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ABSTRACT

The velocity similarity laws of shear flows are developed
for drag-reducing dilute polymer solutions. Relations for
boundary-layer parameters and frictional resistance formulas
of the logarithmic type are derived for pipe flow and for flat
plates in parallel flow.
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NOMENCLATURE

A Slope of logarithmic velocity law in natural logarithms

Al1  Slope of logarithmic velocity law in common logarithms

a Factor in pipe fraction formula, Equation [40]

B1,B2 Intercepts of logarithmic velocity law, Equations [7] and [8]

B ' Derivative of 81 with respect to In £

B 1  Derivative of B ' with respect to in k

B1, 0  B1 for solvent (zero concentration)

SFactor in pipe friction formula, Equation [41]

C Concentration of polymer solution

Cf Coefficient of frictional resistance of flat plates,
Equation [56]

c1,c2,c 3  Linearization factors in Equations [37] and [38]

D Diameter of pipe

DID2,D3 Velocity profile factors, Equations [18], [21], and [24]

9) Drag

e Base of natural logarithms

F Outer law function, Equation [4]

f Fanning friction factor, Equation [29]

fl Inner law function, Equation [2a]

G Subscript for quantities at junction of inner and outer
turbulent sublayers

H Shape parameter, H = 6 /6

h Deviation of outer law from logarithmic law

J Transitional sublayer factor, Equation [13]

k,klk2... Roughness length parameters

L Subscript for quantities at junction of laminar and
transitional sublayers

,11', 2,... Characteristic lengths of polymer molecules

9 Non-dimensional characteristic length, t = u R/v

R Threshold value of k
0

go1
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M

m,mlm 2 , ..

P

q

r

RD

Rx

Re

T

t,tl,t 2, .

U

u

U
T

V

x

y

y

a

IJ6
6

Subscript for quantities corresponding to minimum diameter
for logarithmic similarity law

Characteristic masses of polymer molecules

Polymer characteristics for particular chemical species and
concentration

Drag-reducing factor in Equation [81]

Radial distance from center of pipe

Reynolds number of pipe, RD = VD/vo
Reynolds number, Rx = Ux/vo
Reynolds number, Re = Ue/vo

Subscript for quantities at junction of transitional and
inner turbulent sublayers

Characteristic times of polymer molecules

Velocity in center of pipe or outside of boundary layer of
flat plates

Tangential velocity of shear flow

Shear velocity

Average velocity in pipe

Streamwise distance along flat plate

Normal distance from wall

Non-dimensional y, y = u y/vI

Velocity profile factor, Equation [19]

Velocity profile factor, Equation [22]

Velocity profile factor, Equation [25]

Pipe radius or boundary layer thickness

Displacement thickness

Boundary layer Reynolds number, n = u 6/vo

Momentum thickness

von Karman's constant

Darcy-Weisbach friction factor, Equation [31]

Coefficient of viscosity of solution

v
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o Coefficient of viscosity of solvent

v Kinematic viscosity of solution

v Kinematic viscosity of solvent
o

p Density of solution

po Density of solvent

Pp Density of dispersion of polymer molecules

C Local resistance parameter, a = U/u

T Shearing stress in fluid

T Shearing stress at wall

drMMmYM11 INN [111
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THE FRICTIONAL RESISTANCE AND VELOCITY SIMILARITY
LAWS OF DRAG-REDUCING DILUTE POLYMER SOLUTIONS

by

Paul S. Granville

INTRODUCTION

The remarkable reduction in frictional resistance of the turbulent

flow of liquids in pipes and in the boundary layers of moving bodies by

the addition of small amounts of certain organic polymers has engendered

many scientific and engineering questions and problems. It was originally

found that the more concentrated solutions exhibited non-Newtonian be-

havior in the variation of the coefficient of viscosity with rate of

shear. Accordingly, analyses 1 '2 of the turbulent flow in pipes and on

flat plates were developed for power-law analytical models of the non-

Newtonian viscous behavior. Then it was discovered 3'4 , or rather redis-

covered, that dilute solutions still gave drag reductions for turbulent

flow even though the coefficient of viscosity was Newtonian with shear

rate. This effect was termed the Toms phenomenon in honor of Toms who

originally reported the anomalous behavior in 1948 to the first Congress of

Rheology; after which it seems to have not become generally known.

However, an ordinary Newtonian analysis of a viscous fluid proves

unsatisfactory for drag-reducing solutions, since the pipe friction

factors vary with both Reynolds number and pipe diameter as well as with

the size and configuration of the polymer molecules and their concen-

trations.

Work by Ernst 5 and Meyer6 has shown that the friction factors for

different pipe diameters of a polymer solution of the same material and

concentration can be correlated on the basis of the inner similarity law.

For the logarithmic portion of the inner law which has two factors, it was

found that von Karman's constant which controls the plotted slope did

remain constant but that the factor (which unfortunately does not have a

iReferences are listed on page 30.



convenient name) which controls the plotted intercept varied with shear

velocity. It was also shown that a threshold value of shear velocity exists

below which no drag-reducing effect occurs. Previous investigators 7 had

also noticed a threshold shearing stress. This procedure was continued by

Elata et al, 8 who introduced a macromolecular relaxation time in the

analysis.

The present work develops the similarity laws for homogeneous so-

lutions from a dimensional analysis of the inner similarity law in terms

of characteristic lengths, masses, and/or times introduced into the fluid

by the polymer molecules. The outer similarity law remains the same. The

overlapping of the inner and outer laws results in a logarithmic relation

with von Karman's constant unchanged and the intercept factors a function

of a nondimensional ratio containing the shear velocity.

Various integral relations are developed to be applied to the

friction factors of pipe flow and to the boundary layer parameters of dis-

placement thickness, momentum thickness, and shape parameter of flat-plate

flow. It is shown that a minimum diameter exists for pipe flow below

which the logarithmic similarity law vanishes. Formulas are developed for

the total resistance coefficients of flat plates in parallel flow as

functions of Reynolds number and a dimensionless ratio containing the

length of the plate. A numerical example is worked out for a sample con-

centration of Guar Gum.

VELOCITY SIMILARITY LAWS

GENERAL

Since research into the fundamentals of the mechanics of turbulence

has yet to achieve methods for predicting frictional resistance and the

behavior of turbulent flows, recourse is made to the phenomenonological

properties of turbulent flows in terms of the similarity properties of the

mean-velocity profiles.

For turbulent shear flows, such as fully developed flow in pipes

or boundary-layer flow, the two laws which provide similarity in the mean-

velocity profile by linking it to the wall shearing stress are:

1. The inner law or law of the wall which applies to the flow

immediately adjacent to the solid boundary.
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2. The outer law or velocity-defect law which applies to the re-

maining outer region of the shear flow.

The overlapping across the shear flow of the two laws results in a

logarithmic functional form for both similarity laws within the common

region of overlap.

The similarity laws of the velocity profile of shear flows were

originally developed by Prandtl and von Karman among others 9 ' 0, for

ordinary Newtonian fluids.

INNER LAW OR LAW OF THE WALL

A similarity law may be developed for the mean turbulent flow of

dilute polymer solutions close to the wall or solid boundary by adding

additional parameters to account for the physical presence of the polymer

molecules in the solutions such as characteristic lengths, masses, and/or

times of the molecules. Specifically, then, the mean velocity component

u of the flow in a direction parallel to the wall may be considered to

depend on the usual attributes of the shear flow such as the normal dis-

tance y away from the wall, the shearing stress at the wall Tw, the density

p and the coefficient of viscosity Vo of the solvent. In addition the

presence of the polymer molecules is indicated by an unknown number of

characteristic lengths Z, 1,' £2,..., by an unknown number of character-

istic masses m, mi, m2,..., by an unknown number of characteristic times

t,, t1, t2 ,..., and the density of disperison of the polymer molecules in

the fluid p p. Future investigation will have to ascertain which character-

istic quantities have significance to the drag-reducing qualities of the

polymer molecules. A discussion of current molecular theories appears in

Reference 7.

The coefficient of viscosity p of the solution is not used in the
analysis since 1) it is not an independent variable but is dependent on
the presence of the polymer molecules and hence implicitly specified; and
2) its use in Reynolds numbers in drag relations would mask the increase
in drag due any increased viscosity of the solution.

s_ __I ___ _I I _I_ __



Examples of such characteristic lengths may be the molecular di-

mensions of factors like radii of gyration. A characteristic time may be

a relaxation time. A characteristic mass may be the molecular weight. In

fact, Hoytl 7 has proposed using drag red;.ction as a means of measuring the

molecular weights of homologous polymers.

The analysis does not involve viscoelasticity per se. However,

characteristic time may be considered as a measure of the viscoelastic

property of the solution. Gadd 18 19 has experimentally shown that there

is no apparent correlation between drag reduction ability and normal

stress difference which is the usual measure of viscoelastic behavior.

The analytical statement of the inner law then becomes

u = f [wr wpo' IP'PYp' .2l 2,...m,ml'm2,.. ,t,tlt 2'..

The boundary condition at the wall as usual is u = 0 at y = 0.

By dimensional analysis the variables may be grouped into the

following nondimensional ratios:

S uT p u1 m m m

Tu o o o 1 2 p3' m1 2'

u T Y P P m m--u- f  
[3 PO 1/3 m m 2

T o oo o ' 1 2

U 3 [u yT Pp t t .tv
u p, u t t 1 o 1

u L p ' ' 2 ' ' 2oo 1 tl t2

tv t \
o t 1

2 ' t t 2 ,
R 1 2 / I

2. tv t 1m 9 1 o t tl
p3' .1 2 ' .. ' 2 t I  t

S 1 2 2b] 2

[2b]

m m 1 [2c]
3 m m "

pO 1 2 J
0

[1]
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where u = [ is the friction or shear velocity
0

and v is the kinematic viscosity of the solvent.
o Po

It is thus possible to use either a characteristic length, mass, or

time to indicate the hydrodynamic properties of the solution. The ratio

Pp may be converted to the usual definition for concentration C,

p /Po
C = PPo The ratios within the dashed parentheses are constant for

1 + p o

a particular chemical species in a particular solvent.

Equations [2] are statements of the inner law or law of the wall and

are applicable to shear flows like fully developed turbulent flow in pipes

and boundary-layer flows.

For convenience, Equation [2a] based on the characteristic length

is used in the analyses of this paper. The following notation is also

adopted

T R u y

o o0 0

and
I mI  tv t

k 1 m m 1 o t 1
1 2' " p ,3 ml' ' ''2 2 tl t2

OUTER LAW OR VELOCITY-DEFECT LAW

For the turbulent flow of ordinary fluids in pipes and for flat

plates at some distance away from the wall, where U is the velocity in the

center of the pipe or at the outer edge of the boundary layer, the velocity

defect U-u has been found experimentally to be directly independent of

In the terminology of this report, flat-plate flow implies zero
pressure gradient.



viscosity and only a function of Tr, p, and distance 6 - y or

U - U = f , p, y, 6 [3]

where 6 is the thickness of the boundary layer or the pipe radius for

fully-developed pipe flow. For dilute solutions, p po.  Then by di-

mensional analysis

U-u F [-] [4]
T

which is the statement of the outer law or velocity-defect law.

Since the outer law is not directly dependent on viscous behavior,

it is to be expected that it should also be the same for the flow of

dilute polymer solutions as for the flow of the pure solvents. This has

been confirmed by the pipe tests of Ernst.5 Additional confirmation has

come from studies by Jackleyl2 on the flow in free jets wherein polymer

additives showed no effects on jet behavior. The flow in jets represents

outer-law flow in effect.

LOGARITHMIC VELOCITY LAW

Within the shear layer there is a region where both the inner and

outer laws are considered to hold. This overlapping leads to a logarithmic

relation as follows: Equating the derivative of velocity u with respect

to distance y for the inner and outer laws, Equations [2] and [4], gives

2
au T 1 T dF

= - [5]8y v * 6 d(y/6)
o ay

or

afdF
y - dF A [6]
y * = d(y/6)
ay

Since the left-hand side of Equation [6] is only a function of y and

polymer parameters C, Z , and P, and the right-hand side is only a

function of y/6, the only quantity satisfying these conditions is a con-

stant, say A, independent of all these variables.
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From the left-hand side of Equation [6] there results after inte-

gration

fl u= A In y + B1 ,Z C, P [7]t

where the constant of integration B1 is necessarily a function of Z , C,

and P from the integration of a partial derivative. Equation [7] is the

statement of the inner law in the overlapping region.

The constancy of A and the variation of B1 with k has been experi-

mentally confirmed in References 5, 6, and 8. In Reference 6 B1 is

correlated with u for CMC solutions flowing in different sized pipes and
I 2u t

T
in Reference 8 B is correlated with for Guar Gum Solutions. For a

1 v
particular concentration C and polymer species P, the factors k, t, and v

are constant and hence B correlates with u or any function of u such as
1 T T

From the right-hand side of Equation [6] the outer law in the over-

lapping region becomes

U - u
F - - A In y/6 + B2  [8]

An important consequence of the preceding analysis is that the

hydrodynamic effects of the polymer additives are characterized by the

behavior of B1 as a function of 2 , C, P which is to be experimentally

determined. B1 will be termed the drag-reducing characterization for a

given concentration of a solution of a given polymer.

Equating the velocities of the inner and outer laws in the over-

lapping region, Equations [7] and [8] provides a relation for local skin

friction:

U
- = A In n + B1 + B2  [9]

where a is a local resistance parameter and n = u 6/v .

tlIn = natural logarithm.



It is to be noted that A may be also written as 1/x where x is known

as von Karman's constant.

SUBLAYERS

Various sublayers may be distinguished in the boundary layer

according to the behavior of the velocity profiles. These are:

1. The laminar sublayer next to the wall wherein the turbulent

fluctuations are effectively damped out.

2. The transitional sublayer wherein the shearing stresses are

affected by both laminar and turbulent contributions.

3. The inner turbulent sublayer wherein the inner and outer laws

overlap.

4. The outer turbulent sublayer where only the outer law prevails.

VELOCITY LAW FOR LAMINAR SUBLAYER

The inner law, Equation [2] holds here without any specification as

to the form of the functional relationship. For essentially parallel

laminar flow within the laminar sublayer, the shearing stress T is given as

S= du [10]
= dy

where p = coefficient of viscosity of the solution.

If the variation of T with y is neglected within the thin sublayer,

T 

T

du w w
Then - = -, u y with u = 0 at y = 0 and consequently

dy P v

S= y for 0 Y 5 Y [11]
u v - y Y L

where v = kinematic viscosity of the solution.

VELOCITY LAW FOR TRANSITIONAL SUBLAYER

The velocity law for the transitional sublayer derived by Squirel3

for ordinary flows may be considered also valid for dilute polymer so-

lutions. Then

- - IL - I~~I 1 11 01 oil oil MIN ""



U * * * *
-- = A In (y - J) + B for yL T [12]

where
v vAJ = (B + A In -- ) [13]v 1 v e

o o

e = base of natural logarithms

This relation starts at the outer edge of the laminar sublayer yL
and merges asymptotically with the logarithmic velocity law, Equation [7].

A measure of the thickness of the laminar sublayer is given by

* V V

YL =V CB1 + A In A) [14]
o o

It is seen that the laminar sublayer increases with increasing values of

B1 . Figure 1 shows a sample plot of the inner law.

VELOCITY LAW FOR INNER TURBULENT SUBLAYER

The inner turbulent sublayer represents the region of the overlapping

of the inner and outer similarity law. Here Equations [7] and [8] apply.

VELOCITY LAW FOR OUTER TURBULENT SUBLAYER

Instead of a completely undefined statement of the outer law as

given by Equation [4] for the region outside of the validity of the logar-

ithmic velocity law, Equation [8], it is sometimes of value to consider

the velocity law in terms of a deviation of the outer law from the logar-

ithmic law: h[y/6]. Then the outer law becomes

U - = F [y/6] = - A In y/6 + B2 - h[y/6] [15]

The limiting values of h are

h = 0 at y/6 = (y/6)G

h = B2 y/6 = 1
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Figure 1 - Inner Similarity Law



For the inner and outer turbulent sublayer the velocity law becomes

- = A In y + B1 + h[y/6] for y < y n

Figure 2 shows plots of the outer law for pipes and flat plates.

INTEGRAL RELATIONS OF VELOCITY SIMILARITY
LAWS

For subsequent analyses of frictional resistance, integration of

the velocity similarity laws are required over the whole shear layer such

as

f -u dy , y dy

0 0

and -u- y  dy
u

o

These are performed in a piecewise manner using the appropriate

velocity similarity law for each sublayer, Equations [11], [12], and [16].

By definition y = n(y/6) which is needed for transforming integrations

from y to y/6. Consequently

S * D) + [7]
u dy = r (a - D1) + a [17]

where

D1 = A + B2 -1 2 f
(y/6)

G

h d(y/6) [18]

V 2Va - 2  1 - In
0 0

2

1 2 v v 1
A + In A ) 22 v 2o o

2 dy = n (a2 - 2D 1 a + D2) +

[16]

[19]

[20]
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Figure 2 - Outer Similarity Law



where

D2 = B22 2 + 2AB 2 +2A 2 - 2B 2
h d(y/6) + 2A h In y/ 6 d(y/6)

(y/6)G

+1
[21]

d(y/6)

3( 1 In 3  A - In 2 v A + 2
Ov v In- - A - 2) + B1 A2 (in2

-2 In A+ 2
Ov

and

o

where

AD3 =-+ B3 2

Y = o )2
(V)

A2 (A

y dy 2 (

1

2 - 2
12 -2 f

3v A vIn v -A In A
v 2 v

- D3 ) + y

h y/6 d(y/6)

+ 2 In v A - In - A

B1 (A
B A2

- A in -- A +v 2
2v

in2 - A B126

[25]

* - )v ) *
- A + A In A YT In

v o )YT

v SA

[22]

[23]

[24]

A
4

+ (- -vof

v
o i



PIPE FLOW

AVERAGE VELOCITY

For pipe flow the most meaningful velocity for engineering appli-

cation is the average velocity of the flow V which for a circular cross

section is:
D/2

2r fL u r dr

[26]oV=
T 2
". D

where r is the radial distance from the center of the pipe and D is the

diameter of the pipe.

In terms of similarity parameters

u * 1
dy

u
T

u y  dy

0

where y is the radial distance from the pipe wall towards the center.

Substituting the values of the integrals, Equations [17] and [23],

produces

V 2a 2Y
- - 2D 1 + D3 +

u 1 3 n 2
[28]

FRICTION FACTOR

The Fanning friction factor f for pipe flow is defined as

w

f
1 2
2pV

u

The Darcy-Weisbach friction factor X is defined as

8-T
w

pV
2

[29]

[30]

[31]

2 uTV = [27]
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X = 4f

Substituting average velocity, Equation [28], for maximum velocity

in the pipe flow in the relation for skin friction, Equation [9], produces

V 2a 2Y
- A In n + B + B - 2D + D + ---

u 1 2 1 3 n 2• r rn
[33]

Using the expression for friction factor, Equation [30], and the fact that

by definition

nE RD [

and
RD VDVD
RD -v

results in

34]

[35]

I-n f R A In 2 + 1
f D 1 2  1V/2 r2 r2 1 21+ g

+ 4-- - [36]

RD f RD 2

Within the range of RD of interest the last two terms of Equation [36] can

be absorbed by linearization:

1 c- In f RD +c 2  [:
/ff RD

37]

1 2 = c3 In YF RD + c4f RD

Then

1 a log Vf RD + + (B - B 0 )
DB 1 1,0

log refers to common logarithms to the base 10.

and
[38]

[39]*

[32)



where

B f [

B1, 0 = B1 for solvent

= 2.3026 (A + 4 c1 a - 16 c3 Y) [401

and

6= (B1,0 + B2 -2D1 + D3+4 c2a - 16 c4a - 3.4539 A log 2) [41]

MINIMUM DIAMETER FOR LOGARITHMIC LAW

The extent of overlapping of the inner and outer similarity laws

wherein the logarithmic law holds varies with n. The outer limit of the

logarithmic law is given by (y/6)G and the inner limit by T . Hence for

the inner law the extent is n(y/6)G - YT and for the outer law the extent

is (y/6)G - YT /n. The extent diminishes with decreasing n so that the

value of n for the disappearance of the logarithm law or nM is

YT [42]
M (y/6)G42]

For ordinary fluids, then from Equation [34]

4nM 1
D,M Jf' VM

and from Equation [39]

4 o 4
RD, 4'" (log + 8 ) [43]

For dilute drag-reducing fluids B1 = f [Z ] and yT = f [*].

Hence

DM 2nM 2 YT
- -- T [44]

, (Y/6)G L
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The corresponding

4nM 4 BI - B1,O
R - i1 log 4 nM + + 1 [45]
RD,M V- l

Since B = f [

RD,M = f [ ] = f [DM/]

or

For a particular polymer solution the minimum diameter is thenspecified

V DM  Vby-. At each value of £ , a value of and R is calculated. - isv 0 D,M
o o

RD
M

then determined from DM/

An example is shown in Figure 3 for a particular concentration of

Guar Gum. It is obvious that too small a pipe diameter will provide data

not susceptible to generalization.

BOUNDARY-LAYER FLOW

BOUNDARY-LAYER PARAMETERS

The boundary-layer parameters of displacement thickness 6 , momentum

thickness 8, and shape parameter H are obtained from the integrated values

of the similarity ilaws over the boundary layer.

Since the diplacement thickness 6 is defined as

6

6 J (1 - ) dy [46]

or

6 1 fu *S 1-- dy [47]

and from Equation [17]
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Figure 3 - Minimum Pipe Diameter for Logarithmic Similarity Law
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6 1 a
-- (D1  [48]

Momentum thickness 0 is defined as

S- (1 - U) Udy [49]

o

or

n 1 2
0 1 i-d 1 u *

I U dy dy [50]6 oin J u 2 u
0 0

and from Equations [17] and [20]

0 1 a 1 0
S (D +-) (D + [51]6 a 1 - 2 2 T-

and

Re U 2 B
+R -= n (D ) +a 2-- [52]

For shape parameter H defined as

H 6 /0

= 1- [(D 2 + 6/n) / (D 1 - a/n) [53]

FRICTIONAL RESISTANCE OF FLAT PLATES

The frictional resistance or drag of a flat plate in two-dimensional

flow without pressure gradients which corresponds to a flat plate moving

lengthwise in an infinite fluid is determined by the momentum thickness of

the boundary-layer flow leaving the trailing edge as a wake. The von Karman

momentum equation after neglecting the small effect of the normal Reynolds

stress term holds also for dilute solutions of polymers since the boundary-

layer equations of motion are the same as for the pure solvent:

T
d w 

[54]dx U2
pU

where x is the streamwise distance from the leading edge.



Since the frictional resistance or drag a for a flat plate of unit

breadth is
x

[55]
S= ~T dx

and the drag coefficient

[56]
1 2
- pU x2

then
2 R

C = 2 -
f x R

x

R = Ux
x v

O -

1 w
Since- - the momentum equation,

a pU

[54], becomes

[57]

[58]

R = fa2 dRo

or by integrating by parts

R = o R0 - 2 R0 a do + const

Inserting the relation for n from [9] into the relation for R,

Equation [52], and integrating by parts repeatedly results in a series:

J R0a do = A D1n l 1 A

where

+-D2 + 1) + A +D 1+B 1 ,2 = A B1
D 1 + + 1 B 1

1 + f+ a do - do + const

dB1

d(ln )

t59]

[60]

[61]

[62]

where

and

------------------ - 11 01MIYN11dw,
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d2B

B - * 2
d(ln )

Then from Equations [60], [52], and [61]

2 { (2 A + D2 /D 1 )
R = D1  q 1 +X 1

2 A (A + D2/D 1 + B1 1)

2 A [(A + D2/D1) B1 ' + B1 2 - A B1i]

+ ac - So - 2 So do + 2 Bdo + constant

The frictional-resistance coefficient of flat plates is then given

implicitly in terms of a by Equations [57], [52], and [64].

LOGARITHMIC RESISTANCE FORMULA

It is seen from Equation [64J that Cf is a function of R in terms
x

of parameter a. When a is eliminated, logarithmic resistance formulas

arise. The procedure is as follows: Equations [57] and [60] are combined

to give, after neglecting the constant of integration,

1 C R do
2 2 2

a a R@

Substituting the expressions for Re and f Re o do from Equations [52] and

[61] gives, with a and 5 neglected:

164]

165]

1 = Cf 2A 2 A(A + B ' )

2 2 2
G

2 A [A(B 1' - D2/D1) + B 1 2 - AB1" ] + [66]
+ * * *I

t63]
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Through reiteration a is replaced by Cf within the brackets so that

S- 2A ( 2f +2 2A + B1 )( .) [67]

and by the binomial theorem

S i[1 - A 1/2 + A(- A + Bl' 2 + . . [68]

and by inversion

1/2 Bl')(2f)

= + A (- A + B. . [69]

Now, after substituting for n from Equation [9] and ignoring a, 6,

and the constant of integration, Rx in Equation [64] is written in

logarithmic form as:

o 1 D - 1 1x A A In D1 - n + In [1 - (2A + D2/D) - ] 70]
x A A A 1 2 2 1

a
1 1

Substituting the appropriate expressions for 2 a, and a from Equations

[67], [68], and [69] and expanding the logarithm as series results in

x f - + 1 - + in 2D1  -- (A + + B1  [71]
In R - + l B B2  2 1

wherein terms of higher order than Cf have been neglected. For the case

of the pure solvent B' 0 and B = B Equation [71] becomes
1 1 1,0'

SB1,0 B (A +
ln Rx C + 1 - + In 2D1  / 2 -D f [72]

Equation [72] is reducible to the form of the well-known Karman-Schoenherr

formula for flat plates by linearizing Cf with respect to -- to absorb

the last term. Cf

, IIgigg1 I ullME
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LOCAL SKIN-FRICTION COEFFICIENTS AND
SHAPE PARAMETERS

For the approximate calculation of turbulent boundary layers in

pressure gradients such as on bodies there is still use for relations

which derive from the flat-plate conditions such as the local skin

friction and shape parameter as functions of momentum thickness. For drag-

reducing solutions the local skin friction is expressed as

2 -- 2 = f Ri /J1 [73]
a pU2

and the shape parameter H as

H = f [Re, /] [74]

From Equations [9] and [52] the local skin friction is expressed as

R = D 1 1 - exp (a - B2 - B1)] [75]

where a and B have been neglected. Logarithmically, Equation [75] becomes

2 B B D T

In R =- U + In D1  D- [76]
0 A T A A 1 Dl 2

WDw 1 pU

wherein one term has been retained in the series expansion of in 1- 2

This equation represents the general case with B1 as a function of

In the case of the shape parameter H, Equation [53] is simplified

to

H 1 1 pU [77]H- = = - [77]
Hby dropping and .

by dropping a and B.



COMBINED ROUGHNESS AND DRAG-REDUCING EFFECTS

The flow of a dilute polymer solution over a rough surface produces

mutually antagonistic effects: the presence of the polymer molecules tends

to reduce the wall shearing stress while the roughness of the wall tends

to increase the wall shearing stress. The similarity laws may be applied

to the combined situation by confining the effects to the inner law and

leaving the outer law unaffected.

The inner law then includes all the pertinent parameters: (1) for

roughness: k, kl, k2, . . . length parameters defining the roughness

geometry and (2) for drag-reducing elements: p p, 1, l' 2' . . . m, ml'

m2, . . . . t, tl, t2, . . . as previously defined. Then

u = f y, Tw , 1o' PoY kl, k 2 p' ' 1' 2, ..., m, ml, m2, ... [78]

t, tl, t2,..

and nondimensionally

u_ f y, 2 , C, P, R/k, k/kl, k /k2 ,... [79]
u 1
T

The outer law is considered unaffected so that overlapping produces the

usual logarithmic relations with

B1 = f , C, , P, /k, k/k1 , kl/k 2 ,... [80]

For a specific uniform roughness and a specific concentration of a given

polymer B1 = f [k ]. All the other relations then follow as before.

LINEAR LOGARITHMIC DRAG-REDUCING CHARACTERIZATION

PIPE FLOW

For the range of Reynolds numbers tested in pipe flow, Meyer 6 found

B1 to be a linear logarithmic function of u . By introducing the polymer
u2
T *

parameter 2 this can be generalized to a function of-- or 2 as required

by the similarity laws as previously shown or

- 1 IIIII Ill
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v1 * * * *
B1 = B, 0 - A In -- + q (log 9 - log ) , >k0

[81]
v * *B = B - A lnn < R

o

where

B1,0 = B1 for zero concentration or pure solvent

S= - value for B = B,0- A ln , threshold value of 9o 1 1,0 v

q = slope of logarithmic relation

and

q = f [C, P]

Therefore, q varies with concentration and type of polymer. The friction

relation for pipe flow, Equation [39], can be further deduced by consider-

ing that by definition

- R = RD [82]

Then Equation [39] becomes

1 + q  log fRD + - log 1/ £ q log

VF 2 2o
[83]

A
- 1 log

where Al = 2.3026 A. This result was substantially found by Meyer6 who

pointed out that this explains the effect of diameter on frictional factor

as given by the next to the last term on the right-hand side. Furthermore,

it was also pointed out that the slope of plots of against log VPR

is altered by the factor q and not by changes in a or its equivalent
/ /14

von Karman's constant W.

FLAT-PLATE FLOW

By definition for flat-plate flow

(, = R [84]
a x

illililll lliYIIIIIII -



Then the resistance formula for flat plates, Equation [71], becomes

1 log R = (1 + )log C + V (A - B1 0 - B

[85]

+ log 2D1 + log + - log 2.3026 + log x/
1o 1 2.3026 Y2 A

For local skin friction by definition

Z =- R [86]

Then the local skin friction formula, Equation [76], becomes

1 +1 o A (B + +B1 10  + log D1
log Rlog R A v 1

Slog 2 w [87]
A1  o 2.3026 D1  [87]

Slog +- 1 log 0/£
1 PU+ 1

EXPERIMENTAL DATA

SIMILARITY LAWS OF ORDINARY FLUIDS

The measured values of A and B1 for the inner law velocity profiles

have had the usual discrepancies due to experimental errors. Pitot tubes

are subject to wall and finite-size effects in shear flows. More serious

have been the discrepancies between pipe flow and flat plate boundary-layer

flows. 11 This has resulted in controversy concerning the calibration of

Preston tubes for pipes and flat plates which implicitly depends on the

values of A and B1. In an effort to resolve this difficulty, Patel
15

made measurements of the velocity profiles of the inner law of pipe and

flat-plate flows under very carefully controlled conditions and did find

agreement on this score. The results are

AI = 5.5

1 14 1
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5.5
A 2.39

2.3026

and

B1 = 5.45

This means that the data from proper pipe measurements can be applied to

flat plates without reservation.

The velocity profiles for the outer law of pipe and flat-plate

flow are, however, quite different as shown in Figure 2. An adjustment of
11

the values of B2  to conform to A = 2.39 gives

B2 = 2.6 for flat plates

and

B2 = 0.9 for pipes

The nonlogarithmic portion of the outer law may be tentatively

fitted by

U - u 2= 9.87 (1 - y/ 6 ) for flat plates [88]

and

U - u 2= 7.52 (1 - y/6) for pipes [89]
T

for y/6 > 0.15

FRICTIONAL RESISTANCE

In the case of pipes the generally accepted values are a = 4.0 and
8= -0.4 for determining the Fanning friction factors. No doubt some ad-

justment would result from more careful measurements.

In the case of flat plates the Schoenherr formula gives acceptable

values of frictional resistance for ordinary fluids

logIUx Cf)= 0.242 [90]

Equation [83] for drag reducing fluids then becomes



1 + ) log R = -1 + q - log Cf
S2A f

+ 0.242 + log + q log
f 0 A 1  0

+q log x [91]
A R

GUAR GUM

The most extensive data available in friction-reducing properties

of aqueous polymer solutions in pipes are those of Guar Gum, a natural

polymer used in the food industry. Guar Gum requires much higher concen-

trations than Polyox for the same drag-reducing effects but has the

advantage of being resistant to mechanical degradation. Elata et al8 ob-

tained values of q (a in their notation, q = 2a) as a function of concen-

tration, a maximum of q = 47 occurring at C = 3000 ppm. Up to 800 ppm,

q = 0.026C. (ppm = parts per million by weight)

An examination of Elata's data gives a threshold value of drag
u 3 -1

reducing property of - 2.5 x 10 in independent of concentration.
o V

o -4
The reciprocal of this value gives a threshold length, = 4.0 x 10 in.

T

If the characteristic length k is taken as this threshold length,

-4 .

Z = 4.0 x 10-4 in

then

R= 1
o

The viscosity dependence of Guar Gum solutions on concentration is

given by Rubin and Elata.16 Their data may be fitted to give

- 1 = 5.25 x 10-4 C1.157 [92]

C in ppm.

11 OMNI OOP NO 0 -.11 - -0 -
-



The drag reduction due to Guar Gum on a flat plate is illustrated

in Figure 4 for the 3000 ppm concentration. The effects of flat-plate

length and threshold value of shearing stress are very pronounced.

10
7  

108
UX

REYNOLDS NUMBER, Rx=-

Figure 4 - Frictional Resistance of Flat Plate
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