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NOTATION

D Propeller diameter

Ja Apparent advance coefficient V/nD

n Propeller revolutions

P Pressure factor (V)m /V -
bVmax b

R Radius of propeller

r Radial coordinate

U Blade element velocity

V Model or ship velocity

V Resultant wake velocity vector

Vb Resultant inflow velocity to blade

Vb Mean resultant inflow velocity to blade

Vr Radial component of velocity vector

V r  Mean radial component of velocity vector

V t  Tangential component of velocity vector

Vt Mean tangential component of velocity vector

(Vt)n nth harmonic amplitude of tangential velocity

Vtr Transverse component of velocity vector

Vv Volumetric velocity

Vx  Longitudinal component of velocity vector (normal to

the plane of propeller)

Vx Mean longitudinal component of velocity vector

(Vx)n nth harmonic amplitude of longitudinal velocity
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__

NOTATION (Continued)

Wx  Volumetric mean wake velocity

X, Y, Z Cartesian coordinates

th Projected angle of velocity vector on X-Y plane

av Projected angle of velocity vector on X-Z plane

SAdvance angle in degree

SMean advance angle

A Variation of advance angle from its mean

9 Position angle (angular coordinate) in degrees

Hull coefficients are in accordance with SNAME recommended standard.
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ABSTRACT

This report presents the results of the wake analysis

of a single-screw Series 60 model having a block coeffi-

cient of 0.60. The data presented include the interpolated

longitudinal and tangential velocity distributions, and the

effect on wake harmonics due to variations in speed, longi-

tudinal position of rudder and plane of survey, draft, and

trim.

ADMINISTRATIVE INFORMATION

The work reported herein was sponsored by the Bureau of Ships

as part of the General Hydrodynamics Research Program.

INTRODUCTION

The David Taylor Model Basin, through the General Hydromechanics

Research Program, has undertaken an extensive program of analyzing

wake surveys made on surface ship models tested over the past twenty

years. The objective of this work is to analyze the wake data as a

whole, and to provide guidance to the ship and propeller designers in

achieving better overall propeller-ship forms. Since most of these

wake surveys have been performed on individual ship designs, it is

difficult to make comparisons until the effects of speed, propeller

and rudder position, displacement, trim, and the repeatability of test

data are known upon the wake pattern. With this problem in mind, an

auxiliary program was established to investigate these problems before

the analysis of the existing wake surveys was completed. Since the

answers to these questions are more uncertain on ships where the

propeller operates in the viscous boundary layer of the hull, it was

decided to undertake the experiments on the high-speed cargo, or



replenishment-type ship. Most of the existing wake survey data are

for this type of ship.

The method of analysis employed in this report is the same as

that used in the material already published on the single-screw DE,

Reference 1, and the twin-screw DD, Reference 2. The data presented

are the radial distribution of the mean longitudinal velocity, the

volumetric mean velocity, the amplitude of the longitudinal and tan-

gential harmonics, and finally the angular and velocity variations of

the resultant velocity to the propeller blade elements.

TEST PROCEDURE

This series of experiments was conducted with Model 4210-5. The

hull is constructed of wax and is the parent Series 60, 0.60 CB model

with the stern altered to the "clearwater" type which is more repre-

sentative of current ship building practice than the type used on the

original Series 60. Model dimensions and coefficients, sectional area

curves, and the abbreviated lines for this hull are presented in Fig-

ure 1. Also included in Figure 1 is a tabulation of some of the major

dimensions for 400-ft and 600-ft LBP ships.

The measurements were made with a 5-hole pitot tube which has a

-in.-diameter spherical head (designated as Tube 3A). The instrumen-

tation was installed in accordance with standard Model Basin practice,

which is described in Reference 3.

The pitot-tube assembly base plate was mounted on the stern of

the model parallel to the propeller shaft. After the horizontal and

transverse slides and the pitot tube were each fitted into place, a

flexible tube from each of the five orifices in the head of the pitot

tube was connected to a straight tube of a water manometer board. A

sixth tube of the manometer board was connected to an open-top con-

tainer of water located near the water surface of the test basin and

4



used for static readings. A vacuum is applied through two tanks to a

manifold located at the top of the manometer board, and the height of

the water is pulled to a convenient reading level which is approxi-

mately 60 in. above the water level of the test basin. A schematic

of the pressure system is presented as Figure 2.

The model test program is outlined in the table below.

TEST POSITION FOR RUDDER MODEL DISPLACEMENT TRIM BY

NUMBER PLANE OF SURVEY POSITION SPEED STERN
knots pounds feet

1 1 None 4.38 1489 0.48

2 1 None 3.90 2127 0

3P 1 None 4.38 2127 0

(port side)

3S 1 None 4.38 2127 0

(stbd side)

3PR 1 None 4.38 2127 0

(repeat of
port side)

4 1 None 5.10 2127 0

5 1 B 4.38 2127 0

6 1 A 4.38 2127 0

7 2 None 4.38 2127 0

8 1 None 4.38 1276 0.48

The longitudinal positions for the plane of survey noted in the

table are defined as Positions 1 and 2 and are measured from the' stern

frame to the centerline of the propeller at the 0.7 radius at the

0-deg position. The rudder positions are expressed as Positions A

and B and are measured from the stern frame to the leading edge of

the rudder at the 0.7 propeller radius. A sketch showing these

locations in model dimensions is presented as Figure 3.
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The basic test (Test 3P) was with the hull ballasted to the design

(100 percent) displacement condition, even keel, the plane of survey at

Position 1 without rudder, and at the model speed of 4.38 knots. Meas-

urements were made on the port (Test 3P) and starboard (Test 3S) sides

at the 0.40, 0.70, and 0.95 radii at 15 angular positions each. A

vector diagram showing the location where the measurements were made

is presented as Figure 4. The coordinate system of the velocity com-

ponents is explained in Figure 5.

Tests 3P, 2, 4, 5, 6, and 7 were conducted simultaneously. When

measurements were being made at the angular positions of 0, 5, 10, 15,

20, 40, 90, 150, 165, 170, 175, and 180 deg for the basic test 3P,

Tests 2, 4, 5, and 6 were accomplished without changing the location

of the pitot tube. This meant for Tests 2 and 4 a change in model

speed and for Tests 5 and 6 the introduction of the rudder which was

designed to be easily mountable under water. After all of the above

tests had been completed at Position 1, the rudder was then removed

and the pitot tube moved forward to Position 2 for Test 7. This

method of testing maintained the same relative position in the trans-

verse plane and insured the greatest accuracy possible. For Tests

3P and 7, measurements were also made at 30, 60, 120, and 160 deg.

In order to position the rudder when the pitot tube was near

the centerline, it was necessary to cut away a section of the rudder

at various vertical positions. This was accomplished by constructing

six rudders - each with a section cut away at a height to accommodate

the tube at a specific percent of the propeller radius. Photographs

of the various rudders and rudder and tube locations are presented

as Figures 6, 7, and 8.

After completion of the above experiments, the model was re-

ballasted to 60 percent of the design displacement and trimmed in such

a manner that the propeller tip below surface was the same as if the

model was at 80 percent displacement, even keel. Measurements for

Test 8 were taken at the same 36 locations as in Tests 2, 4, 5, and 6.
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Subsequently, it was found that the 60-percent displacement con-

dition was too light for vibration experiments which were also being

conducted on this model, so a further test, designated Test 1, was

conducted in which the same trim was maintained but the displacement

was increased to 70 percent of .that of the design displacement. In

order that the data could be directly usable in the vibration work,

the wake measurements were made in the forward position, Position 2.

Finally, when preliminary analysis of the data revealed unsus-

pectedly large differences between Tests 3P and 3S, it was decided to

conduct a repeat test on the port side, Test 3PR.

All of the data from these experiments have been analyzed by

the computer program described in Reference 4.

PRESENTATION OF DATA

Two types of information are presented in this report: the test

data and the computed results. The test data are those obtained from

the model experiments at the prescribed test points. The computed

data are the quantities calculated on the basis of the test data.

The data are nondimensionalized, based on a 400-ft and a 600-ft LBP

ship with propeller diameters of 16.6 and 24.9 ft, respectively.

Figures 9 through 14 show the interpolated circumferential dis-

tribution of the longitudinal and tangential velocity components at

the test radii. Each of the three test radii shows the typical velocity

distribution experienced on the cargo-type ship with clearwater stern.

The 0.40 r/R shows a fairly symmetrical type of distribution with the

velocity defect at the lower part of the hull approaching that for the

upper part of the hull. The 0.70 r/R shows a very narrow region of

reduced velocity due to the influence of the lower part of the hull

and the 0.95 r/R shows no velocity defect in the lower part of the hull.

These circumferential distribution curves of both the longitudi-

nal and tangential velocities are analyzed for their harmonic contents.
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The radial distribution of the mean longitudinal velocity Vx/V, obtained

from the harmonic analysis, is shown in Figures 15 through 20. These

figures also show the calculated volumetric velocity and its mean value

for the various tests; their definitions are given in Reference 1.

The amplitude and phase angles of various orders of harmonics

are obtained from the harmonic analysis of the velocity curves. Figures

22 through 27 show the amplitude and phase angle for the longitudinal

component for the harmonics of orders up to 8. Figures 28 through 33

show the same for the tangential component. In general, as shown in

Figure 21, these harmonics show a decrease in amplitude with increase

in order. The even orders tend to be stronger than the odd orders.

For the purposes of furnishing useful information in analyzing

the cavitation characteristics of a propeller operating in a nonuniform

wake field, the wake data have been further analyzed in terms of the

maximum resultant velocities to the propeller blade and the fluctua-

tions in the advance angle. As can be readily shown, the velocity at

the blade element depends upon the propeller rotational speed. In

order to establish proper geometric relationships, it is necessary to

assume certain operating conditions, namely, the advance coefficient

Ja. A value of 0.922 was chosen for this analysis. Figures 34 through

39 show the calculated values of the maximum variations ±+ A from the

mean advance angle. This means that the fluctuation of the advance

angle may be anywhere within the boundaries of + A, and - A curves.

The primary factor in determining the magnitude of the - A

quantity is the longitudinal velocity defect in the region immediately

behind the hull centerline. Special care was taken in these experi-

ments to get as many measurements in that region as practical because

of the known high velocity gradient and the general instability of the

flow in this region. Also shown on the same figures are the so-called

pressure factors, which represent the minimum pressures of the propel-

ler blade element resulting from the fluctuations in the inflow veloc-

ity expressed as a percent of the mean resultant velocity at that

particular blade element.
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DISCUSSION

In comparing the results of this series of experiments, each

item investigated will be taken up separately after a brief discussion

on the accuracy of the pitot-tube manometer system of measurement.

The investigation of the effect of rudder will be taken up first, fol-

lowed by the effect of speed. These two tests provide the most precise

comparisons and establish the best accuracy possible with the current

measuring system. The experiments on symmetry and repeatability,

effect of plane of measurement, and effect of trim and displacement

follow. All comparisons are made with the basic test (3P).

ACCURACY OF MEASUREMENT

Since these experiments involved comparisons of velocity meas-

urements on the same model, the first step is an evaluation of the

accuracy of the pitot-tube manometer system of measurement. Appendix

A describes the procedure used to evaluate both the 5-hole pitot tube

used for the experiments contained in this report and its predecessor,

the l-in.-diameter 13-hole pitot tube.

Based on the results from the -in. pitot tube, these experi-

ments show that at speeds of 3, 2, 1.5, and 1 knots, the maximum error

in speed is 1, 2, 4, and 9 percent, respectively. The minimum velocity

measured on most of these experiments was about 1.5 knots, with two of

the experiments (Tests 1 and 7) showing centerplane velocities as low

as 0.9 of a knot. The maximum probable error in speed is about 4 and

11 percent, respectively, which corresponds to 1.4 and 2.3 percent

for the model speed of 4.38 knots.

EFFECT OF RUDDER (TESTS 3P, 5, AND 6)

In this set of experiments, the rudder was introduced at two

different positions in relation to the plane of measurement, as shown

in Figures 3, 6, and 7. To insure the greatest accuracy possible,



the pitot tube was retained in a fixed position, and the rudder intro-

duced and moved forward before going to the next test spot. This in-

sured no movement of the pitot tube or change in angular position.

These experiments, the results of which are shown in Figures 12,

18, 25, 31, and 37, are the most consistent of the whole series. The

effect of the rudder is apparent only at the top of the propeller disk

where the velocity defect is increased between 4 and 6 points (4 and

6 percent of model speed). The scatter shown in the region from about

20 deg to about 90 deg in the inner radii is believed due to the rota-

tional, thus less stable, nature of the flow. The rotational character

of the velocity field can be observed in Figure 4.

Figures 25 and 31 compare the amplitude and phase of the harmon-

ics. Within the experimental limitations already discussed, the re-

sults appear consistent. No significant effect on the harmonics can

be expected from the introduction of the rudder.

The values of + L and pressure coefficients are very consistent,

as shown in Figure 37. The variations are less than k deg. The - A

shows a variation as great as 1 deg between the conditions with and

without the rudder. This, of course, is due to the increased velocity

defect noted at the top of the propeller disk. In general, it can be

concluded that it is not necessary to have the rudder in place when

conducting wake surveys, although it should be recognized that the

value of - AP may be slightly larger in the presence of the rudder.

EFFECT OF SPEED (TESTS 3P, 2, AND 4)

This experiment consisted of making velocity measurements at

three speeds; thus comparisons of the effect of speed are possible

over a range of speed length-ratios from 0.87 to 1.13. As indicated

previously, the pitot-tube position was fixed for each spot and the

speed varied.

Comparable accuracy to the tests with and without the rudder
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just described would be expected. The results are shown in Figures

10, 16, 23, 29, and 35.

The circumferential plots, Figure 10, of the two velocity com-

ponents show only a slightly larger variation than those obtained on

the rudder tests in Figure 12. This would indicate there is some ef-

fect from speed, but the differences shown are largely masked by the

flow instability just discussed. If there is any effect from speed,

it would probably arise from the change in location of the wave train

and the effect it has on the longitudinal velocity profile over the

propeller disk. This effect should be most pronounced on the first

harmonic. This appears to be indicated in Figures 23 and 29. The

shapes of the third, fourth, and fifth harmonics of the longitudinal

velocity component are altered. It is possible that this is largely

the result of the fairing techniques since only three radii were

measured. In future experiments with more refined techniques and

with more test spots, this doubt will be eliminated.

The effect of speed upon the advance angle B and inflow veloc-

ity is discernable. The greatest change occurs in the - An quantity

since it is dominated by the changes in velocity which occur at the

centerplane of the model.

SYMMETRY AND REPEATABILITY (TESTS 3P, 3S, AND 3PR)

This experiment consisted of measuring the port, 3P, and star-

board side, 3S, of the model, and then at a later time, remeasuring

the port side, 3PR, at the same angular positions. On ship models

of this type, measurements are made over only one-half of the propel-

ler plane, usually the port side, and symmetry assumed. It was the

objective of this test to determine if this assumption was reasonable

as there has been evidence from wind tunnel tests on submarine models

that this is not always true (Reference 6). The objective of the

repeat test was to obtain direct evidence of the consistency of test

results since submarine models had shown surprising variations.

YIII II
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The results are shown in Figures 11, 17, 24, 30, and 36. Figure

11 indicates that the scatter between tests is disconcertingly large.

The variations are not confined to a particular region of the disk and

are as much as 10 percent of the shi speed, even in regions where

there is a small velocity gradient, nor do they appear to be partic-

ularly confined to either the starboard side or to the repeat meas-

urements. The comparison of the mean longitudinal velocity Vx/V in

Figure 17 shows that the repeat test (3PR) is about 4 points higher

than the original test (3P). The starboard test (3S) agrees with Test

3P at the inner radii, but with Test 3PR at the outer radii. The two

port side tests have been thoroughly checked for any consistent error,

but none has been found. The comparison of the harmonics, Figures 24

and 30, seems to show slightly better agreement between the two port

side measurements for most of the harmonics, but the scatter of results

is too great.

The variations in the ± A and P values are shown in Figure 36.

The variations are within about 1 deg for both the - A P and the + A

values.

These experiments rather clearly indicate (1) that any compari-

sons made between wake patterns on single-screw ship hulls tested in

the past must be carefully judged and (2) that the importance of flow

instabilities must be determined through improved test equipment and

techniques if accurate information is to be derived from wake surveys.

PLANE OF MEASUREMENT (TESTS 3P AND 7)

The purpose of this experiment was to determine the significance

of longitudinal position in the aperture. To insure the greatest

accuracy practical, these two tests were conducted concurrently by

measuring the velocity at each spot in the propeller disk, first in

the after position and then in the forward position. The plane of

measurement is shown in Figure 3. The results of the experiment are

shown in Figures 13, 19, 26, 32, and 38.

As can be seen in Figure 13, the variation is less than that



shown in the repeat tests in Figure 10 except for the region at the top

centerline of the disk where the values have decreased substantially

(7 to 16 points) in the forward position. Surprisingly, the mean longi-

tudinal velocity is about 4 points higher in the forward position, as

shown in Figure 19. This is contrary to other experience at the Model

Basin where the mean velocity decreases as the measurements are taken

closer to the hull (Reference 5). The reason for the increased mean

value is not clear. It cannot be due to moving the pitot tube, nor

can it be due to changes in the flow patterns from one test to the

other since the spots were alternately measured.

This experiment is one of the most interesting in the whole series

for its effect upon the longitudinal harmonics. As may be noted in Fig-

ure 26, the odd harmonics have had a significant shift in their ampli-

tude values. This is due to the decrease in velocity noted'at the top

of the aperture. The effect on the even harmonics falls within the

range of scatter shown on the other tests. The tangential harmonics

do not show any effect.

The effect on the + 6L is, of course, negligible, but due to the

greater velocity defect occurring at the top of the disk at the forward

position, the value of - AP is increased as much as 3 deg. This

indicates that the after position in the aperture is better from a

cavitation point of view.

TRIM AND DISPLACEMENT (TESTS 3P, 8, AND 1)

The experiments to determine the effect of displacement and trim

were not varied as systematically as they should to determine inde-

pendently both the effect of displacement and that of trim. They were

designed to assist in the analysis of the vibration project briefly

discussed in Reference 6. In Test 8, both trim and displacement (60

percent of design) have been varied, but the plane of measurement was

the same as the base test (3P). In Test 1, again both trim (same as

Test 8) (70 percent of design) and displacement were varied, as well
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as the plane of measurement (forward position). The results of Test

8 are shown in Figures 14, 20, 27, 33, and 39.

The combined effect of trim and displacement is comparatively

large, as shown in Figure 14. It results in a change in slope of the

longitudinal mean velocity curve, indicating lower mean velocity at

the root and greater at the outer tip of the propeller. The effect

on the lower harmonics, Figures 27 and 33, is large. The effect on

the advance angle is to reduce the - A f and increase the + A P.

The results of Test 1 are compared in Figures 9, 15, 22, 28, and

34. The change in displacement is less in this test than in Test 8,

but the plane of measurement has been moved forward; this latter change

dominates the results. We know from Test 7 that the greatest effect

of location is in the top part of the propeller disk. This is again

obvious for this test, as shown in Figure 9, where the velocity at the

centerplane was decreased as much as 22 points, whereas in Test 8 the

velocity was actually increased due to the change in trim and displace-

ment. The mean longitudinal velocity Vx/V, Figure 15, shows the same

change in slope as did Test 8. From Test 7 we would expect the magni-

tude of the odd harmonics of the longitudinal velocity to change when

compared with Test 8; however, all harmonics have changed in varying

amounts. This is probably due as much to the flow variations and

experimental error as to the change in displacement between the two

tests.

Similar to Test 7, the - AP values show a wide variation, over

4 deg, due again to the larger velocity defect at the top of the

aperture.

From the above two tests, it is imperative that each of the ef-

fects of displacement and trim should be investigated. We would sus-

pect that changes in displacement would show small effects while the

changes in trim would show much larger effects, but this must be

demonstrated by careful experiments.
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CONCLUSIONS

1. The most important finding from these experiments is the

comparative inconsistency of the test data, either the repeat meas-

urements or the measurements made on the starboard side. The authors

believe these variations are due as much to flow asymmetries and

flow instabilities arising from secondary flows as to inaccuracies

in model construction, model alignment, repeatability of pitot-tube

positioning, and other test errors. It was established that the basic

accuracy (open water) of the velocity measuring ( -in. 5-hole pitot-

tube manometer) system was sufficient to contribute little to the

inconsistencies noted.

2. Of all the effects studied on this model, by far the most

significant is that of propeller position in the aperture. The

clearance of the propeller from the stern frame determines the mag-

nitude of the velocities at the centerplane. These values dominate

the maximum values of the advance angle and have a significant effect

on the amplitude of the wake harmonics, particularly the odd harmonics.

3. It is not necessary to have the rudder in place when con-

ducting wake surveys, although it should be recognized that the rudder

may have a small effect on the mean longitudinal velocity and the

maximum advance angle.

4. The effect of changes in speed upon the wake patterns

appears to be small, but the results in this study are somewhat in-

conclusive due to the uncertainties in repeat test results.

5. The effect of change in trim and displacement may result

in large variations in the wake pattern and, consequently, in the

cavitation and vibration characteristics.

6. Any comparisons made between wake patterns on single-screw

ship hulls tested in the past must be carefully judged in light of

the conclusions above.
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RECOMMENDATIONS

1. For the type of study made in this report, instrumentation

must be improved, both in accuracy and in speed of acquisition and

processing of data.

2. When suitable instrumentation is developed, the study of

flow asymmetries and repeatability of measurements should be under-

taken.

3. To properly delineate the velocity distribution on the

single-screw ship with conventional-type sterns, measurements should

be made at four or more radii because of the large variations in the

radial direction.

4. A study should be made to investigate the effect of trim.

5. On ship designs which are to operate a significant propor-

tion of time in the ballast condition, it would be well to examine

the wake pattern in this condition for the effect it might have upon

the propeller design.

6. The effect of speed upon the wake pattern was largely masked

by flow instabilities and test inaccuracies; however, it appears to

be of sufficient magnitude to warrant further investigation when the

test technique is improved.
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APPENDIX A

ACCURACY OF PITOT-TUBE MANOMETER MEASURING SYSTEM

The question of accuracy of velocity measurement, particularly

in the low velocity region, at the top of the propeller disk of a

single-screw ship, frequently arises when detailed analyses are to be

made, such as those contained in this report. The question has also

been raised of the possibility of laminar flow effects on the -in.

pitot tube at velocities below 3 ft/sec. To provide an answer to these

questions, a set of tests was conducted with the 1-in. 13-hole pitot

tube and the -in. 5-hole pitot tube and their manometry systems to

establish the accuracy. The tests essentially consisted of running

the pitot tube into open water, measuring the velocity at 0- and 20-deg

yaw angles, and comparing them with the measured carriage speed. The

tests were run over a range of speeds from 0.5 to 4.0 knots. The same

procedures were used in these tests as were employed in the model wake

experiments. The results of these tests plotted with AH/V2 versus V

are presented in Figure 42 for the 13- and 5-hole tubes. The scale

at the left-hand side of the graph is the difference between H/V2 as

measured by the pitot-tube manometer system and that determined from

the calibration; at the right-hand side is a scale for the correspond-

ing error in percent of the speed. Curves shown are the contours for

arbitrary errors of ± 0.025, ± 0.050, ± 0.075, and ± 0.10 in. of

water, in manometer board readings (AH). From these figures, it is

obvious that the 13-hole tube data fall within the test procedure

criteria of ± 0.050 in. of water, and this introduces less than a

2-percent error for speeds greater than 1 knots. Below this speed,

the error increases rapidly, and below 1 knot the error is 5 percent

or greater. The results on the -in. 5-hole pitot tube are not as

accurate, indicating a possible error within the range of ± 0.10 in.

of water. This may be attributed to the fact that this smaller

11, ,,,
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pitot tube has smaller sensing tubing, making it somewhat more dif-

ficult to achieve the desired consistency in the readings on the

manometer board. If greater care is used in making the tests, com-

parable accuracy should be achieved. It becomes clear from the

figures that velocities below 1 knot cannot be measured accurately

with a manometer board system. It is also clear that there are

little, if any, low Reynolds numbers effects jeopardizing the

measurements at low speeds, particularly on the -in. pitot tube.
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SHIP AND MODEL DATA

PARTICULARS
LENGTH (LWL) FT
LENGTH (LBp) FT
BEAM B FT
DRAFT H FT
DISPLACEMENT TONS
DESIGN VELOCITY V KNOTS
LCB/LWL AFT OF FP
V/%LWL
PROPELLER DIAMETER D FT
ADVANCE COEFFICIENTS Ja

MODEL
20.37
20.00
2.67
1.07
0.950fw
4.38
0.506
0.970
0.83
0.922

400-FT SHIP

407.4
400.0
53.40
21.40

7810sw
19.60
0.560
0.970
16.60
0.922

600-FT SHIP

611.1
600.0
80.10
32.10

26370sw
24.0
0.560
0.970

24.90
0.922

LBP COEFFICIENTS

CX
Lp/LWL
L/B
B/H

A sw/(.01L) 3

100 L
LZ5 LL

50 wc ~~
25 L

2~"AP Is 8y. --

SERN(

Figure 1 - Ship and Model Data

0.60
0.615
0.977
0.50
7.491
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1.0
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SYSTEM SET FOR RUNNING CONDITION
X = CLAMP

MANIFOLD

VACUUM PUMP

MOT VAC

M.Ar
NK 1 TANK 2

I II
II i II !' " !1 II

II II It II '
I I ,
II I I
I1 I I
II II

II II

II II

STATIONARY GIRDER

NOMETER BOARD

II

SOLENOID

I 1

TOWING GIRDER

REFERENCE BOTTLE
-- WATERLINE

PROPELLER SHAFT

Figure 2 - The Pressure System
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Propeller 3379 Diameter is 9.954 inches

Propeller Position 1 is
Propeller Position 2 is
Rudder Position A is 71
Rudder Position B is 50

0.7 propeller

35 percent of propeller diameter

15 percent of propeller diameter
percent of propeller diameter
percent of propeller diameter

S Propeller location at Position 1

S/ Propeller location at Position 2

• --; 'i --- ."I I ,

-1.49"b
5 4.9 3.48"i

5" ' 4 of propellers

propeller 

shaft

- I /- propeller shaft

I Rudder location at Position A

- Rudder location at Position B

Figure 3 - Propeller and Rudder Positions
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TABLE OF COMPONENT RATIOS

TEST 5P (PORT SIE) TEST 3 (STD SIDE)

POSITIOE V
X 

V VT/V VR/V N BER Vx/V V/V V/ VR/V

301 384 0 .0 004
302 0 425 0,044 -0.017 317 0,486 0.099 -0 121
303 0 45 0.097 -0 010 318 0 545 0 00 t 0 019
304 0 517 -0.112 -0.026 319 0 590 0.0 9 G 024
05 0.620 -0 1;1 -0,050 320 0.635 0 114 -0 040

306 0,691 -0 140 -0.0O4 321 0.730 0 135 -0 MO
307 0.747 -0 133 -0 0553 322 0 618 0.143 -0.44
300 O 810 -0.126 -0 016 323 0 092 0.149 -0041
309 0,8632 0.105 0.040 324 0.012 0.121 0 917
310 90 -0.063 0 00 325 0 03 0 096 0 44
31) 0.80 -90 23 0.088 326 0 907 0.072 0.04
312 0 887 -0.007 0.04 327 0.904 0.063 0.069
313 0,894 -0.004 0 962 328 0 907 0.056 0 068
314 0 87 -0.01 0 079 329 0 904 0 49 0 049
315 0 882 0 010 0 074 330 0.908 0 037 0 071
316 0 889 0 0.075

201 0 378 0 0.056
203 0.417 -0 069 0.042 317 9 426 0 072 0 047
203 0.443 -0.076 0 047 218 0.517 0.077 0.06

4 0 5109 0 089 0 032 119 0 537 0 077 0 025
205 0.566 -0 102 0 023 220 0,585 0 092 0 0O9
206 0,662 -0 126 -0 002 221 0 679 0 116 -0 024
107 0 735 -0.138 -0 022 222 0 723 0 130 -0.025

08 0 841 -o 139 -0.00 223 0.877 0.162 -0 046

209 0.879 -0 116 0 050 224 0.906 0.132 0 009
219 0.05 -0.06 0.06 225 0,898 0 109 0 48
21t 0,907 -0 027 0 101 226 0 904 0.087 0 077
211 0.904 -0.011 0.102 227 0 918 0.066 0 98
213 0 0.00 0 108 28 0 897 0.013 0,129
214 0 888 0 076 0.140 229 0 733 0.088 0 106
215 0 694 0.160 0 124 230 0,522 -0 075 0 034
216 0.451 0 0 042

101 0 391 0 0 09

102 9 392 -0.025 0 097 117 0.398 0 006 0 100

103 0 393 -0 022 0 097 118 0 49 0,009 0.095
14 0,404 0 035 0 090 11 0449 0 031 0 080
)04 0.428 -0.046 0 084 120 0.464 0.037 0,971
0 0,510 0.5 0.0580 121 0,487 0.031 0,053

007 0.572 -O.02 0 055 1;2 0 526 0.042 0 045
106 0,728 -0 128 0.047 123 0 746 0145 0 01

A 109 0.022 -0 118 0 090 124 0.807 0.132 0,059
110 0.885 -0 065 0 135 15 0 832 0.101 0.113
II 0 763 0.049 0.158 126 0 696 .. 0029 0 11
112 0.634 0 102 0 103 127 0 592 -0.059 0.081
113 0.44 0 102 0.048 128 0 508 -0 0M 0 029
114 0.454 0.108 0 012 129 0.449 -0.056 -o0 07
115 0 392 0 088 -0.025 130 0 430 -0.026 -0 027
116 0 348 0 -0 47

TIE VELOCITY MEASUREME TS WERE MADE IN A PLANE WHICH IS
PERPENDICULAR TO THE CENTERLINE OF THE PROPELLER SHAFT

6 IINTEBJECTS THE SHAFT CENTERLIE 2.4 rT FWD OP THE
A.P. (POSTION I)

r/R H THE DITANCE FROM THE PROPELLER AXE (r) EPRESIE
AS A RATIO OF THE PROPELLER RADIUS (R).

0 2 THE ANGLE MEASURED FROM THE TOP OF THE PROPELLR
DISK IN A COUNTERCLOCKWIE DIECTION

V THE SaIP SPEEI.

V
x  

U THE LrOGITUDINAL (NORMAL TO THE pLANE OF SURVEY)
COMPONENT OF THE WATER VELOCITY AND POSITIVE IN
TE ASTERN DIRECTION.

Vt 8 THE TANGENTIAL COMPOENT OF THE WATER VELOCITY
AND H POSITIVE IN THE COUNTERCLOCKWISE DIRECTIOR

V
r  

THE RADIAL COMPONENT OF THE WATER VELOCITY AND
SPOSITIVE TOWARD THE SHAFT CENTERLINE.

Vtr, THE TRASVERSE COMPONENT OF THE WATER VELOCITY
AND IS THE VECTOR SUM OF Vt AND V

r

THE VECTOR SHOWN IN THE DIAGRAM IS IN THE DIRECTION OF V
WITH A MAGNITUDE EQUAL TO Vtr/V

VELOCITY SURVEY FOR SERIES 60

o O0 02. 03

SALE FOR nV

Figure 4 - Velocity Survey in Way of the Propeller for a Hull Design
Represented by Model 4210-5

PIP IMENWONS

LENGTH (LWL) 611 1 FT
REAM 80 0 FT
DRAFT 32 0 FT
TRIM BY STERN ZERO

DISPLACEM NT 26, 350 TONS
PROPELLER DIAMETER 24.89 FT
SPEED 24 0 ET
RUDDER NONE

TESTS $P ANO S
MAY 1964
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eo

Note =
O and 0 showing data points

Looking Forward

Figure 5 - Coordinate System of Velocity Components



Figure 6 - Pitot Tube in Position 1 and Rudder in Position A, Model 4210-5



Figure 7 - Pitot Tube in Position 1 and Rudder in Position B, Model 
4210-5

Figure 7 Pitot Tube in Position 1 and Rudder in Position B, Model 4210-5



Pitot Tube in Position 2

Rudder Configurations

Figure 8 - Pitot Tube and Some of the Rudder Configurations 
Used

for Wake Survey with Model 4210-5
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TEST TUBE RUDDER SPEED DISPLACEMENT TRIM
NUMBER POSITION POSITION (KNOTS) (POUNDS) (FEET)

--- 3P

-- B-- I

none

none

4.38

4.38

2127

1489

zero
0.48

x stern

0 20 60 100 140 180 0 20 60 100 140
Position Angle e in Degrees Position Angle e in Degrees Position Angle e in Degrees

Figure 9 - Circumferential Longitudinal (Vx/V) and Tangential (Vt/V) Velocity

Distribution at Test Radii Due to Variations in Longitudinal Position

of Plane of Survey, Displacement, and Trim, Model 4210-5



DISPLACEMENT
(POUNDS)

2127

2127

2127

0 20 60 100 140 180
Position Angle e in Degrees

60 100 140
Position Angle 9 in Degrees Position Angle e in Degrees

Figure 10 - Circumferential Longitudinal (Vx/V) and Tangential (Vt/V) Velocity

Distribution at Test Radii Due to Variations in Model Speed,

Model 4210-5

SYMBOL

- --- -

-- --

TUBE
POSITION

I

I

I

TEST
NUMBER

3P

2

4

RUDDER
POSITION

none

none

none

SPEED
(KNOTS)

4.38

3.90

5.10

TRIM

zero

zero

zero



SYMBOL

-----
-- A -- -

60 100 14C
Position Angle e in Degrees

TEST
NUMBER

3P

3PR

3S

TUBE
POSITION

I

I

RUDDER
POSITION

none

none

none

-0.2

SPEED
(KNOTS)

4.38

4.38

4.38

DISPLACEMENT
(POUNDS)

2127

2127

2127

-7-
I.

>

0.

0

0

0O,

O

TRIM

zero

zero

zero

0 20 60 100 140
Position Angle e in Degrees

Figure 11 - Circumferential Longitudinal (Vx/V) and Tangential (Vt/V) Velocity

Distribution at Test Radii Due to Asymmetries and Repeatability,

Model 4210-5



TEST TUBE RUDDER SPEED DISPLACEMENT
SYMBOL TRIM

NUMBER POSITION POSITION (KNOTS) (POUNDS)

GO- 3P

---- 5

-- fB--- 6

none 4.38

B 4.38

A 4.38

2127

2127

2127

zero

zero

zero

1.0

).6

r/R=0.40

)2

020 ___ ___ __

0 20 60 100 140 181
Position Angle e in Degrees Position Angle 8 in Degrees

.0

.8 -

./

r/R=0.95
).2

1.2

Position Angle e in Degrees

Figure 12 - Circumferential Longitudinal (Vx/V) and Tangential (Vt/V) Velocity

Distribution at Test Radii Due to Variations in Longitudinal

Position of Rudder, Model 4210-5
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TEST
SYMBOL

NUMBER

O 3P

------ 7

TUBE
POSITION

2

2

RUDDER
POSITION

none

none

SPEED
(KNOTS)

4.38

4.38

DISPLACEMENT
(POUNDS)

2127

2127

r/R=0.40

2

2

0 20 60 100 140 18(
Position Angle 0 in Degrees

60 100 140
Position Angle e in Degrees Position Angle e in Degrees

Figure 13 - Circumferential Longitudinal (Vx/V) and Tangential (Vt/V) Velocity

Distribution at Test Radii Due to Variations in Longitudinal

Position of Plane of Survey, Model 4210-5
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TEST TUBE RUDDER SPEED DISPLACEMENT
SYMBOL

NUMBER POSITION POSITION (KNOTS) (POUNDS)

-E 3P

-- A-- 8

none

none

4.38

4.38

2127

1276

0 20 60 100 140
Position Angle G in Degrees

0 20 60 100 140
Position Angle 0 in Degrees Position Angle e in Degrees

Figure 14 - Circumferential Longitudinal (Vx/V) and Tangential (Vt/V) Velocity

Distribution at Test Radii Due to Variations in Displacement

and Trim, Model 4210-5

TRIM
(FEET)

zero
0.48

x stern



SYMBCL TEST TUBE RUDDER SPEED DISPLACEMENT

NUMBER POSITION POSITION (KNOTS) (POUNDS)

- 3P

- -- I

I none 4 38 2127 zero

2 none 4,38 1489 048
x stern

0.9

0.8--------------- -

0.7

/
0.6

0.5

0.4,

l/

-j

-- ...... L

04 05 06 0.7 08 09 10

Figure 15 - Calculated Volumetric Velocity (Vv/V), Volumetric Mean Wake
Velocity (l-Wx), and Mean Longitudinal Velocity (Vx/V) Showing

Differences Due to Variations in Longitudinal Position of
Plane of Survey, Displacement, and Trim, Model 4210-5

TRIM

(FEET)

26

2.4

22

20

IB

1.6

14

12

1.0

0.8

06

04

02

0
0 3
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SYMBOL TEST TUBE
NUMBER POSITION

- 3P I

-a-- 2 I

--- 4 I

RUDDER

POSITION

none

none

none

SPEED
(KNOTS)

438

390

510

DISPLACEMENT

(POUNDS)

2127

2127

2127

TRIM

zero

zero

zero

0.8 . - -

0.7

0.6

0.5

0.4

03 04 0 5 0.6 0.7 0.8 0.9 10

Figure 16 - Calculated Volumetric Velocity (Vv/V), Volumetric Mean Wake
Velocity (l-Wx), and Mean Longitudinal Velocity (Vx/V) Showing
Differences Due to Variations in Model Speed, Model 4210-5
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v.

0.

0.

0.i

0.

0.

0.

0.

0.

0.r

0.

24

22

2.0

Is

1.6

14

12

I0

0.8

06

04

0.2

0
0

SYMBOL TEST TUBE RUDDER SPEED DISPLACEMENT TRIM

NUMBER POSITION POSITION (KNOTS) (POUNDS)

- 3P I none 438 2127 zero

- 3PR I none 438 2127 zero

-a-- 3S I none 438 2127 zero

9

a-7

6

5

4

9

8

7

6

5

4

'

.--

.3 04 05 0.6 0.7
r/R

08 0.9 I0

Figure 17 - Calculated Volumetric Velocity (Vv/V), Volumetric Mean Wake
Velocity (l-Wx), and Mean Longitudinal Velocity (Vx/V) Showing

Differences Due to Asymmetries and Repeatability,
Model 4210-5
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Figure 18 - Calculated Volumetric Velocity (Vv/V), Volumetric Mean Wake
Velocity (1-Wx), and Mean Longitudinal Velocity (Vx/V) Showing

Differences Due to Variations in Longitudinal
Position of Rudder, Model 4210-5

I

I

ur-Wlrrrylllll-



I)

03 04 0.5 06 0.7 08 0.9 1.0

Figure 19 - Calculated Volumetric Velocity (Vv/V), Volumetric Mean Wake
Velocity (1-Wx), and Mean Longitudinal Velocity (Vx/V) Showing

Differences Due to Variations in Longitudinal Position
of Plane of Survey, Model 4210-5
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SYMBOL TEST TUBE RUDDER SPEED DISPLACEMENT TRIM
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Figure 20 - Calculated Volumetric Velocity (Vv/V), Volumetric Mean Wake
Velocity (1-Wx), and Mean Longitudinal Velocity (Vx/V) Showing

Differences Due to Variations in Displacement and
Trim, Model 4210-5
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Figure 22 - Amplitudes of Harmonics of Longitudinal Velocity Components
Showing Differences Due to Variations in Longitudinal Position of

Plane of Survey, Displacement, and Trim, Model 4210-5
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Figure 23 - Amplitudes of Harmonics of Longitudinal Velocity Components (Vx/V)

Showing Differences Due to Variations in Model Speed, Model 4210-5
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Showing Differences Due to Asymmetries and Repeatability, Model 4210-5
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Figure 27 - Amplitudes of Harmonics of Longitudinal Velocity Components (Vx/V)
Showing Differences Due to Variations in Displacement

and Trim, Model 4210-5
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Showing Differences Due to Asymmetries and Repeatability, Model 4210-5
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Figure 31 - Amplitudes of Harmonics of Tangential Velocity Components (Vt/V)

Showing Differences Due to Variations in Longitudinal
Position of Rudder, Model 4210-5
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SYMBOL TEST TUBE RUDDER SPEED DISPLACEMENT
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Figure 34 - Variations in Beta Angle (As ) and Pressure Factor (P)
Due to Variations in Longitudinal Position of Plane of

Survey, Displacement, and Trim, Model 4210-5
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Figure 35 - Variations in Beta Angle ( NB) and Pressure Factor (P)
Due to Variations in Model Speed, Model 4210-5
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Figure 36 - Variations in Beta Angle (An ) and Pressure Factor (P)
Duc to Asymmetries and Repeatability, Model 4210-5
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Figure 37 - Variations in Beta Angle (An) and Pressure Factor (P)
Due to Variations in Longitudinal Position of Rudder,

Model 4210-5
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Figure 39 - Variations in Beta Angle (n ) and Pressure Factor (P)
Due to Variations in Displacement and Trim, Model 4210-5
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HARMONIC ANALYSIS OF LONGITUDINAL COMPONENT OF VELOCITY RATIOS IN PROPELLER PLANE

A, B. C, ,. C,/Ao
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1 -0.07931J -0.000000 0.079313 269.999905 0.130511
2 -0.236057 -0.000000 0.236057 269.999992 0.388435
3 0.085125 -0.000000 0.085125 90.000009 0.140076

S -0.055R36 -0.000000 0.05583b 269.999985 0.091879
5 0.050932 -0.000000 0.050932 90.000013 0.023810
6 -0.013571 -0.000000 0.013571 269.999954 0.022331
17 0.005398 -0.000000 0.005398 90.000071 0.00802

/R 1 0.3 8 0.002656 -0.000000 0.002656 90.000010 0.004371
9 -0.002773 -0.000000 0.002773 269.999977 0.004562

10 0.017034 -0.000000 0.017034 90.000027 0.028029
II -0.005882 -0.000000 0.005882 269.999947 0.009678

12 0.018389 -0.000000 0.018389 90.000000 0.030260

14 0.013593 -0.000000 0.013593 90.000022 0.022367
15 -0.0138a5 0.000000 0.013885 270.000000 0.022848
16 0.010850 0.000000 0.010850 89.999928 0.017853

r- 0

2
3

4
5
6

r/R -0.5 8
to
I0
11

12

14

15
16

r/R - 0.7

r/R - 0.9

r/R - 1.0

0.729*37
-0.116113
-0.173883
0.011468
-0.063757
0.028789
-0.028508
0.019749
-0.021893

0.014912
-0.013527

0.014133
-0.009671
0.011487

-0.009724
0.008721
-0.00899H

0.795247
-0.139203
-0.126563
-0.033405
-0.059734
0.005305
-0.031436
0.016225
-0o.o27eq
0.016067
-0.022753

0.017537
-0.018178
0.017593

-0.015918
0.015625
-0.013757

0.005140
-0.148581
-0.094099
-0.049494
-0.043766
-0.01951
-0.022355
-0.005174
-0.015123
0.000690

-0.01064f
0.004331

-0.007130
0.006099

-0.004991
o.oos82
-0.003427

0.789118
-0.148128
-0.083437
-0.046744
-0.031302
-0.032432
-0.013311
-0.022577
-0.001792
-0.013197
0.0034*07
-0.008500
0.005726
-0.006249
0.006893
-0.003461
0.007396

0.
-0.000000
-0.000000
-0.000000
-0.000000
-0.000000
-0.000000
-0.000000

0.000000
-0.000000
-0.000000
-0.000000

-o.oooo00000o-0.000000

-0.000000

0.000000
0.000000

0.
-0.000000
-0.000000
-0.000000
-0.000000
-0.000000
-0.000000
-0.000000

0.000000
-0.000000
-0o000000
-0.000000
0.000000

-0.000000
-0.000000
0.000000

0.000000

0.oooooo
-0.000000

-0.000000

-0.000000

-0.000000

-0.000000

-0.000000

-0.000000
-o.oooooo
-o.oooooo0.000000-0.000000
-0.000000
-0.000000
0.000000

-0.00000ooo
-0.000000

-0000000

-0.0000

0.000000-0.000000
-0.000000-0.000000

-0.000000-0.000000-0.0000000.000000-0.000000
-0.000000
-0.000000

.000000

-0:000000
-0 0000bo
-0.000000

0. 000000-o.ooooo
-o.oooooo
-o.oooooo

o.
0.116113
0.173883
0.011468
0.063757
0.02878
0.028508
0.019749
0.021893
0.014912
0.013527
0.014133
0.009671
0.011487
0.009724
0.008721
0.008998

0.
0.139203
0.126563
0.033405
0.059734
0.005305
0.031436
0.016225
0.027819
0.016067
0.022753
0.017537
0.018178
0.017593
0.015918
0.015625
0.013757

0.
0.148581
0.094099
0.049494
0.043766
0.019518
0.022355
0.005174
0.015123
0.000690
0.010646
0.004331
0.007130
0.006099
0.004991
0.006026
0.003427

0.
0.148128
0.0863437
0.046744
0.031302
0.032432
0.013311
0.022577
0.001792
0.013197
0.003407
0.008500
0.005126
0.006249
0.006893
0.003461
0.007396

0.
269.999901
269.999989
90.000123
269.999989
90.000028
269.99981
90.000022
269.999996
90.000031
269.999969
90.00002,
270.000004
90.00003!
269.9999',
89.999998

270.000114

0.
269.999928
269.999966
269.99950
269.999909
90.000161
269.999985
90.000023
270.000008
90.000021
269.999985

90.000013
270.000011
90.000013
269,999992
89.999998
270.000076

0.
269.999916
269.999958
269.99995
269.999y77
269.99954
269.999977
269.999924
270.000008
90.000433
269.999977
90.000039

270.000023
90.000024

269.999992
90.000008

270.000320

0.
269.999920
269.999947
269.999950
269.999958
269.99977
269.999962
269.999985
270.000046
269.999992
90.000028
269.999973
89.999978
269.999985
90.000006
769.999992
89.999855

0.
0.159182
0.238380
0.015721
0.087406
0.039467
0.039082
0.027075
0.030013
0.020444
0.018544
0.019375
0.013259
0.015748
0.013330
0.011956
0.012336

0.
0.175043
0.159150
0.042006
0.075114
0.006671
0.039530
0.020403
0.034982
0.020203
0.028612
0.022052
0.022058
0.022123
0.020017
0.019646
0.017299

0.
0.184540
0.116073
0.061472
0.054358
0.024242
0.027766
0.006427
0.018783
0.000857
0.013223
0.005380
0.008856
0.007575
0.006199
0.008478
0.004256

0.
0.187714
0.105735
0.059235
0.039668
0.041100
0.016060
0.028611
0.002271
0.016724
0.004318
0.010772
0.007257
0.007919
0.008735
0.004387
0.009373

THESE COLUMNS CAN BEST BE IDENTIFIED BY REFERRING TO THE FORM OF THE FOURIER EXPANSION

f() - A, C, ,s (X, + ,)

A

WHERE . 12 C-= B . t- - AND x IS TIlE ORDER OF THE HARMONIC.

Figure 40 - Tabulated Values of Harmonic Analysis for Longitudinal

Component for Test 3P, Model 4210-5
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n A. B, C, 

0 0.000000 o. o. 0.
1 0.000000 -0.077183 0.077183 179.999996
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12 0.000000 0.007899 0.007899 0.000009
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9 0.000000 0.009061 0.009061 0.000003
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11 0.000000 0.007412 0.00741Z 0.000002
12 -0.000000 -0.009317 0.009317 180.000006
13 0.000000 0.006886 0.006886 0.000002
14 -0.000000 -0.009167 0.009167 180.000006
15 0.000000 0.006702 0.006702 0.000004
16 -0.000000 -0.008386 0.008686 180.000004

0 0.000000 0. 0. 0.
1 0.000000 -0.123211 0.123211 179.9999942 -0.000000 -0.053880 0.053880 180.000008
3 -0.000000 -0.007799 0.007799 180.000034
4 -0.000000 -0.017932 0.017932 180.000011
5 -0.000000 0.001382 0.00138 359.09999246 -0.000000 -0.014311 0.014311 180.000011
/R -0.000000 0.007788 0.007788 359.999989-r 0.7 8 -0.000000 -0.014514 0.014514 180.0000069 0.000000 0.009653 0.009653 0.000002
I0 -0.000000 -0.014636 0.014636 180.0000060
11 0.000000 0.009218 0.00921 0.000002
12 -0.000000 -0.014431 0.014431 180.000006
13 0.000000 0.009348 0.009340 0.000000
14 -0.000000 -0.013400 0.013400 180.000006
15 0.000000 0.009115 0.009115 0.000003
36 -0.000000 -0.011881 0.011883 180.000001

0 0.000000 0. 0. 0.
1 0.000000 -0.120404 0.120404 179.999992
2 -0.000000 -0.053629 0.053629 180.000006
3 -0.000000 -0.019371 0.019371 180.000015
4 -0.000000 -0.01181 0.018181 180.000011
5 -0.000000 -0.009069 0.009069 180.000017
6 -0.000000 -0.011919 0.011919 180.000013
R -0.000000 -0.00500 0.001500 380.000057S 0. 8 -0.000000 -0.007995 0.007995 180.000011
9 -0.000000 0.000905 0.000905 359.999947
10 -0.000000 -0.007360 0.007360 180.000011
11 -0.000000 0.000745 0.000745 359.999958
12 -0.000000 -0.007445 0.007445 180.000006
13 -0.000000 0.000633 0.000633 359.999950
14 -0.000000 -0.007033 0.007033 180.000010
35 -0.000000 0.000985 0.000945 359.999973
16 -0.000000 -0.006130 0.006130 180.00008

0 0.000000 0. 0. 0.
1 0.000000 -0.112546 0.112546 179.999990
2 -0.000000 -0.053306 0.053306 100.000002
3 -0.000000 -0.019360 0.019360 180.000011
4 -0.000000 -0.019516 0.019516 180.000008
5 -0.000000 -0 012958 0.012958 180.000011
6 -0.000000 -0.011045 0.011045 180.000011

r/R 1.0 -0.000000 -0.008494 0.008894 I80.000017
8 -0.000000 -0.001922 0.001922 180.000044
9 -0.000000 -0.006972 0.006972 180.000011
10 -0.000000 0.000683 0.006683 359.999935
11 -0.000000 -0.007346 0.0073486 180.000010
12 -0.000000 0.000587 0.000587 359.999962
13 -0.000000 -0.007916 0.007916 180.000006
14 -0.000000 0.000125 0.000125 359.999817
15 -0.000000 -0.007108 0.007108 180.000008
16 -0.000000 0.000100 0.000100 359.999573

Figure 41 - Tabulated Values of Harmonic Analysis for Tangential
Component for Test 3P, Model 4210-5
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