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ABSTRACT

On the CDC 6400 computer this FORTRAN Extended
version of the Rheinboldt-Mesztenyi computer program
for solving sparse symmetric matrix equations was tested
with respect to certain sample problems representative
of structural analysis problems. This program does not
appear to be competitive with CSKYDG, another linear
equation solver. Lack of several special features in the
CDC 6400 instruction set results in high overhead for
manipulating the data structures used.
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INTRODUCTION

In the finite element approach to static structural analysis, the
computation of the solution of the equation

KU =P

a positive definite system of simultaneous linear equations, is basic.
However, the order of K is often so large that it does not suffice merely
to take advantage of K's symmetry and banded structure. For such K it is
necessary to consider an out-of-core solution or to devise some storage
scheme which exploits sparsity more fully, or-even to utilize both of these
approaches together. The Rheinboldt-Mesztenyi program] was investigated as
part of an effort to develop an improved solution capability for large
sparse K. This program utilizes a data structure for storing sparse
matrices based on arc-graph theory to facilitate an in-core triangular
decomposition solution of KU = P for such a K. The best of such programs
encountered will eventually be incorporated into large-scale structural
programs such as NASTRAN.

The author was recently asked for an opinion on the usefulness of the
program of Professors Rheinboldt and Mesztenyi for solving the sparse
matrix equations arising in structural analysis calculations on the CDC 6000
series computers. A FORTRAN version of the Rheinboldt-Mesztenyi (R-M)
program for symmetric matrices was obtained and modified for the CDC 6400.
This report discusses a comparison of this FORTRAN implementation of the
R-M program with another FORTRAN 1linear equation solver, CSKYDG,2 for
certain sample problems.

Rheinboldt, W. and Mesztenyi, C.,"Problems for the Solution of Large
Sparse Matrix Problems Based on the Arc-Graph Structure," University of
Maryland Computer Science Center, Technical Report TR-262, September 1973.

2 Gignac, D.A., "CSKYDG, An Qut-of-Core Cholesky Algorithm Equation Solver
for Large Positive Definite Systems of Linear Equations," Naval Ship Research
and Development Center Report 4377, February 1974.



THEORY

The R-M program solves the system KU = P using that form of
triangular decomposition which does not require square roots. As the
decomposition proceeds the rows and corresponding columns of K are inter-
changed in accordance with the pivoting strategy of Curtis and Reid.3
If Q represents the permutation matrix for the required row interchanges,
then

k' = LoL’

where L is a unit lower triangular matrix and D is a diagonal matrix.
We then solve the triangular systems

LX] = QP

DX2 = X]

T, -

L X3 = X2

)

using forward or backward substitution as required, and finally obtain
_ Al
Uu=2qQ X3
In theory this procedure can solve KU = P for any non-singular
symmetric K. However, the method of Cholesky (square root method) works

better for positive definite K. The Cholesky algorithm factors K into
the product of a lower triangular matrix S and its transpose, that is,

using forward or backward substitution as required.
The Cholesky algorithm has two advantages over the LDLT procedure.
First it does not require pivoting to ensure stability, making the matrix

3 Curtis, A.R., and Reid, J.K., "FORTRAN subroutines for the solution of
sparse sets of linear equations," United Kingdom Atomic Energy Research
Establishment, Harwell, England, Tech. Report AERE-R6844, 1971.



decomposition and the forward and backward substitutions less involved.
Secondly the forward substitution can be readily incorporated into the
Cholesky decomposition with a significant saving of time. (This last
advantage may be realized only for a single solution of KU = P for a given
K.) The CSKYDG program takes advantage of these features. Wilkinson and
Reinsch4 give details of both procedures.

EXAMPLES

Professor Mesztenyi provided the author with a FORTRAN implementation
of the R-M program for the UNIVAC 1108. This program consisted of three
subroutines: READ, LU, and SOLVE. The SETUP subroutine was added to
facilitate the input of the matrix element. Its two arguments are NS and
W. The SETUP subroutine reads from tape 4 the non-zero elements in the
1ines of the upper triangular half of the coefficient matrix K in the form
of triplets

I, J, K(K,Jd)

and writes these triplets in batches of NS on tape 5. If the number of
triplets is not a multiple of NS, then the last batch of triplets is filled
out to NS elements by adding the appropriate number of triplets

1,0,0.0

The righthand side of KU = P is read from tape 4 and passed through the
argument W. The READ subroutine then reads the triplets in batches of NS
from tape 5 and sets up arcs of non-zero elements. The LU subroutine then
obtains the LDLT decomposition of K in terms of these arcs. The SOLVE
subroutine then obtains U from P by solving the intermediate systems of
equations. The integer packing and unpacking subroutines IPACK and IUNPK
were added later.

4 Wilkinson, J.H. and Reinsch, C., editors, "Handbook for Automatic
computation," vol. II, "Linear Algebra," Springer-Verlag, New York 1971,
pp. 9-11.



After the CDC 6400 version of the R-M program had been checked out,
it was compared with CSKYDG,2 the author's own previously developed linear
equation solver for KU = P. The following examples were chosen as the
basis for this comparison because these are in some sense representative
of systems which arise in structural analysis.

The matrix family of the first example in Table 1, Ah, is generated
as follows: Let N be an integer > 3. Let CN be the tridiagonal of order
N with 4's on the diagonal and a line of -1's above and below the diagonal.
Let IN be the identity matrix of order N. An (N+1)-banded matrix of order

NZ, Aﬁ is constructed by

(1) stringing N Cy submatrices along the diagonal,
(2) dinserting lines of N-1 -IN submatrices above and below the
diagonal, and

(3) setting the remaining elements of Al

N
The right-hand side of the system Ahx = B is chosen such that the exact
solution X has all components equal to 1.

equal to 0.

The matrix family of the second example in Table 2, Aﬁ, is similarly
generated. This time let Cy have diagonal elements of 6. An (N241)-banded
matrix of order N3 is constructed by

(1) stringing N2 CN submatrices along the diagonal,

(2) inserting lines of N2-1 -IN submatrices above and below the
diagonal, .
(3) inserting lines of N2-N —IN submatrices as the Nth lines above
and below the diagonal, and

(4) setting the remaining elements of A2 equal to 0.
N

The right-hand side of the system Aﬁx = B is chosen such that the exact
solution is 21 These two matrix families have characteristics of matrices
arising from finite difference approximations to the Dirichlet problem.



OBSERVATIONS AND CONCLUSIONS

The tables assembled in this section present the data concerning the
performance of the present FORTRAN version of the R-M program on the CDC 6400.
In these tables, N indicates the order of the matrix and M its bandwidth.
The information in Tables 3 and 4 has been published previously.2 Note that the
SETUP subroutine and the NS parameter of Table 3 are different from those of
Tables 1 and 2.

The CDC 6400 version of the R-M program was able to handle the order
225, bandwidth 16 case but not the order 400, bandwidth 21 case of the first
matrix family using a field length of 153,400 (Table l1a). Making use of the
integer packing and unpacking subroutines IPACK and IUNPK* to realize a
fourfold compression of certain integer arrays, the 'packed' version of the
R-M program handled the order 900, bandwidth 31 case but not the order 1225,
bandwidth 36 case of the first matrix family using a field length of 145,500
(Table 1b). Similarly the 'unpacked' version of the R-M program handled the
order 125, bandwidth 26 case but not the order 216, bandwidth 37 case of
the second matrix family using a field length of 153,400 (Table 2a). The
'packed' version of the R-M program handled the order 343, bandwidth 50 case
but not the order 512, bandwidth 65 case of the second matrix family using
a field length of 145,500.

Neither the 'packed' or 'unpacked' CDC 6400 version of the R-M program
seems competitive in solution times with existing FORTRAN linear equation
solvers, in particular CSKYDG, for the examples investigated. Moreover,
the CSKYDG program required a field length of only 70,000 to produce the
results shown in Tables 3 and 4. However, the accuracy of the solutions of
the two programs was comparable.

Those subroutines were provided by Mr. Michael Golden of the Theory of
Structures Branch (Code 1844). IPACK packs four integer words (each of which
requires no more than fifteen bits) into one word. IUNPK reverses the
packing operation. No documentation is available for these subroutines.



The R-M program was at a special disadvantage in this investigation.
The "bookkeeping" procedures, so crucial to the R-M program, are most
efficient when the program is coded in assembly language (COMPASS for the
CDC 6400) rather than FORTRAN. Then the integer packing and unpacking
procedures apparently required by the R-M program can be directly imple-
mented in the program rather than using subroutines which are of necessity
slower.

Moreover, in discussing the somewhat disappointing performance of the
CDC 6400 version of the R-M program, Professor Mesztenyi pointed out that
the "fetch" cycle of the CDC 6400 is more expensive than that of the
UNIVAC 1108. He also noted that certain FORTRAN compilers appear to provide
somewhat inefficient FORTRAN compilations, although the results published
here were obtained using that compilation option of the present version of
the FTN FORTRAN compiler which usually oroduces the most efficient code.

It is only fair to note that on the UNIVAC 1108 the performance
of the assembly language version of the R-M program is quite satisfactory.
For example, the LDLT decomposition times listed in the first column of
Table 5 for certain members of the first matrix family are UNIVAC 1108
assembly language times taken from Rheinboldt and Mesztenyi (page 48, Table 5).
The second column of Table 5 shows the CDC 6400 FORTRAN LDLT decomposition
times from Table 1b of this report, and the third column of Table 5 gives
the corresponding FORTRAN CDC 6400 CSKYDG total solution times from
Table 3a of this report. Using the rule of thumb that the UNIVAC 1108 is
about three times faster than the CDC 6400, these assembly language results
indicate a creditable performance on the part of the R-M program. Even so,
CSKYDG (for which, it must be remembered, total solution times are given)
still appears to be significantly faster.



25
100
225

25
100
225
400
625
900

1
16

11
16
21
26
31

SETUP
(Secs.)

.08
.14
.26

SETUP
(Secs.)

.06
13
.25
.47
.79

TABLE 1

READ

(Secs.

.05
.14
A7

READ

(Secs.

.08
.27
.54
.98
1.53
2.19

)

)

- R-M SOLUTION TIMES FOR A'X = B

NS = 250

A - UNPACKED VERSION

SETUP+READ

(Secs.)

12
.28
.44

LU

(Secs.)

.10
4.80
16.32

B - PACKED VERSION

SETUP+READ

(Secs.)

.14
.40
.80
1.44
2.32
3.39

LU

(Secs.

31
4.43
23.22
83.04
198.56
479.70

L

SOLVE
(Secs.)

.02
.29
.97

SOLVE
(Secs.)

.07
.64
2.32
6.25
12.39
25.15

LU+SOLVE
(Secs.)

12
5.09
17.29

LU+SOLVE
(Secs.)

.39
5.07
25.53
89.29
210.95
504.85

TOTAL TIME
(Secs.)

.24
5.37
17.73

TOTAL TIME
(Secs.)

.53
5.47
26.33
90.74
213.28
508.24



125

125
216
343

=

26

=

26
37
50

SETUP
(Secs.)

.18

SETUP
(Secs.)
.18
.36
.62

TABLE 2

READ
(Secs.)

.12

READ
(Secs.)

.38
.70

- R-M SOLUTION TIMES FOR A%X = B

NS = 250

A - UNPACKED VERSION

SETUP+READ LU
(Secs.) (Secs.)
.30 25.23

B - PACKED VERSION

SETUP+READ LU
(Secs.) (Secs.)
.56 27.61
1.06 170.84
1.72 511.02

L

SOLVE
(Secs.)

1.05

SOLVE
(Secs.)
2.48
9.41
20.92

LU+SOLVE
(Secs.)

26.28

LU+SOLVE

(Secs.)
30.09
180.25
531.94

TOTAL TIME
(Secs.)

26.58

TOTAL TIME
(Secs.)
30.65
181.31
533.66



TABLE 3 - CSKYDG SOLUTION TIMES FOR Aix =B

NS =10
SETUP SOLUTION TOTAL TIME

N M (Secs.) (Secs.) (Secs.)
25 6 .07 .15 21
100 11 .16 .61 .76
225 16 .48 3.07 ‘ 3.55
400 21 .96 5.69 6.65
625 26 1.92 15.32 17.25
900 31 3.06 22.59 25.64
1225 36 4.87 46.49 51.36
1600 41 6.83 62.39 69.22
2025 46 9.76 108.11 117.87
2500 51 12.69 136.23 148.92
3025 56 17.25 218.10 235.35

10



TABLE 4 - CSKYDG SOLUTION TIMES FOR AZX = B

L
NS = 10
SETUP SOLUTION TOTAL TIME

N M (Secs.) (Secs.) (Secs.)
125 26 .39 2.67 3.06
216 37 .80 7.25 8.05
343 50 1.66 17.18 18.84
512 65 3.21 44.19 47 .40
729 82 5.67 96.24 101.91
1000 101 9.14 163.59 172.72
1331 122 14.69 347.39 362.08
1728 145 22.54 585.77 608.31

11



TABLE 5 - A FINAL COMPARISON

UNIVAC 1108 ASSEMBLY CDC 6400 FORTRAN CDC 6400 CSKYDG

LDLT DECOMPOSITION TIMES LDLT DECOMPOSITION  TOTAL SOLUTION
N M (Secs.) TIMES (Secs.) TIMES
100 11 .343 4.43 .76
225 16 1.657 23.22 3.55
400 21 5.921 83.04 6.65

12
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APPENDIX - PROGRAM LISTINGS

SUBROUTINE SETUP (NSy W)

DIMINSION X(ec5u) yII(25C) yJJ(25)) 4XX(250)
DIMINSIIN W(1)

IOoL=4

I02=5

L=0

READ (I0L) NNy MM

REWIND [ 02
WRITE (IO 2)NN

N0 5 I=1,NN

READ (IO0L) (X(K) 9<=1y41M)
DO 4+ K=1,M

IF (X (K)) 2,442

L=l+1

II(.)=I

JJ(o) =ItK-1

XX(.) =X(K)

IF (L=N3) 4y 3y4

WRITE (I02) (II(KK) 3JJ(KK)yXX(KK) ¢KK=1yN5)
L=0

CONT I NUZ

CONT INNZ

KLIM=L+

D0 5 K=<LIMyNS

II(L) =1

JJ(K) =)

XX(<) =13,

WRITE (TI2)(ITI(KC)yJJ (KK)yXX(KK)yKK=14NS)
REWIND I 02

READ (INL) (W(K) 9<=14yNN)

RETURN
END

14



SUSBROUTINE READ(NS)

Py T P IT PTYFRYTE Y S RRS EE R E E I R L RS E RS R RS AL X s I X ETEIES R L XN

OO0 OO0 OO0O0 QOOOOOO0 OO0 €« % 8 & & &% &« & & &

[ I ]

10

THE READ SUBROUTINE READNS THE NON-ZERO ELEMENTS OF A
SYMMETRIC MATRIX FRIM UNIT IO, AND SETS UP THE CORRESPONOING

ARC-GRA>H, THE ZLEMINTS ARE READ BY TRIZLETS,
I,J9B(I, V)

WIT4 TH: 1,0,0. TRIPLET INODICATING THE IND OF INPUT RECORD.
ONLY THZ UPPER DJIAGINALS SHIULD BE GIVEN TOGETHER WITH THE

DIASONA. ELEMENTS.

T Iy YIRSV RSP IR YRR SRR ISR LRI RS RAZSI S RS RS R A0 addd BBIBEREINEN

STORAGS ASSIGNMENT FOR SYMMETRIC DECOMPOSITION

MX = T4E MAXIMUM ALLOWZD NUMBER OF NON=-ZERD COEFFICIENTS,

NX - THE MAXIMUM A_LOWZD SIZE OF THE MATRIX.
COMMON /7 DIM/ MX, NX

ARRAYS OF SIZ= M -

INTEGER ARRAY JSED FOR ROW LINKAGE

INTE GER ARRAY JSED FOR COLUMN L INKAGE

INTEGER ARRAY JSED FOR TAGSING ( 0 OR 1 )

INTEGER ARRAY USED FOR TAGGING ( 0 OR 1 )

DO

THE ARRAYS R,>,L AND T CONTAIN PACKED INTEGERS.

COMMON /ARAYM/ R(5)00),C(5000),L(5000),T(5000),8(20000)

INTZGER RyCy 7
ARRAYS OF SIZ= N -
IP - INTEGIR ARRAY CONTAINS THE SEQUENCE OF PIVOTS
ND - INTEGER ARRAY CONTAINS THE NUMBER OF ZLEMENTS
IN A RO OF THE UNDZCOMPOSED PART OF THE MATRIX
IH1, [42 - ARE TEMPORARY INTEGER ARRAYS, ONE OF THEM
MAY BE ZQUIVALENCED TO IP
COMMON 7 ARRAYN/ IP(500)4ND(503),IH1(50u) yIH2 (5u0)
INDIVIJUAL DATA -
M = NJYBER OF NONZERO ELEMENTS
N = SIZE 07 THE MATRIX
UP - PIVOT SELECTION PARAMETER
CTL - MAXIMUM ELEMINT IN THE ORIGINAL MATRIX
CT2 - YAXIMUM ELEMENT INCOUNTERED DURING DECOMPOSITION
COMMON /DATA/ My N,CTi,Cr2

DIMENSION II (250),JJ¢250),VV (250)

MX=2004)
NX=1000
10=35
CT1 = ‘00 0

LOOP T ESTABLISH JIAGINALS
READ (IO) N
DO 10 I=1,N
R(I) =1
cCar=1
L =0
T =0
ND(I) =0
B() =3

15

FL. PT. ARRAY JONTAINING THE VALUES OF THE COEFFICIENTS

L
»
-
3
L
L d
»
»
»
8

SBgo G200
SB00 0300
SB00G&00
SBG00500
SB0GN700
SB000830
SB00 0940
SBOu1000
S8001100
S8001200

SB0C 1540
SB001640
SB001704
S8001800
SB0013u0
SB8002900
SB002100

SB00 2340
SB0 02400
SB00 2530
SB002600
SBu0 2700
SB00 2800

RS001740
RS001840

RS001900

RS002500



[
45

60

70
8)

M =N
LOOP T) READ ELEMENTS
LLIM=((N*(N+1))/2)/NS+2
DO 25 LL=1,LLIM
REAJ (I0) (IICI) 9JJ(I) y VV(I) 4I=1,4NS)
#¥%% MOCITY THE FOLLOWING FORMAT AS NEEDED ****
DO 20 K=1,4NS
I=IL(K)
J=JJ (K)
V=VV (K)
IF (ABS(V).GT.CI1) ST1=ABS(V)
IF (I-J) 45,50,60
ESTABLISH ARC FOR OFF-DIAGONAL ELEMENT
M= M+l
IF (M«GI «MX) GO TO 70
BMMY =
R (M) =R(I)
cMr=Ccw)
R(I) =M
ClJ) =M
L(M) =0
TM =0
ND(I) =NJ (I+1)
ND(J) =N) (J+L)
GO TO 20
STORE DIAGONAL
B(I) =V
ND(I) =N) (I+1)
20 CONTINUZ
25 CONTINUZ
END OF MATRIX ELEMENTS
RETJRN

ERROR-INSU FICIENT STORAGE
WRITE (5,80)
FORMAT (2140 INSJFFISIENT STORAGE)
STO?
END

16

RS002600
RS002700

RS002900

RS003100

RS003700
RS003800
RS0039040
RSQ0 4000

RSQ0 4900
RS005000
RS005100

RS005400
RS005540
RS005600

RS005800
RS005900
RS006000



SUBROUTINE LU(IPONE,UP)

FY YR Y Y Y FIYR RYI R Y PSRI RS RIN RIS R RS NI R ST SI R RIS S RIS S22 RS 2 2 2 2 2 2 3 8 4

. s
. THE LU SUBROJTINI DECOMPOScS THE SYMMETRIC MATRIX,. .
'y L

I YT YIS RYI YRR RIS IR PSSR R R NS R RIS RIS R RIS RIS R L RIS S R 2 RS X g

c
C THE ROJTINZ DECOMPISES THE SYMMETRIC LUSu 2700
C MATRIX WHIZH HAD BEEN ZSTABLISHED BY LUSU 0840
C THE READ RIUTINE. IF IPONE IS ZERO, LUS0 0930
C THEN THE ROUTINE SELECTS THE PIVOTS LUS01000
C ACCORIING TO THE PIVOTING STRATEGY, Luso1100
C OTHERWISE [T ASSUMES T4AT THE JRDER LUSG1200
C OF PIVITS IS PROVIJED IN THE ARRAY IP, LUS01300
c LUS01400
C THE ROJTINE USES TAG T FOR MARKING THE LUSo01500
C THE ALREAOY DECOMPISED PART OF THE MATRIX. LUS0 16400
C IT USES TA5 L SUCH THAT THE ROW OF A LUS01700
C PIVOT IS THE UNION OF THE SET JF LEFT LUS01800
C CONNESTED ARCS WITH4 TAS L = 1, AND THE LUS01900
C SET OF RIGAT CONNEZTED ARCS WITH TAG L = D. LUso2000
c
C STORAGZ ASSIGNMENT FOR SYMMETRIC DECOMPOSIT ION SB800 0200
C MX - THE MAXIMUM A_LOWZIO NUMBER OF NON-ZERD COEFFICIENTS, SB000300
C NX = THE MAXIMUM ALLOWZID SIZE OF THE MATRIX. SB000&a0
COMMON 7DIM/ MX, NX SB8000500
C ARRAYS OF SIZE M - SBo0O0700
C R = INTEGER ARRAY JSED FOR ROW LINKAGE S8000800
C C - INTEGER ARAY JSED FOR COLUMN L INKAGE SB000300
C L - INTEGER ARRAY USED FOR TAGGING ( 0 OR 1 ) sBou1000
C T - INTEGER ARRAY JSED FOR'TAGGING ( 0 OR 1 ) SB001100
C B - FL. PT, ARAY CONTAINING THE VALUES OF THE COEFFICIENTS SB001200
COMMON /ARRAYM/ R(5000),C(5000),L(5000), T(5000),B8(20000)
INTZGER RyCy T SB8001500
C ARRAYS OF SIZE N - SB00 1600
C IP - INTEGZR ARRAY CONTAINS THE SEQUENCE OF PIVOTS SB001700
C ND = INTEGZR ARRAY CONTAINS THE NUMBER OF ZLEMENTS SB8001800
c IN A RON OF THE UNDZICOMPOSED PART OF THE MATRIX SB8001900
C 1IH1, IH2 - ARE TEMPORARY INTEGIR ARRAYS, ONE OF THEM SB002000
c MAY BE ZQUIVALENCED TO IP sBo002100
COMYON /ARRAYN/ IP(500),ND(500)yIH1(500) 4IH2 (530}
C INDIVIJUAL DATA - SB0O0 2300
C M - NUMBER OF NONZERO ELEMENTS SB0C 2400
C N - SIZE 0° THE MATRIX SB002500
C UP - PIVOT SELECTION PARAMETER SB00 2600
C CT1L - MAXIMUM ELEMEINT IN THE ORIGINAL MATRIX SB0G 2700
C CT2 - YAXIMUM ELEMENT ENCOUNTERED DURING DZCOMPOSITION SB002800
COMMON /DATA/ My N,CT1,CT2
C
LOSICAL SWP LUso 2100
c LUS0 2200
CT2 = Cri LUS02300
SW = TRUZ. LUS0 2400
IF ( IPONEJNE.0) SWP=.FALSE. LUS02500
C LOOP FIR TH4E N PIVITS LUS02600

17



DO 300 [=1,N
IF (SWP GO TO 30
IF (I.N2,1) GO TO 2)
C SAVE THE PIVOTS IN ND IF THEY WERE GIVEN
DO 10 J=1,N
10 NO(J) =I2 (U
C GET THE NgXT GIVEN PIVOT
20 IX=ND(D
IP(I) =IX
GO TO 135
C PIVOTS WERE NOT GIVEN, THUS FIND ONE
30 OMAX = ).
IF (UP.LEJ0.) GO TO 110
C FIND MAXIMAL ELEMENT IN THE AVAILABLE DIAGINALS
DO 100 J=1yN
IF (T(J .EQe1) 50 TI 100
DMAX = AMA X1(DMAX, ABS(B (J)))
160 CONTINUE
DMAX = JP¥OMAX
C NOW FIND AV AVAILABLE JIAGONAL WHOSE VALUE IS
C GREATER THAN DMAX AND 4AS MINUMUM NUMBER OF
C ELEMENTS IN ITS ROW
110 Ix = €
XM = Joe
D0 130 J=1,N
IF (T (J) +EQe 1l «ORe BUJIEQLD )
1 GO TO 130
IF (ABS(B(J)).LT .DMAX)
1 6) 70 130
IF (IXe2Qe4d) GO TO L213
IF (ND(J)=NY) 120,119,13C
119 IF(ABS(3(J)) +LEsXM)530TO 12d

120 IX = J
XM = AB3S(B(J))
NY=ND (J)

133 CONTINUZ
IF ((IXeEQed)aORe
1 (XM.LTo1.E-200) G TO 930
IP(I) =IX
C NOW T42 PIVOT IS IN IX, SET ITS TAG T
135 K =1
TaIX)=1
XMAX = 8 (IX)

C LOOP T) CO.LECT THZ ELZMENTS IN THE ROW OF THE PIVOT

Iy = IX
C COLLEST THZ LEFT CONNEZTED ARCS
C WITH THEIR RIGHT INDEX VALUE
140 TYSROIV
IF (IY.2Q.IX) GO TO 170
IF (L(IY).EQe1) GO TO 140
Tay)=1
IZ=1Y
160 IZ=3(I2
IF (1Z.6T.N) GO TO 160
K= K¢i .

18

LUS0 2700
LUSG 2800
LUS 02900
LUSu 3300
LUS03100

LUSO 3300

LUSL 3600
LUS03700
LUS03800
LUS0 3900
LUSg 4000
LUS0 4100

LUS04300
LUS0 4400
LUSC 4500
LUS0 4600
LUS0&700
LUSG 4800
LUSu 4900
LUSGS0a0
LUS05100

LUS05300
LUS05400
LUSO05540
LUS05600

LUS0590¢
LUS06000
Luso 6100

LUS06340
LUSO064J0
LUS06500

LUS0 6700
LUS068u0

LUS0 7000
LUso 7100
LUsg 72490
LUSG7300
LUSG 7404

LUS07600

Luso8aoo
LUSO0 8104



IM(K)=LY

TH2(K)=[2Z

IF (SWP) NO(IZ)=ND(IZ-1)

GO TO 140 LUS08500
170 IvY = IX LUS0 8600
C COLLECT THEZ RIGHT ZONNECTED ARCS LUS0870u
C WITH THEIR LEFT INDEX VALUES LUS( 8800

180 IY=3(IV)

IF (IYeZQeIX) G) TO 195 LUS03090

IF (T (I¥).EQ.1) GO TO 180

12 = 1Iv LUS09200

190 IZ=R(I2)

IF (IZ.3T.N) GO TO 190 LUSO09400

K = K+1i LUS089540

IHI(K)=L[Y

IH2(K)=LZ

IF (SWP) ND(IZ)=ND(Z-1)

L(IY) =1

T(IY) =1

GO TO 1880 LUsS141090
195 IF (K.22«I) GO TO 300 LUS10200

K1 = I« LUS1030u
C LOOP IN THI COLLECTED ARCS LUS10440

DO 250 J1=X1,K .LUs105J40

IY=IH1WU1)

IZ=IH2WUJ1)

Y = B(IY) LUS1080u
C DIVIDE THE ELEMENT BY THE PIVOT AND LUS10940
C MODIFY ITS CORRESPONDING DIAGONAL LUS11000

B(IY) = B(IY)/XMAX ' LUS11100

B(IZ) = B(IZ) - B(IV)*Y LUS11200

IF (ABS(B(IY)).5T.CI2) LUS11340

1 ST2 = ABS(B(I'Y)) LUS11400

IF (ABS(B(IZ)).6T.Cr2) LUS11500

1 ST2 = ABS(B(LZ)N) LUS11600

IF (J1.2Q.K) GO TO 250 LUS11730

K2 = Ji+d LUS11830
C INSIDE LOOP FOR THE REST OF THE COLLECTED ARCS LUS11904
C 7TO MOJIFY THE INTERSECTING ARCS LUS12900

DO 240 J2=X2,K LUS12140

IVi=IHI(JD)
IZ1=1H2(J2)

C FIND THE ARC W BETWEEN IZ-IZ1 JIRECTEN FROM LUS12400

C MIN(IZ,IZ1) TO MAX(IZ,IZ1) IF EXISTS LUS12500
I1 = MING(IZ,IZ1) LUS12600
I2 = MAXD(IZ,171) LUS12700
L1=R(I1
L2=3 (12

200 IF (L1.2Qe.I1.0ReL2.2Q.1I2) LUS1 3000
< GO0 1o 22¢ LUS1 3190
IF (L1.2Q.L2) GD TO 23¢C LUS13200
IF (L1.5T.L2) G) TO 21C LUS1 3300
L2=2(L2)
GO TO 20 LUS1 35400

210 L1=(LYD

19



GO TO 20 LUS1 3700

C IT DOES NOT EXIST, THUS CREATE ONE

220 IF (M.EX1.MX) GO TO 350 LUS1 3900
M= M#t LUS14000
IF (SKP) ND(I1)=ND(I1+1)
IF (SWP) ND(I2)=ND([2+1)
L1 = M LUS1 4300
IF (L1.GE.16000) WRITE(6,261)L1

261 FORMAT(LX,3HAAA,I15)

B(L) = 0. LUS14400
R(LL) =R(I1)
C(1)=C(I2)

R(I1) =L1

C(I2) =L1

L1) =0

TW1)=3
C MODIFY THE VALUE OF THZ INTERSECTING ARC LUS15100
230 B8(L1) = B(L1)=-BLIY)*B(IY1) LUS15200

IF (ABS(B(L1)).5T.Cr2) LUS15300

1 sT2 = ABS(B(L1)) LUS15400
240 CONTINUZ LUS15500
250 CONTINUZ LUS15600
300 CONTINUZ LUS15700

RETJRN LUS15800
c LUS15300
C **%® ERRORS wev* LUS16000
C NUMERIZALLY SINGULAR LUS16100
9006 HWRITE (5,910) I LUs16240
910 FORMAT (24HONUMERICALLY SINGULAR AT, IS) LUS1 6300

SToP LUS1 6400
C INSUFFICIENT STORASE LUS16500
950 MWRITE (5,960) I LUS16600
960 FORMAT (24HOINSJFFISIENT STORAGE AT,I5) LUS16700

STOP LUS1 68030

END Lus16300
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SUBROUTINE SOLVE (W)

IS I RIS RIS R R SI N R RIS RSP R E RS IR RIS RIS SIS RS AR RS RS R R X 2L K 4

OO0OO0O00 ODOOOOO0 OO0 QOO0 % &« ¥« &« ¥ 4 &« &

(9]

THE SOLVE SU3ROUTINE SOLVES THE THE SYMMETRIC LINEAR SYSTEM
FOR THE GIVEN RIGHT HAND SIDE We THE SO.UTION IS RETURNED
THRIUGH W, THE SOEFICIENT MATRIX MUST HAVE BEtN DECOMOSED PRIOR
TO SALLING THIS SUBROUTINE. THE CORRESPONDING SEQUENCE OF PIVOTS

IS ASSUMED TO BX IN THE IP ARRAY,

LRI RS R SRR RIS RIS IE RS RS RIS R I R NI RS IR ST R RIS RS S R A R A X L L XS

LOOP T) SO.VE LOWER TRIANGULAR SYSTEM

STORAGZ ASSIGNMENT FOR SYMMETRIC .DECOMPOSITION

MX - THE MAXIMUM ALLOWZD NUMBER OF NON-ZERD COEFFICIENTS,

NX = THE MAXIMUM ALLOWZD SIZE OF THE MATRIX.,
COMMON /DIM/ MX, NX

ARRAYS OF 3IZ M -

R = INTEGER ARRAY JSED FOR ROW LINKAGE

INTEGER ARRAY USED FOR COLJUMN L INKAGE

INTEGER ARRAY JSED FOR TAGSING ( 0 OR 1 )

INTEGER AIRAY JSED FOR TAGGING ( J OR 1 )

o—-HArFoO
‘

THE ARRAYS RyZ,L BND T CONTAIN PACKED INTEGuRS.

CO4YON 7ARRAYM/ R(5003),C(5000),L(500C0), T(500u),8(c0u00)

INTZGER RyCy T
ARRAYS OF SIZE N -
IP = INTEGZR ARRAY CONTAINS THE SEQUENCE OF PIVOTS
NO - INTEGZR ARRAY CONTAINS THE NUMBER OF ELEMENTS
IN A ROd OF THE UNDZICOMPOSED PART OF THZ MATRIX
IH1, IH2 - ARE TEMPORARY INTEGER ARRAYS, ONE OF THEM
MAY BE ZQUIVALENCEO TO IP
COMMON 7ARRAYN/ IP(500),4ND(500),IH1(500) ,IH2(5]0)
INDIVIDUAL DATA -
M - NUMBER OF NONZZRO ZLEMENTS
N = SIZE 0 THE MATRIX
UP - PIVOT SELECTIJIN PARAMETER
CTL - MAXIMUM ELEMEINT IN THE ORIGINAL MATRIX
CT2 - YAXIMUM ELEMENT INCOUNTERED DURING DECOMPOSITION
COMMON 7/ DATA/ MyN,CT1,CT2

DIMINSION H(1)

DO 10C [=2y4N
IX=IP (D)
Iv=IX

20 IY=R(IV)
IF (IYJZQIX) GD TO 43
IF (L(IY).EQe.Q) GO TO 20
12 = 1Iv

30 1Z=3(12
IF (IZ.6T.N) GO TO 20
W(IX) = WIX)-W(IZ)*B(IY)
GO0 TO 2)

bog IY = IX
50 Iv=2(IV)

21

F.e PT. ARRAY ZONTAINING THE VALUES OF THE COEFFICIENTS

3
»
»
»
»
»
»
»

SS000100

SS0G140%u

SBG002u0
SBOG G300
SBO0u4J0
SBG0 0540
SB000700
SB00G830
SBOG L940C
SB8001000
SB001100
SB0C 1200

S8001540
SB001630
SB001700
SB0L1840
SB0u19410
SB00 20090
SB8002100

SB0023u0
SB00 2440
SB00 2500
SB8002630
SB00 2700
SB002830

SSdu 200

SS001500

SS001930
SS0u21u0

SS0u2330
SS00240u
SS0u 2500
SS002640



IF (IY.2Q.IX) G TO 130 $S002800
IF (L(IV).EQ.1) GO TO 50

IZ = IV SS003000
60 IZ=R(I12)
IF (IZ.5T.N) GO TO 50 $S003200
W(IX) = W(IX)=W(IZ)*B(IY) SS003300
60 TO 53 SS00 3400
100 CONTINUZ SS003500
C LOOP TD SO.VE DIAGONAL SYSTEM SS003600
DO 110 [=14N SS063700
110 W) = A(D/B(I) Ssoe 3800
C LOOP T) SO.VE TRANSPOSZD UPPER TRIANGULAR SYSTEM §S0039u0
DO 290 [=24N ssoougoo
K = N#1~-I SSO0uU 4100
IX=IP (K)
Iy = IX SS00 4300
126 IY=R(IV
IF (IY.ZQ.IX) GD TO 140 SS0064500
IF (L(IY).EQ.1) GO TO 120
I1Z2= 1Y SS00 4700
130 IZ=3(1ID
IF (IZ.,5T.N) GO 70 130 SS00 4930
W(IX) = W(IX)=W(IZ)*B(IY) S§S005000
GO TO 120 $S0051400
140 IY = IX SS0u5200
150 IY=3(1IY)
IF (IY.ZQ.IX) GO TO 230 S$5005400
IF (L(IY).EQesU) GO TO 150
IZ = IV SS005600
160 IZ=R(I2
IF (IZ.5T.N) GO TO 160 SS005800
WIX) = WIX)=W(IZ)*B(IY) SS005%940
GO TO 150 SS0060450
200 CONTINUZ SS066100
RETJRN SS006200
END SSQ063u0
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INITIAL DISTRIBUTION

Copies: Copies:

ONR 430/R. LUNDEGARD
ONR 432/L. BRAM
NRL/8441/J. HANSON
USNA DEPT MATH

USNA LIB
NAVPGSCOL/59Ci/G. CANTIN
NAVPGSCOL/MATH DEPT
NAVPGSCOL LIB

NROTC & NAVADMINU, MIT
NAVWARCOL

NOL 331/E. COHEN

NAVSHIPYD PTSMH/LIB

NAVSHIPYD BSN/LIB

NAVSHIPYD PHILA/LIB

NAVSHIPYD NORVA/LIB

NAVSHIPYD CHASN/LIB

NAVSHIPYD MARE/LIB

NAVSHIPYD BREM/LIB

NAVSHIPYD PEARL/LIB

AIR FORCE AERO RES LABS/P. NIKOLAI
DDC

PN ad ool d od d red e cnd and

—t el — ol o e c—d - stnd o
—

CENTER DISTRIBUTION

Copies: Copies:
1 0000 NELSON PERRY W 1 1843 SCHOT JOANNA WOOD
1 0100 POWELL ALAN 1 1844 DHIR SURENDRA K
1 1725 GIFFORD LERQY N JR 1 1844 EVERSTINE GORDON C
1 1725 JONES REMBERT F JR 10 1844 GIGNAC DONALD A
1 1725 RODERICK JOAN E 1 1844 GOLDEN MICHAEL M
1 1725 ROTH PETER N 1 1844 HENDERSON FRANCIS M
1 1745 NG CHRISTOPHER 1 1844 MATULA PETRO
1 1800 GLEISSNER GENE H 1 1850 CORIN THOMAS
1 1802 SHANKS DANIEL 1 1860 SULIT ROBERT A
1 1802 FRENKIEL FRANCOIS N 1 1880 CAMARA ABEL W
1 1802 LUGT HANS J 1 1890 GRAY GILBERT R
1 1802 THEILHEIMER FEODOR ] 1890 TAYLOR NORA M
1 1805 CUTHILL ELIZABETH H 1 1892 GOOD SHARON E
1 1830 ERNST HERBERT M 1 1892 RUMSEY JUDITH J
1 1830 CULPEPPER LINWOOD M 1 1966 LIU YUAN-NING
1 1830 WALTON THOMAS S 30 5614 REPORTS DISTRIBUTION
1 1840 1 5641 LIBRARY
1 1842 EDDY ROBERT P 1 5642 LIBRARY
1 1842 MEALS L KENTON

23






I

53

[

=N
—al
—







