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NAVY DEPARTMENT
DAVID TAYLOR MODEL BASIN

Washington 7, DC,

Errata - October 1951

"The Moment Acting on a Rankine Ovoid Moving Under a Free Surface," by Hartley

L. Pond, TMB CONFIDENTIAL Report 0-429, September 1951.

List of Symbols - Under K0 ,K 1 reads: (Reference 18, p. 19)

Should read: (Reference 18, p. 78)

Page 2, Figure 1 - Coordinates of source are (a,o,-f)

Should be: (o,o,-F)

Coordinates of image sink are (a,o,+f)

Should be: (o,o,+f)

Page 7, Equation [11] reads -2fm[x+a) 2 + etc.
Should read: -2fm[(x+a)2 + etc.

Page 17, Equation [24] reads:

C x

Should read:

Page 19, Bfermence 13 reads: C4olluqdium
Should read: Colloquium
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LIST OF SYMBOLS

One half the distance between the source and sink of
the Rankine Ovoid

Maximum radius of body

Moment coefficient = M
pc r b2 1

(Note that this coefficient is designated by M' in
Reference 3)

Constant uniform stream velocity

Maximum diameter of body

Froude number based on length = -

Force vector

Distance of source or sink below the undisturbed
fluid surface

Acceleration of gravity

Modified Bessel functions of the second kind (Refer-
ence 18, p. _)7r

g
c2

A function defined on page 16

Over-all length of body

Moments

The strength of a source (a source of strength m
emits a volume 4,rm per unit time)

Placed before an integral sign means that the Cauchy
principal value of the integral is to be taken

Resultant fluid velocity vector at the location
of a source due to all other sources

Magnitude of components of q in x, y, z directions,
respectively

Radial distance

Magnitude of components of local velocity in x, y,
z directions, respectively

Rectangular coordinates

depth of centerline of body f
diameter of body d
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Ko , K

2n +1

M, M , M2
m

P

r

U, V, w

X, y, z

qx, qy' qz
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length of body
diameter of body d

distance between source and sink 2a
length of body - 1

A parameter

X. Christoffel number used in numerical quadrature
formula

p Strength of doublet

p Mass density of fluid

Velocity potential (u = v = w =P )
Ox ey Oz

W 2a
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ABSTRACT

The moment acting on a Rankine Ovoid moving under the free surface of a

fluid of infinite depth is calculated. The solution is carried through two approxima-

tions. The results of the second approximation are shown to be in excellent agree-

ment with available experimental data.

INTRODUCTION

The David Taylor Model Basin is conducting an investigation of the

forces and moments acting on submerged bodies moving near a free surface. As

a part of this investigation the hydrodynamical theory of the problems in-

volved is being studied. Calculations of resistance' ,2 and vertical force 3,4

have been made which show reasonable (though by no means entirely satisfactory)

agreement with experimental results. However, calculations of moments have

shown little or no agreement with experimental results (for example, see dis-

cussion on page 6 of Reference 5). In the present report the calculation for

the moment acting on a Rankine Ovoid moving under the free surface of a fluid

of infinite depth is carried through two approximations, and the results of

the second approximation are found to be in excellent agreement with available

experimental data.

THE FIRST APPROXIMATION

With the usual assumptions of small wave slope, and that the velocity

(due to the wave motion) of the fluid particles is sufficiently small so that

the square of this velocity can be neglected in Bernoulli's equation (Refer-

ence 6, p. 1), the velocity potential of fluid motion (for an incompressible,

nonviscous fluid) due to a source (Reference 6, p. 404) located below the

free surface of a uniform stream of infinite depth is (Reference 7, p. 3)

O(x,y,z) = cx + m m

4km ecOd e-k(Tz)cos(kx cos6)cos(ky sin)dk [
- P sec.Od0) dk[1J

Jr o 0 k-kO sec
2 0

-o

- 4k0m fisec fz)seee osin(kox secO)cos(koy sin0sec'2 )dO

1 References are listed on page 18.
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where x,y,z are rectangular coordinates, z positive upwards (the undis-
turbed free surface is the xy-plane of Figure 1),

f is the depth of the source below the undisturbed free surface,

r2 is equal to x2 + y2 + (z + f)2 ,

r2 is equal to x 2 + y2 + (z - f)2,2

O(x,y,z) is the velocity potential (u = --i, v = -a w= )
x y Oz

u,v,w are velocities in positive x,y,z directions,

-c is the uniform stream velocity,

k is equal to -,
ca

g is the acceleration of gravity,

m is the strength of the source (a source of strength m emits a
volume 4irm per unit time), and

P placed before an integral sign means that the Cauchy principal
value is to be taken (Reference 8, p. 128).

In the notation used thez

Y source is considered to be held sta-

tionary in a uniform stream. This is,

&'o,+f) 21 of course, equivalent to having the

/I source move with a uniform velocity

II through a stationary fluid. It is of

/ (P(x,y,z) interest to note that the first two

.01 -terms of Equation (1] give the veloc-

ity potential of a source in an un-

( -bounded uniform stream.
o,- Location of Source If a source and equal sink

are placed a given distance apart on
Figure 1

a line parallel to a uniform stream in

an infinite fluid, the resulting fluid

motion is that for the flow of a uniform stream about an oval-shaped body

called the Rankine Ovoid (Reference 6, p. 411). If the source and sink are

near the free surface of a uniform stream the motion is that for the flow of

a uniform stream (with a free surface) about a "distorted" Rankine Ovoid. The

distortion is small when the source and sink are sufficiently far from the

free surface of an infinitely deep stream. Using Equation [1], the velocity

potential of the fluid motion about the distorted Rankine Ovoid with source

at (a,o,-f) and sink at (-a,o,-f) is

CONFIDENTIAL
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0(x,y,z) = ex + m m +
r1 rs  r2  r4

4k 1 3 2 4

kom P f secdOe-k(f-z) cos[k(x-a)cosG]cos(ky sinO)dk
i S0  k-k sec20

- 4k0 m se2 e -k(f -z)sec2 sin[ko(x-a)sec0]cos(k y sin0sec20)de [2]
0

4km 2 fe-k(f -z) cos[k(x+a)cos O]cos(ky sin)dk
+ -P j sec0d 0 dk

S0 o k-k sec2O

+ 4k m S sec2Oe- o(~z)sec sin[k (x+a)sec O]cos(k y sin0sec2 O)dO
0

where in addition to terms defined for Equation [1)

r2 = (x - a)2 + y2 + (Z + f)2
1

2 = (x - a)2 + y2 + (z - f)2
2

r2 = (x + a)2 + y2 + (z + f)
2

3

r2 = (x + a)2 + y2 + (z - f)2
4

The first three terms of Equation [2] give the velocity potential of a source

and equal sink in an unbounded uniform stream.

* Lagally's theorem9',10 may be applied to obtain the moment acting on

the above distorted Rankine Ovoid. This theorem states that the forces acting

on a body whose surface is a closed stream surface of the fluid motion, are

given by the vectors

F= -4 ipmq

where m is the strength of a source internal to the stream surface,

Q is the resultant fluid velocity vector at the location of the
source due to all other sources (its components in the
x, y, z directions are qx' qy' qz), and

p is the mass density of the fluid.

Thus, the force has the direction of -q and its line of action passes through

the point at which the source is located. Each term of Equations [1] and [2]

may be considered as the velocity potential due to a certain source or distri-

bution of sources. Applying Lagally's theorem, the vertical force acting on

CONFIDENTIAL
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the distorted Rankine Ovoid through the point (a,o,-f) is

Z(a,o,-f) = -47pmqz(a,o,-f) [3]

and the vertical force acting on the body through the point (-a,o,-f) is

Z(-a,o,-f) = -4rp (-m)q z ( - a o , - f ) [4]

Since there are no other internal sources for this body, Equations [3] and [4]

give the only vertical forces acting on the body.

Carrying out the partial differentiations indicated in Equations [3]
and [4], the following expressions are obtained

Z(a,o,-f) =
4k m NC00 -2fk

-4 rpm M fm 0 2 2OdO ke dk
0 f* 4(a+f2) o k - k sec20

4k m see2 dO ke-2fk cos[2akcos dk

7 o o k - k sec2

-4k 2 m sec4 0 e-2f 0 c

0
sin[2ak sec O]dO

4fm m -2kf
Z(-a,o,-f) = +4rpm m + fm o +2 se k e - 2  dk

4 4(a2+f2 Oo -k sec20o

4k m f2se 2 ke-ecos[2akcos]dk+ P se 2e d edk

- 14ko mj~sece a -2f0 ee2 G sin[2akosec lde]

[4']

Hence, the moment acting on the body about the center of buoyancy,

M = a[Z(a,o,-f) - Z(-a,o,-f)], is

M = 32npam2 k 2  f sec4 e - 2 f k seo 0 sin[2ak see 0]d
0

15J

(In the above notation a positive moment acts to raise the nose of

Making the substitution t = tan 0, this equation may be written as
the body.)
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M = 32 rpam2k ) (1+t2)e-2 o(1+t sin[2ak I' + dt

For Rankine Ovoids with sufficiently large length-diameter ratios (see Equa-

tions 3-5 of Reference 3)

b2cm = ----

where b is the maximum radius of the Rankine Ovoid. With this substitution

the expression for M becomes

MI = 7rpb4c2ko(2ak )e - 2 k o e -2fkt (t2 t2)sin 2ak 0 +t2]dt [5 1]

THE SECOND APPROXIMATION

Equation [5] gives the moment acting on a distorted Rankine Ovoid

and agrees with the results given on pages 45 and 46 of Reference 3. To

obtain a closer approximation to the moment acting on an undistorted Rankine

Ovoid placed below the surface of a uniform stream the simple distribution of

a source and equal sink on the axis of the closed stream surface representing

the Rankine Ovoid must be modified. This might be done by an extension of the

method of images as applied by Havelock in the case of a circular cylinder.

This method would require finding the image system of sources within the

closed stream surface due to the source system above the free surface.

However, instead of attempting to obtain this image system exactly, an approxi-

mate image system will be sought.

It has been shown by von Karman" that for a body of revolution with

its axis parallel to a uniform stream the effect of superimposing a flow per-

pendicular to the axis may be obtained approximately by a suitable distribu-

tion of doublets (Reference 11, p. 12) along the axis of the body between the

limits of the source-sink distribution which defines the body in the uniform

stream. The doublets are oriented so that their axes are opposite in direction

to the transverse flow and their strength per unit distance along the axis of

the body is

1r2w [6]
2

where r is the radius of the body at the position of the doublet, and w is

the superimposed transverse velocity.

CONFIDENTIAL
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Therefore, in the case of the Rankine Ovoid moving below a free

surface, the effect of the velocity induced by the free surface may be approxi-

mately accounted for by a suitable distribution of doublets along the axis of

the stream surface between the source and sink. It will be apparent that for

the calculation of moments (see below) only the vertical component of the in-

duced velocity need be considered. This vertical velocity is obtained from

Equation [2] by evaluating - at points along the line between the source and

sink. Since the vertical velocity does not change very rapidly with depth,

this calculation of the vertical velocity is probably satisfactory. For Ran-

kine Ovoids with fairly large length-diameter ratios the diameter of the body

is nearly constant in the region between the source and sink. Thus, as a

further simplification the radius r in Equation [6] will be considered constant

and equal to the maximum radius of the body. The desired doublet distribution

is now given by

S= - b2 w [7]
2

where b is the maximum radius of the undistorted Rankine Ovoid, and w is the

vertical component of the induced velocity calculated from Equation [2].

An application of Lagally's theorem shows that a body whose surface

is a closed stream surface of the fluid motion experiences a moment if the

axis of any internal doublet is normal to the direction of a superimposed

uniform stream. (The doublet, however, causes no resultant force on the body.)

This moment is given by (Reference 10, p. 13)

M = - 4jppc [8]

where p is the mass density of the fluid,

p is the doublet strength, and

c is the uniform stream velocity.

Hence, from Equations [7] and [8] the moment per unit length for the Rankine

Ovoid (due to the uniform stream c) has the algebraic sign of the vertical

velocity and is given by

M = 27rpcb 2 w [9]

and the total moment* on the body due to the doublet distribution is

*The longitudinal velocity due to the wave system is small compared with the uniform stream velocity
c and is not considered in calculating M2. In addition, the mutual actions of the sources and doublets
within the closed stream surface representing the body give no resultant force or moment (Reference 10,
p. 5).
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M = 2 7npcb2 w dx

where, using Equation [2], the velocity w is

w = w(x,o,-f)

= 2fm[(x-a

= _o5(x,y,z) x

z-zz Jy = oz = -f

)2 + (2f)2]) - 2fm[(x+a) 2 + (2f)2" 34

4kom S0C2 ke2fk cos[k(x-a)cosO] dk
+ - PPse d dk

p0 sec 2Odg cos[k(x+a)cos dk
S e o k - k osec2 0

+ 4k 0  2M sec4 o e -2f sec2O sin[k (x-a)sec O]do
0

- 4k 2m i 0sec4 e 2fke
0

sin[k o (x+a)sec O]d 0

The first four terms on the right of Equation [11] give that part of w which

is skew symmetric about x = 0, and the last two the symmetric part. Since

the integrals of the skew symmetric terms vanish, Equation [10] now becomes

[ a -2fksec2
M 2= 16rpcbmk m sec4 e e sin[k (X-a)secO]dedx

02 0o

[12]

[ 6-sec4 p0  Ose 2  sin[ko (x+a)sec e]ddx
00

The double integrals in Equation [12] may be expressed in a more

convenient form. Consider, for example, the second of these integrals and

let

(x) = 2sec 0 e-2 k one sin[k (x+a)sec ]dG

0

CONFIDENTIAL
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The substitution t = tan 0 transforms this integral into

12(x) = (1+t2 ) e
0

-2fko(1+ t 2 )

The second double integral of Equation [12] can then be written as

J = (1+t2 ) e 2fko(1+ t2 )

00

sin[ko(x+a) y1+t 2 ]dt dx

Interchanging the order of integration (Reference 12, p. 277),the expression

for J becomes
2

2 2fko 
+-fo

- k o e-2fkoat 2 cos[2k oa l+t2]dt

Designating the first integral of Equation [12] by J , and proceeding as above,

it is found that

J = e- e-2fkot 2  cos[koa  /+]dt
Sk 0

ko 0

-2fket 2 /+t dt

Hence, Equation [12] may be written as (putting m = asHence, Equation [12] may be written as (putting m = as in Equation [5'])

4 2 -2fk^ -2fk 0 tM = 47rpb ck e 0 e t 1+t 2 (cos[2k 0a V1+e] -1)dt
0

[13]

The second approximation to the total moment acting on the undistorted Rankine

Ovoid about its center of buoyancy is now given as the sum of the moments

given by Equations [5'] and [13]. .This sum may be written as

CONFIDENTIAL

sin[ko (x+a) +ti]dt



CONFIDENTIAL

M=M +M
1 2

S[1 +t) sin[2ako

014

+ n4rp b4c2k e2f o

M = rpb*c
2k e-2 I

-2acot lr (cos[2ak0 ] -1 )dt

e-2fkt 2 i t -[2akoV i+t sin[2ako 1+t]

[14']

+ 4 cos [2ako / + t
2] -4 dt

A moment coefficient is given by

MM c2 be 1 [15]

where p is the mass density of the fluid,

c is the uniform stream velocity,

7b 2 is the maximum cross-sectional area, and

I is the length of the body.

Then, for Rankine Ovoids with sufficiently large length-diameter ratios* the

moment coefficient can be written as

2a 2a_

C _22F2
M 2#2 F 2 5:"2 t

f +t2 sinL'l/1+t2

+ 4 cos [-4 dt

*For the present the term "sufficiently large" means 10 or greater. Rankine Ovoids with other
length-diameter ratios will be investigated in a later report.
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where length of body
diameter of body d

depth of centerline of body = f
diameter of body d

distance between source and sink 2a
length of body -

cF

From Equation [16] it can be seen that CM approaches zero as F be-
comes either very small or very large. The two cases of low and high speeds

may also be approximated by considering the free surface as a rigid wall for
very low speeds and by neglecting gravity forces for very high speeds. In
each case the moment coefficient is zero (Reference 3, p. 19).

Writing Equation [14'] in the form

2fg2-
M = d 4  el+t I t4sin 1+t21

cos Flg C  1+t - 4 dt

it is seen that for a given length, depth, and speed the moment M is approxi-
mately proportional to the fourth power of the diameter for Rankine Ovoids
with length-diameter ratios of 10 or greater. The approximation depends on E.
For a length-didmeter ratio of 10.5 E is 0.95 and as the length-diameter

ratio is increased E approaches 1 as a limit.

The integrals appearing in the above work may be evaluated either
by numerical quadrature or by expanding the integrand in an infinite series
and integrating term by term. The series expansion is rapidly convergent for
F > 1 (i.e., for large speeds of advance) while for F < 1 it is more conven-

ient to use a Gauss type quadrature formula. The two methods are described
in the Appendix.

Figure 3 gives the values of CM given by Equation [16] for a Rankine
Ovoid with a length-diameter ratio of 10.5 (see Figure 2) at submergences of

1.5 and 2.8 diameters. The dotted line shows the values of CM obtained from
the approximate formula for CM given by Equation [24] of the Appendix.
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Wetted Surface Coef.,

Prismatic Coefficient,

Location

- +-I--

Surface area of ovoid 0.972
Sdl 0972

Volume of ovoid = 0.926
ly b2 1

of Source (Sink), - 0.02386

0.05 0.1

Figure 2 - Offsets of Rankine Ovoid with Length-
Diameter Ratio of 10.5

Submergence 2.8
Diameter

Approximate CM Submergence z 1.5
Equation E243 Diameter

. 0
2.0

T c

4.0 2.0 1.0 0.5
Froude Number, F z

79-1

Figure 3 - Moment Coefficient for Rankine Ovoid with
Length-Diameter Ratio of 10.5

Mcments are taken about center of buoyancy.
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COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

Figure 33 of Reference 3 gives the moments obtained by experiment

and from the first approximation M for a Rankine Ovoid with a length of 48

inches and diameter of 4.572 inches for which the submergence to the model

centerline was 1.5 diameters and 2.8 diameters. Figure 4 of the present

report reproduces these results and gives in addition the results of the

second approximation M = M + M as given by Equation [14].
1 2

For this particular example, it is seen that the second approxima-

tion agrees very well with the experimental results. The application of the

method to other forms, and further comparisons with experimental data will be

the subject of a later report.

4.0 5.0 6.0 7.0
Velocity in feet per second

8.0 9.0 10.0

Figure 4 - Comparison of Observed and Predicted Moments
About Center of Buoyancy for 4-foot Rankine Ovoid

with Length-Diameter Ratio of 10.5
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CONCLUSIONS

It may be concluded from the comparison with experimental data that

the present theory explains at least the major portion of the moment acting on

the Rankine Ovoid model considered. This work will be extended to other forms

and further experimental checks will be made.
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APPENDIX

EVALUATION OF INTEGRALS APPEARING IN TEXT

As mentioned in the report the integrals appearing in the expressions

for moments can be evaluated either by numerical quadrature or by expanding

the integrand in an infinite series and integrating term by term. An effi-

cient method of numerical quadrature for integrals of the type required is

given by the Gauss-Christoffel formula

e-2 G(x) dx Ai G(xi)  [171

where the xi's are roots of the Hermite polynomials of the n-th order and the

hi 's are called Christoffel numbers. The theory of this method of numerical

quadrature is given in References 13 and 14 and tables of the xi's and Ai's

for various values of n are given in References 15 and 16.

Since the xi's are symmetrically spaced on either side of x = 0

and the Xi's are symmetric about x = 0, the formula can be used when G(x) is

symmetric for the evaluation of integrals of the form

-e G(x) dx
0

In this case only the positive xi's of Equation [17] are taken.

As an application of this formula consider Equation [13] for the

moment M . Making the transformation p = 2fko t, the resulting expression

for M is
2

M = s e 2 G(p) dp [18]

where

47rpb4c2ke -2fo

s = 2fko

and

G(p) = 12fk + p2 (cos[ 2fk +p-1)

As a particular example consider the Rankine Ovoid described on

page 12, and let the speed be c = 8.02 feet per second and the depth of
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submergence be 1.5 diameters. The constant s is equal to 1.0215, and apply-

ing the quadrature formula (with n = 4) the result is*

M2 = 1.0215[ 0oG(p ) + A G(p) + "- + AG (p )

= 1.0215[0.36012G(0) + 0.43265G(0.72355) + 0.088475G(1.4686)

+ 0.0049436G(2.2666) + 0.000039607G(3.1910)] [191

= 1.0215[-0.36149 - 0.84890 - 0.22259 - 0.00040587 - 0.00018148]

= -1.4644 pound-feet

Repeating this process for n = 7 the result is

M = -1.4636 pound-feet
2

No general expression for the error in this method of quadrature is

available. For the case considered here, however, a check can be obtained

since the integral can be expressed as an alternating series from which the

correct answer may be determined to any desired accuracy. This series expan-

sion is discussed in the next few paragraphs.

The corresponding series expansion for M is obtained by expanding

the integrand in an infinite series and then (since the series is uniformly

convergent) inverting the order of integration and summation. Thus, substi-

tuting the series

2[C 2n 2n+1

os [2ak t-1 - (-l )n (2ak,) (1+t2)f=1 (2n)!

in Equation [13], the result is

2fk e (2ak )2l -2fkt 2  2n+1

M2 = 47pb 4c2 k e- n ( -1)" 0(2n J e 0 (1+t 2  2 dt [20]
aues of and e tken fom Refeence 5.

*Values of ki and pi are taken from Reference 15.
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Havelock has observed (Reference 17, p. 284) that integrals of the form

2 2n+ 1
L 2n+ = et2(1+t 2 dt

where n is an integer, can be expressed in terms of modified Bessel

of the second kind of orders zero and one. One procedure for doing

pends on the formula*

,7t 2n+ 1 00 17t 22n - 1
L 2n+l e-"  (+t2 2 dt = n+ e- 2t  2 )T dt

2n-11 + 2

2n-1 e (1+t ) 2 dt

For 2n+1 = 3 this formula gives

L3 = . e 2

o

functions

this de-

[21]

2)32 dt = e t 2  )1/2dt e t2 ) (o+t2 1/2 dt 1 2 et2 (i+t 2 ) dt
0

- + L --- L
17 1 24 -,

and continuing the procedure,

L = 2+- L
5 7 s7

3- L
21? 1

L = n+ L2n+ 1 77 2n -1
2n-1

-7n L2n- 3

Hence, from L and L all the other L's may be determined. The transformation

t = sinh p applied to the integrals for L and L transforms them into known

expressions for modified Bessel functions of the second kind K and K (Refer-

ence 18, p. 181). The result is

*This reduction formula was shown to the author by Dr. J.W. Wrench, Jr. It may be derived by taking
the derivative with respect to t of

2n+l

t(l+t 2 ) 2 e- 1t 2

rearranging terms, and then integrating between the limits 0 and w.
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L =- e K ()

L = e2[Ko (-) + K )1 2

Since the functions K (x) and K (x) have been tabulated, 18''9 the

L-functions can be determined. The expression for M now becomes
2

Mo(2ako)2n
M = (4rpb4 C2 k e-2fk (-1)n (2n)! L+ 1 (2fk ) [22]

%= 1

For the same example considered on pages 14 and 15 the sum of the

first 10 terms of this series is -1.46373 and the 11th term is -0.00001.

Hence, to four significant figures the value of M is -1.464 pound-feet. This
2

result shows that the quadrature formula with n = 4 is correct to four signif-

icant figures for this particular example. Since three significant figures

give sufficient accuracy for any application, the quadrature formula with

n = 4 was used in calculating the results given in Figures 3 and 4.

The series expansion for the moment coefficient CM given by Equa-

tion [16] can be determined by the same procedure. The result is

e n+1 (2n-4 n 2
C (-1 (2n-4) ()f L [2]

M 2 2 F  (2n)! F2 F2

Noting that the term for n = 2 is zero in this series, it appears

that, for sufficiently large F, the first term of the series may be a good

estimate of CM. Figure 3 compares the correct CM with the values obtained

from the first term of Equation [23] for a Rankine Ovoid with a length-diameter

ratio of 10.5 submerged 1.5 diameters and 2.8 diameters. The figure shows

that for Froude numbers F greater than 1 the first term of Equation [23] is a

good approximation to CM.
Thus for values of the parameters not too different from those in

the example, the approximate value.of the moment coefficient for Rankine

Ovoids is

C -o ( ) + (1 + w)K [24]M 643 [

where w = 2a
QF2
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