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METHOD OF MECHANICAL IMPEDANCE
AND THE ELECTRICAL ANALOGY

Notation

In adopting symbols to be used in the electrical analogy

and impedance formulas it seems necessary to duplicate certain

symbols previously used in the Vibration Manual as these symbols

are almost universally used in electrical theory. This should not

cause confusion as the same symbol when used as defined previously

will not occur in any of the formulas given in this supplement.

L - inductance in henries
R - resistance in ohms
C - capacity in farads
I - current in amperes

q - electrical charge in coulombs
Z - electrical impedance in ohms or mechanical

impedance in ips units
E - electromotive force in volts

Introduction

The subject of electrical-mechanical analogies is a very

broad one of which only a very small part is considered here.

In fact the main emphasis in this supplement is not on the

electrical analogy but on the usefulness of the concept of im-

pedance in the solution of mechanical vibration problems. The

text is limited to the solution of the steady state vibrations

of mechanical systems under sinusoidal excitation by the im-

pedance method°
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The broader treatment of analogies by direct comparison of

the differential equations representing the electrical and

Omechanical systems is omitted. This supplement is further

limited to "lumped" systems, that is systems in which the

various masses, elastic constants, and friction-producing

members may be adequately represented by discrete elements,

each element having only one of these properties. Problems

such as the vibrations of ship hulls having distributed

mass and stiffness are not considered.

Most of the vibration formulas given in the Manual

are limited to systems of one or two degrees of freedom.

Beyond two degrees of freedom the formulas become quite

complicated. In electrical theory the impedance method has

been used for computing.the steady state currents in net-

works of many degrees of freedom. In mechanical problems

the impedance method has not met such wide acceptance largely

because of the difficulty of writing down the impedance by

inspection as is so readily done in the electrical case.

However, while the mechanical relations are more difficult

to visualize there are definite rules for writing down the

mechanical impedance by means of which the problem may be

solved directly.

Definition of impedance

In electrical problems it is usually required to deter-

mine the steady state alternating current in the various

branches of a network having elements of known resistance,
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inductance, and capacitance under known impressed sinusoldal

voltages. In the mechanical case it is usually required to

Sdetermine the amplitudes of various mass elements when known
sinusoidal driving forces act at certain points in the system.

Since the concept of impedance is derived from the solution

of the differential equations in complex notation the elec-

trical impedance is invariably defined as that complex quan-

tity by which to divide the sinusoidal voltage applied at

the terminals of a network in order to find the steady state

current flowing in the network.

As it is not essential to consider the electrical ana-

logy in using the method of mechanical impedance the mechani-

cal impedance is here defined as that complex quantity by

which it is necessary to divide the sinusoidal driving force

in order to obtain the amplitude at the driving point.

The corresponding electrical and mechanical quantities

remain the same regardless of the choice of the definition

of the impedances. Thus displacement in the mechanical case

corresponds to charge, velocity to current, mass to inductance,

and force to voltage. However the mathematical expressions

for the impedances as here defined are not similar, as the

mechanical impedance is based on displacement which corres-

ponds to charge whilst the electrical impedace is based on

current which corresponds to velocity.

O
Strictly speaking the particular analogies to be pre-

sented here are mathematical rather than physical. A truly
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physical electrical-mechanical analogy is found in many

hydraulic problems. In the mechanical mass-spring-dashpot

O systems we think of alternating driving forces as acting at

certain points in the system whereas in electrical circuits

we consider voltages as acting across the terminals of net-

works to produce currents flowing into and out of the net-

works. Of course mechanical problems can be solved directly

from the differential equations, but by visualizing mechani-

cal systems as made up of "series" and "parallel" elements

or groups of elements whereby the mechanical impedance can

be written down by inspection a direct expression for the

amplitude can be obtained. To recognize combinations of

mechanical elements as being either in series or in paral-

lel is much more difficult than the corresponding operation

in the electrical case. In fact mechanical elements that

appear to be in series are usually in parallel and vice

versa. The three fundamental mechanical elements are usual-

ly represented schematically by a concentrated mass, a spring,

and a dashpot. The reaction of the mass is proportional to

its acceleration, that of the dashpot to the relative velo-

city between its members or end connections and that of the

spring to the relative displacement between its end connections.

The technique of using the method of mechanical impedance will

become clearer in the derivation of the formulas and their ap-

O plication in the examples given.



Derivation of the impedance formulas

The simplest series and parallel electrical circuits

and their mechanical equivalents are shown in juxtaposition

in Figure 1. The directions indicated by the arrows are the

positive directions assumed for the quantities in question.

Actually these quantities are all sinusoidal and in general

differ from one another in phase. The differential equations

applicable in each instance are also set down in the same

figure. These equations are fundamental and are derived in

each case directly from physical laws without any considera-

tion of the analogy between the electrical and mechanical

systems. In fact it is the similarity of the differential

equations that justifies the analogies.

It is clear that in both of the examples on the left

of Figure 1 the displacements (electrical displacement being

sync-ymous with charge) are the same for all elements, whilst

in both of the examples on the right the force (emf) is the

same for all elements. Under this convention, by the dis-

placement of a spring or dashpot must be understood the re-

lative displacements between the end connections of the

elements. Thus electrical displacements through an element

are equivalent to mechanical displacements between the ends

of an element if the latter element is a spring or dashpot

and to the displacement of the whole element if the latter is

a mass.
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Series
Electrical

dl fldt
L +dI RIS- -At = Edt C

deq dq q
or L --- +R + - E

Mechanical

dx dxm--t -+c dt -kx=P

Parallel
Electrical

L dI, Radt _ Edt - R

L dq,
dq qR -: - = Edt C

and I= I, +I +I,3
q Mechanic+qal

Mechanical

let x= (x4-x,)
x3=(x-x 4)

d2Xl
m -

d t2
dx2c - kx,= P
dt

X= XI+x 2+x 3

Simplest Series and Parallel Electrical Circuits and Their Mechanical
Lquivalents with the Corresponding Differential Equations (arrows
indicate positive directions assumed --- these quantities will in
general be alternating).

Figure 1.
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The differential equation applicable to the series elec-

trical circuit shown in Figure 1 is

dl I IdtL-- + RI + C =Edt C
In operational notation and under the condition that the im-

pressed voltage is sinusoidal this equation takes the form

(Lp+R + )I= Eoej '

where the operator p denotes differentiation with respect to

time and the operator 1/p denotes integration with respect'

to time, the exponent of p, if any, indicates the number of

times the differentiation or integration is to be performed.

In like manner the analogous mechanical equation becomes

(mp'+cp+k)x= Po elct

Under sinusoidal excitation the steady state currents

or displacements will also be sinusoidal and of the form

Ioe (wt-e) and Xei(wt - 6 ) respectively, E denoting

the phase angle by which the voltage leads the current or the

force leads the displacement. In the electrical case if 6

is negative the current leads the voltage. Hence if I has

the form Ioe j (( t - e) then pI=jwIoe t - 6),

(jwL+RR - ) I= Eoelt

and by the previous definition the electrical impedance

Z=R+ wL- -(
Similarly in the mechanical case

(-mw2 + cjcO +k)X =PoeJWt

and the mechanical impedance

Z k - mo'+ cjW.
7
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It should be noted that the impedance expressed in the form

of a complex number gives not only the magnitude but also

the phase of the quantity in question. For instance in the

expression EoJt
o =

+]( _L I )

it is seen that IO is the ratio of two complex numbers, the

numerator being expressed in the polar form, the denominator

in the ordinary form. This division may be performed graphi-

cally in accordance with Deoivre's theorem. Since the polar

angle for EO namely wt continually increases with time the

line from the origin to the point representing the voltage as

a complex number may be thought of as a time vector continually

rotating in the counter clockwise direction with angular velo-

city c. The length of this vector is the absolute value of

E namely EO, and if the voltage is assumed to be zero when

t = O it is obviously represented in magnitude at any instant

by the projection of this vector on the Y-axis. This is

equivalent to saying E z EO Sin ut. In Figure 2, wt is re-

presented for convenience as an acute angle but the relations

hold good for any angle. Thus the length of the voltage vector

is the absolute value of E, namely EO and the polar angle is

Aot The impedance is plotted as a complex number in the usual

way, the real part being layed off along the X-axis and the

imaginary part along the Y-axis. The length of the line repre-

senting the impedance is /R+(+ L )2 The impedance is

a complex scalar, not a vector, and does not rotate. Hence

according to DeMoivre's theorem the vector representing the
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current is obtained by dividing the absolute value E0 by the

absolute value of Z and subtracting the polar angle of Z from

that of E.

Similarly in the mechanical case X k-mowz+
Po-

the amplitude is X =

and the force leads the disl:lacement by the angle

S=arcton ckr
k-mws

as shown in Figure 3. In the mechanical case 6 is always posi-

tive.

In the electrical cases on the right hand side of Figure 1

it is obvious that the same voltage exists across each element

and hence that the current in each branch can be found by di-

viding the voltage vector by the impedance. Thus

Eoe j Wt Eoe jwt Ee jWt
SjwL R 7

The vector diagrams covering these cases are given in Figure

4. The current flowing into the entire network in this case

is obtained by combining vectorially the current vectors

ill I2, and I , i.e. I 0  1 +I 2  , 3  all these terms being

complex. Hence Io= E, 4-" I
coC

Eo I
and Z +

kL R-..L . + -- L
ZCI  Za Z

The resultant current vector obtained by combining Ii,

12, and 13 will have the correct phase relation to EO provided

that EO is drawn identically in the three vector diagrams shown

in Figure 4. The vector diagrams for the mechanical system
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2 Vector Diagram for Series

E LR+L--

Electrical Circuit.

C(a

Firgure 3 Vector Diagram for Series Mechanical

Figure

I -- - --- -- -- -' lli

Circuit.
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shown on the right hand side of Figure 1 are shown in Figure 5.

p e jt Poe JI t p.e j(t

Thus X3= c X X--mk )c -mW2

X= X,+X 2 +X3  (the addition to be made
vectorially)

This will give X in the correct phase relation to PO provided PO

is drawn identically in the three vector diagrams shown in Figure

5. In this case the force will lead the displacement by the

phase angle E = arctan kmc
mwec -"kc

Obviously by analogy the mechanical impedance for the parallel
I Isystem is Z I I

ZI Ze Z3s k -mo t2 jWC
In finding the steady state oscillations of more compli-

cated systems than those so far discussed by the impedance
the problem

method/is chiefly one of recognising the series and parallel

relationships between the elements. In the electrical case it

is not very difficult to pick out the series and parallel groups

and subgroups and to write down the complex impedance of the net-

work by inspection. In the mechanical case it is not as simple.

It has already been pointed out that by the displacement of a

spring or dashpot element must be understood the relative dis-

placement between its end connections. When one end of a

spring or dashpot is fixed the element must be considered as

in series with the elements attached to the other end. The

chief problem in using the method of mechanical impedance is

to correctly set up the lumped system represert ing the actual

conditions. Actual dashpot dampers are seldom present and it

must be determined whether friction exists between two ele-

ments or between these elements and the ground. Furthermore

if the friction is of the Coulomb type the equivalent viscous

'i



jWL

Inductance

Figure 4:

NEo
I oL

R E = O
J

Resistance

E = 900

Capacity

Vector diagrams for the electrical elements in parallel as
shown in right hand side of Figure I,.

Spring

Figure 5:

Po
k

jcC

X2=

Dashpot

ot

, Po

Mass

Vector diagram for the mechanical elements in parallel as
shown in right hand side of Figure I.
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damping constant must be found. If the constant frictional

force under Coulomb damping is F the equivalent viscous damping

constant is c = 4F/ WX.

It is best to adopt some standard form of representing me-

chanical systems, if possible, say by placing the element on

which the driving force acts at the left. Then by the impedance

to the right of any point in the system is obviously meant the

ratio of the force that would produce a given amplitude at that

point to the amplitude, provided the part of the system to the

left of the point is removed.

If levers or linkages exist in a mechanical system it is

in general possible to reduce the system to an equivalent sim-

ple system by multiplying the impedance of all elements attached

to the ends of the levers by factors depending on the square of

the ratio of the amplitudes at the two ends. For example if two

equal masses m were joined together directly their mechanical

impedance would be -2mw2 whilst if they were attached to a weight-

less link in such a way that one was twice as far from the ful-

crum as the other the mechanical impedance at the mass nearest

the fulcrum would be -5m2 and at the mass farthest from the

fulcrum would be -5mw2/4. If instead of simple masses there are

attached to the ends of the linkage mechanical systems of imped-

ances Z1 and Z2 respectively then the total impedance at the

point of attachment of Z1 is

Z Z I Z2
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where 11 and 12 are the respective distances from the fulcrum

of the masses of impedances Z1 and Z2 .

The general procedure in using the method of mechanical

impedance is therefore as follows:

(1) lay out the mechanical system with the element on

which the driving force acts to the left if possible.

(2) write down the impedance of each individual element,

the impedance of a mass being -mo2 , of a spring being k, and

of a dashpot being jcw.

(3) combine the impedances of the individual elements

working from left to right using the rules for series or paral-

lel combinations as the case may be.

(4) Resonant frequencies may be found from the impedance

formulas by setting up the expression for the square of the

absolute value of the impedance, differentiating this with

respect to w, setting the derivative equal to zero, and

solving for w.

The application of the impedance method so far discussed

is limited. Mass and spring combinations can be found which

cannot be arranged in series and parallel groups. Cases in

which the electrical analogy involves mutual impedances fall

here. While the method of mechanical impedance can be ex-

panded to cover such cases its advantage over the direct so-

lution from the differential equations is much less clear.

A few examples are believed essential to clarifying the

method so far discussed. In all cases it is assumed that it

14
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is the solution of the mechanical problem that is primarily

required. It is emphasized that it is not essential to com-

sider the electrical analogy in order to use the method of

mechanical impedance.

In these examples a dashpot indicates that viscous damp-

ing exists between the points where the dashpot is attached.

Where Coulomb damping is present the equivalent viscous damping

constant must be calculated on the basis of the energy dissi-

pated per cycle as previously shown. The phase angle by which

the force leads the displacement can readily be obtained after

the numerical values of the real and imaginary parts of the

impedance have been found and hence formulas for the phase an-

gles have been omitted. The impedance formulas are given only

in the form in which they may be written down directly by in-

spection. Rationalization of the formulas in their algebraic

form is not essential as the process is much simpler after

numerical values have been substituted which will always be

the case in using them.

15
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Mechanical Electrical

One degree of freedom

R
L

X--J

p m 0

XI E

let X,= X-X,

Z-o+ £ I Z-j. i
Z =- mca+

+ Z jL+ _i

let Xz= X-X,

Z =

+II

L

R

-J R+jcoL
wC

I I
k -m o2+jcco



Mechanical Electrical

One degree of freedom

let x,=x-x,

jcC -m +k

let x = x-x,

I I

I
Z= C

R J OLmC
I k +

k+ jcm -m(L

_ __ III igha tll i YIIII
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Mechanical Electrical

One degree of freedom.

P k I C
m 0

M Ef

Z =-m0 +k Z= R+JC

P-, x--LR

Z= R+joLZ,---moe+jc w

X---

P-

Z= jwL



Mechanical Electrical

Two degrees of freedom

ILI

P. x-,- c, xz- c ,
k k"

let x = x-x2

Z=-m+ I Z=jwL,. I 1

k,+jcpo -m,+',k2+jcp RI R2+j(i, L2*i

let XI=X-X,

Z = k-mido2 +jc 3,+

" I - mt -rk,4-1 - w-mi + k+j C 2

zR+j(W, ) +

R "'
j

wCoG R,+i ,--



Mechanical Electrical

Two degrees of freedom

x k3
k,

C, R3

m k c k41

c '4cp Me c4 RI C, L,
0E R2 C

x4 R4
4

let xe x -x,

XS=xrx4

Mechanical Formula

k,-m,od+jcyw +
I I

k,+jc o k4-mja+jc 4w

Electrical Formula

I

R,- COG,1

R2

20

k,+jcGo

------

-- ----
- ---

R4+IJuaL-- - )

R,+ j L, )



Mechanical • Electrical

Three degrees of freedom

w - .

let xt= x -x,
Xs=X:-X 4

Mechanical Formula

k1+j'e1co
k2+jco

Electrical

-m~+2
I

k,-m + ijcA )o

Formula

Z= jcoL,I

O
I.

RI-
oG

I

1o L2+ +- i +.

___

R3+ j Ise, '

(Cc W03
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