R761414

MIT LIBRARIES
 39080027537791 Naval SHII ReSEARCH ano developuent Center

THE PERFORMANCE ON THE CDC 6400 OF A RHEINBOLDT-MESZTENYI PROGRAM FOR SOLVING LARGE SPARSE SYMMETRIC SYSTEMS OF LINEAR EQUATIONS

Donald A. Gignac

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

COMPUTATION AND MATHEMATICS DEPARTMENT RESEARCH AND DEVELOPMENT REPORT

The Naval Ship Research and Development Center is a U. S. Navy center for laboratory effort directed at achieving improved sea and air vehicles. It was formed in March 1967 by merging the David Taylor Model Basin at Carderock, Maryland with the Marine Engineering L.aboratory at Annapolis, Maryland.

Naval Ship Research and Development Center

Bethesda, Md. 20034

MAJOR NSRDC ORGANIZATIONAL COMPONENTS

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPRRT NUMBER 4496\quad 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NuMBER
4. TITLE (and Subtitle) The Performance on the CDC 6400 of a RheinboldtMesztenyi Program for Solving Large Sparse Symmetric Systems of Linear Equations	5. TYPE OF REPORT A PERIOD COVERED Research and Development 6. PERFORMING ORG. REPORT NUMBER 4496
7. AUTHOR(s) Donald A. Gignac	8. CONTRACT OR GRANT NUMEER(a)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Ship Research and Development Center Bethesda, Maryland 20034	10. PROGRAM ELEMENT, PROJECT, TASK AREA Q WORK UNIT NUMBERS SR 01403 01, Task 15322 Work Unit 1-1844-044
11. Controlling office name and address	12. REPORT DATE July 1974
	$\begin{aligned} & \text { 13. NUMBER OF PAGES } \\ & 25 \\ & \hline \end{aligned}$
14 MONITORING AGENCY NAME A ADDRESS(ff different from Controlling Office)	15. SECURITY CLASS. (of this roport) UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING

Approved for public release: distribution unlimited
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Roport)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse alde If neceasary and tdentity by block number)

Out-of-Core Solution
Symmetric System
Linear Equation Solver
Arc-graph theory
20. ABSTRACT (Continue on reverse alde If necescary and identify by block number)

On the CDC 6400 computer this FORTRAN Extended version of the RheinboldtMesztenyi computer program for solving sparse symmetric matrix equations was tested with respect to certain sample problems representative of structural analysis problems. This program does not appear to be competitive with CSKYDG, another linear equation solver. Lack of several special features in the CDC 6400 instruction set results in high overhead for manipulating the data structures used.

LLIIMTY CLASSIFICATION OF THIS PAGE(Whon Data Entorod)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entarad)

TABLE OF CONTENTS

Page
ABSTRACT 1
ADMINISTRATIVE INFORMATION. 1
INTRODUCTION 2
THEORY 3
EXAMPLES 4
OBSERVATIONS AND CONCLUSIONS 6
ACKNOWLEDGMENTS 13
APPENDIX - PROGRAM LISTINGS 14
LIST OF TABLES
Table 1. Solution Times for $A_{L}^{1} X=B$ 8
Table 2. Solution Times for $A_{L}^{2} X=B$ 9
Table 3. CSKYDG Solution Times for $A_{L}^{1} X=B$ 10
Table 4. CSKYDG Solution Times for $A_{L}^{2} X=B$ 11
Table 5. A Final Comparison 12

Abstract

On the CDC 6400 computer this FORTRAN Extended version of the Rheinboldt-Mesztenyi computer program for solving sparse symmetric matrix equations was tested with respect to certain sample problems representative of structural analysis problems. This program does not appear to be competitive with CSKYDG, another linear equation solver. Lack of several special features in the CDC 6400 instruction set results in high overhead for manipulating the data structures used.

ADMINISTRATIVE INFORMATION

The Naval Ship Systems Command (0311) sponsored this study under Subproject SR 0140301 , Task 15322. The work was performed under work unit number 1-1844-004.

INTRODUCTION

In the finite element approach to static structural analysis, the computation of the solution of the equation

$$
K U=P
$$

a positive definite system of simultaneous linear equations, is basic. However, the order of K is often so large that it does not suffice merely to take advantage of K's symmetry and banded structure. For such K it is necessary to consider an out-of-core solution or to devise some storage scheme which exploits sparsity more fully, or-even to utilize both of these approaches together. The Rheinboldt-Mesztenyi program ${ }^{1}$ was investigated as part of an effort to develop an improved solution capability for large sparse K. This program utilizes a data structure for storing sparse matrices based on arc-graph theory to facilitate an in-core triangular decomposition solution of $K U=P$ for such a K. The best of such programs encountered will eventually be incorporated into large-scale structural programs such as NASTRAN.

The author was recently asked for an opinion on the usefulness of the program of Professors Rheinboldt and Mesztenyi for solving the sparse matrix equations arising in structural analysis calculations on the CDC 6000 series computers. A FORTRAN version of the Rheinboldt-Mesztenyi (R-M) program for symmetric matrices was obtained and modified for the CDC 6400. This report discusses a comparison of this FORTRAN implementation of the R-M program with another FORTRAN linear equation solver, CSKYDG, ${ }^{2}$ for certain sample problems.

[^0]The R-M program solves the system KU $=P$ using that form of triangular decomposition which does not require square roots. As the decomposition proceeds the rows and corresponding columns of K are interchanged in accordance with the pivoting strategy of Curtis and Reid. ${ }^{3}$ If Q represents the permutation matrix for the required row interchanges, then

$$
\mathrm{QKQ}^{\top}=\mathrm{LDL}^{\top}
$$

where L is a unit lower triangular matrix and D is a diagonal matrix. We then solve the triangular systems

$$
\begin{aligned}
& L X_{1}=Q P \\
& D X_{2}=X_{1} \\
& L^{T} X_{3}=X_{2}
\end{aligned}
$$

using forward or backward substitution as required, and finally obtain

$$
U=Q^{T} x_{3}
$$

In theory this procedure can solve $K U=P$ for any non-singular symmetric K. However, the method of Cholesky (square root method) works better for positive definite K. The Cholesky algorithm factors K into the product of a lower triangular matrix S and its transpose, that is,

$$
K=S S^{\top}
$$

then solves the triangular systems

$$
\begin{aligned}
& S X=P \\
& S^{T} U=X
\end{aligned}
$$

using forward or backward substitution as required.
The Cholesky algorithm has two advantages over the LDL^{\top} procedure. First it does not require pivoting to ensure stability, making the matrix

3 Curtis, A.R., and Reid, J.K., "FORTRAN subroutines for the solution of sparse sets of linear equations," United Kingdom Atomic Energy Research Establishment, Harwell, England, Tech. Report AERE-R6844, 1971.
decomposition and the forward and backward substitutions less involved. Secondly the forward substitution can be readily incorporated into the Cholesky decomposition with a significant saving of time. (This last advantage may be realized only for a single solution of $K U=P$ for a given K.) The CSKYDG program takes advantage of these features. Wilkinson and Reinsch ${ }^{4}$ give details of both procedures.

EXAMPLES

Professor Mesztenyi provided the author with a FORTRAN implementation of the R-M program for the UNIVAC 1108. This program consisted of three subroutines: READ, LU, and SOLVE. The SETUP subroutine was added to facilitate the input of the matrix element. Its two arguments are NS and W. The SETUP subroutine reads from tape 4 the non-zero elements in the lines of the upper triangular half of the coefficient matrix K in the form of triplets

$$
I, J, K(K, J)
$$

and writes these triplets in batches of NS on tape 5. If the number of triplets is not a multiple of NS, then the last batch of triplets is filled out to NS elements by adding the appropriate number of triplets

$$
1,0,0.0 \quad .
$$

The righthand side of $K U=P$ is read from tape 4 and passed through the argument W. The READ subroutine then reads the triplets in batches of NS from tape 5 and sets up arcs of non-zero elements. The LU subroutine then obtains the LDL ${ }^{\top}$ decomposition of K in terms of these arcs. The SOLVE subroutine then obtains U from P by solving the intermediate systems of equations. The integer packing and unpacking subroutines IPACK and IUNPK were added later.

[^1]After the CDC 6400 version of the R-M program had been checked out, it was compared with CSKYDG, ${ }^{2}$ the author's own previously developed linear equation solver for $K U=P$. The following examples were chosen as the basis for this comparison because these are in some sense representative of systems which arise in structural analysis.

The matrix family of the first example in Table l, A_{N}^{l}, is generated as follows: Let N be an integer ≥ 3. Let C_{N} be the tridiagonal of order N with 4's on the diagonal and a line of -1 's above and below the diagonal. Let I_{N} be the identity matrix of order N. An ($N+1$)-banded matrix of order N^{2}, A_{N}^{1} is constructed by
(1) stringing $N C_{N}$ submatrices along the diagonal,
(2) inserting lines of $\mathrm{N}-1-\mathrm{I}_{\mathrm{N}}$ submatrices above and below the diagonal, and
(3) setting the remaining elements of A_{N}^{1} equal to 0 .

The right-hand side of the system $A_{N}^{1} X=B$ is chosen such that the exact solution X has all components equal to 1.

The matrix family of the second example in Table $2, A_{N}^{2}$, is similarly generated. This time let C_{N} have diagonal elements of 6 . An ($N^{2}+1$)-banded matrix of order N^{3} is constructed by
(1) stringing $N^{2} C_{N}$ submatrices along the diagonal,
(2) inserting lines of $\mathrm{N}^{2}-1-\mathrm{I}$ N submatrices above and below the diagonal,
(3) inserting lines of $N^{2}-N-I_{N}$ submatrices as the $N^{\text {th }}$ lines above and below the diagonal, and
(4) setting the remaining elements of A_{N}^{2} equal to 0 .

The right-hand side of the system $A_{N}^{2} X=B$ is chosen such that the exact solution is ℓ_{1}. These two matrix families have characteristics of matrices arising from finite difference approximations to the Dirichlet problem.

The tables assembled in this section present the data concerning the performance of the present FORTRAN version of the R-M program on the CDC 6400. In these tables, N indicates the order of the matrix and M its bandwidth. The information in Tables 3 and 4 has been published previously. ${ }^{2}$ Note that the SETUP subroutine and the NS parameter of Table 3 are different from those of Tables 1 and 2.

The CDC 6400 version of the R-M program was able to handle the order 225 , bandwidth 16 case but not the order 400 , bandwidth 21 case of the first matrix family using a field length of 153,400 (Table la). Making use of the integer packing and unpacking subroutines IPACK and IUNPK* to realize a fourfold compression of certain integer arrays, the 'packed' version of the R-M program handled the order 900, bandwidth 31 case but not the order 1225, bandwidth 36 case of the first matrix family using a field length of 145,500 (Table lb). Similarly the 'unpacked' version of the R-M program handled the order 125, bandwidth 26 case but not the order 216, bandwidth 37 case of the second matrix family using a field length of 153,400 (Table 2a). The 'packed' version of the R-M program handled the order 343 , bandwidth 50 case but not the order 512, bandwidth 65 case of the second matrix family using a field length of 145,500 .

Neither the 'packed' or 'unpacked' CDC 6400 version of the R-M program seems competitive in solution times with existing FORTRAN linear equation solvers, in particular CSKYDG, for the examples investigated. Moreover, the CSKYDG program required a field length of only 70,000 to produce the results shown in Tables 3 and 4 . However, the accuracy of the solutions of the two programs was comparable.

[^2]The R-M program was at a special disadvantage in this investigation. The "bookkeeping" procedures, so crucial to the R-M program, are most efficient when the program is coded in assembly language (COMPASS for the CDC 6400) rather than FORTRAN. Then the integer packing and unpacking procedures apparently required by the R-M program can be directly implemented in the program rather than using subroutines which are of necessity slower.

Moreover, in discussing the somewhat disappointing performance of the CDC 6400 version of the R-M program, Professor Mesztenyi pointed out that the "fetch" cycle of the CDC 6400 is more expensive than that of the UNIVAC 1108. He also noted that certain FORTRAN compilers appear to provide somewhat inefficient FORTRAN compilations, although the results published here were obtained using that compilation option of the present version of the FTN FORTRAN compiler which usually oroduces the most efficient code.

It is only fair to note that on the UNIVAC 1108 the performance of the assembly language version of the R-M program is quite satisfactory. For example, the LDL^{\top} decomposition times listed in the first column of Table 5 for certain members of the first matrix family are UNIVAC 1108 assembly language times taken from Rheinboldt and Mesztenyi (page 48, Table 5). The second column of Table 5 shows the CDC 6400 FORTRAN LDL ${ }^{\top}$ decomposition times from Table 1 b of this report, and the third column of Table 5 gives the corresponding FORTRAN CDC 6400 CSKYDG total solution times from Table 3a of this report. Using the rule of thumb that the UNIVAC 1108 is about three times faster than the CDC 6400, these assembly language results indicate a creditable performance on the part of the R-M program. Even so, CSKYDG (for which, it must be remembered, total solution times are given) still appears to be significantly faster.

TABLE 1 - R-M SOLUTION TIMES FOR $A_{L}^{1} X=B$
NS $=250$

A - UNPACKED VERSION

N	M	SETUP (Secs.)	READ (Secs.)	SETUP+READ (Secs.)	LSU (Secs.)	SOLVE (Secs.)	LU+SOLVE (Secs.)	TOTAL TIME (Secs.)
25	6	.08	.05	.12	.10	.02	.12	.24
100	11	.14	.14	.28	4.80	.29	5.09	5.37
225	16	.26	.17	.44	16.32	.97	17.29	17.73

∞
B - packed version

N	M	SETUP (Secs.)	READ (Secs.)	SETUP+READ (Secs.)	LSU (Secs.)	SOLVE (Secs.)	LU+SOLVE (Secs.)	TOTAL TIME (Secs.)
25	6	.06	.08	.14	.31	.07	.39	.53
100	11	.13	.27	.40	4.43	.64	5.07	5.47
225	16	.25	.54	.80	23.22	2.32	25.53	26.33
400	21	.47	.98	1.44	83.04	6.25	89.29	90.74
625	26	.79	1.53	2.32	198.56	12.39	210.95	213.28
900	31	1.19	2.19	3.39	479.70	25.15	504.85	508.24

> TABLE $2-R-M$ SOLUTION TIMES FOR $A_{L}^{2} X=B$ $N S=250$

N	M	A - UNPACKED VERSION						
		$\begin{aligned} & \text { SETUP } \\ & \text { (Secs.) } \end{aligned}$	$\begin{aligned} & \text { READ } \\ & \text { (Secs.) } \end{aligned}$	$\begin{aligned} & \text { SETUP+READ } \\ & (\text { Secs. }) \end{aligned}$	$\stackrel{\text { LU }}{\text { (Secs.) }}$	$\begin{aligned} & \text { SOLVE } \\ & \text { (Secs.) } \end{aligned}$	$\begin{gathered} \text { LU+SOLVE } \\ (\text { Secs. }) \end{gathered}$	TOTAL TIME (Secs.)
125	26	. 18	. 12	. 30	25.23	1.05	26.28	26.58

B - PACKED VERSION

N	M	SETUP (Secs.)	READ (Secs.)	SETUP+READ (Secs.)	LU $($ Secs.)	SOLVE (Secs.)	LU+SOLVE (Secs.)	TOTAL TIME (Secs.)
125	26	.18	.38	.56	27.61	2.48	30.09	30.65
216	37	.36	.70	1.06	170.84	9.41	180.25	181.31
343	50	.62	1.10	1.72	511.02	20.92	531.94	533.66

TABLE 3 - CSKYDG SOLUTION TIMES FOR $A_{L}^{1} X=B$

$$
\text { NS }=10
$$

N
25

$$
100
$$

225
400
625
900
1225
1600 2025

2500 3025

M
SETUP
(Secs.)
SOLUTION
(Secs.)
TOTAL TIME (Secs.)
.15
.21
.61 .76
3.07
3.55
6.65
17.25
25.64
51.36
46.49
69.22
108.11
117.87
136.23
148.92
218.10
235.35

TABLE 4 - CSKYDG SOLUTION TIMES FOR $A_{L}^{2} X=B$

$$
N S=10
$$

N	M	SETUP (Secs.)	SOLUTION (Secs.)	TOTAL TIME (Secs.)
125	26	.39	2.67	3.06
216	37	.80	7.25	8.05
343	50	1.66	17.18	18.84
512	65	3.21	44.19	47.40
729	82	5.67	96.24	101.91
1000	101	9.14	163.59	172.72
1331	122	14.69	347.39	362.08
1728	145	22.54	585.77	608.31

TABLE 5 - A FINAL COMPARISON

N	M	UNIVAC 1108 ASSEMBLY LDL ${ }^{\top}$ DECOMPOSITION TIMES (Secs.)	$\begin{aligned} & \text { CDC } 6400 \text { FORTRAN } \\ & \text { LDL DECOMPOSITION } \\ & \text { TIMES (Secs.) } \end{aligned}$	CDC 6400 CSKYDG TOTAL SOLUTION TIMES
100	11	. 343	4.43	. 76
225	16	1.657	23.22	3.55
400	21	5.921	83.04	6.65

ACKNOWLEDGMENTS

The author wishes to thank the following people for their interest and assistance: Professor Charles K. Mesztenyi (University of Maryland Computer Science Center); Dr. Elizabeth H. Cuthill (NSRDC Code 1805); Mr. Michael E. Golden (NSRDC Code 1844); and Dr. Ed Cohen (Naval Ordnance Laboratory).

APPENDIX - PROGRAM LISTINGS

```
    SUBZOUTINE SETUP (NS,W)
?
C
    2 L=L+1
    II(_) = I
    JJ(_) =I+K-1
    XX(_) =X(K)
    IF (L -NS) 4, 3,4
    3 WRITE(IJ2) (II(<K),JJ(KK),XX(KK),KK=1,NS)
    L=0
    4 CONT I NUE
    5 COVIINIE
    KLI Y = L +1
    OO 5 K=<LIM,NS
    II(<)=1
    JJ(<) = J
5 XX(<) = ?.
    WRITE(TJ2)(II (Kく),JJ(KK),XX(KK),KK=1,NS)
    REWINOIO2
C
C
    READ(IO1)(W(K),<=1,VN)
    RETJRN
    END
```


SUSROUTINE READ(NS)


```
        M=N
            RSOO2600
C LOOP TJ REAO ELEMENTS RSOO2700
    LLIM=((N* (N+1))/2)/NS +2
    OO25 LL =1,LLIM
    REQJ(IO) (II(I),JJ(I),VV(I),I=1,NS)
C **** YOCI=Y THE FOLLONING FORYAT AS NEEDED **** RS002900
    DO 20 K=1,NS
    I=II (K)
    J=JJ (K)
    V=VV (K)
    IF (ABS(V).GT.CT1) :T1=ABS(V) RS003100
    IF (I-J) 45,50,60
C ESTABLISH ARC FOR OFF-DIAGONAL ELEMENT RSOO3700
    M=M+1
    IF(M.GT.MX) GOTO }7
    B(M)=V
    R(M) =R(I)
    C(M) =C(J)
    R(I)=M
    C(J)=M
    L ( M ) = 0
    T(Y)=0
    NO(I)=NJ (I+1)
    ND(J)=NJ (J+1)
    GOTO 20
C STORE OIAGONAL RSOO5000
    B(I) =V
    ND(I) =N (I+1)
20 CONTINUE
    25 CONT I NUE
C END OF MATZIXELEMENTS
    RETJRN
RS005400
    RETJRN RSOO5500
ERROR-INSU=FICIENT STORAGE RSOO56UO
70 WRITE (6,80)
80 FORMAT (21H0INSJFFI:IENT STORAGE)
80 FORMAT (21HOINSJFFIEIENT STORAGE)
80 FORMAT (21HOINSJFFIEIENT STORAGE)
    END
RSOO4900
50
60
C
RS006000
```


SUBROUTINE LU(IPONE,UP)

	THE LU SUBROJTINE DECOMPOScS THE SYMYETRIC MATRIX.	
**		
C		
C	THE RJJTINE DECOMPJSES THE SYMMETRIC	LUSUJ700
C	MATRIX WHIJH HAD BEEN ESTABLIStED BY	LUSU08U0
C	THE READ RJUTINE. IF IDONE IS ZERO,	LUSO 0900
C	then the routine selects the pivots	LUSO 1000
c	ACCORJING TO THE PIVOTING STRATEGY,	LUSO1100
c	OTHERHISE IT ASSUMES THAT THE JRDER	LUSO 1200
c	OF PIVJTS IS PROVIJED IN THE ARRAY IP.	LUSO 1300
c		LUS 01400
C	the rojtine uses tag t for marking the	LUSO 1500
C	THE ALREAOY DECOMPJ SED PART OF THE MATRIX.	LUSO 1600
c	It USES taj l such that the row of a	LUSO1700
c	PIVOT is the union of the Set jf Left	LUSO 1800
c	CONNESTED ARCS WITH TAS L = 1, AND THE	LUSO1900
c	SET OF RIGTt CONNE:TED ARCS WITH TAG L = 0.	LUSO2000
C		
C	STORAGE ASS I GNM ENT FOR SYMMETRIC DECOMP OSIT ION	S800 0200
c		S8000300
C	nX - the maximum allowed size of the matrix.	58000400
	COYYON/DIM/ MX, NX	S8000500
C	ARRAYS OF SIIE M -	S8000700
C	R - INTEGER ARRAY JSED FOR ROH LINKAGE	S8000800
C	C - INTEGEz ARzaY JSED FOR COLUMN LINKAGE	S8000900
C	L - IVTEGER ARRAY USED FOR TAGGING (0 OR 1)	S8001000
C	T - Integer array jsed fortangging (0 OR 1)	S8001100
C	8 - FL. PT. Arzay jontaining the values of the coefficients	SE001200
	COMYON/ARRAYM/ $\mathrm{R}(5000), \mathrm{C}(5000), \mathrm{L}(5000), \mathrm{T}(5000), \mathrm{B}(20000)$	
	INTEGER R,C,T	SB 001500
0	ARRAYS OF SIZEN-	SBOO 1600
	IP - IVTEGER ARRAY Contains the sequence of pivots	SB 001700
C	ND - IVTEGER ARRAY CONTAINS THE NUMBER OF 三LEMENTS	SB001800
	IN A RON OF THE UNOECOMPOSED PART OF THE MATRIX	S800 1900
c	IH1, IH2 - ARE TEMP ORARY INTEGER ARRA YS, OVE OF THEM	SB002000
0	MAY BE EQUIVALEVCED TO IP COYMON $/$ ARPAYN/ IP (200), ND (500), IH1(500), IH2 (500)	SB002100
C	INOIVIJUAL DATA -	SB002300
	M - NUYBER OF NONZERO ELEMENTS	SB002400
c c c c	N - SIZE $\mathrm{O}=\mathrm{THE}$ MATRIX	SB 002500
c	UP - PIVOT SELECTION PARAMETER	S8002600
c	CT1 - MAXIYUM ELLMENT IN THE ORIGINAL MATRIX	SBOO 2700
	CT2 - YAXIYUM ELEMENT ENCOUNTERED DURING DECOMPOSITION	SB002800
	COMYON/DATA/ M,N,CT1,CT2	
00		
	LOGICAL SHP	LUS0 2100
		LUSO 2200
	CT2 $=$ Cr 1	LUSO 2300
	SWO = .TRUE.	LUSO 2400
	IF (IPOVE.NE.0) SWP=.FALSE.	LUSO2500
c	LOOP FJR THEN PIVJTS	LUSO2600

```
    DO300I=1,N LUSO2700
    IF (SWP) GO TO 30 LUSO2800
    IF (I.NE.1) GO「O 2]
C SAVE THE P[ VOTS IN ND IF THEY WERE GI VEN
        0010 J=1,N
    10 ND(J)=I?(J)
C GET THE NEXT GIVEN PIVOT
    20 IX=VD(I)
        IP(I) =IX
        GO TO 135
C PIVOTS WERE NOT GIVEN, THUS FIND ONE
    30 OMAX = J.
        IF (UP.LE.O.) GO TO 110
C FINO MAXIMAL ELEMENT IV THE AVAILABLE DIAGONALS
    OO100J=1,N
        IF (T(J).EQ.1) S0 TJ 100
        DMAX = AMA X 1(DMAX, ABS(B(J)))
    100 COVTINUE
        DMAX = JP*DMAX
C NOW FIND AV AVAILABLE JIAGONAL WHOSE VALUE IS
C GREATER THAN DMAX AND TAS MINUMUM NUMBER OF
C ELEMEVIS IV ITS RON
    110 IX = C
        XM=N.
        OO130 J=1,N
        IF (T (J).EQ.1 .OR. B(J).EQ.J.)
            1GOTO130
            IF (ABS(B(J)).LT.DMAX)
        1 G) TO 130
                IF (IX.EQ.J) GO TO 12J
                IF (ND(J)-NY) 120,119,130
    119 IF(ABS(3(J)).LE.XM);0TO 130
    120 IX = J
        XM=ABS(B(J))
        NY=ND(J)
    13J COVIINUE
        IF ((IX,EQ.0).00. 
            1(XM.LT.1.E-20)) GJ TO 900
                IP(I) =IX
C NOW THE PIVOTIS IV IX, SET ITS TAGT
    135 K = I
        T(IX)=1
        XMAX = 3(IX)
C LOOP TJ CO_LECT THE ELEMENTS IN THE ROW OF THE PIVOT LUSO7100
        IY = IX 
        IY = IX
C COLLEST THE LEFT CONNESTED ARCS
LUSO72U0
C WITH THEIR RIGHT IVDEX VALUE
    14U IY=?(IY)
        IF(IY.EQ.IX) GO TO 170
        IF (L(IY).EQ.1) GO TO 140
        T(IY) =1
        I Z=I Y
    160 IZ=こ(IZ)
    IF(IZ.GT.N) GO TOL60 LUSO8000
LUSO8100
```

```
        IHI (K)=I Y
        IH2(K)={Z
        IF (SHP) NO(IZ)=NO(IZ-1)
        GOTO 140 LUSO8500
    170 IY = IX LUSO8600
C COLLECT THE RIGHT SONNECTED ARCS LUSO870J
C HITH THEIR LEFT INDEX \ALUES LUSO8800
    180 IY=こ(IY)
        IF (IY.EQ.IX) GJ TO 195 LUSO9000
            IF (T (IY).EQ.1) GO TO 180
            IZ = IY
    190 IZ=R(IZ)
        IF (IZ.jT.N) GO TO 190 LUSO9400
        K=K+1 LUSO95J0
        IH1(K)=I Y
        IHZ(K)=[Z
        IF (SWP) NO(IZ)=ND(IZ-1)
        L(IY)=1
        T(IY)=1
        GOTO 130
195 IF (K.E2.I) GOTO 30̂0 LUS10200
    K1 = I +1
C LOOP JN THE COLLECTED ARCS LUS104JO
    DO 250 J1=K1,K .LUS105J0
    I Y=I H1(J1)
    IZ=I H2(J1)
        Y = B (IY)
    LUS1080U
C DIVIDE THE ELEMENT BY THE PIVOT AND LUS1O9UO
C MODIFY ITS CORRESPONOIVG OIAGONAL LUS110OO
            B(IY) = B(IY)/XMAX
    B(IZ)=B(IZ)-B(IY)*Y
    IF (ABS(B (IY)).5T.CT 2)
        1 ST2 = ABS(B(I-Y))
            IF (ABS(B(IZ)).GT.CT2)
        1 OT2=ABS(B(IZ))
            IF (J1.EQ.K) GO TO 250
            K2 = J1+1
C INSIDE LOOP FOR THE REST OF THE COLLECTED ARCS
C TO MOJIFY THE INTERSECTING ARCS
            DO240 J2=K2,K
            IY1=IH1(J2)
            I Z1 = I H2(J2)
C FIND THE ARC W BETWEEN IZ-IZI JIRECTEN FROM
C MIN(IZ,IZ1) TO MAX(IZ,IZ1) IF EXISTS
    I1 = MIVO(IZ,IZI)
    I2 = MAXO(IZ,IZ1)
    L 1=2(I1)
    L2=こ(I2)
200 IF(L1.EQ.I1.OR.L2.EQ.I2)
    < GOTO 22C
        IF (L1.EQ.L2) GO TO 23i
        IF (L1.jT.L2) GJ T0 21C
        L 2=こ (L?)
        GOTO 23O
LUS1030U
        IVIDE THE ELEMENT BY THE PIVOT AND
LUS11100
LUS11200
LUS113*0
LUS11400
LUS11500
LUS11600
LUS11700
LUS11800
LUS11900
LUS12000
LUS121u0
LUS12400
LUS12500
LUS12600
LUS12700
LUS13000
LUS13190
LUS13200
LUS13300
LUS13500
```

```
    GOTO 2JO
LUS13700
C IT DOES NOT EXIST, THUS CREATE ONE
    220 IF (M.EX.MX) GO TO 350
    M = M+1
LUS13900
    IF (SWP) ND(II)=ND(I 1+1)
    IF (SWP) ND(I2)=ND(I2+1)
        LI=M
        IF (L1.GE.16000) WRITE (6,261)L1
    261 FORYAT(1X,3HAAA, I15)
    B(LI) = O.
    R(L1) =R(I1)
    C(L1)=C(I 2)
    R(I1) =L1
            C(I2) = LI
            L(L1)=0
            T(L1)=3
C MODIFY THE VALUE OF THE INTERSECTING ARC
LUS15100
    230 B(L1)=B(L1)-B(IY)*B(IY1)
            IF (ABS(B(L1)).GT.CF2)
        12 =T2 = ABS(B(L1))
    240 CONTINUE
LUS15200
LUS15400
    300 CONTINIE
    RETJRN
C
C **** ERRORS ****
C NUMERI;ALLY SINGULAR
    900 WRITE (5,910) I
    910 FOR4AT (24HONUMERICALLY SINGULAR AT,I5).
        STOP
C INSUFFICIEVT STORAJE
    950 WRITE (5,960) I
    960 FOR4AT (24HOINSJFFISIENT STORAGE AT,I5)
        STJP
    END
LUS14000
LUS14300
    LUS14400
    240
LUS15500
LUS15600
LUS15700
LUS15800
LUS15900
LUS16000
LUS16000
LUS162J0
LUS16300
LUS16400
LUS16500
LUS16600
LUS16700
LUS16700
LUS16800
LUS16900
```



```
            IF (IY.EQ.IX) GJ TO 100
                            SS002800
            IF (L(IY).EQ.1) GO TO 50
                IZ = IY
                            SSOO300G
        60 IZ=2(IZ)
            IF(IZ.5T.N) GO TO j0
    SSOO3200
            W(IX)=W(IX)-W(IZ)FB(IY) SSOO3300
            GOTO 5J
    100 COVTINUE
    SSOO3400
    SS003500
    SSOO 3600
    SSOG3700
    SSOO 3800
    SS003900
    SSO04000
    SSOU4100
    S5004300
    1 2
    IY=R(IY)
    IF(IY.EQ.IX) GO TO 140 SSOO4500
    IF (L(IY).EQ.1) GOTO 120
    IZ = IY
    130 IZ=こ(IZ)
    IF(IZ.ST.N) GOTO130 SS004900
    W(IX)=W(IX)-W(IZ)*B(IY) SSOO5000
    GOTO 120
140 IY = IX
    150 IY=% (IY)
    IF (IY.EQ.IX) GO TO 200 SS005400
    IF (L(IY).EQ.U) GOTO 150
    IZ = IY
    SSOO5600
    160 IZ=R(IZ)
    IF(IZ.ST.N) GO TO 160
    W(IX)=W(IX)-W(IZ)*B(IY)
    GOTO 150 SSOO60U0
    SSOO5800
200 CONTINUE SSOG610J
    RETJRN
    END
SS006200
SS0063u0
```


INITIAL DISTRIBUTION

```
Copies:
    1 ONR 430/R. LUNDEGARD
    1 ONR 432/L. BRAM
    NRL/8441/J. HANSON
    1 USNA DEPT MATH
    1 USNA LIB
    1 NAVPGSCOL/59Ci/G. CANTIN
    1 NAVPGSCOL/MATH DEPT
    1 NAVPGSCOL LIB
    1 NROTC & NAVADMINU, MIT
    NAVWARCOL
    1 NOL 331/E. COHEN
```

Copies:
1 NAVSHIPYD PTSMH/LIB
1 NAVSHIPYD BSN/LIB
1 NAVSHIPYD PHILA/LIB
1 NAVSHIPYD NORVA/LIB
1 NAVSHIPYD CHASN/LIB
1 NAVSHIPYD MARE/LIB
1 NAVSHIPYD BREM/LIB
1 NAVSHIPYD PEARL/LIB
1 AIR FORCE AERO RES LABS/P. NIKOLAI
12 DDC

Copies:
1 NAVSHIPYD PTSMH/LIB
1 NAVSHIPYD BSN/LIB
NAVSHIPYD PHILA/LIB
NAVSHIPYD NORVA/LIB
NAVSHIPYD CHASN/LIB
NAVSHIPYD MARE/LIB
NAVSHIPYD BREM/LIB
NAVSHIPYD PEARL/LIB
AIR FORCE AERO RES LABS/P. NIKOLAI DDC

CENTER DISTRIBUTION

Copies:
10000 NELSON PERRY W
10100 POWELL ALAN
11725 GIFFORD LEROY N JR
11725 JONES REMBERT F JR
11725 RODERICK JOAN E
11725 ROTH PETER N
11745 NG CHRISTOPHER
11800 GLEISSNER GENE H
11802 SHANKS DANIEL
11802 FRENKIEL FRANCOIS N
11802 LUGT HANS J
11802 THEILHEIMER FEODOR
11805 CUTHILL ELIZABETH H
11830 ERNST HERBERT M
11830 CULPEPPER LINWOOD M
1830 WALTON THOMAS S
11840
11842 EDDY ROBERT P
11842 MEALS L KENTON

Copies:
11843 SCHOT JOANNA WOOD
11844 DHIR SURENDRA K
11844 EVERSTINE GORDON C
101844 GIGNAC DONALD A
11844 GOLDEN MICHAEL M
11844 HENDERSON FRANCIS M
11844 MATULA PETRO
11850 CORIN THOMAS
11860 SULIT ROBERT A
11880 CAMARA ABEL W
11890 GRAY GILBERT R
11890 TAYLOR NORA M
11892 GOOD SHARON E
11892 RUMSEY JUDITH J
11966 LIU YUAN-NING
305614 REPORTS DISTRIBUTION
15641 LIBRARY
15642 LIBRARY

[^0]: 1
 Rheinboldt, W. and Mesztenyi, C.,"Problems for the Solution of Large Sparse Matrix Problems Based on the Arc-Graph Structure," University of Maryland Computer Science Center, Technical Report TR-262, September 1973.
 2 Gignac, D.A., "CSKYDG, An Out-of-Core Cholesky Algorithm Equation Solver for Large Positive Definite Systems of Linear Equations," Naval Ship Research and Development Center Report 4377, February 1974.

[^1]: Wilkinson, J.H. and Reinsch, C., editors, "Handbook for Automatic computation," vol. II, "Linear Algebra," Springer-Verlag, New York 1971, pp. 9-11.

[^2]: * Those subroutines were provided by Mr. Michael Golden of the Theory of Structures Branch (Code 1844). IPACK dacks four integer words (each of which requires no more than fifteen bits) into one word. IUNPK reverses the packing operation. No documentation is available for these subroutines.

