. Emphasizes algorithms and their efficiency: algorithms for shortest routes, minimum cost flow, minimal spanning trees, traffic equilibrium, vehicle routing and the traveling salesman problem, facility location and network design, matching. Implementation issues.

T. L. Magnanti

15.083 Combinatorial Optimization (A)

Prereq.: 15.081J
G (1)
3-0-6

Devoted to integer programming and related topics. Group optimization methods and integer programming duality theory. Benders’ method for mixed integer programming. Introduction to combinatorics including matroids, properties of integer polynomials, theory of computational complexity, optimization of submodular functions.

J. F. Shapiro

15.084J Nonlinear Programming and Discrete-Time Optimal Control (A)

(Same subject as 6.252J)
Prereq.: 18.06, 18.100
G (2)
3-0-9

See description under subject 6.252J.

J. F. Shapiro, S. K. Mitter

15.085 Topics in Optimization (A)

Prereq.: Permission of Instructor
G (1)
3-0-6

Seminar devoted to current literature and advanced topics in optimization theory and practice. Topics such as game theory, fixed point theory, analysis of heuristics, multicriteria optimization, and infinite dimensional optimization varying from year to year.

T. L. Magnanti

15.089 Workshop in Operations Research

Prereq.: Permission of Instructor
G (1, 2)
Arr.

Presentations by faculty, students, and guest speakers of ongoing research concerned with current issues in Operations Research. Typical topics: reports of research projects, proposed or in progress, informal discussions of recent literature dealing with subjects of special interest to participants. Primarily for doctoral students.

J. B. Orlin
Health Care Management

15.121 Seminar in Health Management (A)
Prereq.: Permission of Instructor
G (1)
3-0-6

15.122 Seminar in Health Management (A)
Prereq.: Permission of Instructor
G (2)
3-0-6

Studies selected organizational and management issues facing managers of health services, health education, and health research institutions as discussed by invited guests who are experienced managers. Primarily for members of the Health Management Executive Development Program. Other Sloan Fellows and a limited number of graduate students with background or concentration in health management admitted by permission of instructor. N. S. Stearns, E. B. Roberts

15.136 Health Technology (A)
Prereq.: Permission of Instructor
G (2)
3-0-6

Research seminar in the development, evaluation, and dissemination of medical technologies and practices. Strategies for management of basic and applied biomedical research. Communication channels for research results among researchers and from researchers to users. Analytic methods for evaluation of efficacy and social impact. Examines factors influencing commercial development of new health technology.

S. N. Finkelstein

15.141J Comparative Health Systems (A)
(Same subject as 17.228J)
Prereq.: Permission of Instructor
G (1)
3-0-6

See description under subject 17.228J.
S. N. Finkelstein, H. M. Saposky

15.144 Analytical Methods for Health Policy and Management (A)
Prereq.: Permission of Instructor
G (2)
3-0-6

Applies analytical methods to health policy and management problems. Considers incidence, prevalence, cost, and other characteristics of disease and illness having significant management or public policy implications. Reviews public and private initiatives in disease control, prevention, and research.
S. N. Finkelstein

15.149 Special Studies in Health Management (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.

For graduate students who desire to do advanced work or research on a health management problem not specifically covered elsewhere. Readings, conferences, fieldwork, and reports. E. B. Roberts

International Business

15.215 International Dimensions of Management
Prereq.: —
G (2)
3-0-6

Theory and practice of international business emphasizing strategy selection and implementation in response to the changing international environment. Role of public policies in global competition and their interaction with corporate strategies. Restricted to Sloan Fellows.
R. D. Robinson

15.221 International Business Management I (A)
Prereq.: Permission of Instructor
G (2)
3-0-6

Introduces global regulatory and competitive environment within which international business transactions take place, and the role and behavior of the multinational firm as it responds to its own internal dynamics and the external environment. Examines interface between multinational firm and the nation-state, identifying points of potential conflict and cooperation. Draws on examples from various countries and industries.
D. F. Simon

15.222 International Business Management II (A)
Prereq.: 15.221
G (1)
3-0-6

Analyzes internal structures and processes of the multinational firm in context of global regulatory and competitive environment. Emphasizes managing information flows, formulating and implementing strategy, developing and maintaining required social resources, and designing effective organizational structures.
D. E. Westney

15.223 International Business Environments (A)
Prereq.: 15.221
G (1)
3-0-6

R. D. Robinson
15.224 Intercultural Communication I (A)
Prereq.: 15.221
G (2) 3-0-6
Vehicle to provide academic credit for independent study involving in-depth exposure to culture with which student has had no significant prior exposure. Typically includes language training, special project carried out during three months of foreign residence, and written report based on experience.
R. D. Robinson

15.225 Intercultural Communication II (A)
Prereq.: 15.224
G (1) 3-0-6

15.227 International Technology Transfer (A)
Prereq.: Permission of Instructor
G (2) 3-0-6
Examines technology flows among countries focusing on transfer issues in: East-West relations and export controls; third world development; international competition and technology transfer among industrialized nations; technology exchanges among third world nations. Emphasizes role of multinational firm as purveyor of technology; examines licensing of technology, co-production, patents. Analyzes experiences of different countries for sources of past problems and ways of avoiding future problems.
D. F. Simon

15.268 Readings in Power and Responsibility (A)
Prereq.: Permission of Instructor
G (2) 3-0-6
Studies managerial power and responsibility in relation to today's world. Examines conflicts between power and moral responsibility, of the value-complexes which underlie modern Western society, and of the major political and economic stances available to leadership in coping with current problems. Restricted to Sloan Fellows.
W. F. Bottiglia

15.301 Managerial Psychology Laboratory
Prereq.: —
U (1, 2) LAB 2-6-4
Core subject for students majoring in management. Surveys individual and social psychology and organization theory interpreted in the context of the managerial environment. Laboratory involves projects of an applied nature in behavioral science. Emphasizes use of behavioral science research methods to test hypotheses concerning organizational behavior.
T. J. Allen, J. S. Carroll

15.304 Complex Organizations
Prereq.: 15.301
U (2) 3-0-6
Introductory examination of various perspectives by which complex organizations may be viewed. Emphasizes such features as conflict, control, authority, deviance, leadership, and decision-making as useful dimensions for understanding both organizational behavior and individual behavior within structured environments. Subject combines field observations of a goal-oriented social process with a survey of empirical findings related to complex organizations. Information: T. J. Allen.

15.306 Behavioral Science Research Methods
Prereq.: 15.304, 18.05
U (1) 3-0-9
Introduces methods of behavioral science research. General strategy of behavioral research (quantitative vs qualitative analysis, hypothesis formulation); research design (purposes, variance control, control of extraneous variables, use of control groups, randomized designs, factorial designs). Specific technologies of various designs (questionnaire construction, sampling, interviews, systematic observation). Organization and development of research project.
E. A. von Hippel

15.307 Behavioral Science Research Practicum
Prereq.: 15.306
U (2) 2-8-8
Develops and completes research project planned in 15.306 during previous term. Interprets and applies research findings in management environment. Experiments with such techniques as field survey work, laboratory experimentation, computer simulation, field consulting of relationships. Restricted to undergraduates in the Sloan School of Management who are in the Behavioral Science Program.
E. A. von Hippel
15.311 Managerial Behavior in Organizations
Prereq.: —
G (1)
3-0-6
Examines interpersonal and human side of both public and private enterprise. Emphasizes managerial applications of social science concepts and research findings. Uses experiential learning modes and case analyses as well as lectures and discussions. Class materials cover both micro concerns (i.e., individuals and small groups), and macro issues (i.e., organizational interrelations, culture, and learning). Restricted to first-year Sloan School of Management graduate students.
E. C. Nevis, Staff

15.312 Managerial Decision Making and Leadership (A)
Prereq.: 15.311
G (1)
3-0-6
Examines individual managerial behavior within organizations. Includes: judgment and choice, individual decision style, causal reasoning, decision aids, motivation, and leadership.
J. S. Carroll

15.313 Interpersonal Dynamics and the Management of Groups (A)
Prereq.: 15.311
G (2)
3-0-6
Examines basic concepts of how people relate to each other and how groups work from both a psychological and sociological perspective. Through lectures, discussion, fieldwork, weekly learning group exercises, and written assignments students learn not only the concepts but also how to improve their own communication and group membership.
E. Van Maanen

15.314 Organization Design and Development (A)
Prereq.: 15.311
G (2)
3-0-6
Topics: character and characteristics of effective organizations; designing organization structures; managing change; managing organizational transitions; organization/environment relationships; managing interface. Class activities include lectures, seminars, practice cases, films, and some team projects. Information: L. Bailyn.

15.317 Comparative Study of Organizations (A)
Prereq.: Permission of Instructor
G (2)
3-0-6
Examines management of organizations and organizational processes in various parts of the world. Special focus on highly industrialized societies, particularly Japan. Designed for advanced master's and doctoral students.
D. E. Westney

15.321 Theory and Practice of Implementation and Consultation (A)
Prereq.: 15.311
G (2)
3-0-6
Examines models of the change process in organizations emphasizing intervention skills for change agents.
E. C. Nevis

15.322 Organizational Psychology (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Analyzes — through lectures, discussions, and class exercises — management of human resources in industry. Restricted to Sloan Fellows.
E. H. Schein

15.334 Managing Planned Change I (A)
Prereq.: Permission of Instructor
G (1) **Next offered 1985-86**
3-0-6
Examines approaches to planning and managing change in complex organizations. Emphasizes methods and models of diagnosis of organization conditions. Class participation in a series of live consultations with "real" clients using models of diagnosis and strategy planning. Designed for graduate students interested in the problems involved in effective implementation of either technological, structural, or human resource based planned change efforts.
R. Beckhard

15.335 Managing Planned Change II (A)
Prereq.: 15.334
G (2) **Next offered 1985-86**
3-0-6
Continuation of 15.334 designed for students who intend to pursue careers as applied behavioral science specialists in personnel, training, organization development, management development, industrial relations, etc. Emphasizes skills and issues of intervening in a system. Topics: process of intervention, consultation skills, organizational diagnosis, design of interventions. Each class member works on a two-three person team project at a local organization; this practical experience is a major part of the subject. Permission of instructor required.
E. C. Nevis

15.337 Sociology of Work and Organizations (A)
Prereq.: Permission of Instructor
G (2) **Next offered 1985-86**
3-0-6
Reviews key concepts and research findings from sociology which illuminate the nature of work, how organizations evolve, and managerial process. Practice in use of sociological methods for studying work and organizations both in public and private sector. Designed for advanced master's and doctoral students.
E. Van Maanen

15.339 Social Psychology of Work and Organizations (A)
Prereq.: Permission of Instructor
G (2) **Not to be offered 1985-86**
3-0-6
Reviews key concepts and research findings from social psychology which illuminate the nature of work, functioning of organizations, and managerial process. Issues in use of social psychological methods for studying work and organizations both in public and private sector. Designed for advanced master's and doctoral students.
L. Bailyn

15.341 Seminar in Behavioral Sciences
Prereq.: —
G (1)
3-0-6
Develops basic concepts for understanding individual, group, and organizational behavior through critical analysis of important works in the field. Areas covered: cognitive, affective, change, control, input, throughput, output, and structural processes. Emphasizes use of behavioral science concepts for stimulating new and useful management science research and the application of behavioral science results to typical management problems. Restricted to doctoral candidates in the Sloan School of Management.
J. E. Van Maanen

15.345 Doctoral Seminar in Organization Studies I (A)
Prereq.: Permission of Instructor
G (1)
2-0-7

15.346 Doctoral Seminar in Organization Studies II (A)
Prereq.: 15.345
G (2)
2-0-7
Seminar covering the basic fields of social psychology, individual psychology, and sociology and organization theory for purposes of preparing the doctoral candidate for his or her doctoral examinations. Basic concepts, theories, and research methods serving as focus for the seminar. Restricted to doctoral candidates.
E. H. Schein, Staff

15.347 Doctoral Seminar in Research Methods (A)
Prereq.: Permission of Instructor
G (1)
4-0-8
Introduces the process of social research, emphasizing the conceptualization of research choices to maximize validity, relevance, and benefit-costs comparisons. Includes: research design (experiments, quasi-experiments) and specific measurement techniques (questionnaires, interviews, observation).
J. S. Carroll
Management of Innovation

15.351 Research and Development Management (A) (Revised Unit)
Prereq.: 15.301 or 15.311, 15.501 or 15.515
G (2) 3-0-6
Presents and integrates research findings on R & D management and technical innovation. Topics: laboratory management; project management; R & D interfaces to users, marketing, and manufacturing; technological entrepreneurship; project selection; technological forecasting; flow of technical information; management of technical personnel, new product development.
D. G. Anderson

15.361 Managing Professionals
Prereq.: —
G (S) 3-0-6
Examines human side of management through application of behavioral science research findings. Topics: supervising/motivating professional employees; career orientations; effective conflict management; group creativity/decision making; managing product teams; group aging; critical roles for innovation; organizational structure/communication. Emphasizes professional individuals and groups. Primarily for members of the Management of Technology Program. Others admitted by permission of instructor.
R. Katz

15.365J Manufacturing/Technology Interface (A)
(Same subject as 3.565J, 13.685J)
Prereq.: Permission of Instructor
G (2) 3-0-6
Focus on the management of process innovation. Economic and other influences on manufacturing process change. Interactions between research, development and engineering activities, and manufacturing operations. Transfer of new product developments into manufacturing. Primarily for members of the Management of Technology Program. Others admitted by permission of instructor.
J. M. Utterback

15.367 Marketing/Technology Interface (A)
Prereq.: 15.361 or 15.351
G (2) 3-0-6
Market inputs to product research, design, and development. Market research techniques for new product development. User role as source of innovations in industrial goods. Marketing of advanced technology products and systems. Primarily for members of the Management of Technology Program. Others admitted by permission of instructor.
E. A. von Hippel, G. L. Urban

15.369 Corporate Strategies for Managing Research, Development, and Engineering (A)
Prereq.: 15.351 or 15.361
G (2) 2-0-7
Joint seminar with the Harvard Business School technology management group. Strategic issues in managing research, development, and engineering. Considers corporate research laboratories, new venture organizations, and integration of RD & E into corporate strategy. Lecture sessions by faculty of both schools and by invited speakers from government and industry. Independent study and preparation of reports by individual students or teams of students.
E. B. Roberts

15.371 The R&D Process: Communication and Problem Solving (A)
Prereq.: 15.311 or 15.361 or 15.351
G (1) 3-0-6
Introduces sociology of science and technology, emphasizing similarities and differences between the two activities. Basic problem-solving processes in R&D. Presents research findings on intra- and inter-organizational technology flows. Role of interpersonal, organizational, and architectural factors in affecting communication of technical information.
T. J. Allen

15.373 Managing the Diffusion of Technological Innovations (A)
Prereq.: 15.311 or 15.361
G (2) Next offered 1985-86 2-0-7
Seminar on the introduction of new technology into organizations and public or private sector markets. Use of specific examples from the US and overseas in examining the social, cultural, and psychological forces which aid or impede the acceptance of these new tools, processes, or techniques. Information: E. B. Roberts

15.375 New Technical Ventures (A)
Prereq.: Permission of Instructor
G (2) 2-1-6
Develops detailed plan for launching a new technical venture by each student. Lectures provide information needed to succeed at this task. Topics: organization and management of ventures; patents and other means of new product protection; obtaining venture capital; research partnerships.
E. A. von Hippel
15.411 Financial Management (A)
Prereq.: 15.511, 15.024, 15.071
G (1)
3-0-6
Surveys what an organization invests in and how much it invests: where and how funds for investment are obtained; how financial institutions and financial markets operate. Topics: management of short-term assets and liabilities; capital budgeting and investment program decision making; functions and operations of the capital markets; valuation theory; long-term financial instruments and financing decisions; capital structure and dividend policy. Restricted to Sloan Fellows.
S. C. Myers

15.412 Financial Management (A)
Prereq.: 15.001 or 15.012
G (1, 2)
4-0-8
Surveys and analyzes financial problems facing managers, including theoretical introduction to financial institutions, financial instruments, and capital markets. Topics: functions and operations of capital markets; theory of efficient markets; portfolio and valuation theory; capital budgeting and investment decision making; firm's cost of capital; long-term financing instruments and financing decisions; dividend policy and capital structure. Primarily for students not concentrating in finance.
J. C. Cox, J. Parsons

15.413 Topics in Corporate Financial Management (A)
Prereq.: 15.411 or 15.412
G (1, 2)
3-0-6
Extends and applies topics and concepts covered in 15.412. Covers financial planning, leasing and project financing, mergers, pensions, and new approaches to corporate investment and financing decisions.
T. A. Marsh

15.415 Finance Theory (A)
Prereq.: 15.012
G (1, 2)
6-0-6
Core theory of capital markets and corporate finance. Topics: functions and operations of capital markets; analysis of consumption-investment decisions of investors; diversification and portfolio selection; valuation theory and equilibrium pricing of risky assets; theory of efficient markets; and investment and financing decisions of firms. Theoretical foundation for further study and practical applications. Required for students concentrating in finance.
R. C. Merton, R. S. Ruback

15.418 Taxation and Business Management (A)
Prereq.: 15.412 or 15.415
G (1, 2)
3-0-6
Analyzes effect of taxation on conduct of business. Concentrates on major decisions in which taxes impinge on the firm or its managers; concern with both theory and relevant empirical evidence. Topics covered: the "double-taxation" of dividends; the effect of capital gains taxation; tax incentives; compensation planning; the effect of taxation on effort; alternative to income taxation.
D. M. Holland

15.419 Finance for International Managers (A)
Prereq.: 15.012, 15.411 or 15.412
G (2)
3-0-6
Analyzes decisions of firms operating internationally emphasizing interaction of financial considerations with operating strategy and tactics. Topics: implications of fluctuating exchange rates, differing fiscal regimes, segmented and distorted capital markets, political risks for investment, financing, contracting, financial logistics, measurement and control of performance. Examples from industrialized and developing countries. Primarily for students not concentrating in finance. Credit not given for both 15.419 and 15.436.
D. R. Lessard

15.432 Capital Markets and Financial Institutions (A)
Prereq.: 15.415
G (2)
3-0-6
Role and functioning of the capital and money markets as a device for the allocation of resources, the channeling of investable funds, and the reallocation of risk. Function of financial intermediaries operating in these markets.
F. Modigliani

1.433 Security Prices (A)
Prereq.: 15.415
G (2)
3-0-6
Studies behavior of security prices and returns. Empirical work on efficient markets hypothesis and capital asset pricing models. Applications to portfolio management and corporate finance. Requires empirical term project.
T. A. Marsh

15.434 Capital Investment Decisions (A)
Prereq.: 15.415
G (1, 2)
3-0-6
Theory and practice of capital investment decisions. Approaches to estimating risk and adjusting for it. Applications of option pricing and new approaches to valuation. Forecasting, mergers, OR and planning models, public investment decisions.
R. S. Ruback

15.435 Corporate Financing Decisions (A)
Prereq.: 15.415
G (2)
3-0-6
Theory and practice of corporate financing decisions. Empirical work on debt and dividend policy; agency cost and signaling models; issue procedures and investment banking; leasing, project financing, convertible securities.
S. C. Myers

15.436 International Managerial Finance (A)
Prereq.: 15.012, 15.415
G (1)
3-0-6
Examines factors which distinguish international from domestic setting including volatile currencies, differing fiscal regimes, segmented and distorted capital markets, and cross-border risks. Analyzes implications for valuation theory and applications including investment and financing decisions, financial logistics, foreign exchange risk management, and performance measurement. Primarily for students concentrating in finance.
D. R. Lessard

15.437 Options and Futures Markets (A)
Prereq.: 15.415
G (2)
3-0-6
Develops option pricing theory. Applies theory to valuation of put and call options, loan guarantees, and corporate liabilities. Empirical tests of the models and investment strategies. Futures markets emphasizing financial futures and their uses.
J. C. Cox

15.439 Problems in Finance (A)
Prereq.: 15.415
G (1, 2)
3-0-6
Applies the theory of finance to specific financial markets and institutions. Emphasizes investment counseling, underwriting, investment companies, options markets, banks, and international financial markets.
F. Black

15.440 Advanced Topics in Financial Economics (A)
Prereq.: 15.439
G (2)
3-0-6
Discusses in greater depth topics treated in Problems in Finance, and other active research topics. Includes: applications of the capital asset pricing model, the option pricing model, and the theory of efficient markets; puzzles in corporate finance; equilibrium in real asset and labor markets; unregulated banking; and equilibrium in international markets. Problems in Finance may be taken concurrently.
F. Black
Management

15.441 Research Seminar in Finance (A)
Prereq.: 15.415
G (1, 2)
3-0-6

Presentation and analysis of original research in finance. For Sloan School doctoral candidates in finance. Others admitted only by permission of instructor.
F. Modigliani

Accounting, Planning, and Control

15.501 Financial and Cost Accounting
Prereq.: —
U (1, 2)
3-0-6

Introduces basic concepts and techniques of collecting, processing and reporting financial information generated by a business. Emphasizes basic financial and cost accounting concepts, and methods of financial analysis. Examines financial goal structures and decision-making processes which give rise to information needs.
J. M. McInnes, P. M. Healy

15.511 Financial and Management Accounting Systems
Prereq.: —
G (S)
3-0-6

Studies basic concepts of financial accounting and the accounting principles underlying financial statements. Viewpoint is that of the users of accounting information (especially managers) rather than the preparer (the accountant). Emphasizes use of accounting information in decision making, performance evaluation, and control in organizations. Restricted to Sloan Fellows.
J. M. McInnes

15.515 Financial and Cost Accounting
Prereq.: —
G (1)
3-0-6

Introduces basic concepts and techniques of collecting, processing and reporting financial information generated by a business. Examines financial goal structures and decision-making processes which give rise to information needs. Introduces methods of financial analyses, with goal of enabling students to understand, and use, corporate financial statements. Restricted to Sloan School of Management graduate students.
R. T. S. Ramakrishnan, P. M. Healy, J. M. McInnes

15.516 Financial and Cost Accounting (A except XV)
Prereq.: Permission of Instructor
G (1, 2)
3-0-6

Meets with 15.501. Term paper required.
J. M. McInnes, P. M. Healy

15.521 Management Accounting and Control (A)
Prereq.: 15.501 or 15.511 or 15.515 or 15.516
G (1, 2)
3-0-6

H. D. Sherman

15.522 Planning and Control in Nonprofit Organizations (A)
Prereq.: 15.501 or 15.511 or 15.515
G (2)
3-0-6

Principles of planning and control systems used in managing organizations not having a profit orientation. Emphasizes medical, educational, and cultural organizations and ties together strategic planning and management control systems. Issues discussed: environmental analysis, program budgeting, consideration of organizational size, budgeting procedures, output measurement, the influence of professionals in these organizations, and public responsibility. Content of 15.521 relevant but not required.
H. D. Sherman

15.525 Corporate Financial Accounting (A)
Prereq.: 15.501 or 15.511 or 15.515 or 15.516
G (1, 2)
3-0-6

Examination of corporate financial accounting policy, fundamental issues and emerging shifts in the financial accounting area. Advanced analysis and interpretation of financial statements and pronouncements of various agencies concerned with financial accounting (FASB, SEC, etc.).
S. Krishnamurthi

15.532 Planning and Control Systems (A)
Prereq.: 15.501 or 15.515 or 15.516
G (1, 2)
3-0-6

Development of a framework for analyzing an organization and its environment to provide basis for designing information systems and procedures to support the management of strategic development and operating performance. Goal formation and direction setting, long-range planning, budgeting and monitoring systems. Design of responsibility accounting systems in relation to strategy; problems of multi-dimensional measurement. Coordination of responsibility centers, and transfer pricing mechanisms. Content of 15.521 relevant but not required.
R. T. S. Ramakrishnan
15.535 Planning and Control Systems (A)
Prereq.: 15.511
G (1)
3-0-6
Design of information systems and procedures to facilitate the management of an organization in relation to its environment. Systems to support goal formation, direction setting, and the strategic development of an organization. Profit planning, budgeting, monitoring, and performance analysis systems. Design of responsibility accounting systems in relation to strategy; coordination of responsibility centers and issues of transfer pricing. Management of the resource allocation process under conditions of uncertainty and risk. Restricted to Sloan Fellows.
A. C. Hax

15.549 Workshop in Accounting and Control
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Presentations by faculty, doctoral students and guest speakers of ongoing research concerned with current issues in financial and managerial accounting, and in planning and control systems in organizations. Topics: reports of research projects, proposed or in progress, and discussions of recent literature in the area. Selects specific topics geared to interests of participants. Primarily for doctoral students.
R. T. S. Ramakrishnan

15.561 Introduction to Computers, Programming, and Information Systems
Prereq.: —
G (1)
0-6-0
Introductory concepts in computer hardware, software, and management information systems. Familiarization with and use of computer resources and software available at MIT which may be useful in subsequent subjects, research, or thesis work. Limited enrollment.
J. A. Meldman, M. E. Treacy

15.564 Management Information Technology I (A)
Prereq.: 2.10 or 15.561
G (1, 2)
4-0-8
Introduces principles of computer systems and computer systems programming. Emphasizes program planning and organization. Topics: machine language, assemblers, compilers, and operating systems. Algorithms presented for translation from programming languages to machine languages, table processing, searching, sorting, and storage management. Requires student to prepare and test several programs written in System/370 Assembly Language and PL/I.
S. E. Madnick, J. J. Donovan

15.565 Management Information Technology II (A)
Prereq.: 15.564
G (1, 2)
3-0-6
Subject provides technical background in and a framework for integrating the concepts essential to analysis and development of computer-based information systems: data management software techniques, telecommunications, and performance evaluation. Develops student's understanding of computer technology to enable its use in new and creative ways in an organization. Discusses examples of the implementation and use of actual management information systems.
J. J. Donovan, S. E. Madnick

15.566 Management Information Systems (A)
Prereq.: 15.564, 15.565
G (1, 2)
3-0-6
Concepts, frameworks, tools, techniques, and processes which assist management in its interaction with and direction of computer-based information systems today. Discusses major transaction processing systems of the firm as well as those systems used primarily for managerial information. Emphasizes managerial point of view and organizational issues involved in managing a firm's information resources. Credit not given for both 15.562 and 15.566.
J. F. Rockart, T. W. Malone

15.569 Decision Support Systems (A)
Prereq.: 15.562 or 15.568
G (1, 2)
3-0-6
Focus on issues and techniques involved in development of computer-based systems designed to support manager's decision-making and problem-solving processes. Topics: assessment of the technology available; development of frameworks and techniques with which to analyze and organize key decisions and a manager's decision-making process; and discussion of the design and implementation of such systems in ongoing organizations. Lectures, cases, projects, and analysis of existing decision support systems.
J. C. Henderson, M. E. Treacy

15.571 Advanced Computer Systems (A)
Prereq.: 15.061, 15.561
G (2)
3-0-6
Operating systems and their interface to various levels of hardware and software. System architecture, new technologies, and operating systems services (storage, processors, data management, and I/O supervision). Other topics: virtual machines, multiprocessor systems, performance measurement, data security. Discusses microsystems and personal and traditional mainframe systems. Assumes knowledge of Assembler Language programming. Requires class participation and readings.
R. A. MacKinnon

15.572 Systems Simulation (A)
Prereq.: 15.061, 15.561
G (2)
3-0-6
Introduces discrete simulation and model building methodology using high-speed digital computers. Focuses on event-oriented as opposed to continuous systems. Emphasizes simulation language and model building. Considers issues of proper experimental design, statistical analysis of results, effects of random number generation techniques and validation. Some discussion of typical applications. Information: S. E. Madnick.
15.581 Information Systems and Law (A)
Prereq.: Permission of Instructor
G (2)
3-0-6
Examines interlocking technological and legal issues that arise in the operation of computer-based information systems in society. Emphasizes, in class discussions and in term projects, interdisciplinary definition, analysis, and solution of specific problems. Continuing effort toward improving and integrating technical, social, and legal concepts of information. Topics: security and privacy in data-banks, computer infringement of copyright, protection of proprietary rights in software, jurimetrics.
J. A. Meldman
15.599 Workshop in Management Information Systems
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Presentations by faculty, doctoral students and guest speakers of ongoing research concerned with current issues in management information systems as well as discussions of key research papers in the field. Determines specific topics by the interest of participants and by new and important directions in information systems. Background readings and active participation by students expected. Primarily for doctoral students.
S. E. Madnick, M. E. Treacy

Law
15.601 The American Legal System
(New)
Prereq.: 14.02 or 15.001 or 15.012
U (1)
3-0-6
Meets with 15.616. May count toward Humanities Requirement.
J. A. Meldman
15.612 Business and the Law
Prereq.: —
G (2)
3-0-6
Emphasizes current legal problems of concern to the business executive. Analyzes torts, contracts, product liability, antitrust aspects of marketing, and cases pending before the Supreme Court. Attention to the impact on managers of actions by administrative agencies such as NLRB, FTC, and EPA; the procedural requirements that govern their rule making; and the role of courts in resolving disputes between government and business.
G. F. Bloom
15.616 The American Legal System (A)
Prereq.: 14.02 or 15.001 or 15.012
G (1)
3-0-6
J. A. Meldman
15.625 Government Regulation in the Workplace (A)
(Revised Content)
Prereq.: 14.01 or 15.012
G (2)
3-0-6
Public policy on employment relationship and operation of labor market. Topics: employee wages, benefits, and pensions; employee health and safety; equal employment opportunity and affirmative action; due process in terminating employment relationship, collective bargaining and administration of bargaining agreement; social insurance programs; management training and development programs. Considers legal, political, and sociological perspectives on these issues.
D. E. Wenger
15.631 Corporate Law for the Modern Manager (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Examines legal and ethical obligations that arise between the individual (employee, manager, officer, director), the corporation, and the world. Seminar covers the formation and legal organization of various types of businesses, with particular emphasis on corporations; obligations of corporations to outside world based on the activities of its employees, managers and owners; obligations of individuals serving in those capacities to corporation and outside world; corporate securities; and regulation of corporate ownership and control.
J. F. Vitek, Jr.
15.635 International Law and Regulatory Order (A)
Prereq.: Permission of Instructor
G (2)
3-0-6
Jurisdiction, sources, and nature of international law. Issues basic to private sector managers including international economic law, extension of US domestic regulatory policies beyond US territory, and the problems of obtaining consistency among nations' regulation of transborder business. Emergence of international regulation of transportation, communications, trade, ocean use, finance, food and health standards, and multinational corporations.
J. D. Nyhart
15.640 Seminar on Government-Business Relations (A)
Prereq.: Permission of Instructor
G (2)
3-0-6
Emphasizes process through which law is made at congressional, executive, and administrative agency levels and defines key points at which business executives can shape legislation and policy. Discusses ways to resolve conflicts between government and business. Weekly sessions divided between outside speakers from both sectors and classroom materials and discussion. Requires term paper.
J. D. Nyhart, G. F. Bloom
Industrial Relations and Human Resource Management

15.662 Industrial Relations and Human Resource Management (A) .
Prereq: 15.511
G (1)
3-0-6

15.663 Industrial Relations and Human Resource Management
Prereq: —
G (1, 2)
3-0-6

Introduces industrial relations and human resource management at level of the firm. Explores role of firm in its larger industrial relations systems. Examines effects of the environment on human resource management strategies. Assesses strategies against their effects on the firm, its employees, labor organizations, and public policies. Uses collective bargaining game to demonstrate dynamics of negotiations and conflict resolution. 15.662 restricted to Sloan Fellows.

R. B. McKersie
G (1, 2)
3-0-6

15.664 Management of Human Resources (A)
Prereq: 15.663
G (2)
2-0-7

Seminar emphasizing managerial responsibilities and policies in the effective utilization of people in organizations. Topics: managers and their personnel concepts, management organization for personnel administration, organization planning and management development, manpower planning and personnel budgets, recruitment and selection, promotion and transfer, training, performance appraisal, discipline, managing change, and wage and salary administration. Field research on selected problems.

K. G. Abraham

15.672J Public Policy on Employment and Industrial Relations (A)
(Same subject as 14.672J)
Prereq: 14.64 or 15.663
G (2)
3-0-6

See description under subject 14.672J.
H. S. Farber

15.674J Comparative Systems of Industrial Relations and Human Resource Development (A)
(Same subject as 14.674J, STS 512J)
Prereq: 14.64 or 15.663
G (2)
3-0-6

International and comparative analysis of industrial relations systems and systems of human resource development. Concentrates on an examination of selected issues involving the nature and functions of labor and management organization in different contexts; role of the state in establishing procedures and in shaping the substance of industrial relations; manpower and economic growth in the context of comparative systems of human resource development; worker participation in management, and other topics.

M. J. Piore

15.675 Equal Employment Opportunity and Management of Human Resources (A)
Prereq: 14.64 or 15.663
G (2)
3-0-6

Issues and policy consequences of governmental action related to management and development of human resources, especially equal employment opportunities for minorities and women; labor market participation of women. Examines recent literature, including court decisions.

P. A. Wallace

15.676 Industrial Relations Theory and Research Seminar (A)
Prereq.: Permission of Instructor
G (2)
2-0-7

Historical evolution and assessment of research in industrial relations. Introduces doctoral students to the field and explores where their research interests fit within the broader field. First part compares the normative assumptions, theories, and methodologies used by economists, historians, sociologists, psychologists, and legal scholars from the latter 19th century to the present. Final portion explores strategies for advancing research on topics of current interest to participants.

T. A. Kochan

15.691J Research Seminar in Industrial Relations (A)
(Same subject as 14.691J)
Prereq.: 15.671J or 15.672J
G (1)
3-0-6

15.692J Research Seminar in Industrial Relations (A)
(Same subject as 14.692J)
Prereq.: 15.691J
G (2)
3-0-6

Discusses important areas for research in industrial relations, frameworks for research, research techniques, and methodological problems. Centered mainly on staff research and the thesis research of advanced graduate students and invited guests.

Staff

Operations Management

15.761 Operations Management (A)
Prereq.: 15.053 or 15.062, 15.061 or 6.041
G (1, 2)
3-0-6
Studies practical problems involved in designing and implementing model-based systems to assist managers in planning, controlling, and improving efficiency of production operations. Topics: demand forecasting methods, capacity planning decisions, inventory control, production scheduling, and network-based management systems. Emphasizes integrated approach to management decision making. Applications from public and private sectors.

15.763 The Practice of Operations Management (A)
Prereq.: 15.761
G (1)
3-0-6
Provides an opportunity to learn how to diagnosis complex problems, structure relevant solutions to them, and deal with issues of implementing the solutions. Case analyses and projects in local manufacturing and service organizations extend understanding of and ability to deal with operating management situations. Emphasizes integrative approach using methodologies drawn from operations research, management information systems, and organization design.
S. C. Graves, H. C. Meal

15.764 The Theory of Operations Management (A)
Prereq.: 15.761
G (2)
3-0-6
Focus on theoretical work for studying operations planning and control problems. Topics: inventory theory, sequencing theory, aggregate production planning, production scheduling, large-scale systems methodology, decomposition theory, and aggregation methods. Research on heuristic methods.
S. C. Graves

15.765 The Operating Manager (A)
Prereq.: Permission of Instructor
G (2)
3-0-6
Develops operating skills of a manager through case analyses and discussions. Cases drawn primarily from manufacturing situations and designed to improve the manager's ability to analyze an operating situation, define the operating task, and accomplish that task. Primary emphasis is on accomplishment — policy implementation, changes in operations, etc.
H. C. Meal

15.767 Industrial Project Evaluation (A)
Prereq.: Permission of Instructor
G (2)
3-0-6
Subject organized to familiarize student with methodologies and applications related to Project Evaluation. Several actual industrial and governmental projects analyzed. Methodologies related to capital budgeting, cost-benefit analysis, financial management, strategic planning, and operations management covered.
G. R. Bitran, A. C. Hax

15.768 Operations Management in the Service Industry (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Analyzes managerial problems in the service industry. Illustrates use of systems analysis techniques in the design, production, and delivery of services. Cases used to illustrate applications.
G. R. Bitran

15.795 Seminar in Operations Management (A)
Prereq.: 15.761
G (1, 2)
3-0-6
Examines studies from current literature devoted to formal methods for analyzing operations management problems. Discusses case studies as time permits.
C. H. Fine

15.799 Workshop in Operations Management
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Presentations by faculty, doctoral students and guest speakers of ongoing research concerned with current issues in operations management. Topics: reports of research projects, proposed or in progress, and informal discussions of recent literature dealing with subjects of special interest to participants. Primarily for doctoral students.
S. C. Graves

Marketing

15.811 Marketing (A)
Prereq.: 15.071, 15.511
G (1)
3-0-6
Analyzes elements of marketing strategy which can be utilized by business, governmental, and social organizations to meet needs of their clientele. Topics: product development, advertising, selling, and pricing. Reviews contributions of management science in providing new techniques for solution of marketing problems. Restricted to Sloan Fellows.
G. L. Urban

15.812 Marketing Management (A)
Prereq.: 15.061 or 6.041 or 14.30 or 18.05
G (1, 2)
3-0-6
Introduces concepts, challenges, and sampling of techniques necessary to manage the marketing function. Topics: marketing research, consumer behavior, new product development, advertising strategy, promotion, personal selling, distribution, and pricing. Lectures, guest speakers. Problem assignments or cases.
G. L. Urban, J. R. Hauser

15.824 Marketing Communications (A)
Prereq.: 15.812
G (1)
3-0-6
Focus on management problems that arise when attempting to communicate with and influence a market or other public in an organization's environment through advertising and related mass media-promotion campaigns. Lectures, case discussions, projects. Information: G. L. Urban.

15.825 Marketing Models (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Basic modeling approaches. Models for specific decision areas: price, promotion, advertising, distribution, and sales force. Integrative models; the marketing mix, new products. Special issues of industrial marketing.
J. D. C Little, L. McAilster

15.826 Industrial Marketing (A)
Prereq.: 15.812
G (2)
3-0-6
Focus on marketing goods and services to organizations for resale to other industrial customers or for use in the goods and services they, in turn, produce. Literature on organizational buying behavior provides the foundation of the subject. Topics: industrial marketing analysis, product planning, distribution and
channel decisions, promotion and advertising, sales force decisions. Emphasizes using models and research results to solve industrial marketing problems. Lectures, case discussions, research project. Information: G. L. Urban.

15.828 New Product Development (A)
Prereq.: 15.812
G (1)
3-0-6
Identifies new market opportunities. Designs "core benefits" of a new product having high potential. Designs physical product and marketing mix to fulfill the "core benefits." Testing, launching, and managing the new product. Develops theory, measurement, and models to manage this process. Requires term project.
J. R. Hauser

15.832 Measurement for Management (A)
Prereq.: 15.061
G (1)
3-0-6
Focus on methods for collecting and analyzing behavioral data applicable to a variety of measurement problems in management. Research and sampling design. Develops questionnaires, scaling and psychometric methods for measuring perceptions, attitudes, and preferences. Statistical techniques for analyzing these types of data. Information: G. L. Urban.

15.834 Marketing Strategy (A)
Prereq.: 15.812
G (2)
3-0-6
Examines marketing aspects of strategy formulation. Studies market phenomena that are foundations of strategy. Analyzes management science models for brand, product line, strategic business unit, and corporate marketing strategy. Lectures, cases, guest speakers. Requires term project.
L. McAlister, G. L. Urban

15.836 Research Seminar in Marketing (A)
Prereq.: 15.812
G (1, 2)
3-0-6
Seminar on current marketing literature and current research interests of faculty and students. Topics such as the theory of consumer behavior, simulation of consumer product markets, marketing experimentation, and the development of behavioral models from consumer panel data. Information: G. L. Urban.

15.839 Workshop in Marketing
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Presentations by faculty, doctoral students and guest speakers of ongoing research concerned with current issues in marketing. Topics: reports of research projects, proposed or in progress, and informal discussions of recent literature dealing with subjects of special interest to participants. Primarily for doctoral students.
J. R. Hauser

System Dynamics

15.852 Principles of Dynamic Systems I
Prereq.: —
U (1, 2) SD
3-0-9
15.872 Principles of Dynamic Systems II (A)
Prereq.: Permission of Instructor
G (1, 2)
3-0-9
Introduces principles for modeling dynamic social and industrial systems. Emphasizes building intuitive understanding of feedback structures underlying growth, stagnation, and cyclical fluctuation. Focus on system dynamics as the theory of consumer behavior, reasons for shifting modes of behavior, and model formulation. Modeling assignments illustrate applicability of basic concepts to biological, economic, ecological, industrial, and urban systems. Tutorial session arranged for 15.852.
J. D. Sterman

15.873 Principles of Dynamic Systems II (A)
Prereq.: 15.872
G (2)
3-0-6
Continues philosophy and methods of 15.872 with purpose of expanding student's ability to analyze behavior arising from complex dynamic feedback systems. Topics: translating qualitative observations on real systems into quantitative models; methods for relating system structure to system behavior; common errors in model construction and policy design.
J. D. Sterman

15.874 System Dynamics for Business Policy (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
Introduces modeling of corporate and industrial systems. Examines separate functional areas of production planning, labor management, capital investment, marketing, finance and accounting. Functional area models pieced together to analyze the cause of such corporate problems as production and employment instability, loss of market share, unstable market growth, and declining profitability. Develops skills in portraying complex managerial systems, and deriving understanding through quantitative modeling and computer simulation.
J. D. W. Morecroft

15.875 Applications of System Dynamics (A)
Prereq.: 15.872 or 15.874
G (2)
3-0-6
Project-based subject applying methods of system dynamics to real corporate problems. Class divided into groups that act as consultants to local corporations. Meetings with corporate managers and staff to obtain information for model construction; instructor provides advice and guidance on model formulation and testing. Final report on work done and recommendations.
J. D. W. Morecroft

15.876 Economic Dynamics (A)
Prereq.: 15.872
G (1)
3-0-6
Introduces system dynamics modeling of economic systems focusing on simple generic structures identified in the System Dynamics National Project. Combines lectures, exercises, and a term project on subject of student's choice. Topics: economic cycles; inflation and unemployment; capital investment and monitory policy; energy-economy interaction; and the economic long wave.
J. D. Sterman, P. M. Senge

15.879 Seminar in System Dynamics Policy Analysis (A)
Prereq.: 15.872
G (1, 2)
3-0-6
Research seminar focusing on development of student projects to illuminate important aspects of policy analysis. Each exercise designed to give students direct experience with some problem in policy analysis and the issues involved in resolving or handling that problem. Topics vary from year to year. Typical examples from past years: problems in designing policies based on forecasts, problems with use of leading and lagging indicators on policy inputs, economic policy, energy policy.
P. M. Senge, J. D. Sterman

15.880 System Dynamics (A)
(Revised Unit)
Prereq.: 15.071
G (1)
3-0-6
Introduces dynamic modeling of managerial policy issues in public and private organizations. Emphasizes building intuitive understanding of feedback structures underlying growth, stagnation, and cyclical fluctuation. Develops skills in causal-loop diagramming of complex situations, and in the techniques of quantitative modeling and computer simulation. Studies previous system dynamics applications in business and human delivery organizations. Primarily for Sloan Fellows; others admitted by permission of the instructor.
E. B. Roberts
General Policy and Special

15.921 Business and Social Pressures (A)
PreReq.: Permission of Instructor
G (1)
3-0-6
Case studies of interrelationships of corporate, individual, and social values in decision situations, including the various conflicting loyalties, tradeoffs, and ambiguities involved. Corporate policy and decision making under conditions of social pressure; examination of the dilemmas of corporate ethics; external pressures for changes in corporate governance and evolving responses; role of the individual in influencing organizational decisions. Enrollment limited; admission only by permission of instructor. Information: M. S. Scott Morton.

15.931 Corporate Strategy, Policy, and Planning (A)
PreReq.: 15.012, 15.311, 15.515
G (1, 2)
3-0-6
Deals with approaches to strategic management problems affecting all facets of the enterprise. Discussions, cases, field studies, and readings trace strategy practice, methodology, and theory. Focus on both strategic formulation and implementation. Useful as either terminal subject or introduction to a concentration in corporate strategy.

15.932 Corporate Strategy for Technology-Based Sectors (A)
New
PreReq.: 15.931
G (1)
3-0-6
Considers key aspects of the emerging technology-strategy relationship in the large corporation from different perspectives, including the individual firm, an entire industry, the industrial policy of a nation, cross-country comparisons, and cross-industry comparisons. Uses conceptual readings, empirical studies, case studies, student field studies, and invited outside speakers.

M. Horwitch

15.933 Financial Strategy (A)
PreReq.: 15.412, 15.931
G (1)
3-0-6
Applies concepts and material of 15.931 to the area of corporate finance. Analysis of impact of finance theory and various legal and institutional constraints on financial strategy. Topics: capital budgeting, long-range planning, financial reporting and auditing, mergers and acquisitions, taxation (both domestic and international), SEC regulations, capital structure, organization structure, capital markets, and financing methods.

Z. S. Zannetos

15.934 Research Seminar in Corporate Strategy (A)
PreReq.: 15.931
G (1, 2)
3-0-6
Seminar built around published theoretical and empirical research in corporate strategy. Students share leadership of seminar using journal articles focusing on the study of particular strategic issues or problems. Articles drawing on theory and/or methodology may come from current literature in economics, the behavioral sciences, or management science. Articles and topics change each term. Information: M. S. Scott Morton.

15.935 Corporate Strategy and Structure (A)
PreReq.: 15.931
G (2)
3-0-6
Uses framework and methodology of 15.931 to analyze the strategic decisions facing industries and the firms within such industries. Combines lectures and student research presentations on such issues as determinants and consequences of industry structure, firm characteristics, innovation organization structures, and diversification.

G. B. M. Walker, Jr.

15.936 Applied Corporate Analysis (A)
New
PreReq.: 15.412 or 15.415, 15.761, 15.812
G (1)
3-0-6
Provides practice in identifying important management issues, making reasoned judgments about priorities, and defending choice of issues and priorities. Students assume various roles as managers, analysts, and board members in class sessions simulating top management and board meetings. Visits to operating and corporate executives. Limited to 20.

W. F. Pounds

15.937J Economics of Ocean Transportation (A)
(Same subject as 13.661J)
PreReq.: 14.120 or 15.012 or CTS 110J
G (2)
3-0-6
See description under subject 13.661J.

Z. S. Zannetos, H. N. Psaraftis

15.939 Advanced Topics in Policy and Strategy (A)
PreReq.: 15.931
G (1, 2)
Arr.
Directed research and study of advanced topics in corporate policy and strategy as well as public policy relating to the private sector. Primarily for doctoral students in Management; others admitted by permission of instructor. Information: G. B. M. Walker, Jr.

15.951 Special Studies in Management
PreReq.: —
U (1, 2)
Arr.
Special tutorial arrangement with a faculty member for guided reading, research, laboratory, or teaching experience.

J. A. Meldman

15.961 Special Studies in Management (A)
PreReq.: —
G (1, 2)
Arr.
For graduate students who desire to do advanced work or to carry out some special investigation of a management problem not specifically covered elsewhere and not qualifying as a thesis. Readings, conferences, laboratory and fieldwork, and reports.

Staff

15.962-15.969 Special Seminars in Management (A)
PreReq.: —
G (1, 2)
Arr.
Opportunity for group study by graduate students on current topics related to management not otherwise included in curriculum.

Staff

15.977 Seminar in Management
PreReq.: —
G (1)
2-0-1
Investigates effective management through informal meetings with executives representing a range of industries and functions in both public and private sectors. Examines management philosophies, practical problems of management, personal career paths, enabling students to develop skill in careful listening and the art of asking questions. Restricted to Sloan School of Management graduate students.

P. B. Cronin

16.001 Unified Engineering I
Prereq.: 8.01, 18.03
U (1) SD
5-2-5
16.002 Unified Engineering II
Prereq.: 8.01, 18.03
U (1) SD
5-2-5
16.003 Unified Engineering III
Prereq.: 16.001, 16.002
U (2) SD
5-2-5
16.004 Unified Engineering IV
Prereq.: 16.001, 16.002
U (2) SD
5-2-5
16.005 Introduction to Aerospace Engineering
Prereq.: —
U (2) SD
2-2-5
16.008 Computer Models of Physical and Engineering Systems
Prereq.: 18.02, 8.01
U (2) SD
3-0-9
16.02 Aerodynamics
Prereq.: 16.004 or 2.20 or 1.05
U (1, 2)
4-0-8

A seminar for students specializing in Computational Fluid Dynamics. Topics vary with interests of the class but are drawn from emerging discretization techniques (finite-volume, spectral, vortex methods), boundary condition treatment, solution methods (direct solvers, multigrid, Alternating Direction Implicit, advanced computer architecture, and CFD applications.
E. M. Murman, S. S. Abarbanel
16.035 Fluid Mechanics (A)
Prereq.: 16.02 or 16.06, 18.075
G (1) 4-0-8
Prepares students for graduate study in fluid mechanics and aerodynamics, and some of its applications in science and engineering. Discusses the basic concepts of continuum fluid mechanics, shows how they underlie the properties of particular fluid flow fields such as potential and rotational constant density inviscid and viscous flows. Shows applications to flow past airfoils and wings, vortex flows, and some geophysical flows. Special attention to boundary layers and their transition to turbulence. Any undergraduate subject in fluid mechanics or aerodynamics accepted for 16.02.
M. T. Landahl, L. Trilling

16.04 Fluid Dynamics of Flight and Reentry Vehicles
Prereq.: 16.02 or 16.06 U (2) 4-0-8
J. E. McCune, E. M. Murman, L. Trilling, H. Y. Wachman

16.041 Aerodynamics of Viscous Fluids — Boundary Layer Approximation (A)
Prereq.: 16.035 G (2) 3-0-9
Boundary layers in viscous, compressible, heat conducting fluids as an approximation to the solutions of exact equations of motion of fluids. Influence of various dimensionless parameters on steady and unsteady flows emphasizing incompressible flows. Surveys experimental and theoretical methods for estimating quantities of interest in aeronautical applications. Introduces turbulent flows.
E. E. Covert

16.042 Heat and Mass Transfer (A)
Prereq.: 16.041 G (1) 3-0-9
J. F. Louis

16.044J Turbulence and Random Processes in Fluid Mechanics (A)
(Same subject as 12.865J)
Prereq.: 1.512 or 2.20 or 16.035 or 18.350 G (1) 3-0-9
Development of descriptions of random fields. Response of systems and fields to random inputs, with examples from waves. Sources of turbulence, hydrodynamic stability, equations, spectra, equilibrium, and decay. Shear flow turbulence, turbulent boundary layers. Methods of observation, measurement, and analysis. Discusses problems of current interest.
M. T. Landahl, J. H. Hartiodis

16.051 Gas Dynamics (A)
Prereq.: 16.035 G (2) 3-0-9
Dynamics of a perfect gas. Concepts and modeling for potential and rotational subsonic, transonic, and supersonic fluid motion. Exact, approximate, and numerical methods for multidimensional fields, including similarity, characteristic, integral, shock layer, and high-speed descriptions. Viscous, compressible coupling and equilibrium chemistry influences. Application to wings, bodies, test facilities.
J. R. Baron

16.052 Real Gas Dynamics (A)
Prereq.: 16.035 G (1) Not to be offered 1985-86 3-0-9
Dynamics of a real gas. Equilibrium and non-equilibrium gas processes and relaxation coupling with fluid dynamics under high temperature and rarefied conditions. Vibrational excitation, translational, chemical, and radiative nonequilibrium. Wave propagation, dispersion, similarity, shock phenomena, surface reaction coupling. Application to very high speed and entry space vehicles, test facilities, and gas dynamic lasers. Alternate years.
J. R. Baron

16.055 Unsteady Fluid Mechanics (A)
Prereq.: 16.035 G (1) Next offered 1985-86 3-0-9
Fluid mechanics of fixed airfoils, wings, bodies, and cascades in unsteady potential flows, or moving airfoils, wings, bodies, and cascades in a uniform stream. Topics: pressure distribution and other characteristics in both frequency domain and time domain (indicial response) for incompressible and compressible flows. A limited discussion of viscous effects, boundary layers, and separations introduced where appropriate. Alternate years.
E. E. Covert

16.06 Space Gas Dynamics
Prereq.: 16.004 or 2.20 or 1.05 U (1) 4-0-8
Elements of gas dynamics relevant to motion of spacecraft and to forces and thermal loads on them, in particular, hypersonic and supersonic flows; and elements of convective, conductive, and radiative heat transfer. Introduces molecular flows; kinetic theory of gases; the kinetics of gas-surface interaction; accommodation phenomena. Applications to performance of space vehicles.
L. Trilling, H. Y. Wachman

16.07 Aerodynamics of Wings and Bodies (A)
Prereq.: 16.035, 18.075 G (2) Not to be offered 1985-86 3-0-9
Presents theoretical methods for predicting aerodynamic loading on thin lifting surfaces and slender flight vehicles in subsonic and supersonic flow. Topics: potential aerodynamics, constant density flow, inner and outer solutions, and real gas effects.
W. L. Harris

16.081J Principles of Acoustics (A)
(Same subject as 2.060J, 13.81J)
Prereq.: 2.053 or 16.004, 18.075 G (1) 3-0-9
See description under subject 2.060J.
S. E. Widnall, R. H. Lyon, P. Leshey

16.082J Flow Noise (A)
(Same subject as 2.065J, 13.84J)
Prereq.: 16.02 or 2.20, 16.081J G (1) Next offered 1985-86 3-0-9
See description under subject 13.84J.
S. E. Widnall, P. Leshey

16.09 Nonlinear Wave Propagation (A)
Prereq.: 18.075, 16.035 G (2) Next offered 1985-86 3-0-9
Physical description and mathematical treatment of nonlinear effects occurring in wave propagation in fluid continua. Topics: water waves, nonlinear underwater acoustics, and gas dynamic shock waves.
W. L. Harris

16.10 Aircraft Performance, Stability, and Control
Prereq.: 6.004, 16.30 G (1) Next offered 1985-86 3-0-6
R. H. Miller, R. S. Simpson, A. L. Elias
16.16 Introduction to Flight Vehicle Dynamics
Prereq.: 16.004 or 1.05; or 2.20, 18.03
G (1) 3-0-9
R. V. Ramnath

16.17 Advanced Flight Dynamics and Control (A)
Prereq.: 16.16
G (2) 3-0-9
R. V. Ramnath

16.20 Structural Mechanics
Prereq.: 16.004 or 2.01
G (1, 2) U (1) 5-0-7
Applies solid mechanics to analyzing high technology structures. Plane stress, plane strain problems. Bending, shear, torsion of rods and thin wall beams. Introduces energy principles and computer-oriented structural analysis such as matrix and finite element methods. Applications to statically indeterminate structures and solid continua. Buckling of column and stability phenomena. Theories and modes of structural failure. Principles in optimal structural design.
J. Dugundji, E. A. Witmer

16.21 Plates, Stability, and Thermoelasticity (A)
Prereq.: 16.20
G (2) Next offered 1985-86 3-0-9
E. A. Witmer

16.22 Shell Structures (A)
Prereq.: 16.20
G (1) Next offered 1985-86 3-0-9
J. Dugundji

16.23 Structural Design of Gas Turbine Engines (A)
Prereq.: 16.20, 16.54
G (2) Not to be offered 1985-86 3-0-9
Structural design of modern gas turbine engines. Emphasizes the unique aspects induced by high temperatures and rotation speeds. Reviews thermodynamic cycle analysis and aerodynamics to determine loads. Both stationary and rotating structural components, blades, disks and shafts analyzed. Thermal stresses, creep, low cycle fatigue, rotor dynamics, aeroelasticity and crack growth. Discusses materials, structural testing and retirement of components. Considers design tradeoffs between performance, and lifecycle cost and durability. Alternate years.
E. F. Crawley, D. J. Jordan

16.24 Plasticity, Viscoelasticity, and Creep (A)
Prereq.: 16.20
G (2) Not to be offered 1985-86 3-0-9
T. H. H. Plan

16.251 Structural Mechanics in Nuclear Power Technology (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
See description under subject 22.314J.
J. E. Meyer, O. Buyukozturk

16.27 Finite Element Method (A)
Prereq.: 16.20
G (1) 3-0-9
Formulation of finite element method through use of variational principles for structural mechanics and continuum mechanics, assumed displacement and assumed stress models. Tools in numerical analyses, interpolation, and integration. Problems treated include plane stress and plane strain, plate bending and three-dimensional solids. Emphasizes practical ways of constructing and assembling the element matrices and methods of solving large systems of algebraic equations by modern computers. Students required to carry out actual solutions using the digital computer.
T. H. H. Plan

16.28 Advanced Finite Element Method (A)
Prereq.: 16.27
G (2) Next offered 1985-86 3-0-9
T. H. H. Plan

16.291 Manufacturing with Advanced Composite Materials
Prereq.: —
G (1) U (1) 1-3-2
Introduces the various methods used to manufacture parts made of advanced composites materials. Revolves around laboratory sessions in the Technology Laboratory for Advanced Composites. Students gain hands-on experience by using various laboratory techniques to fabricate and test graphite/epoxy specimens. Lectures supplement laboratory sessions with background information on the nature of composites, curing, composite machining, secondary bonding, and the testing of composites.
P. A. Lagace
Aeronautics and Astronautics

16.229 Design with Filamentary Composite Materials (A)
Prereq.: 16.20
G (2)
3-1-8
Studies the behavior of the filamentary composite materials composed of boron, graphite, glass, and Kevlar fibers embedded in a matrix. Material properties of fibers and matrices. Anisotropic elasticity, classical laminated plate theory, micromechanics, and interlaminar stresses. Several laboratory experiments demonstrate concepts from the classroom. Design concepts and cost-effective applications.
P. A. Lagace

16.293 Advanced Topics in Filamentary Composite Materials (A)
Prereq.: 16.292
G (1) Next offered 1985-86
3-0-9
J. W. Mar, P. A. Lagace, J. Dugundji

16.30 Principles of Automatic Control
Prereq.: 18.03
U (1, 2)
3-0-9
Fundamental physical and analytical principles used in the design of automatic control systems. Emphasizes a sound foundation in the classical control techniques upon which more advanced subjects can build. Use of digital computer program in the solution of illustrative homework problems. Compensation techniques and design examples to meet performance specifications. Recommended for the second term of the junior year or later.
W. R. Markey, A. L. Elias

16.311 Principles of Instrumentation and Control (A)
Prereq.: 16.30
G (1)
3-0-9
Introduces the state space description of dynamic systems. Multiple-input, multiple-output systems. Modeling of dynamic systems. Design and compensation of feedback systems to achieve desired response. Principles of analysis and design of feedback control systems incorporating nonlinear components. Describing function and phase plane techniques, the stability criteria of Lyapunov and Popov. B. K. Walker

16.312 Principles of Optimal Control (A)
Prereq.: 16.31, 16.37
G (2)
3-0-9
Studies the principles of deterministic optimal control. Pontryagin’s maximum principle. Applications of the theory including optimal feedback control, time optimal control, and others. Dynamic programming, numerical techniques. Optimal estimation and control in the presence of uncertainties.
B. K. Walker

16.321 Fault Tolerant Control Systems I (A)
Prereq.: 16.37
G (2)
3-0-9
The first of a two-term sequence of subjects in designing and analyzing control systems which can sustain component failures and continue to function. Presents an overview of the area and is a reasonable terminal subject for those who cannot take the two-term sequence. Statistical failure models. Methods for masking component failures. Methods for detecting and isolating component failures. Evaluates performance of redundant control systems.
W. E. Vander Velde

16.322 Fault Tolerant Control Systems II (A)
Prereq.: 16.321
G (1)
3-0-9
W. E. Vander Velde

16.33 Computer Control of Dynamic Systems (A)
Prereq.: 16.30
G (1)
3-0-9
W. S. Widnall

16.34 Automatic Control of Flight Vehicles (A)
Prereq.: 16.30
G (2) Next offered 1985-86
3-0-9
Application of the principles of feedback control theory to the design of control systems for aircraft and spacecraft. Review of the typical dynamic characteristics of aircraft, satellites, and other spacecraft. Presentation of the most common system configurations for control of the attitude of these vehicles. Control system design by frequency domain and time domain approaches. Use of computer aids in the design of aerospace flight control systems. Typical engineering problems encountered in the design of these systems.
W. E. Vander Velde

16.351J Quantitative Physiology: Sensory and Motor Systems
(Same subject as 2.793J, 6.023J, HST 543J)
Prereq.: 2.02 or 6.003 or 16.30
U (2)
3-2-7
See description under subject 6.023J.
L. R. Young, L. S. Frishkopf, R. W. Mann

16.352J Sensory-Neural Systems (A)
(Same subject as 6.532J)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-9
See description under subject 6.532J.
C. M. Oman, L. S. Frishkopf

16.355J Models of Man-Machine Systems (A)
(Same subject as 2.181J)
Prereq.: 16.03
G (1)
3-1-8
See description under subject 2.181J.
S. R. Busssolari, T. B. Sheridan

16.356J Biomedical Signal Processing (A)
(Same subject as HST 582J)
Prereq.: 6.003
G (2)
3-6-3
See description under subject HST 582J.
R. V. Kenyon, W. M. Siebert, J. M. Tisch

16.36 Flight Simulation (A)
Prereq.: 18.03, 16.30 or 6.003 or 2.14
G (1)
3-6-3
Simulation of aircraft for research and pilot training. Conversion of aircraft equations of motion and data package into a digital computer model. Simplified transfer functions. Principles of vision relevant to out-the-window displays. Implementation of CRT, model board and point light source displays. Cockpit motion requirements, motion washout, artificial control feel and high-g cuing devices. Students participate in actual simulator problems in the lab. Assumes familiarity with FORTRAN programming.
R. V. Kenyon, L. R. Young, A. L. Elias
16.37 Statistical Problems in Automatic Control (A)

Prereq.: 16.30
G (1)
3-0-9

Statistical problems of importance to control system engineers. Reviews probability theory with application to such problems as system reliability and multidimensional random errors. Measurement of the statistics of random variables and processes. Extensive treatment of random processes in linear systems using both transfer function and state space descriptions. Design of optimum filters according to Wiener and Kalman.
W. E. Vander Velde

16.38 Lasers and Optics for Applications I (A)

Prereq.: 18.381 or 6.631 or 8.243
G (1)
3-0-9

S. Ezekiel

16.39 Algorithms for Function Minimization and Optimal Control (A)

Prereq.: 18.076 or 18.085
G (2) Next offered 1985-86
3-0-9

Develops techniques for seeking the minima of functions and optimal control histories for dynamic systems. Presentation based on fundamentals of function optimization and optimal control theory, introduces variational calculus, the maximum principle, dynamic programming. Considers unconstrained and constrained problems. Compares the complexity and performance of different optimum-seeking algorithms.
W. E. Vander Velde

16.40 Principles of Flight Guidance

Prereq.: 16.30 or 6.302
U (2)
3-1-8

Introduces navigation and guidance of flight vehicles. Basic concepts of position and velocity determination using celestial, inertial, and radio techniques. Guidance strategy for aircraft and spacecraft applications. Steering laws for rocket-powered flight, atmospheric reentry, and air traffic control. Familiarity with rigid body dynamics and elementary automatic control theory desirable.
W. M. Hollower

16.41 Inertial Engineering I (A)

Prereq.: Permission of Instructor
G (1)
3-0-9

First half treats motion with respect to inertial space, gyroscopic instrument theory, gimbals, and Schuler tuning, and the design of the three principal inertial navigation systems. Second half introduces practical aspects of inertial instruments and systems. Analyzes and evaluates single and two degree of freedom inertial instruments and their errors. Includes laser, electrostatic and dry-tuned gyro's, and models of state-of-the-art hardware. Students obtain a thorough understanding of inertial space concepts and hardware.
W. R. Markey

16.42 Inertial Engineering II (A)

Prereq.: 16.41
G (2)
3-0-9

Continues system design concepts presented in Inertial Engineering I. Error analysis of a local geographic coordinate system and extension to the general case of six other configurations. Role of geodesy and gravimetry in system design. Limitation of Kalman Filtering. Radio inertial hybrid system design. Seminars held by staff members of the Charles Stark Draper Laboratory on topics chosen primarily by the class.
W. R. Markey

16.43 Astrodynamics I (A)

Prereq.: 18.03
G (1)
3-1-8

Fundamentals of astrodynamics; two-body and n-body approximate and precision orbit determination. Fundamentals of space vehicle navigation emphasizing self-contained methods: statistical error analysis. Topics: universal orbital variables, recursive algorithms, variation of parameters, state space methods, maximum likelihood estimates, numerical integration, optimum measurement strategies, correlated measurement errors. Selected applications from the Apollo and Space Shuttle programs.
R. H. Battin

16.44 Astrodynamics II (A)

Prereq.: 16.46
G (2)
3-1-8

Fundamentals of the two-body orbital boundary value problem with applications to space vehicle guidance for both powered flight and mid-course maneuvers. Topics: Lambert's problem and methods of solution, one-way and round-trip orbit determination to the moon and planets, orbital adjustment and transfer, linearized and explicit techniques for fixed and variable time of arrival guidance, velocity to be gained methods, hodograph analysis and application of optimization principles.
R. H. Battin

16.45 Selected Topics in Celestial Mechanics (A)

Prereq.: 18.03, 18.076
G (1)
3-0-6

Reviews the two-body problem. Variational principles in dynamics, leading to Lagrange's equations, the canonical equations, and canonical transformations. The Hamilton-Jacobi equation, with solution for the Kepler problem, leading to canonical perturbation methods, Delaunay variables, and Lagrange's variational equations. Gravitational potential of a planet and rotational motions of the earth and moon. First order theory of the orbits of artificial satellites, including the effects of atmospheric drag.
J. P. Vinti

16.46 Selected Topics in Celestial Mechanics (A)

Prereq.: 16.491
G (2)
3-0-6

Brouwer-Von Zeipel method and method of Lie transforms, with applications to the orbits of artificial satellites and lunar orbiters. Separable problems, including the spheroidal method, Staeckel systems and effects of general relativity on orbit of a planet or satellite. Selected topics from the three-body problem, planetary and lunar theory, resonant motions, periodic orbits, and stability theory.
J. P. Vinti
Velocity requirements for orbital and interplanetary flight. Available velocity increments and staging. Treats rocket systems involving liquid, solid, and hybrid propellants, with reference to nozzle flows, thermochemistry, real gas effects, losses and heat transfer, structural constraints, propellant feed, and combustion. Simple vehicle optimization. Laboratory demonstrations.

W. T. Thompson, Jr.

16.531 Space Propulsion and Power Generation (A)
Prereq.: 16.53, 8.03
G (2)
3-0-9
Reviews rocket propulsion fundamentals. Discusses advanced thruster concepts from airbreathing boosters to electric propulsion. Liquid rocket pressurization schemes. Physics and engineering of small thrusters for stationkeeping and attitude control. Methods and concepts for electric power generation in space, photovoltaic, solar, thermal, and nuclear systems, and various conversion schemes. Power transmission and reception.
M. Martinez-Sanchez

16.54 Aircraft Engines and Gas Turbines
Prereq.: 16.004
U (1)
3-1-8
Performance and characteristics of aircraft engines and industrial gas turbines, as determined by thermodynamic and fluid mechanic behavior of components: inlets, compressors, combustors, turbines, nozzles. Discusses various engine types including turbojet, turboprop, and turboshaft. Limitations imposed by material properties and stresses. Emphasizes future design trends including reduction noise, pollutant formation, fuel consumption, and weight.
J. L. Kerrebrock

16.541 Aircraft Turbine Engines (A)
Prereq.: 16.54
G (2)
3-0-9
J. F. Louis

16.543 Internal Flows in Turbomachines (A)
Prereq.: 16.035 or 2.25
G (2)
3-0-9
J. E. McCune, E. M. Greitzer

16.551 Plasma Dynamics and Magnetohydrodynamics
Prereq.: Permission of Instructor
G (2)
Next offered 1985-86
3-0-9
Motion of conducting fluids in electric and magnetic fields. Electrodynamics: discharges and arcs, current transfer to immersed electrodes, effect of the Lorentz Force on flow. Magnetohydrodynamics: power generation and propulsion, simple incompressible flows, electric conductivity, Hall effect, ion slip, non-equilibrium electronic heating, viscous effects, nonuniformities, time-dependent MHD performance. Plasma generators, thrusters, circuit breakers, and MHD generators.
J. F. Louis

16.554 Advanced Gas Turbines Utilizing Ceramics
Prereq.: Permission of Instructor
G (1)
3-0-9
Utilization of low-cost gas turbines in automobiles and other ground vehicles promises improved efficiencies but requires improved designs and higher temperature materials for satisfactory performance over a range of output power. Addresses design and fabrication of advanced engines using ceramic materials; issues include cycle efficiencies, component design considerations, design for brittle materials, effects of material properties and fabrication limitations. Interdisciplinary subject involves lecturers from industry or government.
A. H. Epstein, Staff

16.56 Noise Control Engineering (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
K. U. Ingard

16.601 Advanced Special Subject (A)
Prereq.: —
G (1, 2, S)
Arr.
Study, original investigation, or lab project work of graduate level by qualified students. Topics selected in consultation with instructor.
H. Y. Wachman

16.605 Special Projects
Prereq.: —
U (1, 2, S)
Arr.
Study or laboratory project work of undergraduate level by qualified students. Topics selected in consultation with the instructor.
E. A. Witmer

16.606 Selected Topics in Aeronautics and Astronautics
Prereq.: —
U (1, 2)
Arr.
Study at the undergraduate level by qualified students. Topics selected in consultation with the instructor.
E. A. Witmer

16.608J Biomedical Instrumentation Electronics
Prereq.: Permission of Instructor
G (S)
6-6-6
See description under subject HST 570J.
R. V. Kenyon, D. Rowell, S. K. Burns
18.61 Microcomputer Laboratory
Prereq.: 6.071 or 6.002; 2.10
U (1, 2)
2-8-2
W. S. Widnall

16.621 Experimental Projects I
Prereq.: 16.004
U (1, 2)
1-1-1
Introduces laboratory experimental techniques. Principles of reliable measurements. Laboratory safety. Instruction in effective report writing and oral presentation. Selection and detailed planning of an individual research project, including design of components or equipment. Preparation of a detailed proposal for the selected project carried through to completion under 16.622.
R. J. Hansman

16.622 Experimental Projects II
Prereq.: 16.621
U (1, 2) LAB
1-7-4
Helps student gain practical insight and improved understanding of engineering experimentation through design and execution of "project" experiments. Building upon work in 16.621, student constructs and tests equipment, makes systematic experimental measurements of phenomena, analyzes data, compares theoretical predictions with results. Written final report on entire project and formal oral presentation. Provides valuable link between theory and practice.
R. J. Hansman

16.64 Flight Measurement Laboratory
Prereq.: 16.002
U (2)
2-2-2
Opportunity to see aeronautical theory applied in real-world environment of flight. Students assisted in design and execution of simple engineering flight experiments in light aircraft. Typical investigations include determination of stability derivatives, verification of performance specifications, and measurement of navigation system characteristics. Limited to students in Aeronautics and Astronautics.
R. J. Hansman

16.65 Measurement, Instrumentation, and Computers (A)
Prereq.: 16.02, 16.20, 6.071
G (2)
3-0-9
Foundation for experimentation in aerodynamics and structural mechanics: including sensor selection, analogue signal processing, and computer data acquisition. Emphasizes physical system constraints and the practical aspects of experimentation.
A. H. Epstein

16.671J Invention
(Same subject as 2.941J, 10.802J, 13.77J)
Prereq.: —
G (1)
3-0-9
See description under subject 2.941J.
W. R. Markey, D. G. Jansson, A. D. Carmichael, J. P. Longwell

16.672 Entrepreneurship
Prereq.: —
G (2)
4-0-0
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
D. G. Jansson

16.673 Inventions and Patents
Prereq.: 14.02
U (1)
3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
R. H. Rines

16.701 Principles of Systematic Policy Analysis
Prereq.: Permission of Instructor
G (1)
3-0-9
Introduces the systematic analysis of policy choices, emphasizing approaches, concepts, and techniques employed. Main focus on techniques for comparing major project or program alternatives. Studies time-streams of benefits and costs. Pertinent operations research techniques including linear and integer programming, project scheduling, and game theory. Introduces decision analysis and utility theory.
A. R. Odoni

16.71J Computer Algorithms in Transportation (A)
(Same subject as 1.204J)
Prereq.: 1.00 or 16.006; 1.03
G (2)
3-0-6
See description under subject 1.204J.
D. F. X. Mathaiisel, G. Kocur

16.72 Air Traffic Control (A)
Prereq.: 6.071 or 16.40
G (2)
3-0-6
Introduces the various aspects of present and future Air Traffic Control systems. Descriptions of the present system: systems analysis approach to problems of capacity and safety; surveillance including NAS and ARTS; navigation subsystem technology; aircraft guidance and control; communications; collision avoidance systems; sequencing and spacing in terminal areas; future directions and development; critical discussion of past proposals and of probable future problem areas. Requires term paper.
A. L. Elias, R. W. Simpson

16.73 Airline Management (A)
Prereq.: 16.74
G (1)
3-0-6
Marketing, managerial economics, and regulatory aspects of both domestic and international airline industry. Interactions between the diverse aspects of product planning, market forecasting, and market shares including fleet planning and the financial, economic, and performance selection criteria of aircraft. Students participate in teams managing simulated airlines using a large-scale computer simulation on an air transportation network, and are expected to apply concepts presented in the lectures.
R. W. Simpson, D. F. X. Mathaiisel

16.74 Air Transportation Economics (A)
Prereq.: 14.001
G (1)
3-0-6
Introduces fundamental concepts for the economic analysis of airline systems. Contrasts basic models of the operation of air transport markets with neoclassical microeconomic models. Defines market systems for air transport service, and develops a theory for pricing, demand, costs, and supply for regulated and unregulated, domestic and international markets. Presents market models for equilibria in isolated markets and over a network of markets.
R. W. Simpson

16.752J International Air Transportation
(Same subject as 17.334J)
Prereq.: —
G (1)
3-0-6
Next offered 1985-86
Emphasizes political aspects of international air transport. Topics: international civil aircraft industry; types of airline ownership; characteristics of air transport in North and South America, Europe, Middle East, Africa, Asia, USSR; world route patterns; bilateral negotiations; international air transport organizations; air transport in developing nations; unlawful interference with aircraft; international air cargo industry. Term paper.
B. R. Gidwitz
16.76J Logistical and Transportation Planning Methods (A)

Prereq.: Permission of Instructor
G (1)
3-0-9

See description under subject 1.203J.

16.77 Flight Transportation Operations Analysis (A)

Prereq.: 1.143 or 15.081
G (2)
3-0-6

Studies application of linear programming and network flow theory to operational problems in flight transportation systems. Reviews graph theory. Network flow theory. Integer programming and branch and bound methods. Dynamic programming. Reviews implementation of computerized mathematical programming systems. Applies the theory to scheduling, aircraft and crew routing, timetable optimization, passenger traffic flow, flight planning, etc. Students use computer to solve large-scale problems and for term project.
R. W. Simpson, D. F. X. Mathiasel

16.781J Planning and Design of Airport Systems (A)

(Same subject as 1.231J)
Prereq.: Permission of Instructor
G (2)
3-0-6

See description under subject 1.231J.
A. R. Odoni, R. de Neuville

16.783J Engineering Policy Thesis Seminar (A)

(Same subject as 1.980J, TPP 13J)
Prereq.: Thesis Registration
G (1, 2)
2-0-1

See description under subject TPP 13J.
A. R. Odoni, R. de Neuville

16.784 Engineering Systems Analysis (A)

Prereq.: Permission of Instructor
G (1)
3-0-6

School-Wide Elective Subject. Description given at end of this chapter on SWE page.
R. de Neuville, J. P. Clark

16.792 Introduction to Technology and Law

Prereq.: —
U (1)
3-0-9

School-Wide Elective Subject. Description given at end of this chapter on SWE page.
J. D. Nyhart

16.794 Engineering Risk-Benefit Analysis (A)

Prereq.: 16.02
G (2)
3-0-6

School-Wide Elective Subject. Description given at end of this chapter on SWE page.
A. W. Drake, A. R. Odoni

16.80 Industrial Practice

Prereq.: —
U (2)
0-8-0

Seven months of engineering practice carried out by the cooperative students at the plants of organizations participating in the cooperative program.
R. H. Miller

16.801 Engineering Internship

Prereq.: —
U (S)
0-6-0

A summer of work experience as part of the Engineering Internship Program. Students register for this subject twice receiving the grade "J" for the first registration. Two work assignments must be completed in order for credit to be awarded. Limited to students registered in Course XVI-C.
W. E. Vander Velde

16.802 Advanced Engineering Internship

Prereq.: 16.801
G (1, 2, S)
0-6-0

A consecutive seven-month period of work experience as part of the Engineering Internship Program. Students register for this subject in two terms receiving the grade "J" for the first registration. Limited to students registered in Course XVI-C who have been admitted to the Graduate School.
W. E. Vander Velde

16.81 Space Flight Dynamics

Prereq.: 16.004, 18.03
U (2)
3-0-9

Topics: launch trajectory analysis, orbit insertion navigation requirements, orbital mechanics and spacecraft dynamics, the space environment (gravity gradients, atmospheric drag, radiation environment), rendezvous and docking approaches, thermal equilibrium, reentry trajectory analysis, convective and radiative heating, thermal protection system analysis, hypersonic maneuvering, and landing dynamics of low L/D vehicles.
D. L. Akin

16.821 Management Topics in Engineering

Prereq.: —
G (2)
2-0-4

Directed toward the student whose objective is a career in engineering leading to management. Provides opportunity to examine topics relating to the conduct of engineering activities within a total management environment. Interfaces between engineering and other company functions such as marketing, finance, manufacturing, quality, etc., are explored with emphasis on the management process. Special attention given to the role of technical staff in the acquisition of new business and long-range planning. Seminar format based on current industrial practice.
J. Yamron

16.84 Flight Vehicle Engineering

Prereq.: 16.02 or 16.06 or 16.20
U (2)
2-3-7

Design of an atmospheric flight vehicle to satisfy stated performance, stability, and control requirements. Emphasizes individual initiative, application of fundamental principles, and the compromises inherent in the engineering design process.
A. L. Elas, R. W. Simpson

16.85 Space Systems Engineering

Prereq.: 16.20
U (1)
4-0-8

Reviews fundamental principles used in engineering development of space systems. Design of a complete system including trajectory analysis, entry dynamics, propulsion systems, structural design, thermal control, environmental control, support systems, weight and cost estimates. Students participate in teams, each responsible for one of several subsystems, providing experience in project organization and interaction between disciplines.
R. H. Miller, M. Martinez-Sanchez, T. H. H. Plan, D. L. Akin

16.851 Satellite Engineering (A)

Prereq.: Permission of Instructor
G (1)
3-0-9

Fundamentals of satellite engineering design. Studies orbital environment. Analyzes problems of station keeping, attitude control, communications, power generation, structural design, thermal balance, and subsystem integration. Considers trade-offs among weight, efficiency, cost, and reliability. Discusses design parameters such as size, weight, power levels, temperature limits, frequency, bandwidth. Examples taken from current satellite systems.
W. M. Hollister

16.87 VTOL Aircraft (A)

Prereq.: 16.02
G (1)
Next offered 1985-86
3-0-6

An analytical discussion of the fundamental performance, stability, and control characteristics of vertical take-off and landing aircraft, including helicopters and ducted fan, rotor-propeller, jet vectored-lift, and jet vertical-lift aircraft. Alternate years.
N. D. Ham
16.91 Structural Dynamics (A)
Prereq.: 16.20
G (1)
3-0-9
E. A. Witten

16.92 Advanced Aeroelasticity (A)
Prereq.: 16.004, 16.91
G (2) Next offered 1985-86
3-0-9
Presents field of aeroelasticity from unified viewpoint applicable to flight structures as well as buildings, suspension bridges, and other structures. Static aeroelastic and flutter instabilities of simple and complex structures. Similarity laws and wind tunnel modeling. Responses to gusts and random excitation. Derivation of unsteady airloads. Simple nonlinear aeroelastic behavior. Alternate years.
E. F. Crawley

16.94 Advanced Structural Dynamics (A)
Prereq.: 16.91
G (2) Not to be offered 1985-86
3-0-9
J. Dugundji

16.991 Aeronautics and Astronautics Seminars
Prereq. —
U (1, 2)
2-0-0
Speakers from campus and industry discuss current activities and advances in aeronautics and astronautics. Restricted to Course XVI students.
W. R. Markey

16.992 Seminar
Prereq. —
G (1, 2)
2-0-0
Discussion of current interest topics by staff and guest speakers. Restricted to Course XVI students.
W. R. Markey

16.993 Management in Engineering
Prereq.: —
U (1)
3-0-9
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
D. P. Hoult, H. S. Marcus

16.994 Defense and Arms Control Issues (New)
Prereq.: —
U (2)
3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
R. Lester, G. W. Rathjens, J. P. Ruina

16.995 Technology of Nuclear Weapons and Arms Control (New)
Prereq.: —
G (1)
4-0-8
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
G. W. Rathjens, J. P. Ruina

16.996 Graduate Thesis (A)
Prereq.: —
G (1, 2, S)
Arr.
Program of graduate research leading to an S.M., E.A.A., Ph.D., or Sc.D. thesis; to be arranged by the student with an appropriate MIT faculty member, who is then thesis supervisor.
H. Y. Wachman
Political Science

17.103 Socialism
Prereq.: —
U (2) HUM-D
3-0-6
Studies the Socialist movement, ideas, and politics from the Industrial Revolution to the present. Explores history and theories of Socialism in Europe, Russia, USA. Topics: Utopian Socialists, Marx, Lenin, Stalinism, Social Democracy, Euro-Communism, and Socialism in the US. S. Berger

17.104J Philosophies of Social Science (A)
(Same subject as 24.625J)
Prereq.: One Philosophy Distribution subject
G (2)
3-0-9
With the goal of enhancing philosophical literacy, this subject addresses philosophical issues arising in contemporary social scientific research practice. Issues of explanation and understanding, the justification of theories and arguments, objectivity and commitment in political research. Literatures on democratization and international conflict provide the points of reference for discussion.
H. R. Alker, Jr., J. Cohen

17.105J Political Philosophy
(Same subject as 24.233J)
Prereq.: One Philosophy Distribution subject
U (1)
3-0-9

17.106J Political Philosophy (A)
(Same subject as 24.611J)
Prereq.: One Modern Political Philosophy subject
G (1)
3-0-9
A comparison of different conceptions of social justice through a study of Hobbes’ Leviathan, Rousseau’s Social Contract, and Hegel’s Philosophy of Right. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.105J.
J. Cohen

17.107 Introduction to Political Theory: Individual and Community
Prereq.: —
U (1) HUM-D
3-0-6
Basic introduction to the study of politics focusing on selected works in classical, medieval, and early modern political thought. The claims to freedom of the individual as they encounter demands of the community for order, justice, and obedience. Extent to which political society is justified in shaping the lives and consciousness of its members. Foundations of political authority. Readings include Plato, Aristotle, St. Augustine, St. Thomas, Machiavelli, and Luther.
B. H. Smith

17.111 Political Sociology
(Revised Unit)
Prereq.: —
U (1) HUM-D Next offered 1985-86
3-0-9
Focuses on case studies of mass movements including anticommunism during McCarthy era, urban unrest, student protest era, and more recent controversies arising from environmental issues, the women’s movement, and anti-nuclear protests. Reviews research on political behavior and social change, the determinants of success and failure of social movements, the process of mobilization, and the role of the mass media in setting the political agenda. Readings include Marx, Weber, and Durkheim, and more recent studies of authority and alienation in mass society.
W. R. Neuman

17.113J Classics in Political Philosophy
(Same subject as 24.09J)
Prereq.: —
U (1) HUM-D
3-0-6
See description under subject 24.09J.
J. Cohen

17.150 Basic Concepts of the Social Sciences (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-9
A workshop in which the basic concepts used in the building of modern social science theories are systematically identified and reviewed. Basis of workshop is extensive reading in the classic works of modern social and political science.
L. W. Pye

17.154J The Rise of the Modern State (A)
(Same subject as STS 510J)
Prereq.: Permission of Instructor
G (1)
3-0-9
See description under subject STS 510J.
C. F. Sabel

17.156J Political Economy I: Theories of the State and the Economy (A)
(Same subject as 14.781J)
Prereq.: Permission of Instructor
G (1)
3-0-9
Critical analysis of liberal, neoclassical, and Marxist perspectives on modern society. Alternative theories of economic growth, historical change, the state, classes, and ideology.
S. Berger, M. J. Piore

17.158 Political Economy of West Europe (A)
(New)
Prereq.: 17.534 or 17.156J
G (2)
3-0-6
Examines role of European states in postwar period of rapid economic growth and current crisis. Includes: analysis of different state traditions (“etatist,” liberal, authoritarian); government’s role in decline of some economies and rise of others; why and where Keynesianism, indicative planning, and state enterprises were introduced; alternative conceptions of contemporary economic problems (new international division of labor? too few producers? oil shock?); and of policies to deal with them (industrial policy? monetarism? protectionism?)
S. Berger

17.16J Topics in the Sociology of Bureaucracy (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
Central theme is relation between rule making, administrative efficiency, and the exercise of power. Discusses readings of contemporary studies of bureaucractic organization. Framework applies consideration of relations between state apparatus and society. Topics: Absolutism and state authority, Legalism and Corporatism as techniques of Social Compromise, and Bonapartism. Readings are historical and comparative; but where possible, readings chosen to facilitate discussion of contemporary role of the bureaucracy in US.
Requires seminar-length paper.
C. F. Sabel
Explores the political economy of international monetary relations. Traces the evolution of the international financial system, with particular attention to the ways political relations between domestic interest groups and national states shape that system; includes: the politics of payments financing, the public policy implications of offshore banking, multi-lateral development banking, and the politics of East-West and North-South financial relations.

J. Freeman

American Politics/Public Policy

Public Policy

17.201J Politics and Public Policy

(Same subject as 11.007J)
Prereq.: —
U (1, 2) HUM-D
3-0-9
Introduction to political aspects of public policy. Considers philosophical rationales for government action and the evolution of public policy in America; the policy-making process; basic strategies of public policy, including markets, government regulation, mass persuasion; and ways of analyzing the impacts of public policies — social indicators, cost/benefit analysis, evaluation of distributive equity, and unintended consequences. 11.007J may also count toward Humanities Requirement.

M. Lipsky, D. A. Stone, G. T. Marx

17.202 Theories of Public Policy (A)

Prereq.: Permission of Instructor
G (1)
3-0-9
Analyzes political issues involved in the conduct of policy analysis. Topics: criteria for government intervention (e.g., efficiency, equity, security, liberty, community); alternative methods of government intervention (market and incentive policies, standard-setting, creation of legal rights and duties, information-based strategies); philosophical assumptions (e.g., statistical indicators, cost/benefit analysis, evaluation of distributive equity, and unintended consequences). Students apply the theoretical issues to a policy topic of their choice.

D. A. Stone

17.203 Evaluation Research Laboratory

Prereq.: —
U (2) LAB
3-5-4
Introduces field of public policy evaluation. Acquaints student with the concepts and methods of evaluation research and aids the student in developing skills used in conducting evaluation studies. Topics: the concept of interventional public policy programs, research designs for evaluating public policies, alternative analytic methodologies (quantitative and qualitative), and the politics, problems, and policy utilization of evaluative studies. Carries out individual evaluation projects as part of subject. May not count toward Humanities Requirement.

J. Freeman

17.205 Bureaucracy and Public Policy

Prereq.: —
U (2)
3-0-6
Studies structure of public organizations and the politics of bureaucracy in the US, examining major theories of bureaucracy and public administration with reference to specific cases involving policy making, policy execution, and the relationship among elected and appointed officials.

H. M. Sapolsky

17.213 Regulation

Prereq.: —
U (2)
3-0-6
17.214 Regulation (A)

Prereq.: Permission of Instructor
G (2)
3-0-9
Analyzes theoretical issues that cut across many substantive areas of regulation, including health and safety, environment, energy, and transportation. Topics: deciding when to regulate, explaining the behavior of regulatory agencies, evaluating alternative regulatory instruments, evaluating proposals for regulatory reform and deregulation. Literature drawn from law, economics, and political science. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.213.

D. Metlay

17.220J The Policy-Making Process (A)

(Same subject as TPP 22J)
Prereq.: Permission of Instructor
G (2)
3-0-9
How the social process of decision making affects the content of decisions. Considers basic processes: markets, voting, small group consensus, bargaining, expert decisions, adversary processes, bureaucratic discretion, and lotteries. Readings and discussions examine conditions for selection of each process, their characteristics, how each maximizes certain values and influences likely outcomes, and indications for reform. Open to qualified undergraduates.

M. Lipsky

17.227 Comparative Health Systems

Prereq.: —
U (1)
3-0-6
17.228J Comparative Health Systems (A)

(Same subject as 15.141J)
Prereq.: Permission of Instructor
G (1)
3-0-6
Considers the organization and major issues facing health systems in the US and selected other countries from a variety of perspectives, including those of the physician, the manager, and the policy analyst. Considers cost, quality, access, and technology considered in depth in
nonprofit, proprietary, and government elements of the systems. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.227.

H. M. Sapolsky, S. N. Finkelstein

17.230 Professions and Government (New)
Prereq.: — G (1) 2-0-4

Professions as a form of organizing technical expertise in democratic societies. Focus mainly on medicine and law, but students may choose to study other professions. Includes: history of professional organization; recruitment, training, and socialization of professions; licensure and discipline; payment; use of paraprofessionals; regulation of professions by government; and accountability of professions to clients and to society-at-large. Half-term subject.

D. A. Stone

17.234 Business and Government (A)
Prereq.: Permission of Instructor G (1) 3-0-6

Explores business-government relations as they affect management of corporations, formulation of public policy, and legitimization of private sector's role in US society. Topics: the growth of government, public aid for ailing corporations, corporate response to regulation, business involvement in electoral politics, attempts to use business in implementing public policy, and the changing ideology of business. Although stress is on the current US situation, some comparative and historical materials are explored.

H. M. Sapolsky

17.235 Theories of Organizations
Prereq.: — U (1) Next offered 1985-86 3-0-9

17.236 Theories of Organizations (A)
Prereq.: Permission of Instructor G (1) Next offered 1985-86 3-0-9

Considers the historical roots of modern administrative theory: the effect of technology on organizational structure and functions, how decisions are made within organizations, emphasizing cognitive bases for decision making, how actors in an organization's environment influence organizational behavior, the problem of executive control, the challenges of uncertainty and complexity for organizational performance. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.235.

D. Metlay

American Politics

17.241 Introduction to the American Political Process
Prereq.: — U (1, 2) HUM-D 3-0-9

17.243 American Politics and Social Change
Prereq.: — U (2) HUM-D 3-0-9

A central paradox in American society is that the political system appears to be very stable, while at the same time vast changes occur in some social and economic relationships. Provides some framework for understanding dilemmas of social change in the US by focusing on explanations of stability and orientations toward change, including perspectives drawn from the study of public opinion and underlying cultural values, governmental institutions and electoral politics, "consciousness" movements, and mass struggle and protest.

T. Ferguson, L. Menand

17.245 The Supreme Court and Constitutional Processes
Prereq.: — U (1) 3-0-9

An interpretation of constitutional rights, processes, and concepts of limited government in light of Supreme Court decisions and of Executive and legislative initiatives.

L. Menand

17.249 Electoral Politics in the US
Prereq.: 17.241 U (1) 3-0-6

Analyzes political parties and their role in decision making in the political system. Primary attention to the American party system, national party organization, Presidential nominating conventions, electoral strategies, and especially the dynamics of American voting behavior. Comparison with parties and electoral behavior in other political systems, especially those of Western Europe. Attention to extremist political movements and the behavior of electorates under acute stress.

W. D. Burnham

17.251 Congress and the American Political System
Prereq.: — U (2) 3-0-9

17.252 Congress and the American Political System (A)
Prereq.: Permission of Instructor G (2) 3-0-9

Focuses both on the internal processes of the House and Senate and on the place of Congress in the American political system. Attention to committee behavior, leadership patterns, and informal organization. Considers relations between Congress and other branches of government, as well as relations between the two houses of Congress itself. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.251.

T. Ferguson

17.253 Executive Leadership: Presidents, Governors, and Mayors
Prereq.: 17.241 U (2) Next offered 1985-86 3-0-9

17.254 Executive Leadership: Presidents, Governors, and Mayors (A)
Prereq.: Permission of Instructor G (2) Next offered 1985-86 3-0-9

Examines the role of chief executives — presidents, governors, and mayors — in the American political process. Focuses on the nature of executive leadership and on the environment in which chief executives make decisions. Students research one or more political executives who interest them. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.253.

W. D. Burnham, T. Ferguson

17.255 Politics, TV, and the News
Prereq.: — U (1) 3-0-6

The role of television, considered by some the most powerful mass medium in shaping American public attitudes. Focus on TV but newspapers and magazines also discussed. Topics: political coverage of elections and policies; news "management" by both government and media; Presidential access to media; coverage of foreign news, science and technology; economics. Lectures and recitations combine "live" and taped appearances of guests and presentation of issues.

E. Diamond
17.260 Graduate Seminar in American Politics (A)
Prereq.: 17.241
G (1) 3-0-9
Analyzes the American political system with primary emphasis on the national level. Examines American political culture, federalism, American party system, representation and public policy, and major institutional components of the national policy process. Attention to contemporary and comparative research on American politics and government. Discussion also includes some reference to the explicit and implicit theoretical assumptions of such work, as well as critiques of these assumptions.
W. D. Burnham

17.264 Dynamics of Electoral Politics (A)
Prereq.: 17.241
G (2) 3-0-9
Analyzes mass voting behavior in the US, past and present. Evaluates leading theories of American electoral politics in light of inferences from data analysis. Emphasizes longitudinal system dynamics and other properties, both quantitative and nonquantitative. Some comparative analysis of electoral dynamics and theories of electoral politics in other Western political systems. Attention to American voting behavior since 1960.
W. D. Burnham

17.266 Government and the American Economy (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
Deals with what the US government does about regulation, international trade, collective bargaining, restrictive licensing, fiscal and monetary policy and theories about why it does it. Does not presuppose any special knowledge of American history, law, or economics. Methodological points concerning the use of business and economic data in political science research receive some attention.
T. Ferguson

17.270 Evolution of American Politics (A)
Prereq.: 17.241 or 17.249 or 17.245 or 17.251
G (2) 3-0-9

17.271 Evolution of American Politics
Prereq.: —
U (2) 3-0-6
Provides students with historical background for understanding growth and change in American national political structures and processes to their present state. Orient the approach, however, at least as much to social science perspectives as to those of more conventional history. Topics: the evolution of Congress, the Presidency, and electoral politics, with attention to changes in behavior, structure, and performance. Emphasizes developments in the 20th century. Graduate students are expected to pursue the subject at greater depth through reading and individual research.
Meets with 17.270.
W. D. Burnham

17.272 American Political Economy (A)
Prereq.: 17.241
G (2) Next offered 1985-86 3-0-9
Offers a view of the field as a whole for students without a special background. Considers classical and modern texts representing several influential but sharply contrasting approaches. Divergent methodological presuppositions and attitudes toward key terms as "economics," "politics," and "history" in later works of these traditions highlighted. Evaluates major American political institutions and processes in the context of American political economy.
W. D. Burnham, T. Ferguson

Urban Politics and Public Policy

17.281 Urban Politics
Prereq.: —
U (2) Not to be offered 1985-86 3-0-6
Analyzes current American urban political issues in terms of their historical and sociological bases, theoretical significance, and relationship to broader American politics. Deals with concepts involving power structures, ethnicity, law, justice, public participation, and public administration. Specific concerns include education, housing, police, transportation, welfare, and other dimensions of public policy.
M. Lipsky

17.286 Seminar in Urban Politics (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86 3-0-9
Examines current issues in urban politics, and alternative perspectives for analyzing them. Includes: machine politics, the legacy of the reform movement, community action and citizen participation, decentralization, metropolitanization, public service policy and delivery, and the fiscal crisis of the city. Considers the utility of pluralist and neo-Marxist frameworks in understanding American urban political development and public policy.
M. Lipsky

17.296 Bureaucracy and Public Organizations (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86 3-0-9
Analyzes the politics of public organizations and the role of public services in the American political economy. Emphasizes comparisons across policy areas, such as health, education, and social welfare, and across public, quasi-public, and private organizational types that bear on quality, availability, and accountability in public services. Includes balance between professional, bureaucratic, and political accountability, and client roles in service delivery. Open to qualified undergraduates.
M. Lipsky

Science, Technology and Policy

17.301 Science, Technology, and Politics
Prereq.: —
U (2) 3-0-6

17.302 Science, Technology, and Politics (A)
Prereq.: 17.241
G (2) 3-0-9
Examines the impacts of science and technology on governmental institutions and processes. Includes extent to which science and technology have transformed fundamental political institutions and relationships, role of scientists and engineers in political decision making, societal mechanisms for reaching decisions on controversial technological issues, and impact of science and technology on foreign policy and international political relationships. Graduate students are expected to pursue the subject at greater depth through reading and individual research.
Meets with 17.301.
D. Metlay

17.303 Theories of Technological Society and Politics
Prereq.: —
U (2) Next offered 1985-86 3-0-6

17.304 Theories of Technological Society and Politics (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86 3-0-9
Political theory examining the relationship between technology and politics. Attention to ways in which social science, Marxism, Liberalism, phenomenology, and critical theories of technological societies have dealt with this question. Themes include domination of nature, instrumental rationality, technocracy, complexity and responsibility, and the control of technology. Considers the writings of Marx, Eliuk, Mumford, and others. Graduate students are expected to pursue the subject at greater depth through reading and individual research.
Meets with 17.303.
D. Metlay
17.322 Seminar in Systematic Policy Analysis and Technology Assessment (A)
Prereq.: 14.01, 14.02
G (2) Next offered 1985-86
3-0-6
Analyze policy problems illustrative of those facing the Federal and local governments. Cost-benefit calculations and topics in welfare economics. Cases selected from such areas as energy policy, the environment, space programs, and communications. Open to undergraduates by permission of instructor only. G. W. Rathiens

17.328 Science and Technology in International Affairs (A)
Prereq.: 14.01, 14.02
G (2) Next offered 1985-86
3-0-6
Explores the roles of science and technology and their impact in the international system, and processes by which foreign policy involving science and technology is made in the US and internationally. Provides an overview of major international political effects and developments. Readings selected from such areas in some detail: East-West transfer of technology, North/South relations, national security, international organizations, bilateral relations, and a selection of others. E. B. Skolnickoff

17.330J Seminar on Technology and Development
(Same subject as 21.506J, 22.94J)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-9
Explores issues that interface development process and the technological transformation of less-industrial societies. Lectures and case studies are geared to graduate students interested in the experience and social contexts of engineering for development. Taught by an interdisciplinary faculty drawn from political science, anthropology, engineering and economics. N. Choucri, Staff

17.334J International Air Transport
(Same subject as 16.752J)
Prereq.: —
G (1) Next offered 1985-86
3-0-6
See description under subject 16.752J. B. R. Gidwitz

17.336J Social and Political Implications of Science
(Same subject as STS 207J)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
2-0-10
See description under subject STS 207J. L. R. Graham, P. Buck

Internships
17.351J State and Local Government Internships
(Same subject as 11.197J)
Prereq.: —
U (2) Next offered 1985-86
3-0-9
Year-long internships in public and nonprofit organizations supplemented by a seminar. Instructor assists in arranging internships which normally run from October to April. Students required to write several short papers analyzing their work experience. Students receive grade of J at end of first term; they must enroll again for second term. No new students accepted in second term. Upon successful completion of two semesters, student petitions for one Humanities Elective credit are honored. M. W. Weinberg

17.353 Media and Public Policy Internships
Prereq.: 17.255
U (2) Next offered 1985-86
3-0-9
Deals with relationships among politics, policy, and mass media and combines weekly seminars with an eight-hour per week internship in a media-related position. Specific case studies of political uses of television, magazines, and newspapers drawing upon materials from current relations. Each class presents a “case” of current media concern, and analyzes coverage using video and guest. Limited enrollment. Permission of instructor required. E. Diamond

17.361J International Air Transport
(Same subject as 17.403)
Prereq.: —
U (2) Next offered 1985-86
3-0-9
3-0-9
The contemporary debate about nuclear war put in the context of historical, political, and moral arguments about just and unjust wars (including wars of religion and crusades), total wars (those without limits on objectives, arenas, and weaponry) and totalitarian states (those unlimited in the jurisdiction and political means of their power exercises). Documentary film, video, and audio media supplement class discussions. H. R. Alker, Jr., E. Diamond

17.401 Just Wars, Total Wars, and Nuclear Wars
Prereq.: —
U (2) Next offered 1985-86
3-0-9
The US as a major actor in a fast-changing world. Lectures and discussions focusing on: the roots of US foreign policy; origins of the Cold War; the age of intervention; security redefined; interdependence; future options. L. P. Bloomfield

17.405 Seminar in Middle Eastern Politics
Prereq.: —
U (1)
3-0-6

17.406 Seminar in Middle Eastern Politics (A)
(Same subject as 17.426)
Prereq.: Permission of Instructor
G (1)
3-0-9
Divided into three parts: 1) domestic and regional politics of the Arab East, Iran and the Gulf, the Maghreb, and Israel; 2) energy; the world oil and energy picture; 3) Middle East and world politics: the East-West conflict, the Arab-Israeli conflict, and their interaction with the energy crisis. Lectures, discussions, and a paper or take-home examination. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.405. W. E. Griffith, L. P. Bloomfield, N. Choucri
17.407 International Relations: War and Peace
Prereq.: —
U (1)
3-0-6
Introduces the study of real and potential international systems. Topics: international warfare, the impact of technology on war and the arms race, the balance of power, classical and modern imperialisms, regional and universal international organizations. View of alternative futures examined for developed and developing worlds.
N. Choucri

17.420 Theories of International Relations (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
Selective review and critical discussion of the literature of international relations. Compares disciplinary foci and conceptual frameworks proposed by authors in major alternative theoretical traditions: political realism, systems theory, peace research, and Marxism. Material reviewed for its substantive hypotheses, normative orientations, data resources, and research possibilities. Open to undergraduates by permission of instructor only.
H. R. Alker, Jr., N. Choucri

17.422 International Political Economy (A)
Prereq.: Permission of Instructor
G (2)
3-0-6
Interdisciplinary analysis of ways in which nations undertake dual international objectives: pursuit of power and wealth. Surveys major competing paradigms of international political economy, including neo-classical economics, Marxist and neo-Marxist theories, dependency theses, and structural European views of power relations, among others. Analyzes political and economic dimensions of international trade, capital flows, foreign investment, and military and strategic policies. Reviews the evolution of international economic organizations and political implications.
N. Choucri

17.423 United States-Latin American Relations
Prereq.: —
U (2)
3-0-6
17.424 United States-Latin American Relations
Prereq.: Permission of Instructor
G (2)
3-0-9
Survey of political and economic relations between the US and Latin America since 1930, with emphasis on the period since 1960. Implications of Latin American development for the US, and US responses to revolutionary movements in the Caribbean and elsewhere. Graduate students in 17.424 are required to write a substantial and original research paper; among other requirements, undergraduates in 17.423 write one brief paper on the basis of assigned reading.
P. H. Smith

17.428 US Foreign Policy — Past, Present, Future (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-9
Critical analysis of US foreign policy in the context of past tendencies and future possibilities. Roots of US policy; origins of the Cold War; the "Age of Intervention;" security redefined; interdependence; future options. Open to advanced undergraduates by permission of instructor only.
L. P. Bloomfield

17.430 The Foreign Policy Process (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
The planning and execution of foreign policy in the US (and, where data available, other countries). Relevant organizational and decision-making models and theories critically analyzed. The President and Congress, NSC and State Dept., and System weaknesses. Organizing for interdependence. Policy planning, crisis behavior, and issues of irrationality. Simulation and other techniques. Student-run planning game. Open to advanced undergraduates by permission of instructor only.
L. P. Bloomfield

17.432 Field Seminar in International Relations and Foreign Policy
Prereq.: Permission of Instructor
G (2)
Arr.
Selective review of the International Relations and Foreign Policy field in preparation for the general qualifying examination. Subject meets 4-5 times during one month. Not for credit.
H. R. Alker, Jr., L. P. Bloomfield, N. Choucri

17.434 Research: International Relations and Foreign Policy (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-6
Problem approach to areas and issues based on student interest. Reviews major themes that cut across the field, such as national security, international organizations, and interdependence. Preparation for generals and professional work.
L. P. Bloomfield

17.438 African Foreign Relations (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
Comparative analysis of politics and foreign relations of Southern Africa emphasizing South Africa but including other states in the region. Focuses on the interests in and policies toward the states of the region on the part of the US and other Western powers. Domestic economic, social, and political factors that affect the foreign relations of the states are considered. Open to undergraduates with permission of instructor.
W. R. Johnson

17.441 International Regimes and Organizations
Prereq.: 17.403 or 17.405
U (1) Next offered 1985-86
3-0-9
17.442 International Regimes and Organizations (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-9
Studies origins and activities of international institutions as well as the network of rules and norms that regularize international behavior. Surveys and assesses empirical evaluations of the effectiveness of international institutions with emphasis on collective security and functional cooperation. Evaluates public goods and other approaches to the study of international regimes. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.441.
J. Freeman, A. Hollick

17.444 Political Economy of the Middle East (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
Focuses on economic and political transformations in the Middle East since World War II. The effects of the decolonization process in conjunction with efforts at institutional development provide the context for evaluating development strategies, changes in resource availability, and alternative paths to growth and change. A principal emphasis on competing strategies for change and modernization, and attendant political and economic consequences. Advanced undergraduates with permission of instructor.
N. Choucri

150D
Defense and Arms Control Studies

17.460 Defense Politics (A) (New)
Prereq.: —
G (2)
3-0-9
Examines the politics affecting US defense policies. Includes consideration of intra- and inter-service rivalries, civil-military relations, contractor influences, congressional oversight, and peace movements in historical and contemporary perspectives.
H. M. Sapolsky

17.463 General Purpose Forces
Prereq.: —
U (2) Not to be offered 1985-86
3-0-6
Introduces planning of the general purpose forces. Emphasizes methods used to analyze the cost and effectiveness of alternative land, air, and naval capabilities in achieving deterrence and stability. Attention to NATO and the Warsaw Pact. Consult G. W. Rathjens

17.464 Theory and Politics of Arms Control (A) (New)
Prereq.: 17.486, 17.490
G (1)
3-0-6
The evolution of arms control and disarmament policy and approaches. Critical review of the major negotiating efforts and agreements, including consideration of domestic political factors.
S. Miller

17.465 Defense and Arms Control issues
Prereq.: —
U (2)
3-0-6
Engineering School-Wide Elective Subject. Description given at end of this chapter on SWE page.
R. Lester, G. W. Rathjens, J. P. Ruina

17.466 Seminar in Arms Control (A) (New)
Prereq.: 17.468, 17.490
G (2)
3-0-6
One or more topics, varying from year to year, treated in some detail. Consideration of technical questions, political questions, economic and military impact. Examples: missile deployment in Europe and the INF negotiations, START, and space-based ballistic missile defense.
G. W. Rathjens, J. P. Ruina

17.469 Military Forces and Foreign Policy
Prereq.: —
U (1) Next offered 1985-86
3-0-6

17.470 Military Forces and Foreign Policy (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-9
A comparative examination of US and Soviet defense policies, foreign policies, and the use of their military forces in the post-war period. Analyzes 20 historical cases involving deterrence of central war, coercive diplomacy, crisis management, and limited intervention. Discusses implications for military force posture planning and military strategy. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.469.
S. M. Meyer

17.482 General Purpose Forces (A)
Prereq.: 17.480
G (2) Not to be offered 1985-86
3-0-6
Introduces the planning of the nuclear and non-nuclear general purpose forces. Emphasizes methods used to analyze the cost and effectiveness of alternative land, air, and naval capabilities in achieving deterrence and stability. Attention to the ability of NATO to deter the Warsaw Pact. Open to undergraduates by permission of instructor only. Consult G. W. Rathjens.

17.486 Technology of Nuclear Weapons and Arms Control
Prereq.: —
G (1)
4-0-8
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
G. W. Rathjens, J. P. Ruina

17.487 Principles of Systematic Policy Analysis (A) (New)
Prereq.: 17.465
U (2)
3-0-6
17.488 Principles of Systematic Policy Analysis (A)
Prereq.: 17.486 or 17.485
G (2)
3-0-6
G. W. Rathjens

17.490 Issues in Soviet Defense Planning (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-9
Examines a selection of the historical, recurrent, and contemporary issues that have arisen in the planning and implementation of Soviet defense policy. While specific topics considered vary from year to year, general areas covered include issues in weapons design, procurement and deployment, force structuring, strategy and doctrine, and arms control. In attempting to gain an appreciation of the Soviet perspective, translated Soviet source materials used, and supplemented with analyses by western specialists.
S. M. Meyer

17.496 Seminar on European Security (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
Considers issues in the military and political security of Europe in the post-1945 period, decline of the cold war, consolidation of status quo; the German question and Ostpolitik; MBFR negotiations; role of new weapons systems (SS-20, Pershing 2, Cruise Missile); differing W. European and US estimates of the USSR and their policy results; the energy crisis and US-W. European differences on Middle Eastern policy.
W. E. Griffith

17.498 Defense Issues and Budgets (A)
Prereq.: 17.480
G (2) Not to be offered 1985-86
3-0-6
Introduces US defense budget and five-year defense plan. Uses force planning methods to assess the adequacy of current US nuclear and non-nuclear capabilities and to evaluate alternatives to the current budget plan. Open to undergraduates by permission of instructor only. Consult G. W. Rathjens.

Comparative Politics/Political Development/Communist Studies

Theories and Research Methods

17.501 The Quest for Equality and Development in Third World Countries
Prereq.: —
U (1) HUM-D
3-0-9
Examines value aspects of and policy choices in attempts to achieve economic growth with social justice and popular democracy in underdeveloped countries. Considers tensions between growth and equality, between domestic and international needs, and between political and economic interests. Policy areas include education, food and nutrition, health, investment, and rural development. Attention to local values and historical context.
W. R. Johnson

17.505 Colonial Analogy
Prereq.: —
U (2) Next offered 1985-86
3-0-9
Comparative analysis of foreign relations of Africa. Focuses on the interests in and relations with African states on the part of the US, other Western powers, the Eastern and Arab countries. Considers domestic economic, social, and political factors involved in African foreign relations. Open to undergraduates. Final exam for undergraduates, major paper for graduate students.
W. R. Johnson

17.506 Theories and Approaches to the Study of Comparative Politics (A)
Prereq.: 17.150
G (2) Next offered 1985-86
3-0-6
Examines various approaches which underlie our study of comparative politics; literature drawn primarily from Western Europe. The utility of alternate conceptualizations and theoretical formulations found in the general literature on comparative politics. Open to undergraduates by permission of instructor only.
L. W. Pye

17.507 Comparative Political Economy
Prereq.: —
U (1)
3-0-6
17.508 Comparative Political Economy (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
The interrelationship of politics and economy emphasizing selected topics of special interest to political scientists, e.g., assessing the impact of elections on fiscal and monetary policy, the political-business cycle, and role of the public and private sectors in promoting economic growth and distribution equity. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.507.
J. Freeman

17.512 Theories of Political Development (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
Studies analytical models of the political process in transitional societies. Systematic examination of factors influencing political behavior in changing societies; functions of politics in such societies. Open to qualified undergraduates.
L. W. Pye

17.514 The Political Economy of International Migration (A)
Prereq.: —
G (2)
3-0-9
Explores the political causes and consequences of population movements across international boundaries and within states. Detailed examination of the following: political effects of urban migration; political behavior of political refugees; consequences of internal population movements in multi-ethnic societies; economic and political impact of migrants on the receiving country; effects of migration on the country of origin. Draws case materials from contemporary Asia, Africa, and Latin America.
M. Weiner

17.516 Democratic Elections in Developing Countries (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-9
Reexamines democratic theories in light of the experiences of those low-income countries that have maintained political parties and competitive democratic elections. Attention to socioeconomic and class theories which may explain development and institutionalization of democratic institutions. Considers impact of the electoral process on popular participation, demand-making, and patron-client relations, inter-ethnic conflicts, political organization and legitimacy. Countries studied: Colombia, Greece, India, Malaysia, Nigeria, Portugal, Sri Lanka, Turkey and Venezuela and a number of countries in Africa and the Caribbean.
M. Weiner

Advanced Industrial Societies

17.530 The Politics of the Federal Republic of Germany (New)
Prereq.: —
G (1)
3-0-9
Survey of the principal domestic and foreign policy issues in the Federal Republic. After a brief historical survey and a study of the Adenauer period, emphasis on the period after 1969: party system, economic factors, the media, religion, and the new left; relations with the US, France, and Ossetopolitik toward the USSR, Poland, and the GDR. Open to qualified undergraduates.
W. E. Griffith

17.532 Problems of Advanced Industrial Societies (A)
(Same subject as STS 575J)
Prereq.: 17.156J
G (2) Next offered 1985-86
3-0-9
Analyzes selected current political economy issues. Includes: inflation, industrial relations systems, the "crisis of ungovernability," public assistance and family policy, and "reindustrialization." Open to qualified undergraduates by permission of instructor.
S. Berger, M. J. Piore
17.534 Domestic Politics of Western Europe (A)
Prereq.: Permission of Instructor
G (1)
3-0-6
Compares politics and society in France, Great Britain, Germany, and Italy. Analyzes “cases” of the integration of feudal remnants and the problem of controlling the economy. Open to undergraduates.
S. Berger

17.536 Research Seminar in Comparative Politics: Western Europe (A)
Prereq.: 17.534
G (2)
3-0-6
For students planning research in Western European countries. Discussion of current work in the field. Training in the use of European primary source materials and in research methods applicable to European problems. Presentation of students’ own research projects.
S. Berger

17.538 The Crisis of the Welfare State (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-9
Explores how different theories of politics explain the origins, behavior, and development of welfare states. Some issues: why welfare becomes a public function, why different states spend different amounts on welfare, why welfare policies are more or less redistributive; theories of crisis, including fiscal, political, structural, and administrative.
D. A. Stone

17.539 Politics and Policy in Contemporary Japan
Prereq.: —
U (1)
3-0-6

17.540 Politics and Policy in Contemporary Japan (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
Analyzes contemporary Japanese politics, focusing primarily upon the post-World War II period. Includes: examination of the dominant approaches to Japanese politics and society, the structure of the party system, the role of political opposition, the policy process, foreign affairs, and interest groups. Attention to the development of less idiosyncratic approaches to the study of Japan. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.539.
R. J. Samuels
See also 17.156J.

Developing Countries

17.543 Political Change in Latin America (Revised Unit)
Prereq.: —
U (1) HUM-D
3-0-9
Introductory survey of Latin American politics in comparative perspective. Theoretical focus on socio-economic conditions of political change and on state formation since the conquest, with particular emphasis on the twentieth century. Special attention to selected cases (Argentina, Mexico, Cuba, Central America) and to the role of the US.
P. H. Smith

17.544 Comparative Politics of Latin America (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
Latin American politics in a comparative perspective. Theoretical focus on three contrasting models of development: modernization, dependency, and bureaucratic-authoritarianism. Case studies with different political systems and economic models since 1960, such as Chile, Peru, Brazil, Cuba.
P. H. Smith, B. H. Smith

17.545 Political Change in South Asia: India, Pakistan, Bangladesh, and Afghanistan
Prereq.: —
U (2)
3-0-6

17.546 Political Change in South Asia: India, Pakistan, Bangladesh, and Afghanistan (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
Examines the major political changes occurring in the region: the changing role of political parties and the military; the impact of caste, linguistic, religious, tribal, and class forces; the electoral process; the political determinants and consequences of development policies; and the changing involvement of external powers. Attention to issues of national integration, political legitimacy, and political participation. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.545.
M. Weiner

See also 17.156J.

17.547 Chinese Politics
Prereq.: —
U (2)
3-0-6

17.548 Chinese Politics (A)
Prereq.: Permission of Instructor
G (2)
3-0-6
Analyzes contemporary Chinese politics, both pre-Communist and Communist. Focus on the process of modernization and political development of Chinese civilization. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.547.
L. W. Pye

17.549 Political and Economic Development of Tropical Africa
Prereq.: —
U (2) HUM-D
3-0-9
Studies major facets and problems of economic and political development in tropical Africa. Introduces the history and political cultures of African peoples, states, and empires throughout history. Considers the impact of African culture and philosophy on modern politics. A general introduction to African Politics.
W. R. Johnson

17.551J Nationalism and Nation Building in 20th-Century Africa
(Same subject as 21.455J)
Prereq.: —
U (2) HUM-D
3-0-9

17.552 Nationalism and Nation Building in 20th-Century Africa
Prereq.: Permission of Instructor
G (2)
3-0-9
See description under subject 21.455J. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.551J.
R. I. Rotberg

17.553J The History and Politics of the Third World through the Novel
(Same subject as 21.455J)
Prereq.: —
U (1) Next offered 1985-86
3-0-6
See description under subject 21.455J.
R. I. Rotberg

17.562J Nutrition and National Development
(Same subject as 20.410J)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-9
See description under subject 20.410J.
N. S. Scrimshaw
Political Science

17.564J Research Seminar in Imperialism and Colonialism
(Same subject as 21.457J)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-6
See description under subject 21.457J.
R. I. Rotberg

17.566 Comparative Asian Politics (A)
Prereq.: Permission of Instructor
G (2) 3-0-6
Comparative analysis of political systems of Asia. Attention to the processes of social change and the problem of political stability. Covers the transition from traditional and colonial systems to the contemporary ones. Open to qualified undergraduates.
L. W. Pye

17.574 Comparative African Politics: Crises in Southern Africa (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-6
Comparative analysis of political systems and problems of southern Africa. Attention to the liberation of Namibia and Zimbabwe and evolution of South Africa. Also discusses the development of Botswana, Angola, Mozambique, Zambia, and Zaire. Although seminar's primary focus is on the emergence of stable systems of governance in the southern tier of Africa, it examines the formulation of US foreign policy regarding the region. Undergraduates permitted with permission of instructor.
R. I. Rotberg

17.576 Politics of Development and Underdevelopment in Africa (A)
Prereq.: —
G (2) 3-0-9
Analyzes development issues and policies in selected African countries (inter alia, Cameroon, Kenya, Nigeria, Tanzania) including a consideration of the nature and functioning of the political systems in these states, their interaction with the environment of other states, international organizations and multinational corporations. Emphasizes policies being pursued by the government to promote economic and social development. Considers major theoretical literature on development relevant to Africa.
W. R. Johnson

17.578 Race Relations, Politics and Development in the Caribbean (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-9
Comparative study of the role of color and race in the politics of the Caribbean. Attention to problems of modernization, leadership, and economic development in French, Dutch, and English-speaking areas.
R. I. Rotberg

See also 17.232J, 17.426, 17.438.

17.582J Politics of Mexican Development
(Same subject as 21.472J)
Prereq.: Permission of Instructor
G (1) 3-0-9
See description under subject 21.472J.
P. H. Smith

17.584 Religion, Politics, and Social Change (A)
Prereq.: —
G (1) 3-0-9
17.585 Religion, Politics, and Social Change
Prereq.: —
U (1) HUM-D 3-0-6
Major issues of religion and politics in various developing countries. Focus on: 1) theories of religion's impact on social change, 2) differing church-state concepts in the major world religions, 3) religion as a progressive and reactionary political force, 4) religion under authoritarian governments. Case studies from Latin America, Africa, Middle East, and Asia. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.584.
B. H. Smith

17.586 The Military and Politics in Comparative Perspective (A)
Prereq.: —
G (2) Next offered 1985-86
3-0-9
17.587 The Military and Politics in Comparative Perspective
Prereq.: —
U (2) Next offered 1985-86
3-0-9
Political interests, resources and impact of the military in Western industrial nations, Communist societies and developing countries. Historical and theoretical treatment of: 1) contrasting models of civil-military relations; 2) conditions enhancing and eroding civilian control of the military; 3) impact of modern technology and social instability on the political role of the military and 4) capabilities and consequences of the armed forces in managing government tasks. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.586.
B. H. Smith

See also 17.330J

17.588 Field Seminar in Comparative Politics (A)
Prereq.: Permission of Instructor
G (2) Arr.
For advanced graduate students planning to offer General Examinations in the field of comparative politics. Assumes the student has a familiarity with a sampling of the major works in this field, but wishes opportunity to deepen and broaden that familiarity. No research papers required. Topics: political participation, interest groups, the intellectual history of the field, political culture, methodologies, political development, and public policy.
R. J. Samuels, Staff

17.590 Research Seminar on Latin American Politics
Prereq.: —
G (2) 3-0-9
For students planning research in Latin America, and for students who seek to incorporate Latin American cases in comparative frameworks. Discussion of current work in the field, with emphasis on sources, methodology, and strategies for testing theory. Presentation of students' research projects as appropriate.
P. H. Smith, B. H. Smith

See also 17.330J

Communist Studies

17.602 Continuity and Change in Soviet Politics (A)
Prereq.: —
G (1) 3-0-9

17.603 Continuity and Change in Soviet Politics
Prereq.: —
U (1) 3-0-9
Analysis of the nature and evolution of Soviet politics centered on four topics: 1) Lenin's theory and practice in creating the Bolshevik party and seizing power; 2) competing responses to the economic and political dilemmas of building a socialist regime in a peasant society, 1917-1928; 3) origins and impact of Stalin's totalitarian system; 4) Soviet politics since Stalin. Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.602.
D. L. M. Blackmer
17.604 Soviet and Chinese Foreign Policy and the Communist World (A)
Prereq.: —
G (1) Next offered 1985-86
3-0-9
Reviews Soviet state and party relations with China and East Europe during the Stalin period and analyzes Sino-Soviet relations since 1953. Includes Soviet and Chinese dealings with East Europe, North Korea, North Vietnam, Cuba, and the Eurocommunist parties. Open to qualified undergraduates.
W. E. Griffith

17.606 The Politics of Communist States and Parties in Eastern and Western Europe (A)
Prereq.: —
G (2) 3-0-9
Primarily an analysis of the domestic problems and foreign relations of the Communist states of East Europe since World War II, followed by a survey of the domestic and foreign policies of the major West European Communist parties. Open to qualified undergraduates.
W. E. Griffith

17.608 Radical and Revolutionary Ideologies (A)
Prereq.: —
G (2) Next offered 1985-86 3-0-9
Consecutive treatment of background of Marxism in German idealist philosophy; Marx, Engels, Bakunin, and Anarchism; the revisionists, orthodox Marxists, leftist Marxists, origins of Russian radicalism and Marxism; Lenin, Trotsky, Bukharin, Stalin; Fascism; the Western-Marxists; Titoism; East European revisionism; Maoism; ideology in Sino-Soviet split; radicalism in Cuba; Chinese Cultural Revolution; Asian and African Socialism; North Vietnam; Radicalism and the New Left in North American and Western Europe; Eurocommunism. Open to qualified undergraduates.
W. E. Griffith

17.609J Seminar in the Historical and Political Evolution of the Soviet Union
(Same subject as 21.378J)
Prereq.: Permission of Instructor
U (2) 3-0-6

17.610 Seminar in the Historical and Political Evolution of the Soviet Union
Prereq.: Permission of Instructor
G (2) 3-0-9
Graduate students are expected to pursue the subject at greater depth through reading and individual research. Meets with 17.609J. See description under subject 21.378J.
L. R. Graham

17.612 The Soviet Political System (A)
Prereq.: 17.602
G (2) Next offered 1985-86
3-0-9
Research seminar on the Soviet political system with special emphasis on the period since Stalin's death. Three main objectives: 1) evaluation of competing interpretations of Soviet politics, including efforts to apply to the Soviet Union concepts derived from the study of other political systems; 2) discussion of major issues in contemporary Soviet politics; 3) student research.
D. L. M. Blackmer

17.614J Russian Science and Society (New)
(Same subject as STS 212J)
Prereq.: —
G (2) Next offered 1985-86
3-0-9
See description under subject STS 212J.
L. R. Graham

17.616 Soviet Policy Toward the Third World (New)
Prereq.: —
G (2) 3-0-9
After a general survey of Soviet third world policy, focuses on Soviet policy in four regions: the Middle East, southern Africa, Central America and the Caribbean, and Indochina. Includes: Soviet arms supply, guerrilla movements and terrorism, other leftist and revolutionary movements, and "proxies" (e.g., Cuban troops and advisers in Angola and the Caribbean). Open to qualified undergraduates.
W. E. Griffith

See also 17.490

17.619J Seminar in the Historical and Political Evolution of the Soviet Union
(Same subject as 21.378J)
Prereq.: Permission of Instructor
U (2) 3-0-6

17.705 The Social Effects of Communications Technologies
Prereq.: —
U (2) Next offered 1985-86
3-0-6
Current changes in the technology of communications are having important effects on social relations and behavior in modern society. Five cases examined: 1) rural communications in underdeveloped countries; 2) CATV; 3) electronics in publishing; 4) computer networks, national and international; and 5) communications satellites. Consult Department headquarters.

17.707 Mass Communication and American Culture
Prereq.: —
U (2) HUM-D Next offered 1985-86
3-0-6
Studies emergence of the modern media of mass communication and their influence in shaping the individual's values and knowledge of world events. Topics: political control through mass communication, violence, racial and sex role stereotypes, popular culture, and future communication technologies.
W. R. Neuman

17.720 Communication and Public Opinion (A)
Prereq.: —
G (1) 3-0-9
The role of public opinion in the political process. Deals with: historical emergence of organized opinion, how public opinion relates to private attitudes; practices of parties and pressure groups; conditions under which communication is effective or ineffective. Open to qualified undergraduates. Consult Department headquarters.

17.725 Social Impact of Communication Systems (A)
Prereq.: —
G (1) 3-0-9
Compares communications systems of societies dominated by mass media (as our own) with both less developed and emerging new systems. Examines communications in developing countries, American mass media, and such new technologies as CATV, satellites, and data networks. Analyzes social impacts of each. Open to qualified undergraduates. Consult Department headquarters.
17.726 Political Culture (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
Analyzes the psychological and attitudinal bases of politics. Special emphasis on socialization patterns, styles of politics, and elite operational codes. Open to qualified undergraduates.
L. W. Pye

17.734 Personality and Politics (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-9
Examines the bearing of modern personality theory, especially the psychoanalytic, on politics. A major concern will be the nature of leadership. Topics: psychology of leaders, relations of leader and led, and mass psychology of political movements. Draws particularly on materials on American Presidents and the Presidency forillustrative purposes: favors an historical perspective. Open to qualified undergraduates.
B. Mazlish

17.736 Reading Seminar in Communications Research (A)
Prereq.: Permission of Instructor
G (1, 2)
3-0-9
Reading and discussion of special topics in communications research and policy analysis by arrangement with individual staff members. Consult W. R. Neuman.

17.740J Telecommunications Technology and Policy (A)
(Same subject as 6.933J)
Prereq.: —
G (1)
3-0-9
Basis in technology, law, and economics for the regulation of telecommunications common carriers such as AT&T, the Postal Service, specialized international record carriers. Role of new technologies such as microwaves, satellites, integrated digital networks, computer communications, value-added services, and cable TV. Issues of competition, monopoly, and technical standards. Implications for the management of corporate telecommunications networks. Open to qualified undergraduates.
M. Sirbu

17.742J Mass Communication Technology and Policy (A)
(Same subject as 4.254J)
Prereq.: Permission of Instructor
G (2)
3-0-9
Assesses the relationship between changing mass communications technologies and the policy issues of press freedom, content diversity, cross-media ownership, public access, copyright, and the deregulation movement. Examines the social impact of the emergence of printing and broadcasting and the effect of satellite technology, cable television, videodiscs, videorex, and other new media on the communications industry.
W. R. Neuman, A. B. Lippman

17.744 International Communications (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
Includes the structure of the international tele-communications systems, the way in which agreements are reached through organizations such as the ITU and Intelsat, controversial issues about international broadcasting, copyright and spectrum allocations, and trans-border data networks. Examines telecommunications industry structure in Europe, Japan, Canada, USSR, and developing countries.
M. Tyler, C. Jonscher

17.748 Information and Communications Industries (A)
Prereq.: Permission of Instructor
G (1)
Arr.
Analyzes past developments and future strategies of industries providing information and communications systems and services including computing, telecommunications, office automation, database services, and new media. Reviews factors causing growth in information needs of the economy. Examines options for business strategy and policy in the information and communications industries.
C. Jonscher
See also 17.255

17.803 Formal Logics and Political Arguments
(New)
Prereq.: —
U (1)
2-1-9
Examines the fallacies and logics of a variety of recent liberal, radical, and conservative political arguments. Specific attention given to psychologies characteristic of "ideological" political arguments, democratic theory, Marxian dialectical reasoning, and the structure of legal debate. The laboratory includes debating exercises and logical and computerized analysis of various political arguments.
H. R. Alker, Jr.

17.810 Research Methods in Explanatory and Evaluative Analysis (A)
Prereq.: Permission of Instructor
G (2)
2-2-8
Studies experimental and non-experimental methodologies with attention both to evaluation and explanation. Includes human-simulation, machine-simulation, Markov chains, interrupted time series analysis, and correlational methods. Substantive applications emphasize studies of macro-political relationships with illustrations drawn primarily from international and comparative politics.
J. Freeman

17.812 Analytic Approaches to the Study of Micropoitics (A)
Prereq.: Permission of Instructor
G (2)
2-2-8
Introduces a variety of research strategies and methods appropriate for studying micropolitics, e.g., public organizations, professions, policy implementation, and social movements. Considers research methods including the case study approach, documentary analysis, interviewing techniques, participant observation, and evaluation methodologies. Presents materials which illustrate sound use of such methods as well as their limitations.
D. Metlay, M. Lipsky

17.814 Research Methods in Political Behavior (A)
Prereq.: Permission of Instructor
G (1)
2-2-8
Basic principles of research methodology for the testing and refinement of social science theory in the areas of political behavior, political sociology, social psychology, and communications. Includes survey design and analysis, experimental research, content analysis, and field research.
W. R. Neuman

Polimetrics/Models and Methods

17.803 Formal Logics and Political Arguments
(New)
Prereq.: —
U (1)
2-1-9
Examines the fallacies and logics of a variety of recent liberal, radical, and conservative political arguments. Specific attention given to psychologies characteristic of "ideological" political arguments, democratic theory, Marxian dialectical reasoning, and the structure of legal debate. The laboratory includes debating exercises and logical and computerized analysis of various political arguments.
H. R. Alker, Jr.

17.810 Research Methods in Explanatory and Evaluative Analysis (A)
Prereq.: Permission of Instructor
G (2)
2-2-8
Studies experimental and non-experimental methodologies with attention both to evaluation and explanation. Includes human-simulation, machine-simulation, Markov chains, interrupted time series analysis, and correlational methods. Substantive applications emphasize studies of macro-political relationships with illustrations drawn primarily from international and comparative politics.
J. Freeman

17.812 Analytic Approaches to the Study of Micropoitics (A)
Prereq.: Permission of Instructor
G (2)
2-2-8
Introduces a variety of research strategies and methods appropriate for studying micropolitics, e.g., public organizations, professions, policy implementation, and social movements. Considers research methods including the case study approach, documentary analysis, interviewing techniques, participant observation, and evaluation methodologies. Presents materials which illustrate sound use of such methods as well as their limitations.
D. Metlay, M. Lipsky

17.814 Research Methods in Political Behavior (A)
Prereq.: Permission of Instructor
G (1)
2-2-8
Basic principles of research methodology for the testing and refinement of social science theory in the areas of political behavior, political sociology, social psychology, and communications. Includes survey design and analysis, experimental research, content analysis, and field research.
W. R. Neuman
17.816 Field Research Methods in Comparative Politics and Political Development (A)
Prereq.: Permission of Instructor
G (1) 2-2-8
Introduces a variety of approaches and methods for conducting research in Western Europe and developing countries, including elite interviewing, participant observation, case studies, cross cultural survey research, and documentary research. Attention to conceptual, practical, and ethical issues of conducting research abroad, e.g., the role of language in social research, the limits and uses of official sources, and ethical responsibilities of social scientists.
M. Weiner

17.818J Applied Social Research, Public Policy, and the Social Sciences
(Same subject as STS 440J)
Prereq.: —
G (1) Next offered 1985-86 3-0-9
Problems and possibilities in policy-oriented social research. Historical and contemporary case studies treat three questions: what does applied social research contribute to policy making; how scientific is it; and do the natural sciences offer useful models for the combining of theory, fact, and application in the social sciences?
P. Buck

17.838 Mathematical Political Science (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86 2-2-8
First part focuses on rational models of collective choice including two-person game theory. Second part covers systems theoretic explanations with applications primarily drawn from the literature on electoral mobilization, class conflict, and political economy. Open to qualified undergraduates.
J. Freeman

17.842 Quantitative Research in Political Science and Public Policy (A)
Prereq.: Permission of Instructor
G (2) 3-0-9
For students who do not expect to use quantitative methods in their work, but who would like to be able to understand the quantitative work reported in journals and research reports. A basic literacy subject teaching the student how to read and interpret the quantitative literature in various subfields of political science and public policy. Students develop elementary statistical computation skills and learn to use a statistical computing package.
S. M. Meyer

17.846 Multivariate Political Analysis (A)
Prereq.: Permission of Instructor
G (1) 2-2-8
Focus on multivariate data analysis procedures emphasizing regression. Includes: dummy variable regression, distributed lags, and instrumental variables. Social and political research applications undertaken on the TROLL computer analysis system. Students must have taken at least one previous subject in statistics. Open to qualified undergraduates.
J. Freeman

17.848 Complex Models of Social Systems (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
Arr.
Research seminar focuses on the communicative content of social-political interactions. Grammatical approaches to the modeling of social and political competence and performance reviewed as well as data analysis procedures for uncovering linguistic codes and messages. Discusses models from biological, linguistic, logical, semiotical, and artificial intelligence traditions. Examples drawn from small group, urban, national, and international contexts.
H. R. Alker, Jr.

17.850 Advanced Topics in Statistical Modeling (A)
Prereq.: 17.846
G (1) Next offered 1985-86 3-0-6
Focus on selected topics in statistical modeling and data-based simulation, including: ARIMA models, intervention analysis, analytical vs. numerical techniques of dynamic analysis, nonlinear estimation methods. Emphasizes political science applications. Open to undergraduates by permission of instructor.
J. Freeman

See also 17.150, 17.488, 17.494, 17.901.
17.960-17.960 Reading Seminar in Social Science (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Reading and discussion of special topics in the fields of social science. Open to advanced graduate students by arrangement with individual staff members.
D. L. M. Blackmer

17.711G Graduate Political Science Thesis (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Program of graduate research and writing of thesis to be arranged by the student with supervising committee.
D. L. M. Blackmer
18.001 Calculus
Prereq.: Assumes some prior knowledge of calculus
U (1)
5-0-7
Reviews 18.01 material in five weeks. Infinite series, Taylor's formula. Vectors, vector-valued functions of one variable, space motion. Applications and special topics such as probability, planetary motion, or mathematics in industry.
F. Morgan

18.002 Calculus
Prereq.: 18.001 or 18.01 or 18.011 or 18.012
U (1, 2)
5-0-7
Covers much the same material as 18.01, but at a deeper and more rigorous level. Emphasizes careful reasoning and understanding of proofs. Assumes knowledge of elementary calculus. Topics: axioms for the real numbers; the Riemann integral; limits, theorems on continuous functions; derivatives of functions of one variable; the fundamental theorem of calculus; Taylor's theorem; infinite series, power series, rigorous treatment of the elementary functions.
J. R. Munkres

18.01 Calculus
Prereq.: —
U (1, 2)
5-0-7
Information: A. P. Mattuck.

18.021 Calculus
Prereq.: 18.011
U (2)
5-0-7
Continues 18.011: calculus of several variables, with elementary linear algebra and applications. Scalar functions of several variables: partial differentiation, gradient, approximation techniques. Multiple integrals with applications. Vector fields, line integrals, exact differentials. Elementary linear algebra, Jacobians. Green's Theorem, surface integrals, Divergence Theorem, Stokes' Theorem. Applications and special topics such as extremal theory in economics. Permission of instructor required for those not having 18.011.
D. S. Jerison

18.022 Calculus with Theory
Prereq.: 18.012
U (2)
5-0-7
Continues 18.012. Parallel to 18.02, but at a deeper level, emphasizing careful reasoning and understanding of proofs. Considerable emphasis on linear algebra and vector integral calculus.
J. R. Munkres

18.03 Differential Equations
Prereq.: 18.002 or 18.02 or 18.021 or 18.022
U (1, 2, S) SD
4-0-8
Examples of initial value problems in science and engineering associated with single equations and with systems of first order equations. Methods of solution include graphical constructions, series, Laplace transforms, matrices, numerical integration and the phase plane. Emphasizes formulation of natural phenomena in terms of differential equations and interpretation of the solutions.
Term 1: G.-C. Rota, Staff
Term 2: A. P. Mattuck, Staff

18.04 Complex Variables with Applications
Prereq.: 18.03
U (1, 2, S)
4-0-8
Complex algebra and functions; analyticity; contour integration, Cauchy's theorem; singularities, Taylor and Laurent series; residues, evaluation of integrals; multivalued functions, potential theory in two dimensions; Fourier analysis and Laplace transforms. 18.04 and 18.075 may not both be taken for credit.
Term 1: A. Toomre
Term 2: K. K. Tung
18.05 Introduction to Probability and Statistics

Prereq.: 18.001 or 18.01 or 18.011 or 18.012
U (1, 2) SD

3-0-9

Term 1: W. H. DuMouchel
Term 2: H. Rogers, Jr.

18.057 Computer Data Analysis Laboratory (A except XVIII)

(Revised Content)

Prereq.: 18.05 or 15.061
U (2) G (2)

3-2-7

Methods of data analysis using computers and microcomputers. Introduction to and practice with the most frequently encountered statistical software systems including MINITAB, SAS, and BMDP. Statistical analyses using Project Athena microcomputers. Emphasizes intuitive bases of common statistical procedures and the use of interactive computer packages to analyze a wide variety of data sets. No previous programming experience necessary. Some statistics background necessary.

W. A. Nazaret

18.06 Linear Algebra

(18.700)

Prereq.: 18.002 or 18.02 or 18.021 or 18.022
U (1, 2, S) SD

3-0-9

Basic subject on matrix theory and linear algebra, emphasizing topics useful in other disciplines: systems of equations, vector spaces, determinants, eigenvalues, similarity, positive definite matrices. Applications to Gaussian elimination with pivoting, least squares approximations, stability of differential equations, linear programming, and game theory. Compared with 18.710, more emphasis on matrix calculations and applications.

G. Strang, Staff

18.075 Advanced Calculus for Engineers (A except II, VI, VIII, XII, XIII, XVI, XVIII, XXII)

Prereq.: 18.03
G (1, 2, S)

3-0-9

Functions of a complex variable; calculus of residues. Ordinary differential equations; integration by power series; Bessel and Legendre functions. Expansion in series of orthogonal functions, including Fourier series. 18.075 and 18.04 may not both be taken for credit. Information: D. J. Wright.

Term 2: P. J. Wright

18.076 Advanced Calculus for Engineers (A except II, VI, XVI, XVIII, XXII)

Prereq.: 18.075
G (1, 2, S)

3-0-9

Term 1: D. J. Wright

18.085 Methods of Applied Mathematics for Engineers (A except XVIII)

(Revised Content)

Prereq.: 18.03, 18.06
G (1, 2)

3-0-9

G. Strang

18.089 Review of Mathematics

Prereq.: —
G (S)

Arr.

Reviews calculus and differential equations. Primarily for students in Course XII-A. Degree credit allowed only in special circumstances.

A. P. Mattuck

18.093 Tutoring in Mathematics

Prereq.: 18.002 or 18.02 or 18.021 or 18.022
U (1, 2)

Arr.

For undergraduates who are teaching or tutoring in mathematics subjects. Limited enrollment, based on positions available. Permission must be secured in advance to register for this subject.

A. P. Mattuck

18.099 Independent Activities

Prereq.: —
U (1, J, 2)

Arr.

For undergraduates desiring credit for studies during IAP or for special individual reading on an undergraduate level during the regular terms. Specific programs and credit arranged in consultation with individual faculty members and subject to departmental approval.

J. R. Munkres
18.100 Analysis I (A except XVIII)
Prereq.: 18.03
U (1, 2) G (1, 2)
3-0-9
Two options offered, both covering fundamentals of mathematical analysis: convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, interchange of limit operations. Both options show the utility of abstract concepts and teach understanding and construction of proofs. Option A chooses less abstract definitions and proofs, and gives applications where possible. Option B is more abstract and is for students with more mathematical maturity; places greater emphasis on point-set topology.
Option A: Term 1: D. J. Anick
Term 2: Information: A. P. Mattuck
Option B: Term 1: D. S. Jerison, I. E. Segal
Term 2: A. Sanchez

18.101 Analysis II (A except XVIII)
Prereq.: 18.100, 18.701 or 18.710
U (1) G (1)
3-0-9
Continues 18.100, stressing the topics most useful in the study of manifolds and global analysis: differentiable maps, Jacobians, differentials, inverse and implicit function theorems, n-dimensional Riemann integral, change of variables in multiple integration, differential forms, general version of Stokes' theorem.
S. Helgason

18.102 Analysis II (A except XVIII)
Prereq.: 18.100
G (2)
3-0-9
I. E. Segal

18.103 Fourier Analysis — Theory and Applications (A except XVIII)
Prereq.: 18.100
G (2) Next offered 1985-86
3-0-9
Continues 18.100. Roughly half the subject devoted to the theory of the Lebesgue integral and half to Fourier series and Fourier integrals. 18.103 is an alternative to 18.102; the material is somewhat similar, but it differs from 18.102 in that a heavy stress is paid to applications, particularly applications in probability theory.
V. W. Guillemin

18.104 Seminar in Analysis
Prereq.: 18.100
U (1) G (1)
3-0-9
Seminars for mathematics majors in several topics, each under the direction of a faculty member whose special interest is in the field of the seminar. Students report on and discuss topics taken from current journals or from texts not regularly used in other mathematics subjects. Certain topics may require an additional prerequisite. Topic 1984-85: Dynamical systems; celestial mechanics. Information: R. B. Melrose.

18.115 Functions of a Complex Variable (A)
Prereq.: 18.100
G (1)
3-0-9
Exponential and trigonometric functions, Cauchy integral formula, holomorphic and meromorphic functions. Infinite series and products, the gamma function. Harmonic functions, conformal mapping, Dirichlet's problem.
R. B. Melrose

18.116 Topics in Complex Variables (A)
Prereq.: 18.115
G (2) Next offered 1985-86
3-0-9
Topics vary from year to year; may be repeated for credit. Topics in the past: classical theory of automorphic functions; modular forms; Riemann surfaces; analytic number theory. Emphasizes as elementary an exposition as possible.
N. C. Ankeny

18.117 Topics in Several Complex Variables (A)
Prereq.: 18.115, 18.125
G (1)
3-0-9
A. Sanchez

18.125 Measure and Integration (A)
Prereq.: 18.100
G (1)
3-0-9
R. M. Dudley

18.126 Functional Analysis (A)
Prereq.: 18.125
G (2)
3-0-9
W. Ambrose

18.128 Geometric Measure Theory (A)
Prereq.: 18.125
G (2) Next offered 1985-86
3-0-9
Hausdorff measure, rectifiable sets, structure theory, integral currents, compactness theorem. Applications to minimal surfaces, existence and regularity. Reports and discussions by students.
F. Morgan

18.129 Operator Theory (A)
Prereq.: 18.125
G (1) Next offered 1985-86
3-0-9
I. E. Segal

18.135 Fourier Analysis (A)
Prereq.: 18.125
G (2) Next offered 1985-86
3-0-9
S. Helgason

18.155 Distributions and Differential Equations (A)
Prereq.: 18.102
G (1)
3-0-9
Treats the basic theory of distributions with many applications to linear ordinary, and partial, differential equations: Distributions and elementary operations; Green's formula, wave operator in two dimensions. Fourier transform, temperate distributions, Sobolev spaces and constant coefficient elliptic operators. Convolution, fundamental solutions and the Malgrange-Ehrenpreis theorem. Schwartz kernel theorem.
G. Uhlmann

18.156 Introduction to Microlocal Analysis (A)
Prereq.: 18.155, 18.965
G (2) Next offered 1985-86
3-0-9
R. B. Melrose
18.157 Partial Differential Equations (A)
Prereq.: 18.155, 18.156
G (1)
3-0-9
D. S. Jerison

18.158 Topics in Differential Equations (A)
Prereq.: 18.125
G (2) Next offered 1985-86
3-0-9
Content varies from year to year; may be repeated for credit. Topics 1985-86: Nonlinear hyperbolic equations, propagation of singularities, and interaction of nonlinear waves.
R. B. Melrose

18.159 Analysis on Lie Groups and Homogeneous Spaces (A)
Prereq.: 18.755
G (2) Next offered 1985-86
3-0-9
Invariant measures and abstract integral geometry illustrated by examples. Invariant differential operators and geometric transformations of these, like projections, radial parts and transversal parts. Global and local solvability, integral formulas for eigenfunctions and irreducibility questions for eigenspace representations.
S. Helgason

18.175 Theory of Probability (A)
Prereq.: 18.125
G (2)
3-0-9
Ergodic theorems, laws of large numbers, convergence of probability measures, central limit theorems, stochastic processes, Brownian motion, martingales, strong Markov properties.
R. M. Dudley

18.177 Stochastic Processes (A)
Prereq.: 18.175
G (1) Next offered 1985-86
3-0-9
Topics in stochastic processes, such as Gaussian, Markov, diffusion and empirical processes. Content varies from year to year; may be repeated for credit.
R. M. Dudley

18.199 Graduate Analysis Seminar (A)
Prereq.: Permission of Instructor
G (1, 2)
3-0-21
Studies original papers in differential analysis and differential equations. Intended for first and second-year graduate students. Permission must be secured in advance.
R. B. Melrose

18.255 Mathematical Theory of Quantum Fields (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-9
Free boson and fermion fields and their particle and wave representations. Functional integration; real Hilbert space case and relations with Wiener integral; holomorphic functionals on complex Hilbert space. Clifford algebra; spinors in Hilbert space. Quantization of relativistic wave equations and generalizations in curved space-times. Nonlinear local functions of quantum fields; constructive quantum field theory. Requires basic operator theory or intuitive quantum field theory and appropriate mathematical arrangements.
I. E. Segal

18.256 Theoretical and Statistical Cosmology (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-9
The empirical background of cosmology; major observations and selection effects; survey of theories. Optimal statistical methods for model building and cosmological hypothesis testing. Mathematical theory of space-times with given structures; isotropy and homogeneity considerations. Chronometric and Doppler redshift theories; Einstein, deSitter, and Friedman-Lemaître universes; the cosmic background radiation. Requires equivalent of graduate standing in mathematics or physics.
I. E. Segal

18.257 The Architecture of Fundamental Mathematical Physics (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
The basic principles of cosmology, elementary particle and quantum field theory, and general relativity, from a modern mathematical standpoint. For mathematicians who want an overview of fundamental theoretical physics, or for physicists who want to see how higher mathematics (C*-algebra, symmetries in space-time bundles, nonlinear partial differential equations, functional integration) is applicable. For integration and orientation; not a substitute for detailed technical courses.
I. E. Segal

18.284 Introduction to Functions of a Complex Variable (A except XVIII)
Prereq.: 18.03
G (1)
3-0-9
Complex numbers, analytic functions, Riemann surfaces for certain functions, Cauchy's theorem, singularities, residues, contour integrals, conformal mapping, Schwarz-Christoffel transformation, series and sequences, analytic continuation, harmonic functions, conjugate functions, the gamma function, second-order linear differential equations and special functions. More advanced than 18.04.
R. P. Stanley
Applied Mathematics

18.301 Introduction to Physical Mathematics I
Prereq.: 18.03
U (1) 3-0-9
Interdependence of mathematics and scientific problems; examples; deterministic and random processes; particle mechanics and differential equations, Brownian motion and random walk; Fourier analysis; tensors; partial differential equations of mathematical physics and continuum mechanics.
C. C. Lin, J. C. Haass

18.302 Introduction to Physical Mathematics II
Prereq.: 18.301, 18.04 or 18.284
U (2) 3-0-9
C. C. Lin, J. C. Haass

18.305 Methods of Applied Mathematics I (A)
Prereq.: 18.04 or 18.075 or 18.284 or 18.302
G (1) 3-0-9

18.306 Methods of Applied Mathematics II (A)
Prereq.: 18.04 or 18.075 or 18.284 or 18.302
G (2) 3-0-9
A comprehensive treatment of the advanced methods of applied mathematics. Term 1: asymptotic behavior of differential and difference equations; asymptotic evaluation of integrals; regular and singular perturbation methods; boundary-layer techniques; WKB method; multiple scales. Term 2: partial differential equations; transform methods; characteristics, initial and boundary-value problems; Green’s functions; singular perturbation problems; nonlinear wave propagation.
18.307 Methods of Applied Mathematics III (A)
Prereq.: 18.04 or 18.075 or 18.284 or 18.302
G (1) 3-0-9
Selection of material from the following topics: calculus of variations (the first variation and the second variation). Integral equations (Volterra equations; Fredholm equations, the Hilbert-Schmidt theorem); the Hilbert Problem and singular integral equations of Cauchy type; Wiener-Hopf Method and partial differential equations; Wiener-Hopf Method and integral equations; group theory.
H. Cheng

18.308 Wave Motion (A)
Prereq.: 18.306
G (2) Next offered 1985-86 3-0-9
R. R. Rosales

18.310 Principles of Applied Mathematics
(18.041)
Prereq.: 18.002 or 18.02 or 18.021 or 18.022
U (1) 3-0-9
Introductory survey of fundamental concepts in applied mathematics: optimization, random process, coding, computer algorithms. This independent half of the complete sequence emphasizes the ideas and topics that relate to a “discrete” mathematical approach: computation, combinatorics, probability, linear programming. Information: R. P. Stanley.

18.311 Principles of Applied Mathematics
(18.042)
Prereq.: 18.03
U (2) 3-0-9
Introductory survey of fundamental concepts in applied mathematics: propagation, stability, equilibrium, optimization. This independent half of the complete sequence emphasizes the ideas and topics that relate to a “continuous” mathematical approach, but connection with discrete mathematical approach also stressed: random walk, diffusion, waves, instabilities, characteristics and first order partial differential equations, with applications to traffic problems, fluid flow, and other problems in classical mathematical physics.
R. R. Rosales

18.313 Probability
Prereq.: 18.002 or 18.02 or 18.021 or 18.022
U (2) SD 4-0-8
Development of theory and applications of probabilistic concepts for scientists and engineers. Emphasizes formulation and solution of probabilistic problems by the algebra of random variables. Topics: sample space, Bernoulli and Poisson processes, uniform process, generating functions and Laplace transforms, discrete and continuous-parameter Markov chains. Introduces the Central Limit Theorem and the foundations of probability.
G.-C. Rota

18.314 Applied Combinatorial Analysis
Prereq.: 18.001 or 18.01 or 18.011 or 18.012
U (2) 3-0-9
Applications of combinatorial methods to practical problem solving. Emphasizes problems involving discrete optimization. Techniques from graph theory, matching theory, network flows. Other topics include enumeration, sorting and coding. Information: R. P. Stanley.

18.315 Combinatorial Theory (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
Content varies from year to year. May be repeated for credit. Topics 1984-85: enumeration, generating functions, partially ordered sets, Möbius functions.
R. P. Stanley

18.316 Seminar in Combinatorics (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86 3-0-9
Content varies from year to year; may be repeated for credit. Readings from current research papers in combinatorics. Topic to be chosen and presented by the class.
D. J. Kleitman

18.318 Topics in Combinatorics (A)
Prereq.: Permission of Instructor
G (2) 3-0-9
Content varies from year to year; may be repeated for credit. Topics 1984-85: application of category theory to combinatorics.
G.-C. Rota, A. Björner

18.325 Topics in Applied Mathematics (A)
Prereq.: Permission of Instructor
G (1, 2) 3-0-9
Mathematics

18.330 Introduction to Numerical Analysis
(18.07)
Prereq.: 18.03
U (2)
3-0-9
Introduces basic techniques for efficient solution of numerical problems in science and engineering. Topics and exercises largely within the scope of programmable calculators. Root finding, integration, function approximations, differential equations, direct and iterative methods in matrix theory, optimization with constraints, analysis of numerical stability.
D. Kopriya

18.335 Numerical Methods of Applied Mathematics I (A)
Prereq.: 18.06, 18.302
G (1)
3-0-9
L. Trefethen

18.336 Numerical Methods of Applied Mathematics II (A)
Prereq.: 18.335
G (2)
3-0-9

18.354 Fluid Mechanics
Prereq.: 18.04 or 18.075 or 18.302
U (1)
3-0-9

18.355 Fluid Mechanics (A)
Prereq.: 18.354
G (2)
3-0-9

A theoretical study of basic concepts of fluid dynamics: real and ideal fluids; conservation equations of mass, momentum, and energy; equations of state; vorticity and circulation theorems; boundary layer theory; instability; waves, modes; compressible flows and shocks. 18.354 and 18.355 form a one-year sequence in fluid mechanics. 18.355 is a selection of topics from other fluids courses not offered this year.
18.354/ D. J. Benney
18.355/ W. V. R. Malkus

18.356 Rotating Fluids (A)
Prereq.: 18.305, 18.354
G (2)
3-0-9
General theory of rotating fluids; transient flows; effects of viscosity, stratification, and compressibility; wave motion; nonlinear interactions; applications to centrifuge technology and the centrifugal separation of mixtures. Basic knowledge of fluid mechanics required.
H. P. Greenspan

18.357 Seminar in Fluid Dynamics (A)
Prereq.: 18.354
G (1) Next offered 1985-86
3-0-9
Frontiers of nonlinear stability theory. Bifurcation in dynamical systems and the onset of chaos. Extension to fluid and magnetofluid systems with applications in geophysics and astrophysics. Students report on current papers and/or approved projects.
W. V. R. Malkus

18.358 Hydrodynamic Stability and Turbulence (A)
Prereq.: 18.354
G (1)
3-0-9
W. V. R. Malkus

18.375 Stellar Dynamics and Galaxies (A)
Prereq.: 8.06, 18.076, or 18.302
G (2) Next offered 1985-86
3-0-9
C. C. Lin

18.395 Group Theory with Applications to Physics (A)
Prereq.: 18.302 or 18.305 or 8.321
G (1)
3-0-9
Selection of topics from the theory of finite groups, Lie groups, and group representations presented with some applications to quantum mechanics and particle physics.
D. Z. Freedman

18.396 Topics in Theoretical Physics (A)
Prereq.: 8.323
G (1, 2)
3-0-9
Topics vary from year to year; may be repeated for credit. Term 1: Quantum Field Theory. Term 2: Survey of supersymmetric quantum field theories including both rigid (global supersymmetry) and local (supergravity) models. Both component approaches and the superspace-supersfield formalism are treated.
Term 1: I. Singer
Term 2: D. Z. Freedman, S. J. Gates

18.411 Applied Algebra
Prereq.: 18.06 or 18.710, 18.063 or 18.703
U (1)
3-0-9
Topic in algebra with application to computer science. Introduces algorithms and relevant algebra. Possible topics in algebra: modular arithmetic, permutation groups, finite fields, polynomial rings, linear algebra, and lattices. Applications to primality testing, factoring polynomials and integers, GCD, coding theory, cryptography, discrete Fourier transforms, Rubik cubes, isomorphism testing. Some knowledge of linear or abstract algebra useful. Complements 18.424 but may be taken independently. No computer programming.
G. L. Miller

18.420J Automata, Computability, and Complexity
(Same subject as 6.045J)
Prereq.: 18.310 or 18.063
U (1, 2)
3-0-9
See description under subject 6.045J.
Term 1: M. Sipser
Term 2: A. R. Meyer

18.424 Linear and Combinatorial Optimization
Prereq.: 18.06
U (1)
3-0-9
Linear programming, simplex algorithm, duality theorems, implications; matching algorithms, network flows and related linear programs; graph problems; NP-completeness. Complements 18.411, but may be taken independently.
R. Kannan

18.425 Symbolic and Algebraic Computation (A)
Prereq.: 18.06; 18.411 or 18.703
G (2)
3-0-9
Studies the computational complexity of algebraic questions. Topics: tests for primality, factoring integers and polynomials, finite fields, algebraic fields and solvability by radicals, permutation groups and graph isomorphism, polynomial root finding.
G. L. Miller
Mathematics

18.427J Theory of Computation (A)
(Same subject as 6.840J)
Prereq.: 6.045J or 18.420J, 18.511
G (1) 3-0-9

18.428 Computation by Automata (A)
Prereq.: 18.420J or 18.427J
G (2) 3-0-9
M. Sipser

18.436 Topics in Algorithms and Complexity
Prereq.: Permission of Instructor
G (2) 3-0-9
A seminar on advanced topics in algorithms and complexity. Current literature presented by students and instructors with a view to preparing students for research in theory of algorithms and complexity.
F. T. Leighton

18.437J Algorithms (A)
(Same subject as 6.851J)
Prereq.: 18.06, 18.063; 6.046 or 18.411 or 18.424
G (2) 3-0-9
See description under subject 6.851J.
R. Kannan, R. L. Rivest

18.438 Advanced Algorithms (A)
Prereq.: 18.437J
G (1) 3-0-9
Explores in greater depth topics from 18.437J/6.851J and current research in algorithms. Topics differ from year to year. Students read and present research papers in class. May be repeated for credit.
G. L. Miller

18.439 Theory of Parallel Computation and VLSI (A)
(Revised Content)
Prereq.: 6.046 or 18.437J
G (1) 3-0-9
F. T. Leighton

Applied Mathematics:

Statistics

18.440 Probability and Random Variables
Prereq.: 18.002 or 18.02 or 18.021 or 18.022
U (1, 2) SD
4-0-8
Term 1: S. Ellis
Term 2: R. M. Dudley

18.441 Statistical Inference
(A except XVIII)
Prereq.: 6.041 or 18.440 or 18.313
U (2), G (2)
4-0-8
Introduces statistical inference. Decision theory, hypothesis testing, point and interval estimation. Bayesian methods, maximum-likelihood and likelihood-ratio tests. Chi-square goodness of fit tests. Comparison of populations by parametric and nonparametric methods. Analysis of variance, regression, and correlation. Sequential analysis if time permits. Treatment more mathematical than that of 18.05 and more detailed in its treatment of statistics.
S. Morgenthaler

18.443 Statistics for Applications
(A except XVIII)
Prereq.: 18.440 or 18.313 or 6.041
G (1)
4-0-8
A broad treatment of statistics concentrating on specific statistical techniques used in science and industry. Topics: hypothesis testing and estimation. Chi-square goodness of fit, regression, correlation, analysis of variance and experimental design. Treatment more oriented toward application and less toward theory than 18.441. Information: R. E. Welsch.

18.444 Probability and Statistics for Scientists and Engineers (A)
Prereq.: 18.002 or 18.02 or 18.021 or 18.022,
G (1)
4-0-8
Arr.
Accelerated introduction covering material in 18.440, 18.441 and part of 18.445J; for engineers and scientists talented mathematically and who need to apply statistical ideas but lack time for two or three semesters of course work. Case study point of view. Topics: probability, distribution expectation, central limit
Mathematics

18.453 Quality Control and Reliability (A) (New)
Prereq.: 18.440; 18.441 or 18.443 or 15.075
G (1) 3-0-7
Introduces statistical concepts in quality control and reliability analysis. Topics: statistical design of Shewhart and CUSUM control charts; acceptance sampling, probabilistic representations and analyses of lifetime data; measurement and prediction of reliability characteristics. Interactive statistical graphics system used to demonstrate the methodology developed in the subject, as well as to provide a student laboratory environment. Information: H. Chernoff.

18.454 Sampling, Simulation, and Monte Carlo (A) (New)
Prereq.: 18.440 or 18.313 or 6.041
G (2) 4-0-8
Introduction to principles and techniques of sampling for the purpose of a survey. Including: simple random sampling, stratified sampling, systematic sampling, and cluster sampling. Discussion of statistical background of Monte Carlo methods and simulation — prominent parts of experimental mathematics with wide applicability. Including: variance reduction, conditional Monte Carlo, control variates, antithetic variates, regression methods, Monte Carlo optimization, application to statistical inference problems.

18.455 Analysis of Variance and Design of Experiments (A)
Prereq.: 18.440 or 18.443 or 15.075
G (1) 4-0-8
Detailed presentation and use of the classical models of analyses of variance (ANOVA); one-way classification, two-way classifications, block designs, nested designs, Latin squares, etc. Model II type of designs. Tests of hypothesis, simultaneous confidence intervals. Presentation of regression, and analysis of covariance (ANOCOVA). Properties of the multivariate normal and related distributions, linear models, general linear hypothesis. Geometric interpretation. Finally: effect of departure from assumptions and nonparametric analogs of ANOVA.

W. H. DuMouchel

18.456 Multivariate Methods in Statistics (A)
Prereq.: 18.440 or 18.443 or 15.075
G (2) 4-0-8
Theory and application of commonly used techniques involving multivariate data. Attention devoted to specific applications, and to computational facilities for applying the methods. Selects topics from the following: multivariate regression, discriminant analysis, and pattern classification. Cluster analysis, factor analysis, and principal components. Multidimensional scale analysis. Contingency tables.

H. Chernoff

18.457J Statistics for Model Building (A)
(Same subject as 15.076J)
Prereq.: 18.06; 18.443 or 15.075
G (2) 3-0-9
See description under subject 15.076J.

R. E. Welsch

18.458 Robust Statistics and Nonparametric Methods (A)
Prereq.: 18.440; 18.441 or 18.443 or 15.075
G (1) Next offered 1985-86 3-0-9

S. Morgenthaler

18.459 Statistical Laboratory (A)
Prereq.: Permission of Instructor
G (2) 2-0-4
Lectures consist of presentations of applied problems with or without solutions. Students give a presentation based on the literature or the solution of a minor problem. The solution of a major problem serves as the basis for a master's thesis.

W. H. DuMouchel

18.465 Topics in Statistics (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
Introduces some special theoretical topics in mathematical statistics at an intermediate level. Assumes familiarity with the elements of probability theory and the fundamental concepts and basic techniques of statistical inference. Topics chosen in accordance with the interests of the instructor and the students.

W. A. Nazaret

18.466 Mathematical Statistics (A)
Prereq.: 18.441 or 18.443
G (1) 3-0-9
Decision theory, estimation, confidence intervals, hypothesis testing. Introduces large sample theory. Asymptotic efficiency of alternative statistical procedures. Linear statistical inference. Permission of Instructor required.

H. Chernoff

18.467 Mathematical Statistics (A)
Prereq.: 18.466, 18.102 or 18.125
G (2) Next offered 1985-86 3-0-9
18.468 Advanced Time Series Analysis (A)
Prereq.: 18.441 or 18.443
G (2) Next offered 1985-86
4-0-8

18.475 Current Topics in Statistics (A)
Prereq.: Permission of Instructor
G (2)
3-0-6
Introduces current topics in applied mathematical statistics at an intermediate level. Assumes students are familiar with the elements of probability theory and the fundamental concepts and basic techniques of statistical inference. Typically covers several topics connected by a common theme. Information: H. Chernoff.

18.504 Seminar in Logic
Prereq.: —
U (1)
3-0-9
Seminars for mathematics majors in several topics, each under the direction of a faculty member whose special interest is in the field of the seminar. Students report on and discuss topics taken from current journals or from texts not regularly used in other mathematics subjects.
S. D. Friedman

18.511 Introduction to Mathematical Logic
Prereq.: —
U (2) Next offered 1985-86
3-0-9
Propositional and predicate logic. Elementary model theory, completeness, compactness, and Lowenheim-Skolem theorems; elementary recursion theory, enumeration and recursion theorems. Godel incompleteness theorems. Special additional topics as time permits. While this subject has no formal prerequisite, any Course XVIII subject with first decimal digit one or higher is adequate preparation.
S. D. Friedman

18.515 Mathematical Logic (A)
Prereq.: 18.511
G (1)
3-0-9

18.516 Mathematical Logic (A)
Prereq.: 18.515
G (2)
3-0-9
C. G. Bailey

18.565 Recursion Theory (A)
Prereq.: 18.516
G (2)
3-0-9
Topics in recursion theory chosen from: priority arguments, hyperarithmetical theory, ordinal recursion, E-recursion, theory of projective sets. Permission of instructor required for those not having 18.516.
G. E. Sacks
Algebra and Number Theory

18.701 Algebra I
Prereq.: 18.002 or 18.02 or 18.021 or 18.022
U (1) 3-0-9

18.702 Algebra II
Prereq.: 18.701
U (2) 3-0-9

18.703 Modern Algebra
Prereq.: 18.002 or 18.02 or 18.021 or 18.022
U (1, 2) SD 3-0-9

18.704 Seminar in Algebra and Number Theory
Prereq.: 18.702 or 18.703
U (2) 3-0-9

18.705 Commutative Algebra (A)
Prereq.: 18.701-18.702 or 18.710-18.703
G (1) 3-0-9

18.706 Noncommutative Algebra (A)
Prereq.: 18.705
G (2) 3-0-9

18.710 Abstract Linear Algebra
Prereq.: 18.002, 18.02 or 18.021 or 18.022
U (1) SD 3-0-9

18.711 Game Theory
Prereq.: —
U (1) Next offered 1985-86 3-0-9

18.715 Topics in Homological Algebra (A)
(Revised Content)
Prereq.: 18.705
G (1) 3-0-9

18.716 Topics in Homological Algebra (A)
(Revised Content)
Prereq.: 18.715
G (2) 3-0-9

18.725 Algebraic Geometry (A)
Prereq.: 18.705
G (1) 3-0-9

18.727 Topics in Algebraic Geometry (A)
Prereq.: 18.725
G (2) 3-0-9

18.735 Topics in Algebra (A)
Prereq.: 18.702 or 18.703
G (1) Next offered 1985-86 3-0-9

18.737 Linear Algebraic Groups (A)
Prereq.: 18.705
G (2) Next offered 1985-86 3-0-9

18.739 Theory of Invariants (A)
Prereq.: 18.705
G (2) 3-0-9

18.745 Introduction to Lie Algebras (A)
Prereq.: 18.755
G (2) 3-0-9

Topics vary from year to year; may be repeated for credit. Topics in the past few years have included generalized Riemann-Roch theorem, etale cohomology, algebraic spaces, Riemann hypothesis for curves over finite fields, deformation theory, topics in the theory of algebraic surfaces, the Picard scheme. Topic 1984-85: Continuation of 18.725. M. Artin

18.755 Topics in Algebra (A)
Prereq.: 18.702 or 18.703
G (1) Next offered 1985-86 3-0-9

Introduces the classification of affine groups over an algebraically closed field via their representations as groups of invertible matrices. G. Lusztig

18.767 Topics in Algebra (A)
Prereq.: 18.705
G (2) 3-0-9

18.747 Infinite-dimensional Lie Algebras (A)
(18.749)
Prereq.: 18.745
G (2) Next offered 1985-86
3-0-9

V. Kac

18.748 Introduction to Infinite-dimensional Groups (A) (New)
Prereq.: Permission of Instructor
G (1)
3-0-9
Construction of groups associated to infinite-dimensional Lie algebras. Tits systems for groups associated to Kac-Moody algebras. Geometry of infinite-dimensional flag varieties. Infinite-dimensional analogs of compact Lie groups. Special functions of infinite-dimensional groups. Applications to the Korteweg-deVries equation and its relatives.

V. Kac

18.755 Introduction to Lie Groups (A)
Prereq.: 18.100, 18.710
G (1)
3-0-9
A broad general introduction to Lie groups, suitable for physicists as well as mathematicians. Study of basic elementary examples: the classical matrix groups, the Galilei, Lorentz, and Poincare groups. Spinors, special functions, invariants, classical dynamics. Introduction to manifolds, general Lie groups, homogeneous spaces, and Lie algebras. Automorphism and adjoint groups.

B. Kostant

18.756 Analysis on Lie Groups (A)
Prereq.: 18.755
G (2)
3-0-9
Semi-simple Lie groups and symmetric spaces. Topics in function theory on symmetric spaces, such as Fourier analysis and Radon transform, invariant differential operators and potential theory. Emphasizes connections with classical analysis and representation theory.

M. F. Vergne

18.757 Representations of Lie Groups (A)
Prereq.: 18.755
G (1) Next offered 1985-86
3-0-9
Lie groups, Lie algebras, and their representations. Induced representations. Representations of compact groups, nilpotent groups, and semi-simple groups. Analysis on semisimple Lie groups and symmetric spaces. Invariant differential operators and their role in representation theory.

B. Kostant

18.758 Representations of Lie Groups (A)
Prereq.: 18.757
G (2)
3-0-9

D. A. Vogan

18.769 Topics in Lie Theory (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
Topics in Lie theory, varying from year to year. May be repeated for credit. Topics in the past few years include: Diophantine analysis and transcendence; quadratic number fields and complex multiplication; automorphic forms; diophantine geometry. Topic 1984-85: Analytic algebraic number theory.

H. M. Stark

18.775 Algebraic Number Theory (A),
Prereq.: 18.705
G (2)
3-0-9
Reviews basic algebraic number theory. Classical formulation of class field theory, including existence and uniqueness of class fields, the conductor-discriminant formula, Artin's reciprocity law. Artin L-series. Adelic formulation. The "simple algebra" approach. Applications to the study of arithmetic of cubic fields and (if time permits) to the theory of complex multiplication.

N. C. Ankeny

18.776 Algebraic Number Theory (A)
Prereq.: 18.775
G (1) Next offered 1985-86
3-0-9
Reviews basic algebraic number theory. Classical formulation of class field theory, including existence and uniqueness of class fields, the conductor-discriminant formula, Artin's reciprocity law. Artin L-series. Adelic formulation. The "simple algebra" approach. Applications to the study of arithmetic of cubic fields and (if time permits) to the theory of complex multiplication.

N. C. Ankeny

18.781 Theory of Numbers
Prereq.: 18.701 or 18.703
U (1)
3-0-9
Studies primes, congruences, and arithmetic functions and proofs of their asymptotic formulæ. Approximations of the real numbers by rationals, Kronecker's theorem, and the introduction of geometry of numbers. Quadratic forms and quadratic number fields.

J. H. Silverman

18.785 Analytic Number Theory (A)
Prereq.: 18.115
G (2) Next offered 1985-86
3-0-9
Analytic algebraic number theory. Functional equations of zeta and L-functions. Zero-free regions and prime number theorems. Zeros on the critical line (Levinson's method). Class numbers of quadratic fields. Sieve methods leading to Bombieri's mean value theorem for primes in arithmetic progressions. We prove several deep theorems as above illustrating the use of hard analytic estimates.

N. C. Ankeny

18.786 Topics in Number Theory (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
Topics vary from year to year; may be repeated for credit. Topics in the past few years include: Diophantine analysis and transcendence; quadratic number fields and complex multiplication; automorphic forms; diophantine geometry. Topic 1984-85: Analytic algebraic number theory.

H. M. Stark
Mathematics

Topology and Geometry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.901</td>
<td>Introduction to Topology I (A except XVIII)</td>
<td>18.100, G (1, 2)</td>
<td>3-0-9</td>
</tr>
<tr>
<td>18.902</td>
<td>Introduction to Topology II (A except XVIII)</td>
<td>18.901, 18.701 or 18.703, G (2)</td>
<td>3-0-9</td>
</tr>
<tr>
<td>18.904</td>
<td>Seminar in Topology</td>
<td>18.901</td>
<td>3-0-9</td>
</tr>
<tr>
<td>18.905</td>
<td>Algebraic Topology (A)</td>
<td>18.702 or 18.703, 18.901</td>
<td>3-0-9</td>
</tr>
<tr>
<td>18.906</td>
<td>Algebraic Topology (A)</td>
<td>18.905</td>
<td>3-0-9</td>
</tr>
<tr>
<td>18.915</td>
<td>Graduate Topology Seminar (A)</td>
<td>18.906, G (1)</td>
<td>3-0-21</td>
</tr>
<tr>
<td>18.917</td>
<td>Advanced Topology (A)</td>
<td>18.906</td>
<td>3-0-9</td>
</tr>
<tr>
<td>18.950</td>
<td>Elementary Differential Geometry</td>
<td>18.901</td>
<td>3-0-9</td>
</tr>
<tr>
<td>18.999</td>
<td>Mathematical Reading</td>
<td></td>
<td>3-0-9</td>
</tr>
<tr>
<td>18.969</td>
<td>Topics in Geometry (A)</td>
<td>18.965</td>
<td>3-0-9</td>
</tr>
</tbody>
</table>

Detailed Course Descriptions

- **18.901 Introduction to Topology I (A except XVIII)**
 - Prereq.: 18.100, G (1, 2)
 - Introduces topology, covering topics fundamental to modern analysis and geometry. Intended for those going on to graduate work.

- **18.902 Introduction to Topology II (A except XVIII)**
 - Prereq.: 18.901, 18.701 or 18.703, G (2) Next offered 1985-86
 - Introduces topology, covering topics fundamental to modern analysis and geometry. Intended for those going on to graduate work.

- **18.904 Seminar in Topology**
 - Prereq.: 18.901
 - Seminars for mathematics majors in several topics, each under the direction of a faculty member whose special interest is in the field of the seminar. Students report on and discuss topics from current journals or texts not regularly used in other mathematics subjects. Certain topics may require an additional prerequisite.

- **18.905 Algebraic Topology (A)**
 - Prereq.: 18.702 or 18.703, 18.901
 - Fundamental group, covering spaces, simplicial homology, simplicial approximation manifolds. Homology and cohomology of topological spaces, universal coefficient theorem, plus additional topics to be chosen by the instructor.

- **18.906 Algebraic Topology (A)**
 - Prereq.: 18.905

- **18.915 Graduate Topology Seminar (A)**
 - Prereq.: 18.906, G (1)
 - Study and discussion of important original papers in the various parts of algebraic and differential topology. Open to all students who have had 18.906 or the equivalent, not only prospective topologists.

- **18.917 Advanced Topology (A)**
 - Prereq.: 18.906

- **18.950 Elementary Differential Geometry**
 - Prereq.: 18.901
 - Detailed study of curves and surfaces in \mathbb{R}^3 with emphasis on specific examples. Frenet formulas, fundamental forms, curvature, Gauss's theorem, parallelism, Gauss-Bonnet theorem, minimal surfaces.

- **18.999 Mathematical Reading**
 - Prereq.: —
 - Reading of advanced mathematical treatises under supervision of a member of the Department. For graduate students desiring advanced work not provided in regular subjects.

References

- D. M. Kan
- D. J. Anick
- F. Morgan
- A. V. G. Whitehead
- J. R. Munkres
- W. Ambrose
- V. W. Guillemin
- D. M. Kan
- W. J. Kosnierz
- N. C. Ankeny
Undergraduate Laboratory Subject

20.002 Laboratory in Applied Biology

Prereq.: —

U (1) LAB

2-8-4

Techniques in basic analytical biochemistry and separation science. Enzyme assays, disc gel electrophoresis, affinity chromatography, use of radioisotopes, experimental surgery, and other techniques. Recommended for students anticipating careers in applied areas of biology such as biochemical engineering, toxicology, pharmacology, nutrition, cancer research, genetic engineering, medicine.

Undergraduate Research

20.ThU Undergraduate Thesis

Prereq.: —

U (1, 2; S)

Arr.

Program of undergraduate research leading to the writing of S.B. thesis; to be arranged by the student and an appropriate faculty member.

M. A. Marietta

20.UR Undergraduate Research Opportunities

Prereq.: —

U (1, 2)

Arr.

Opportunities available in a wide variety of research programs in mammalian biochemistry and metabolism, clinical and public health nutrition, international nutrition, neuroendocrine regulation and endocrinology, toxicology, food science and technology, and biochemical engineering. Problems emphasize direct and active involvement of undergraduates in laboratory research which may be extended over multiple terms.

M. A. Marietta

Undergraduate Subjects

20.011 Special Projects in Undergraduate Research

Prereq.: —

U (1)

Arr.

20.012 Special Projects in Undergraduate Research

Prereq.: —

U (2)

Arr.

Directed research in the fields of mammalian biochemistry and metabolism, clinical and public health nutrition, international nutrition, neuroendocrine regulation and endocrinology, toxicology, food science and technology, and biochemical engineering.

M. A. Marietta

General Graduate Subjects

Prereq.: 5.42

G (1)

3-8-5

A series of techniques basic to analytical biochemistry. Basic spectro-photometric analyses and separations, including high-pressure liquid chromatography and affinity chromatography, taught in first portion of subject. Modular laboratories present specialized techniques, mass spectrometry analysis, tissue culture microbiology, and others. Emphasizes quantitative interpretation.

R. S. Langer, Jr., J. M. Essigmann, Staff

General Undergraduate Subjects

20.022J Human Physiology

(Same subject as 7.54J)

Prereq.: 7.05

U (1)

3-0-9

See description under subject 7.54J.

M. F. Holick, M. Krieger, R. D. Rosenberg

20.024 Pharmacology and Toxicology

Prereq.: 5.42, 7.05

U (2)

3-0-9

Basic biochemical approach to concepts in modern pharmacology and toxicology with emphasis on events occurring at the molecular level. Representative topics: molecular mechanisms of selectivity and drug action, rational drug design, drug delivery systems, molecular mechanisms of toxicity, and chemical carcinogenesis.

M. A. Marietta

Nutrition and Food Science

Nutritional Biochemistry and Metabolism

20.112 Control of Cellular Metabolism (A)
Prereq.: 7.05
G (2)
4-1-7
Designed to explore in depth the regulation of cell function by hormones. After an introduction on the control of cellular metabolism, the focus is on the action of representative hormones from each of three major classes: peptide, catecholamine, and steroid hormones. Hormone synthesis, release, mechanisms of actions, and metabolic effects are among the topics considered.
M. R. Roasner, M. F. Holick, R. A. North, Staff

20.211 Regulation of Mammalian Protein Metabolism (A)
(Revised Unit)
(20.215)
Prereq.: 7.05, 20.022J, 20.112
G (2)
4-0-6
H. N. Munro

20.212 Basic and Human Nutrition (A)
Prereq.: 20.022, 7.05
G (1)
4-0-6
Function and metabolism of essential nutrients and factors that affect nutrient metabolism in the mammalian organism. Integrates knowledge of their biochemistry and physiology, based on studies in experimental animals, with a detailed discussion of human nutrition and metabolism including public health considerations. Emphasizes modern developments in nutritional research.
V. R. Young

20.213 Endocrinology (A)
Prereq.: 7.05, 20.112
G (2) Not to be offered 1985-86
4-0-8
M. J. Baum, M. F. Holick

20.214 Advanced Nutritional Biochemistry: Micronutrients (A)
Prereq.: 20.212
G (1)
4-0-6
Discusses and evaluates advances in research concerning the function and metabolism of essential nutrients. Emphasizes vitamins, trace elements, essential amino acids, fatty acids, lipids; e.g., connerve tissue, collagen and vitamin C; calcium, homeostasis, bone metabolism and vitamin D; glycoproteins, membrane structure and vitamin A; lysine and carnitine; iron, zinc, copper, manganese, chromium, selenium and newer trace elements.
G. Wolf, Staff

20.311 Advanced Human and Clinical Nutrition (A)
Prereq.: 20.212
G (2)
4-0-8
Application of nutrition knowledge in the therapy and support of humans and in various physiological and pathological states. Nutritional requirements and status of humans. Nutrition of normal and low birth-weight infants; nutrition and immunity; the cancer and traumatized patient; patients with specific organ disease (liver, brain, kidney, endocrine system, gastrointestinal tract) and with genetic and other metabolic diseases, obesity, degenerative diseases, and the elderly.
V. R. Young, N. S. Scrimshaw, Staff

20.410J Nutrition and National Development
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-9
Deals with the nature of world food and nutrition problems and their relationship to the social and economic progress of developing countries. Considers the specific elements of nutrition planning methodology and the variety of concerns in effective nutrition programming at the micro policy level. Open to advanced undergraduates with permission of instructor.
N. S. Scrimshaw, Staff

20.413 Social Sector Microeconomics and Planning (A)
Prereq.: Permission of Instructor
G (1)
2-0-7
Reviews microeconomic theory emphasizing issues of food, agricultural, and health economics. Introduces programming, planning models, and macroeconomics of developing countries. In final exercise, students criticize a development plan for a hypothetical country and formulate (in detail) a better one.
L. J. Taylor

20.414J The Political Economy of Food
(Same subject as STS 540J)
Prereq.: Permission of Instructor
G (2)
3-0-6
The world food economy, and the role of the US as the dominant cereal-exporting country. Changes in diet patterns, technical change, and income distribution in developing countries; how they are affected by food policy. Changes in advanced country consumption and production patterns. Requires independent research paper. Readings include works of economic and social history, government documents, anthropological and political studies, trade statistics, surveys of food consumption.
E. G. Rothschild, L. J. Taylor

Nutrition and Food Science 172D

Graduate Subjects by Area

Nutritional Biochemistry and Metabolism

20.112 Control of Cellular Metabolism (A)
Prereq.: 7.05
G (2)
4-1-7
Designed to explore in depth the regulation of cell function by hormones. After an introduction on the control of cellular metabolism, the focus is on the action of representative hormones from each of three major classes: peptide, catecholamine, and steroid hormones. Hormone synthesis, release, mechanisms of actions, and metabolic effects are among the topics considered.
M. R. Roasner, M. F. Holick, R. A. North, Staff

20.211 Regulation of Mammalian Protein Metabolism (A)
(Revised Unit)
(20.215)
Prereq.: 7.05, 20.022J, 20.112
G (2)
4-0-6
H. N. Munro

20.212 Basic and Human Nutrition (A)
Prereq.: 20.022, 7.05
G (1)
4-0-6
Function and metabolism of essential nutrients and factors that affect nutrient metabolism in the mammalian organism. Integrates knowledge of their biochemistry and physiology, based on studies in experimental animals, with a detailed discussion of human nutrition and metabolism including public health considerations. Emphasizes modern developments in nutritional research.
V. R. Young

20.213 Endocrinology (A)
Prereq.: 7.05, 20.112
G (2) Not to be offered 1985-86
4-0-8
M. J. Baum, M. F. Holick

20.214 Advanced Nutritional Biochemistry: Micronutrients (A)
Prereq.: 20.212
G (1)
4-0-6
Discusses and evaluates advances in research concerning the function and metabolism of essential nutrients. Emphasizes vitamins, trace elements, essential amino acids, fatty acids, lipids; e.g., connerve tissue, collagen and vitamin C; calcium, homeostasis, bone metabolism and vitamin D; glycoproteins, membrane structure and vitamin A; lysine and carnitine; iron, zinc, copper, manganese, chromium, selenium and newer trace elements.
G. Wolf, Staff

20.311 Advanced Human and Clinical Nutrition (A)
Prereq.: 20.212
G (2)
4-0-8
Application of nutrition knowledge in the therapy and support of humans and in various physiological and pathological states. Nutritional requirements and status of humans. Nutrition of normal and low birth-weight infants; nutrition and immunity; the cancer and traumatized patient; patients with specific organ disease (liver, brain, kidney, endocrine system, gastrointestinal tract) and with genetic and other metabolic diseases, obesity, degenerative diseases, and the elderly.
V. R. Young, N. S. Scrimshaw, Staff

20.410J Nutrition and National Development
Prereq.: Permission of Instructor
G (1) Next offered 1985-86
3-0-9
Deals with the nature of world food and nutrition problems and their relationship to the social and economic progress of developing countries. Considers the specific elements of nutrition planning methodology and the variety of concerns in effective nutrition programming at the micro policy level. Open to advanced undergraduates with permission of instructor.
N. S. Scrimshaw, Staff

20.413 Social Sector Microeconomics and Planning (A)
Prereq.: Permission of Instructor
G (1)
2-0-7
Reviews microeconomic theory emphasizing issues of food, agricultural, and health economics. Introduces programming, planning models, and macroeconomics of developing countries. In final exercise, students criticize a development plan for a hypothetical country and formulate (in detail) a better one.
L. J. Taylor

20.414J The Political Economy of Food
(Same subject as STS 540J)
Prereq.: Permission of Instructor
G (2)
3-0-6
The world food economy, and the role of the US as the dominant cereal-exporting country. Changes in diet patterns, technical change, and income distribution in developing countries; how they are affected by food policy. Changes in advanced country consumption and production patterns. Requires independent research paper. Readings include works of economic and social history, government documents, anthropological and political studies, trade statistics, surveys of food consumption.
E. G. Rothschild, L. J. Taylor

Neuroendocrine Regulation and Endocrinology

20.511J The Human Nervous System: The Neurosciences I (A)
(Same subject as 9.014J, HST 130J)
Prereq.: Permission of Instructor
G (1)
6-3-6
See description under subject HST 130J.

Next offered 1985-86
20.512J The Neurosciences II (A)
(Same subject as 9.015J)
Prereq.: Permission of Instructor
G (2) 6-0-9
Second semester subject of a two-semester sequence exposing graduate students to the broad range of contemporary topics in the neurosciences. Topics: 1) neurotransmission; 2) neurochemistry and neuropharmacology; 3) neuropsychology (somatosensory perception; memory; language; spatial capacities); 4) neuroendocrinology; and 5) development and plasticity of the nervous system.
R. J. Wurtman, R. A. North, M. J. Baum, S. Corkin, G. E. Schneider
20.516 Advanced Topics in Behavioral Biology (A)
Prereq.: 20.511J, 20.512J
G (1) Next offered 1985-86 2-0-4
Seminar on recent advances in psychopharmacology and behavioral endocrinology; primarily student presentations. Alternate years.
M. J. Baum
20.517 Advanced Topics in Neurotransmitter Biochemistry (A)
Prereq.: 20.512J
G (2) Next offered 1985-86 2-0-4
Seminar on recent advances in neurotransmitter biochemistry; presentations by staff, guest lecturers, and students.
R. J. Wurtman
20.518J Pathophysiology of the Nervous System (A)
(Revised Unit)
(Same subject as 9.018J, HST 131J)
Prereq.: HST 130J
G (2) 4-0-8
See description under subject HST 131J.
M. A. Moskowitz, N. Geschwind
20.519 Advanced Topics in Neuropharmacology
Prereq.: 20.512J
G (2) Not to be offered 1985-86 2-0-4
Seminar on recent advances in the neuropharmacology and cellular neurophysiology of the mammalian nervous system; student presentations primarily. Alternate years.
R. A. North
20.521 Mechanisms of Drug Action (A)
Prereq.: Permission of instructor
G (2) Next offered 1985-86 3-0-9
Presents and discusses fundamental principles of pharmacology. Major areas to be covered: molecular mechanisms of drug action, particularly quantitative methods of studying interactions between drugs and receptors, the time course of drug action, basic principles of drug metabolism, and mechanisms underlying long-term drug effects such as physical dependence. Alternate years.
R. A. North
20.522 Cellular Neurophysiology (A)
Prereq.: 20.512J
G (1) Not to be offered 1985-86 3-0-9
Cellular-level electrophysiology. 1) Properties of excitable cells; linear and nonlinear equations describing behavior of membranes; 2) voltage and chemically gated channels; 3) neurophysiological aspects of synaptic transmission; 4) mathematical models of nerve cells in mammalian central nervous system and invertebrates. Alternate years.
R. A. North
20.523 Toxicology
20.611 General Toxicology (A)
Prereq.: 7.05
G (2) 4-0-8
G. N. Wogan, A. E. Rogers, S. R. Tannenbaum
20.612 Biochemistry of Xenobiotics (A)
Prereq.: 5.42, 7.05
G (1) 3-0-9
Major enzyme systems involved in metabolism of xenobiotic compounds with concentration on the mechanisms of activation and detoxification of xenobiotics with cellular macromolecules. A detailed examination into the mechanisms of oxidation, reduction, hydrolysis and conjugation reactions especially where these reactions may result in the potential generation and removal of toxic intermediates. Emphasizes events occurring at the molecular level. Alternate years.
M. A. Marietta
20.513 Genetic Toxicology (A)
(Revised Unit)
Prereq.: 7.28
G (1) 4-0-8
Modeling of events leading to induction of genetic change. Role of DNA replication, DNA repair, recombination and other aspects of cell physiology in determining the probability that specific chemical lesions cause alterations in gene structure and chromosomal integrity. Genetic disease as a public health problem.
W. G. Thilly, J. M. Essigmann
20.518 Laboratory Animals: Usage In Biological Experimentation
Prereq.: 7.01
G (2) 2-1-3
Introduces current concepts of anesthesia, surgery, disease, and experimental manipulation of the research laboratory animal. Emphasizes the selection of proper animal models and techniques used in the experimental protocol. Techniques and skills learned from lectures and audiovisual aids are practiced in laboratory sessions.
J. G. Fox, J. C. Murphy, C. Newcomer
20.819J Current Economic and Regulatory Problems in Toxicology (A)
(Revised Unit)
(Same subject as 14.285J, HST 902J)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86 3-0-9
Examines tools available to economists and toxicologists for decision making in a regulatory environment. Uses case method with lectures on topics such as multistage carcinogenesis, diet and cancer, carcinogenesis and mutagenesis testing, some aspects of FDA and EPA regulatory law, extrapolation of test results, decision making, and risk assessment.
S. R. Tannenbaum, J. E. Harris
Biotechnology
20.721 Physical and Engineering Properties of Biomaterials (A)
Prereq.: 5.60, 10.13
G (1) Not to be offered 1985-86 3-0-6
Emphasizes the theories, principles, concepts, determination, and analysis of rheological properties of solutions, dispersions, suspensions, gels, emulsions, and solids with supporting discussions on thermal and surface properties. Considers these properties as related to biotechnology and other industrial processes and effect of these properties on quality criteria and process design. Permission of instructor required. Alternate years.
C. K. Rha
20.723 Fabrication and Structure Synthesis of Biomaterials (A)
Prereq.: 20.721
G (1) Next offered 1985-86
3-0-6
Fundamentals of biomaterials fabrication and structure synthesis including solvation, flocculation, emulsions, foams, gels, granular, plexilaminar networks, fibers and filaments. Emphasizes encapsulation, thermal treatment, extrusion, and spinning technology as applied to biotechnology and food processing. Selection of raw materials, fabrication methods, and processing conditions to obtain desired structural effects. Alternate years.
C. K. Rha

20.731 Chemistry of Proteins, Carbohydrates, and Lipids (A)
Prereq.: 7.05
G (2) Next offered 1985-86
3-0-6
Considers the constituents of foods and biological tissues from the perspective of the chemical reactions they undergo under environmental stress. Particular attention to oxidation of lipids, structure and degradation of carbohydrates, and degradative reactions on the side chains of proteins. Other topics include chemistry of degradation of vitamins, pigments, and flavors. Discusses reactions of these reactions to stability and nutritional and toxicological potential of foods. Alternate years.
S. R. Tannenbaum

20.732 Physical Chemistry of Biomaterials (A)
Prereq.: 5.60
G (2) Next offered 1985-86
3-0-6
M. Karel, A. M. Kilbanov

20.734 Applied Enzymology (A)
Prereq.: 7.05
G (1) Not to be offered 1985-86
3-0-6
A. M. Kilbanov

20.743 Applied Microbiology (A)
Prereq.: 20.721
G (2) 3-0-6
Discussions center on sporulating and toxin-producing microorganisms. Focuses on the physiology, biochemistry, and genetics of sporulation and toxicity. Topics in sporulation include: sporulation, dormancy and resistance, activation, germination, and outgrowth. Topics in toxicity include: genetics, mechanisms of action, and assay systems.
A. J. Sinskey

20.752 Food Plant Visits (A)
Prereq.: Permission of Instructor
G (2) 2-0-2
Visits to selected food factories in the Boston area and associated lectures.
M. Karel

Biochemical Engineering

20.801 Biotechnology (A)
Prereq.: 7.03, 7.05
G (1) 3-0-9
Major study areas include: basic principles of biochemical processes emphasizing metabolic pathways, mass and energy balances, concepts for strain improvement of industrial microorganisms. Additional topics address the current problems in biotechnology, focusing on plant and animal cell technology.
A. J. Sinskey

20.811J Biochemical Engineering (A)
(Same as 10.59J)
Prereq.: Permission of Instructor
G (2) 4-0-8
See description under subject 10.59J.
C. L. Cooney, D. I. C. Wang

20.812J Biochemical Engineering Laboratory (A)
(Same as 10.591J)
Prereq.: 20.811
G (2) 0-6-1
See description under subject 10.591J.
D. I. C. Wang, C. L. Cooney

20.821 Industrial Microbiology (A)
Prereq.: 7.21
G (1) 3-0-4
Selected topics concerned with the use of microorganisms for the production of substances of industrial, medical, or nutritional value, such as amino acids, antibiotics, vitamins, and organic acids, emphasizing metabolic regulation, genetics, and biochemical pathways leading to fermentation products.
A. L. Demain

20.822 Industrial Microbiology Laboratory (A)
Prereq.: 20.821
G (1) 0-6-0
Laboratory exercise of selected topics presented in 20.821.
A. L. Demain

Seminars, Selected Topics and Research

20.904 Teaching Experience in Nutrition and Food Science (A)
Prereq.: Permission of Instructor
G (1, 2) 2-0-4
For qualified graduate students interested in teaching. Tutorial or classroom teaching under the supervision of a faculty member. Students selected by interview. Total enrollment limited by availability of suitable teaching assignments.
S. R. Tannenbaum

20.911 Seminar in Toxicologic and Nutritional Pathology (A)
Prereq.: Permission of Instructor
G (1) 2-0-2

20.912 Seminar in Toxicologic and Nutritional Pathology (A)
Prereq.: Permission of Instructor
G (2) 2-0-2
Systematic study of diseases in several animal species resulting from exposure to toxins or malnutrition, with particular attention to ongoing research projects. Requires research talks or papers.
A. E. Rogers, P. M. Newberne

20.921 Selected Topics in Nutrition and Food Science (A)
Prereq.: --
G (1, 2)
Arr.
Detailed discussion of selected topics of current interest. Class work in various fields of nutrition, food science and technology, toxicology, and biotechnology not covered by regular subjects of instruction.
Staff

20.941 Research Problems (A)
Prereq.: --
G (1)
Arr.
Directed research in the field of nutrition and food science.
Staff

20.942 Research Problems (A)
Prereq.: --
G (2)
Arr.
Directed research in the field of nutrition and food science.
Staff
Humanities

21.001 Foundations of Western Literature: Homer to Dante
Prereq.: —
U (1, 2) HUM-D
3-0-6

Critical reading and critical examination of literary texts, knowledge of which is essential to understanding the European tradition in imaginative literature. Stresses appreciation and analysis of works which came to represent the common cultural possession of the modern age. Readings include the Bible (selections from the Old and New Testaments), Homer, Aeschylus, Sophocles, Euripides, Aristotle (the Poetics), Horace, Virgil, Ovid, and Dante.

Term 1: D. M. Hauperin
Term 2: S. Mullaney

21.002 Classics of European Literature
Prereq.: —
U (1, 2) HUM-D
3-0-6

Masterworks of epic, drama, lyric, novel, and film. Includes works by such writers as Cervantes, Shakespeare, Donne, Milton, Molière, Goethe, Tolstoy, Chekhov, Yeats, Mann, and at least one film. Emphasizes intrinsic merit of each text and the social or mythological function of literature, its role as a carrier (and critic) of the central moral, political, and psychological beliefs of its society.

Term 1: I. Taylor
Term 2: I. Taylor

21.003 Introduction to Fiction
Prereq.: —
U (1, 2) HUM-D
3-0-6

Introduces prose narrative, especially the novel. Emphasizes literary structure, social and historical context, the relations between fiction and its audience. Reading lists vary among the sections but include works by such writers as Fielding, Laclos, Austen, Dickens, Stendhal, E. Brontë, Tolstoy, Conrad, Joyce, Faulkner, Lawrence, Kafka, Lu Hsun, D. Lessing, T. Oisen, G. Garcia-Marquez, C. Achebe.

Term 1: R. Perry, L. Kampf
Term 2: A. C. Kibel, C. G. Wolff

21.004 Major Poets
Prereq.: —
U (1, 2) HUM-D
3-0-6

Emphasis on learning how to enjoy poetry and on the evolution of poetic form. Syllabus varies somewhat from year to year but always includes authors from this list: Chaucer, Spenser, Shakespeare, Milton, Donne, Pope, Wordsworth, Keats, Browning, Yeats, Auden, Eliot, Whitman, Williams, Frost, Stevens.

Term 1: Information: A. C. Kibel.
Term 2: J. Hildebidle

21.005 World Drama
Prereq.: —
U (1, 2) HUM-D
3-0-6

Critical reading of representative drama. Emphasizes drama as a collaborative art form which comes from and speaks to a particular community whose values and assumptions can be seen in historical context. Includes works by the Greek playwrights, Shakespeare,
Humanities

Ibsen, Chekhov, Shaw, and such moderns as Pinter, O'Neill, and Beckett. Students have the possibility of participating in the practical side of the theatre through work in productions approved by the instructor.

T. C. Theoharis

21.006 Introduction to American Literature
Prereq.: —
U (1, 2) HUM-D
3-0-6

Surveys major American texts, stressing literary and ideological traditions and the emergence of a national literature. Principal readings in Emerson, Whitman, Hawthorne, Melville, Twain, Dickinson James, Wharton, Faulkner, Fitzgerald, Ellison, Stevens, Frost. Term 1: S. J. Tapscott, A. Lang, W. Williams
Term 2: A. Lang, J. Hildebidle, W. Williams

21.009 Shakespeare
Prereq.: —
U (1, 2) HUM-D
3-0-9

Close study of the major comedies, histories, and tragedies in the context of Renaissance thought, Elizabethan theatre, and the political and social setting of Shakespeare's age. Lectures and class discussions each week, supplemented by occasional reading of scenes and attendance at live or filmed performances. Term 1: P. S. Donaldson, S. Mullaney
Term 2: P. S. Donaldson, S. Mullaney

21.010 Literature and Film (Revised Content)
Prereq.: —
U (1, 2) HUM-D
4-0-5

Close reading and viewing of masterpieces of literature and film, with attention to narrative values. Emphasizes ways in which these are modified by the nature of media. Authors and directors vary with topic, but include figures such as Homer, Shakespeare, Austen, Dickens, Conrad, Chaplin, Ford, Kurosawa, Coppola, others. Term 1: The Epic Imagination. Term 2: Heroism and the Heroic. Term 1: D. Thorburn
Term 2: A. C. Kibel

Intermediate Subjects

Genres and Themes

21.021 Comedy
Prereq.: —
U (1, 2) HUM-D
3-0-6

Studies various works designed to make us laugh; investigates the culture that produced them, and various theories of comedy. Authors and directors include: Aristophanes, Plautus or Terence, Chaucer, Shakespeare, Molière, Austen, Joseph Heller, Chaplin, Keaton, others.

Term 1: D. Thorburn
Term 2: A. R. Gurney, Jr.

21.022 Tragedy
Prereq.: —
U (2) HUM-D
3-0-9

Reading and discussion of tragic literature, together with an examination of the nature of established, tentative and possibly new theories about the tragic vision. Readings from Sophocles; Shakespeare and his contemporaries; Strindberg, Ibsen, Beckett, and some modern writers, and Aristotle and other theorists.

T. C. Theoharis

21.030 Popular Narrative: Fantasy and Science Fiction (Revised Unit)
Prereq.: One subject in literature
U (1, 2)
4-0-5

Examines the relationship between popular and high culture and the problem of evaluating texts that tell stories. Treats a range of narrative and dramatic works as well as films, with emphasis on Fantasy and Science Fiction in relation to American culture. May be repeated once for credit, with permission of instructor.

Term 1: Fantasy Fiction. Term 2: Science Fiction.
Term 1: A. C. Kibel
Term 2: Information: A. C. Kibel.

21.031 The Film Experience
Prereq.: —
U (1, 2) HUM-D
3-0-6

An introduction to narrative film, emphasizing the unique properties of the movie house and the motion-picture camera, the historical evolution of the film medium, and the intrinsic artistic qualities of individual films. Syllabus includes such directors as Griffith, Chaplin, Renoir, Ford, Hitchcock, De Sica or Antonioni, others.

Term 1: W. J. Paul
Term 2: D. Thorburn

21.032 J American Television: A Cultural History
(Same subject as STS 625J)
Prereq.: One subject in literature
U (2)
3-0-6

Television's evolution as a system of story telling and myth making, studied from anthropological, literary, and cinematic perspectives. Centers on prime-time commercial broadcasting but also examines the medium's technological and economic history as well as the theoretical perspectives from which scholars and policymakers have perceived our television system. Much required viewing as well as readings in media theory and cultural interpretation.

D. Thorburn

21.033 Major Film Directors
Prereq.: One subject in literature
U (1)
3-0-4

Close study of films by major directors. Emphasis on cultural contexts and distinctive styles and themes of each director. Syllabus varies from year to year but includes films from different historical periods and, usually, a mix of American and international films by such directors as Chaplin, Lang, Hitchcock, Ford, Hawks, Renoir, Mizoguchi, Fellini. May be repeated for credit by permission of instructor.

For 1984-85: John Ford, Jean Renoir, Otto Preminger.
W. J. Paul

21.041 Woman in Literature
Prereq.: One subject in literature
U (2)
3-0-6

Images of women in literary work. Primary emphasis on individual texts, but consideration as well of such issues as: cultural contexts, recurring themes and patterns, the tradition of fictional "types," and fiction as social criticism. Medieval and Renaissance texts as well as novels by Austen, the Bronètes, Gaskell, Hawthorne, Eliot, and others. Information: A. C. Kibel.

21.042 Friendship, Love, and Desire
Prereq.: One subject in literature
U (2)
3-0-6

Changing significance of friendship and love in Western culture. Self and other in literary and historical perspective. Studies different values associated with emotions in personal, political, philosophical, religious, and psychological contexts in different ages. Readings in Plato, Aristotle, Augustine, Dante, Shakespeare, Goethe, Flaubert, Proust, Mann, Updike, and others. Syllabus varies.

D. M. Halperin

21.043 The Novel East and West (New)
Prereq.: One subject in literature
U (2)
3-0-6

A study of selected themes in the literature of the Far East. Readings include novels written about the Far East by Westerners as well as novels by Asian writers. Emphasis on such topics as the modern Japanese novel, the literature of European colonialism, heroism in East and West, images of the West. Novelists featured include such figures as E. M. Forster, R. K. Narayan, Yukio Mishima, Joseph Conrad, Herman Melville, V. S. Naipaul, and Shusaku Endo.

D. M. Halperin
Periods of World Literature

21.060 Medieval Literature
Prereq.: One subject in literature
U (1) 3-0-6

Introduces literature of the Middle Ages, concentrating on such central writers and works as St. Augustine, The Song of Roland, Beowulf, Dante, Chrétien de Troyes, Chaucer, and the Pearl-Poet. Secondary reading on the social context of medieval literature. Discussion, short papers. Information: A.C. Kibel.

21.063 Renaissance Literature
Prereq.: One subject in literature
U (2) 3-0-6

In alternate years, readings are organized around specific topics (Magic and the Arts of Government, Renaissance Self-Fashioning, Families and Fortunes) or genres (lyric, epic, drama). Works drawn primarily from the Italian and English Renaissance, and include such figures as Shakespeare, Ariosto, Machiavelli, More, Jonson, Spenser, Bacon, Wyatt, Donne. P. S. Donaldson

21.065 Early Modern Literature: Drama and Society
Prereq.: One subject in literature
U (1) Next offered 1985-86 3-0-6

Studies major English and European writers of 17th and 18th centuries, with alternating topics. For 1985-86, Drama and Society examines the cultural contexts of tragedy and satire: the deconsecration of kingship on stage; crises in dramatic and political authority; class hierarchies and their effects on women, arts, ideas of self. Readings: Webster, Jonson, Calderon, Dryden, Aphra Behn, Molière, Gay, Goldsmith. S. Mullaney

21.070 Eighteenth-Century Literature
Prereq.: —
U (2) Next offered 1985-86 3-0-6

Introduces England's Augustan age through representative authors and literary forms. Emphasizes these cultural issues: commercialization of art, city vs country, rise of the middle class, travel and exploration, romantic love and marriage, growth of capitalism, party politics, gender stereotypes. Background readings, lectures, slide-shows, group discussion. Authors: Addison and Steele, Defoe, Swift, Astell, Pope, Montagu, Richardson, Fielding, Johnson. R. Perry

21.071 Major English Novels
Prereq.: One subject in literature
U (2) 3-0-9

Study of 9 to 10 major English novels of the 18th, 19th, and 20th centuries, beginning with Defoe's Moll Flanders and including works by such authors as Fielding, Sterne, Austen, the Brontës, Dickens, Hardy, Lawrence, Joyce, and Doris Lessing. Historical and critical background readings regularly assigned. Discussion, several papers.

21.076 Romantic Poetry
Prereq.: One subject in literature
U (1) Next offered 1985-86 3-0-6

Close readings of the major English Romantic poets (Blake, Wordsworth, Coleridge, Byron, Shelley, Keats) with some attention to their context in the lesser poetry, in the prose of the period, and in their background in continental Romanticism. Discussion and several short papers. Text: English Romantic Writers, edited by David Perkins. S. J. Tapsott

21.078 The Realistic Novel
Prereq.: —
U (1) 3-0-6

21.079 Modern Russian Literature and Its Historical Structure
Prereq.: —
U (2) HUM-D Next offered 1985-86 3-0-6

Stylistic and thematic analysis of typical works, especially fiction (short or long) and drama, but some poetry, by a representative selection of the most significant Russian writers among early 19th-century romantics, mid-century realists, early 20th-century modernists — such as Pushkin, Gogol, Lermontov, Akselov, Turgenev, Saltykov, Dostoievsky, Goncharov, Tolstoy, Leskov, Chekhov, Bunin, Akhmatova. R. E. MacMaster

21.080 Dostoevsky, Tolstoy, Chekhov: Russian and the Modern Age
(Revised Content)
Prereq.: —
U (1) 3-0-9

Studies of artistic vision in modernizing Russia. Analyses of Notes From Underground, The Brothers Karamazov, Anna Karenina, Hadji Murat, Three Sisters, and shorter works. Discussion, with reference to critical and biographical materials of the relation of artistic works to society, culture, and historical change.
R. E. MacMaster

21.085 Twentieth-Century Fiction
Prereq.: One subject in literature
U (1, 2) 3-0-6

Tradition and innovation in representative fiction of the early modern period. Recurring themes: the role of the artist in the modern period, the representation of psychological and sexual experience, the virtues (and defects) of the aggressively experimental character of so many modern books. Works by such writers as Conrad, Kipling, Isaac Babel, Kafka, James, Lawrence, Mann, Proust, Ford Madox Ford, Joyce, Woolf, Faulkner, and Nabokov.
T. R. Merritt

21.086 Twentieth-Century Drama
(Revised Content)
Prereq.: One subject in literature
U (1) 3-0-6

Reading and discussion of major modern plays (and some films) from Ibsen through Beckett and beyond. Features works by such authors as: Shaw, Chekhov, Lorca, Pirandello, Ionesco, Broch, Miller, O'Neill, Williams, Santre, Hansbury, and Weiss.
T. C. Theoharis

21.087 Modernist Poetry
Prereq.: One subject in literature
U (1) 3-0-6

Studies important trends in modern thought and sensibility as reflected in the poetry of the 20th century. Readings center on Yeats, Eliot, and Stevens; followed by Auden, Williams, and Frost, with some consideration of such figures as Roethke, Plath, Berryman, Wilbur, Rich, and Hughes.
S. J. Tapsott

21.088 Contemporary Literature
Prereq.: One subject in literature
U (2) 3-0-6

Fiction, drama, and some poetry, mostly of the 1960s and 70s. Focus on a wide range of themes, as well as on experiments with literary and theatrical technique. Readings in such figures as Beckett, Heller, Pinter, Weiss, Rich, Lessing, Walter, Solzhenitsyn, O'Neill, Pynchon, Nabokov, Momaday, Bellow. Format: lectures, discussion, several short papers.
S. J. Tapsott
American Literature

See also 21.006 Introduction to American Literature

21.101 The American Novel

Prereq.: —

U (1, 2) HUM-D 3-0-9

Works by major American novelists, usually beginning with Hawthorne or Melville and concluding with a contemporary novelist. Major emphasis on reading novels as literary texts but attention as well to historical, intellectual, and political contexts. The syllabus varies from term to term but many of the following writers are represented: Hawthorne, Melville, Twain, Cather, Wharton, James, Hemingway, Fitzgerald, Faulkner.

Term 1: J. Hildebidle

Term 2: A. Lang

21.103J American Themes (Revised Content)

(Same subject as SP 435J)

Prereq.: One subject in literature

U (1) 3-0-6

Examines unifying themes in American culture through a close reading of literary and extra-literary texts. Special attention is paid to social and historical context; emphasis on such issues as literary nationalism, cultural consensus and conflict, and the existence of an American literary style. Topic varies according to instructor. Topic for 1984-85: Sentimentalism and Reform.

A. Lang

Seminars

21.171J Literary Interpretation (Revised Content)

(Same subject as SP 430J)

Prereq.: Two subjects in literature

U (2) 3-0-9

R. Purdy

21.172 Studies in Fiction (Revised Content)

Prereq.: Two subjects in literature

U (1) 3-0-9

Intensive study of a range of texts by a single author or by a limited group of novelists whose achievements are mutually illuminating. Some attention to narrative theory and biographical and cultural backgrounds. Considerable writing, oral reports. Topic for 1984-85: Dickens. Limited to 12.

I. Taylor

21.173 Studies in Drama (Revised Content)

Prereq.: Two subjects in literature

U (1, 2) 3-0-9

Close study of two or three major dramatists, emphasizing the evolution of their work. Some attention to historical and theoretical accounts of the nature of drama. Texts are chosen in part to coincide with current productions at MIT and the Boston/Cambridge area. Topics for 1984-85: Term 1: Shakespeare and his Contemporaries: Term 2: Plays and Playwriting.

Term 1: S. Mullaney

Term 2: A. R. Gurney, Jr.

21.174 Studies in Poetry (Revised Content)

Prereq.: Two subjects in literature

U (1) 3-0-9

J. Hildebidle

21.175 Major Authors (Revised Content)

Prereq.: Two subjects in literature

U (2) 3-0-9

S. J. Tapscott

21.177 Problems in Cultural Interpretation

Prereq.: Two subjects in literature

U (1) **Next offered 1985-86** 3-0-9

Studies the relations between literary texts and the culture that encloses them. Emphasizes literature in its anthropological, sociological, and historical dimensions: the ways in which literary works absorb, reflect and, sometimes, undermine reigning attitudes toward such matters as class hierarchies, sexual differences, moral, aesthetic, and political values. Limited to 12.

A. Lang

21.198 Special Topics in Literature

Prereq.: Two subjects in literature

U (1) Arr.

21.199 Special Topics in Literature

Prereq.: Two subjects in literature

U (2) Arr.

Open to qualified students who wish to pursue special studies or projects with members of the Literature Section. Before registering for this subject, students must secure the approval of the Literature Section chairman and the Department of Humanities. Humanities credit for Special Topics subjects awarded only by individual petitions to the Committee on Curricula. Normal maximum is 6 units; to count toward Humanities Requirement, 9 units are required. Exceptional 9-unit projects occasionally approved.

Staff
Foreign Languages and Literatures

The subjects listed below include language and literature courses given in French, German, Greek, Russian, Spanish, and World Literature in Translation. All language subjects in the III-IV sequence bear Humanities Distribution credit. A variety of literature subjects given in the original language as well as some given in English also offers Humanities Distribution credit.

For guidelines on World Literature in Translation, come to the Foreign Languages and Literatures Office, 14N-207.

All foreign language subjects I-IV are open to graduate students for credit.

For subjects in English as a Foreign Language see 21.325-21.339.

French

The indication of prerequisites for specific French offerings does not apply to students who have already accomplished the equivalent work. For further placement advice, attend the French Placement Session or consult with a field advisor in French.

Fundamental Language Subjects

21.201 French I
Prereq.: —
U (1, 2) 4-0-8
Introduction to the four basic language skills and to French culture. Emphasizes intensive oral training; practice in writing and reading; regular use of language lab. Conducted in French.
J. Hill

21.202 French II
Prereq.: French I
U (1, 2) 4-0-8
Practice in conversation, vocabulary building. Completion of basic grammar. Supplementary readings. Continued use of language laboratory. Conducted in French.
J. Hill

21.203 French III
Prereq.: French II
U (1, 2) HUM-D 4-0-8
Practice in spoken French to develop oral skills. Grammar review; further development of writing skills; reading and discussion of literary and cultural materials. Continued use of language laboratory, aural and video. Conducted in French.
G. M. Furstenberg

21.204 French IV
Prereq.: French III
U (1, 2) HUM-D 4-0-8
Final subject in French language sequence. Prepares students for intermediate subjects in French literature and civilization. Reading and discussion of the contemporary novel, theater, poetry. Perfecting of writing skills through frequent essays. Continued use of language laboratory, aural and video. Conducted in French.
I. de Courtivron

Intermediate Language, Literature, and Civilization Subjects

It is recommended but not required that students take one of the following five intermediate-level subjects before enrolling in 21.213 and above. All intermediate and advanced subjects are conducted entirely in French.

21.207 French Conversation: Intensive Practice
Prereq.: French IV
U (1, 2) 4-3-2
Systematic training in oral expression: communication skills, fluency, and idiomatic French. Audio and video tapes to improve conversational techniques and other forms of oral expression (debates, speeches, reports, interviews). Work in comprehension, phonetics, and intonation. Discussion material: newspapers, magazines, cartoons, films, and varied audio and video tapes dealing with issues in contemporary France and the French-speaking world. Intensive lab work. Special projects (video and other) by students. Limited to 16.
G. M. Furstenberg

21.208 Writing in French: Intensive Practice
Prereq.: French IV
U (1, 2) 3-0-6
Systematic acquisition of writing skills. Emphasizes enrichment of vocabulary, the mastery of complex grammatical structures, the refinement of style, and techniques of composition. Practice in different modes (descriptive, narrative, argumentative) and forms (newspaper articles, advertising, letters, technical and creative writing). Systematic exercises in grammar, vocabulary, and style. Weekly papers, each focusing on a different writing mode and form.
G. M. Furstenberg

21.209 French Civilization I
Prereq.: French IV
U (1) HUM-D Next offered 1985-86 3-0-6
Investigates major social, ideological, and aesthetic currents and cultural myths in French civilization from its beginnings to the eve of the Revolution. Study of selected texts of the Middle Ages, the Renaissance, the 17th Century, and the Enlightenment. Class presentations covering developments in painting, architecture, and music. Devotes special attention to the improvement of French language skills.
J. Vanpée

21.210 French Civilization II
Prereq.: French IV
U (1) HUM-D Not to be offered 1985-86 3-0-6
Studies major movements in politics, literature, and the arts since the French Revolution. Includes the Romantic era, the Commune, Impressionism, Surrealism, Existentialism. Study of selected literary, historical, and sociological texts, as well as slides, music, films. Devotes special attention to the improvement of French language skills.
J. Brami

21.211 Introduction to French Literature
Prereq.: French IV
U (2) HUM-D 3-0-6
A basic study of major French literary genres — poetry, drama, and fiction — and an introduction to methods of literary analysis. Authors include Racine, Molière, Rousseau, Balzac, Hugo, Flaubert, Baudelaire, Rimbaud, Apollinaire, Durand, etc. Special attention devoted to the improvement of French language skills.
J. Brami

Advanced Literature and Civilization Subjects

It is recommended, but not required, that students take one intermediate level subject before enrolling in advanced subjects.

21.213 French Classical Literature From Descartes to Molière
Prereq.: French IV
U (1) Next offered 1985-86 3-0-6
Reading and interpretation of masterworks in 17th-century French theater (Corneille, Molière, Racine), poetry (Malherbe, La Fontaine), and philosophy (Pascal, Descartes). Studied in the context of social, historical, and intellectual currents during the eras of Richelieu and Louis XIV, and the evolution from the baroque to the classic aesthetic.
E. B. Turk
21.214 From Enlightenment to Revolution: France in the 18th Century (New)
Prereq.: French IV
U (1) Next offered 1985-86
3-0-6
Studies the major historical, philosophical, literary, and cultural developments that structure the French Enlightenment and lead to the French Revolution. Readings and discussions focus on the fundamental issues representative of 18th-century philosophy and culture: man and his relationship to the world, to his scientific and philosophical knowledge, to God, to woman, and to his fellow man and society. Texts include selections from Beaumarchais, Diderot, Marivaux, Montesquieu, Rousseau, Voltaire.
J. Vanpee

21.218 Introduction to the French Short Story
Prereq.: French IV
U (1) HUM-D Not to be offered 1985-86
3-0-6
Studies literary movements of the last three centuries through short stories by major French authors. Special attention paid to the theme of the fantastic and the supernatural. Works by Voltaire, Balzac, Mérimeé, Maupassant, Triot and Julien Green.
K. J. Crecelius

21.221 French Romanticism (Revised Content)
Prereq.: French IV
U (2) Next offered 1985-86
3-0-6
Study of French literature and culture from 1800 to 1850, with emphasis on the high Romantic period (1830s). Readings from Musset, Lamartine, Desbordes-Valmore, Chateaubriand, Staalé, Balzac, Sand, Hugo. Discussion of the art and music of the era, as well as the historical and social context of the Romantic movement.
K. J. Crecelius

21.222 The French Novel in the 20th Century
Prereq.: French IV
U (2) Next offered 1985-86
3-0-9
Techniques and themes of the modern novel in works by Gide, Proust, Colette, Mauriac, Cocteau, Youncar, Camus, and Sarraute. Themes include love, jealousy, adolescence, responsibility to self and to others. Emphasizes the search for identity in an increasingly fragmented and violent world.
R. E. Jones

21.223 Modern French Drama
Prereq.: French IV
U (1) Not to be offered 1985-86
3-0-6
Studies the tragedians Claudel and MontHellant; the poetic fantasy of Giraudoux; the social and philosophical theater of Lenormand, Anouilh, Sartre, Camus; the avant-garde works of Jarry, Apollinaire, Cocteau; plays by Vian, Beckett, Ionesco, and Genet. Special attention to evolving concepts of the director, actor, audience, stage design, and music.
R. E. Jones

21.225 Representations of Love in French Literature
Prereq.: French IV
U (2) HUM-D Not to be offered 1985-86
3-0-6
Examines a wide variety of texts which deal explicitly with the theme and the problems of love. Focuses on four main periods and types of representations of love: the medieval period and its code of chivalry, the 17th century and its debate between passion and reason, the pre-romantic and romantic period and the elaboration of a rhetoric of seduction, and the final perversion of the romantic ideal. Authors read include Marie de France, Molière, Racine, Prévost, Laclos, Constant, Musset, Balzac, Flaubert, Duras.
J. Vanpee

21.227 Women Writers in French-Speaking Cultures (New)
Prereq. French IV
U (1, 2) Not to be offered 1985-86
3-0-6
Introduction to fictional works of major French and Francophone women writers. Focuses on the changing role of women in French-speaking societies from the Middle Ages to the present and of women as writers from apology and disguise to conscious female aesthetics. Themes include adolescence, socialization, friendship, aging, independence, creativity, sexual preference, race and class consciousness. Texts by Christine de Pisan, Mme. de Lafayette, George Sand, Colette, Duras, Beaufour, Cixous, Blais, Hébert, Djebar, Schwartz-Bart and Marianna Bâ.
I. de Courtivron

21.229 The French New Wave Cinema
Prereq.: French IV
U (2) Not to be offered 1985-86
3-0-6
Examines the best films of directors Claude Chabrol, Francois Truffaut, Jean-Luc Godard, Alain Resnais, Agnès Varda, and Eric Rohmer. Students explore and assess the attempt of these directors to supplant the "well-made" film with uniquely personal styles of motionpicture direction. All films shown with English subtitles.
E. B. Turk

German

The indication of prerequisites for specific German offerings does not apply to students who have already accomplished the equivalent work. For further placement advice, attend the German Placement Session or consult with a field advisor in German.

Subjects numbered 21.230 to 21.248 may be used to fulfill institute requirements including concentrating and majoring in German.

Subjects numbered 21.249 to 21.253 may count to fulfill a concentration or a major in German only upon special arrangement with one of the Foreign Language concentration and major advisors. Contact Foreign Languages and Literatures Office, x4771.

Fundamental Language Subjects

21.230 German Review
Prereq.: Permission of Instructor
U (1, 2)
4-0-8
Reviews the grammar of German I and German II. Followed by some of the readings of German II. For students with incomplete previous preparation in German and for those whose study of German is discontinuous. Students may register for German III upon successful completion.
C. J. Kramsch

21.231 German I
Prereq. —
U (1, 2)
4-0-8
Basic principles of the German language. Fundamentals of pronunciation, intonation, and grammar. Acquisition of basic vocabulary. Laboratory exercises to further communication skills.
D. Dollenmayer, J. Rosellini

21.232 German II
Prereq.: German I
U (1, 2)
4-0-8
Continued practice in pronunciation and intonation. Vocabulary building, review and extension of basic grammar. Practice in writing short essays. Reading of short literary texts. Introduces the history and culture of German-speaking countries.
D. Dollenmayer
21.233 German III
Prereq.: German Review or German II
U (1, 2) HUM-D
4-0-8

Intensive review of German grammar. Reading of works by such major 20th-century authors as Durrenmatt, Brecht, Böll, H. Novak, and others. Compositions and discussions based on these works, lab materials, and video tapes on contemporary Germany. Recommended for students with two or more years of high school German.

M. Geisler, C. J. Kramsch

21.234 German IV
Prereq.: German III
U (1, 2) HUM-D
4-0-8

Systematic development of reading and writing skills through discussion of literary texts (Grimm, Kafka, Brecht) and training in composition. Sharpening of oral communication skills through weekly use of authentic tapes and a functional approach to vocabulary and grammar.

E. Waldstein, C. J. Kramsch

Intermediate Language, Literature, and Culture Subjects

It is recommended, but not required, that students take one of the following four intermediate-level subjects before enrolling in 21.241 and above. All intermediate subjects are conducted entirely in German.

21.237 German Drama Workshop
(21.236)
Prereq.: German III
U (1) Next offered 1985-86
3-3-6

Hands-on German drama subject. Studies several plays by one author or from one period, of which one is selected for rehearsal and final performance. Intensive pronunciation/intonation practice through instructor-monitored laboratory sessions and small-group rehearsals. No previous acting experience necessary. Conducted in German.

M. Geisler, C. J. Kramsch

21.238 Advanced German Conversation and Composition
(21.237)
Prereq.: German IV
U (2) Not to be offered 1985-86
4-0-8

Systematic training in speaking and writing skills to improve fluency and style. Informal discussions and analyses of tapes by native speakers, newspapers, and modern expository prose. Focuses on everyday life in present-day Germany and on controversial issues, East and West. In addition, students select a special project on a topic of their choice.

C. J. Kramsch

21.239 Introduction to German Literature
Prereq.: German IV
U (2) HUM-D Next offered 1985-86
3-0-6

Readings from German prose fiction, poetry, and drama. Authors include Goethe, Brecht, T. Mann, Keller, Kafka, Rilke. Literary language as specialized communication; its conventions and presuppositions; relation of author to audience; imitation of reality vs experimentation with reality; purpose in literature: aesthetic, analytic, parodistic, and political goals. Conducted entirely in German, emphasizing reading, speaking, and writing skills.

D. Dollenmayer

21.240 Epochs of German Culture
(New)
Prereq.: German IV
U (1) HUM-D Not to be offered 1985-86
3-0-6

An introductory survey of German culture from Luther to Bismarck. Reformation and Renaissance, Counter-Reformation and Baroque, Enlightenment, "Sturm und Drang," "Klassik," Romanticism, "Vormärz," Realism. Concepts, chronology, and critique. Readings include selection from Luther, the "Faustbuch," Grimmmeishausen, Leibniz, Kant, Lessing, Frederick

II of Prussia, Goethe, Schiller, Kleist, the Brothers Grimm, Heine, Büchner, Marx, Nietzsche, and Bismarck. Conducted entirely in German with emphasis on speaking, reading, and writing skills.

J. Rosellini

Advanced Literature and Culture Subjects

It is recommended, but not required, that students take one intermediate level subject before enrolling in advanced subjects. All advanced subjects are conducted entirely in German.

21.241 German Romanticism: Fantasy vs Reality
(21.240)
Prereq.: German IV
U (2) HUM-D Next offered 1985-86
3-0-6

E. Waldstein

21.242 German Short Fiction
Prereq.: German IV
U (1) HUM-D Not to be offered 1985-86
3-0-6

Short fiction in the 19th and 20th centuries (Novelle, Erzählung). Representative works read and discussed, emphasizing narrative strategy, esthetic structure, social concern, and historical context. Authors include Kleist, E. T. A. Hoffmann, Büchner, Schnitzler, Döblin, Musil, Grass, and Frisch.

D. Dollenmayer

21.243 Heinrich Heine
Prereq.: German IV
U (2) Not to be offered 1985-86
3-0-6

Poet, satirist, "reporter," exile, friend of Marx and Rothschild. Heine is a controversial and enigmatic figure among Germans. Studies distance between Heine's poetry, which he considered to be "art" and his prose, which he saw as a tool in the fight for political freedom. Emphasizes Heine's role as literary and political figure in post-Napoleonic Germany.

M. Geisler
21.247 German Culture and Society: 1789-1914
Prereq.: German IV
U (1) HUM-D Next offered 1985-86 3-0-6
The rise of the "apolitical" German, the failure of liberalism, the discrepancy between economic and political development, and the increasing polarization of society as manifested in the various forms of cultural expression. Readings include Goethe, Schiller, Hegel, Schopenhauer, Büchner, Marx, Engels, Nietzsche, Wagner, Bismarck, and Freud.
D. Dollenmayer

21.249 Introduction to German Poetry
Prereq.: German IV
U (2) HUM-D Next offered 1985-86 3-0-6
Reading and studying poetry as an expression of feeling, thinking, and being. Highlights poetry of Goethe, Schiller, Novalis, and Eichendorff; then continues with major works of two of the most influential 20th-century poets: Rilke and Celan; concludes with the sampling of the work of a current poet. Includes a careful study of recordings of professional recitations of poems, and of Lieder. Readings and instruction in German. Discussion in German and English. Paper usually in English.
M. Dyck

21.250 Introduction to German Drama
Prereq.: German IV
U (1) HUM-D Not to be offered 1985-86 3-0-6
Introduces the classical (Lessing, Goethe, Schiller, Kleist), contemporary (Büchner, Hauptmann, Kaiser, Brecht), and current German drama (Frisch, Durrenmann, Weise, Handke, Hacks, and others). The general nature of drama and the special features of this genre in its German manifestations (particularly tragedy, comedy, and various modern and post-modern forms and techniques). Discusses recordings of German productions of about half the plays covered. Conducted primarily in German.
M. Dyck

21.251 Goethe: Faust
Prereq.: German IV
U (2) Not to be offered 1985-86 3-0-6
A succinct introduction to Goethe's life, work, and thought, parallel to a close study of both parts of Faust, with attention to the tradition of the theme and the major versions by other authors (Marlowe, Valéry, Thomas Mann). Conducted primarily in German, with readings in the original and lectures in German.
M. Dyck

21.252 The Modern German Novel
Prereq.: German IV
U (1) Next offered 1985-86 3-0-6
Reading and discussion of six German novels from 1890 to present. Selected titles from Thomas Mann, Heinrich Mann, Hauptmann, Broch, Musil, Junger, Kafka, Hesse, Langgassner, Grass, and one current example each from West and East Germany. Basic elements of fiction and of the novel. Students read three novels in entirety and selections from rest. Readings and instruction in German. Discussion in English and German. Paper normally in English.
M. Dyck

21.253 The World of Kafka
Prereq.: German IV
U (2) Next offered 1985-86 3-0-6
You are invited to enter the weird world of Kafka through his major and minor prose works: the novels (Das Schloß, Amerika) and such shorter narrative pieces as Das Urteil, Die Verwandlung, Ein Hungerkünstler, and others. Instruction and readings in German. Paper in English.
M. Dyck

21.254 Classical Greek I
Prereq.: Greek Literature II
U (1) Next offered 1985-86 4-0-8
Study of Attic Greek as a cultural subject. Basic text Chase and Phillips, A New Introduction to Greek is supplemented with various readers and xeroxed passages. Through special emphasis and quotations the cultural significance of the linguistic matters treated are brought into focus. Greek views of fate, love, death compared and contrasted with Christian and modern ones. By the end of the first term students have read the creation-account from Genesis and the Christmas story from Luke.
H. A. T. O. Reiche

21.255 Classical Greek II
Prereq.: Greek I
U (2) HUM-D Next offered 1985-86 4-0-8
Emphasizes syntax and easy composition. In addition to Chase and Phillips students do easy selections from Lucian, Xenophon, and Plato. Attention given to the subject matter covered in the readings to bring out its significance and thus to help motivate continued student interest. Emphasizes recognition rather than memorization. Also, selections from Greek mathematics, medicine, and astronomy.
H. A. T. O. Reiche

21.256 Classical Greek III
Prereq.: Greek Literature II
U (1) Next offered 1985-86 4-0-8
Selected books of Ilid coupled with introduction to problems of oral culture and the so-called Homeric Question. Then either Aeschylus' Prometheus Bound or Sophocles' Oedipus King. Finally, Pericles' Funeral Oration from the second book of Thucydides. Reading and discussion of such additional works as Conrard, Thucydides Mythistoricus and Nietzsche's Birth of Tragedy serve to raise the questions of historical "truth" and the meaning of tragedy.
H. A. T. O. Reiche

21.257 Classical Greek IV
Prereq.: Greek Literature III
U (2) Next offered 1985-86 4-0-8
Aeschylus' Agamemnon, Euripides' Bacchae (or Aristophanes' Frogs), and Thucydides' account of the Sicilian Expedition (Bks VI and VII) or Bks I and X of Plato's Republic. Attention to selected textual problems, metre, style, and idiom. Those interested may flesh out Plato's Myth of Er with selections from Plato's Timeaus.
H. A. T. O. Reiche
Russian

The indication of prerequisites for specific Russian offerings does not apply to students who have already accomplished the equivalent work. For further placement advice, attend the Russian Placement Session or consult with a field advisor in Russian.

Fundamental Subjects

21.261 Russian I
Prereq.: —
U (1)
4-0-8
Basic grammar and practice in the elements of Russian. Emphasis on learning to speak and understand as a prerequisite for effective communication in Russian and as a basis for acquiring reading and writing skills. Extensive use of language laboratory.

C. Chvany

21.262 Russian II
Prereq.: Russian I
U (2)
4-0-8
Continuation of 21.261. Develops ability to use the language through systematic study of grammar. Continued practice in understanding and speaking, with a gradual transition to reading and writing. The second part of the term seeks to integrate language skills and develop control of vocabulary through readings which serve as a basis for conversation and composition. Regular work in language laboratory.

J. Alissandratos

21.263 Russian III
Prereq.: Russian II
U (1) HUM-D
4-0-8
Reading and discussion of historical texts, stories, and poems providing background for understanding Russian literature and contemporary Soviet culture. Reviews grammar with the help of oral and written exercises. Systematic study of word formation and other strategies to free student from dependency on the dictionary. Develops aural comprehension in the language laboratory. Compositions based on readings and recordings integrate communication skills and help retain content. Information: K. Pomorska.

21.264 Russian IV
Prereq.: Russian III
U (2) HUM-D
4-0-8
Reading of literary and expository texts selected to provide an understanding of Soviet life and culture. Emphasizes development of skill and confidence in reading unedited texts. Aural comprehension developed through brief lectures on cultural topics as well as through taped materials. Discussion and brief papers based on readings. Attention to problems of grammar and style, with a view to improving facility in oral and written expression. Information: K. Pomorska.

21.265 Advanced Spoken and Written Russian
Prereq.: Russian IV
U (1)
4-0-8
Review and systematization of the structure of modern Russian. Intensive training in spoken and written skills to improve fluency and style. Discussions and analyses of short works of fiction and nonfiction illustrating the various styles of spoken and written Russian. Emphasis varies in alternate years. Extensive use of taped materials.

C. Chvany

21.268 Russian Culture and Civilization
Prereq.: Russian IV
U (2) HUM-D Not to be offered 1985-86
3-0-6
Russian culture and intellectual history from its beginnings to the present based on original literary and historical texts, music, and art. Russian vs Western concepts of "culture" and "civilization." Controversy about the role of Peter the Great; "Westernizers" vs "Slavophiles." Serfdom and the Russian nobility; the Russian intelligentsia. The role of folklore in Russian high culture. Conducted in Russian emphasizing language skills. Individual oral and written reports on a wide choice of topics.

C. Chvany

21.269 Introduction to Russian Literature I
Prereq.: Russian IV
U (2) Next offered 1985-86
3-0-9
The subject has a double aim: a) to introduce the elements of composition and stylistics; b) to acquaint the student with the foundations of modern Russian literature through the most important and characteristic works of Pushkin, in verse and in prose — Evgenij Onegin and Povesti Belkina. Introduces critical method and literary terminology, as the texts are analyzed both historically and structurally. Conducted in Russian.

K. Pomorska

21.270 Pushkin and His Successors
Prereq.: Russian IV
U (2) HUM-D Not to be offered 1985-86
3-0-9
Continues exercises on composition and stylistics and acquaints the student with the foundations of modern Russian literature through the most important and characteristic works of Pushkin and his successors, mainly Turgenev and Chekhov. Among works analyzed are Eugene Onegin by Pushkin, Asya and mystical stories by Turgenev, The Darling and The Cart by Chekhov. Conducted in Russian.

K. Pomorska

21.271 Contemporary Russian Prose and Poetry
Prereq.: Russian IV
U (1) Next offered 1985-86
3-0-9
A study of Russian literature from 1954 up to our time. Besides the writers of the so-called "thaw period" (V. Panova, I. Ehrenburg), such authors as A. Solzhenitsyn, L. Chukovskaya, and poet-singer B. Okudzhava are included. Conducted in Russian.

K. Pomorska

21.272 Russian Poetry of the 20th Century (New)
Prereq.: Russian IV
U (1) Not to be offered 1985-86
3-0-6
A study of the main poetic trends and their great representatives in Russia from the turn of the century to our time. Close reading of poems by A. Bick, O. Mandelshtam, V. Mayakovsky, A. Akhmatova, as well as by the contemporary poets-singers. Both the structural aspect and historical context of the poetic output are emphasized.

K. Pomorska

Spanish

The indication of prerequisites for specific Spanish offerings does not apply to students who have already accomplished the equivalent work. For further placement advice, attend the Spanish Placement Session or consult with a field advisor in Spanish.

Fundamental Language Subjects

21.275 Spanish I
Prereq.: —
U (1, 2)
4-0-8
Introduction to understanding, speaking, reading, and writing Spanish. Maximal use of fundamentals of grammar in active communication. Language laboratory program coordinated with and supplementary to class work.

J. W. Harris
21.276 Spanish II
Prereq.: Spanish I
U (1, 2) 4-0-8
Continuation of Spanish I, increased practice in reading. Conducted in Spanish whenever practical.
D. Morgenstern

21.278 Spanish III
Prereq.: Spanish II
U (1, 2) HUM-D 3-0-6
Aims at consolidation and expansion of skills in oral comprehension, speaking, reading, and writing. Uses short texts, taped interviews, and movies to study specific social issues of current interest in Hispanic culture.
D. Morgenstern

21.278 Spanish IV
Prereq.: Spanish III
U (1, 2) HUM-D 4-0-8
Continued improvement in oral and written comprehension and expression for literary, language, and cultural studies, as well as for non-scholarly use of Spanish. Materials include film and radio broadcasts in addition to a selection of poetry and prose by modern masters, such as Borges, García Márquez, Rulfo, and Lorca.
D. Morgenstern

21.279 Spanish Conversation
Prereq.: Spanish II
U (2) Not to be offered 1985-86 3-0-6
Gives students the necessary language skills to perform successfully in Spanish in a variety of social situations. Focus on oral communication. Uses popular media for listening practice; other materials include newspapers and magazines. Arranges systematic exchanges with native speakers. Student projects involve reading, oral presentations, and classroom interaction. Emphasizes communication skills needed by students in engineering and management for work in Latin America or Spain.
D. Morgenstern

Intermediate Subjects

21.281 Spanish Conversation and Composition
Prereq.: Spanish IV
U (2) Next offered 1985-86 3-0-6
Systematic training in spoken and written skills to improve fluency and style. Oral reports by participants on individual topics. Discussions with native speakers, analyses of selected literary texts, periodicals, and local Spanish-language media. Focus is on everyday life in the contemporary Spanish-speaking world.
M. Delgado

21.282 Spanish for Bilingual Students
Prereq.: Fluency in a Spanish dialect
U (1) HUM-D Not to be offered 1985-86 3-0-9
Designed for students of Hispanic background brought up in the US. Expands oral and written grammar study and increases contact with standard Spanish; studies recent fiction and poetry as well as specific historical, social, economic, and political aspects of Mexican-American, Puerto Rican, and Cuban cultures. Many of the non-literary readings are in English; class discussions in Spanish.
D. Morgenstern

Culture

These are intended as first courses in the literatures of the Spanish language. They provide general information needed for more advanced work, and they develop reading skills necessary for the transition from language to literary subjects. Not open to native speakers. Conducted in Spanish. Given alternate years.

21.284 An Introduction to Latin American Culture
Prereq.: Spanish IV
U (1) HUM-D Next offered 1985-86 3-0-6
Overview of Latin America’s cultural and literary development from the Discovery and Conquest to the present. Addresses through a study of literary texts, film, art, and music the questions of racial and cultural heterogeneity in Latin America, the area’s psychological relationship to Europe and the US, and particular ways in which the society experiences tradition and social change. Not open to native speakers.
E. Garrels

21.285 Introduction to Spanish Culture
Prereq.: Spanish IV
U (1) HUM-D Not to be offered 1985-86 3-0-6
Studies the major social, political, and aesthetic modes which have shaped Spanish civilization. Coordinates the study of literature and the arts with the historical evolution of Spain. Readings and discussion focus on such topics as: The coexistence of Christians, Moors and Jews, Imperial Spain, The First and Second Republics, and the contemporary period as background for the emergence of distinctively Spanish literary and artistic movements. Not open to native speakers.
M. Delgado

Advanced Subjects

21.286 Latin American Literature 1492-1898: Creation of a Continent
Prereq.: Spanish IV
U (2) HUM-D Next offered 1985-86 3-0-6
Traces the creation of a new literature to record and interpret a new reality. Begins with the Spanish Discovery and conquest and studies the unfolding of the secular struggle of Spanish speakers in the Americas to give meaning to their experience through literature. Readings up to the Spanish American War of 1898: these include texts by Colón, Bernal Díaz del Castillo, Sor Juana Inés de la Cruz, Esteban Echeverría, José Hernández, Ricardo Palma, and José Martí. Conducted in Spanish.
E. Garrels

21.287 Twentieth Century Latin American Literature: The Alchemist’s Laboratory
Prereq.: Spanish IV
U (2) HUM-D Not to be offered 1985-86 3-0-6
Through reading poetry, novels, and short stories, students encounter a variety of creative responses to the complex and troubled reality of contemporary Latin America: from fantasy to social protest, from personal confession to the literary subversion of the language of demagoguery and mass media. Authors studied include Dario, Vallejo, Quiroga, Neruda, Arguedas, Rulfo, Borges, and García Márquez. Conducted in Spanish.
E. Garrels

21.288 The Modern Short Story in Spain and Latin America
Prereq.: Spanish IV
U (1) Next offered 1985-86 3-0-6
Studies masterpieces of the short story produced in Spain and Latin America. Considers the short story as a genre with unique possibilities for expression, and also as a sociological phenomenon responding to particular historical circumstances affecting both writers and their readership. In addition, students write original stories based on analyses of narrative techniques employed by such authors as Borges, Cortázar, Martín Gaite, Aub, and Peri Rossi. Conducted in Spanish.
M. Delgado
21.290 Literature and Social Conflict: Perspectives on Modern Spain
Prereq.: Spanish IV
U (1) HUM-D Next offered 1985-86 3-0-6
Considers how major literary texts illuminate principal issues in the evolution of modern Spanish society. Emphasizes the treatment of such major questions as the exiles of liberals in 1820, the concept of progress, the place of religion, urbanization, rural conservatism and changing sexual roles, and the Spanish Civil War. Authors studied include: Pérez Galdós, Pardo Bazán, Unamuno, Ortega y Gasset, Salinas, Lorca, La Pasionaria, and Falcon. Conducted in Spanish.
M. Resnick

21.291J The Family In Spanish American Literature
(Same subject as SP 447J)
Prereq.: Spanish IV
U (1) Not to be offered 1985-86 3-0-6
Considers works of modern Spanish American literature which deal with relations of power and the definition of sex roles in the Hispanic family. Also considers the use of the family as a metaphor for larger societal units, the idealization of the family, and its portrayal as a haven from society's indifference and chaos. Works include novels and short stories by Donoso, Cortázar, García Márquez, Villaverde, Bombal, de la Parra, as well as Sarmiento's autobiography. Conducted in Spanish.
E. Garrels

21.292 Cervantes and His Age
Prereq.: Spanish IV
U (2) Next offered 1985-86 3-0-6
Critics have long recognized Spain as the birthplace of the novel and have seen in Don Quijote de la Mancha the prototype for this genre. Concentrates on Don Quijote but also considers the author Cervantes as an outstanding example of the humanist in 16th-century Spain and Europe. Attention to Cervantes' humor and irony as well as his ideas on religion, justice, love, language, and artistic creation.
M. Delgado

21.293 History of the Spanish Language
Prereq.: Permission of Instructor
U (2) Not to be offered 1985-86 3-0-6
Starts with the modern languages and proceeds to successively earlier stages. Includes general concepts of language change; specific phonological, morphological, and syntactic changes in the history of Spanish; the place of Spanish among Romance tongues; modern dialects; reading of representative texts of earlier periods. Discussion and readings in English and Spanish. Spanish III or equivalent normally provides sufficient preparation.
J. W. Harris

Literature in Translation
21.296 Introduction to European and Latin American Fiction
Prereq.: —
U (1) HUM-D Not to be offered 1985-86 3-0-6
Studies great works of European and Latin American fiction. Attention to a variety of forms: the short story, novel, dialogue, and documentary. Emphasizes ways in which the unique history of each country shaped the imaginative responses of its writers. Authors read include Flaubert, Borges, Brecht, Goethe, Cervantes, Laclos, Tolstoy, Stendhal, García Marquez, and Colette.
M. Resnick

21.297J Sex Roles in Fiction: Europe and Latin America
(Same subject as SP 432J)
Prereq.: —
U (1) HUM-D Next offered 1985-86 3-0-9
Examines the representation of sexual roles in fiction. Studies works by European and Latin American authors in their cultural and historical contexts. Themes emphasized: bourgeois women, women rebels, and redefinition of sex roles. Comparative analysis of works by: Laclos, Fontaine, Mollet, Sor Juana Inés de la Cruz, Zola, Stefan, Lorca, Wolf, Wittig, and Puig. Materials used include films by: Godard, Buñuel, Saura, M. v. Trotta.
E. Waldstein

21.296J The Don Juan Legend
(Same subject as SP 433J)
Prereq.: —
U (1) HUM-D Not to be offered 1985-86 3-0-6
Analyzes the Don Juan figure, tracing the development from its first appearance in 17th-century Spanish theatre through later versions in the cultures of France, Germany, and Italy. Syllabus includes plays, stories, poems, operas, and films. One part of the syllabus focuses on Don Juan's counterpart, the femme fatale. Places attention on the notion of "machismo" (its elaboration and demystification) and on the critique of traditionalist representations of male-female relations organized according to patterns of activity/passivity, force/repression, seduction/submission.
E. B. Turk

21.297J New Women's Voices
(Same subject as SP 431J)
Prereq.: —
U (2) Not to be offered 1985-86 3-0-6
Contemporary women writers and the characters they create. Themes include the socialization of women in several patriarchal cultures, strategies of adaptation and/or rebellion, relationship to love and work, and search for identity. Experimentation with new narrative techniques to convey women's experiences of the past and visions of the future. Novels, short stories, poetry, and films by: Doris Lessing, de Beauvoir, Cixous, Toni Morrison, Margaret Atwood, Christa Wolf, Rita Mae Brown, Maria Luisa Bombal, Alice Walker, Ursula LeGuin, Von Trolta, and Duras.
I. de Courtivron, E. Waldstein, M. Resnick, M. Richardson

21.300J Courtship Themes in Romance Literature
(New)
(Same subject as SP 434J)
Prereq.: —
U (2) HUM-D Next offered 1985-86 3-0-6
Study of recurrent patterns of courtship in major works from France, Spain, Spanish America, Portugal, and Brazil. Themes such as the grand passion, marriage as a happy ending, the witty battle between unwilling lovers, and the contemporary breakdown of both conventional sex roles and the institution of marriage are examined. Authors include: Fernando de Rojas, Cervantes, Balzac, Puig, Zola, the Three Marias, Machado de Assis, Garcia Márquez, Chateaubriand, Wittig and Bombar.
M. Resnick

21.301 Evil and Decadence in Literature
(21.300)
Prereq.: —
U (2) Next offered 1985-86 3-0-6
Studies evil and decadence in literature, starting with Job and Petronius. Emphasizes French and English authors including the Marquis de Sade, Byron, Shelley, Laclos, Baudelaire, Rimbaud, Flaubert, Lautréamont, Huysmans, Mirabeau, Wilde, Gide, Mann, Firbank, Convo, Genet, Huxley, Golding. Students encouraged to read some of the texts in the original.
R. E. Jones

21.302 The Occult, Mysticism, Religious Heresy, and Literature
(21.301)
Prereq.: —
U (1) Not to be offered 1985-86 3-0-9
Studies religious beliefs alternative to Christianity and their influence on Western literature of the last 200 years. The Tarot, doctrines of the Gnostics, Manichaeans, Bogomiles, Cathars, Illuminists, Theosophists, Free Masons, Swedenborgians. Readings from Blake, Reweil, Byron, Hugo, Balzac, Nerval, Baudelaire, Dos-toeveski, Strindberg, Yeats, Jung, Dinesen, Poe, Kafka, Tryon, Fowles. Also related themes in art and music.
R. E. Jones
21.303 Twentieth-Century French Literature (New)
Prereq: —
U (2) HUM-D Not to be offered 1985-86
3-0-6
Major writers and literary movements (Surrealism, Existentialism, Paraphysics) in France since 1900. Texts are chosen from the works of Gide, Proust, Céline, Malraux, Bermanos, Sartre, Camus, de Beauvoir, Giraudoux, Clau-
del, Anouilh, Beckett, Ionesco, Genet, Breton, Artaud, Queneau.
R. E. Jones

21.304 Twentieth-Century European Drama (New)
Prereq: —
U (1) Next offered 1985-86
3-0-6
Study of major playwrights, directors, and theorists of the theater in France, Scandinavia, Russia, Germany, Italy, and Spain. Among the authors studied are Strindberg, Chekhov, Pirandello, Lorca, Claudel, Giraudoux, the Surrealists, the Expressionists, Brecht, Weiss, Arrabal, Sartre, Anouilh, Beckett, Ionesco, Ge-
et. Students attend current productions in the Boston area.
R. E. Jones

21.305 Slavic Civilization: Magic, Vampires, and Witches
(21.302)
Prereq: —
U (2) HUM-D Not to be offered 1985-86
3-0-6
Introduction to the civilization of the Slavs. Fo-
cuses on folk tales and epics — heroes, hero-
ines, and villains as well as their supernatural
motivation. Compares folk heroes to equally
fantastic Christian heroes in order to deter-
mine the constants of Slavic folk beliefs, which
persist regardless of the dominant religion in
any period. Explores recurrence of folk themes
in literature and the arts. Emphasizes common
Slavic linguistic and cultural heritage. Students
encouraged to read some of the works in the
original.
J. Alissandratos

21.306 The German Cinema
(21.304)
Prereq: —
U (2) Next offered 1985-86
4-0-5
Overview of the German film since its begin-
nings, emphasizing the New German Cinema
of the 70s. Weekly screenings. Lectures and
discussions deal with technical and aesthetic
as well as socio-historical problems. Students
keep weekly journal based on thorough analy-
sis of films as well as readings on social and
historical background. Directors include: Lang,
Ruttmann, Pabst, Schliender, Wenders, Hen-
zog, Fassbinder, Lilienthal, M. v. Trotta. Con-
ducted in English. Films shown with English
subtitles.
M. Geisler

21.306 Seminar in Kafka
Prereq.: One subject in any literature.
U (1) Not to be offered 1985-86
3-0-6
A thorough study of Kafka’s novels, longer
stories, microstories, and autobiographical
writings. The human condition according to
Kafka in the Age of Anxiety and beyond. Follow-
ed by a more concentrated study of the
Kafka canon and mystique in exegetic terms
ranging from theological and philosophical
through the more strictly literary to psychologi-
cal and sociological. Participants write one
major paper (20 to 40 pages) and make one
oral report. Readings in translation.
M. Dyck

21.309 German Avant-garde Theater
Prereq.: —
U (2) Not to be offered 1985-86
3-0-6
Innovative practitioners and theorists on the
German stage from the turn of the century to
the present time. Naturalism, impressionism,
expressionism; epic theatre; variously trans-
mitted new forms of comedy and satire; ex-
perimental, documentary, and political drama.
Hauptmann, Wedekind, Hofmannsthal, Toller,
Hasenclever, Kaiser, Sternheim, Brecht,
Weiss, Zuckmayer, Frisch, Durrenmann,
Handke, Hacks, and others. Readings in trans-
lation.
M. Dyck

21.310 Masterpieces of the Hispanic
Tradition
Prereq.: —
U (1) HUM-D Next offered 1985-86
3-0-6
Major works of Hispanic literature and film,
including the Poem of The Cid, Cervantes’ Don
Quijote, Lorca’s House of Bernarda Alba, Gar-
cia Marquez’s One Hundred Years of Solitude,
short stories by Borges, and films by Buñuel.
Traces development of Hispanic culture
through focus on fanaticism, honor, and the
grotesque, as well as on humor as a way to
cope creatively with the world or to escape
from it.
M. Resnick

21.313 How Are Poetry and Prose Made?
(New)
Prereq: —
U (2) Next offered 1985-86
3-0-6
Insight into the author’s workshop: “What does
a poet do with words?” The poet’s treatment
of sound and meaning; verse and theme. Po-
etic function of language among other func-
tions. Why do people read poetry? Techniques
of prose composition. The role of metaphor
and metonymy in poetry and prose. The his-
torical question: What is primary, poetry or
prose? Literature and film. Material drawn
from Russian, English, and other Western
literatures.
K. Pomorska

21.314 Russian Avant-garde: Visual Arts,
Literature (Revised Content)
(21.315)
Prereq: —
U (2) Not to be offered 1985-86
3-0-6
Futurist movement and its consequences in
Russia (the Left Front of Art-LEF). Parallel be-
tween Futurism in literature and Cubism in
painting. Influence of Cubism on the poetry
and prose of Majakovskij and Pasternak.
Suprematism of K. Malevich. New ideas of time
and space: new utopia. Discussions of the sit-
sation of the innovative artist in Soviet Russia.
Readings and discussions in English. Students
with a knowledge of Russian encouraged to
read some texts in the original.
K. Pomorska

21.315 Russian Short Story and the 19th
Century (New)
Prereq: —
U (1) HUM-D Not to be offered 1985-86
3-0-6
The great development of Russian prose from
Pushkin’s Tales of Belkin and “Queen of
Spades” through Gogol, Lermontov, Turgenev,
Tolstoi, Dostoievski, Leskov, and Chekhov.
The growth of the short story as a structure as
well as the history of themes and ideas per-
taining specifically to this genre. To disclose
differences as well as the influence of foreign
writers, the prose of L. Sterne, E. T. A. Hoff-
mann, and E. A. Poe is discussed. Some con-
trasting genres, such as Turgenev’s novel
Rudin and Pushkin’s Eugene Onegin are
analyzed.
K. Pomorska

21.316 The Roots of Russian Literature
Prereq: —
U (2) HUM-D Next offered 1985-86
3-0-6
Roots of 19th- and 20th-century Russian Lit-
erature in medieval literature and folklore. Em-
phasizes themes, genres, and character types
that originate in early times and recur in mod-
ern reworkings. Includes theme of writer as
prophet; genres of chronicle, fairy tale, saint’s
life, and epic; folklore and saintly characters.
Students encouraged to read assignments in
Russian.
J. Alissandratos
Senior Seminar

21.320 Senior Seminar for Majors in Foreign Language and Literature

Prereq.: —
U (2)
3-3-0
A workshop focusing on the specific task of thesis writing on topics in foreign literatures. Problems of methodology, organization, and critical writing addressed by means of faculty and student presentations. Gives special attention to research problems in foreign literatures including the identification of bibliographic tools and the acquisition of materials from foreign sources. Consult E. B. Turk.

Studies in Language

21.321J The Study of Language

(Same subject as 24.900J)
Prereq.: —
U (1, 2) HUM-D
3-0-6
See description under subject 24.900J.
J. W. Harris, W. O'Neil, J. R. Ross

21.322J Language and Its Structure

(Same subject as 24.901J)
Prereq.: 21.140J or 24.900J
U (2)
3-0-6
See description under subject 24.901J.
J. W. Harris

21.324 Workshop in Translation

Prereq.: Permission of Instructor
U (2) Not to be offered 1985-86
3-0-6
For students who wish to translate short stories, essays, or poems into English. Class includes the study of technical, historical, and theoretical aspects of translation, as well as discussion of students' work. Critically examines models of translation, both classical and contemporary. Gives attention to linguistic problems of translation. Students complete a translation project which they elaborate in consultation with the faculty. Knowledge of any second language at an intermediate level or above is usually sufficient.
C. V. Chvany

English as a Second Language

21.325 English I: English as a Second Language

Prereq.: Placement test or Permission of Instructor
U (1)
3-0-6
Reviews fundamental grammatical structures of English through study of four language skills: listening comprehension, speaking, reading, and writing. Class activities develop better understanding and use of English structures essential for active and accurate communication. Language laboratory program coordinated with and supplementary to class work.

K. J. Irving

21.326 English II: English as a Second Language

Prereq.: Placement test or Permission of Instructor
U (1, 2)
3-0-6
Extends study of basic grammatical structures in English to more complex structural patterns. Consolidates and continues practice in speaking, listening, reading, and writing. Activities, which include language laboratory work, reinforce understanding of English and lead to increased ability to communicate in English.
K. J. Irving

21.327 English III: English as a Second Language

Prereq.: Placement test or Permission of Instructor
U (1, 2)
3-0-6
Expands and continues study of complex grammatical structures in English. Improves and refines fluency and style by focusing on precision in the use of complex language patterns in oral and written communication. Integrates reading and language laboratory assignments. Examines the subtle interaction of structure and meaning and aims to develop skills sufficiently to allow proficient functioning in English.
S. Flynn

21.328 English IV: English as a Second Language

Prereq.: Placement test or Permission of Instructor
U (1, 2)
3-0-6
Provides intensive practice in idiomatic oral communication and listening comprehension for students who have mastered complex grammatical structures of English. Fall term focuses on presenting reports, explanations, and seminars to class using various approaches and styles. Gives some consideration to appropriate teaching methods. Valuable for those who intend to teach or lecture in English. Spring term focuses on the development of conversations within a variety of social contexts. Language laboratory assignments.
S. Flynn

21.331 Development of Listening and Speaking Skills: English as a Second Language

Prereq.: Placement test or Permission of Instructor
U (1, 2)
3-0-3
Provides intensive practice in idiomatic oral communication and listening comprehension for students who have mastered complex grammatical structures of English. Fall term focuses on presenting reports, explanations, and seminars to class using various approaches and styles. Gives some consideration to appropriate teaching methods. Valuable for those who intend to teach or lecture in English. Spring term focuses on the management of conversations within a variety of social contexts. Language laboratory assignments.
S. Flynn

21.333 Expository Writing I for Undergraduates: English as a Second Language

Prereq.: Placement test
G (1)
3-0-6
Analysis and practice of various forms of scientific and technical writing, from abstracts to journal articles. Detailed analysis of problems of conveying technical information to a specialist audience. Comparable to 21.780 but methods designed to deal with special problems of those whose first language is not English.
C. Sawyer-Lauçanno

21.334 Expository Writing II for Undergraduates: English as a Second Language

Prereq.: Placement test or Permission of Instructor
U (1, 2)
3-0-6
Formulating, organizing, and presenting ideas clearly in writing. Reviews basic principles of rhetoric. Focuses on development of a topic, thesis, choice of appropriate vocabulary, and sentence structure to achieve purpose. Develops idiomatic prose style. Gives attention to grammar and vocabulary usage. Special focus on strengthening skills of bilingual students. Successful completion satisfies Phase I of the Writing Requirement.
S. Flynn

21.335 Expository Writing for Graduate Students: English as a Second Language

Prereq.: Placement test or Permission of Instructor
G (2)
3-0-6
Extensive writing assignments in English essays to practice the rhetorical and stylistic patterns under consideration. Topics progress from the basics of sentence structure through transitions and paragraph formation to organization of entire essay. Devotes some attention to other kinds of writing: grant proposals, thesis precis, job applications, and letters.
C. Sawyer-Lauçanno

21.336 Workshop in Writing for Science and Engineering: English as a Second Language

Prereq.: Placement test
G (1)
3-0-6
Advanced subject focusing on techniques, format, and prose style necessary for research papers. Emphasis on writing as required in fields such as Economics, Political Science, and Architecture. Methods designed to deal with special problems of those whose first language is not English.
C. Sawyer-Lauçanno

21.337 Workshop in Writing for the Social Sciences and Architecture: English as a Second Language

Prereq.: Placement test
G (1)
3-0-6
Special Topics

21.348 Special Topics in Foreign Languages and Literatures

Prereq.: —
U (1)
Arr.

For other subjects related to history in addition to those given below, see Interdisciplinary Subjects, 21.901J-21.992.

21.349 Special Topics in Foreign Languages and Literatures

Prereq.: —
U (2)
Arr.

Advanced work in foreign languages and literatures for students wishing to pursue topics or projects not provided for by regular subject offerings. Before registering, student must plan course of study with appropriate instructor in the Section and secure the approval of the Section Head. Normal maximum credit is 6 units. Nine-unit projects are occasionally approved. If the work is to count toward the HASS Requirement, it must carry 9 units. Six-unit projects count toward the HASS Requirement only by special petition to the Institute Committee on Curricula. Consult Department headquarters.

History

European History

Basic Fields

21.350 The Ancient World I: Near East and Greece

Prereq.: —
U (1) HUM-D
3-0-6

The cultural and political history of the ancient Near East and Greece down to Alexander the Great. Topics include: the evolution of urban societies and empires; religion, science, and technology; East-West contacts; rise of the polis and democracy; slavery; emergence of new art and literary forms. Readings of primary texts (e.g., Near Eastern myths, Homer, Thucydidides) and a textbook.

H. A. T. O. Reiche

21.351 The Ancient World II: Rome

Prereq.: —
U (2) HUM-D Next offered 1985-86
3-0-6

H. A. T. O. Reiche

21.352 The Middle Ages I

Prereq.: —
U (1) HUM-D
3-0-6

Transitions from late Antiquity to the "First Europe," roughly from 300–1000 AD. Examines changes in late Roman ideas and institutions and the formation of a Gallo-Roman and then of a distinctively European society. The issues of "civilization" and "barbarism," decline of literacy and urban centers, rise of the Church, Charlemagne, Vikings and Moslems, and the formation of feudal society.

R. M. Douglas

21.353 The Middle Ages II

Prereq.: —
U (2) HUM-D
3-0-6

Europe from the Viking-Magyar invasions through the phenomena of expansion 1050–1300: population growth, "agricultural revolution," revival of towns and trade, advent of a merchant class; feudal monarchies, Crusades, rise of universities and the formation of new elites. The civilization of the High Middle Ages treated as an unstable unity.

R. M. Douglas

21.356 History of the Western World I: 1500-1815

Prereq.: —
U (1) HUM-D
3-0-6

The evolution of the western world between the end of the Middle Ages and the French Revolution. Topics: heritage of the Middle Ages; emergence of the new dynastic monarchies; the great explorations; the Renaissance in Italy and Northern Europe; the Protestant and Catholic Reformations; the Scientific Revolution; the Enlightenment; development of the bureaucratic state; the American and French revolutions.

D. B. Ralston.

21.357 History of the Western World II: 1815-1970

Prereq.: —
U (2) HUM-D
3-0-6

Survey of the West during the era of its preponderance, the 19th and early 20th centuries, and during its subsequent retreat from world domination. Among the topics considered: the Industrial Revolution and its spread; liberalism and the modern nation state; unification of Italy and Germany; the "new" imperialism; World War I and the eclipse of Europe; the Russian Revolution and its consequences; the long armistice and World War II; "Pax Americana" and the post-war international order; the resurgence of the non-western world.

D. B. Ralston.

21.360 European Social History in the 19th and 20th Centuries

Prereq.: —
U (2) Next offered 1985-86
3-0-6

Studies the large-scale social and economic forces that changed the character of European society. Analyzes changes in: population, diet, and health standards; mass migrations; class and family structures, roles of women and children; conditions of labor. The emergence of mass social and revolutionary movements in response to these changes is a major theme.

W. B. Watson
21.361 Europe in the 20th Century
Prereq.: —
U (1) 3-0-6
The quest for mass participation in politics as the unifying theme of European history in the period of the two World Wars. The struggle among mass movements organized by labor, the Church, parliamentary parties, and the state itself for dominance in political life. The consequences of runaway inflation and world depression; causes of World War II; mobilization; and the structure of post-war Europe.
W. B. Watson

Special Subjects and Seminars
21.365 The Renaissance in Italy
Prereq.: —
U (1) 3-0-6
Comparative studies in the development of Italian society, politics, and culture from the generation of Dante to the age of Machiavelli, emphasizing Florence and Venice. Reading drawn extensively from treatises and documents written by magistrates, merchants, and lawyers; artists, scholars, and men of letters of this period. Lectures and discussion; short papers.
R. M. Douglas

21.370 Marx, Darwin, and Freud
Prereq.: —
U (1) HUM-D 3-0-6
Historical and critical study, in depth, of the attempts of Marx, Darwin, and Freud to investigate the natural and cultural development of humans and society, which are treated as problems in creativity, in intellectual history, in history and philosophy of the cultural sciences, and in social thought.
B. Mazlish

(Same subject as STS 315J)
Prereq.: —
U (2) 3-0-6
Examines the industrial revolution itself and its impact on society and culture. Focuses attention on the intellectual, emotional, artistic, literary, and social effects, including implications for demographic and class structure and for the family. Presentations, where possible, in terms of individuals such as A. Smith, Malthus, Rousseau, Owen, Carlyle, St. Simon, and Fourier.
B. Mazlish

Prereq.: —
U (1) 3-0-6
The French Revolution and the nature of the revolutionary and Napoleonic settlement; the search for stable political institutions down to 1870; the factors underlying the stability of French society in the 19th century; the nature of the post-1870 republican synthesis and its breakdown in the 20th century; the efforts following World War II to reach a new political and social settlement.
D. B. Raitson

21.373 Modern Spain, 1469-1939
Prereq.: —
U (1) 3-0-6
Development of modern Spain from union of Castile and Aragon to triumph of General Franco in Spanish Civil War. Topics: growth and collapse of empire, struggle to establish a modern state, liberal experiment and oligarchic reaction, pronunciamiento-style rebellions, rule of new elites, collapse of monarchy and the Republican experiment, polarization and civil war.
W. B. Watson

21.375 The Making of Russia in the Worlds of Byzantium, Mongolia, and Europe (ca. 850-1800)
Prereq.: —
U (2) Next offered 1985-86 3-0-9
Kievian state, tsardom of Muscovy, Petrine empire: periods of development of Russian historical identity within Byzantine, Eurasian steppe, and Western culturally or politically occupied spaces. The more lasting, defining influences of such experiences, together with geography, ethnology, and also great leaders (St. Vladimir, Genghis Khan and his Eurasian heirs, St. Sergius, Ivan the Terrible, Peter the Great, Catherine the Great) on Russian institutions and culture.
R. E. MacMaster

21.376 Imperial and Revolutionary Russia: Culture and Politics
Prereq.: —
U (1) HUM-D 3-0-9
Analyzes Russia's social, cultural, political heritage, Eurasian imperialist and autocratic, ca. 1850. Reform, modernization—and national catastrophe: World War I; 1917 Revolution, Civil War of 1918–1921. Emphasizes emergence of radicalism (Populism, Communism) as a political culture: its role in the making of a new order, the USSR, in the Russian empire and in world history. Larger cultural themes concerning revolutionary consciousness; films, literature, social thought.
R. E. MacMaster

21.377 The Soviet Union: A Communist Society in Historical Perspective
Prereq.: —
U (2) HUM-D Next offered 1985-86 3-0-9
Marxism-Leninism, totalitarianism, and modernization in post-revolutionary Russia. Physical and ideological setting, the rise of Stalin, collectivization and industrialization, the terror and the purges, the process of de-Stalinization under Khrushchev and his successors, the transition from developing to industrial society, contemporary movements of dissent among intellectuals, religious groups, and nationalities. Problems of evaluating the changing Soviet Union and other Communist regimes, especially China.
R. E. MacMaster

21.378J Seminar in the Historical and Political Evolution of the Soviet Union
(Same subject as 17.609J)
Prereq.: Permission of Instructor
U (2) 3-0-6
A reading subject on the history and politics of the Soviet Union. Emphasizes internal developments rather than foreign policy. Students discuss the readings weekly. All required readings are in English, but supplementary readings in Russian are available for those students wishing them. Open to advanced undergraduates with some previous work in the Soviet area. Meets with 17.609 and 17.610.
L. R. Graham

21.379 Spanish Civil War, 1936-39
Prereq.: —
U (2) Next offered 1985-86 3-0-6
Examines how traditional conflicts in Spanish society erupted into civil war, almost immediately provoking a worldwide response. Examines the consequences of the Civil War for Spain and the rest of Europe in light of political, social, and economic issues selected by students and the instructor. Special attention this year to literary responses to the war.
W. B. Watson
21.380 Hitler and Germany Since Bismarck
Prereq.: —
U (2) Next offered 1985-86
3-0-9
Bismarck, Kaiser Wilhelm II, the Weimar Republic: belated nation-building and industrialization, total war, revolution (left and right). The millenarian ideas, new political style, and rise of Nazism. The regime: from the friendly fascist internal German phase (to about 1936) to that of totalitarianism, imperialist aggression and world war, terrorist and racist (the destruction of the European Jews) genocide. The Germans since 1945: culture, politics, economies, society.
R. E. MacMaster

21.383 Revolution in the 20th Century (New)
Prereq.: —
U (2) HUM-D 3-0-6
Introduction to history through the analysis of 20th-century revolutions. Main focus on the Russian and Chinese revolutions. Among aspects of revolution examined: weaknesses of the old order, the development of revolutionary ideologies, the roles of radical elites, the dynamics of revolutionary movements before and after gaining power. Study of various theories of revolution, including classical Marxism and its contemporary versions. Readings in both primary sources and works of interpretation.
D.B. Raisten

21.386 History and Psychoanalysis: Life-History
Prereq.: —
U (1) 3-0-6
Applies psychology, especially psychoanalysis, to understanding of history. Emphasizes individual life-histories. First part: examination of psychological theories of Freud, Erikson, and others, and then of case studies, such as of Hitler and Gandhi. Second part: reports by members of the class on their own attempts at a life-historical study.
B. Mazlish

American History

Basic Fields

Introductory Series

21.390 American History to 1865
Prereq.: —
U (1) HUM-D 3-0-6
A survey of American history from the colonial period through the Civil War that emphasizes the connection of social, economic, and political development. Topics: early European settlements in North America; social and economic change in the colonies; the Revolution; regionalism and industrialization; Jacksonian politics and reform; territorial expansion; slavery and the crisis of the 1850s; secession and the Civil War.
P. Maier

21.391 American History Since 1865
Prereq.: —
U (2) HUM-D 3-0-6
A survey of American history since Reconstruction. Topics: Reconstruction and the "racial settlement" of the late 19th century; immigration; agricultural, industrial, and commercial development; populism and progressivism; World War I and its aftermath; the New Deal; World War II and the Cold War; growth of the modern Presidency and the expansion of the role of government; the Civil Rights Movement; Vietnam and beyond.
M. McGerr

Chronological Series

21.400 Colonial America
Prereq.: —
U (2) 3-0-6
British North American history to about 1763 emphasizing the development of society and politics. Topics: the discoveries of America, earliest settlements, the Old British Empire, insurrections and witchcraft, slavery, the colonial wars, economic and social change, religion, politics and ideology before the American Revolution. Readings draw upon recent scholarship, much of which is interdisciplinary, and include writings from the colonial period.
P. Maier

21.401 The American Revolution
Prereq.: —
U (2) Next offered 1985-86 3-0-6
English and American backgrounds of the Revolution; issues and arguments in the Anglo-American conflict; Colonial resistance and the beginnings of Republicanism; the Revolutionary War; constitution writing for the states and nation; effects of the American Revolution. Concerned primarily with the revolutionary origins of American government. Readings emphasize documents from the period — pamphlets, correspondence, the minutes or resolutions of resistance organizations, constitution documents and debates.
P. Maier

21.402 The Establishment of the American Republic, 1790-1850
Prereq.: —
U (1) 3-0-6
Examines Americans' efforts to establish the republic and work out the meaning of the American Revolution in a period that saw the beginnings of industrialism and regional economic specialization, the emergence of the West, the development of parties and of democracy, and an intensifying conflict over the issue of slavery. Readings include writings from the period.
A. D. Kahled

21.403 The Civil War and Reconstruction
Prereq.: —
U (1) 3-0-6
Anti-slavery and the intensification of sectionalism in the 1850s; the secession crisis; political and military developments in the Civil War years; the "reconstruction" of Southern politics and society after Appomattox.
M. McGerr

21.404 America in the Progressive Era, 1877-1917
Prereq.: —
U (1) 3-0-6
Industrialization, urbanization, and political change between Reconstruction and World War I. Includes: the growth of industry and big business, labor, immigration and urban machine politics, agricultural change and the emergence of populism, progressivism, and the changing role of the US in world politics. Readings draw upon historical studies and documents of the period, including fiction and reportage.
M. McGerr
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.405</td>
<td>America in the Twenties and Thirties, 1917-1941</td>
<td></td>
<td>3-0-6</td>
<td>American politics, society, and culture during World War I, the 1920s, and the Great Depression. Afro-American and Southern history also receive attention. Topics: impact of the war on American society, failure of postwar internationalism, economy and culture of the twenties, impact of the Depression, and significance of the New Deal. Readings in both historical and literary materials, accompanied by contemporary films. S. Deutsch</td>
</tr>
<tr>
<td>21.406</td>
<td>America Since World War II, 1941 to the Present</td>
<td></td>
<td>3-0-6</td>
<td>The transformation of American politics and society during and after World War II. Topics: the deepening American involvement in world affairs; expansion of the role of government; the civil rights movement, the new left, and the women's movement; political and cultural crises of the 1960s and 1970s. Readings include historical studies, contemporary literature and journalism, accompanied by films. M. McGarr</td>
</tr>
<tr>
<td>21.409</td>
<td>American Ideas and Culture: From the Puritans to the Civil War</td>
<td>U (1) HUM-D</td>
<td>3-0-6</td>
<td>American thought and culture from the 17th-century Puritans to the Civil War, as expressed in the work of various classic American writers, thinkers, artists (e.g., Edwards, Franklin, Jefferson, Adams, Madison, Emerson, Whitman) and as embodied in American institutions, social life, and law. The influence of social structure and material circumstance on ideas in America. The emergence of the fundamental myths of American culture. A. D. Kaledin</td>
</tr>
<tr>
<td>21.410</td>
<td>American Ideas and Culture: From the Civil War to WWI</td>
<td>U (1) HUM-D</td>
<td>3-0-6</td>
<td>American intellectual and cultural life in an era of intense social and economic dislocation, studied mainly through the ideas of major figures and movements of the period. "Victorian" culture in the Gilded Age; the influence of Darwin and Freud on American thought; the response of religion to science and the new urban-industrial culture; "Progressive" ideas about reform, class, social order, and justice; changing ideas about race, women, black Americans, the immigrant; developments in literature, art, architecture, and popular culture. A. D. Kaledin</td>
</tr>
<tr>
<td>21.411</td>
<td>American Ideas and Culture: The Modern Age, 1920-1980</td>
<td>U (2) HUM-D</td>
<td>3-0-6</td>
<td>American thought and culture from the Jazz Age and the "Lost Generation" of the 1920s through the Counter-culture of the 1960s and the new conservatism of the 1970s. Developments in popular culture and in religious and political thought; changing ideas about men, women, sexuality, and ethnicity; the effect of technology on American cultural life and institutions. Examines the current sense of crisis. A. D. Kaledin</td>
</tr>
<tr>
<td>21.412J</td>
<td>American Urban History I</td>
<td></td>
<td>3-0-6</td>
<td>(Same subject as 11.013J) See description under subject 11.013J. R. M. Fogelson</td>
</tr>
<tr>
<td>21.413J</td>
<td>American Urban History II</td>
<td></td>
<td>3-0-6</td>
<td>(Same subject as 11.014J) See description under subject 11.014J. R. M. Fogelson</td>
</tr>
<tr>
<td>21.416J</td>
<td>American Women's History</td>
<td>U (2)</td>
<td>3-0-6</td>
<td>(Same subject as SP 420J) A survey of American women's history from the colonial era to the present. Includes: the socialization of women, the transformation of women's work, social and political organization, the changing content of women's rights; alterations in family life, sexual ideas and practices. S. Deutsch</td>
</tr>
<tr>
<td>21.431J</td>
<td>Thomas Jefferson and His Age</td>
<td>U (1)</td>
<td>3-0-6</td>
<td>Intensive study of the ideas and life of Thomas Jefferson and, through him, of political, intellectual, and cultural issues central to his era. Considerable attention to the ideas of John Adams and Alexander Hamilton, and to the Jeffersonian tradition in the 19th and 20th centuries. A. D. Kaledin</td>
</tr>
<tr>
<td>21.432</td>
<td>Religion in America</td>
<td>U (2)</td>
<td>3-0-6</td>
<td>A history of religious life and thought in America, emphasizing the 19th and 20th centuries. Main topics: developments in the major churches; the evangelical-revivalist tradition from Jonathan Edwards to Billy Graham; original American religions (e.g., Mormonism); recent religious developments (e.g., Eastern religions, therapeutic faiths, born-again Christianity, satanic cults). The place of religion in American culture and politics. A. D. Kaledin</td>
</tr>
<tr>
<td>21.433J</td>
<td>Industrialization and Cultural Change in 19th-Century America</td>
<td></td>
<td>3-0-6</td>
<td>(Same subject as STS 310J) See description under subject STS 310J. M. R. Smith</td>
</tr>
<tr>
<td>21.435</td>
<td>The American Psyche</td>
<td>U (1)</td>
<td>3-0-6</td>
<td>A study of 1) the American national character, i.e., the question of identity, starting with the examination of the concept itself and then of efforts (e.g., by Tocqueville, Erikson) to describe and analyze such a presumed character; and 2) the application of psychological approaches to individuals (e.g., Jefferson, Lincoln), to persistent themes (e.g., the frontier hero, or cowboy), and to collective phenomena and events (e.g., slavery, the American Revolution). B. Mazlish</td>
</tr>
<tr>
<td>21.439</td>
<td>Fortress America: The Rise of the American Military, 1945-1975</td>
<td>U (2)</td>
<td>3-0-6</td>
<td>Critical examination of the development of a large permanent military establishment in the post-war period and the consequences of this development for both domestic and international policies. Topics: ideological and political justifications for military establishments, changing force structures, changing role of military institutions in foreign policy, defense budgets, impacts of defense spending. W. B. Watson</td>
</tr>
</tbody>
</table>
History of Africa, East Asia, Latin America, and the Middle East

21.450 The History of Africa
Prereq.: —
U (1) HUM-D Next offered 1985–86
3-0-9
The history of ancient, medieval, early modern, and pre-20th century Africa with close attention to the peopling of the continent, development of culture, development of kingdoms, slave trade, assault by Europe, partition into colonies, beginnings of colonial rule, and nature of the African response.
R. I. Rotberg

(Same subject as 17.551J)
Prereq.: —
U (2) HUM-D 3-0-9
The political development of modern black Africa, concentrating on an examination of colonial rule, African resistance and rebellion, the ultimate struggle for independence, and post-independence politics and readjustments.
R. I. Rotberg

21.452 Comparative African Politics: Crises in Southern Africa
Prereq.: —
U (2) Next offered 1985–86
3-0-6
Political and historical problems of South Africa, Namibia, Zimbabwe, and other countries of southern Africa. Particular attention paid to the development of apartheid in South Africa and to its possible future abolition. Also closely examines the liberation struggle in southern Africa, its successes and failures. Role of American and European policy toward southern Africa looked at critically. Analyzes the position of American corporations.
R. I. Rotberg

21.455J The History and Politics of the Third World Through the Novel
(Same subject as 17.553J)
Prereq.: —
U (1) Next offered 1985–86
3-0-6
Studies history, society, and politics of the black third world through a selected examination of a dozen critical novels. Authors read include Aherama, Achebe, Armah, Cary, Lamming, Hutchinson, Mulaisha, Naipaul, Ngugi, Oyono, Beke, Sembene, Brink, Gordimer, Paton, and Jacobson.
R. I. Rotberg

21.457J Research Seminar in Imperialism and Colonialism
(Same subject as 17.564J)
Prereq.: Permission of Instructor
G (1) Next offered 1985–86
3-0-6
Topics in the economic, social, and cultural bases of imperialism and colonialism, its theory and practice. Substantial written work expected.
R. I. Rotberg

History of East Asia

21.460 East Asian History: China
Prereq.: —
U (1) HUM-D 3-0-6
History of Chinese civilization from the Shang through the Ch'ing dynasties (1500 BC–1911 AD). Topics: the origins of Chinese civilization, Confucianism and Taoism, the early empire, the effects of Buddhism, the T'ang-Sung transition, popular literature, Ch'ing conquest and the late empire, 19th-century rebellion and decline.
P. C. Perdue

21.461 East Asian History: Japan
Prereq.: —
U (2) HUM-D 3-0-6
History of Japanese civilization from its origins to the present, concentrating on the period of rapid transformation from the late Tokugawa period through the end of the American occupation (1800–1954). One major theme is the distinctiveness of Japanese society and the nature of foreign influences on it.
P. C. Perdue

Prereq.: —
U (1) 3-0-6
The long-term processes of social and economic change from the Sung to the Ch'ing dynasties. Examines the roles of geography, regional variation, demographic change, commerce and state economic policy, advances in technology, and transformation of agriculture; landlords, tenants, and social relations on the land; popular culture, forms of collective action. Concludes with discussion of the contemporary legacy of this period's trends.
P. C. Perdue

History of Latin America

21.470 Latin American History
Prereq.: —
U (1) Next offered 1985–86
3-0-6
Survey of Latin America from the Conquest to the present. Analyzes Latin America as a "peripheral" area in the global economy; emphasis on relationships between economic, social, and political change, and on the emergence of the authoritarian state. Case studies include Cuba, Mexico, Argentina, Brazil.
P. H. Smith

21.472J Politics of Mexican Development (New)
(Same subject as 17.582)
Prereq.: Permission of Instructor
G (1) 3-0-9
Development of Mexican political system and relationship between the state and commercial-industrial elites, organized labor, peasants, and the military. Special attention to effects of international environment on Mexican politics and economics. Evaluation of Mexican "model" of development and its implications for other third world nations. Open to undergraduates with permission of instructor.
P. H. Smith
History of the Middle East

21.480 The Middle East from the Rise of Islam to World War I
Prereq.: —
U (1) HUM-D 3-0-6

Surveys Middle Eastern history. Part I examines the Classical Age of Islam (600–1300) through themes of Arab expansion and adaptation. Stresses nomadic-urban encounters, sociopolitical institutions, religious sects, cultural-scientific achievements and their transmission to Europe. Part II examines later Islamic states (post 1300), especially the Ottoman Empire and its background, to modern Middle East. Emphasizes Europe's dramatic expansion after 1800 and Middle Eastern responses to the European challenge, including rise of modern nationalisms.

P. S. Khoury

21.481 The Middle East in the 20th Century
Prereq.: —
U (2) HUM-D 3-0-6

Surveys major political, socioeconomic, and cultural changes in the post-World War I Middle East through the lenses of religion, state, and nationalism. Investigates interwar independence struggles against Europe, followed by the emergence of American and Soviet influence, radical nationalist and socialist movements, and the growth of modern states and societies after 1945. Concludes with examination of contemporary problems in historical perspective: Arab-Israeli conflict, crisis in Lebanon, oil and regional security, Islamic revivalism, and the Iranian revolution.

P. S. Khoury

21.482J The 'Islamic' City: History, Culture, and Form

(Same subject as 4.683J)
Prereq.: —
G (2) 3-0-6

See description under subject 4.683J.

P. S. Khoury, W. L. Porter, Y. Tabbaa

21.483 Nationalism, Imperialism, Revolution: The Middle East
Prereq.: —
U (1) 3-0-6

The Middle East's experience with nationalism in the 20th century. Examines theories and varieties of nationalism, imperialism, and revolution. Focus on Arab nationalism: its origins; character of independence movements; rise of radical pan-Arabism and relationship with radical Islamic and Marxist movements; special place of Palestinian nationalism; and retreat from pan-Arabism after 1970. Comparisons with Turkish, Iranian, and other third world nationalisms.

P. S. Khoury

21.484 Modern Egypt: State and Society in Transition (1800 to Present)
Prereq.: —
U (2) Next offered 1985–86 3-0-6

Examines process of colonization/decolonization, interplay of human and physical environment, and role of Islam in shaping the character of state and society in independent Egypt. Explores kinds of change Nasser's "revolution" (1952–70) produced, with attention to the army in politics, urban and rural society, lure of Arab nationalism/socialism, and superpower rivalry. Ends with assessment of "de-Nasserization" in 1970s and implications of Sadat regime's economic and political liberalization, pro-American orientation, and "peace" with Israel.

P. S. Khoury

21.490 Special Topics in History
Prereq.: —
U (1)
Art.

21.491 Special Topics in History
Prereq.: —
U (2)
Art.

Individual supervised work for students who wish to pursue topics not covered in the regular history offerings. Before registering for this subject a student must plan a course of study with some member of the History Section and secure the Section Head's approval. Normal maximum is 6 units; to count toward the Humanities Requirement, 9 units are required. Nine-unit projects are occasionally approved.

P. Maier

21.50 Introduction to Anthropology
Prereq.: —
U (1) HUM-D 4-0-8

Cultural differences and anthropology, approached through case studies of societies from different levels of social complexity: hunter-gatherers, tribal peoples, peasants, complex societies. One case study of a complex society—e.g., ancient Maya, Inca, or Mesopotamia—drawn from archaeological research. Field methods and theory in anthropology and archaeology. Impact of change on small-scale societies.

M. Diskin

21.501 Crossing Cultural Boundaries
Prereq.: —
U (2) HUM-D 3-0-9

How do we experience and understand other cultures? By examining anthropological research techniques, reading personal accounts of fieldwork, and carrying out their own research projects, students consider the problem of gaining systematic knowledge about other people. Equips students to more critically assess social scientists' claims about human behavior and culture. Consult T. Jackson.

21.502 Controversies and Core Ideas in Anthropology
Prereq.: —
U (2) HUM-D 3-0-6

Key problems and concepts in social science, especially those relevant to sociology, psychology, and other disciplines, but with an emphasis on anthropological contributions. Culture, evolution, exchange, values, roles, function, history and social change, human nature, model building, theory testing, structuralism. Emphasis on the origin and subsequent development and elaboration of basic ideas, and on the social and historical contexts of these ideas. Consult S. Traweek.

21.503 Paths to Civilization
Prereq.: —
U (1) HUM-D 3-0-6

Evolution of humankind and rise of complex societies and empires examined comparatively in a number of different culture areas. Focus on human evolution, domestication of plants and animals, development of sedentary life, origins of the state, spread of civilization. Ecological adaptation, technology, trade, religion, and the "great man" examined as agents of cultural change. Areas considered: the Americas, Europe, Southwest Asia, Africa, Indus region, China.

A. Steinberg, F. Wiseman
Humans

21.504 Approaches to Archaeology
Prereq.: —
U (2)
2-4-6
Studies various analytical techniques and approaches used to "tease" the past out of archaeological remains. Lectures and discussions on methods of archaeology and their theoretical underpinnings. Weekly lab sessions devoted to analyzing artifacts and data, and testing the tools of archaeology. Topics: surveying and locating sites, excavation strategies, dating techniques, analyzing ceramic and lithic artifacts, studying organic remains, statistics, uses of inference, and experimental archaeology.
S. P. DeAtley

21.505 Anthropology and Technology
Prereq.: —
U (1) HUM-D
3-0-6
Technology as cultural subsystem and shaper of human culture. Case studies of 1) small-scale non-industrialized technology, 2) an ancient complex technology (the Inca State), 3) culture change and industrialization in the Green Revolution, and 4) high technology and a new work force in the electronics industry. Emphasis on the interactions among the technical, social, and ideological dimensions of technology. Consult J. Howe.

21.506J Seminar on Technology and Development
(Same subject as 17.330J, 22.94J)
Prereq.: —
G (2)
3-0-9
See description under subject 17.330J.
N. Choucri

21.507 Human Origins and Adaptations
Prereq.: —
U (1)
3-0-6
Examines the dynamic interrelationships among physical and behavioral traits in humans and environment, culture, and social practices to provide an integrated framework for studying human biological diversity. Topics: issues in evolution and adaptation; fossil and cultural evidence for human evolution from earliest times through the Pleistocene; evolution of tool use, social behavior and organization; territoriality and aggression; sex roles; concepts of race. Consult S. P. DeAtley.

21.511 Magic, Shamanism, and Witchcraft: The Dynamics of Belief and Practice
Prereq.: —
U (1)
3-0-9
A look into several interrelated aspects of the anthropology of religion, especially those often considered "irrational" or typical of "primitive mentality": witchcraft and sorcery, magic and divination, magical curing, shamanism and hallucinogens, messianic movements, and the origins of new religions. Material drawn from non-western societies, the European past, and contemporary industrial society. Consult J. Howe.

21.512 Myth, Ritual, and Symbolism
Prereq.: —
U (2)
3-0-6
Introduction to the forms and uses of symbolism in traditional and modern society. Attention focused on what symbols do in politics and social life, as well as on the structure of symbol systems. Practice in direct analysis of myths and rituals. Theories of symbolism, their relevance to practical concerns and to the central issues of social science. Consult S. Traweek.

21.513 Religious Movements and Social Change
Prereq.: —
U (1) HUM-D
3-0-6
New religions and religious movements, the conditions that inspire them, their effect on society. Messianism, apocalypse, revelation, cults, schismatic and unorthodox sects, nativism, revitalization, revivalism. Examples from the US (revivalism, communal sects, cults), from Europe (medieval heresies and messianism), and from third world societies (the Iroquois Handsome Lake Religion, the Ghost Dance, Cargo Cults, military messiahs). Consult J. Howe.

21.520 Mexican Society and Development
Prereq.: —
U (2)
3-0-6
Post-Conquest Mexico in its effort to modernize against the background of ancient civilization and present multi-cultural structure. Major historic transitions (Independence, Reform, Revolution) studied for impact on pluralistic society. Human diversity viewed both as a resource and a factor constraining development. Recent economic and political situations (petroleum revenues, Mexican Food System) also considered.
M. Diskin

21.521 Central American Society (New)
Prereq.: —
U (1)
3-0-6
Modern Central America in anthropological and historical perspective. Land, population, and agrarian relations. Class structure and nationalism. Native peoples and international conflict. Plantation economy, dependency, and intervention. Revolution and repression. M. Diskin

21.541J The Archaeology of Technology
(Same subject as STS 400J)
Prereq.: —
U (1) Next offered 1985-86
3-0-6
Technologies of ancient and pre-industrial societies as revealed by excavation, scientific analysis of artifacts, ethnography. Case studies of technologies include cloth production among the Inca, building in imperial Rome, Iron Age metallurgy of East Africa. Comparisons to illuminate interactions of technologies with cultures; the role played by materials processing, labor organization, and ideology in the development of industries; the formation of technological styles.
H. N. Lechtman

21.542 Culture and the Visual Arts
Prereq.: —
U (1) HUM-D Next offered 1985-86
3-0-6
An anthropological perspective on the visual arts focusing on the arts as cultural media and as nonverbal means of social communication and continuity. Material presented in case study format, including visual arts of small-scale, non-Western societies, imperial arts of the Inca and Roman states, and contemporary art of the US.
H. N. Lechtman

21.543 Mathematics and Computers in Archaeological Data Analysis
Prereq.: Permission of Instructor
G (1, 2) Next offered 1985-86
2-4-3
Lecture-laboratory subject offered by the Center for Materials Research in Archaeology and Ethnology. Applies mathematical, statistical, and computer science techniques in the analysis of archaeological data. Includes elementary probability theory, logic of scientific induction, research design and sampling techniques, multivariate methods of data analysis, computerized data files. At least one prior college-level course in statistics or computer science is desirable. Senior undergraduates may enroll after consultation with the instructor. Consult H. N. Lechtman.
21.544 Biological Materials in Ancient Societies
Prereq.: Permission of Instructor
G (1, 2)
3-6-3
Seminar-laboratory subject offered by the Center for Materials Research in Archaeology and Ethnology. Role of materials and technologies in the development of ancient societies; major focus on scientific analysis of archaeological artifacts. The major focus of the seminar and laboratory is the scientific analysis of plant and animal remains found in archaeological sites, and how these remains are used to reconstruct past diets, economies, human environments, and climates.
F. Wiseman

21.546 The Archaeology of Industrial Revolutions
Prereq.: —
U (2) Next offered 1985-86
3-3-3
Cross-cultural inquiry into the process of industrialization, considering the varieties of technological innovation and community formation at manufacturing sites in the European Middle Ages, 18th-century Britain, and the New World (Colonial, Post-Revolutionary). Discusses the theory and practice of industrial archaeology as a human science; case studies; fieldwork at key industrial sites; the relation of industrial archaeology to museums, public agencies, private enterprise, and historic preservation. Consult A. Steinberg.

21.547J History and Anthropology of Materials Technology
(New)
(Same subject as 3.17J)
Prereq.: —
U (1)
3-0-6
See description under subject 3.17J.
H. N. Lechtman, L. W. Hobbs

21.550 The Ancient Andean World
Prereq.: —
U (1)
3-0-6
Examines development of Andean civilization which culminated in the extraordinary empire established by the Incas. Archaeological, ethnographic, and ethnohistorical approaches. Particular attention to the unusual topography of the Andean area, its influence upon local ecology, and the characteristic social, political, and technological responses of Andean people to life in a topographically "vertical" world. Characteristic cultural styles of prehistoric Andean life.
H. N. Lechtman

21.551 The First Americans
Prereq.: —
U (2)
3-0-6
Indian cultures in North America from Paleolithic-Indian entry into the New World over 10,000 years ago to European contact. Includes: Pleistocene Paleo-Indian big game hunters; development of regional differences among Indian groups; major pre-Columbian cultures (e.g., Southwestern Cliff Dwellers, Southeastern Moundbuilders); art and ritual (e.g., rock art, ancient astronomy); relation of prehistoric Indian cultures to modern Indian groups. Consult F. Wiseman.

21.552 Origins of Civilization — The Aztec, Maya, and their Ancestors
Prereq.: —
U (1) Next offered 1985-86
3-0-6
Ancient societies of Mexico and Central America, from the earliest times to the Aztec and Maya in 1500 AD. Emphasizes understanding major changes in human life in the New World, the origin of complex societies from simple beginnings. The change from gathering to agriculture, evolution of corn from wild grasses. Origin of pottery, other technological innovation. Origin of cities, states, and empires.
F. Wiseman

21.553 Origins of Civilization — Middle East
Prereq.: —
U (2)
3-0-6
Focus on the rise of cities and empires in various areas of the Middle East including Anatolia, the Levant, Mesopotamia, and Iran. Using archaeological and written sources, examines why such complex societies arose in this area. Considers the role of temples and religious hierarchies, of crafts and trade in luxury goods, of writing and bureaucracies, of class stratification, in the rise of early empires.
A. Steinberg

21.554 Origins of Civilization — Egypt
Prereq.: —
U (1) Next offered 1985-86
3-0-6
Egypt was the home of one of the first and most spectacular civilizations in the world. Focuses on how that civilization developed. Traces Egypt's past from its first inhabitants through the reign of the Pharaohs with special emphasis on 1) how complex political systems evolved from the simple villages of predynastic days, and 2) how agriculture developed in the Nile Valley and how it contributed to the growth of civilization. Also considers the development of religion, art, and writing systems. Consult A. Steinberg.

21.555 Origins of Civilization — China
Prereq.: —
U (2)
3-0-6
The emergence of one of the world's longest lived "great societies" viewed through both the archaeological and documentary evidence. Topics: evolution of the state; place of various technologies in the perpetuation of a ruling elite; forms of urbanization; feudalism; imperial unification of China; evolution of the social order, the role of the scholar-officials and Confucianism; the influence of "barbarians" on the shape of the empire. Visits to local museums, oral reports included in class work. Consult A. Steinberg.

21.559 The Decline of Empires
Prereq.: —
U (1)
3-0-6
After examination of basic institutions and processes of empires from modern sociological literature and recent examples, we derive some generalities about how and why empires disintegrate. Considers frontiers, military power, bureaucracy, ruling elites, religions, population growth, raw materials and markets, and urbanization. Generalities tested against examples chosen from ancient and medieval times including Persia, Greece, Rome, Byzantium, and China.
A. Steinberg

21.581J The Family in Contemporary Society
(Same subject as SP 456J)
Prereq.: —
U (2) HUM-D
3-0-6
The family from an anthropological perspective; emphasis on present day society with some consideration of historical and cross-cultural data on family structure. Topics: origins; sex and marriage; childhood; psychodynamics; influence of class and ethnicity; work; the family in the larger society; the future. Considers the family as a factor in human evolution, as personal history, as institution, and as cultural and political symbol. Consult S. Traweek.

21.583 Language and Culture
Prereq.: —
U (1) Next offered 1985-86
3-0-6
Introduction to the study of those aspects of language which have been of special interest to anthropologists and sociologists. A survey of the concerns of anthropological linguistics with particular emphasis on their implications for the study of language itself. An examination of a particular language in relation to various aspects of its cultural and social setting and to the intellectual life of its speakers.
J. E. Jackson
21.584 Agrarian Society
Prereq.: —
U (2) HUM-D
3-0-6
Rural society and culture in three epochs, ancient, medieval, and modern. Central focus on contemporary peoples; background and perspective from ancient (Mesopotamia, Mexico, Greece, China) and feudal cases. Emphasizes rural-urban relations, state control of labor, political rights, religion, and land. Community and family structure, religious ideology, value systems. Agrarian social movements from millenarian uprisings to peasant revolution.
M. Diskin

21.585 American Communes and Utopias
Prereq.: —
U (2)
3-0-6
Examines the communal movement of the 19th and 20th centuries through case studies of Shaker, Oneida, Hutterian, Mormon, and several modern planned communities, rural and urban, religious and secular. Issues include: philosophical underpinnings; architecture; degree of economic sharing; sexual, marital, and family arrangements; private and communal spheres; government; religion; relations with the larger society.
J. E. Jackson

21.586J Sex Roles: A Comparative Perspective
(Same subject as SP 455J)
Prereq.: —
U (1)
3-0-9
Examines sex roles and sex identity in our own and other societies. Both universals and variability relating to socially and biologically given sex and gender roles examined, as well as various theorists who have addressed these issues in the past (e.g., Marx, Engels, and Freud) and in the present. Topics: child rearing in cross-cultural perspective, the sexual division of labor, sexual power and authority, family psychodynamics, and sexual symbols in ritual. Consult J. E. Jackson.

21.587 Organizing Modern Society
Prereq.: —
U (1)
3-0-6
Anthropological approaches to understanding the groups and organizations in which the members of modern societies live and work. Corporations, bureaucracies, families, political parties, factions, networks, followings. Comparison of modern industrial societies, especially Japan and the US. Topics: how work groups develop distinctive cultures, how groups train and socialize new members, how elites maintain their privileges and hierarchies.
S. Traweek

21.589J Anthropology of Industrial Society
(Same subject as STS 500J)
Prereq.: —
U (2)
3-0-6
Overview of anthropological studies of the US, Japan, and other industrial societies. Topics: the modern corporation, the defense, research, and service industries, the modernization of agriculture, and the effects of industrialization on small towns and rural communities. Emphasizes the relationship of self, family, community, and work in industrial societies, especially at times of crisis.
S. Traweek

21.594J Camera and Culture
(Same subject as STS 625J)
Prereq.: —
U (2) Next offered 1985-86
3-0-6
See description under subject STS 625J.
S. Traweek

21.598 Special Topics in Anthropology/Archaeology
Prereq.: Any two subjects in Anthropology or Archaeology
U (1)
Arr.
21.599 Special Topics in Anthropology/Archaeology
Prereq.: Any two subjects in Anthropology or Archaeology
U (2)
Arr.
Topics in anthropology or archaeology not included in other subjects. Students electing this subject must secure the approval of the chair of the Anthropology/Archaeology Program. Normal maximum is 6 units; to count toward Humanities Requirement, 9 units are required. Exceptional 9-unit projects occasionally approved. Consult A. Steinberg.

21.60 Listening to Music
Prereq.: —
U (1, 2) HUM-D
3-0-6
Aims to develop analytical hearing and the ability to discern different historical styles and forms. Written fundamentals taught, but emphasis on aural perception of the musical experience. Historical development of the chief styles of western art music examined through selected works by major composers. Guide to individual instructors' methods available from Music Section office, 14N-434. Coordinator: M. Howe.

21.601 Fundamentals of Music
Prereq.: —
U (1, 2)
3-3-3
Study of fundamental concepts and basic vocabulary of rhythm, melody, and harmony with particular emphasis on sight-singing and dictation. In support of this, a minimum of three laboratory hours in aural, keyboard, or sight-singing included.
S. Erdely, C. Von Canon

21.602 Basic Musicianship
Prereq.: —
U (1, 2)
3-2-4
An integrated approach to basic musicianship, which aims at deepening students' understanding of fundamental musical processes. Work includes many kinds of listening exercises, group sight-singing, in-class instrumental performance, and a keyboard laboratory for elementary score reading and beginning keyboard harmony. Intended for students who are familiar with notation and have some instrumental/listening experience. Students with considerable experience in performance and basic theory should try to begin with 21.641.
J. Coppock, M. Howe
Humanities 197D

21.605 Exploring Musical Structure

Prereq.:
- U (2)
- 3-0-6

Investigates fundamental musical structures and helps students develop their abilities to hear what gives music its coherence. Beginning with close analyses of relatively short musical compositions in various styles, students use these as models for their own experiments with pitch-time relations through the use of the LOGO computer music system. Consideration given to the underlying cognitive structures which inform and shape musical perception as well as the role of “language of description” in this process. Limited to 15.

J. S. Bamberger

21.615 Musical Acoustics

Prereq.:
- U (1, 2)
- 3-0-6

A qualitative and introductory treatment of psychological and physical aspects of musical perception and music production. Elements of psychophysical literature on perception of loudness, pitch, timbre, and rhythm are covered. Physical principles of chordophones, aerophones, and idiosyns studied. Acoustical properties of rooms and concert halls, and criteria for their proper functioning discussed. Some electronic applications to music, such as sound recording and reproduction, electronic sound generation, and analog and digital sound synthesis surveyed. Consult B. L. Vercoe.

History/Literature

21.621 Western Music to 1750

Prereq.: Permission of Instructor
- U (1) HUM-D
- 3-0-6

European art music from its foundation in antiquity through the Christian Middle Ages, the Italian Renaissance, and the Baroque. Written assignments offer the opportunity to write about the music itself and about topics in the history of musical style.

L. E. Lindgren

21.622 Western Music after 1750

Prereq.: Permission of Instructor
- U (2) HUM-D
- 3-0-6

A chronological survey of European art music during the Classic, Romantic, and Modern periods. Compositions analyzed in detail, and placed within their historical context. Most written assignments analyze musical works, hence score-reading ability is helpful.

L. E. Lindgren

21.623 Non-Western Music (New)

Prereq.:
- U (1)
- 3-0-9

A study of the major non-western musical traditions, such as those of Arabia, Persia, North and South India, Africa, Java, Bali, China, and Japan with major emphasis in one of these each year. Music examined in its own terms as well as in its cultural context. Guest lectures/performances. Topic for 1984-85: Music of Africa.

D. Locke

21.625 Vivaldi, Bach, and Handel

Prereq.: Permission of Instructor
- U (1) HUM-D Next offered 1985-86
- 3-0-6

Representative works of three great composers who wrote at the culmination of the Baroque era in music are examined and related both to compositions by their precursors and societal and intellectual developments of the time in Italy, Germany, and England. Score-reading ability helpful.

L. E. Lindgren

21.626 Haydn, Mozart, and Beethoven

Prereq.: Permission of Instructor
- U (2)
- 3-0-6

A study of musical life during the second half of the 18th and early 19th centuries through representative works of these composers. Emphasis on harmonic, melodic, and structural development in relationship to intellectual, artistic, and social patterns of the period. Required reading and listening assignments.

J. L. Buttrick

21.627 Schubert to Mahler

Prereq.: Permission of Instructor
- U (1)
- 3-0-6

A survey of the principal developments in musical style during the 19th century. Works for consideration in weekly class discussions drawn from the music of Beethoven, Schubert, Schumann, Brahms, Berlioz, Chopin, Liszt, Wagner, Verdi, Richard Strauss, and Mahler. Required reading and listening assignments.

R. Vazquez

21.628 Twentieth-Century Music

Prereq.: Permission of Instructor
- U (2)
- 3-0-6

A survey of major musical trends that evolved in our century. Begins with Debussy, Strauss, Reger, and the post-Romantic and Impressionistic movements in music, continues with the 12-tone school of Schoenberg, the Neo-Classical and Folklorist trends as represented in the works of Stravinsky, Bartok, and Kodaly, and concludes with related movements embodied in the compositions of Milhaud, Hindemith, Prokofeff, Copland, Sessions, Stevens, and composers now active in the Boston area.

J. H. Harbison

21.631 Symphonic Music

Prereq.: Permission of Instructor
- U (1) HUM-D
- 3-0-6

The evolution of symphonic forms from the Baroque to the 20th century. Special attention focused on the works of Haydn, Mozart, and Beethoven. Recordings and opportunities to hear live performances augmented by class discussion.

S. Erdely

21.632 Chamber Music

Prereq.: Permission of Instructor
- U (1) Next offered 1985-86
- 3-0-6

A survey of the literature for various single-instrument-per-part combinations of strings, winds, keyboard, and voices. Focus through papers and recordings on history, influences, structure, and changing performance practices. Where possible, live performances in class by students, guests, and MIT Chamber Players.

M. A. Thompson

21.633 Theater Music (Revised Content)

Prereq.:
- U (2)
- 3-0-6

A survey of opera and Broadway musicals which concentrates on works by Mozart, Verdi, Wagner, Rodgers, and Sondheim. Focus on the changing ways in which music has interpreted and enriched dramatic texts.

L. E. Lindgren

21.634 Film Music (New)

Prereq.:
- U (2)
- 3-0-6

First half a chronological survey of musical style in American and European films up to the 1960s. Second half a series of interrelated topics: theories of film music, musicals, documentaries, experimental films, recent decades, and the relationship of film music to opera and ballet. Listening and reading assignments, weekly screenings. No musical background necessary, but score-reading ability helpful.

M. Marks

21.635 American Music

Prereq.: Permission of Instructor
- U (1) HUM-D
- 3-0-6

First half focuses on the role of music in North American society (especially the Boston area) during the 18th and 19th centuries. Second half surveys the music of 20th-century North America, including “classical,” Broadway show, film, and popular music, but excluding jazz.

L. E. Lindgren
Historical survey beginning with early jazz, Joplin, Morton, Armstrong, Smith; continuing with a study of the Ellington, Basie, Goodman, and Herman bands; and concluding with a number of individual performers — Parker, Rollins, Monk, Holiday, Gillespie, Mingus, Davis — and some recent developments in writing and playing. Examination of jazz source music: early blues, spirituals, show tunes. Some investigation of jazz-derived musics: post-World War II pop and rock.
M. Harvey

Theory/Composition

21.641 Harmony and Counterpoint I
Prereq.: 21.601 or 21.602
U (1, 2) HUM-D Next offered 1985-86
3-0-6
Basic writing skills in music of the common-practice period (Bach to Brahms). Work includes regular written assignments leading to the composition of short pieces, analyzing representative works from the literature, keyboard laboratory, and sight-singing choir.
E. Cohen, J. Coppock, Staff

21.642 Harmony and Counterpoint II
Prereq.: 21.641
U (1, 2)
3-3-6
A continuation of Harmony and Counterpoint I, including chromatic harmony and modulation, more elaborate contrapuntal textures, keyboard laboratory, and sight-singing choir.
E. Cohen, Staff

21.643 Writing in Tonal Forms
Prereq.: 21.642
U (1, 2)
3-0-6
Written and analytic exercises based on 19th-century small forms and harmonic practice found in music such as Schubert Ländler and songs, Schumann small piano pieces and songs, and Chopin Preludes and Mazurkas.
E. Cohen

21.644 Advanced Writing
Prereq.: 21.643
G (1, 2)
3-0-6
A study of compositional procedures during the early years of the 20th century. Emphasis on written and analytical exercises of music which make use of elementary set operations as found in selected Debussy Preludes and Bartok Mikrokosmos, and the early atonal works of Schoenberg and Webern. Students expected to attend the weekly graduate seminar in composition.
E. Cohen

21.648 Jazz Harmony and Arranging
Prereq.: 21.602, 21.636
U (2)
3-0-6
Basic harmony for students interested in acquiring practical skill in nonclassical music; also includes required listening, mainly jazz, as background for the written work. Serves as preparation for more advanced work in jazz and rock arranging and in the composition of popular songs. Permission of instructor required.
M. Harvey

Performance

Each of the following subjects earns six units. A total of 12 units is needed for a subject to count toward Institute Requirements in Humanities and Social Sciences, by routine petition to COC.

21.651 Vocal Repertoire and Performance (New)
Prereq.: —
U (1, 2)
2-2-2

21.652 Vocal Repertoire and Performance (New)
Prereq.: —
G (1, 2)
2-2-2
For the young singer interested in the study and performance of the vocal literature with special attention to diction and literary skills, and vocal technique. Each term includes music in one foreign language (e.g., German, French) as well as in English. Membership in the MIT Choral Society (without credit) is required. May be repeated for additional credit.
J. S. Oliver

21.653 MIT Choral Society (Revised Content)
Prereq.: —
U (1, 2)
2-2-2
Rehearsal and performance of choral repertoire through participation in the MIT Choral Society. Four additional meetings (TBA) devoted to the analysis of the music in preparation. Each term covers music from a different style. May be repeated for additional credit.
J. S. Oliver

21.655 Chamber Music Society (Revised Content)
Prereq.: —
U (1, 2)
0-3-3
Study of chamber music literature through analysis, rehearsal, and performance. Weekly seminars and coaching. Open to string, piano, brass, and woodwind players, and MIT students of early music in the Wellesley College. By audition. May be repeated for additional credit.
M. A. Thompson, J. L. Buttrick, M. Howe

21.657 MIT Symphony (Revised Content)
Prereq.: —
U (1, 2)
0-3-3
An option available to members of the MIT Symphony Orchestra, in which particular rehearsals are committed to the analysis of works in rehearsal and preparation for performance by the orchestra. Readings of scores of particular structural or stylistic interest. May be repeated for additional credit.
D. M. Epstein

21.658 Advanced Music Performance (New)
Prereq.: —
U (1, 2)
1-2-3

21.659 Advanced Music Performance (Revised Content)
Prereq.: —
G (1, 2)
1-2-3
Open by audition to students who demonstrate considerable technical and musical skills and who wish to develop them through intensive private study. Students must take a weekly lesson, attend a regular performance seminar, and participate without credit in an MIT ensemble. Full-year commitment required. May be repeated for credit.
M. A. Thompson, J. L. Buttrick
Seminars/Tutorials

21.661 Beethoven
Prereq.: 21.642
G (1) Next offered 1985-86
3-0-6
For students with a basic knowledge of harmony, counterpoint, and score reading. Background in serious instrumental study also desirable. Examines the evolution of Beethoven’s thematic, harmonic, and structural style through a close study of his works. Looks at how he was viewed by his contemporaries, and at the changing comprehension of his music in the past 175 years. Readings, class and concert performances, both student and professional.
J. L. Buttrick

21.665 Advanced Musical Analysis
Prereq.: 21.642 G (1) 3-0-6
Study of differing concepts of musical structure and organization and the role of structure in musical perception, coherence, and comprehension. Factors that provide compositional unity and uniqueness, and the role of time in musical structure (tempo, rhythm, meter) also examined extensively. Study of scores, listening to recordings, readings, and a research paper constitute out-of-class work. Permission of instructor required.
D. M. Epstein

21.666 Cognitive Aspects of Musical Development and Learning (A)
Prereq.: Background in music theory, some familiarity with cognitive psychology G (1) 3-0-3
Cognitive developmental processes related to musical understanding, including the interactions among perception, cognition, and representation. Comparisons made between "figural" and "formal" internal representations and their relations to languages for describing musical structure, e.g., in music theory and in computational systems. The relation of cognitive development in music to cognitive development in other domains.
J. S. Bamberger

21.666 Structure of Musical Time
Prereq.: Permission of Instructor G (2) 3-0-6
Study of musical time in its structure, affect, articulation, pacing, interaction with pitch. A multifaceted focus, interdisciplinary in nature. Approached from a number of viewpoints: theoretical questions of music structure per se; experiments in perception, cognition, and learning; aspects of physiology and neurology; and the relation of all these to musical expression and affective response. Research projects, discussions, and reports. Background in music theory necessary.
D. M. Epstein

21.667 Research Methods of Oral Music
Prereq.: Permission of Instructor G (2) 3-0-6
Examines methods for documentation and analysis of orally transmitted music, beginning with the preparations for fieldwork and methods of recording, and continuing through transcription, classification, and analysis of the material for its historical and humanistic significance.
S. Erdely

21.668 Digital Music Processing (A)
Prereq.: 21.642, 21.615 G (1) 3-0-5
B. L. Vercoe

21.671 Writing for Computer Performance (A)
Prereq.: 21.643, 21.671 G (2) 3-0-6
For those whose writing of music reaches a point where they can exploit digital audio as a new performance medium. Continues audio processing techniques, for realizing an original composition by end of term. Examines representative works, and stylistic relation between instrumental and electronic writing. Methods of integrating these media, as found in works of Davydovskiy and Boulez. Directed composition of an original computer-synthesized work, and preparation for its performance in an end-of-term public concert.
B. L. Vercoe

21.672 Computer Music Composition (A)
Prereq.: 21.671 G (1, 2) 3-0-3
Directed composition of larger forms of original writing using computer-processed sound, to be performed either alone or with voices and/or instruments. Includes a weekly seminar in composition for the examination of major works from 20th-century music literature and for the presentation and discussion of student works in progress. Students expected to produce at least one substantive work, performed in public, by the end of the term. Open to qualified undergraduates. May be repeated for credit.
B. L. Vercoe

21.681 Music Composition (A)
Prereq.: 21.644 G (1, 2) 3-0-9
Directed composition of larger forms of original writing involving voices and/or instruments. Includes a weekly seminar in composition for the examination of major works from 20th-century music literature and for the presentation and discussion of student work in progress. Students expected to produce at least one substantive work, performed in public, by the end of the term. Open to qualified undergraduates. May be repeated for credit.
J. H. Harbison

21.682 Research in Music
Prereq.: Any two subjects in Music U (1, 2) Arr.
Opportunity for advanced study of musical topics not covered by the regular subject listings. Includes experimental subjects offered by permanent and visiting faculty. Students seeking an individual program of study with a particular faculty member must also obtain the approval of the chairman of the Music Section. J. H. Harbison, Staff

21.691, 21.692 Special Topics in Music
Prereq.: Permission of Instructor 3-0-9
Open to qualified students who wish to pursue special studies or projects with members of the Music Section. Students electing this subject must secure the approval of the chairman of the Music Section and the Dean of Humanities and Social Science. Humanities credit for Special Topics subjects awarded only by individual petitions to the Committee on Curricula. Normal maximum is 6 units; to count toward Humanities Requirement, 9 units are required. Exceptional 9-unit projects occasionally approved.
Staff

21.693, 21.694 Advanced Topics in Music (A)
Prereq.: Permission of Instructor G (1, 2) Arr.
Opportunity for advanced study of musical topics not covered by the regular subject listings. Includes experimental subjects offered by permanent and visiting faculty. Students seeking an individual program of study with a particular faculty member must also obtain the approval of the chairman of the Music Section. J. H. Harbison, Staff

21.695-21.699 Special Topics in Music
Prereq.: 21.671 G (1, 2, S) Arr.
Directed research on problems occurring in the production, perception, or cognition of music, aided by the techniques and discipline of science and engineering. Individual or group work. Available also to research assistants for non-thesis work. May be repeated for credit with permission. Coordinator:
B. L. Vercoe
Theater and Dance: Performance

21.700 Acting I
Prereq. —
U (1)
3-0-6
Basic acting techniques, using video as an integral aid. Exercises, improvisations, theatre games, supplemented by readings and a weekly journal, to explore the fundamentals of role and enactment. Students are expected to work towards the performance of some role, in a scene in class. Graded Pass/Fail. Consult R. N. Scanlan.

21.701 Acting II
Prereq. 21.700
U (2)
3-0-6
Extension and application of basic acting techniques established in 21.700 (or equivalent acting experience) leading to a total methodology for preparation and the final playing of scenes. Exercises, improvisations, theatregames applied to more detailed scene study and character development. Exercises in specific stage techniques, movement, voice and mime. 21.700 or equivalent acting experience required. Graded Pass/Fail. Consult R. N. Scanlan.

21.702 Theater Arts: Elementary Stagecraft and Production Studies (Revised Content)
Prereq. —
U (1)
3-0-6
Lectures and tutorial discussions cover the areas of lighting design, set design, costuming, make-up, properties, theater sound, and elements of acting and directing. Each class member undertakes two projects in the fall schedule of Dramashops' one-act production under the supervision of a member of the Drama Program staff. Written reports, interpretation of the plays, and reviews of outside performances supplement the practical theater work. Satisfies the practicum requirement of a Drama concentration. Consult R. N. Scanlan.

21.703 Performance Workshop in Drama (Revised Content)
Prereq.: 21.702
U (2)
3-0-6
A seminar focusing on script interpretation, directing technique, and production planning. Readings in Aristotelian dramatic theory precede detailed study of several plays to acquire facility in analyzing dramatic form and discerning the underlying action pattern that gives shape to a play. Class discussion and directed scene work lead to the detailed planning of a specific theater production. Readings in dramatic theory, oral class presentations, and one major paper required. R. N. Scanlan

21.704 Performance Workshop in Dance
Prereq. —
U (1, 2)
3-4-2
Focuses on modern dance theory, technique, and improvisation composition. Combines study of dance aesthetics with studio work to introduce students to the variety of contemporary dance. Improvisation composition sessions acquaint students with their own movement vocabularies and develop improvisational exercises into specific choreographic assignments, some of which are included in informal performances at the end of each term. Relevant readings assigned; one paper required. B. Soli

21.705 Special Topics in Drama
Prereq. —
U (1, 2)
Arr.
Designed to allow students to pursue topics of individual interest under the supervision of a member of the Program in Theater and Dance. Requires the approval of the Dean of the School of Humanities and Social Science. Normal credit maximum: 6 units. Students who wish to use Special Topics for Humanities credit must register for 9 units and file a petition, approved by the Dean of the School of Humanities and Social Science, with the Committee on Curricula. Consult R. N. Scanlan.

21.706 Special Topics in Dance
Prereq. —
U (1, 2)
Arr.
Designed to allow students to pursue topics of individual interest under the supervision of a member of the Program in Theater and Dance. Requires the approval of the Dean of the School of Humanities and Social Science. Normal credit maximum: 6 units. Students who wish to use Special Topics for Humanities credit must register for 8 units and file a petition, approved by the Dean of the School of Humanities and Social Science, with the Committee on Curricula. B. Soli

Traditions and Texts

Traditions and Texts is a special interdisciplinary program of humanities subjects. Each subject involves the close examination of original texts, intensive classroom discussion, and the writing of analytical papers. The Bible (21.708) and The Greeks (21.709) are considered foundation subjects. It is recommended that one or both of them be taken before other subjects in this program.

21.708 The Bible
Prereq. —
U (1, 2) HUM-D
3-0-6
An introduction to major Biblical texts including Genesis, Exodus, Job, the prophetic and historic books of the Old Testament, the Gospels and Epistles. Stresses the place of the Bible as foundation-text for central religious, political, social, and ethical ideas in Western culture. Comparative readings in related traditions (Canaanite, Egyptian, Gnostic). Examination of selected instances of the Biblical tradition in later art, music, literature. Limited enrollment. Term 1: P. S. Donaldson, T. R. Merritt Term 2: R. E. Jones, A. Steinberg

21.709 The Greeks
Prereq. —
U (1, 2) HUM-D
3-0-6
Close study, through translations, of major ancient Greek texts: Iliad or Odyssey, tragedy and comedy, history, philosophy. Focus on the historically changing perceptions of human excellence, justice, and the locus, individual and/or collective, of human salvation — if any. Collateral attention to standards of beauty embodied in Greek art and architecture (slides and Boston Museum of Fine Arts). Limited enrollment. Term 1: D. M. Halperin Term 2: H. A. T. O. Reiche

21.710 The East Asian Tradition: Past and Present
Prereq. —
U (1) HUM-D Not to be offered 1985-86
3-0-6
Examines major documents defining the traditions of East Asia (China, Japan, Korea, and Vietnam). Texts examined include philosophical, religious, literary works (classical and popular), and important social documents. Emphasizes China, with examples from Japan. Readings include Confucius, Lao Tzu, popular novels, magistrate's casebooks, peasant rebel literature, and discussion of China's response to the West. P. C. Perdue
21.711 The Islamic Tradition: Past and Present
Prereq.: —
U (2) HUM-D Next offered 1985-86
3-0-6
Examines the way Muslims, from Morocco to Indonesia, have interpreted their tradition through literary, historical, and scientific writings, and art forms. Topics: Islam's absorption of foreign cultural traditions, their modification and transformation; orthodoxy vs Shi'ism, Sufism; the "decline" of civilization thesis; Islamic modernism's response to the rise and expansion of the West; the West's view of Islam through the literature of Orientalism, and its critiques.
P. S. Khoury

21.712 The Romans
Prereq.: —
U (2) HUM-D Next offered 1985-86
3-0-6
"Humanism" as an attempt by Rome's leaders to reconcile their tradition of public service to Senate and empire with the intellectual and moral sophistication of Greek culture. Time frame: the century from Scipio the Younger to Augustus. Special emphasis: Cicero's oscillation between Pompey and Caesar. Extensive readings in Cicero, Caesar, Plutarch, and Lucretius.
H. A. T. O. Reiche

21.713 Major Medieval Texts
Prereq.: —
U (1) HUM-D Next offered 1985-86
3-0-6
Close examination of representative texts from the diverse cultures of Western Europe during the long period that built the foundation of a common European civilization. Selects examples from the Gospels and the letters of Paul, biography and autobiography, epic poetry, history, and theology. Seeks to understand the nature of spiritual life as revealed through the major texts of medieval Europe.
W. B. Watson

21.714 The Renaissance and Reformation
Prereq.: —
U (2) HUM-D
3-0-6
Relationships between society and ideas in northern Europe during a century of acute social conflict, intellectual controversy, and uncommon creativity in nearly every area of thought and imagination. The process of reformation and rebirth examined in both religious and secular contexts. Readings from both "high" culture and "low" — Thomas More, Erasmus, Luther, Calvin, Rabelais, and Montaigne as well as from anonymous tracts and novels.
R. M. Douglas

21.715 The Enlightenment
Prereq.: —
U (1) HUM-D Next offered 1985-86
3-0-9
Builds an historical sense of the period in Europe when science was new and rationalism was posing the first serious threat to Christian philosophy, when the first glimmerings of industrialization were restructuring class lines, and when rising literacy and improved printing procedures were making books more and more a part of everyday life. A study of the intellectual and artistic developments of the period: Descartes, Pascal, Hobbes, Locke, Pope, Swift, Handel, Voltaire, Lamettrie, Hogarth.
R. Perry

21.716 Romanticism
Prereq.: —
U (2) HUM-D Next offered 1985-86
3-0-6
Studies shifts in Western consciousness during the late 18th and 19th centuries reflected in aesthetic, intellectual, and psychological responses to social and political changes in Europe. Careful reading of historical, literary, and philosophical texts; complemented by study of parallel developments in painting, architecture, and music. Readings from Kant, Rousseau, Schiller, Wordsworth, Byron, Goethe, Carlyle, and Stendhal.
T. R. Merritt

Prereq.: —
U (2) HUM-D Not to be offered 1985-86
3-0-9
Role of the individual and the artist in modern society dominated by politics, war, and technology. Topics: reactions to 19th-century values; and especially those of Marx and Freud; role of myth; concepts of illusion and reality; sexual revolution and its implications; new humanism in art, music, philosophy, and literature. Authors read: Dinesen, Breton, Gropius, Marinetti, Gide, Proust, Pirandello, Jung, Giraudoux, O'Neill, Joyce, Eliot, Kafka, Malraux, Brecht, Beckett, Lawrence, Lessing, and Sartre.
W. Watson

21.718 The Americans
Prereq.: —
U (1) HUM-D
3-0-9
A. D. Kaledin

21.730 Expository Writing
Prereq.: —
U (1, 2)
3-0-6
For students who wish to write correct, clear, and effective prose. Attention to constructing effective sentences and paragraphs. Weekly writing assignments. Students' writing is discussed frequently in class. Readings include essays that exhibit a wide range of rhetorical techniques. Satisfies Phase I of the Writing Requirement.
M. Richardson, Staff

21.731 Writing and Experience
Prereq.: —
U (1, 2)
3-0-6
Students study the mechanisms by which fiction writers, essayists, and poets transform their experience into scenes, voices, and arguments. Attention given to sentence mechanics, paragraphing, punctuation, and word choice. In weekly workshops, students present their writing to members of the group, and extensive revising is required. Satisfies Phase I of the Writing Requirement.
E. Chodakowska, Staff

21.732 Introduction to Technical Communication
Prereq.: —
U (1, 2)
3-0-6
Students intensively review the elements of sentence and paragraph structure; special problems in organizing and condensing technical information; and strategies for writing technical descriptions, definitions, classifications, and analyses. Other topics include writing to
different audiences and preparing brief proposals, lab reports, and graphics. Several short writing assignments, frequent revisions, and two short oral presentations required. Satisfies Phase I of the Writing Requirement.

J. Paradis, M. Zimmerman, Staff

Intermediate

21.735 Writing and Reading the Essay
Prereq.: —
U (1, 2) HUM-D
3-0-9
Examination of how to write formal and informal essays. Extensive practice in composition, revision, and editing; wide reading in the literature of the essay form from the Renaissance to the present. Discussion-workshop class style: weekly discussion of student work; study of examples from published works; frequent conferences. Central concerns are possibilities and techniques of the essay; historical forms such as sermons, meditations, diaries, letters, polemics.

B. Avishai, H. Ritvo, Staff

21.738 Words
Prereq.: —
U (2)
3-0-6
Designed to increase appreciation of the verbal resources of English and improve skill in exploiting them. Considers such topics as the historical roots of the modern vocabulary, specialized and technical vocabularies, socially loaded language, the connection between word choice and tone, words as symbols. Regular written assignments stress the way that ideas are shaped by words.

H. Ritvo

21.740 Writing Autobiography and Biography
Prereq.: —
U (2)
3-0-6
Writing autobiography is used as a vehicle for improving style and studying the nuances of the language. Literary works are read with an emphasis on different forms of autobiography (essay, fiction, etc.). Class examines various stages of life, significant transitions, personal struggles and memories translated into narrative prose, and discusses: 1) what it means for autobiographer and biographer to develop a personal voice; 2) the problems of reality and fiction in autobiography and biography. Students write in either or in both modes.

E. Chodakowska

Advanced

21.745 Advanced Essay Workshop
Prereq.: —
U (2)
3-0-9
For students with experience in writing nonfictional prose. Advanced study of rhetorical strategies and techniques of prose style. Considerable writing and revision required. In addition to analyzing the work of class members, students read and discuss the work of distinguished essayists chosen to represent a range of prose styles, subjects, and biographical patterns.

B. Avishai, H. Ritvo

Creative Writing

Introductory

See subject 21.731.

Intermediate

21.755 Writing and Reading Short Stories
Prereq.: —
U (1, 2) HUM-D
3-0-6
Introduction to the short story. Students write stories and short descriptive sketches. Readings from European and American stories from the 18th, 19th, and 20th centuries. Class discussion of students' writing and of the assigned stories in their historical and social contexts.

R. Becker, A. Theroux, Staff

21.757 Fiction Workshop
Prereq.: —
U (1, 2)
3-0-6
For students interested in writing fiction. May be taken as a prerequisite to the Advanced Fiction Workshop, but its main purpose is to encourage students to experiment with various techniques of fiction writing. Weekly reading and writing assignments; class discussion of students' writing and of work of professional writers.

I. Karmel

21.759 Writing Science Fiction
Prereq.: —
U (1)
3-0-6
Students write and read science fiction and analyze and discuss stories written for the class. For the first eight weeks, readings in contemporary science fiction accompany lectures and formal writing assignments intended to illuminate various aspects of writing craft as well as the particular problems of writing science fiction. The rest of the term is given to round-table "critiquing" of the students' stories.

J. Haldeman

202D

21.760 Writing and Reading Poems
Prereq.: —
U (1, 2) HUM-D
3-0-6
Examination of the formal structural and textual variety in poetry. Extensive practice in the making of poems and the analysis of both students' manuscripts and texts from 16th- through 20th-century literature. Attempts to make relevant the traditional elements of poetry and their contemporary alternatives. Weekly writing assignments, including some exercises in prosody.

R. Becker, Staff

21.762 Poetry Workshop
Prereq.: —
U (2)
3-0-6
For students with some previous experience in poetry writing. Frequent assignments stress use of language, diction, word choice, line breaks, imagery, mood, and tone. Considers the functions of memory, imagination, dreams, poetic impulses. Throughout the semester, students examine the work of published poets. Revision stressed.

R. Becker, F. Howe

21.765 Experimental Forms Workshop
Prereq.: —
U (2)
3-0-6
Exploration of experimental writing in nontraditional forms, such as prose poems and concrete poetry. Major emphasis on discussing students' writing. Reading includes selections from Blake, the French surrealists, the prose poems of Rimbaud and Michaux, and contemporary American writers who use experimental forms.

F. Howe

Advanced

21.768 Plays and Playwriting
Prereq.: —
U (2)
3-0-6
Students explore approaches to writing dramatic scenes and short plays. Each student is asked to write at least one competent one-act play during the semester, in addition to several shorter scenes.

A. R. Gurney, Jr.

21.770 Advanced Fiction Workshop
Prereq.: Permission of Instructor
U (1, 2)
3-0-6
For students with some experience in writing fiction. Concentrates on the ways an author manipulates her or his audience in the creation of a particular vision of reality. Studies style; point of view; distinctions of time and space; stream-of-consciousness; all the strategies for making a work of art. Outside readings assigned on an individual basis.

E. Chodakowska
Science and Technical Writing

Introductory

See subject 21.732.

Intermediate

21.777 The Scientific Essay

Prereq.: —
U (1, 2) HUM-D
3-0-6

Students explore prominent writing about science and technology from the Renaissance to the present. They examine the style, purpose, and context of historically important papers and essays. Discussion includes the role of communication in science, the rise of scientific journals, and ethical issues in scientific writing. Readings include works by Newton, Darwin, Einstein, and contemporary authors. Several short assignments and a longer essay on a general or semi-technical subject required.

D. Dobrin, J. Paradis

21.780 Scientific and Engineering Writing

Prereq.: —
U (1, 2)
2-0-7

Introduction to the forms, functions, and style of technical documents: weekly sessions include grammar and composition reviews, editing workshops, and discussion of the scientific publication process. Short assignments — including abstracts, proposals, progress reports, and memos — build toward a written term paper and oral presentation on a technical or semi-technical subject. Students should have completed, or be working on, research that they can write about.

D. Dobrin, C. Sides, J. Yates, M. Zimmerman

21.782 Science Journalism

Prereq.: —
U (1, 2)
3-0-6

A practical introduction to the craft of science journalism: examines important issues in communicating technical information to the public, such as the relationship among science, technology, and the media. Presentations by professional science journalists are featured. Students write weekly exercises, some of which are submitted for publication. Writing competence required.

R. Goodell

Advanced

21.783 Science Writing Workshop

Prereq.: 21.782
U (2)
3-0-6

Students write magazine articles on science, technology, and science politics, emphasizing controversial social and scientific issues. Discussion covers works by contemporary science writers, public attitudes toward science, ethical issues in investigative writing, and problems in press coverage of controversial subjects. Regular reading of selected newspapers and magazines also required. Permission of instructor required for students without 21.782 background.

B. Gastel, R. Goodell

21.790 Naturalist Writing

Prereq.: —
U (1)
3-0-6

Students write about nature in a variety of ways, aesthetic and technical, in essays and in technical documents. They study the responses to nature of 19th- and 20th-century naturalists, such as Audubon, Darwin, Thoreau, Lorenz, Carson, and Goodall. They examine local publications and films of nature societies in New England, the Northwest, and the South, as well as such modern forms as the environmental impact statement and the technical report. Several short and two longer writing assignments on general and semi-technical subjects.

J. Paradis

21.792 Science Writing Internship

Prereq.: 21.782
U (2)
3-0-9

Part-time internships in Boston-area media are arranged for students wishing to develop professional writing and publishing skills. Students also attend a weekly seminar (which often features guest presentations by science journalists) and write a final report on the internship experience. Permission of instructor required.

R. Goodell

21.793 Advanced Workshop in Scientific and Engineering Writing

Prereq.: Permission of Instructor
G (1, 2)
2-0-4

Offers graduate students who have writing projects under way an intensive review and step-by-step practice in technical writing. Examines major types of technical documents and reviews organization, grammar, style, format, graphics, and the scientific publishing process. Writing and revising assignments are adapted to the preparation of one or two major documents.

J. Paradis

21.798, 21.799 Special Topics in Writing

Prereq.: —
U (1, 2)
Arr.

Primarily for students pursuing writing projects with the assistance of a member of the Writing Program. Students electing this subject must secure the approval of the Director of the Writing Program and the Department of Humanities. Humanities credit for Special Topics subjects awarded only by individual petitions to the Committee on Curricula. Normal maximum is 6 units; to count toward Humanities Requirement, 9 units are required. Exceptional 9 unit projects occasionally approved.

J. Paradis
Interdisciplinary Subjects

21.901J Reading Seminar in Humanities, Science, and Technology I
(Same subject as STS 130J)
Prereq.: —
U (1)
2-0-7

21.902J Reading Seminar in Humanities, Science, and Technology II
(Same subject as STS 131J)
Prereq.: —
U (2)
2-0-7
See description under subjects STS 130J, STS 131J.
Term 1: L. Marx
Term 2: P. Buck

21.903J Project Seminar on the Context of Research
(Same subject as STS 132J)
Prereq.: —
U (1, 2)
3-0-6
See description under subject STS 132J.
L. Trilling

21.914 Sports and Physical Training
Prereq.: Permission of Instructor
U (2)
3-0-6
Social function of sports and physical training in modern times, especially in the United States. Readings, films, discussions. Group research projects. Limited enrollment.
L. Kampf

21.915 Intellectuals and Social Change
Prereq.: Permission of Instructor
U (2)
3-0-6
Role and responsibility of individuals who challenge the assumptions of the established political and social order. Discussion of current issues that have given rise to action and protest. Visiting lectures by activists. Questions of individual commitment, and the available alternatives for action. Limited enrollment.
N. A. Chomsky, L. Kampf

21.916 Contemporary Issues in Politics and Ideology
Prereq.: —
U (2)
3-0-6
Selected topics in domestic and international affairs. Emphasizes their relationship to US political, economic, and ideological institutions. Critical analysis of capitalist ideology. Consider strategy for social change.
N. A. Chomsky

21.930J Ancient Cosmology
(Same subject as STS 223J)
Prereq.: —
U (1) HUM-D Not to be offered 1985-86
3-0-6
H. A. T. O. Reiche

21.991 Special Topics in Interdisciplinary Studies
Prereq.: Any two subjects in Humanities
U (1)
Arr.

21.992 Special Topics in Interdisciplinary Studies
Prereq.: Any two subjects in Humanities
U (2)
Arr.
Special topics involving interdisciplinary study sponsored by members of the Department of Humanities or Institute faculty. Subjects vary from year to year. Must have the approval of the Humanities Undergraduate Office. Humanities credit for Special Topics subjects awarded only by individual petitions to the Committee on Curricula. Normal maximum is 6 units; to count toward Humanities Requirement, 9 units are required. Exceptional 9-unit projects occasionally approved.
T. R. Merritt

Please note: Philosophy subjects are listed under Course 24, Linguistics and Philosophy.

Subjects in Science, Technology, and Society are listed under that heading in this chapter.

Information about the following programs may be found within the description of the School of Humanities and Social Science in this catalogue.

American Studies
Ancient and Medieval Studies
Drama
Film and Media Studies
Latin American Studies
Russian Studies
Women's Studies
Traditions and Texts
Undergraduate Subjects

22.01 Seminar in Nuclear Engineering

Prereq.: —

- **U (1)**
- **2-0-4**

Surveys the range of topics covered by the Nuclear Engineering Department. Introductory discussion of the basic phenomena of fission and fusion power and related aspects of reactor design. The many applications of Nuclear Engineering for research in biology, earth sciences, medicine, and physics discussed by guest lecturers from the appropriate discipline. A demonstration of the MIT Reactor as a research tool is given.

- **D. D. Lanning**

22.02 Introduction to Applied Nuclear Physics

Prereq.: 8.02, 18.02

U (1) **SD**

3-0-9

Introduces nuclear physics emphasizing those aspects which are applied in nuclear engineering. Elementary quantum theory; properties of atomic nuclei; natural and induced radioactivity; cross sections for nuclear reactions; alpha-, beta-, and gamma-decay. Nuclear models: shell-model, liquid-drop model, nuclear fission. Slowing down and diffusion of neutrons. Neutron induced chain reactions. Thermonuclear reactions and the possibility of energy from nuclear fusion. Introduces radiation dosimetry.

- **S. H. Chen**

22.03 Engineering Design of Nuclear Power Systems

Prereq.: —

- **U (1)**
- **3-0-9**

Introduces nuclear engineering applied to power plant design: basic principles of nuclear physics, reactor physics, and environmental health physics; engineering and heat transfer principles. Description of various reactor types (LWR, LMFBR, etc.). Emphasizes reliability and reactor safety methods for improving design and operation of future reactors.

- **K. F. Hansen**

22.05 Introduction to Engineering Economics

Prereq.: —

- **U (2)**
- **3-0-9**

Introduces methods used by engineers for the economic analyses of alternatives. Time-value-of-money mechanics; present worth and rate-of-return methodology; dealing with depreciation and taxes, inflation, and escalation; levelized cost; replacement and retirement.
22.061 Controlled Fusion Power

Prereq.: 8.03, 16.03
U (1)
3-0-9

Introduces controlled fusion concepts: 1) fundamental plasma physics required to understand fusion reactors; 2) basic methods of producing and confining fusion plasmas; 3) description and critique of proposed fusion reactor schemes. Includes appropriate reviews of electromagnetic theory and other necessary skills to prepare students for more specialized fusion studies in the Department of Nuclear Engineering. Meets three lecture hours a week with 22.610 but with different assignments and quizzes.

J. P. Freidberg

22.062 Thermonuclear Reactor Design

Prereq.: 22.031, 22.061
U (2)
3-0-9

Systems analysis and design of controlled thermonuclear reactors, development of criteria for CTR feasibility on basis of economic and technical considerations, detailed critical review of DOE's prototype reference reactor designs, non-Maxwellian reactors, laser-induced fusion, blanket neutronics, fission-fusion symbiosis, radiation damage, environmental hazards. Meets with 22.621, but assignments differ.

L. M. Lidsky

22.069 Undergraduate Plasma Laboratory

Prereq.: 8.02
U (1) LAB
1-8-3

Basic engineering and scientific principles associated with experimental plasma physics. Investigates vacuum pumping phenomena and gauge operation, normal and superconducting magnetic field coils, microwave interactions with plasmas, laboratory plasma production including electrical breakdown phenomena, Langmuir probe characteristics and spectroscopy. Meets with 22.69, but assignments differ.

I. H. Hutchinson

22.070J Materials for Nuclear Applications

(Same subject as 3.070J)
Prereq.: 3.091 or 3.14 or 22.071
U (2)
3-0-9

Introductory subject for students who are not specializing in nuclear materials. Applications and selection of materials for use in nuclear applications. Radiation damage, radiation effects and their effects on performance of materials in fission and fusion environments. Meets with 22.70J but assignments differ.

R. G. Ballinger

22.071J Physical Metallurgy Principles for Engineers

(Same subject as 3.071J)
Prereq.: 3.091
U (1)
3-0-9

I-W. Chen

22.08 Energy

Prereq.: —
U (1)
3-0-9

Energy from a holistic viewpoint. Provision, rational utilization and conservation, environmental effects, policy, and impact on other sectors. Resources, technologies of conversion and utilization. Assessment of both deployed and proposed energy systems and technologies. Includes economic, social, and historic perspectives. Intended for third- and fourth-year students interested in entering the energy field. Meets with 22.81, but some assignments differ.

D. J. Rose, Staff

22.084 Inventions and Patents

Prereq.: 14.02
U (1)
3-0-6

School-Wide Elective Subject. Description given at end of this chapter on SWE page.

R. H. Rines

22.085 Introduction to Technology and Law

Prereq.: —
U (1)
3-0-9

School-Wide Elective Subject. Description given at end of this chapter on SWE page.

J. D. Nyhart

22.088J Human Factors in Design

(Same subject as 2.18J, 9.39J)
Prereq.: Permission of Instructor
U (2)
3-1-8

See description under subject 2.18J.

D. D. Lanning, T. B. Sheridan, A. Hein

22.09 Introductory Nuclear Measurements Laboratory

Prereq.: 22.02
U (2) LAB
2-6-4

Basic principles of interaction of nuclear radiation with matter. Statistical methods of data analysis; introduction to electronics in nuclear instrumentation; counting experiments using Geiger-Muller counter, gas filled proportional counter, scintillation counter, and semiconductor detectors. A term project emphasizes applications to experimental neutron physics, radiation physics, health physics, and reactor technology. Meets with 22.29, but assignments differ.

S. H. Chen

22.091 Special Topics in Nuclear Engineering

Prereq.: —
U (1, 2, S)
0-6-0

For undergraduates who desire to carry out a one-term project of theoretical or experimental nature in the field of nuclear engineering in close cooperation with individual staff members. Topics and hours arranged to fit students requirements.

J. E. Meyer

22.092 Engineering Internship

Prereq.: —
U (1, 2, S)
0-6-0

Provides academic credit for the first two Work Assignments of XXII-A students affiliated with the Engineering Internship Program. Students register for this subject twice. Students must complete both Work Assignments in order to receive the academic credit for this subject. Enrollment limited to students registered in Course XXII-A.

R. G. Ballinger
Nuclear Physics

22.111 Nuclear Physics for Engineers I (A)
Prereq.: 22.02
G (1)
3-0-9
S. Yip

22.112 Nuclear Physics for Engineers II (A)
Prereq.: 22.111
G (2)
3-0-9
S. Yip

22.211 Nuclear Reactor Physics I (A)
Prereq.: 8.272, 18.076
G (1, 2)
3-0-9
Introduces problems of fission reactor physics covering nuclear reactions induced by neutrons, nuclear fission, slowing down of neutrons in infinite media, diffusion theory, the few group approximation, and point kinetics. Emphasizes the nuclear physical bases of reactor design and their relation to reactor engineering problems.
A. F. Henry, N. C. Rasmussen

22.212 Nuclear Reactor Physics II (A)
Prereq.: 22.211
G (2)
3-0-9
Problems relating to the operation of nuclear reactors at power including few group and multigroup theory, heterogeneous reactors, control rods, poisons, depletion phenomena, and elementary neutron kinetics. Attention directed to the application of reactor theory to actual reactor systems.
A. F. Henry

22.213 Nuclear Reactor Physics III (A)
Prereq.: 22.212
G (1)
3-0-9
Current methods for predicting neutron behavior in complex geometrical and material configurations. The transport equation and methods for solving it; systematic derivation of group diffusion theory. Applies homogenization, synthesis, finite element, response matrix techniques and nodal methods to reactor analysis.
A. F. Henry

22.29 Nuclear Measurements Laboratory (A)
Prereq.: 22.211
G (2)
2-6-4
Basic principles of interaction of nuclear radiations with matter. Principles and methods for detection and energy determination of gamma rays, neutrons and charged particles. Experiments on gas-filled, scintillation, and semiconductor detectors; nuclear electronics such as pulse amplifiers, multichannel analyzers, and coincidence techniques: applications to neutron activation analysis. X-ray fluorescence analysis, thermal neutron cross sections, and radiation dosimetry. Meets with 22.09, but assignments differ.
S. H. Chen

Nuclear Reactor Physics

22.211 Nuclear Reactor Physics I (A)
Prereq.: 8.272, 18.076
G (1, 2)
3-0-9
Introduces problems of fission reactor physics covering nuclear reactions induced by neutrons, nuclear fission, slowing down of neutrons in infinite media, diffusion theory, the few group approximation, and point kinetics. Emphasizes the nuclear physical bases of reactor design and their relation to reactor engineering problems.
A. F. Henry, N. C. Rasmussen

Nuclear Reactor Engineering

22.311 Energy Engineering Principles
Prereq.: —
G (1)
3-0-9
Fundamentals of engineering thermodynamics, fluid flow, heat transfer, and elasticity. Applications to various energy sources. Introductory subject for graduate students without previous engineering background.
M. W. Golay

22.312 Engineering of Nuclear Reactors (A)
Prereq.: 22.211, 22.311
G (1, 2)
3-0-9
Engineering principles of nuclear reactors emphasizing applications in central station power reactors. Power plant thermodynamics; energy distribution and transport by conduction and convection of incompressible one- and two-phase fluid flow in reactor cores; mechanical analysis and design.
M. S. Kazimi, M. W. Golay

22.313 Advanced Engineering of Nuclear Reactors (A)
Prereq.: 22.212, 22.312
G (2)
3-0-9
Advanced topics in nuclear engineering emphasizing thermo-fluid dynamic design methods and criteria for thermal limits of various reactor types. Fundamentals of transient heat transfer and fluid flow under operational and accidental conditions. Detailed analysis of fluid flow and heat transfer in complex geometries.
N. E. Todreas

22.314J Structural Mechanics in Nuclear Power Technology (A)
(Same subject as 1.56J, 2.084J, 3.82J, 13.14J, 16.261J)
Prereq.: Permission of Instructor
G (1)
3-0-9
Structural components in nuclear power plant systems: their functional purposes; operating conditions: mechanical-structural design requirements. Combines mechanics techniques with models of material behavior to determine adequacy of component design. Effects considered include mechanical loading, hydraulic forces, elevated temperatures, neutron irradiation, and seismic effects.
J. E. Meyer, O. Buyukozturk
22.32 Nuclear Power Reactors (A)
Prereq.: 22.211, 22.312
G (1)
3-0-9
A descriptive survey of engineering and physics aspects of current nuclear power reactors. Discusses design details including requirements for safety of light and heavy water reactors, high temperature gas-cooled reactors, fast reactors both liquid-metal and gas-cooled, and the molten salt breeder reactors. Compares reactor characteristics both in class and by individual student projects. Discusses development problems and assesses potentials for future improvements.
D. D. Lanning

22.33 Nuclear Engineering Design (A)
Prereq.: 22.212, 22.312
G (2)
2-6-4
Group design project involving integration of reactor physics, control, heat transfer, safety, materials, power production, fuel cycle management, environmental impact, and economic optimization. Provides the student with the opportunity to synthesize knowledge acquired in other subjects and apply this knowledge to practical problems of interest in the reactor design field. Meets with 22.033, but assignments differ.
K. F. Hansen

22.341 Nuclear Energy Economics and Policy Analysis (A)
(New)
Prereq.: Permission of Instructor
G (1)
3-0-9
A comprehensive assessment of the economic, environmental, political, and social aspects of nuclear power generation and the nuclear fuel cycle. Quantitative applications of the principles of engineering economics; comparison of alternatives using discounted cash flow methods. Technology assessment/policy analysis of institutional alternatives for R&D, management, and regulation; includes nuclear power plant licensing, nuclear waste management, and nuclear power and weapons proliferation. Open to qualified undergraduates. Term paper required.
R. K. Lester, M. J. Driscoll

22.35 Nuclear Fuel Management (A)
Prereq.: 22.211
G (2)
3-0-9
Characterization of the space-time history of nuclear fuels and the effects upon fuel costs. Physical and material constraints upon fuels and their effects on fuel management policies. Methods of analysis for the optimization of fuel costs. Qualitative description of current methods of management and areas of future development.
M. J. Driscoll

22.36J Two-Phase Flow and Boiling Heat Transfer (A)
(Same subject as 2.57J)
Prereq.: 22.312
G (2)
3-0-9
Phase change in bulk stagnant systems. Kinematics and dynamics of adiabatic two-phase flow. Dynamics and thermodynamics of forced-convection two-phase flow with boiling and/or evaporation. Thermal and hydrodynamic stability of two-phase flows. Associated topics, such as condensation and atomization. Both water and liquid metal applications considered under each topic where data exists.
M. S. Kazimi, P. Griffith, W. M. Rohsenow

22.37 Environmental Impacts of Electricity (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
Assesses the various environmental impacts of producing thermal and electric power with currently available technology. Compares impacts through both the fossil and nuclear fuel cycles. Topics include fuel resources and extraction, power station effluents, waste heat disposal, reactor safety, and radioactive waste disposal.
M. W. Golay

22.38 Reliability Analysis Methods (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
Principles of the methods of reliability analyses including fault trees, decision trees, and reliability block diagrams. Discusses the techniques for developing the logic diagrams for reliability assessment, the mathematical techniques for analyzing them, and statistical analysis of required experience data. Discusses practical examples of their application to the risk assessment of nuclear power reactors and other industrial operations. Open to qualified undergraduates.
N. C. Rasmussen

22.39 Nuclear Reactor Operations and Safety (A)
Prereq.: 22.211, 22.311
G (2)
Arr.
Principles of operating nuclear reactor systems in a safe and effective manner. Emphasizes light water reactor systems with transient response studies including degraded core recognition and mitigation. Consequence analysis and risk assessment. Lessons from past accident experience. NRC licensing and regulations. Demonstrations: operation of the MIT Research Reactor; use of a PWR concept simulator. Optional laboratory section involves a project at the Nuclear Reactor Laboratory.
D. D. Lanning

22.40J Advanced Reliability Analysis and Risk Assessment (A)
(Same subject as 13.63J)
Prereq.: 22.38, 22.82, 1.143J or 13.622J
G (2)
3-0-9
C. D. Helbing, E. G. Frankel
Numerical and Mathematical Methods

22.41 Numerical Methods of Radiation Transport (A)
Prereq.: 18.076, 22.212
G (2) Not to be offered 1985-86
3-0-9
S. Yip

22.42 Numerical Methods in Engineering Analysis (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
A. L. Schor

22.43 Advanced Numerical Methods in Engineering Analysis (A)
Prereq.: 22.42
G (2) 3-0-9
A. L. Schor

22.44J Computation Methods in Materials Science and Engineering (A)
(Same subject as 3.74J)
Prereq.: —
G (2) 3-0-9
S. Yip, G. Kalonji

22.51 Radiation Interactions and Applications (A)
Prereq.: 8.05
G (1) Next offered 1985-86
3-0-9
Basic principles of interaction of electromagnetic radiation, thermal neutrons, and charged particles with matter. Introduces classical electrodynamics, quantum theory of radiation field, time-dependent perturbation theory, transition probabilities and cross sections describing interaction of various radiations with atomic systems. Applications include theory of gas lasers, Rayleigh, Raman and Compton scattering, photoelectric effect, photocount statistics, and use of thermal neutron scattering as a tool in condensed matter research.
S. H. Chen

22.55J Biological and Medical Applications of Radiation and Radioisotopes (A)
(Same subject as HST 560J)
Prereq.: 8.271 or 22.111
G (1) 4-0-8
G. L. Brownell, Staff

22.57J Radiation Biophysics (A)
(Same subject as HST 568J)
Prereq.: 8.271 or 22.111
G (1) 4-0-8
Effects of ionizing radiation, ultraviolet radiation, and heat on biological materials, cells and tissues. Examines in vivo and in vitro mammalian systems, and explores mathematical models for cell survival emphasizing prediction. Microstructural damage to cell components such as membranes, organelles, enzymes, and DNA studied. Radiation syndromes in man, mutagenesis, and carcinogenesis also investigated.
A. C. Nelson

22.571J General Thermodynamics I (A)
(Same subject as 2.451J)
Prereq.: Permission of Instructor
G (1) 3-0-9
See description under subject 2.451J.
E. P. Gyftopoulos, G. P. Beretta

22.572J Quantum Thermodynamics (A)
(Same subject as 2.452J)
Prereq.: Permission of Instructor
G (2) 3-0-9
See description under subject 2.452J.
E. P. Gyftopoulos, G. P. Beretta

22.58 Health Physics II (A)
(New)
Prereq.: 22.111
G (2) 2-5-6
Extensive use of the 5MW MIT Research Reactor to provide students with real experience in radiation measurement, management, and control. Other facilities include a cyclotron, linear accelerator, and power reactors. Reviews applicable standards for radiation exposure. Covers theory and use of a, b, y, and n detectors and spectrometers. Covers preparation and handling of isotopes, shielding, analysis and design of radiation protection systems and procedures, in applications including nuclear power generation, medical, and research uses of radiation.
O.K. Harling
Plasmas and Controlled Fusion

22.610 Controlled Fusion Power (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
Introduces controlled fusion concepts: 1) fundamental plasma physics required to understand fusion reactors; 2) Basic methods of producing and confining fusion plasmas; 3) description and critique of proposed fusion reactor schemes. Includes appropriate reviews of electromagnetic theory and other necessary skills to prepare students for more specialized fusion studies in the Department of Nuclear Engineering. Meets three lecture hours a week with 22.061 but with different assignments and quizzes.
J. P. Freidberg

22.611J Introduction to Plasma Physics I (A)
(Same subject as 6.651J, 8.613J)
Prereq.: 6.014 or 8.07, 6.016 or 8.08, 18.04 or 18.075
G (1) 3-0-9
See description under subject 8.613J.
K. Molvig, A. Bers, M. Porkolab

22.612J Introduction to Plasma Physics II (A)
(Same subject as 6.652J, 8.614J)
Prereq.: 6.651J or 8.613J or 22.611J, 18.076
G (2) 3-0-9
Linear waves and instabilities in magnetized plasma; solutions of Vlasov-Maxwell equations in homogeneous and inhomogeneous plasmas; conservation principles for energy and momentum; negative energy waves; absolute and convective instabilities. Quasi-linear theory and conservation principles; evolution of unstable particle distribution functions. Collisional transport theory; Fokker-Planck equations; particle diffusion, thermal conductivity, and viscosity in magnetized plasma.
J. P. Freidberg, K. Molvig, A. Bers, R. C. Davidson

22.615J MHD Theory of Magnetic Fusion Systems I (A)
(Same subject as 6.653J)
Prereq.: 22.611J or 6.651J or 8.613J
G (1) 3-0-9
Development of ideal MHD theory and application to magnetic fusion systems. Description of equilibria of tokamaks, RFPs, stellarators, and EBTs emphasizing axisymmetric systems described by the Grad-Shafranov equation. Formulation of stability problem utilizing the Energy Principle. Description of ideal MHD instabilities such as kink, sausage, interchange, and ballooning modes. Applications include the Suydam and Mercier criteria and the Kruskal-Shafranov limit.
R. R. Parker

22.616 MHD Theory of Magnetic Fusion Systems II (A)
Prereq.: 6.653J or 22.615J
G (2) Next offered 1985-86
3-0-9
Continuation of 22.615J. Theory and application of nonideal MHD theory including: resistive instabilities, tearing modes, resistive interchange instabilities, nonlinear saturation, with applications to sawtooth oscillations and major disruption in a tokamak; finite Larmor radius stabilization of ideal MHD modes and rotationally driven instabilities; finite Larmor radius effects on resistive instabilities; the Kruskal-Oberman Energy Principle for the Guiding Center MHD plasma and its application to simple axisymmetric mirrors, non-axisymmetric mirrors and the tandem mirrors.
J. P. Freidberg, R. R. Parker

22.621 Thermonuclear Reactor Design (A)
Prereq.: 22.311; 22.610 or 22.611J
G (2) 3-0-9
Systems analysis and design of thermonuclear reactors, development of criteria for CTR feasibility on basis of economic and technical considerations, detailed critical review of DOE's prototype reference reactor designs, non-Maxwellian reactors, laser-induced fusion, blanket neutronics, fusion-fission symbiosis, radiation damage, environmental hazards.
L. M. Lidsky

22.622 Special Topics in Thermonuclear Reactor Design (A)
Prereq.: 22.521
G (1) Next offered 1985-86
3-5-4
A class project with the goal of integrating the wide range of plasma physics, technology, and economic constraints involved in the design of large scale fusion devices such as beam driving neutron sources, torsatron scaling experiments, copper coil ignition experiments. Usually follows the entire design process from project definition to formal presentation.
L. M. Lidsky, D. R. Cohn, B. D. Montgomery, J. E. C. Williams, J. E. Meyer

22.63 Engineering Principles for Fusion Reactors
Prereq.: Permission of Instructor
G (1) Not to be offered 1985-86
3-0-9
Introductory subject for advanced undergraduates and graduate students. Vacuum engineering based on considerations of free molecular flow, surface physics and standard design practices, magnetic field generation by normal cryogenic and superconducting coils, high voltage engineering and practice, production of high power ion, electron and neutral beam systems, microwave engineering for plasma systems, applications to fusion systems. Open to qualified undergraduates.
L. M. Lidsky, D. R. Cohn, B. D. Montgomery, J. E. C. Williams

22.64J Plasma Kinetic Theory (A)
(Same subject as 8.621J)
Prereq.: 8.613J or 16.59J
G (1) 3-0-9
See description under subject 8.621J.
T. H. Dupree

22.65J Advanced Topics in Plasma Kinetic Theory (A)
(Same subject as 8.622J)
Prereq.: 8.621J or 22.64J
G (2) 3-0-9
See description under subject 8.622J.
T. H. Dupree

22.66 Plasma Transport Phenomena (A)
Prereq.: 22.611J or 6.651J or 8.613J, 22.64J or 8.621J
G (2) Not to be offered 1985-86
3-0-9
Transport theory analyzes the processes by which particle energy, momentum, and mass diffuse across the magnetic field. Develops the collisional classical and neoclassical transport theory of tokamaks (and stellarators) including the theory of MHD equilibrium, particle orbits and Fokker Planck operators, for the hydrodynamic and impurity ions, as well as injected and alpha particles. Emphasizes connection to experimental confinement and achievement of high beta.
D. J. Sigmar, K. Molvig

22.67 Principles of Plasma Diagnostics (A)
Prereq.: 22.611J or 6.651J or 8.613J
G (2) 3-0-9
Introduction to the physical processes used to measure the properties of plasmas, especially fusion plasmas. Measurements of magnetic and electric fields, particle flux, refractive index, emission and scattering of electromagnetic waves and heavy particles; their use to deduce plasma parameters such as particle density, pressure, temperature, velocity, etc., and hence the plasma confinement properties. Discussion of practical examples and assessments of the accuracy and reliability of different techniques.
I. H. Hutchinson

22.69 Plasma Laboratory (A)
Prereq.: 22.611J or 6.651J or 8.613J or 22.63
G (1) 1-4-4
Introduces the advanced experimental techniques needed for research in plasma physics and useful in experimental atomic and nuclear physics. Laboratory work on vacuum systems, plasma generation and diagnostics, physics of ionized gases, ion sources and beam optics, cryogenics, magnetic field generation, and other topics of current interest; brief lectures and literature references to elucidate the physical bases of the laboratory work. Meets with 22.069, but assignments differ.
I. H. Hutchinson
Nuclear Materials

22.70J Materials for Nuclear Applications (A)
(Same subject as 3.711J)
Prereq.: 22.71J or 3.71J or 3.14
G (2) 3-0-9
Introductory subject for students who are not specializing in nuclear materials. Applications and selection of materials for use in nuclear applications. Radiation damage, radiation effects, and their effects on performance of materials in fusion and fission environments. Meets with 22.070J, but assignments differ.
R. G. Ballinger

22.71J Physical Metallurgy Principles for Engineers (A)
(Same subject as 3.71J)
Prereq.: Permission of Instructor
G (1) 3-0-9
I.-W. Chen

22.72J Nuclear Fuels (A)
(Same subject as 3.72J)
Prereq.: 3.13 or 3.14 or 22.71J or 3.71J
G (1) 3-0-9
Behavior of nuclear fuels and fuel element cladding materials in reactor cores. Experimental observations; phenomenological and theoretical modeling of radiation; and thermal-induced effects such as fuel and cladding swelling, fission gas release, and radiation-induced creep. Fuel design, performance modeling, and reliability analysis using state-of-the-art computer codes. Recent developments in advanced nuclear and fusion related core materials.
R. G. Ballinger

22.73J Radiation Effects in Crystalline Solids (A)
(Same subject as 3.721J)
Prereq.: 3.02 or 3.71J or 22.071J or 22.71J
G (2) 3-0-9
Unified treatment based on governing principles in defect structures, thermodynamics and kinetics of equilibrium and nonequilibrium systems. Discusses phenomena of radiation effects in metals and nonmetals used in fission reactors, fusion reactors, nuclear waste encapsulation, and ion beam technology. Topics include defect generation, damage evolution, radiation enhanced and induced rate processes, radiation effects on mechanical and physical properties.
I.-W. Chen

22.75J Radiation Effects in Reactor Structural Materials (A)
(Same subject as 3.75J)
Prereq.: 3.71J or 22.71J
G (2) Not to be offered 1985-86
3-0-9
Classes and characteristics of structural materials used in the core and primary circuits of fission and fusion reactor systems. Effects of radiation on strength, brittle fracture, high-temperature embrittlement, creep and growth, and void swelling on engineering properties. Materials specifications, design principles, and quality assurance. Materials problems in reactor safeguard analysis. Case studies of reactor materials failures.
K. C. Russell

22.76J Introduction to Nuclear Chemical Engineering (A)
(Same subject as 3.721J)
Prereq.: 22.311 or 10.302
G (1) Not to be offered 1985-86
3-0-9
Applications of chemical engineering to the processing of materials for and from both nuclear fuel and fusion reactors. Principles and techniques for separation of uranium, hydrogen, and other isotopes; tritium handling; solvent extraction and ion exchange as applied to nuclear materials, including processing of irradiated fuel from fission reactors and extraction and purification of uranium from its ores; chemistry of uranium, plutonium, and fission products. Open to qualified undergraduates.
M. Miller, M. J. Driscoll

22.77 Nuclear Waste Management (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
R. K. Lester

22.81 Energy Assessment (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
An introduction to the broad field of energy, including technological, social, environmental, economic, and political aspects. Energy provision, transformation, and utilization. Development of energy options for the future, and analyses of present regional, national, and international energy programs. For graduate students entering specific energy fields in which energy is important, and who desire a holistic overview. Meets with the undergraduate subject 22.06, but assignments differ.
D. J. Rose, Staff

22.82 Engineering Risk-Benefit Analysis (A)
G (2) 3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
A. W. Drake, A. R. Odoni

22.841 Technology of Nuclear Weapons and Arms Control (New)
Prereq.: —
G (1) 4-0-8
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
R. de Neuville, J. P. Clark

22.85J Case Studies in Energy, Technology, Economics, and Management
(Same subject as 6.807J)
Prereq.: —
G (2) 3-0-9
Gives students with diverse backgrounds an opportunity to study the multidimensional (i.e., technological, economic, and environmental) nature of complex energy issues in a concrete context. Class is divided into working groups for specific case studies. Investigates one or more topics of current interest involving fossil fuel, nuclear, and renewable energy sources.
D. C. White, M. M. Miller
22.86 Entrepreneurship
Prereq.: —
G (2)
4-0-5
School-Wide Elective Subject. Description given at end of this chapter on SWE page.
D. G. Jansson

22.87J Current Issues in Engineering Management
(Same subject as 1.485J, 3.562J, 6.941J, 13.682J)
Prereq.: —
G (2)
3-0-6
See description under subject 1.485J.
T. H. Lee

22.88J Cases and Projects in Engineering Management (A)
(Same subject as 1.486J, 3.563J, 6.942J, 13.683J)
Prereq.: 22.87J
G (1)
3-1-5
See description under subject 1.486J.
T. H. Lee

22.89 Basic Electronics
Prereq.: —
G (S)
3-4-5
For science and engineering research students with little or no background in electronics, who need a working knowledge of electronic circuits and devices. Topics include network theory, active devices and circuits, operational and instrumentation amplifiers, and digital electronics. Equal emphasis on laboratory and classroom work.
Staff

22.901-22.904 Special Problems in Nuclear Engineering (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
For graduate and advanced undergraduate students who wish to carry out a one-term project of a theoretical or experimental nature in the nuclear engineering field in close cooperation with individual staff members. Arrangement of topic and hours to fit student requirements.
A. F. Henry

22.913 Graduate Seminar in Energy Assessment
Prereq.: Permission of Instructor
G (1)
2-0-1
Primarily designed as a communication medium among students conducting research in energy-related areas, and as a means for obtaining critical evaluation of their ongoing research work. Covers topics ranging from technological comparisons to environmental, social, resource, and political impacts, depending on current student and faculty interest.
R. K. Lester

22.914 Graduate Seminar in Energy Assessment
Prereq.: Permission of Instructor
G (2)
2-0-1
Continuation of 22.913.
R. K. Lester

22.92 Advanced Engineering Internship
Prereq.: 22.092
G (1, 2, S)
0-6-0
Provides credit for the third and fourth Work Assignments for students affiliated with the Engineering Internship Program. Students register for this subject twice. Students must complete both Work Assignments to receive the academic credit for this subject. Enrollment limited to students in the Engineering Internship Program.
R. G. Ballinger

22.93 Teaching Experience in Nuclear Engineering (A)
Prereq.: Permission of Department
G (1, 2, S)
Arr.
For qualified graduate students interested in teaching as a career. Classroom, laboratory, or tutorial teaching under the supervision of a faculty member. Students selected by interview. Enrollment limited by the availability of suitable assignments. Credits for this subject may not be used toward Master's or Engineer's degrees.
N. E. Todreas

22.94J Seminar on Technology and Development
(Same subject as 17.330J, 21.506J)
Prereq.: Permission of Instructor
G (2)
3-0-9
See description under subject 17.330J.
N. Choucri, Staff
24.UR Undergraduate Research
Prereq.: —
U (1, 2)
Arr.

Undergraduate research opportunities in Linguistics and Philosophy. For further information consult the Departmental Coordinators: S. J. Keyser: Linguistics, J. A. Fodor: Philosophy

24.00 Introduction to the Problems of Philosophy
Prereq.: —
U (1, 2) HUM-D
3-0-6

Introduction to the problems of philosophy, in particular, to problems in ethics, metaphysics, theory of knowledge, and philosophy of logic, language, and science. A systematic rather than historical approach. Readings from classical and contemporary sources, but emphasis on examination and evaluation of proposed solutions to the problems.
Term 1: S. Bromberger
Term 2: J. Higginbotham

24.01 Contemporary Moral Issues
Prereq.: —
U (1, 2) HUM-D
3-0-6

Examination of some practical issues in moral and social philosophy as they occur in theoretical controversies related to contemporary experience. This year's topics center around moral questions of the justifiability of taking life, including euthanasia, abortion, and capital punishment, as well as problems associated with human rights, privacy, and affirmative action. Readings from great writers in the history of philosophy as well as from contemporary philosophers and Supreme Court cases.
J. Carriero

24.02 The Meaning of Life (New)
Prereq.: —
U (1) HUM-D
3-0-6

Problems of human experience approached through philosophical analysis. Questions about the meaning of life, the nature of death, and the creation or discovery of values studied through readings in contemporary philosophy as well as in the history of philosophy. Enrollment limited to 25.
I. Singer

24.03 Logic, Language, and Values
Prereq.: —
U (2) HUM-D
3-0-6

Introduction to that part of philosophy that deals with truth, meaning, and proof. Application of logic and analysis to perennial philosophical problems such as the existence of God, the difference between deduction and induction, the definition of good, and validity in reasoning. Fallacies and paradoxes. Readings from such authors as Plato, Locke, Hume, Bertrand Russell, W. V. Quine.
G. S. Boolos

24.04 Moral and Legal Responsibility
Prereq.: —
U (2) HUM-D
3-0-6

Introduces that area of philosophy which deals with what is involved in holding people responsible for what they do and what they cause. Questions: May any ever properly be held responsible or at fault for anything? Is freedom of the will necessary for responsibility or blame? What, if anything, is the justification for punishment? Under what conditions should a legal system hold a person liable for the damage he or she causes? Readings include classical and contemporary writings and some selected judicial opinions.
J. J. Thomson

24.05J Nature of Scientific Knowledge
(Same subject as STS 205J)
Prereq.: —
U (2) HUM-D
3-0-6

An introduction to fundamental philosophical problems concerning the nature of science and its development. How, for example, is scientific knowledge arrived at; in what circumstances are theories rejected and replaced; what criteria or values govern these processes; and what gives their outcome such reliability? Are facts given once and for all, independent of theory, or does change of theory change what it is to be a fact? Do scientific theories describe an underlying reality, or do they merely provide an economical systematization of concrete experimental results?
P. G. Horwich

24.07 Classics in the History of Philosophy
Prereq.: —
U (2) HUM-D
3-0-6

Introduction to philosophy through its history. Readings in the works of such philosophers as Plato, Aristotle, Aquinas, Descartes, Hume, and Kant. Emphasis on becoming closely acquainted with important historical texts and examining fundamental philosophical issues as they appear in works that have been unusually influential in the historical development of Western philosophy.
M. Williams

24.08 The Human Mind
Prereq.: —
U (1) HUM-D
3-0-6

Introduces that part of philosophy concerned with the mind, with special attention to the role of science in the study of the mind. Questions discussed: Do people always act selfishly? Is human reason inherently defective? Are social and intellectual differences due to genetic differences? Are some ideas innate? Are the two hemispheres of a human brain really the brains of two different persons? Will computers ever think — indeed, are we, ourselves, computers?
J. A. Fodor

24.09J Classics in Political Philosophy
(Same subject as 17.113J)
Prereq.: —
U (1) HUM-D
3-0-6

J. Cohen

24.111 Philosophy of Biology
Prereq.: —
U (1) Next offered 1985-86
3-0-9

Introduces methodological and conceptual issues of biology. Topics: creationism; sociobiology; nature vs nurture; whether Mendelian genetics is reducible to molecular biology; teleological explanation in biology; what a species is; the units of selection; the logical status of the principle of natural selection; adaptation and optimization.
N. Block
24.114 Philosophy in Literature of the 20th Century
Prereq.: —
U (2) 3-0-9
Philosophical problems as they occur in great works of literature. Emphasizes modern theories as well as literary myths about the nature of love, examined as a basic theme in writings of the last 100 years. Readings in both philosophy and literature, and discussion of the relationship between these fields.
I. Singer

24.116J Introduction to Cognitive Science
(Same subject as 9.62J)
Prereq.: —
U (1) 3-0-9
See description under subject 9.62J.
D. N. Osherson

24.119 Minds and Machines
Prereq.: —
U (2) Next offered 1985-86 3-0-9
Examination of problems in the intersection of artificial intelligence, psychology, and philosophy. Issues discussed: whether people are Turing Machines, whether computers can be conscious, limitations on what computers can do, computation and neurophysiology, the Turing test, the analog-digital distinction, Godel's theorem and mechanism, the relation between simulation and explanation, whether some aspects of mentality are more resistant to programming than others.
N. Block

24.121J Feminist Philosophy
(New)
(Same subject as SP 410J)
Prereq.: Permission of Instructor
U (1) 3-0-6
An introduction to the views of contemporary feminist philosophers on the person, experience, science, moral life, and practice of doing philosophy. Also an examination of selections from classical texts and influential contemporary thinkers from a feminist perspective. Readings from Aristotle, Augustine, Rousseau, de Beauvoir, Frye, Held, and others. Approved for concentration in Women's Studies only.
C. Whitbeck

24.151 Introduction to Philosophy of Language
Prereq.: —
U (2) 3-0-6
Examination of views on the nature of meaning, reference, truth, and their relationships. Other topics may include relationships between language and logic, language and knowledge, language and reality, language and acts performed through its use. No knowledge of logic or linguistics presupposed.
S. Bromberger

24.171 Introduction to Phenomenology (Revised Content)
Prereq.: —
U (1) Next offered 1985-86 3-0-6
G.-C. Rota

24.172 Being and Time
Prereq.: —
U (1) Not to be offered 1985-86 3-0-9
The philosophy of Martin Heidegger and its influence on contemporary thought, stressing existential views on the foundations of science, the critique of classical logic, and Cartesian thought. Readings from Heidegger's "Being and Time." G.-C. Rota

24.200 Ancient Philosophy
Prereq.: One Philosophy subject
U (1) Next offered 1985-86 3-0-9

24.202 Modern Philosophy: Descartes to Kant
Prereq.: One Philosophy subject
U (2) 3-0-6
Philosophic thought in Europe during the 17th and 18th centuries. The continental rationalists: Descartes, Spinoza, and Leibniz; the British empiricists: Locke, Berkeley, and Hume; Kant.
J. Carrier

24.203 Aspects of 20th-Century Philosophy (New)
Prereq.: One Philosophy subject
U (1) 3-0-9
Study of several major works in European and American philosophy. Emphasis on moral theory in the writings of Bergson, Santayana, Sartre, Freud, and others.
I. Singer

24.204 Existentialism (New)
Prereq.: One Philosophy subject
U (2) 3-0-9
Works of existentialist writers, such as Sartre, Heidegger, Buber, studied in the context of 19th- and 20th-century developments in philosophy and literature.
I. Singer

24.208 Wittgenstein
Prereq.: One Philosophy subject
U (2) 3-0-6
Study of Wittgenstein's later philosophy, with special attention to his views on language, knowledge, and the nature of philosophy.
M. Williams

24.211 Theory of Knowledge
Prereq.: One Philosophy subject
U (1) 3-0-9
Study of problems concerning our concept of knowledge, our knowledge of the past, our knowledge of the thoughts and feelings of ourselves and others, and our knowledge of the existence and properties of physical objects in our immediate environment.
M. Williams

24.221 Metaphysics
Prereq.: One Philosophy subject
U (2) Next offered 1985-86 3-0-9
Study of basic metaphysical issues concerning existence, the mind-body problem, personal identity, causation and its implications for freedom. Classical as well as contemporary readings.
J. W. DeCew

24.231 Ethics
Prereq.: One Philosophy subject
U (2) 3-0-9
Systematic study of central theories in ethics, including egoism, act and rule utilitarianism, intuitionism, emotivism, rights theories, and contractualism. Discussion and readings also focus on problems associated with moral conflicts, justice, the relationship between rightness and goodness, objective vs subjective moral judgments, moral truth and relativism.
J. J. Thomson

24.233J Political Philosophy
(Same subject as 17.105J)
Prereq.: One Philosophy subject
U (1) 3-0-9
See description under subject 17.105J.
J. Cohen

24.235 Philosophy of Law
Prereq.: One Philosophy subject
U (2) Next offered 1985-86 3-0-9
Examination of fundamental issues in philosophy of law such as the nature and limits of law and a legal system and the relation of law to morality, with particular emphasis on the philosophical issues and problems associated with privacy, liberty, justice, punishment, and responsibility. Historical and contemporary readings, including court cases. Permission of instructor required for students without the above prerequisite.
J. W. DeCew
24.241 Logic I
Prereq.: —
U (1) 3-0-9
Introduction to the aims and techniques of formal logic. The logic of truth-functions and quantifiers. The concepts of validity and truth and their relation to formal deduction. Applications of logic and the place of logic in philosophy.
G. S. Boolos

24.242 Logic II
Prereq.: 24.241
U (2) 3-0-9
The central results of modern logic: the completeness of predicate logic, the incompleteness of arithmetic, the unprovability of consistency, the indefinability of truth, the Skolem-Löwenhem theorem, non-standard models. Permission of instructor required for students without the above prerequisite.
G. S. Boolos

24.251 Philosophy of Science
Prereq.: One Philosophy subject
U (1) Next offered 1985-86 3-0-6
Discussion of problems concerning the principles and methods of scientific activity, and their possible philosophical justifications. Analysis of hypothesis formation, testing, and choice. Role of induction, probability, simplicity, utility, and their difficulties. Character of scientific explanation and concept formation. Relation of observations to laws, theories, models, and the ontology of physical reality. Status of reductionism, unity of science, causality, and determinism.
R. G. Horwich

(Same subject as STS 224J)
Prereq.: —
U (2) Not to be offered 1985-86 3-0-9
Centering on theories of terrestrial and celestial motion, the subject traces the development of ideas about the physical universe from classical antiquity to the 17th-century foundation of modern science. Readings emphasize selections from the original scientific sources, especially: Aristotle, the Scholastics, Copernicus, Galileo, Descartes, Huyghens, and Newton.
T. S. Kuhn

24.292 Special Topics in Philosophy
Prereq.: Any two subjects in philosophy
U (1) Arr.
Open to qualified students who wish to pursue special studies or projects. Students electing this subject must consult the Department Head.
Staff

24.293 Special Topics in Philosophy
Prereq.: Any two subjects in philosophy
U (2) Arr.
Open to qualified students who wish to pursue special studies or projects. Students electing this subject must consult the Department Head.
Staff

24.400 Proseminar in Philosophy I (A)
Prereq.: Permission of Instructor
G (1) 6-0-18
Advanced study of the basic problems of philosophy, intended for first-year graduate students in philosophy.
R. L. Cartwright, Staff

24.401 Proseminar in Philosophy II (A)
Prereq.: Permission of Instructor
G (2) 6-0-18
Intensive study of a philosopher or philosophical movement. Content varies from year to year, and subject may be taken repeatedly with permission of instructor and advisor.
J. Carriero

24.501 Problems in Metaphysics (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86 3-0-9
Metaphysical problems centering around a number of interrelated philosophical issues about abstract entities, space and time, and possibility. Readings from both classical and contemporary sources. Consult J. A. Fodor.
P. G. Horwich

24.502 Space, Time, and Causality (A)
Prereq.: Permission of Instructor
G (2) 3-0-9
Examination of such problems and topics in metaphysics as causal theories of time, the direction of causation, spatial and temporal analogies, time travel, time without change, and Zeno’s paradoxes.
P. G. Horwich

24.511 Problems in Theory of Knowledge (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
Study of problems concerning the foundation of knowledge, with special attention to our concepts of evidence, belief, doubt, knowledge, and certainty. Content varies from year to year; subject may be taken repeatedly with permission of instructor and advisor.
M. Williams

24.518J Problems of Mental Representation (A)
(Same subject as 9.671J)
Prereq.: Permission of Instructor
G (1) 3-0-9
Topics: the case for mental representation; doubts about the intelligibility of mental representation; the relation between internal language and external language; where does meaning come from, mental representations or beliefs; the syntactic theory of the mind; conceptual role semantics and procedural semantics; narrow content; the two-factor theory of the meaning of mental representations.
J. A. Fodor

24.521 Topics in Philosophy of Mind (A)
Prereq.: Permission of Instructor
G (2) 3-0-9
This year, discussion centers on relations between the phenomenology of Husserl and his expositors and recent developments in cognitive science and philosophical psychology. Special references to representational theories of mental states and processes, and to problems about the content of propositional attitudes. Readings drawn largely from secondary sources. Focus is analytical rather than historical.
J. J. Thomson

24.601 Topics in Moral Philosophy (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86 3-0-9
Systematic examination of selected problems in moral philosophy. Content varies from year to year; subject may be taken repeatedly with permission of instructor and advisor.
J. W. DeCew

24.603 Twentieth-Century Ethics (A)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86 3-0-9
Examination of major theories of rightness, including utilitarianism, intuitionism, emotivism and contractualism, and contrasting theories of the good, focusing on problems such as the open question argument and the naturalistic fallacy. Readings from such authors as Moore, Hare, Brandt, Ross, Rawls.
J. W. DeCew

24.611J Political Philosophy (A)
(Same subject as 17.106J)
Prereq.: Permission of Instructor
G (1) 3-0-9
See description under subject 17.106J.
J. Cohen
24.825J Philosophies of Social Science (A)
(New)
Prereq.: Permission of Instructor
G (2) 3-0-9
See description under subject 17.104J.
J. Cohen, H. R. Alker, Jr.
Next offered 1985-86
24.715 Intentionality and Logic (A)
Prereq.: 24.241
G (1) Next offered 1985-86
3-0-9
Formal systems for analysis of modality and intentional discourse (proportional attitudes). Criticisms and comparisons, both technical and philosophical. Background in Frege and Russell; Kripke's theory of models for modal logic; possible-worlds semantics; Montague's IL; Church's lambda-calculi, and Sense and Denotation; relative interpretability of the systems; extensions by Barwise, Kaplan, and others.
J. T. Higginbotham

24.727 Logic and Language (A)
Prereq.: Permission of Instructor
G (2) 3-0-9
Philosophical issues in logic and the analysis of language; the role of logical and linguistic analysis in philosophy, as exemplified in contemporary and near-contemporary work, roughly from Carnap (1937) onward. Topics and reading given special emphasis may vary from year to year.
J. T. Higginbotham

24.801 Philosophy of Mathematics (A)
Prereq.: Permission of Instructor
G (1) 3-0-9
Examination of major philosophies of mathematics — logicism, formalism, intuitionism — on the nature of mathematical proof, existence of mathematical entities, and related issues. It is strongly recommended that students have taken 24.241 or equivalent.
G. S. Boolos

24.853 Philosophy of Scientific Development (A)
Prereq.: Permission of Instructor
G (2) Not to be offered 1985-86
3-0-9
Study of problems presented by the conceptual changes that accompany scientific advancement. To what extent, for example, do such changes preserve the meaning (or the reference) of scientific terms? Can the cognitive content of a discarded theory be represented in a language adapted to use with its successor? If not, what sort of communication is possible between the proponents of competing theories, and what sense can be made of the notion of scientific progress?
T. S. Kuhn

24.855 Problems in Philosophy of History (A)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86
3-0-9
An examination of major views about problems raised by historical explanation. How can an apparently descriptive enterprise be explanatory? Does its success presuppose laws of human behavior? Does its practice demand an empathy or Verstehen unknown in the natural sciences? Readings from such authors as Collingwood, Geertz, Hempel, Taylor, White.
T. S. Kuhn

24.891 Special Graduate Topics in Philosophy (A)
Prereq.: —
G (1) Arr.

24.892 Special Graduate Topics in Philosophy (A)
Prereq.: —
G (2) Arr.
Open to qualified graduate students in philosophy who wish to pursue special studies or projects.
Staff

24.900J The Study of Language
(Same subject as 21.322J)
Prereq.: —
U (1, 2) HUM-D
3-0-6
What is language? What does knowledge of a language consist of? How do children learn languages? Is language unique to humans? Why are there many languages? How do languages change? Is any language or dialect superior to another? How are speech and writing related? Context for these and similar questions provided by basic examination of internal organization of sentences, words, and sound systems. Assumes no prior training in linguistics.
S. Bromberger, J. W. Harris, W. O'Neil, J. R. Ross

24.901J Language and Its Structure
(Same subject as 21.322J)
Prereq.: 24.900J
U (2)
3-0-6
Detailed examination of fundamental concepts and issues in linguistic theory, with emphasis on explanatory models in linguistics and their bearing on issues in philosophy and cognitive psychology. Phonology: phonetic features, the organization of phonological systems, phonological change; examples from English and other languages. Syntax: deep and surface structures, properties of syntactic rules, syntax and semantics; a survey of the major syntactic processes of English.
J. W. Harris

24.915 Elements of Linguistic Theory (A)
Prereq.: —
G (1) 3-0-9
Fundamental aspects of major branches of linguistic research: phonology, syntax, semantics, pragmatics. Foundational issues: organization of grammar, interaction of components, relation to psychology and theory of knowledge. Primarily for nonlinguists with a professional interest in linguistics. Undergraduates with permission of instructor only.
J. T. Higginbotham, S. Bromberger, N. Chomsky

24.921 Special Graduate Topics in Linguistics (A)
Prereq.: —
G (1) Arr.
Open to qualified graduate students in linguistics who wish to pursue special studies or projects.
Staff
Linguistics and Philosophy

24.922 Special Graduate Topics in Linguistics (A)
Prereq.: —
G (2) Arr.
Open to qualified graduate students in linguistics who wish to pursue special studies or projects.
Staff

24.931 Linguistic Structures: Romance (A)
Prereq.: 24.951, 24.961 G (2) Next offered 1985-86 3-0-9
Topics in the syntax, phonology, and morphology of the Romance languages, with emphasis on the application of modern theories to classical problems of Romance linguistics and the implications of data drawn from the Romance languages for general linguistic theory. Some knowledge of a Romance language required.
J. W. Harris

24.933 History of the English Language (A)
Prereq.: Permission of Instructor G (2) 3-0-9
Selected topics in the history of English syntax, morphology, and phonology from Old English to the present, formulated within an attempt at a general theory of linguistic change. Some knowledge of Old and Middle English desirable.
W. O'Neil, S. J. Keyser

24.941 Topics in the Grammar of a Non-Indo-European Language (A)
Prereq.: 24.951 G (1) 3-0-6
24.942 Topics in the Grammar of a Non-Indo-European Language (A)
Prereq.: 24.951 G (2) 3-0-6
Detailed examination of the grammar of a language whose structure is significantly different from English, with special emphasis on problems of interest in the study of linguistic universals. A native speaker of the language assists when possible.
Staff

24.943 Studies in American Indian Linguistics (A)
Prereq.: Permission of Instructor G (1) 3-0-0
24.944 Studies in American Indian Linguistics (A)
Prereq.: Permission of Instructor G (2) 3-0-9
Detailed examination of specific topics in the structure of an American Indian language, with special emphasis on linguistic problems which bear on the educational concerns of the community in which the language is spoken. Topic varies from term to term and year to year. Subject may be taken repeatedly with permission of instructor. Native command of an American Indian language preferred.
K. L. Hale

24.945 Language Typology (A)
Prereq.: Permission of Instructor G (2) Next offered 1985-86 3-0-9
Detailed cross-linguistic examination of selected subsystems of grammar in relation to the problem of constraining theories of linguistic knowledge. Concentrates on a coherent set of topics in languages representing the typological diversity known to exist in the world — e.g., base structure, the lexicon and morphology, transformational systems, anaphora, case, agreement, logical operators, quantifiers, and modality.
K. L. Hale

24.946 Workshop in Linguistics and Education (A)
Prereq.: Permission of Instructor G (2) Next offered 1985-86 3-0-9
An exploration of the educational potential of the theoretical study of language in elementary and secondary education, focusing upon the use of linguistic data and problems as a medium for teaching scientific method; design of language-based games, game-like activities, and research projects appropriate for elementary and secondary school years; a consideration of the design of language-based science curricula in bi- and multilingual communities; the relationship between a language-based science curriculum and other areas of general educational concern.
W. O'Neill

24.949J Seminar on Language Acquisition (A)
(Same subject as 9.601J)
Prereq.: Permission of Instructor G (2) Next offered 1985-86 3-0-9
See description under subject 9.601J.
S. Pinker

24.951 Introduction to Linguistics I: Syntax (A)
Prereq.: 24.901J G (1) 3-0-9
Introduction to theories of syntax which underlie work currently being done within the lexical-functional and government-binding frameworks. Organized into three interrelated sections, each focused upon a particular area of concern: 1) phrase structure, 2) the lexicon, and 3) principles and parameters. Grammatical rules and processes constitute a focus of attention throughout the course, serving to reveal both modular structure of grammar and interaction of grammatical components.
K. L. Hale

24.952 Introduction to Linguistics III: Theory of Grammar (A)
Prereq.: 24.951 G (2) 3-0-9
Problems in constructing an explanatory theory of grammatical representation. Topics drawn from current work on lexical rules and representations, complementation, control, casemarking, syntactic binding, ellipsis, anaphora, and adjunction. Study of language-particular parameters in the formulation of linguistic universals.
L. Rizzi

24.956 Introduction to Linguistics IV: Universal Grammar (A)
Prereq.: 24.951 G (1) 3-0-9
The nature of linguistic universals, which make it possible for languages to differ and place limits on these differences. Study of selected problem areas which show how data from particular languages contribute to the development of a strong theory of universal grammar and how such a theory dictates solutions to traditional problems in the syntax of particular languages.
L. Rizzi

24.957 Introduction to Linguistic Theory at an Advanced Level (A)
Prereq.: Permission of Instructor G (2) 3-0-9
Discussion of conceptual and methodological issues: goals of linguistic theory and its place in the study of thought and behavior; descriptive and explanatory theories; the nature, use, and acquisition of knowledge of language compared with other cognitive systems; relations of form, meaning, and language use. Examination of theories of transformational generative grammar as they have evolved and are now being pursued: theory of base, transformations, semantic interpretation of formula structures, logical form, and conditions on the form and functioning of rules.
N. A. Chomsky

24.958 Linguistic Structure (A)
Prereq.: 24.952 or 24.957 G (1) 3-0-9
Current work on topics in syntax and semantics. Permission of instructor required.
N. A. Chomsky

24.959 Workshop in Syntax (A)
Prereq.: Permission of Instructor G (1) 3-0-9
An intensive group tutorial/seminar for discussion of research being conducted by participants. No auditors allowed.
L. Rizzi
24.961 Introduction to Linguistics II: Phonology
Prereq.: —
G (1)
4-0-5
Aims and principles of a scientific description of the phonetic aspect of language. The mechanism and acoustics of speech. Distinctive features as the descriptive framework. The phoneme. The phonemic system of a language. The interrelations between phonology and other linguistic levels. Some problems of historical phonology. Practical exercises. This subject is a core offering in Cognitive Science at MIT.
S. J. Keyser, D. Steriade

24.962 Advanced Phonology (A)
Prereq.: 24.961
G (2)
3-0-9
Continuation of 24.961. Special emphasis on problem solving.
D. Steriade

24.964 Theory of Phonology (A)
Prereq.: 24.961
G (2)
3-0-9
Phonological representations, the organization of the phonological component, morphology. The relation of structure, function, and change. Consult S. J. Keyser.

24.965 Morphology (A)
Prereq.: Permission of Instructor
G (1)
3-0-9

24.966J Laboratory on the Physiology, Acoustics, and Perception of Speech (A)
(Same subject as 6.542J)
Prereq.: Permission of Instructor
G (1) Not to be offered 1985-86
2-2-8
See description under subject 6.542J.
D. H. Klatt

24.967 Relational Grammar
Prereq.: An introductory course in syntax
G (2)
3-0-9
Architecture of basic clauses. Hierarchies of such grammatical relations as subject, direct object, and indirect object, as well as such grammatico-semantic actants as locative, instrumental, beneficiary. Laws governing changes of grammatical relations: promotions, ascensions, replacements by dummy elements. Patterns of clause merger in causativization and predicate raising. Critiques of other current syntactic theories from the perspectives of relational grammar and nondiscrete grammar. Permission of instructor required for students without the above prerequisite.
J. R. Ross

24.968J Speech Communication (A)
(Same subject as 6.541J)
Prereq.: Permission of Instructor
G (2) Not to be offered 1985-86
3-0-9
See description under subject 6.541J.
S. J. Keyser, K. N. Stevens

24.969 Workshop in Phonology (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
An intensive group tutorial/seminar for discussion of research being conducted by participants. No auditors will be allowed.
Staff

24.971 Formal Foundations of Linguistic Theory (A)
Prereq.: —
U (1)
3-0-9

24.972 Formal Foundations of Linguistic Theory (A)
Prereq.: Permission of Instructor
G (1)
3-0-9
Introduction to the theory of computation, formal languages, and definability, with special emphasis on topics most pertinent to linguistic research. Automata and Turing machines, phrase-structure and categorical grammars, inductively definable languages, undecidable problems, basic concepts of parsing and complexity theory.
J. T. Higginbotham

24.973 Topics in Logic and Semantics (A)
Prereq.: Permission of Instructor
G (2)
3-0-9
Topics in logic and semantics, with particular attention to issues and techniques in linguistic analysis. Formal systems, satisfaction, and truth; restricted and branching quantifiers; binding and opacity; modal and intensional notions. Conceptions of logical form in philosophy and linguistics.
J. T. Higginbotham

24.982 Linguistic Change (A)
Prereq.: 24.951, 24.961
G (2) Next offered 1985-86
3-0-9
Review of instances of change in phonology, morphology, and syntax. Examples to be drawn from various language families, Indo-European, as well as others. An attempt to develop a general theory of linguistic change.
S. J. Keyser, W. O'Neil

24.992 Survey of General Linguistics I
Prereq.: 24.951, 24.961
G (1)
3-0-9
Reading and discussion of certain important papers in syntax, semantics, and phonology designed to familiarize the student with central ideas in current linguistic research. Selection of papers and organization of discussion is primarily in the hands of the seminar participants.
K. L. Hale

24.993 Tutorial in Linguistics and Related Fields (A)
Prereq.: Permission of Instructor
G (1, 2)
Arr.
Individual or small group tutorial in which students under the guidance of a faculty member explore the interrelations with linguistics of some specified area.
Staff
Some HST subjects start the Wednesday following Labor Day which is before MIT's fall semester commences.

Students wishing to take HST 010-190 and 304 and 900 must file an application in Room E25-519.

HST 010 Functional Anatomy of Man (A)
Prereq.: Permission of Instructor

Lectures, laboratory dissections, and demonstrations designed to provide a thorough grounding in the structure of the human body and in certain of its functions. Intended for undergraduates and graduate students aspiring to careers in vertebrate biology (including physical anthropology), bioengineering, medicine, and other health-related occupations. Enrollment limited. Permission of instructor required.

HST 020 Bone and Connective Tissue (A)
Prereq.: Permission of Instructor

Growth and development of normal bone and joints, the process of mineralization, the bio-physics of bone and response to stress and fracture, calcium and phosphate homeostasis and regulation by parathyroid hormone and vitamin D, and the pathogenesis of metabolic bone diseases and disease of connective tissue and joints with consideration of possible mechanisms and underlying metabolic derangements. Meets first half of the term. Enrollment limited. D. R. Robinson, W. C. Hayes, J. T. Potts, Jr., R. M. Rose, A. L. Schiller

HST 030 Human Pathology (A)
Prereq.: 5.42, 7.01, 8.01, 8.02

Introduction to the organization, structure, and function of normal cells and tissues; pathologic principles of cellular injury, inflammation, circulatory disorders, immunologic injury, infection, nutritional disorders, growth disorders, neoplasia, and radiation injury in humans. Lectures, conferences, laboratories with examination of microscopic and gross specimens, and autopsy case studies. Enrollment limited. Permission of instructor required.

H. Goldman, A. K. Abbas, G. R. Dickersin, Associates

HST 040 Mechanisms of Microbial Pathogenesis (A)
Prereq.: 7.01, 7.05

Deals with the mechanisms of pathogenesis of fungi, bacteria, mycoplasma, and viruses. Approach polarized towards mechanisms at biochemical and immunological levels without neglecting epidemiology and selected clinical aspects of diseases. Topics selected for intrinsic interest and cover the demonstrated spectrum of pathophysiological mechanisms. Enrollment limited. Permission of instructor required.

P. Schaffer, J. Mekalanos, Associates

HST 050 Topics in Quantitative Physiology (A)
Prereq.: 8.01, 8.02, 18.01

Selected topics illustrating the use and results of a quantitative approach to physiological problems. Items discussed include a) Stochastic processes, applied to genetic mutations, cardiac electrophysiology, strategies of drug administration. b) Diffusive transport of gases in lung and tissues, electro-diffusion of ions and active transport. c) Excitable cell membranes, action potential models of the axon. d) Homeostasis; principles of feedback control systems; case studies. Weekly problem assignments.

F. M. H. Villars, R. J. Cohen, T. F. Weiss, D. J. Litster

HST 060 Endocrinology (A)
Prereq.: 7.01, 7.05

Physiology and pathophysiology of the human endocrine system. Four hours of lecture each week concern individual parts of the endocrine system. Topics also include assay techniques, physiological integration, etc. At frequent clinic sessions, patients are presented who demonstrate clinical problems considered in the didactic lectures. Enrollment limited, permission of instructor required.

S. H. Ingbar, W. Kettle

HST 070 Human Reproductive Biology (A)
Prereq.: 7.01, 7.05

Lectures, laboratory sessions, and case discussions designed to provide the student with a clear understanding of the physiology, endocrinology, and pathology of human reproduction. In addition, designed to involve student in analysis of the wider aspects of reproduction, such as the social and psychological aspects of human sexual behavior, contraception, unwanted pregnancy, and the menopause. Enrollment limited. Permission of instructor required.

M. Phillippe, I. Schiff, C. Millette, Associates

HST 080 Hematology (A)
Prereq.: 7.05

An intensive survey of the biology, physiology, and pathophysiology of blood and the blood-forming organs with systematic consideration of hematopoiesis, the "formed elements," blood coagulation, blood groups and immunoglobulins, and other plasma proteins. Emphasis given equally to didactic discussion and analysis of clinical problems. Meets second half of the term. Enrollment limited. Permission of instructor required.

HST 090 Cardiovascular Pathophysiology (A)
Prereq.: 7.01 or 18.01, 18.02

Normal and pathologic physiology of the heart and vascular system. Emphasis includes hemodynamics, electrophysiology, gross and microscopic pathology, and clinical correlates of cardiovascular function in healthy and in a variety of disease states. Special attention will be given to congenital, rheumatic, hypertensive, arteriosclerotic, and coronary heart disease. Enrollment: Lectures - open; Laboratory - limited. Permission of instructor required.

HST 091 Cardiovascular Pathophysiology (A)
Prereq.: 7.01 or 18.01, 18.02

Same as HST 090 but without the laboratory.

Health Sciences and Technology

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST 100</td>
<td>Respiratory Pathophysiology (A)</td>
<td>Prereq.: 7.01, 7.05</td>
<td>2-1-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lectures, seminars, and labs which cover the development of the lung, its histology and cellular function, provide an introduction to respiratory physiology and function.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acute and chronic glomerulonephritis, and other renal diseases are presented.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST 110</td>
<td>Renal Pathophysiology (A)</td>
<td>Prereq.: 7.01, 7.05</td>
<td>2-1-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Topics include the normal and pathologic functioning of the kidney. Emphasis on electrolyte and water metabolism — the role of Na+, K+, H+, and water. Included also the pathophysiology of chronic renal diseases.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The normal and pathologic functioning of the kidney includes electrolyte and water metabolism — the role of Na+, K+, H+, and water.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST 130J</td>
<td>The Human Nervous System: The Neurosciences I (A)</td>
<td>Prereq.: 9.014J, 20.511J</td>
<td>6-3-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Encompasses: 1) the gross anatomy, internal organization, and fine structure (light- and electron-microscopic) of the mammalian nervous system; 2) the neurophysiology of the visual system and motor system; 3) neuropathology; and neuroendocrinology; 4) neuropharmacology; and 5) selected subjects in pathophysiology. Includes five clinical demonstrations.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST 131J</td>
<td>Pathophysiology of the Nervous System (A)</td>
<td>Prereq.: HST 130J</td>
<td>4-0-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Same subject as 9.018J, 20.518J)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discussion of physiological and biochemical mechanisms of peripheral and central nervous systems’ diseases. Lectures emphasize advances in the basic sciences as they apply to the musculoskeletal, myasthenia gravis, peripheral neuropathies, pain and nociception, supraspinal control of movement, multiple sclerosis, Alzheimer’s and Huntington’s diseases, epilepsy, sleep and biological rhythms, strokes, and disorders of emotion and language.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enroll limited. Permission of instructor required.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST 141</td>
<td>Molecular Basis of Some Clinical Disorders (A)</td>
<td>Prereq.: 7.05</td>
<td>2-1-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conducted as a seminar to study a variety of human diseases and the underlying molecular and biologic basis for the pathogenesis and pathophysiology of the disorders. Lectures by faculty and seminars conducted by the students with tutorials and supervision by faculty. Appropriate for students who have had a course in biochemistry and/or molecular biology.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enroll limited. Permission of instructor required.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST 142</td>
<td>Molecular and Cellular Biology and Immunology (A)</td>
<td>Prereq.: Permission of Instructor</td>
<td>4-0-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overview of molecular biology, cell biology, and Immunology.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H. N. Eisen, H. F. Lodish, R. C. Mulligan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST 170</td>
<td>Immunology</td>
<td>Prereq.: 7.05</td>
<td>4-0-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A version of General Immunology 7.73 limited to HST students in the Biomedical Sciences Curriculum.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L. A. Steiner, H. N. Eisen, M. L. Geffter</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST 190</td>
<td>Statistical Planning and Analysis of Biomedical Investigations (A)</td>
<td>Prereq.: Knowledge of calculus</td>
<td>3-0-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G (J)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lectures discuss statistical methodology and concepts in the context of planning and analysis of biomedical investigations. Aims to acquaint the student with sufficient background to critically evaluate the scientific and medical literature. Topics: diagnostic testing, clinical decision analysis, statistical inference, confidence intervals, distribution-free procedures, data, design and analysis of clinical trials.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D. Finkelestein, J. Anderson, J. Ware, M. Weinstein</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST 200</td>
<td>Physical Diagnosis and Introductory Clinical Experience (A)</td>
<td>Prereq.: Permission of Instructor</td>
<td>9-25-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Required for doctoral students in MEMP program. Students: 1) develop skill in patient interviewing and physical examination; 2) become proficient at organizing and communicating clinical information in both written and oral forms; 3) begin integrating history, physical, and laboratory data with pathophysiologic principles; and 4) become familiar with the clinical decision-making process and broad economic, ethical, and sociological issues involved in patient care.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Permission of instructor required.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. G. Marks, M. Kane, C. J. Hatem, J. Cadigan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST 201</td>
<td>Introduction to Clinical Medicine and Medical Engineering II (A) (Revised Content and Unit)</td>
<td>Prereq.: HST 201</td>
<td>0-20-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G (J, S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strengthens the skills developed in HST 201 through a six-week clerkship in medicine at Mount Auburn Hospital. Students serve as full-time members of a ward team and participate in longitudinal patient care. In addition, students participate in regularly scheduled teaching conferences focused on principles of patient management. Offered twice, beginning in January and mid-May.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C. J. Hatem, R. G. Mark</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HST 203 Clinical Experience in Medical Engineering and Medical Physics (A)
(Revised Content and Unit)
Prereq.: HST 201, HST 202
G (1, 2, S) 0-40-0
An individually arranged full-time three-month directed study in a clinical environment where active medical engineering/medical physics investigation is in progress. Students are actively engaged in patient care, particularly those aspects which interface closely with technology. Students also focus on in-depth exploration of the technical and research area. Term paper required.
E. G. Cravalho, R. G. Mark, Associates

HST 204 Medical Diagnosis and Technology (A)
Prereq.: Permission of Instructor
G (2) 2-2-2
March through May, for students in HST M.D. and MEP/M curriculum. Intended as a supplement to HST 200 and HST 201: 1) basic guidance to examination of musculoskeletal system, skin, eye, ear, nose, and throat; and 2) interdisciplinary seminars dealing with techniques currently in use or in development for the diagnostic assessment of structural and/or functional abnormalities in human organ systems. Emphasis on imaging — including optical, radiological, and nuclear imaging.
W. H. Churchill, J. A. Parker, Associates

HST 210 Innovation and Conceptual Design for the Solution of Technical Problems in Clinical Medicine (A)
(Revised Unit)
Prereq.: Permission of Instructor
G (2) 3-0-3
Multidisciplinary approach to technical problem solving in clinical medicine. Case-study approach based on solving real problems in medical engineering and medical physics, with current problems posed by physicians from area hospitals. Problems and proposed solutions presented in seminar setting for evaluation. Generally, it is possible to arrange follow-up of promising conceptual designs outside of class, often as a research topic.
J. C. Weaver, E. G. Cravalho, H. Hechtman, F. Schoen

HST 500J Physics I
(Same subject as 8.013J)
Prereq.: —
U (1) 5-1-6
See description under subject 8.013J.
T. Tanaka

HST 521J Biomedical Transport Phenomena (A)
(Same subject as 10.49J)
Prereq.: 10.301, 10.302
G (2) 2-0-5
See description under subject 10.49J.
C. K. Colton, W. M. Deen

HST 530J Ultrasound: Physics, Biophysics, and Technology (A)
(Same subject as 2.76J, 6.562J)
Prereq.: Permission of Instructor
G (1) Not to be offered 1985-86 4-1-7
See description under subject 2.76J.
P. P. Lele, F. R. Morgenstern

HST 531J Lasers, Microwaves, Ultraviolet, Magnetic Fields, and Ultrasound in Biomedical Sciences (A)
(Same subject as 2.762J)
Prereq.: Permission of Instructor
G (1) Next offered 1985-86 4-1-7
See description under subject 2.762J.
P. P. Lele, Staff

HST 541J Quantitative Physiology: Cells and Tissues
(Same subject as 2.791J, 6.021J)
Prereq.: 2.02 or 6.002 or 6.071; 8.02, 18.03 U (1) 4-2-6
See description under subject 6.021J.
T. F. Weiss, I. V. Yannas

HST 542J Quantitative Physiology: Organ Transport Systems
(Same subject as 2.792J, 6.022J)
Prereq.: 2.20, HST 541J, 2.791J, 6.013 U (1) 3-2-7
See description under subject 6.022J.
B. B. Mikić, R. G. Mark, R. D. Kamm

HST 543J Quantitative Physiology: Sensory and Motor Systems
(Same subject as 2.793J, 6.023J, 16.351J)
Prereq.: 2.02 or 6.003 or 16.30;
HST 541J U (2) 3-2-7
See description under subject 6.023J.
L. R. Young, R. W. Mann, L. S. Frishkopf

HST 544J Fields, Forces, and Flows: Background for Physiology (A)
(Same subject as 6.561J)
Prereq.: 6.013, 6.021J G (1) 3-0-9
See description under subject 6.561J.
A. J. Grodzinsky

HST 550J Computers and Patient Care
(Same subject as 6.523J)
Prereq.: — G (2) 2-0-4
An overview of present and potential uses of computers in patient care applications. Topics: hospital administrative activities, automated medical histories, input of physician progress notes and orders, ambulatory medical record, patient monitoring, automated medical consultation and diagnosis, medical education and clinical simulations, data analysis in clinical investigations. Open to undergraduates.
G. O. Barnett

HST 560J Biological and Medical Applications of Radiation and Radioisotopes (A)
(Same subject as 22.55J)
Prereq.: 8.272 or 22.111 G (1) 4-0-8
See description under subject 22.55J.
G. L. Brownell, Staff

HST 561J Principles of Medical Imaging (A)
(Same subject as 2.761J, 22.56J)
Prereq.: Permission of Instructor
G (2) 4-0-8
See description under subject 22.56J, 2.761J.
G. L. Brownell, P. P. Lele, Staff

HST 565J Radiation Biophysics (A)
(Same subject as 22.57J)
Prereq.: 8.271 or 22.111 G (1) 4-0-8
See description under subject 22.57J.
A. C. Nelson

HST 570J Biomedical Instrumentation Electronics
(Same subject as 2.781J, 16.608J)
Prereq.: Permission of Instructor
G (S) 6-6-6
Introduction to modern computer-based instrumentation through a major bioengineering laboratory project in which each student develops electronic circuits, interfaces them to a microcomputer, and combines them to form an instrument. Classroom material focuses on: electronic circuit elements, networks, signal and system representations, logic and digital design, elementary programming, and physiological background. No background in electrical engineering or programming required.
S. K. Burns, R. V. Kenyon, D. Rowell
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>HST 580</td>
<td>Principles of Biomedical Measurements (A)</td>
<td>Prereq.: Permission of Instructor G (1) 3-0-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fundamental principles of biomedical measurements. Concepts underlying transducers and their interface to biological systems. Emphasis on present and emerging approaches relevant to clinical medicine, biomedical research, and biotechnology. Topics include noise, temperature, pressure, sound, flow, bioelectric potentials, chemical electrodes, ISFETs, blood gas measurements, biochemical assays, bioassays, and microbiological measurements. J. C. Weaver</td>
</tr>
<tr>
<td>HST 581J</td>
<td>Measurements In Medicine and Biomedical Research (A except VI)</td>
<td>(Same subject as 6.565J) Prereq.: 6.003, 6.041, HST 542J G (1) 2-5-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medical engineering concepts and methods for effective acquisition and use of information obtained via measurements on living subjects. Practical exposure to biomedical measurements and transducers with emphasis on understanding their limitations and utility in medicine and biomedical research. Laboratory investigations in areas of current interest in medicine and biomedical research and into transduction principles and their practical application in the biomedical setting. Enrollment limited. R. G. Mark, E. D. Trautman</td>
</tr>
<tr>
<td>HST 582J</td>
<td>Biomedical Signal Processing (A)</td>
<td>Prereq.: 6.003 3-6-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principles of processing and enhancing physiological information for use in medicine. Emphasis on understanding characteristics of present and experimental medical technology using examples taken from the field of cardiology. Basic principles and algorithms used in data acquisition and display, filtering, and feature extraction covered. Laboratory exercises include hands-on experience with minicomputers. J. M. Teich, R. V. Kenyon, W. M. Siebert</td>
</tr>
<tr>
<td>HST 590</td>
<td>Biomedical Engineering Seminar</td>
<td>Prereq.: — G (1, 2) 1-0-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weekly seminar describing recent research in biomedical engineering, medical physics, and related areas of interest to graduate students with backgrounds in the physical sciences and engineering. Speakers include faculty and research staff from MIT and other institutions in the Boston area, advanced graduate students, and occasional visitors. D. J. Edell</td>
</tr>
<tr>
<td>HST 591</td>
<td>Biomedical Engineering Student Research Seminar</td>
<td>Prereq.: — G (1, 2) 2-0-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Development of professional speaking skills in the communication of research progress. Students present their research, emphasizing clear statement of the goals, significance, and current status of their work. Confident, written feedback given by each member of the audience. Required of all students affiliated with the HST Biomedical Engineering Center. J. C. Weaver</td>
</tr>
<tr>
<td>HST 598</td>
<td>Special Topics In Medical Engineering and Medical Physics</td>
<td>Prereq.: — U (1, 2, S) Arr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For undergraduates desiring to carry on substantial projects of their own choosing in Medical Engineering or Medical Physics. Work may be of experimental, theoretical, or design nature. Coordinator: E. G. Cravalho</td>
</tr>
<tr>
<td>HST 599</td>
<td>Special Topics In Medical Engineering and Medical Physics (A)</td>
<td>Prereq.: Permission of Instructor G (1, 2) 2-0-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assigned reading and special problems or research on special topics, either theoretical, experimental, or clinical. Arranged on individual basis with instructor. Coordinator: E. G. Cravalho</td>
</tr>
<tr>
<td>HST 600</td>
<td>Topics in the Economics of Health Care (A)</td>
<td>Prereq.: — G (J) 2-0-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to some of the problems in the resource allocation of the health care sector. Brief introduction to economic theory. Topics: rising health costs, national health insurance, cost-benefit analysis and optimization, regulation and the structure of the industry (centralization vs decentralization), technology assessment, and planning clinical trials. Emphasis more on posing the important questions and examining different methods of analysis rather than arriving at definitive answers. A. Detsky</td>
</tr>
<tr>
<td>HST 601</td>
<td>Health Economics</td>
<td>Prereq.: — U (1, 2, S) Arr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extended participation in the work of a faculty member or research group. Research is arranged by mutual agreement between the student and a member of the faculty of the Harvard-MIT Division of Health Sciences and Technology, and may continue over several terms. Registration requires submission of a written proposal, signed by the faculty supervisor. A summary report must be submitted at the end of each term. E. G. Cravalho</td>
</tr>
</tbody>
</table>

Health Sciences and Technology 222D

- HST 902J Current Economic and Regulatory Problems in Toxicology (A)
 - (Same subject as 14.285J, 20.619J)
 - Prereq.: Permission of Instructor G (1) Next offered 1985-86 3-0-9
 - See description under subject 20.619J. J. E. Harris

- HST 903J Health Economics Seminar (A)
 - (Same subject as 14.286J)
 - Prereq.: — G (2) Next offered 1985-86 3-0-9
 - See description under subject 14.286J. J. E. Harris

- HST UR Undergraduate Research in Health Sciences and Technology
 - Prereq.: — U (1, 2, S) Arr.
 - Extended participation in the work of a faculty member or research group. Research is arranged by mutual agreement between the student and a member of the faculty of the Harvard-MIT Division of Health Sciences and Technology, and may continue over several terms. Registration requires submission of a written proposal, signed by the faculty supervisor. A summary report must be submitted at the end of each term. E. G. Cravalho

Undergraduate Research in Biomedical Engineering

- HST 590 Undergraduate Research in Biomedical Engineering (A)
 - (Same subject as 14.21J)
 - Prereq.: 14.01 3-0-6
 - See description under subject 14.21J. J. E. Harris

Undergraduate Research in Health Sciences and Technology

- HST UR Undergraduate Research in Health Sciences and Technology
 - Prereq.: — U (1, 2, S) Arr.
 - Extended participation in the work of a faculty member or research group. Research is arranged by mutual agreement between the student and a member of the faculty of the Harvard-MIT Division of Health Sciences and Technology, and may continue over several terms. Registration requires submission of a written proposal, signed by the faculty supervisor. A summary report must be submitted at the end of each term. E. G. Cravalho

Topics in the Economics of Health Care

- HST 590 Topics in the Economics of Health Care (A)
 - Prereq.: — G (J) 2-0-4
 - **Introduction to some of the problems in the resource allocation of the health care sector. Brief introduction to economic theory. Topics: rising health costs, national health insurance, cost-benefit analysis and optimization, regulation and the structure of the industry (centralization vs decentralization), technology assessment, and planning clinical trials. Emphasis more on posing the important questions and examining different methods of analysis rather than arriving at definitive answers. A. Detsky**
Project Interphase

SP 100 Special Summer Program (Project Interphase)

(SP S 1)
Prereq.: —
U (S)
Arr.

A program intended to assist freshmen to develop their facility with those concepts, techniques, and skills required for success at MIT. Classes are held in five academic areas: calculus and review of pre-calculus topics; physics, introducing Newtonian mechanics; chemistry, placing emphasis on stereo-chemistry; computer programming; humanities, improving expository writing and study skills; and an in-depth examination of problem-solving approaches. Credit arranged with an 18-unit maximum. Enrollment by Invitation of the Office of the Provost and the Office of Minority Education.

W. D. McLaurin, A. Davison

Experimental Study Group

SP 211 ESG (Experimental Study Group)

(SP S 11)
Prereq.: —
U (1)
Arr.

SP 212 ESG (Experimental Study Group)

(SP S 12)
Prereq.: —
U (2)
Arr.

An individualized academic program for freshmen in mathematics, humanities and social sciences, physics, and chemistry. Credit available for General Institute Requirements as well as special educational interests through tutorials, seminars, and independent projects. Subjects may also be taken in the regular curriculum in conjunction with work done in ESG. Staff includes MIT faculty, instructors, graduate students, and undergraduate tutors who are interested in teaching in a small, interactive community.

R. L. Hallman

SP 221 ESG (Experimental Study Group)

(SP S 21)
Prereq.: SP 211 and/or SP 212
U (1)
Arr.

SP 222 ESG (Experimental Study Group)

(SP S 22)
Prereq.: SP 211 and/or SP 212
U (2)
Arr.

Continuation of ESG for sophomores.

R. L. Hallman

SP 231 ESG Undergraduate Teaching

(SEM 311)
Prereq.: SP 211 and/or SP 212
U (1)
Arr.

SP 232 ESG Undergraduate Teaching

(SEM 312)
Prereq.: SP 211 and/or SP 212
U (2)
Arr.

An opportunity to tutor students, run study groups, and lead seminars in mathematics, physics, chemistry, and humanities and social sciences in ESG under staff supervision. Permission of appropriate ESG staff member required.

R. L. Hallman

Concourse Program

SP 311 Concourse Program

(SP S 31)
Prereq.: —
U (1)
Arr.

SP 312 Concourse Program

(SP S 32)
Prereq.: —
U (2)
Arr.

An integrative program for the freshman year. Staff includes faculty from the Schools of Science, Engineering, and Humanities and Social Science. Credits in Concourse fulfill the General Institute Requirements and are so recorded.

J. Y. Lettvin

Integrated Studies Program

SP 351 Integrated Studies Program

Prereq.: —
U (1)
Arr.

SP 352 Integrated Studies Program

Prereq.: —
U (2)
Arr.

A coordinated program for the freshman year which satisfies the General Institute Requirements in physics, chemistry/biology, and mathematics and two Humanities Distribution subjects. Staff includes faculty from the Schools of Science and Engineering and from the Program in Science, Technology, and Society.

L. Trilling

Women's Studies Program

SP 401 Introduction to Women's Studies (New)

Prereq.: —
U (1) HUM-D
3-0-9

An interdisciplinary subject which draws on literature, history, psychology, philosophy, anthropology, and feminist theory to: 1) examine our cultural assumptions about gender, 2) trace the effects of the new scholarship on traditional disciplines, 3) increase awareness of the history and experience of women as half the world's population.

M. Andersen, R. Perry

SP 410J Feminist Philosophy (New)

Prereq.: —
U (1) HUM-D
3-0-6

See description under subject 24.121J. C. Whilbeck

SP 420J American Women's History (New)

Prereq.: —
U (2)
3-0-6

See description under subject 21.416J. S. Deutsch
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP 430J</td>
<td>Literary Interpretation</td>
<td>(New)</td>
<td>(Same subject as 21.171J)</td>
<td>U (2)</td>
<td>3-0-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R. Perry</td>
<td>Prereq.: Two subjects in literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-0-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See description under subject 21.171J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 431J</td>
<td>New Women's Voices</td>
<td>(New)</td>
<td>(Same subject as 21.299J)</td>
<td>U (2)</td>
<td>3-0-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not to be offered 1985-86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I. de Courtivron, E. Waldstein, M. Resnick, M. Richardson</td>
<td>See description under subject 21.299J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 432J</td>
<td>Sex Roles in Fiction: Europe and Latin America</td>
<td>(New)</td>
<td>(Same subject as 21.297J)</td>
<td>U (1)</td>
<td>3-0-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. Waldstein</td>
<td>Prereq.: —</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U (1) HUM-D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Next offered 1985-86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-0-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See description under subject 21.297J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 433J</td>
<td>The Don Juan Legend</td>
<td>(New)</td>
<td>(Same subject as 21.298J)</td>
<td>U (1)</td>
<td>3-0-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. B. Turk</td>
<td>Prereq.: —</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U (1) HUM-D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not to be offered 1985-86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-0-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See description under subject 21.298J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 434J</td>
<td>Courtship Themes in Romance Literature</td>
<td>(New)</td>
<td>(Same subject as 21.300J)</td>
<td>U (2)</td>
<td>3-0-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M. Resnick</td>
<td>Prereq.: —</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U (2) HUM-D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Next offered 1985-86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-0-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See description under subject 21.300J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 435J</td>
<td>American Themes</td>
<td>(New)</td>
<td>(Same subject as 21.120J)</td>
<td>U (1)</td>
<td>3-0-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A. Lang</td>
<td>Prereq.: One subject in literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-0-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See description under subject 21.120J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 440J</td>
<td>Women Writers in French-Speaking Cultures</td>
<td>(New)</td>
<td>(Same subject as 21.227J)</td>
<td>U (1)</td>
<td>3-0-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I. de Courtivron</td>
<td>Prereq.: French IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U (1) HUM-D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Next offered 1985-86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-0-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See description under subject 21.227J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 447J</td>
<td>The Family in Spanish American Literature</td>
<td>(New)</td>
<td>(Same subject as 21.291J)</td>
<td>U (1)</td>
<td>3-0-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E. Garrels</td>
<td>Prereq.: Spanish IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U (1) Not to be offered 1985-86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-0-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See description under subject 21.291J.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 455J</td>
<td>Sex Roles: A Comparative Perspective</td>
<td>(New)</td>
<td>(Same subject as 21.586J)</td>
<td>U (1)</td>
<td>3-0-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prereq.: —</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-0-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See description under subject 21.586J. Consult J. E. Jackson.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 456J</td>
<td>The Family in Contemporary Society</td>
<td>(New)</td>
<td>(Same subject as 21.581J)</td>
<td>U (2)</td>
<td>3-0-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prereq.: —</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U (2) HUM-D</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-0-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See description under subject 21.581J. Consult S. Traweek.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 460J</td>
<td>Psychology of Gender</td>
<td>(New)</td>
<td>(Same subject as 9.75J)</td>
<td>U (1)</td>
<td>3-0-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prereq.: —</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>U (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Next offered 1985-86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-0-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See description under subject 9.75J. S. Carey</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See also: P. A. Wallace's 15.675 (Equal Employment Opportunity and Management of Human Resources); R. Becker's section of 21.755 (Writing and Reading Short Stories: The Voices of American Women, HUM-D, section 1); R. Perry's section of 21.003 (Introduction to Fiction: Women's Fiction, HUM-D, section 1); D. A. Stone's Political Science undergraduate seminar (Current Topics in Medicine); and two Women's Studies subjects offered in ESG by J. Murray (Introduction to Fiction: Women's Fiction, and Women in the 19th Century).
STS, Science, Technology, and Society

General Subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Instructor</th>
</tr>
</thead>
</table>
| STS UR Undergraduate Research | Undergraduate research opportunities in the STS Program. For further information consult the Departmental Coordinator: K. R. Manning | Prereq.: —
| U (1, 2) Arr. | | K. R. Manning |
| STS 100 Science, Technology, and Social Change | An introductory subject designed to help engineering and science students think systematically about the intellectual, moral, and social issues raised by the rapid growth of science and technology in the 20th century. Case studies drawn from current and past experience are used to examine the ways in which cultural, economic, and technical elements in particular situations have shaped opportunities for social choice. (Open only to freshmen enrolled in the Integrated Studies Program.) | Prereq.: —
| U (2) HUM-D 3-0-6 | L. Trilling |
| STS 110 Special Topics in Science, Technology, and Society | For students who wish to pursue special studies or projects with a member of the Program in Science, Technology, and Society. | Prereq.: —
| U (1) Arr. | K. R. Manning |
| STS 111 Special Topics in Science, Technology, and Society | Students draw upon their individual experience in a laboratory project, UROP project, or summer job to discuss broader aspects of scientific research or technical development (for example, how a new tool changes the way a phenomenon is analyzed, or how field experience with an engineering system motivates its improvement). A few issues are discussed by the whole group, and students apply the knowledge so acquired to interpret their experience. | Prereq.: —
| U (2) Arr. | L. Trilling |
| STS 120 Advanced Topics in Science, Technology, and Society | For students who wish to pursue special studies or projects at an advanced level with a member of the Program in Science, Technology, and Society. | Prereq.: —
| G (1) Arr. | K. R. Manning |
| STS 121 Advanced Topics in Science, Technology, and Society | | Prereq.: —
| G (2) Arr. | |
| STS 130J Reading Seminar in Humanities, Science, and Technology | | Prereq.: —
| (Same subject as 21.901J) | U (1) 2-0-7 |
| Term 1: Classic interpretation in the History of Ideas, focusing on the concept of the great chain of being as a precursor to evolutionary theory. Primary and secondary readings of historians, philosophers, and scientists. Term 2: Darwin and the Darwinian Revolution. Study of evolutionary theory before and after Darwin in its relation to social theory and to arguments about the meaning and purpose of life. Readings in a wide variety of texts from the 18th, 19th, and 20th centuries. Consideration of sociobiology and of the notion of God as the Great Computer Programmer of the Biosphere. Term 1: L. Marx Term 2: P. Buck | Prereq.: —
| (Same subject as 21.902J) | U (2) 2-0-7 |
| Term 1: Classic interpretation in the History of Ideas, focusing on the concept of the great chain of being as a precursor to evolutionary theory. Primary and secondary readings of historians, philosophers, and scientists. Term 2: Darwin and the Darwinian Revolution. Study of evolutionary theory before and after Darwin in its relation to social theory and to arguments about the meaning and purpose of life. Readings in a wide variety of texts from the 18th, 19th, and 20th centuries. Consideration of sociobiology and of the notion of God as the Great Computer Programmer of the Biosphere. Term 1: L. Marx Term 2: P. Buck | Prereq.: —
| (Same subject as 21.903J) | U (1, 2) 3-0-6 |
| STS 132J Project Seminar on the Context of Research | Intensive reading and analysis of key works in the history and historiography of science and technology. Aims at exploring similarities and differences between the two fields and at introducing students to basic interpretative issues, bibliographic sources, and professional standards. Topics change from year to year. | Prereq.: —
| G (1) | L. R. Graham |
| STS 200 The Scientific Revolution | The Scientific Revolution and its later consequences during the Enlightenment. Origins of scientific thought in the West. Emergence of science as a new intellectual and social force in the late 16th and 17th centuries. Focuses on major scientists such as Copernicus, Kepler, Harvey, Galileo, and Newton, and philosophers such as Bacon, Descartes, and Leibniz. | Prereq.: —
| U (1) HUM-D 3-0-9 |
| STS 201 History of 19th- and 20th-Century Science | Survey of the growth of the physical and biological sciences since the end of the Enlightenment. Emphasis on concepts and ideas which had great significance for the development of modern Western culture. Topics: evolution, electromagnetism and field theory, relativity and cosmology, quantum mechanics, genetics and molecular biology, ethology, sociobiology, and other biological approaches to the study of human behavior. | Prereq.: —
| U (2) HUM-D 3-0-9 |
| STS 202 Seminar in the History of Science and Technology | Intensive reading and analysis of key works in the history and historiography of science and technology. Aims at exploring similarities and differences between the two fields and at introducing students to basic interpretative issues, bibliographic sources, and professional standards. Topics change from year to year. | Prereq.: —
| G (1) 3-0-9 |
STS 205J Nature of Scientific Knowledge
(Same subject as 24.05J)
Prereq.: —
U (2) HUM-D 3-0-6
See description under subject 24.05J.
P. G. Horwich

STS 206J Social and Political Implications of Science
Prereq.: —
U (2) Next offered 1985-86 2-0-7

STS 207J Social and Political Implications of Science
(Same subject as 17.336J)
Prereq.: Permission of Instructor
G (2) Next offered 1985-86 2-0-10

History and contemporary studies of the interaction of science with social and political values. Examination of use of scientific theories and findings to support conclusions about the proper organization of society and politics. Emphasis on how scientists have viewed the relationship of their scientific work to moral and ethical issues. Graduate students are expected to write a major research paper.
L. R. Graham, P. Buck

STS 210 American Science Since the 1930s
Prereq.: —
U (2) HUM-D Next offered 1985-86 3-0-6

History of science and technology in American context from the Great Depression of the 1930s through World War II, to the 1970s. Topics: patterns of funding, international links, government-industry-academic relations, public understanding, the rise of "big science," and response of the scientific community to new social responsibilities. Issues studied in relation to relevant social, economic, and political developments in the US during the period.
C. Weiner

STS 211 Russian Science and Society
Prereq.: —
U (2) Next offered 1985-86 3-0-6

STS 212J Russian Science and Society (New)
(Same subject as 17.614J)
Prereq.: —
G (2) Next offered 1985-86 3-0-9

An introduction to the history of Russian and Soviet science. Topics: introduction of Western science to Russia, reception of Darwinism, influence of Marxism on Soviet scientific development, social and political context of Soviet science, role of dissidents in Soviet scientific life, and organizational and policy questions. Required readings in English; supplementary readings in Russian also available. Graduate students are expected to write a major research paper.
L. R. Graham

STS 220 History of Modern Mathematics
Prereq.: 18.02
U (2) Next offered 1985-86 3-0-9
Development of algebra in the 16th century and of the calculus of Newton and Leibniz. Traces applications of calculus in the work of 18th-century mathematicians such as Euler, Lagrange, and Laplace. The rigorization of analysis by Cauchy, Bolzano, Dedekind, and Weierstrass in the 19th century. Rise of abstract algebra, emergence of complex analysis, and development of set theory.
K. R. Manning

STS 223J Ancient Cosmology
(Same subject as 21.930J)
Prereq.: —
U (1) HUM-D Not to be offered 1985-86 3-0-9
See description under subject 21.930J.
H. A. T. O. Reiche

STS 224J Rise of Scientific Cosmology: Aristotle to Newton
(Same subject as 24.272J)
Prereq.: —
U (2) Not to be offered 1985-86 3-0-9
See description under subject 24.272J.
T. S. Kuhn

STS 231 Cross-Cultural Studies of Scientific and Technological Institutions
Prereq.: —
U (1) 3-0-6
Analyzes several studies of laboratories and research groups around the world to investigate how culture impinges upon scientific activity. Evaluates key terms in the study of science and technology for their cultural assumptions by using those terms to explicate these laboratory studies. Discusses the design of ethnographic studies of scientific and technological laboratories.
S. Traweek

STS 241 Autobiography in Science and Engineering (New)
Prereq.: —
U (2) 3-0-6
Autobiographies of scientists and engineers provide information on the criteria for an exemplary career. Examination of the history of this genre, its cross-cultural differences, and the meaning such stories have for the authors and for scientific and engineering communities. Exploration of the relation between the exemplary figures' careers, the more usual career patterns of their colleagues, and unusual careers which are not considered exemplary.
S. Traweek

STS 300 History of Technology in America I: 1787-1876
Prereq.: —
U (2) HUM-D 3-0-6
A study of America's rural, agrarian, and artisanal society from 1787 to the Centennial Exhibition of 1876. Examines the emergence of industrial capitalism within this setting: the rise of the factory system, machinfacture, and new forms of power, transport, and communication. Views technology as part of the larger culture and reveals innovation as a process consisting of a range of possibilities which are chosen or rejected according to social criteria of the time.
M. R. Smith

STS 301 History of Technology in America II: 1876-the Present
Prereq.: —
U (2) HUM-D Next offered 1985-86 3-0-6

The second part of a two-term survey; has the same themes and aims asSTS 300. Focus on the maturation of industrial capitalism after 1876 with the emergence of large industrial corporations, national and international markets, and the hallmarks of science-based industry: professional engineers, organized research, and significant institutional integration among schools, laboratories, and workshops.
M. R. Smith

STS 306 The Social and Political Implications of Technology (New)
Prereq.: —
U (2) 2-0-7

STS 307 The Social and Political Implications of Technology (New)
Prereq.: —
G (2) 2-0-10

Examines the social and political implications of technology. Historical and contemporary studies are used to explore the interaction of technology with social and political values. Emphasis on how technological devices, structures, and systems influence the organization of society and the behavior of its members. Examples drawn from the technologies of war, transportation, communication, production, and reproduction. Graduate students are expected to write a major research paper.
L. R. Graham, P. Buck

STS 310J Industrialization and Cultural Change in 19th-Century America (New)
(Same subject as 21.433J)
Prereq.: —
U (2) Next offered 1985-86 3-0-6

A comparative study of 11 communities assessing the social dislocations and adjustments of an industrializing economy. The work ethic, craft customs, kinship ties, business attitudes, political ideologies, social institutions, and the growing speed and scale of mechanized production are among the factors.
treated. Goal is to understand why some communities entered the industrial age more easily than others. Students submit thematic essays addressing various aspects of industrialization and culture change.

M. R. Smith

STS 315J The Industrial Revolution: A Social and Cultural History (1750-1850)

(Same subject as 21.371J)

Prereq.: —

U (2)

3-0-6

See description under subject 21.371J.

B. Mazlish

STS 320 Arms, Power, and the Engineer

Prereq.: —

U (1) HUM-D Next offered 1985-86

3-0-6

Examines cultural, social, and technical factors which underlie exercise of political power. Describes how consequences of technical progress and the resulting new outlook transformed selection, style, and goals of the power-elite in England, France, China, and Japan, and how a more effective military technology affected views on war-making and the reach of the state.

L. Trilling

STS 321 Military Enterprise and Technological Change: Historical Perspectives on the American Experience

Prereq.: —

U (1) HUM-D Next offered 1985-86

3-0-6

A history of the role of the military in promoting and developing new technology (from medieval times to the present). Examines the design, deployment, and diffusion of new technologies; the behavioral/social problems that arose with their introduction; and their influence on industrialization, colonialism, and warfare in the modern world.

M. R. Smith

STS 400J The Archaeology of Technology

(Same subject as 21.541J)

Prereq.: —

U (1) Next offered 1985-86

3-0-6

See description under subject 21.541J.

H. N. Lechtman

STS 405 The Sociology of Science

Prereq.: —

U (2)

3-0-6

An introduction and overview of the sociology of science, with special emphasis on the range of theoretical and methodological perspectives in the field, on the sociology of sciences of mind, and on the social controversies around sciences that are experienced as "subversive" of widely shared, "everyday" ways of looking at the world, including artificial intelligence, psychoanalysis, and sociobiology.

S. R. Turkle

STS 408 Biotechnology and Society

Prereq.: —

U (1)

2-0-7

Examines the rapid growth of biotechnology; focuses on relation of academic scientists and universities to industrial and medical applications of research. Connects historical background with contemporary issues to view biotechnology in context of university education and research, funding of science, academic-industrial links, roles and responsibilities of scientists, and public expectations and perceptions. Evaluates professional, institutional and public policy alternatives. Graduate students focus on topics in their own fields.

C. Weiler, M. L. Getter

STS 410 Ethical Issues in Science and Engineering

Prereq.: —

U (1)

3-0-6

Seminar on ethical problems of scientists and engineers as employees, consultants, and advisors. Case studies of on-the-job ethical dilemmas and responses of technical professionals in such fields as weapons technology, nuclear energy, genetic engineering, chemical engineering, computer science, and biomedicine. Issues include social responsibility, conflicts of interest, whistleblowing, the role of institutions and professional societies. Student projects in fields of their interest.

C. Weiler

STS 413J Public Controversies on the Control of Technology

(Same subject as 8.206J)

Prereq.: —

U (2) Next offered 1985-86

2-0-7

Role of scientists and engineers in anticipating and controlling negative effects of technology. Presentations by individuals who have played major roles in such issues. Historical and current cases studied through readings, discussions, lectures, and student reports. Topics: alternatives to the nuclear arms race; environmental and health hazards; opportunities for involvement and alternative career possibilities. 8.206J also may count toward Humanities Requirement.

C. Weiler, B. T. Feld

STS 430J Engineering Design in Social Context

(Same subject as 2.733J)

Prereq.: —

U (2)

3-0-6

Examines issues about social values that arise in engineering design. Who influences what constrains the design process? What is the engineer's role in that process? What are the social implications of design alternatives? Beginning with a study of the design of photovoltaic solar energy systems, the class considers design as an aspect of modern social history, the limits of scientific knowledge in decision making about design, and ethics in the design process.

L. L. Bucciarelli
Science, Technology, and Society

STS 440J Applied Social Research, Public Policy, and the Social Sciences
(Same subject as 17.818J)
Prereq.: —
G (1) Next offered 1985-86
3-0-9
See description under subject 17.818J.
P. Buck

Technology and the Organization of Industrial Societies

STS 500J Anthropology of Industrial Society
(Same subject as 21.589J)
Prereq.: —
U (2) 3-0-6
See description under subject 21.589J.
S. Traweek

STS 501J The Automobile: Mass Production and Mass Consumption
Prereq.: —
U (1) HUM-D 3-0-6
Rise and decline of the automobile industry. Examines the 19th-century origins of mass production and mass consumption. The auto industry as the epitome of the American economic miracle. Workers in the high-wage economy. Influence of machine technology on culture. The long decline of the auto-industrial age, and its crisis in the 1970s. Concerned with the changing political and economic role of a dominant national industry. Emphasis on European reactions to and variations on American industry.

C. F. Sabel

STS 502J The Profession of Engineering
Prereq.: —
U (2) HUM-D 3-0-6
Practice, evolution, and dilemmas of engineering as a profession. Analyzes the role of engineers in the conception, design, manufacture, and marketing of a sophisticated consumer product. Studies automobile industry history in 20th-century US. Examines judgments having political, economic, social, and ethical consider-
ations. May be taken as full 9-unit subject with HUM-D credit (attend lectures, recitations, and write three full term papers) or as undergraduate seminar (attend lectures and write three short papers).

L. Trilling

STS 510J The Rise of the Modern State (A)
(Same subject as 17.154J)
Prereq.: Permission of Instructor
G (1) 3-0-9
The theory of the state. Focuses on three stages in the development of the modern state: political absolutism, the property contract state, and the corporate-welfare state. In each section close attention given to key texts in political theory and to their relationship to the corresponding historical period.

C. F. Sabel

STS 511J Capitalism and Its Critics
Prereq.: —
U (2) HUM-D 3-0-6
The social context and consequences of industrialization and the development of the market economy. The virtues and shortcomings of the market economy as seen by its exponents and critics, examined in the light of its historical development. Early and late industrializing societies compared. Interrelations of market capitalism, technological change, and political evolution.

C. Kaysen

STS 512J Comparative Systems of Industrial Relations and Human Resource Development (A)
(Same subject as 14.674J, 15.674J)
Prereq.: 14.64 or 15.663 G (2) 3-0-6
See description under subject 15.674J.

M. J. Piore

STS 540J The Political Economy of Food
(Same subject as 20.414J)
Prereq.: Permission of Instructor
G (2) 3-0-6
See description under subject 20.414J.

E. G. Rothschild, L. J. Taylor

STS 558 Defense and Arms Control Issues (New)
Prereq.: —
U (2) 3-0-6
School-Wide Elective Subject. Description given at end of this chapter on SWE page.

R. Lester, G. W. Rathjens, J. P. Ruina

STS 560 Arms in Industrial Society
Prereq.: —
U (2) 2-2-5
Studies the influence of technology in arms races and the consequences for dynamics of industrial society. Examines the interplay between political and technical processes. Emphasis on the relationship of scientists, the military, and government since WWII, and on the employment of engineers and scientists in military industries. Considers strategies for ending the arms race. Students work in small groups on research projects and write papers based on their research.

J. B. Wiesner, E. G. Rothschild

STS 575J Problems of Advanced Industrial Societies (A)
(Same subject as 17.532J)
Prereq.: 17.156J G (2) Next offered 1985-86
3-0-9
See description under subject 17.532J.

S. Berger, M. J. Piore

Cultural Dimensions of Science and Technology

STS 600 Technological Society and Its Critics
Prereq.: —
U (1) HUM-D 3-0-6
The emergence of industrial-technological society has provoked strong critical reactions that affirm the value of a more “natural,” simple, emotionally direct and reverential relationship to the environment. These alternative visions are examined in two periods in America: 1) the mid-19th century, and 2) the 1960s. Focuses on the usefulness of these visions as criticism of (or possible alternatives to) the complexity of advanced industrial society.

K. Keniston, L. Marx

STS 601J Literature, Ideology, and National Experience in the US
(Same subject as 21.103J)
Prereq.: —
U (2) HUM-D 3-0-6
Study of the interplay among imaginative literature, the prevailing ideologies, and collective experience in the US, emphasizing critical reading within an historical context. Readings chiefly drawn from classic American writers of the 19th century, but works from earlier and later periods included: F. Scott Fitzgerald, Franklin, Jefferson, Emerson, Tocqueville, Thoreau, Whitman, Hawthorne, Melville, Max Weber, and D. H. Lawrence.

L. Marx
STS 602 Perspectives on Technology
Prereq.: —
U (2) HUM-D Next offered 1985-86
3-0-6
A discussion of the centrality of the machine as fact and metaphor, emphasizing its place in theories of technology and society. Reveals how technological power is central to modern thought and policy. Readings include the work of Adam Smith, Thomas Carlyle, Karl Marx, Charles Dickens, Frank Norris, Lewis Mumford, and Jacques Ellul.
L. Marx, M. R. Smith

STS 603 Introduction to Cultural Criticism
Prereq.: Permission of Instructor
U (2)
2-0-7

STS 604 Introduction to Cultural Criticism
Prereq.: Permission of Instructor
G (2)
2-0-7
Examine modern concept of culture as it emerged during the Industrial Revolution, and considers some of the theories and methods of analysis that have been developed around that concept. Among the basic theories considered are those associated with Marx, Emerson, Arnold, and Freud. Second half examines more recent elaborations of the culture concept in the work of such theorists as Panofsky, Burke, Benjamin, Marcuse, Foucault. Graduate students pursue topics in greater depth.
L. Marx

STS 625J American Television: A Cultural History
(Same subject as 21.032J)
Prereq.: One subject in Literature or Science, Technology, and Society
U (2)
3-0-6
See description under subject 21.032J.
D. Thorburn

STS 626J Camera and Culture
(Same subject as 21.594J)
Prereq.: —
U (2) Next offered 1985-86
3-0-6
How photographs come to be read as evidence in science, law, history, anthropology, and families; how this labeling of certain photographs as realistic representations of something no longer present corresponds to developments in camera technology and production; and how photographs and photographic technology shape and are shaped by the cultures in which they are used.
S. Traweek

STS 630 Technology and the Individual
Prereq.: —
U (2)
3-0-6
How do interactions with technologies and technological systems affect individuals? How do people use technologies for purposes not anticipated by their inventors? Examines the noninstrumental or unintended human effects and uses of technologies through four case studies: computers and intensive users, television and viewers, engineering systems and engineering students, "automated" tools and workers. These cases used to examine critically theories of "technological man," "technological society," and "the effects of technology."
K. Keniston, S. R. Turkle

STS 631 Computers and People
Prereq.: —
U (1)
3-3-6
Aspects of the computer presence in our society in the context of larger issues in the sociology of science. Three perspectives on computer impacts examined: 1) Computer impact on large social processes; 2) Computer impact on the individual; 3) Computer impact on sciences of mind and images of humanity. Projects include fieldwork studies at MIT and elsewhere to document and analyze different computer "subcultures."
S. R. Turkle

STS 632 Computer Cultures, Computation, and the Individual (A)
Prereq.: Permission of Instructor
G (1)
3-3-6
The computer presence as it affects the individual and contemporary culture. Subcultures of the computer world, computational theories of mind, computer metaphors in the culture, and relationships between people, machines, and programming. Emphasizes ethnographic and individual case study approaches. Conducted as a research seminar requiring a supervised research project.
S. R. Turkle

STS 633J Perspectives on Computers and Society (A)
(Same subject as 6.880J)
Prereq.: Permission of Instructor
G (1)
3-0-9
See description under subject 6.880J.
J. Weizenbaum
Undergraduate Subjects

Computer Models of Physical and Engineering Systems
Offered under: 1.12, 2.101, 3.05, 10.11, 13.51, 16.606, 22.006
Prereq.: 18.02, 8.01
U (2) SD 3-0-9
Reduction of physical and engineering systems to simplified physical and mathematical models; representation using networks, graphs, and finite element methods. Process simulations using random variables (Monte-Carlo techniques) and linear programming. Manipulation of the models using algorithms on digital computers. Examples drawn from fields primarily of interest to engineers. Extensive "hands-on" computing experience. Working knowledge of FORTRAN expected.
S. Shyam Sunder

Defense and Arms Control Issues (New)
Offered under: 6.934, 13.91, 16.994, 17.465, 22.003, STS 558
Prereq.: —
U (2) 3-0-6
Reviews and analyzes nuclear and non-nuclear arms and arms control since World War II. Focus on interaction of technological factors, changing strategic concepts, intelligence estimates, and political judgments in the decision-making process. Topics: nuclear proliferation, arms and arms limitation talks, European nuclear and conventional forces, and new military technology. 6.934, 13.91, 16.994, and 22.003 may also count toward Humanities Requirement.
R. Lester, G. W. Rathjens, J. P. Ruina

Introduction to Technology and Law
Offered under: 1.165, 2.998, 10.803, 13.97, 16.792, 22.085
Prereq.: —
U (1) 3-0-9
Basic principles and functions of law, using cases and materials arising from scientific and technical issues. The legal process — private, judicial, legislative, and administrative law making — and its impacts on engineers and scientists. How federal and state governance grows as technology grows. How regulation controls and supports technology. Curbs on that power. How scientific and engineering conflicts are resolved inside a legal framework. Role of values in that process.
J. D. Nyhart

Inventions and Patents
Offered under: 3.172, 6.901, 16.673, 22.084
Prereq.: 14.02
U (1) 3-0-9
History of private and public rights in scientific discoveries and applied engineering leading to the development of worldwide patent systems. The classes of inventors protectable under the patent laws of the US, including the procedures in protecting inventions in the Patent Office and the courts. Reviews of past cases involving inventions and patents in a) the chemical process industry and medical field; b) devices in the mechanical, ocean exploration, civil, and/or aeronautical fields; c) the electrical and electronic areas including key radio, solid-state, and computer inventions.
R. H. Rines

Management in Engineering
Offered under: 2.96, 6.930, 10.806, 13.52, 16.993, 22.002
Prereq.: —
U (1) 3-0-9
Introduction of engineering management in variety of settings. 1) Role of engineering and relationship to other functions, 2) managerial tools and concepts used in engineering organizations, 3) practice in handling short- and long-term problems, 4) career strategy and development. Topics: financial principles, management of innovation, engineering project planning and control, human factors, career planning, patents, and technical strategy. Case method of instruction emphasizes participation in class discussion. Juniors, seniors, or graduate students.
D. P. Hoult, H. S. Marcus

Graduate Subjects

Engineering Risk-Benefit Analysis (A)
Offered under: 1.155, 2.943, 3.577, 6.938, 10.816, 13.621, 16.794, 22.82
Prereq.: 18.02
G (2) 3-0-6
Risk assessment, decision and cost-benefit analysis, and fault-tree methods for describing and making decisions about societal risks (nuclear reactors, dams, carcinogens, transport and disposal of hazardous materials) associated with large engineering projects. Balancing risks and benefits in situations involving human safety, environmental risks, and financial uncertainties. Presentations of major risk assessments and the public decision processes associated with them.
A. W. Drake, A. R. Odoni

Engineering Systems Analysis (A)
Offered under: 1.146, 2.192, 3.56, 13.62, 16.784, 22.821, TPP 21
Prereq.: —
G (1) 3-0-6
R. de Neufville, J. P. Clark

Entrepreneurship
Offered under: 2.942, 3.566, 6.936, 10.801, 13.78, 16.672, 22.86
Prereq.: —
G (2) 4-0-5
Introduction to various issues faced by technical innovators/entrepreneurs. Topics include concept evaluation, patents and licensing, financing, marketing, business planning, accounting, and team building. Case studies are used. Term project required in which student ideas are developed into business plans. Open to undergraduates by permission of instructor.
D. G. Jansson
Technology of Nuclear Weapons and Arms Control
(New)

Offered under: 8.932, 13.93, 16.995, 17.486, 22.841
Prereq.: —
G (1)
4-0-8

G. W. Rathjens, J. P. Ruina
TPP Technology and Policy

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Prerequisites</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPP 11J</td>
<td>Project Proseminar in Technology and Policy I (A)</td>
<td>(Same subject as 2.981J) Prereq.: Permission of Instructor</td>
<td>4-0-6</td>
<td>Designed to develop the students' ability to analyze problems involving the interaction of technology with economic and social considerations. Case studies and group projects drawn from diverse fields. Integral historical and value-oriented critique of both issues and process. Restricted to graduate students in Technology and Policy; others admitted by permission of instructor.</td>
</tr>
<tr>
<td>TPP 12J</td>
<td>Project Proseminar in Technology and Policy II (A)</td>
<td>(Same subject as 2.982J) Prereq.: TPP 11J</td>
<td>4-0-6</td>
<td>See description under subject 2.982J.</td>
</tr>
<tr>
<td>TPP 13J</td>
<td>Engineering Policy Thesis Seminar (A)</td>
<td>(Same subject as 1.860J, 16.783J) Prereq.: Thesis Registration</td>
<td>2-0-1</td>
<td>Seminar designed to assist students in formulating research topics, designing their investigation, executing the analysis, and writing the thesis itself. It thus also serves as preparation for general examinations. Students required to present their work for general discussion by faculty, research staff, and their colleagues.</td>
</tr>
<tr>
<td>TPP 21</td>
<td>Engineering Systems Analysis (A)</td>
<td>Prereq.: Permission of Instructor</td>
<td>3-0-6</td>
<td>School-Wide Elective Subject. Description given at end of this chapter on SWE page.</td>
</tr>
<tr>
<td>TPP 22J</td>
<td>The Policy-Making Process (A)</td>
<td>(Same subject as 17.220J) Prereq.: Permission of Instructor</td>
<td>3-0-9</td>
<td>See description under subject 17.220J. M. Lipinsky</td>
</tr>
<tr>
<td>TPP 23J</td>
<td>Law, Technology, and Public Policy</td>
<td>(Same subject as 3.576J) Prereq.: Permission of Instructor</td>
<td>3-0-6</td>
<td>In-depth examination of the relationship between technology and the legal system. Five major areas discussed: 1) responses of the legal system to new social problems created by new or existing technology; 2) technological change in response to legal action; 3) changes in legal theory and practice resulting from new technical developments; 4) responses of the political system to proliferating technology; and 5) equity/market changes brought about by the law-technology interaction.</td>
</tr>
<tr>
<td>TPP 30J</td>
<td>Implementation (A)</td>
<td>Prereq.: TPP 11J, TPP 12J or 11.200, 11.230</td>
<td>2-0-7</td>
<td>See description under subject 11.503J.</td>
</tr>
<tr>
<td>TPP 32J</td>
<td>Law, Technology, and Public Policy</td>
<td>(Same subject as 1.576J) Prereq.: Permission of Instructor</td>
<td>3-0-6</td>
<td>See description under subject 1.576J. N. A. Ashford, D. B. Hattis. C. Cudahy</td>
</tr>
<tr>
<td>TPP 33J</td>
<td>Environmental Law: Pollution Control (A)</td>
<td>(Same subject as 1.811J) Prereq.: Permission of Instructor</td>
<td>3-0-6</td>
<td>See description under subject 1.811J. N. A. Ashford, C. Cudahy</td>
</tr>
<tr>
<td>TPP 34J</td>
<td>Regulation of Health and the Environment: Selected Topics</td>
<td>(Same subject as 1.812J) Prereq.: Permission of Instructor</td>
<td>3-0-6</td>
<td>See description under subject 1.812J. N. A. Ashford, D. B. Hattis, C. Cudahy</td>
</tr>
<tr>
<td>TPP 35J</td>
<td>Technology, Law, and the Working Environment</td>
<td>(Same subject as 10.805J) Prereq.: Permission of Instructor</td>
<td>3-0-6</td>
<td>See description under subject 10.805J. N. A. Ashford, L. B. Evans</td>
</tr>
<tr>
<td>TPP 42J</td>
<td>Implementation (A)</td>
<td>(Same subject as 11.503J) Prereq.: TPP 11J, TPP 12J or 11.200, 11.230</td>
<td>2-0-7</td>
<td>See description under subject 11.503J. K. R. Polenske</td>
</tr>
</tbody>
</table>
AS 11 The Air Force Today
Prereq.: —
U (1)
1-0-1
Examines the role of the US Air Force in the contemporary world. Topics include background, mission, and organization of Air Force and functions of US forces. Emphasis is on development of written communicative skills.
E. J. Scivoletto

AS 111 Leadership Laboratory
Prereq.: —
U (1)
0-1-0
Introduction to the customs, traditions, and courtesies of the Air Force through seminars, guest speakers, and appropriate field trip.
J. P. Bisognano, Jr.

AS 12 The Air Force Today
Prereq.: —
U (2)
1-0-1
Continues study of the contemporary Air Force by examining national security objectives and the use of national power to achieve objectives. Compares US and Soviet military power.
E. J. Scivoletto

AS 121 Leadership Laboratory
Prereq.: AS 111
U (2)
0-1-0
Continues AS 111 with emphasis on the role and responsibilities of an Air Force junior officer.
J. P. Bisognano, Jr.

AS 21 The Development of Air Power
Prereq.: —
U (1)
1-0-1
History of the development of air power from balloon experiments up through World War II. Emphasis is on the interaction among technology, doctrine, and historical events. Students required to research and present a short speech.
J. P. Bisognano, Jr., K. C. Almquist

AS 211 Leadership Laboratory
Prereq.: AS 121
U (1)
0-1-0
Emphasizes development of techniques used to direct and inform. Students are assigned leadership and management positions in the AS 111 programs described above.
J. P. Bisognano, Jr.

AS 22 The Development of Air Power
Prereq.: —
U (2)
1-0-1
History of air power since 1946, with emphasis on the US Air Force. Includes the role of air forces in conflicts, and the effect of space-age technology on air power. Also an examination of the employment of US air power in peaceful ways. Students are required to research and present a short speech.
J. P. Bisognano, Jr., K. C. Almquist

AS 221 Leadership Laboratory
Prereq.: AS 211
U (2)
0-1-0
Continues AS 211. Adds a special program in preparation for Field Training.
J. P. Bisognano, Jr.

AS 31 Management and Leadership
Prereq.: —
U (1)
3-0-3
Study of management and leadership from the point of view of the Air Force junior officer. The individual motivational and behavioral processes, leadership, communication, and group dynamics are covered to provide a foundation for the development of the junior officer's professional skills as an Air Force officer.
S. K. Sudderth, L. C. Counts

AS 311 Leadership Laboratory
Prereq.: AS 321
U (1)
0-1-0
Supervisory practice and exercise of leadership functions in controlling and directing activities of the cadet corps. Development of leadership potential in a practical, supervised training laboratory.
J. P. Bisognano, Jr.

AS 32 Management and Leadership
Prereq.: AS 31
U (2)
3-0-3
Continues AS 31 with special emphasis on the basic managerial processes involving decision making, utilization of analytical aids in planning, organizing, and controlling in a changing environment. Organizational and personal values, management of forces in change, organization, power, politics, and managerial strategy and tactics are discussed within the context of the military organization.
S. K. Sudderth, L. C. Counts

AS 321 Leadership Laboratory
Prereq.: AS 311
U (2)
0-1-0
Continues AS 311 emphasis on supervisory and leadership skills. Emphasis on advantages of an Air Force career.
J. P. Bisognano, Jr.
MS
Military Science

AS 41 The Military in American Society
Prereq.: —
U (1)
3-0-3
Study of the military's role as an institution in a democratic society. Topics: civil-military interaction, weapons acquisition, and the military as a profession. Emphasis on developing communicative skills through student presentations.
S. L. Wallace, H. J. Beemer

AS 411 Leadership Laboratory
Prereq.: AS 321
U (1)
0-1-0
Exercise of management functions in planning, supervising, and directing cadet corps activities. Acquire proficiency in military leadership skills.
J. P. Bisognano, Jr.

AS 42 US National Security
Prereq.: AS 41
U (2)
3-0-3
Study of the role of the military in maintaining the security of the US. Examines the international environment, the background of defense policy, strategy and forms of conflict. Addresses specific issues including arms control, nuclear deterrence, the national military decision-making process, and military law.
S. L. Wallace, H. J. Beemer

AS 421 Leadership Laboratory
Prereq.: AS 411
U (2)
0-1-0
Continues AS 411. Includes preparation for professional duties.
J. P. Bisognano, Jr.

MS 111 Introduction to ROTC and the Army
Prereq.: —
U (1)
1-1-1
Investigates the generalized employment of the US Army, starting with the formulation of US foreign policy and the uses of military power in diplomacy. Covers the development of Army combat power in terms of personnel and organization. Emphasizes knowledge of current military events and their impact on the nation, and written and verbal communication skills.
W. B. Miller

MS 1111 Leadership Laboratory (Revised Unit)
Prereq.: —
U (1)
1-1-1
Introduction to military leadership and management. Various leadership theories discussed, and an "Integrated Leadership Model" developed. Using this model, the class investigates: the individual — his or her needs, goals, attitudes, and behavior; the group — its goals, structures, roles, and norms; and the leader — his or her style, behavior, needs, and goals. Topics such as interpersonal communications, motivation and counseling, discussed. Case studies are used to enhance classroom effort.
J. M. Welch

MS 121 The Army Today
Prereq.: MS 111
U (2)
1-1-1
Discusses interface between Active Army, National Guard, Reserves, and civilian workforce; interservice and intra-alliance support. Examines organization and role of company-sized units; small unit tactics and combined arms concepts. Specialties of soldiers are related to operational unit missions. Introduces principles of war and relates them to actual historical events.
W. B. Miller

MS 211 Leadership
Prereq.: —
U (1)
1-1-1
MS 211 Leadership
Prereq.: —
U (1)
1-1-1
MS 211 Leadership
Prereq.: —
U (1)
1-1-1
Introduction to military leadership and management. Various leadership theories discussed, and an "Integrated Leadership Model" developed. Using this model, the class investigates: the individual — his or her needs, goals, attitudes, and behavior; the group — its goals, structures, roles, and norms; and the leader — his or her style, behavior, needs, and goals. Topics such as interpersonal communications, motivation and counseling, discussed. Case studies are used to enhance classroom effort.
J. M. Welch

MS 221 Branches of the Army
Prereq.: MS 111, MS 121
U (2)
1-1-1
Acquaints students with the career branches of the Army, to include their functions, initial entry positions, and the career patterns associated with each branch. Each career branch studied in sufficient detail to provide a basic understanding. The Army's Officer Personnel Management System is introduced and addressed from the point of view of the individual officer's management of his or her own career.
J. M. Welch

MS 31 Small Unit Tactics
Prereq.: MS 221
U (1, 2)
2-0-1
Designed to provide the student with theoretical and practical experience in preparing and presenting effective oral presentations. Investigates the psychology and principles of learning, speech techniques, integration of audio-visual media, programmed instruction techniques, test and examination construction, and classroom management techniques. Every student required to deliver three oral presentations. The student is critiqued and evaluated by the instructor and other members of the seminar.
A. V. K. Blanchard

MS 31 Small Unit Tactics
Prereq.: MS 221
U (1, 2)
2-0-1
Addressed to the leadership of small units conducting conventional combat operations. Elements of terrain analysis and application to offensive, defensive, and retrograde operations discussed along with weather considerations and their impact on combat operations. Current organization and hardware associated with small tactical combined arms formations reviewed.
S. R. Lewis

Military Science subjects are not for MIT credit.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 311</td>
<td>Military Management</td>
<td>Prereq.: MS 21 U (1) 1-1-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concerned with the integrated management of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Army units and activities. The commander and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the staff examined in detail, with emphasis on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the various formal and informal methods used</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to acquire information, anticipate and forecast</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>requirements, make decisions, implement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>those decisions, and supervise and evaluate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the results. Nature and role of combat support</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>activities discussed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. R. Lewis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 321</td>
<td>Land Navigation</td>
<td>Prereq.: —</td>
<td>U (2) 1-1-1</td>
</tr>
<tr>
<td></td>
<td>Students acquire the ability to determine point</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>locations accurate to within 10 meters, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>learn the fundamentals of direction and distance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>determination both on a map and on the ground.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Familiarizes students with the fundamentals of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>terrain analysis to include the ability to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>construct accurate terrain profiles. Familiarizes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>students with the techniques used in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>interpretation of aerial photographs, to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>include determination of scale and direction,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and identification of objects on the ground.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. R. Lewis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 41</td>
<td>Military History</td>
<td>Prereq.: —</td>
<td>U (1, 2) 2-0-1</td>
</tr>
<tr>
<td></td>
<td>Examines, the development of the US Army.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emphasizes giving the student a better</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>understanding and perspective regarding the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>history of the US Army, the roles military</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>professionals have played in shaping the US,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and where the military profession fits into the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>society it serves. Equips the student with the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tools necessary to analyze military operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>at all levels using historical methodology and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>stimulates an interest in the study of military</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>history which leads the potential Army Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to a mature, informed conception of his role as</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a leader in the US Army.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W. B. Miller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS 411</td>
<td>Military Law and Administration</td>
<td>Prereq.: MS 31 U (1) 1-1-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Provides the Military Science student with an</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>introduction to the United States Military</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Justice System. Develops historical and legal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>basis, as well as modern practical application of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Military Justice. Prepares student for a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>leadership position which inherently involves</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>administration of discipline and justice. Also,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>students discuss some practical aspects of small</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>unit administration.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. P. Hassett</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Prerequisites</td>
<td>Units</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>NS 11</td>
<td>Introduction to Naval Science</td>
<td>U (1)</td>
<td>2-0-1</td>
</tr>
<tr>
<td>NS 12</td>
<td>Naval Ships Systems I</td>
<td>U (2)</td>
<td>3-0-3</td>
</tr>
<tr>
<td>NS 21</td>
<td>Naval Ships Systems II</td>
<td>U (1)</td>
<td>2-2-2</td>
</tr>
<tr>
<td>NS 22</td>
<td>Seapower and Maritime Affairs</td>
<td>U (2)</td>
<td>2-0-2</td>
</tr>
<tr>
<td>NS 31</td>
<td>Navigation and Naval Operations I</td>
<td>U (1)</td>
<td>3-0-3</td>
</tr>
<tr>
<td>NS 32</td>
<td>Navigation and Naval Operations II</td>
<td>U (2)</td>
<td>2-2-4</td>
</tr>
<tr>
<td>NS 33</td>
<td>Modern Warfare</td>
<td>U (1)</td>
<td>2-0-2</td>
</tr>
<tr>
<td>NS 34</td>
<td>Marine Corps Doctrine and Tactics</td>
<td>U (2)</td>
<td>2-0-2</td>
</tr>
<tr>
<td>NS 41</td>
<td>Leadership and Management I</td>
<td>U (1)</td>
<td>2-0-2</td>
</tr>
<tr>
<td>NS 42</td>
<td>Leadership and Management II</td>
<td>U (2)</td>
<td>2-0-2</td>
</tr>
<tr>
<td>NS 43</td>
<td>Amphibious Warfare</td>
<td>U (2)</td>
<td>2-0-2</td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howard Wesley Johnson</td>
<td>Honorary Chairman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David Stephen Saxon</td>
<td>Chairman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paul Edward Gray</td>
<td>President</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenn Preston Strehle</td>
<td>Treasurer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Joseph Wilson</td>
<td>Honorary Secretary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincent Anthony Fulmer</td>
<td>Secretary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breene Mitchell Kerr</td>
<td>Chairman and Chief Executive Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frank Roacco Milliken</td>
<td>Former Chairman and Chief Executive Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clint Williams Murchison, Jr.</td>
<td>Partner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Louis Wellington Cabot</td>
<td>Chairman of the Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richard Lee Terrell</td>
<td>Former Vice Chairman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Reid Weedon, Jr.</td>
<td>Senior Vice President</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jerome Bert Wiener</td>
<td>Institute Professor and President Emeritus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>William Gerald Austen</td>
<td>Chief of the Surgical Services, Massachusetts General Hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edward D. Churchill Professor of Surgery</td>
<td>Harvard Medical School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Howard Wesley Johnson</td>
<td>Honorary Chairman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. Kenneth Jamieson</td>
<td>Former Chairman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Charles Haas</td>
<td>Vice Chairman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paul Maxwell Cook</td>
<td>Chairman of the Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ralph Landau</td>
<td>President</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carl Muth Mueller</td>
<td>Vice Chairman of the Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claude Walter Brenner</td>
<td>President</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colby Hackett Chandler</td>
<td>Chairman and Chief Executive Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shirley Ann Jackson</td>
<td>Member, Technical Staff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bernard Warren Harleston</td>
<td>President</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David I. Kosowsky</td>
<td>Chairman and Chief Executive Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bernard Warren Harleston</td>
<td>President</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bernard Warren Harleston</td>
<td>Chairman and Chief Executive Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jerry McAfee</td>
<td>Retired Chairman and Chief Executive Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richard Lee Terrell</td>
<td>Consultant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Shepard Reed</td>
<td>Chairman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jean Riboud</td>
<td>Chairman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>William Julius Weitz</td>
<td>Vice Chairman and Chief Operating Officer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frank S. Wyle</td>
<td>Chairman of the Executive Committee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hart Prestler Aldrich</td>
<td>President</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elisabeth Mertz Drake</td>
<td>President</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edward O. Vetter</td>
<td>President</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edward Emil David, Jr.</td>
<td>President</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edward Emil David, Jr.</td>
<td>President</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yaichi Ayukawa</td>
<td>President</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terms expire on June 30 of the year indicated.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Address correspondence to the Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.

2 Terms expire on June 30 of the year indicated.
Life Members, Emeriti

Donald Fell Carpenter
Former General Manager
Film Department
E. I. du Pont de Nemours & Company, Inc.

Walter Jay Beadle
Former Director
E. I. du Pont de Nemours & Company, Inc.

Thomas Dudley Cabot
Honorary Chairman
Cabot Corporation

Crawford Hallock Greenewalt
Member, Finance Committee and Director
E. I. du Pont de Nemours & Company, Inc.

Lloyd DeWitt Brace
Former Chairman of the Board
The First National Bank of Boston

William Appleton Coolidge
Retired Corporate Director

Robert Chapman Sprague
Honorary Chairman and Director
Sprague Electric Company

Gwilym Alexander Price
Retired Industrialist

James Harold Doolittle
Corporate Director

Robert Abercrombie Lovett
General Partner
Brown Brothers Harriman & Co.

Cecil Howard Green
Honorary Director
Texas Instruments Incorporated

John Joseph Wilson
Honorary Secretary of the Corporation
Massachusetts Institute of Technology

Horace Winslow McCurdy
Chairman of the Board
Puget Sound Dredging Company

Russell DeYoung
Former Chairman of the Board
The Goodyear Tire & Rubber Company

William Beverly Murphy
Former President and Director
Campbell Soup Company

Julius Adams Stratton
President, Emeritus
Massachusetts Institute of Technology

Luis Alberto Ferré
Member of the Senate and
Former Governor
The Commonwealth of
Puerto Rico

James Rhyne Killian, Jr.
Former President and Chairman of the Corporation
Massachusetts Institute of Technology

Joseph Julien Snyder
Treasurer, Emeritus
Massachusetts Institute of Technology

George Widmer Thorn
Physician-in-Chief, Emeritus
Peter Bent Brigham Hospital;
Hershey Professor of the Theory and Practice of Physic,
Emeritus, Harvard Medical School;
Chairman, Medical Advisory Board, Howard Hughes Medical Institute

Gregory Smith
Former President and General Manager
Eastman Gelatine Company

Ida Mabelle Green
Public Welfare Medalist
National Academy of Sciences

Kenneth Joseph Germeshausen
Founder and Past President and Chairman
EG&G, Inc.

Office of the Chairman of the Corporation

David Stephen Saxon, S.B., Ph.D.
Chairman of the Corporation

Walter Ling Milne, A.M.
Assistant to the Chairman of the Corporation

Elizabeth Jane Whittaker, A.B.
Assistant Secretary of the Corporation

Ronald P. Suduiko, A.B., J.D.
Special Assistant

Office of the Secretary of the Corporation

Vincent Anthony Fulmer, LL.D., Sc.D.
Secretary of the Corporation
Secretary of the Institute
Officers of the Faculty and Institute Professors

Officers of the Faculty

Paul Edward Gray, Sc.D.
President

Arthur Clarke Smith, Ph.D.
Chairman of the Faculty

Thomas John Allen, Jr., Ph.D.
Associate Chairman of the Faculty

Jack Philip Ruina, D.S.E.
Secretary of the Faculty

Institute Professors

Noam Avram Chomsky, Ph.D.
Herman Feshbach, Ph.D.
Franco Modigliani, D. Jur., D. Soc. Sci., LL.D.
Philip Morrison, Ph.D.
Walle J. H. Nauta, M.D., Ph.D.
Paul Anthony Samuelson, Ph.D., LL.D., D. Litt., Sc.D.
Nevin Stewart Scrimshaw, Ph.D., M.D., M.P.H.
Ascher Herman Shapiro, Sc.D.
Robert M. Solow, Ph.D., LL.D.
Jerome Bert Wiesner, Ph.D.
Edwin Herbert Land, LL.D., Sc.D.
(Visiting)

Institute Professors, Emeriti

Manson Benedict, Ph.D.
Martin Julian Buerger, Ph.D.
Morris Cohen, Sc.D.
Charles Stark Draper, Sc.D.
Gyorgy Kepes, M.A.
Salvador Edward Luria, M.D., Sc.D.
Bruno Benedetto Rossi, Ph.D.
Francis Otto Schmitt, Ph.D., Sc.D.
Cyril Stanley Smith, Sc.D.
Arthur Robert Von Hippel, Ph.D.
Victor Frederick Weisskopf, Ph.D., Sc.D.
Jerrold Reinach Zacharias, Ph.D., L.H.D., Sc.D.

Special Faculty Professor

Howard Wesley Johnson, LL.D., L.H.D., Sc.D.

1984-85 James R. Killian, Jr. Faculty Achievement Award Lecturer

Philip Morrison, Ph.D.
| Index | |
|--|
| Academic Calendar 10 | |
| Academic Council 19 | |
| Academic Performance, Committee on 44, 45 | |
| Academic Performance, Graduate Registration and 71 | |
| Academic Performance, Undergraduate Registration and 44 | |
| Academic Program 9, 38 | |
| Academic Standards and Ratings, Undergraduate, Minimum 45 | |
| Academic Standards, Graduate 71 | |
| Accelerated Master of Science in Political Science 196 | |
| Accreditation Board for Engineering and Technology 120, 124, 131, 136, 139, 154, 161, 165, 173 | |
| Accreditation by the New England Association of Schools and Colleges 9 | |
| Acoustics 85 | |
| Acoustics and Vibrations Laboratory 161 | |
| Activities, Campus 22 | |
| Administration of Institute Policy 32 | |
| Admission, Application for 56, 72 | |
| Admissions, College Transfer 58 | |
| Admissions, Deferred 56 | |
| Admissions for OSP Staff, Graduate School 73 | |
| Admissions, Foreign Graduate. See International Graduate Admissions| |
| Admissions, Foreign Undergraduate. See International Undergraduate Admissions| |
| Admissions, Freshman 56 | |
| Admissions, Regular Graduate 72 | |
| Admissions, Special Student 56, 73 | |
| Advanced Credit 58 | |
| Advanced Degrees, Undergraduate Requirements for 72 | |
| Advanced Engineering Study, Center for 85 | |
| Advanced Placement 56 | |
| Advanced Standing Examinations 45 | |
| Advanced Study Program at 85 | |
| Advanced Study Program in Air Transportation 85 | |
| Advanced Study Program on Systems Reliability and Risk Analysis 85 | |
| Advanced Vastu Studies, Center for 96, 109 | |
| Advising and Counseling 30 | |
| Advising and Education, Preprofessional 31 | |
| Aeroelasticity, Structures, Materials, and 127 | |
| Aeronautical and Astronautical Systems 127 | |
| Aeronautics and Astronautics, Bachelor of Science in 124 | |
| Aeronautics and Astronautics, Cooperative Program in 128 | |
| Aeronautics and Astronautics, Department of 122 | |
| Aeronautics and Astronautics, Divisions of Instruction and Research Laboratories 128 | |
| Astronautics and Astronautics, Doctor of Philosophy and Doctor of Science in 128 | |
| Astronautics and Astronautics, Engineer in 128 | |
| Astronautics and Astronautics, Interdisciplinary Program in 129 | |
| Astronautics and Astronautics, Master of Science in 128 | |
| Astronautics and Astronautics, Subjects in 136D | |
| Aerospace Studies, Subjects in 233D | |
| Aga Khan Program for Islamic Architecture 107, 112 | |
| Aid for Foreign Study 78 | |
| Aid for Study in Various Fields 78 | |
| Air Force ROTC Program 241 | |
| Air Transportation, Advanced Study Program in 85 | |
| Alfred P. Sloan Fellows Program 210 | |
| Alfred P. Sloan School of Management 204 | |
| Alpha Phi Omega 24 | |
| Alumnæ, Association of MIT 19 | |
| Alumni Association 19 | |
| Alumni Fund 19 | |
| Alumni Placement 31 | |
| America-Mideast Educational and Training Services 57 | |
| American Studies 50, 178 | |
| Analytical Mechanics 141 | |
| Ancient and Medieval Studies 179 | |
| Ancient Technology Program, Archaeology and 87 | |
| Anthropology and Archaeology 50, 86, 184 | |
| Anthropology/Archaeology, Subjects in 193D | |
| Application for Admission 56, 72 | |
| Applications for Financial Aid 61, 76 | |
| Applied Biology 214, 230 | |
| Applied Chemistry 133 | |
| Applied Mathematics 226, 228 | |
| Applied Mechanics 175 | |
| Applied Physics Research 99 | |
| Applied Plasma Physics 170 | |
| Archaeology and Ancient Technology 87 | |
| Archaeology and Ancient Technology Program 87 | |
| Archaeology and Anthropology 50, 86, 184 | |
| Archaeology and Ethnology, Center for Materials Research in 87 | |
| Architectural Design 109 | |
| Architecture and Planning, Laboratory of 96, 106, 107 | |
| Architecture and Planning Research and Field Experience 107 | |
| Architecture and Planning, School of 106 | |
| Architecture, Art, and Environmental Studies, Doctor of Philosophy in 112 | |
| Architecture, Department of 108 | |
| Architecture, Master of 68, 111 | |
| Architecture, Simultaneous Master's Degrees in City Planning and 118 | |
| Architecture Studies 109 | |
| Architecture, Doctor in 111 | |
| Architecture, Doctor of Science in 111 | |
| Architecture, Subjects in 35D | |
| Army ROTC Program 241 | |
| Art and Architecture, History of 50 | |
| Art and Architecture, History, Theory, and Criticism of 109 | |
| Art and Design, Bachelor of Science in 110 | |
| Art Collection, Environmental 15 | |
| Artificial Intelligence Laboratory 83 | |
| Arts and Media Technology 83, 107 | |
| Arts at MIT, Council for the 13 | |
| Arts, Humanities, and Social Sciences Requirement 49, 176 | |
| Ashdown House, Avery Allen 28 | |
| Assistantships, Teaching and Research 77 | |
| Association of MIT Alumnae 19 | |
| Astronautical Systems, Aeronautical and 127 | |
| Astronomy and Astrophysics 83 | |
| Astrobiology Program 236 | |
| Atanas, Project 12 | |
| Athletic Facilities 15, 23 | |
| Athletics 22 | |
| Athletics Center 15 | |
| Atmospheric, and Planetary Sciences, Department of 220 | |
| Avery Allen Ashdown House 28 | |
| Awards and Prizes 79 | |
| Babysitting 31 | |
| Bachelor of Science in Aeronautics and 124 | |
| Bachelor of Science in Art and Design 110 | |
| Bachelor of Science in Chemical Engineering 132 | |
| Bachelor of Science in Chemistry 218 | |
| Bachelor of Science in Civil Engineering 138 | |
| Bachelor of Science in Cognitive Science 199 | |
| Bachelor of Science in Computer Science and Engineering 148 | |
| Bachelor of Science in Earth, Atmospheric, and Planetary Science 222 | |
| Bachelor of Science in Economics 182 | |
| Bachelor of Science in Electrical Engineering 147 | |
| Bachelor of Science in Humanities 188 | |
| Bachelor of Science in Humanities and Engineering 169 | |
| Bachelor of Science in Humanities and Science 169 | |
| Bachelor of Science in Life Sciences 214, 230 | |
| Bachelor of Science in Management Science 207 | |
| Bachelor of Science in Materials Science and Engineering 154 | |
| Bachelor of Science in Mathematics 226 | |
| Bachelor of Science in Mechanical Engineering 161 | |
| Bachelor of Science in Nuclear Engineering 168 | |
| Bachelor of Science in Ocean Engineering, In Naval Architecture and Marine Engineering, or Without Designations 177 | |
| Bachelor of Science in Philosophy 191 | |
| Bachelor of Science in Physics 235 | |
| Bachelor of Science in Planning 114 | |
| Bachelor of Science in Political Science 195 | |
| Bachelor of Science in Urban Studies. See Bachelor of Science in Planning | 184 |
| Bachelor's and Master's Degree Program, Combined 163 | |
| Bachelor's and Master's Degrees, Simultaneous Award of 68 | |
| Bachelor's Degrees, Program for Two 45 | |
| Bates Dormitory Club 24 | |
| Bates Linear Accelerator 95 | |
| Behavioral Science in Management 207 | |
| Biochemical Engineering 231 | |
| Biochemistry 215 | |
| Bioelectrical Engineering Option 148 | |
| Biological Oceanography 218, 238 | |
| Biology, Applied 214, 230 | |
| Biology, Department of 213 | |
| Biolog,; Doctor of Philosophy in 216 | |
| Biology, Subjects in 65D | |
| Biomechanics and Human Rehabilitation Laboratory. See Newman Laboratory for Biomechanics and Human Rehabilitation | 184 |
| Biomedical Engineering 84, 127, 129, 133, 180, 184 | |
| Biomedical Engineering at MIT, Summary of Graduate Degree Opportunities in 84 | |
| Biomedical Engineering, Doctor of Philosophy in 185 | |
| Biomedical Engineering, Doctor of Science or Doctor of Philosophy in 84 | |
| Biomedical Engineering, Interdisciplinary Ph.D. Program in 129 | |
| Biomedical Sciences 84, 240 | |
| Biomedical Sciences Program, Doctor of Medicine in 84, 240 | |
| Biophysics 215 | |
| Biotechnology 231 | |
| Bitter National Magnet Laboratory 85 | |
| Black Student Union, MIT 24 | |
| Board and Room 27, 59, 75 | |
| Books and Materials 56, 75 | |
Disclosure of Information about Students 54
Distribution Subjects 49
Division of Health Sciences and Technology, Harvard-MIT 67, 240
Division of Nuclei and Particles 236
Divisions, Laboratories, and Special Programs, Civil Engineering 141
Doctoral Curriculum and Medical Engineering and Medical Physics 240
Doctoral Degrees 69
Doctor of Medicine-Doctor of Philosophy, Combined Program in the Harvard-MIT Division of Health Sciences and Technology 240
Doctor of Medicine in Biomedical Sciences Program 84, 240
Doctor of Philosophy and Doctor of Science, Aeronautics and Astronautics 128
Doctor of Philosophy and Doctor of Science, Chemical Engineering 135
Doctor of Philosophy and Doctor of Science, Chemistry 219
Doctor of Philosophy and Doctor of Science, Civil Engineering 140
Doctor of Philosophy and Doctor of Science, Earth, Atmospheric, and Planetary Sciences 223
Doctor of Philosophy and Doctor of Science, Electrical Engineering and Computer Science 150
Doctor of Philosophy and Doctor of Science, Materials Science and Engineering 156
Doctor of Philosophy and Doctor of Science, Mathematics 228
Doctor of Philosophy and Doctor of Science, Mechanical Engineering 165
Doctor of Philosophy and Doctor of Science, Nuclear Engineering 170
Doctor of Philosophy and Doctor of Science, Nutrition and Food Science 232
Doctor of Philosophy and Doctor of Science, Ocean Engineering 175
Doctor of Philosophy and Doctor of Science, Oceanography 224
Doctor of Philosophy and Doctor of Science, Physics 238
Doctor of Philosophy, Architecture, Art, and Environmental Studies 112
Doctor of Philosophy, Biology 216
Doctor of Philosophy, Biomedical Engineering 165
Doctor of Philosophy, Economics 183
Doctor of Philosophy, Linguistics 193
Doctor of Philosophy, Management 209
Doctor of Philosophy, Philosophy 193
Doctor of Philosophy, Political Science 196
Doctor of Philosophy, Psychology 200
Doctor of Philosophy, Urban Studies and Planning 118
Doctor of Science or Doctor of Philosophy in Biomedical Engineering 84
Domestic Year Away 43
Dormitory Council 22
Double Degrees 45, 88
Drama Program 179
Dramashop 24
Drazer Laboratory 91
Early Action in Admissions 57
Early Music Society 24
Earth and Planetary Sciences or Oceanography, Master of Science in 224
Earth, Atmospheric, and Planetary Sciences, Bachelor of Science in 222
Earth, Atmospheric, and Planetary Sciences, Department of 220
Earth, Atmospheric, and Planetary Sciences, Doctor of Philosophy and Doctor of Science in 223
Earth, Atmospheric, and Planetary Sciences, Subjects in 97D
Eastgate 29
Economic Development, Regional 117
Economics and Urban Studies 91
Economics, Bachelor of Science in 182
Economics, Department of 181
Economics, Doctor of Philosophy in 183
Economics, Master of Science in 183
Economics, Subjects in 114D
Education for Public Management Program. See Visiting Professionals Program
Education, Prelaw 42
Education, Premedical 42
Education Studies 42
Educational Policy, Committee on 19
Educational Resources 12, 64
Elective Subjects 52
Electives 40
Electives in Engineering, School-Wide 121
Electrical Engineer 150
Electrical Engineering and Computer Science, Department of 144
Electrical Engineering and Computer Science, Doctor of Philosophy and Doctor of Science in 150
Electrical Engineering and Computer Science, Master of Science in 150
Electrical Engineering and Computer Science, Subjects in 50D
Electrical Engineering, Bachelor of Science in 147
Electromagnetic and Electronic Systems, Laboratory for 94
Electronic Materials 156
Electronic Systems, Laboratory for Electromagnetic and 94
Employment and Job Opportunities 31, 41, 60, 73, 77
Energy Conversion and Conservation 160
Energy Conversion, Propulsion and 127
Energy Laboratory 91
Energy Policy Research, Center for 91
Energy Study and Research 91
Engineer, Aeronautics and Astronautics 126
Engineer, Chemical 135
Engineer, Civil 140
Engineer, Electrical 150
Engineer, Environmental 134, 140, 163
Engineer, Materials 135, 156, 163
Engineer, Mechanical 163
Engineer, Metallurgical 156
Engineer, Nuclear 170
Engineer, Ocean 176
Engineering and Technology, Accreditation Board for 120, 124, 131, 138, 139, 154, 161, 163, 173
Engineering, Degree Programs in 119
Engineering Internship Program 120, 126, 138, 149, 155, 163
Engineering, Medical or Medical Physics, Doctor of Science or Doctor of Philosophy in 240
Engineering, Naval Construction and 175
Engineering or Science, Humanistic Studies Combined with 93
Engineering Risk Assessment 141
Engineering, School of 119
Engineering, School-Wide Electives in 121, 230D
Engineer’s Degrees 69
Engineers Program, Visiting 185
English as a Second Language. See Subjects in Foreign Languages and Literatures
English Competency of International Students 57
English, See Literature
Entrance Examinations 57
Entrance Examinations for International Applicants 57, 72
Environmental Art Collection 15
Environmental Design 111, 117
Environmental Engineer 134, 140, 163
Environmental Engineering 160, 175
Environmental Engineering, Water Resources and 142
Environmental Planning 114
Environmental Planning and Policy 117
Environmental Studies 92
Ergo 23
ESG (Experimental Study Group) 34, 93
Ethnology and Archaeology, Center for Materials Research in 67
Evening Classes 13
Examinations, Final 45, 71
Examinations for Advanced Standing 45
Examinations for Entrance 57, 72
Examinations, Graduate Record 72
Exchange Programs 42, 70
Executive Education in Management, Programs for 210
Executive Education Program, Health Management Option 210
Experimental Plasma Facilities 171
Experimental Study Group. See ESG
Faculty Council 19
Family Day Care 31
Fees and Tuition 59, 74
Fees, Miscellaneous 59, 75
Fellowships 76
Festival Jazz Ensemble 24
Fibers and Polymers Laboratories 161
Fields for Graduate Study 65
Fields of Concentration 49
Fieldwork and Internships in Urban Studies 117
Fifth-Year Program 223
Film and Media Studies 50
Film Section 111
Films, Lectures, and Seminars 23
Final Examinations 45, 71
Financial Aid, Applications for 61, 76
Financial Aids 60, 76
Five-Year S.B. - M.C.P. Option 116
Flight Transportation 129
Fluid Mechanics 175
Fluids, Mechanics and Physics of 126
Fluid Mechanics Laboratory 161
Folk Dance Club 24
Food Science 231
Foreign Graduate Admissions. See International Graduate Admissions
Foreign Languages and Literatures 50, 184
Foreign Languages and Literatures, Subjects in 179D
Foreign Study, Aid for 78
Foreign Undergraduate Admissions. See International Undergraduate Admissions
Fossil Energy Engineering, Fuel and 134
Francis Bitter National Magnet Laboratory 85
Fraternal Life 22, 27
French. See Subjects in Foreign Languages and Literatures
Freshman Admissions 56
Freshman Credit Limit 45
Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvard-MIT Division of Health Sciences and Technology</td>
<td>67, 240</td>
</tr>
<tr>
<td>Health Sciences and Technology, Combined Doctor of Medicine-Doctor of Philosophy in the Harvard-MIT Division</td>
<td>240</td>
</tr>
<tr>
<td>Health Sciences and Technology, Harvard-MIT Division</td>
<td>67, 240</td>
</tr>
<tr>
<td>Health Sciences and Technology, Subjects in 219D</td>
<td></td>
</tr>
<tr>
<td>Health Sciences, Technology, and Management, Whitaker College of</td>
<td>14, 239</td>
</tr>
<tr>
<td>Health Service Fee</td>
<td>59, 74</td>
</tr>
<tr>
<td>Health Services, Medical Services,</td>
<td></td>
</tr>
<tr>
<td>Heat Transfer Laboratory</td>
<td>161</td>
</tr>
<tr>
<td>Historical Collections, MIT Museum and 12</td>
<td></td>
</tr>
<tr>
<td>History, Subjects in 188D</td>
<td></td>
</tr>
<tr>
<td>History, Theory, and Criticism of Art and Architecture</td>
<td>109</td>
</tr>
<tr>
<td>Hobby Shop</td>
<td>24</td>
</tr>
<tr>
<td>HoToGAMIT</td>
<td>23</td>
</tr>
<tr>
<td>Housing</td>
<td>26</td>
</tr>
<tr>
<td>Housing and Real Estate Development</td>
<td>117</td>
</tr>
<tr>
<td>Humanistic Studies Combined with Engineering or Science</td>
<td></td>
</tr>
<tr>
<td>Humanities and Engineering</td>
<td>93, 189</td>
</tr>
<tr>
<td>Humanities and Engineering, Bachelor of Science in 189</td>
<td></td>
</tr>
<tr>
<td>Humanities and Science, School of 177</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences</td>
<td>49, 178</td>
</tr>
<tr>
<td>Humanities, Bachelor of Science in 188</td>
<td></td>
</tr>
<tr>
<td>Humanities, Department of 184</td>
<td></td>
</tr>
<tr>
<td>Humanities, Interdisciplinary Programs in 94</td>
<td></td>
</tr>
<tr>
<td>Humanities and Social Sciences, Special and Interdisciplinary Programs in 178</td>
<td></td>
</tr>
<tr>
<td>Human Rehabilitation and Biomechanics, Eric P. and Evelyn E. Newman Laboratory in 161</td>
<td></td>
</tr>
<tr>
<td>Hydrodynamics 175</td>
<td></td>
</tr>
<tr>
<td>Hydrodynamics and Coastal Engineering</td>
<td>142</td>
</tr>
<tr>
<td>Hydrodynamics, Ralph M. Parsons Laboratory for Water Resources and 142</td>
<td></td>
</tr>
<tr>
<td>Hydrology and Water Resource Systems 142</td>
<td></td>
</tr>
<tr>
<td>IAP (Independent Activities Period)</td>
<td>10, 55, 71</td>
</tr>
<tr>
<td>Information about Students, Disclosure of 34</td>
<td></td>
</tr>
<tr>
<td>Information and Decision Systems, Laboratory for 95</td>
<td></td>
</tr>
<tr>
<td>Information Processing Services</td>
<td>12</td>
</tr>
<tr>
<td>Information Systems Research, Center for 87</td>
<td></td>
</tr>
<tr>
<td>Innovation Center</td>
<td>93</td>
</tr>
<tr>
<td>Institute Houses</td>
<td>27</td>
</tr>
<tr>
<td>Institute, Organization of the 19</td>
<td></td>
</tr>
<tr>
<td>Institute Policy, Administration of 34</td>
<td></td>
</tr>
<tr>
<td>Institute Requirements, General 47</td>
<td></td>
</tr>
<tr>
<td>Instrumentation, Guidance, and Control 127</td>
<td></td>
</tr>
<tr>
<td>Integrated Studies Program 39, 93</td>
<td></td>
</tr>
<tr>
<td>Intercollegiate Athletics 22</td>
<td></td>
</tr>
<tr>
<td>Interdepartmental Degree Programs 64, 82</td>
<td></td>
</tr>
<tr>
<td>Interdepartmental Graduate Opportunities 82</td>
<td></td>
</tr>
<tr>
<td>Interdepartmental Organizations and Research Facilities 82</td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary Program in Biomedical Engineering 129</td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary Programs in Aeronautics and Astronautics 129</td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary Programs in Humanities 94</td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary Research Opportunities for Undergraduates. See UROP</td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary Study, Unspecified Degree Programs 103</td>
<td></td>
</tr>
<tr>
<td>Interfraternity Conference 22, 27</td>
<td></td>
</tr>
<tr>
<td>International Food and Nutrition Program 94</td>
<td></td>
</tr>
<tr>
<td>International Graduate Admissions</td>
<td>72</td>
</tr>
<tr>
<td>International Students' Council 22</td>
<td></td>
</tr>
<tr>
<td>International Studies, Center for 87</td>
<td></td>
</tr>
<tr>
<td>International Undergraduate Admissions</td>
<td>57</td>
</tr>
<tr>
<td>Internship Program, Engineering</td>
<td>120, 126, 138, 149, 155, 163</td>
</tr>
<tr>
<td>Internships and Fieldwork in Urban Studies</td>
<td>117</td>
</tr>
<tr>
<td>Internships in Political Science</td>
<td>195</td>
</tr>
<tr>
<td>Interphase, Project 56</td>
<td></td>
</tr>
<tr>
<td>Interview</td>
<td></td>
</tr>
<tr>
<td>Intramural Athletic Program</td>
<td>23</td>
</tr>
<tr>
<td>Islamic Architecture, Aga Khan Program for 107, 112</td>
<td></td>
</tr>
<tr>
<td>January Independent Activities Period 10, 55, 71</td>
<td></td>
</tr>
<tr>
<td>Job Opportunities, Employment and 31, 41, 60, 73, 78</td>
<td></td>
</tr>
<tr>
<td>Joint Center for Urban Studies of MIT and Harvard University</td>
<td>107</td>
</tr>
<tr>
<td>Joint Computer Facility</td>
<td>143</td>
</tr>
<tr>
<td>Join Program in Oceanography and Oceanographic Engineering with Woods Hole Oceanographic Institution 98, 135, 143, 151, 157, 165, 176, 216, 224, 238</td>
<td></td>
</tr>
<tr>
<td>Junior/Senior Pass/Fail Option</td>
<td>45</td>
</tr>
<tr>
<td>Junior Year Abroad</td>
<td>42</td>
</tr>
<tr>
<td>Kindergarten Extended Day Program</td>
<td>31</td>
</tr>
<tr>
<td>Laboratory, Fibers and Polymers</td>
<td>161</td>
</tr>
<tr>
<td>Laboratory, Acoustics and Vibrations</td>
<td>161</td>
</tr>
<tr>
<td>Laboratory, Artificial Intelligence</td>
<td>83</td>
</tr>
<tr>
<td>Laboratory, Bitter National Magnet</td>
<td>85</td>
</tr>
<tr>
<td>Laboratory, Chemical Dynamics Research 161</td>
<td></td>
</tr>
<tr>
<td>Laboratory, Civil Engineering Microcomputer 142</td>
<td></td>
</tr>
<tr>
<td>Laboratory, Combustion and Propulsion</td>
<td>161</td>
</tr>
<tr>
<td>Laboratory, Cryogenic Engineering</td>
<td>161</td>
</tr>
<tr>
<td>Laboratory, Energy</td>
<td>91</td>
</tr>
<tr>
<td>Laboratory, Fluid Mechanics</td>
<td>161</td>
</tr>
<tr>
<td>Laboratory for Biomechanics and Human Rehabilitation, Eric P. and Evelyn E. Newman 161</td>
<td></td>
</tr>
<tr>
<td>Laboratory for Computer Science</td>
<td>94</td>
</tr>
<tr>
<td>Laboratory for Electromagnetic and Electronic Systems 94</td>
<td></td>
</tr>
<tr>
<td>Laboratory for Information and Decision Systems</td>
<td>95</td>
</tr>
<tr>
<td>Laboratory for Manufacturing and Productivity</td>
<td>95</td>
</tr>
<tr>
<td>Laboratory for Medical Ultrasound</td>
<td>161</td>
</tr>
<tr>
<td>Laboratory for Nuclear Science</td>
<td>95</td>
</tr>
<tr>
<td>Laboratory for Water Resources and Hydrodynamics, Ralph M. Parsons Laboratory 142</td>
<td></td>
</tr>
<tr>
<td>Laboratory, Heat Transfer</td>
<td>161</td>
</tr>
<tr>
<td>Laboratory, Man-Machine Systems</td>
<td>161</td>
</tr>
<tr>
<td>Laboratory, Materials</td>
<td>14</td>
</tr>
<tr>
<td>Laboratory, Mechanical Behavior of Materials 161</td>
<td></td>
</tr>
<tr>
<td>Laboratory, Media</td>
<td>83</td>
</tr>
<tr>
<td>Laboratory, Nuclear Reactor</td>
<td>98, 171</td>
</tr>
<tr>
<td>Laboratory of Architecture and Planning 96, 106, 107</td>
<td></td>
</tr>
<tr>
<td>Laboratory, REMERGENCE</td>
<td>141</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>53</td>
</tr>
<tr>
<td>Laboratory, Sloan"s Automotive</td>
<td>161</td>
</tr>
<tr>
<td>Laboratory, Surface</td>
<td>161</td>
</tr>
</tbody>
</table>
Master of Science in Electrical Engineering and
Master of Science in Economics 183
Master of Science in Civil Engineering 140
Master of Science in Chemical Engineering 134
Master of Science in Ceramics 156
Master of Science in Architecture Studies 111
Master of City Planning/Developing Areas Option
Master of Architecture 68, 111
Married Student Housing 29
Marine Data Systems Engineering 175
Marine Materials and Fabrication 175
Marine Engineering 175
Manufacturing and Productivity, Laboratory for 95
Man-Machine Systems Laboratory 161
Management, Subjects in 1210
Management, Sloan School of 204
Management, Programs for Executive Education
Management of Technology Program 97
Management of Technology, Master of Science in
Management, Doctor of Philosophy in 209
Management, Mineral Resources Engineering and
Management, Doctor of Philosophy in 204
Management, Bachelor of Science in 226
Management, Department of 225
Management, Subjects In 159D
Management, Master of Science in 228
Management, Master of Science in Materials 228
Management, Master of Science in Mechanical Engineering 183
Management, Master of Science in Metallurgy 163
Management, Master of Science in Meteorology or In
Oceanography 224
Management of Science in Nuclear Engineering 169
Management of Science in Nutrition and Food
Science 231
Management of Science in Ocean Engineering, in Naval
Architecture and Marine Engineering, or Without
Specification 175
Master of Science in Physics 236
Master of Science in Political Science 196
Master of Science in Political Science and Public
Policy 196
Master of Science in Polymers 156
Master of Science in Psychology and Brain
Science 200
Master of Science in Real Estate Development 89
Master of Science in Technology and Policy 128, 134, 157, 164, 170, 176
Master of Science in the Management of Technology 143, 157, 170, 176, 204
Master of Science in Transportation 85, 142, 176
Master of Science in Visual Studies 111
Master of Science With and Without
Specification 68
Master's and Bachelor's Degree Program, Combined 163
Master's and Bachelor's Degrees, Simultaneous Award of 68
Master's Degrees 68
Master's Degree Program for Students in Industry 150
Master's Degrees in City Planning and Architecture, Simultaneous 118
Master's Degrees in City Planning and Real Estate Development, Simultaneous 118
Master's Degrees in City Planning and Transportation, Simultaneous 118
Master's Degrees, Simultaneous Award of Two 68
Materials, and Structures, Aerelasticity, 127
Materials Engineer 156
Materials Engineering 156
Materials Engineering, Master of Science in 156
Materials Engineering, Polymers and 134
Materials Laboratory 141
Materials Processing, Center for 97
Materials Research in Archaeology and Ethnology, Center for 87
Materials Science 156
Materials Science and Engineering, Bachelor of Science in 154
Materials Science and Engineering, Center for 88
Materials Science and Engineering, Department of 152
Materials Science and Engineering, Doctor of Philosophy and Doctor of Science in 156
Materials Science and Engineering, Subjects in 26D
Materials Science, Master of Science in 156
Mathematics, Applied 225, 228
Mathematics, Bachelor of Science in 226
Mathematics, Department of 225
Mathematics, Doctor of Philosophy and Doctor of Science in 228
Mathematics, Master of Science in 228
Mathematics, Pure 227, 228
Mathematics, Subjects in 159D
Mathematics, Theoretical 227
McGraw-Hill Observatory 84
Meal Plans 27
Mechanical Behavior of Materials Laboratory 161
Mechanical Engineer 163
Mechanical Engineering, Bachelor of Science in 161
Mechanical Engineering, Department of 158
Mechanical Engineering Design 160
Mechanical Engineering, Doctor of Philosophy and
Doctor of Science in 165
Mechanical Engineering, Master of Science in 163
Mechanical Engineering, Research Laboratories and
Programs in 161
Mechanical Engineering, Subjects in 16D
Mechanics and Physics of Fluids 126
Media Laboratory 83
Media Studies, Film and 50
Media Technology, Arts and 83, 107
Medical Engineering and Medical Physics, Doctoral
Curriculum in 240
Medical Physics, Doctoral Curriculum in Medical Engineering and 240
Medical Services 30, 59, 74
Medical Ultrasonics, Laboratory for 161
Medical Ultrasonics, Laboratory for 161
Medieval Studies, Ancient and 179
Metabolism, Nutritional Biochemistry and 231
Metallurgical Engineer 156
Metallurgy 156
Metallurgy, Master of Science in 156
Meteorology and Physical Oceanography, Center for 224
Meteorology and Physical Oceanography, Department of. See Department of Earth,
Atmospheric, and Planetary Sciences
Metrology or Oceanography, Master of Science in 224
Microbiology 215
Microcomputer Laboratory, Civil Engineering 142
MidEast-America Educational and Training
Services 147
Military Science, Subjects in 234D
Mineral Resources Engineering and
Management 97, 157
Mineral Resources Research Institute, Mining and
97, 143
Minimum Academic Standards and Ratings,
Undergraduate 45
Mining and Mineral Resources Research
Institute 97, 143
Minor Program 69
Mirror Confinement Systems 99
MIS 224
MIT Black Student Union . 24
MIT Community Players 24
MIT Dance Workshop 24
MIT, History of 8
MIT, History of 8
MIT Museum and Historical Collections 12
MIT Press 13
MIT Program for Senior Executives 210
MIT Shakespeare Ensemble 24
MIT Student House 28
Motor Vehicles 35
Museum, MIT Historical Collections and 12
Music 24, 51, 167
Music, Department of 225
Music, Early 24
Music, Subjects in 196D
Musician's Guild 24
National Fellowships for Graduate Study 76, 78
Nautical Collections, Hart 25
Simultaneous Master's Degrees in City Planning and
Real Estate Development 118
Simultaneous Master's Degrees in City Planning and
Transportation 118
Simultaneous Registration for Two Master's
Degrees 68
Single Student Housing, Graduate 28
Single Student Housing, Undergraduate 26
Sloan Automotive Laboratory 161
Sloan Fellows Program, Alfred P. 210
Sloan School of Management, Alfred P. 204
Social Committee 22
Social Science, School of Humanities and and
Social Sciences, Humanities, and Arts
Sociology 51
Solid-state, Laser, Plasma, and Atomic Physics 236
Space Research, Center for 89
Spanish. See Subjects in Foreign Languages and
Literatures
Special Graduate Students 73
Special and Interdisciplinary Programs in Humanities
and Social Sciences 178
Special Interest Groups 24
Special Loan Funds, Graduate 77
Special Loan Funds, Scholarships for
Undergraduates and 60
Special Program for Urban and Regional
Studies 107, 118
Special Programs, Subjects in 223D
Special Student Admissions 58, 73
Spectroscopy Laboratory. See Harrison Spec.
spectroscopy Laboratory, George R.
Statement of Disciplinary Committee Procedures 32
Statistics 101
Statistics Center 101
Structural Design and Analysis 141
Structural Mechanics 175
Structural Laboratory 141
Structures, Materials, and Aeronautics 127
Student Art Association 24
Student Directory, Privacy of Information 34
Student Employment 60, 73, 77
Student Government, Undergraduate 22
Student Government, Graduate 22
Student Health Program 30
Student House, MIT 28
Student Publications 23
Student Records, Privacy of 33
Student Records, Review of 33
Student Services 30
Student Status, Definition of 44, 71
Study at Other Universities 42, 70
Subjects, Distribution 49
Subjects, Elective 52
Subjects in Aeronautics and Astronautics 136D
Subjects in Aerospace Studies 233D
Subjects in Anthropology/Archaeology 193D
Subjects in Architecture 35D
Subjects in Biology 55D
Subjects in Chemical Engineering 80D
Subjects in Civil Engineering 3D
Subjects in Earth, Atmospheric, and Planetary
Sciences 97D
Subjects in Economics 114D
Subjects in Electrical Engineering and Computer
Science 50D
Subjects in Engineering School-Wide Electives
23D
Subjects in Foreign Languages and Literatures
179D
Subjects in Health Sciences and Technology 219D
Subjects in History 186D
Subjects in Humanities 175D
Subjects in Linguistics and Philosophy 213D
Subjects in Literature 175D
Subjects in Management 121D
Subjects in Materials Science and Engineering 26D
Subjects in Mathematics 159D
Subjects in Mechanical Engineering 16D
Subjects in Military Science 23D
Subjects in Music 167D
Subjects in Naval Science 237D
Subjects in Nuclear Engineering 205D
Subjects in Nutrition and Food Science 171D
Subjects in Ocean Engineering 107D
Subjects in Physics 69D
Subjects in Political Science 145D
Subjects in Psychology 175
Subjects in Science, Technology, and Society 225D
Subjects in Special Programs 223D
Subjects in Technology and Policy 232D
Subjects in Theater and Dance 200D
Subjects in The Writing Program 201D
Subjects in Traditions and Texts 200D
Subjects in Urban Studies and Planning 87D
Summer Session 10
Surface Laboratory 161
Symphony Orchestra 24
Synthetic Fuels Center 92
Systems, Computers, and Control 160
Systems Engineering 124
Systems Reliability and Risk Analysis, Advanced
Study Program on 85
Systems Research, Center for Information 87
Talbot House 25
Tang Residence Hall, Ping Yuan 29
Teaching and Research Assistantships 77
Tech, The 23
Tech Squares 24
Technique 25
Technology, Accreditation Board for Engineering and
120, 124, 131, 138, 139, 154, 161, 163, 173
Technology Adaptation Program 102
Technology and Policy 102
Technology and Policy, Master of Science in
128, 134, 143, 157, 164, 170, 176
Technology and Society Program in Science 51,
100, 202
Technology and Society, Subjects in 223D
Technology and Policy, Subjects in 232D
Technology Children's Center 31
Technology Community Association 25
Technology, Health Sciences and 93
Technology Review 19
Technology Studies. See Program in Science,
Technology, and Society
Technology Wives Organization 24
Test of English as a Foreign Language (TOEFL) 57,
73
Theater 24
Theater and Dance, Subjects in 200D
Theoretical Mathematics 227
Theoretical Physics, Center for 237
Thesis 68, 69
Toroidal Confinement Experiments 99
Tour of the Institute 15
Toxicology 231
Traditions and Texts 51, 180
Traditions and Texts, Subjects in 200D
Traineeships 76
Transcripts and Grade Reports 45, 71